/* tc-sparc.c -- Assemble for the SPARC Copyright (C) 1989, 90-96, 1997 Free Software Foundation, Inc. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include "as.h" #include "subsegs.h" /* careful, this file includes data *declarations* */ #include "opcode/sparc.h" static void sparc_ip PARAMS ((char *, const struct sparc_opcode **)); static int in_signed_range PARAMS ((bfd_signed_vma, bfd_signed_vma)); static int in_bitfield_range PARAMS ((bfd_signed_vma, bfd_signed_vma)); static int sparc_ffs PARAMS ((unsigned int)); static bfd_vma BSR PARAMS ((bfd_vma, int)); static int cmp_reg_entry PARAMS ((const PTR, const PTR)); static int parse_keyword_arg PARAMS ((int (*) (const char *), char **, int *)); static int parse_const_expr_arg PARAMS ((char **, int *)); /* Current architecture. We don't bump up unless necessary. */ static enum sparc_opcode_arch_val current_architecture = SPARC_OPCODE_ARCH_V6; /* The maximum architecture level we can bump up to. In a 32 bit environment, don't allow bumping up to v9 by default. The native assembler works this way. The user is required to pass an explicit argument before we'll create v9 object files. However, if we don't see any v9 insns, a v9 object file is not created. */ #ifdef SPARC_ARCH64 static enum sparc_opcode_arch_val max_architecture = SPARC_OPCODE_ARCH_V9; #else /* ??? This should be V8, but sparclite support was added by making it the default. GCC now passes -Asparclite, so maybe sometime in the future we can set this to V8. */ static enum sparc_opcode_arch_val max_architecture = SPARC_OPCODE_ARCH_SPARCLITE; #endif static int architecture_requested; static int warn_on_bump; /* If warn_on_bump and the needed architecture is higher than this architecture, issue a warning. */ static enum sparc_opcode_arch_val warn_after_architecture; /* Non-zero if we are generating PIC code. */ int sparc_pic_code; /* Non-zero if we should give an error when misaligned data is seen. */ static int enforce_aligned_data; extern int target_big_endian; /* V9 has big and little endian data, but instructions are always big endian. The sparclet has bi-endian support but both data and insns have the same endianness. Global `target_big_endian' is used for data. The following macro is used for instructions. */ #define INSN_BIG_ENDIAN (target_big_endian \ || SPARC_OPCODE_ARCH_V9_P (max_architecture)) /* handle of the OPCODE hash table */ static struct hash_control *op_hash; static void s_data1 PARAMS ((void)); static void s_seg PARAMS ((int)); static void s_proc PARAMS ((int)); static void s_reserve PARAMS ((int)); static void s_common PARAMS ((int)); static void s_empty PARAMS ((int)); static void s_uacons PARAMS ((int)); const pseudo_typeS md_pseudo_table[] = { {"align", s_align_bytes, 0}, /* Defaulting is invalid (0) */ {"common", s_common, 0}, {"empty", s_empty, 0}, {"global", s_globl, 0}, {"half", cons, 2}, {"optim", s_ignore, 0}, {"proc", s_proc, 0}, {"reserve", s_reserve, 0}, {"seg", s_seg, 0}, {"skip", s_space, 0}, {"word", cons, 4}, {"xword", cons, 8}, {"uahalf", s_uacons, 2}, {"uaword", s_uacons, 4}, {"uaxword", s_uacons, 8}, #ifdef OBJ_ELF /* these are specific to sparc/svr4 */ {"pushsection", obj_elf_section, 0}, {"popsection", obj_elf_previous, 0}, {"2byte", s_uacons, 2}, {"4byte", s_uacons, 4}, {"8byte", s_uacons, 8}, #endif {NULL, 0, 0}, }; const int md_reloc_size = 12; /* Size of relocation record */ /* This array holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful */ const char comment_chars[] = "!"; /* JF removed '|' from comment_chars */ /* This array holds the chars that only start a comment at the beginning of a line. If the line seems to have the form '# 123 filename' .line and .file directives will appear in the pre-processed output */ /* Note that input_file.c hand checks for '#' at the beginning of the first line of the input file. This is because the compiler outputs #NO_APP at the beginning of its output. */ /* Also note that comments started like this one will always work if '/' isn't otherwise defined. */ const char line_comment_chars[] = "#"; const char line_separator_chars[] = ""; /* Chars that can be used to separate mant from exp in floating point nums */ const char EXP_CHARS[] = "eE"; /* Chars that mean this number is a floating point constant */ /* As in 0f12.456 */ /* or 0d1.2345e12 */ const char FLT_CHARS[] = "rRsSfFdDxXpP"; /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be changed in read.c. Ideally it shouldn't have to know about it at all, but nothing is ideal around here. */ static unsigned char octal[256]; #define isoctal(c) octal[(unsigned char) (c)] static unsigned char toHex[256]; struct