/* tc-tahoe.c Not part of GAS yet. */ #include "as.h" #include "obstack.h" /* this bit glommed from tahoe-inst.h */ typedef unsigned char byte; typedef byte tahoe_opcodeT; /* * This is part of tahoe-ins-parse.c & friends. * We want to parse a tahoe instruction text into a tree defined here. */ #define TIT_MAX_OPERANDS (4) /* maximum number of operands in one single tahoe instruction */ struct top /* tahoe instruction operand */ { int top_ndx; /* -1, or index register. eg 7=[R7] */ int top_reg; /* -1, or register number. eg 7 = R7 or (R7) */ byte top_mode; /* Addressing mode byte. This byte, defines which of the 11 modes opcode is. */ char top_access; /* Access type wanted for this opperand 'b'branch ' 'no-instruction 'amrvw' */ char top_width; /* Operand width expected, one of "bwlq?-:!" */ char *top_error; /* Say if operand is inappropriate */ segT seg_of_operand; /* segment as returned by expression()*/ expressionS exp_of_operand; /* The expression as parsed by expression()*/ byte top_dispsize; /* Number of bytes in the displacement if we can figure it out */ }; /* The addressing modes for an operand. These numbers are the acutal values for certain modes, so be carefull if you screw with them. */ #define TAHOE_DIRECT_REG (0x50) #define TAHOE_REG_DEFERRED (0x60) #define TAHOE_REG_DISP (0xE0) #define TAHOE_REG_DISP_DEFERRED (0xF0) #define TAHOE_IMMEDIATE (0x8F) #define TAHOE_IMMEDIATE_BYTE (0x88) #define TAHOE_IMMEDIATE_WORD (0x89) #define TAHOE_IMMEDIATE_LONGWORD (0x8F) #define TAHOE_ABSOLUTE_ADDR (0x9F) #define TAHOE_DISPLACED_RELATIVE (0xEF) #define TAHOE_DISP_REL_DEFERRED (0xFF) #define TAHOE_AUTO_DEC (0x7E) #define TAHOE_AUTO_INC (0x8E) #define TAHOE_AUTO_INC_DEFERRED (0x9E) /* INDEXED_REG is decided by the existance or lack of a [reg] */ /* These are encoded into top_width when top_access=='b' and it's a psuedo op.*/ #define TAHOE_WIDTH_ALWAYS_JUMP '-' #define TAHOE_WIDTH_CONDITIONAL_JUMP '?' #define TAHOE_WIDTH_BIG_REV_JUMP '!' #define TAHOE_WIDTH_BIG_NON_REV_JUMP ':' /* The hex code for certain tahoe commands and modes. This is just for readability. */ #define TAHOE_JMP (0x71) #define TAHOE_PC_REL_LONG (0xEF) #define TAHOE_BRB (0x11) #define TAHOE_BRW (0x13) /* These, when 'ored' with, or added to, a register number, set up the number for the displacement mode. */ #define TAHOE_PC_OR_BYTE (0xA0) #define TAHOE_PC_OR_WORD (0xC0) #define TAHOE_PC_OR_LONG (0xE0) struct tit /* get it out of the sewer, it stands for tahoe instruction tree (Geeze!) */ { tahoe_opcodeT tit_opcode; /* The opcode. */ byte tit_operands; /* How many operands are here. */ struct top tit_operand[TIT_MAX_OPERANDS]; /* Operands */ char *tit_error; /* "" or fatal error text */ }; /* end: tahoe-inst.h */ /* tahoe.c - tahoe-specific - Not part of gas yet. */ #include "opcode/tahoe.h" /* This is the number to put at the beginning of the a.out file */ long omagic = OMAGIC; /* These chars start a comment anywhere in a source file (except inside another comment or a quoted string. */ const char comment_chars[] = "#;"; /* These chars only start a comment at the beginning of a line. */ const char line_comment_chars[] = "#"; /* Chars that can be used to separate mant from exp in floating point nums */ const char EXP_CHARS[] = "eE"; /* Chars that mean this number is a floating point constant as in 0f123.456 or 0d1.234E-12 (see exp chars above) Note: The Tahoe port doesn't support floating point constants. This is consistant with 'as' If it's needed, I can always add it later. */ const char FLT_CHARS[] = "df"; /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be changed in read.c . Ideally it shouldn't have to know about it at all, but nothing is ideal around here. (The tahoe has plenty of room, so the change currently isn't needed.) */ static struct tit t; /* A tahoe instruction after decoding. */ void float_cons (); /* A table of pseudo ops (sans .), the function called, and an integer op that the function is called with. */ const pseudo_typeS md_pseudo_table[] = { {"dfloat", float_cons, 'd'}, {"ffloat", float_cons, 'f'}, {0} }; /* * For Tahoe, relative addresses of "just the right length" are pretty easy. * The branch displacement is always the last operand, even in * synthetic instructions. * For Tahoe, we encode the relax_substateTs (in e.g. fr_substate) as: * * 4 3 2 1 0 bit number * ---/ /--+-------+-------+-------+-------+-------+ * | what state ? | how long ? | * ---/ /--+-------+-------+-------+-------+-------+ * * The "how long" bits are 00=byte, 01=word, 10=long. * This is a Un*x convention. * Not all lengths are legit for a given value of (what state). * The four states are listed below. * The "how long" refers merely to the displacement length. * The address usually has some constant bytes in it as well. * States for Tahoe address relaxing. 1. TAHOE_WIDTH_ALWAYS_JUMP (-) Format: "b-" Tahoe opcodes are: (Hex) jr 11 jbr 11 Simple branch. Always, 1 byte opcode, then displacement/absolute. If word or longword, change opcode to brw or jmp. 2. TAHOE_WIDTH_CONDITIONAL_JUMP (?) J where is a simple flag test. Format: "b?" Tahoe opcodes are: (Hex) jneq/jnequ 21 jeql/jeqlu 31 jgtr 41 jleq 51 jgeq 81 jlss 91 jgtru a1 jlequ b1 jvc c1 jvs d1 jlssu/jcs e1 jgequ/jcc f1 Always, you complement 4th bit to reverse the condition. Always, 1-byte opcode, then 1-byte displacement. 3. TAHOE_WIDTH_BIG_REV_JUMP (!) Jbc/Jbs where cond tests a memory bit. Format: "rlvlb!" Tahoe opcodes are: (Hex) jbs 0e jbc 1e Always, you complement 4th bit to reverse the condition. Always, 1-byte opcde, longword, longword-address, 1-word-displacement 4. TAHOE_WIDTH_BIG_NON_REV_JUMP (:) JaoblXX/Jbssi Format: "rlmlb:" Tahoe opcodes are: (Hex) aojlss 2f jaoblss 2f aojleq 3f jaobleq 3f jbssi 5f Always, we cannot reverse the sense of the branch; we have a word displacement. We need to modify the opcode is for class 1, 2 and 3 instructions. After relax() we may complement the 4th bit of 2 or 3 to reverse sense of branch. We sometimes store context in the operand literal. This way we can figure out after relax() what the original addressing mode was. (Was is pc_rel, or pc_rel_disp? That sort of thing.) */ /* These displacements are relative to the START address of the displacement which is at the start of the displacement, not the end of the instruction. The hardware pc_rel is at the end of the instructions. That's why all the displacements have the length of the displacement added to them. (WF + length(word)) The first letter is Byte, Word. 2nd letter is Forward, Backward. */ #define BF (1+ 127) #define BB (1+-128) #define WF (2+ 32767) #define WB (2+-32768) /* Dont need LF, LB because they always reach. [They are coded as 0.] */ #define C(a,b) ENCODE_RELAX(a,b) /* This macro has no side-effects. */ #define ENCODE_RELAX(what,length) (((what) << 2) + (length)) #define RELAX_STATE(what) ((what) >> 2) #define RELAX_LENGTH(length) ((length) && 3) #define STATE_ALWAYS_BRANCH (1) #define STATE_CONDITIONAL_BRANCH (2) #define STATE_BIG_REV_BRANCH (3) #define STATE_BIG_NON_REV_BRANCH (4) #define STATE_PC_RELATIVE (5) #define STATE_BYTE (0) #define STATE_WORD (1) #define STATE_LONG (2) #define STATE_UNDF (3) /* Symbol undefined in pass1 */ /* This is the table used by gas to figure out relaxing modes. The fields are forward_branch reach, backward_branch reach, number of bytes it would take, where the next biggest branch is. */ const relax_typeS md_relax_table[] = { { 1, 1, 0, 0 }, /* error sentinel 0,0 */ { 1, 1, 0, 0 }, /* unused 0,1 */ { 1, 1, 0, 0 }, /* unused 0,2 */ { 1, 1, 0, 0 }, /* unused 0,3 */ /* Unconditional branch cases "jrb" The relax part is the actual displacement */ { BF, BB, 1, C (1, 1) }, /* brb B`foo 1,0 */ { WF, WB, 2, C (1, 2) }, /* brw W`foo 1,1 */ { 0, 0, 5, 0 }, /* Jmp L`foo 1,2 */ { 1, 1, 0, 0 }, /* unused 1,3 */ /* Reversible Conditional Branch. If the branch won't reach, reverse it, and jump over a brw or a jmp that will reach. The relax part is the actual address. */ { BF, BB, 1, C (2, 1) }, /* b B`foo 2,0 */ { WF + 2, WB + 2, 4, C (2, 2) }, /* brev over, brw W`foo, over: 2,1 */ { 0, 0, 7, 0 }, /* brev over, jmp L`foo, over: 2,2 */ { 1, 1, 0, 0 }, /* unused 2,3 */ /* Another type of reversable branch. But this only has a word displacement. */ { 1, 1, 0, 0 }, /* unused 3,0 */ { WF, WB, 2, C (3, 2) }, /* jbX W`foo 3,1 */ { 0, 0, 8, 0 }, /* jrevX over, jmp L`foo, over: 3,2 */ { 1, 1, 0, 0 }, /* unused 3,3 */ /* These are the non reversable branches, all of which have a word displacement. If I can't reach, branch over a byte branch, to a jump that will reach. The jumped branch jumps over the reaching branch, to continue with the flow of the program. It's like playing leap frog. */ { 1, 1, 0, 0 }, /* unused 4,0 */ { WF, WB, 2, C (4, 2) }, /* aobl_ W`foo 4,1 */ { 0, 0, 10, 0 }, /*aobl_ W`hop,br over,hop: jmp L^foo,over 4,2*/ { 1, 1, 0, 0 }, /* unused 4,3 */ /* Normal displacement mode, no jumping or anything like that. The relax points to one byte before the address, thats why all the numbers are up by one. */ { BF + 1, BB + 1, 2, C (5, 1) }, /* B^"foo" 5,0 */ { WF + 1, WB + 1, 3, C (5, 2) }, /* W^"foo" 5,1 */ { 0, 0, 5, 0 }, /* L^"foo" 5,2 */ { 1, 1, 0, 0 }, /* unused 5,3 */ }; #undef C #undef BF #undef BB #undef WF #undef WB /* End relax stuff */ /* Handle of the OPCODE hash table. NULL means any use before md_begin() will crash. */ static struct hash_control *op_hash; /* Init function. Build the hash table. */ void md_begin () { struct tot *tP; char *errorval = 0; int synthetic_too = 1; /* If 0, just use real opcodes. */ op_hash = hash_new (); for (tP = totstrs; *tP->name && !errorval; tP++) errorval = hash_insert (op_hash, tP->name, &tP->detail); if (synthetic_too) for (tP = synthetic_totstrs; *tP->name && !errorval; tP++) errorval = hash_insert (op_hash, tP->name, &tP->detail); if (errorval) as_fatal (errorval); } CONST char *md_shortopts = "ad:STt:V"; struct option md_longopts[] = { {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof(md_longopts); int md_parse_option (c, arg) int c; char *arg; { switch (c) { case 'a': as_warn (_("The -a option doesn't exist. (Despite what the man page says!")); break; case 'd': as_warn (_("Displacement length %s ignored!"), arg); break; case 'S': as_warn (_("SYMBOL TABLE not implemented")); break; case 'T': as_warn (_("TOKEN TRACE not implemented")); break; case 't': as_warn (_("I don't need or use temp. file \"%s\"."), arg); break; case 'V': as_warn (_("I don't use an interpass file! -V ignored")); break; default: return 0; } return 1; } void md_show_usage (stream) FILE *stream; { fprintf(stream, _("\ Tahoe options:\n\ -a ignored\n\ -d LENGTH ignored\n\ -J ignored\n\ -S ignored\n\ -t FILE ignored\n\ -T ignored\n\ -V ignored\n")); } /* The functions in this section take numbers in the machine format, and munges them into Tahoe byte order. They exist primarily for cross assembly purpose. */ void /* Knows about order of bytes in address. */ md_number_to_chars (con, value, nbytes) char con[]; /* Return 'nbytes' of chars here. */ valueT value; /* The value of the bits. */ int nbytes; /* Number of bytes in the output. */ { number_to_chars_bigendian (con, value, nbytes); } #ifdef comment void /* Knows about order of bytes in address. */ md_number_to_imm (con, value, nbytes) char con[]; /* Return 'nbytes' of chars here. */ long int value; /* The value of the bits. */ int nbytes; /* Number of bytes in the output. */ { md_number_to_chars (con, value, nbytes); } #endif /* comment */ void tc_apply_fix (fixP, val) fixS *fixP; long val; { /* should never be called */ know (0); } void /* Knows about order of bytes in address. */ md_number_to_disp (con, value, nbytes) char con[]; /* Return 'nbytes' of chars here. */ long int value; /* The value of the bits. */ int nbytes; /* Number of bytes in the output. */ { md_number_to_chars (con, value, nbytes); } void /* Knows about order of bytes in address. */ md_number_to_field (con, value, nbytes) char con[]; /* Return 'nbytes' of chars here. */ long int value; /* The value of the bits. */ int nbytes; /* Number of bytes in the output. */ { md_number_to_chars (con, value, nbytes); } /* Put the bits in an order that a tahoe will understand, despite the ordering of the native machine. On Tahoe: first 4 bytes are normal unsigned big endian long, next three bytes are symbolnum, in kind of 3 byte big endian (least sig. byte last). The last byte is broken up with bit 7 as pcrel, bits 6 & 5 as length, bit 4 as extern and the last nibble as 'undefined'. */ #if comment void md_ri_to_chars (ri_p, ri) struct relocation_info *ri_p, ri; { byte the_bytes[sizeof (struct relocation_info)]; /* The reason I can't just encode these directly into ri_p is that ri_p may point to ri. */ /* This is easy */ md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address)); /* now the fun stuff */ the_bytes[4] = (ri.r_symbolnum >> 16) & 0x0ff; the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff; the_bytes[6] = ri.r_symbolnum & 0x0ff; the_bytes[7] = (((ri.r_extern << 4) & 0x10) | ((ri.r_length << 5) & 0x60) | ((ri.r_pcrel << 7) & 0x80)) & 0xf0; bcopy (the_bytes, (char *) ri_p, sizeof (struct relocation_info)); } #endif /* comment */ /* Put the bits in an order that a tahoe will understand, despite the ordering of the native machine. On Tahoe: first 4 bytes are normal unsigned big endian long, next three bytes are symbolnum, in kind of 3 byte big endian (least sig. byte last). The last byte is broken up with bit 7 as pcrel, bits 6 & 5 as length, bit 4 as extern and the last nibble as 'undefined'. */ void tc_aout_fix_to_chars (where, fixP, segment_address_in_file) char *where; fixS *fixP; relax_addressT segment_address_in_file; { long r_symbolnum; know (fixP->fx_addsy != NULL); md_number_to_chars (where, fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file, 4); r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy) ? S_GET_TYPE (fixP->fx_addsy) : fixP->fx_addsy->sy_number); where[4] = (r_symbolnum >> 16) & 0x0ff; where[5] = (r_symbolnum >> 8) & 0x0ff; where[6] = r_symbolnum & 0x0ff; where[7] = (((is_pcrel (fixP) << 7) & 0x80) | ((((fixP->fx_type == FX_8 || fixP->fx_type == FX_PCREL8 ? 0 : (fixP->fx_type == FX_16 || fixP->fx_type == FX_PCREL16 ? 1 : (fixP->fx_type == FX_32 || fixP->fx_type == FX_PCREL32 ? 2 : 42)))) << 5) & 0x60) | ((!S_IS_DEFINED (fixP->fx_addsy) << 4) & 0x10)); } /* Relocate byte stuff */ /* This is for broken word. */ const int md_short_jump_size = 3; void md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol) char *ptr; addressT from_addr, to_addr; fragS *frag; symbolS *to_symbol; { valueT offset; offset = to_addr - (from_addr + 1); *ptr++ = TAHOE_BRW; md_number_to_chars (ptr, offset, 2); } const int md_long_jump_size = 6; const int md_reloc_size = 8; /* Size of relocation record */ void md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol) char *ptr; addressT from_addr, to_addr; fragS *frag; symbolS *to_symbol; { valueT offset; offset = to_addr - (from_addr + 4); *ptr++ = TAHOE_JMP; *ptr++ = TAHOE_PC_REL_LONG; md_number_to_chars (ptr, offset, 4); } /* * md_estimate_size_before_relax() * * Called just before relax(). * Any symbol that is now undefined will not become defined, so we assumed * that it will be resolved by the linker. * Return the correct fr_subtype in the frag, for relax() * Return the initial "guess for fr_var" to caller. (How big I think this * will be.) * The guess for fr_var is ACTUALLY the growth beyond fr_fix. * Whatever we do to grow fr_fix or fr_var contributes to our returned value. * Although it may not be explicit in the frag, pretend fr_var starts with a * 0 value. */ int md_estimate_size_before_relax (fragP, segment_type) register fragS *fragP; segT segment_type; /* N_DATA or N_TEXT. */ { register char *p; register int old_fr_fix; /* int pc_rel; FIXME: remove this */ old_fr_fix = fragP->fr_fix; switch (fragP->fr_subtype) { case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF): if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type) { /* The symbol was in the same segment as the opcode, and it's a real pc_rel case so it's a relaxable case. */ fragP->fr_subtype = ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE); } else { /* This case is still undefined, so asume it's a long word for the linker to fix. */ p = fragP->fr_literal + old_fr_fix; *p |= TAHOE_PC_OR_LONG; /* We now know how big it will be, one long word. */ fragP->fr_fix += 1 + 4; fix_new (fragP, old_fr_fix + 1, fragP->fr_symbol, fragP->fr_offset, FX_PCREL32, NULL); frag_wane (fragP); } break; case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF): if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type) { fragP->fr_subtype = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE); } else { p = fragP->fr_literal + old_fr_fix; *fragP->fr_opcode ^= 0x10; /* Reverse sense of branch. */ *p++ = 6; *p++ = TAHOE_JMP; *p++ = TAHOE_PC_REL_LONG; fragP->fr_fix += 1 + 1 + 1 + 4; fix_new (fragP, old_fr_fix + 3, fragP->fr_symbol, fragP->fr_offset, FX_PCREL32, NULL); frag_wane (fragP); } break; case ENCODE_RELAX (STATE_BIG_REV_BRANCH, STATE_UNDF): if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type) { fragP->fr_subtype = ENCODE_RELAX (STATE_BIG_REV_BRANCH, STATE_WORD); } else { p = fragP->fr_literal + old_fr_fix; *fragP->fr_opcode ^= 0x10; /* Reverse sense of branch. */ *p++ = 0; *p++ = 6; *p++ = TAHOE_JMP; *p++ = TAHOE_PC_REL_LONG; fragP->fr_fix += 2 + 2 + 4; fix_new (fragP, old_fr_fix + 4, fragP->fr_symbol, fragP->fr_offset, FX_PCREL32, NULL); frag_wane (fragP); } break; case ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, STATE_UNDF): if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type) { fragP->fr_subtype = ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, STATE_WORD); } else { p = fragP->fr_literal + old_fr_fix; *p++ = 2; *p++ = 0; *p++ = TAHOE_BRB; *p++ = 6; *p++ = TAHOE_JMP; *p++ = TAHOE_PC_REL_LONG; fragP->fr_fix += 2 + 2 + 2 + 4; fix_new (fragP, old_fr_fix + 6, fragP->fr_symbol, fragP->fr_offset, FX_PCREL32, NULL); frag_wane (fragP); } break; case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_UNDF): if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type) { fragP->fr_subtype = ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE); } else { p = fragP->fr_literal + old_fr_fix; *fragP->fr_opcode = TAHOE_JMP; *p++ = TAHOE_PC_REL_LONG; fragP->fr_fix += 1 + 4; fix_new (fragP, old_fr_fix + 1, fragP->fr_symbol, fragP->fr_offset, FX_PCREL32, NULL); frag_wane (fragP); } break; default: break; } return (fragP->fr_var + fragP->fr_fix - old_fr_fix); } /* md_estimate_size_before_relax() */ /* * md_convert_frag(); * * Called after relax() is finished. * In: Address of frag. * fr_type == rs_machine_dependent. * fr_subtype is what the address relaxed to. * * Out: Any fixSs and constants are set up. * Caller will turn frag into a ".space 0". */ void md_convert_frag (headers, seg, fragP) object_headers *headers; segT seg; register fragS *fragP; { register char *addressP; /* -> _var to change. */ register char *opcodeP; /* -> opcode char(s) to change. */ register short int length_code; /* 2=long 1=word 0=byte */ register short int extension = 0; /* Size of relaxed address. Added to fr_fix: incl. ALL var chars. */ register symbolS *symbolP; register long int where; register long int address_of_var; /* Where, in file space, is _var of *fragP? */ register long int target_address; /* Where, in file space, does addr point? */ know (fragP->fr_type == rs_machine_dependent); length_code = RELAX_LENGTH (fragP->fr_subtype); know (length_code >= 0 && length_code < 3); where = fragP->fr_fix; addressP = fragP->fr_literal + where; opcodeP = fragP->fr_opcode; symbolP = fragP->fr_symbol; know (symbolP); target_address = S_GET_VALUE (symbolP) + fragP->fr_offset; address_of_var = fragP->fr_address + where; switch (fragP->fr_subtype) { case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE): /* *addressP holds the registers number, plus 0x10, if it's deferred mode. To set up the right mode, just OR the size of this displacement */ /* Byte displacement. */ *addressP++ |= TAHOE_PC_OR_BYTE; *addressP = target_address - (address_of_var + 2); extension = 2; break; case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD): /* Word displacement. */ *addressP++ |= TAHOE_PC_OR_WORD; md_number_to_chars (addressP, target_address - (address_of_var + 3), 2); extension = 3; break; case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_LONG): /* Long word displacement. */ *addressP++ |= TAHOE_PC_OR_LONG; md_number_to_chars (addressP, target_address - (address_of_var + 5), 4); extension = 5; break; case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE): *addressP = target_address - (address_of_var + 1); extension = 1; break; case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD): *opcodeP ^= 0x10; /* Reverse sense of test. */ *addressP++ = 3; /* Jump over word branch */ *addressP++ = TAHOE_BRW; md_number_to_chars (addressP, target_address - (address_of_var + 4), 2); extension = 4; break; case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_LONG): *opcodeP ^= 0x10; /* Reverse sense of test. */ *addressP++ = 6; *addressP++ = TAHOE_JMP; *addressP++ = TAHOE_PC_REL_LONG; md_number_to_chars (addressP, target_address, 4); extension = 7; break; case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE): *addressP = target_address - (address_of_var + 1); extension = 1; break; case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_WORD): *opcodeP = TAHOE_BRW; md_number_to_chars (addressP, target_address - (address_of_var + 2), 2); extension = 2; break; case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_LONG): *opcodeP = TAHOE_JMP; *addressP++ = TAHOE_PC_REL_LONG; md_number_to_chars (addressP, target_address - (address_of_var + 5), 4); extension = 5; break; case ENCODE_RELAX (STATE_BIG_REV_BRANCH, STATE_WORD): md_number_to_chars (addressP, target_address - (address_of_var + 2), 2); extension = 2; break; case ENCODE_RELAX (STATE_BIG_REV_BRANCH, STATE_LONG): *opcodeP ^= 0x10; *addressP++ = 0; *addressP++ = 6; *addressP++ = TAHOE_JMP; *addressP++ = TAHOE_PC_REL_LONG; md_number_to_chars (addressP, target_address, 4); extension = 8; break; case ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, STATE_WORD): md_number_to_chars (addressP, target_address - (address_of_var + 2), 2); extension = 2; break; case ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, STATE_LONG): *addressP++ = 0; *addressP++ = 2; *addressP++ = TAHOE_BRB; *addressP++ = 6; *addressP++ = TAHOE_JMP; *addressP++ = TAHOE_PC_REL_LONG; md_number_to_chars (addressP, target_address, 4); extension = 10; break; default: BAD_CASE (fragP->fr_subtype); break; } fragP->fr_fix += extension; } /* md_convert_frag */ /* This is the stuff for md_assemble. */ #define FP_REG 13 #define SP_REG 14 #define PC_REG 15 #define BIGGESTREG PC_REG /* * Parse the string pointed to by START * If it represents a valid register, point START to the character after * the last valid register char, and return the register number (0-15). * If invalid, leave START alone, return -1. * The format has to be exact. I don't do things like eat leading zeros * or the like. * Note: This doesn't check for the next character in the string making * this invalid. Ex: R123 would return 12, it's the callers job to check * what start is point to apon return. * * Valid registers are R1-R15, %1-%15, FP (13), SP (14), PC (15) * Case doesn't matter. */ int tahoe_reg_parse (start) char **start; /* A pointer to the string to parse. */ { register char *regpoint = *start; register int regnum = -1; switch (*regpoint++) { case '%': /* Registers can start with a %, R or r, and then a number. */ case 'R': case 'r': if (isdigit (*regpoint)) { /* Got the first digit. */ regnum = *regpoint++ - '0'; if ((regnum == 1) && isdigit (*regpoint)) { /* Its a two digit number. */ regnum = 10 + (*regpoint++ - '0'); if (regnum > BIGGESTREG) { /* Number too big? */ regnum = -1; } } } break; case 'F': /* Is it the FP */ case 'f': switch (*regpoint++) { case 'p': case 'P': regnum = FP_REG; } break; case 's': /* How about the SP */ case 'S': switch (*regpoint++) { case 'p': case 'P': regnum = SP_REG; } break; case 'p': /* OR the PC even */ case 'P': switch (*regpoint++) { case 'c': case 'C': regnum = PC_REG; } break; } if (regnum != -1) { /* No error, so move string pointer */ *start = regpoint; } return regnum; /* Return results */ } /* tahoe_reg_parse */ /* * This chops up an operand and figures out its modes and stuff. * It's a little touchy about extra characters. * Optex to start with one extra character so it can be overwritten for * the backward part of the parsing. * You can't put a bunch of extra characters in side to * make the command look cute. ie: * foo ( r1 ) [ r0 ] * If you like doing a lot of typing, try COBOL! * Actually, this parser is a little weak all around. It's designed to be * used with compliers, so I emphisise correct decoding of valid code quickly * rather that catching every possable error. * Note: This uses the expression function, so save input_line_pointer before * calling. * * Sperry defines the semantics of address modes (and values) * by a two-letter code, explained here. * * letter 1: access type * * a address calculation - no data access, registers forbidden * b branch displacement * m read - let go of bus - write back "modify" * r read * w write * v bit field address: like 'a' but registers are OK * * letter 2: data type (i.e. width, alignment) * * b byte * w word * l longword * q quadword (Even regs < 14 allowed) (if 12, you get a warning) * - unconditional synthetic jbr operand * ? simple synthetic reversable branch operand * ! complex synthetic reversable branch operand * : complex synthetic non-reversable branch operand * * The '-?!:' letter 2's are not for external consumption. They are used * by GAS for psuedo ops relaxing code. * * After parsing topP has: * * top_ndx: -1, or the index register. eg 7=[R7] * top_reg: -1, or register number. eg 7 = R7 or (R7) * top_mode: The addressing mode byte. This byte, defines which of * the 11 modes opcode is. * top_access: Access type wanted for this opperand 'b'branch ' ' * no-instruction 'amrvw' * top_width: Operand width expected, one of "bwlq?-:!" * exp_of_operand: The expression as parsed by expression() * top_dispsize: Number of bytes in the displacement if we can figure it * out and it's relavent. * * Need syntax checks built. */ void tip_op (optex, topP) char *optex; /* The users text input, with one leading character */ struct top *topP; /* The tahoe instruction with some fields already set: in: access, width out: ndx, reg, mode, error, dispsize */ { int mode = 0; /* This operand's mode. */ char segfault = *optex; /* To keep the back parsing from freaking. */ char *point = optex + 1; /* Parsing from front to back. */ char *end; /* Parsing from back to front. */ int reg = -1; /* major register, -1 means absent */ int imreg = -1; /* Major register in immediate mode */ int ndx = -1; /* index register number, -1 means absent */ char dec_inc = ' '; /* Is the SP auto-incremented '+' or auto-decremented '-' or neither ' '. */ int immediate = 0; /* 1 if '$' immediate mode */ int call_width = 0; /* If the caller casts the displacement */ int abs_width = 0; /* The width of the absolute displacment */ int com_width = 0; /* Displacement width required by branch */ int deferred = 0; /* 1 if '*' deferral is used */ byte disp_size = 0; /* How big is this operand. 0 == don't know */ char *op_bad = ""; /* Bad operand error */ char *tp, *temp, c; /* Temporary holders */ char access = topP->top_access; /* Save on a deref. */ char width = topP->top_width; int really_none = 0; /* Empty expressions evaluate to 0 but I need to know if it's there or not */ expressionS *expP; /* -> expression values for this operand */ /* Does this command restrict the displacement size. */ if (access == 'b') com_width = (width == 'b' ? 1 : (width == 'w' ? 2 : (width == 'l' ? 4 : 0))); *optex = '\0'; /* This is kind of a back stop for all the searches to fail on if needed.*/ if (*point == '*') { /* A dereference? */ deferred = 1; point++; } /* Force words into a certain mode */ /* Bitch, Bitch, Bitch! */ /* * Using the ^ operator is ambigous. If I have an absolute label * called 'w' set to, say 2, and I have the expression 'w^1', do I get * 1, forced to be in word displacement mode, or do I get the value of * 'w' or'ed with 1 (3 in this case). * The default is 'w' as an offset, so that's what I use. * Stick with `, it does the same, and isn't ambig. */ if (*point != '\0' && ((point[1] == '^') || (point[1] == '`'))) switch (*point) { case 'b': case 'B': case 'w': case 'W': case 'l': case 'L': if (com_width) as_warn (_("Casting a branch displacement is bad form, and is ignored.")); else { c = (isupper (*point) ? tolower (*point) : *point); call_width = ((c == 'b') ? 1 : ((c == 'w') ? 2 : 4)); } point += 2; break; } /* Setting immediate mode */ if (*point == '$') { immediate = 1; point++; } /* * I've pulled off all the easy stuff off the front, move to the end and * yank. */ for (end = point; *end != '\0'; end++) /* Move to the end. */ ; if (end != point) /* Null string? */ end--; if (end > point && *end == ' ' && end[-1] != '\'') end--; /* Hop white space */ /* Is this an index reg. */ if ((*end == ']') && (end[-1] != '\'')) { temp = end; /* Find opening brace. */ for (--end; (*end != '[' && end != point); end--) ; /* If I found the opening brace, get the index register number. */ if (*end == '[') { tp = end + 1; /* tp should point to the start of a reg. */ ndx = tahoe_reg_parse (&tp); if (tp != temp) { /* Reg. parse error. */ ndx = -1; } else { end--; /* Found it, move past brace. */ } if (ndx == -1) { op_bad = _("Couldn't parse the [index] in this operand."); end = point; /* Force all the rest of the tests to fail. */ } } else { op_bad = _("Couldn't find the opening '[' for the index of this operand."); end = point; /* Force all the rest of the tests to fail. */ } } /* Post increment? */ if (*end == '+') { dec_inc = '+'; /* was: *end--; */ end--; } /* register in parens? */ if ((*end == ')') && (end[-1] != '\'')) { temp = end; /* Find opening paren. */ for (--end; (*end != '(' && end != point); end--) ; /* If I found the opening paren, get the register number. */ if (*end == '(') { tp = end + 1; reg = tahoe_reg_parse (&tp); if (tp != temp) { /* Not a register, but could be part of the expression. */ reg = -1; end = temp; /* Rest the pointer back */ } else { end--; /* Found the reg. move before opening paren. */ } } else { op_bad = _("Couldn't find the opening '(' for the deref of this operand."); end = point; /* Force all the rest of the tests to fail. */ } } /* Pre decrement? */ if (*end == '-') { if (dec_inc != ' ') { op_bad = _("Operand can't be both pre-inc and post-dec."); end = point; } else { dec_inc = '-'; /* was: *end--; */ end--; } } /* * Everything between point and end is the 'expression', unless it's * a register name. */ c = end[1]; end[1] = '\0'; tp = point; imreg = tahoe_reg_parse (&point); /* Get the immediate register if it is there.*/ if (*point != '\0') { /* If there is junk after point, then the it's not immediate reg. */ point = tp; imreg = -1; } if (imreg != -1 && reg != -1) op_bad = _("I parsed 2 registers in this operand."); /* * Evaluate whats left of the expression to see if it's valid. * Note again: This assumes that the calling expression has saved * input_line_pointer. (Nag, nag, nag!) */ if (*op_bad == '\0') { /* Statement has no syntax goofs yet: let's sniff the expression. */ input_line_pointer = point; expP = &(topP->exp_of_operand); topP->seg_of_operand = expression (expP); switch (expP->X_op) { case O_absent: /* No expression. For BSD4.2 compatibility, missing expression is absolute 0 */ expP->X_op = O_constant; expP->X_add_number = 0; really_none = 1; case O_constant: /* for SEG_ABSOLUTE, we shouldnt need to set X_op_symbol, X_add_symbol to any particular value. */ /* But, we will program defensively. Since this situation occurs rarely so it costs us little to do so. */ expP->X_add_symbol = NULL; expP->X_op_symbol = NULL; /* How many bytes are needed to express this abs value? */ abs_width = ((((expP->X_add_number & 0xFFFFFF80) == 0) || ((expP->X_add_number & 0xFFFFFF80) == 0xFFFFFF80)) ? 1 : (((expP->X_add_number & 0xFFFF8000) == 0) || ((expP->X_add_number & 0xFFFF8000) == 0xFFFF8000)) ? 2 : 4); case O_symbol: break; default: /* * Major bug. We can't handle the case of a operator * expression in a synthetic opcode variable-length * instruction. We don't have a frag type that is smart * enough to relax a operator, and so we just force all * operators to behave like SEG_PASS1s. Clearly, if there is * a demand we can invent a new or modified frag type and * then coding up a frag for this case will be easy. */ need_pass_2 = 1; op_bad = _("Can't relocate expression error."); break; case O_big: /* This is an error. Tahoe doesn't allow any expressions bigger that a 32 bit long word. Any bigger has to be referenced by address. */ op_bad = _("Expression is too large for a 32 bits."); break; } if (*input_line_pointer != '\0') { op_bad = _("Junk at end of expression."); } } end[1] = c; /* I'm done, so restore optex */ *optex = segfault; /* * At this point in the game, we (in theory) have all the components of * the operand at least parsed. Now it's time to check for syntax/semantic * errors, and build the mode. * This is what I have: * deferred = 1 if '*' * call_width = 0,1,2,4 * abs_width = 0,1,2,4 * com_width = 0,1,2,4 * immediate = 1 if '$' * ndx = -1 or reg num * dec_inc = '-' or '+' or ' ' * reg = -1 or reg num * imreg = -1 or reg num * topP->exp_of_operand * really_none */ /* Is there a displacement size? */ disp_size = (call_width ? call_width : (com_width ? com_width : abs_width ? abs_width : 0)); if (*op_bad == '\0') { if (imreg != -1) { /* Rn */ mode = TAHOE_DIRECT_REG; if (deferred || immediate || (dec_inc != ' ') || (reg != -1) || !really_none) op_bad = _("Syntax error in direct register mode."); else if (ndx != -1) op_bad = _("You can't index a register in direct register mode."); else if (imreg == SP_REG && access == 'r') op_bad = _("SP can't be the source operand with direct register addressing."); else if (access == 'a') op_bad = _("Can't take the address of a register."); else if (access == 'b') op_bad = _("Direct Register can't be used in a branch."); else if (width == 'q' && ((imreg % 2) || (imreg > 13))) op_bad = _("For quad access, the register must be even and < 14."); else if (call_width) op_bad = _("You can't cast a direct register."); if (*op_bad == '\0') { /* No errors, check for warnings */ if (width == 'q' && imreg == 12) as_warn (_("Using reg 14 for quadwords can tromp the FP register.")); reg = imreg; } /* We know: imm = -1 */ } else if (dec_inc == '-') { /* -(SP) */ mode = TAHOE_AUTO_DEC; if (deferred || immediate || !really_none) op_bad = _("Syntax error in auto-dec mode."); else if (ndx != -1) op_bad = _("You can't have an index auto dec mode."); else if (access == 'r') op_bad = _("Auto dec mode cant be used for reading."); else if (reg != SP_REG) op_bad = _("Auto dec only works of the SP register."); else if (access == 'b') op_bad = _("Auto dec can't be used in a branch."); else if (width == 'q') op_bad = _("Auto dec won't work with quadwords."); /* We know: imm = -1, dec_inc != '-' */ } else if (dec_inc == '+') { if (immediate || !really_none) op_bad = _("Syntax error in one of the auto-inc modes."); else if (deferred) { /* *(SP)+ */ mode = TAHOE_AUTO_INC_DEFERRED; if (reg != SP_REG) op_bad = _("Auto inc deferred only works of the SP register."); else if (ndx != -1) op_bad = _("You can't have an index auto inc deferred mode."); else if (access == 'b') op_bad = _("Auto inc can't be used in a branch."); } else { /* (SP)+ */ mode = TAHOE_AUTO_INC; if (access == 'm' || access == 'w') op_bad = _("You can't write to an auto inc register."); else if (reg != SP_REG) op_bad = _("Auto inc only works of the SP register."); else if (access == 'b') op_bad = _("Auto inc can't be used in a branch."); else if (width == 'q') op_bad = _("Auto inc won't work with quadwords."); else if (ndx != -1) op_bad = _("You can't have an index in auto inc mode."); } /* We know: imm = -1, dec_inc == ' ' */ } else if (reg != -1) { if ((ndx != -1) && (reg == SP_REG)) op_bad = _("You can't index the sp register."); if (deferred) { /* *(Rn) */ mode = TAHOE_REG_DISP_DEFERRED; if (immediate) op_bad = _("Syntax error in register displaced mode."); } else if (really_none) { /* (Rn) */ mode = TAHOE_REG_DEFERRED; /* if reg = SP then cant be indexed */ } else { /* (Rn) */ mode = TAHOE_REG_DISP; } /* We know: imm = -1, dec_inc == ' ', Reg = -1 */ } else { if (really_none) op_bad = _("An offest is needed for this operand."); if (deferred && immediate) { /* *$ */ mode = TAHOE_ABSOLUTE_ADDR; disp_size = 4; } else if (immediate) { /* $ */ mode = TAHOE_IMMEDIATE; if (ndx != -1) op_bad = _("You can't index a register in immediate mode."); if (access == 'a') op_bad = _("Immediate access can't be used as an address."); /* ponder the wisdom of a cast because it doesn't do any good. */ } else if (deferred) { /* * */ mode = TAHOE_DISP_REL_DEFERRED; } else { /* */ mode = TAHOE_DISPLACED_RELATIVE; } } } /* * At this point, all the errors we can do have be checked for. * We can build the 'top'. */ topP->top_ndx = ndx; topP->top_reg = reg; topP->top_mode = mode; topP->top_error = op_bad; topP->top_dispsize = disp_size; } /* tip_op */ /* * t i p ( ) * * This converts a string into a tahoe instruction. * The string must be a bare single instruction in tahoe (with BSD4 frobs) * format. * It provides at most one fatal error message (which stops the scan) * some warning messages as it finds them. * The tahoe instruction is returned in exploded form. * * The exploded instruction is returned to a struct tit of your choice. * #include "tahoe-inst.h" to know what a struct tit is. * */ static void tip (titP, instring) struct tit *titP; /* We build an exploded instruction here. */ char *instring; /* Text of a vax instruction: we modify. */ { register struct tot_wot *twP = NULL; /* How to bit-encode this opcode. */ register char *p; /* 1/skip whitespace.2/scan vot_how */ register char *q; /* */ register unsigned char count; /* counts number of operands seen */ register struct top *operandp;/* scan operands in struct tit */ register char *alloperr = ""; /* error over all operands */ register char c; /* Remember char, (we clobber it with '\0' temporarily). */ char *save_input_line_pointer; if (*instring == ' ') ++instring; /* Skip leading whitespace. */ for (p = instring; *p && *p != ' '; p++) ; /* MUST end in end-of-string or exactly 1 space. */ /* Scanned up to end of operation-code. */ /* Operation-code is ended with whitespace. */ if (p == instring) { titP->tit_error = _("No operator"); count = 0; titP->tit_opcode = 0; } else { c = *p; *p = '\0'; /* * Here with instring pointing to what better be an op-name, and p * pointing to character just past that. * We trust instring points to an op-name, with no whitespace. */ twP = (struct tot_wot *) hash_find (op_hash, instring); *p = c; /* Restore char after op-code. */ if (twP == 0) { titP->tit_error = _("Unknown operator"); count = 0; titP->tit_opcode = 0; } else { /* * We found a match! So let's pick up as many operands as the * instruction wants, and even gripe if there are too many. * We expect comma to seperate each operand. * We let instring track the text, while p tracks a part of the * struct tot. */ count = 0; /* no operands seen yet */ instring = p + (*p != '\0'); /* point past the operation code */ /* tip_op() screws with the input_line_pointer, so save it before I jump in */ save_input_line_pointer = input_line_pointer; for (p = twP->args, operandp = titP->tit_operand; !*alloperr && *p; operandp++, p += 2) { /* * Here to parse one operand. Leave instring pointing just * past any one ',' that marks the end of this operand. */ if (!p[1]) as_fatal (_("Compiler bug: ODD number of bytes in arg structure %s."), twP->args); else if (*instring) { for (q = instring; (*q != ',' && *q != '\0'); q++) { if (*q == '\'' && q[1] != '\0') /* Jump quoted characters */ q++; } c = *q; /* * Q points to ',' or '\0' that ends argument. C is that * character. */ *q = '\0'; operandp->top_access = p[0]; operandp->top_width = p[1]; tip_op (instring - 1, operandp); *q = c; /* Restore input text. */ if (*(operandp->top_error)) { alloperr = operandp->top_error; } instring = q + (c ? 1 : 0); /* next operand (if any) */ count++; /* won another argument, may have an operr */ } else alloperr = _("Not enough operands"); } /* Restore the pointer. */ input_line_pointer = save_input_line_pointer; if (!*alloperr) { if (*instring == ' ') instring++; /* Skip whitespace. */ if (*instring) alloperr = _("Too many operands"); } titP->tit_error = alloperr; } } titP->tit_opcode = twP->code; /* The op-code. */ titP->tit_operands = count; } /* tip */ /* md_assemble() emit frags for 1 instruction */ void md_assemble (instruction_string) char *instruction_string; /* A string: assemble 1 instruction. */ { char *p; register struct top *operandP;/* An operand. Scans all operands. */ /* char c_save; fixme: remove this line *//* What used to live after an expression. */ /* struct frag *fragP; fixme: remove this line *//* Fragment of code we just made. */ /* register struct top *end_operandP; fixme: remove this line *//* -> slot just after last operand Limit of the for (each operand). */ register expressionS *expP; /* -> expression values for this operand */ /* These refer to an instruction operand expression. */ segT to_seg; /* Target segment of the address. */ register valueT this_add_number; register symbolS *this_add_symbol; /* +ve (minuend) symbol. */ /* tahoe_opcodeT opcode_as_number; fixme: remove this line *//* The opcode as a number. */ char *opcodeP; /* Where it is in a frag. */ /* char *opmodeP; fixme: remove this line *//* Where opcode type is, in a frag. */ int dispsize; /* From top_dispsize: tahoe_operand_width (in bytes) */ int is_undefined; /* 1 if operand expression's segment not known yet. */ int pc_rel; /* Is this operand pc relative? */ /* Decode the operand. */ tip (&t, instruction_string); /* * Check to see if this operand decode properly. * Notice that we haven't made any frags yet. * If it goofed, then this instruction will wedge in any pass, * and we can safely flush it, without causing interpass symbol phase * errors. That is, without changing label values in different passes. */ if (*t.tit_error) { as_warn (_("Ignoring statement due to \"%s\""), t.tit_error); } else { /* We saw no errors in any operands - try to make frag(s) */ /* Emit op-code. */ /* Remember where it is, in case we want to modify the op-code later. */ opcodeP = frag_more (1); *opcodeP = t.tit_opcode; /* Now do each operand. */ for (operandP = t.tit_operand; operandP < t.tit_operand + t.tit_operands; operandP++) { /* for each operand */ expP = &(operandP->exp_of_operand); if (operandP->top_ndx >= 0) { /* Indexed addressing byte Legality of indexed mode already checked: it is OK */ FRAG_APPEND_1_CHAR (0x40 + operandP->top_ndx); } /* if(top_ndx>=0) */ /* Here to make main operand frag(s). */ this_add_number = expP->X_add_number; this_add_symbol = expP->X_add_symbol; to_seg = operandP->seg_of_operand; know (to_seg == SEG_UNKNOWN || \ to_seg == SEG_ABSOLUTE || \ to_seg == SEG_DATA || \ to_seg == SEG_TEXT || \ to_seg == SEG_BSS); is_undefined = (to_seg == SEG_UNKNOWN); /* Do we know how big this opperand is? */ dispsize = operandP->top_dispsize; pc_rel = 0; /* Deal with the branch possabilities. (Note, this doesn't include jumps.)*/ if (operandP->top_access == 'b') { /* Branches must be expressions. A psuedo branch can also jump to an absolute address. */ if (to_seg == now_seg || is_undefined) { /* If is_undefined, then it might BECOME now_seg by relax time. */ if (dispsize) { /* I know how big the branch is supposed to be (it's a normal branch), so I set up the frag, and let GAS do the rest. */ p = frag_more (dispsize); fix_new (frag_now, p - frag_now->fr_literal, this_add_symbol, this_add_number, size_to_fx (dispsize, 1), NULL); } else { /* (to_seg==now_seg || to_seg == SEG_UNKNOWN) && dispsize==0 */ /* If we don't know how big it is, then its a synthetic branch, so we set up a simple relax state. */ switch (operandP->top_width) { case TAHOE_WIDTH_CONDITIONAL_JUMP: /* Simple (conditional) jump. I may have to reverse the condition of opcodeP, and then jump to my destination. I set 1 byte aside for the branch off set, and could need 6 more bytes for the pc_rel jump */ frag_var (rs_machine_dependent, 7, 1, ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, is_undefined ? STATE_UNDF : STATE_BYTE), this_add_symbol, this_add_number, opcodeP); break; case TAHOE_WIDTH_ALWAYS_JUMP: /* Simple (unconditional) jump. I may have to convert this to a word branch, or an absolute jump. */ frag_var (rs_machine_dependent, 5, 1, ENCODE_RELAX (STATE_ALWAYS_BRANCH, is_undefined ? STATE_UNDF : STATE_BYTE), this_add_symbol, this_add_number, opcodeP); break; /* The smallest size for the next 2 cases is word. */ case TAHOE_WIDTH_BIG_REV_JUMP: frag_var (rs_machine_dependent, 8, 2, ENCODE_RELAX (STATE_BIG_REV_BRANCH, is_undefined ? STATE_UNDF : STATE_WORD), this_add_symbol, this_add_number, opcodeP); break; case TAHOE_WIDTH_BIG_NON_REV_JUMP: frag_var (rs_machine_dependent, 10, 2, ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, is_undefined ? STATE_UNDF : STATE_WORD), this_add_symbol, this_add_number, opcodeP); break; default: as_fatal (_("Compliler bug: Got a case (%d) I wasn't expecting."), operandP->top_width); } } } else { /* to_seg != now_seg && to_seg != seg_unknown (still in branch) In other words, I'm jumping out of my segment so extend the branches to jumps, and let GAS fix them. */ /* These are "branches" what will always be branches around a jump to the correct addresss in real life. If to_seg is SEG_ABSOLUTE, just encode the branch in, else let GAS fix the address. */ switch (operandP->top_width) { /* The theory: For SEG_ABSOLUTE, then mode is ABSOLUTE_ADDR, jump to that addresss (not pc_rel). For other segs, address is a long word PC rel jump. */ case TAHOE_WIDTH_CONDITIONAL_JUMP: /* b */ /* To reverse the condition in a TAHOE branch, complement bit 4 */ *opcodeP ^= 0x10; p = frag_more (7); *p++ = 6; *p++ = TAHOE_JMP; *p++ = (operandP->top_mode == TAHOE_ABSOLUTE_ADDR ? TAHOE_ABSOLUTE_ADDR : TAHOE_PC_REL_LONG); fix_new (frag_now, p - frag_now->fr_literal, this_add_symbol, this_add_number, (to_seg != SEG_ABSOLUTE) ? FX_PCREL32 : FX_32, NULL); /* * Now (eg) BLEQ 1f * JMP foo * 1: */ break; case TAHOE_WIDTH_ALWAYS_JUMP: /* br, just turn it into a jump */ *opcodeP = TAHOE_JMP; p = frag_more (5); *p++ = (operandP->top_mode == TAHOE_ABSOLUTE_ADDR ? TAHOE_ABSOLUTE_ADDR : TAHOE_PC_REL_LONG); fix_new (frag_now, p - frag_now->fr_literal, this_add_symbol, this_add_number, (to_seg != SEG_ABSOLUTE) ? FX_PCREL32 : FX_32, NULL); /* Now (eg) JMP foo */ break; case TAHOE_WIDTH_BIG_REV_JUMP: p = frag_more (8); *opcodeP ^= 0x10; *p++ = 0; *p++ = 6; *p++ = TAHOE_JMP; *p++ = (operandP->top_mode == TAHOE_ABSOLUTE_ADDR ? TAHOE_ABSOLUTE_ADDR : TAHOE_PC_REL_LONG); fix_new (frag_now, p - frag_now->fr_literal, this_add_symbol, this_add_number, (to_seg != SEG_ABSOLUTE) ? FX_PCREL32 : FX_32, NULL); /* * Now (eg) ACBx 1f * JMP foo * 1: */ break; case TAHOE_WIDTH_BIG_NON_REV_JUMP: p = frag_more (10); *p++ = 0; *p++ = 2; *p++ = TAHOE_BRB; *p++ = 6; *p++ = TAHOE_JMP; *p++ = (operandP->top_mode == TAHOE_ABSOLUTE_ADDR ? TAHOE_ABSOLUTE_ADDR : TAHOE_PC_REL_LONG); fix_new (frag_now, p - frag_now->fr_literal, this_add_symbol, this_add_number, (to_seg != SEG_ABSOLUTE) ? FX_PCREL32 : FX_32, NULL); /* * Now (eg) xOBxxx 1f * BRB 2f * 1: JMP @#foo * 2: */ break; case 'b': case 'w': as_warn (_("Real branch displacements must be expressions.")); break; default: as_fatal (_("Complier error: I got an unknown synthetic branch :%c"), operandP->top_width); break; } } } else { /* It ain't a branch operand. */ switch (operandP->top_mode) { /* Auto-foo access, only works for one reg (SP) so the only thing needed is the mode. */ case TAHOE_AUTO_DEC: case TAHOE_AUTO_INC: case TAHOE_AUTO_INC_DEFERRED: FRAG_APPEND_1_CHAR (operandP->top_mode); break; /* Numbered Register only access. Only thing needed is the mode + Register number */ case TAHOE_DIRECT_REG: case TAHOE_REG_DEFERRED: FRAG_APPEND_1_CHAR (operandP->top_mode + operandP->top_reg); break; /* An absolute address. It's size is always 5 bytes. (mode_type + 4 byte address). */ case TAHOE_ABSOLUTE_ADDR: know ((this_add_symbol == NULL)); p = frag_more (5); *p = TAHOE_ABSOLUTE_ADDR; md_number_to_chars (p + 1, this_add_number, 4); break; /* Immediate data. If the size isn't known, then it's an address + and offset, which is 4 bytes big. */ case TAHOE_IMMEDIATE: if (this_add_symbol != NULL) { p = frag_more (5); *p++ = TAHOE_IMMEDIATE_LONGWORD; fix_new (frag_now, p - frag_now->fr_literal, this_add_symbol, this_add_number, FX_32, NULL); } else { /* It's a integer, and I know it's size. */ if ((unsigned) this_add_number < 0x40) { /* Will it fit in a literal? */ FRAG_APPEND_1_CHAR ((byte) this_add_number); } else { p = frag_more (dispsize + 1); switch (dispsize) { case 1: *p++ = TAHOE_IMMEDIATE_BYTE; *p = (byte) this_add_number; break; case 2: *p++ = TAHOE_IMMEDIATE_WORD; md_number_to_chars (p, this_add_number, 2); break; case 4: *p++ = TAHOE_IMMEDIATE_LONGWORD; md_number_to_chars (p, this_add_number, 4); break; } } } break; /* Distance from the PC. If the size isn't known, we have to relax into it. The difference between this and disp(sp) is that this offset is pc_rel, and disp(sp) isn't. Note the drop through code. */ case TAHOE_DISPLACED_RELATIVE: case TAHOE_DISP_REL_DEFERRED: operandP->top_reg = PC_REG; pc_rel = 1; /* Register, plus a displacement mode. Save the register number, and weather its deffered or not, and relax the size if it isn't known. */ case TAHOE_REG_DISP: case TAHOE_REG_DISP_DEFERRED: if (operandP->top_mode == TAHOE_DISP_REL_DEFERRED || operandP->top_mode == TAHOE_REG_DISP_DEFERRED) operandP->top_reg += 0x10; /* deffered mode is always 0x10 higher than it's non-deffered sibling. */ /* Is this a value out of this segment? The first part of this conditional is a cludge to make gas produce the same output as 'as' when there is a lable, in the current segment, displaceing a register. It's strange, and no one in their right mind would do it, but it's easy to cludge. */ if ((dispsize == 0 && !pc_rel) || (to_seg != now_seg && !is_undefined && to_seg != SEG_ABSOLUTE)) dispsize = 4; if (dispsize == 0) { /* * We have a SEG_UNKNOWN symbol, or the size isn't cast. * It might turn out to be in the same segment as * the instruction, permitting relaxation. */ p = frag_var (rs_machine_dependent, 5, 2, ENCODE_RELAX (STATE_PC_RELATIVE, is_undefined ? STATE_UNDF : STATE_BYTE), this_add_symbol, this_add_number, 0); *p = operandP->top_reg; } else { /* Either this is an abs, or a cast. */ p = frag_more (dispsize + 1); switch (dispsize) { case 1: *p = TAHOE_PC_OR_BYTE + operandP->top_reg; break; case 2: *p = TAHOE_PC_OR_WORD + operandP->top_reg; break; case 4: *p = TAHOE_PC_OR_LONG + operandP->top_reg; break; }; fix_new (frag_now, p + 1 - frag_now->fr_literal, this_add_symbol, this_add_number, size_to_fx (dispsize, pc_rel), NULL); } break; default: as_fatal (_("Barf, bad mode %x\n"), operandP->top_mode); } } } /* for(operandP) */ } /* if(!need_pass_2 && !goofed) */ } /* tahoe_assemble() */ /* We have no need to default values of symbols. */ /* ARGSUSED */ symbolS * md_undefined_symbol (name) char *name; { return 0; } /* md_undefined_symbol() */ /* Round up a section size to the appropriate boundary. */ valueT md_section_align (segment, size) segT segment; valueT size; { return ((size + 7) & ~7); /* Round all sects to multiple of 8 */ } /* md_section_align() */ /* Exactly what point is a PC-relative offset relative TO? On the sparc, they're relative to the address of the offset, plus its size. This gets us to the following instruction. (??? Is this right? FIXME-SOON) */ long md_pcrel_from (fixP) fixS *fixP; { return (((fixP->fx_type == FX_8 || fixP->fx_type == FX_PCREL8) ? 1 : ((fixP->fx_type == FX_16 || fixP->fx_type == FX_PCREL16) ? 2 : ((fixP->fx_type == FX_32 || fixP->fx_type == FX_PCREL32) ? 4 : 0))) + fixP->fx_where + fixP->fx_frag->fr_address); } /* md_pcrel_from() */ int tc_is_pcrel (fixP) fixS *fixP; { /* should never be called */ know (0); return (0); } /* tc_is_pcrel() */