sparc_it { char *error; unsigned long opcode; struct nlist *nlistp; expressionS exp; int pcrel; bfd_reloc_code_real_type reloc; }; struct sparc_it the_insn, set_insn; static void output_insn PARAMS ((const struct sparc_opcode *, struct sparc_it *)); /* Return non-zero if VAL is in the range -(MAX+1) to MAX. */ static INLINE int in_signed_range (val, max) bfd_signed_vma val, max; { if (max <= 0) abort (); if (val > max) return 0; if (val < ~max) return 0; return 1; } /* Return non-zero if VAL is in the range -(MAX/2+1) to MAX. (e.g. -15 to +31). */ static INLINE int in_bitfield_range (val, max) bfd_signed_vma val, max; { if (max <= 0) abort (); if (val > max) return 0; if (val < ~(max >> 1)) return 0; return 1; } static int sparc_ffs (mask) unsigned int mask; { int i; if (mask == 0) return -1; for (i = 0; (mask & 1) == 0; ++i) mask >>= 1; return i; } /* Implement big shift right. */ static bfd_vma BSR (val, amount) bfd_vma val; int amount; { if (sizeof (bfd_vma) <= 4 && amount >= 32) as_fatal ("Support for 64-bit arithmetic not compiled in."); return val >> amount; } #if 0 static void print_insn PARAMS ((struct sparc_it *insn)); #endif static int getExpression PARAMS ((char *str)); static char *expr_end; static int special_case; /* * Instructions that require wierd handling because they're longer than * 4 bytes. */ #define SPECIAL_CASE_SET 1 #define SPECIAL_CASE_SETSW 2 #define SPECIAL_CASE_SETX 3 /* FIXME: sparc-opc.c doesn't have necessary "S" trigger to enable this. */ #define SPECIAL_CASE_FDIV 4 /* Bit masks of various insns. */ #define NOP_INSN 0x01000000 #define OR_INSN 0x80100000 #define FMOVS_INSN 0x81A00020 #define SETHI_INSN 0x01000000 #define SLLX_INSN 0x81281000 #define SRA_INSN 0x81380000 /* The last instruction to be assembled. */ static const struct sparc_opcode *last_insn; /* The assembled opcode of `last_insn'. */ static unsigned long last_opcode; /* * sort of like s_lcomm * */ #ifndef OBJ_ELF static int max_alignment = 15; #endif static void s_reserve (ignore) int ignore; { char *name; char *p; char c; int align; int size; int temp; symbolS *symbolP; name = input_line_pointer; c = get_symbol_end (); p = input_line_pointer; *p = c; SKIP_WHITESPACE (); if (*input_line_pointer != ',') { as_bad ("Expected comma after name"); ignore_rest_of_line (); return; } ++input_line_pointer; if ((size = get_absolute_expression ()) < 0) { as_bad ("BSS length (%d.) <0! Ignored.", size); ignore_rest_of_line (); return; } /* bad length */ *p = 0; symbolP = symbol_find_or_make (name); *p = c; if (strncmp (input_line_pointer, ",\"bss\"", 6) != 0 && strncmp (input_line_pointer, ",\".bss\"", 7) != 0) { as_bad ("bad .reserve segment -- expected BSS segment"); return; } if (input_line_pointer[2] == '.') input_line_pointer += 7; else input_line_pointer += 6; SKIP_WHITESPACE (); if (*input_line_pointer == ',') { ++input_line_pointer; SKIP_WHITESPACE (); if (*input_line_pointer == '\n') { as_bad ("Missing alignment"); return; } align = get_absolute_expression (); #ifndef OBJ_ELF if (align > max_alignment) { align = max_alignment; as_warn ("Alignment too large: %d. assumed.", align); } #endif if (align < 0) { align = 0; as_warn ("Alignment negative. 0 assumed."); } record_alignment (bss_section, align); /* convert to a power of 2 alignment */ for (temp = 0; (align & 1) == 0; align >>= 1, ++temp);; if (align != 1) { as_bad ("Alignment not a power of 2"); ignore_rest_of_line (); return; } /* not a power of two */ align = temp; } /* if has optional alignment */ else align = 0; if (!S_IS_DEFINED (symbolP) #ifdef OBJ_AOUT && S_GET_OTHER (symbolP) == 0 && S_GET_DESC (symbolP) == 0 #endif ) { if (! need_pass_2) { char *pfrag; segT current_seg = now_seg; subsegT current_subseg = now_subseg; subseg_set (bss_section, 1); /* switch to bss */ if (align) frag_align (align, 0, 0); /* do alignment */ /* detach from old frag */ if (S_GET_SEGMENT(symbolP) == bss_section) symbolP->sy_frag->fr_symbol = NULL; symbolP->sy_frag = frag_now; pfrag = frag_var (rs_org, 1, 1, (relax_substateT)0, symbolP, (offsetT) size, (char *)0); *pfrag = 0; S_SET_SEGMENT (symbolP, bss_section); subseg_set (current_seg, current_subseg); } } else { as_warn("Ignoring attempt to re-define symbol %s", S_GET_NAME (symbolP)); } /* if not redefining */ demand_empty_rest_of_line (); } static void s_common (ignore) int ignore; { char *name; char c; char *p; int temp, size; symbolS *symbolP; name = input_line_pointer; c = get_symbol_end (); /* just after name is now '\0' */ p = input_line_pointer; *p = c; SKIP_WHITESPACE (); if (*input_line_pointer != ',') { as_bad ("Expected comma after symbol-name"); ignore_rest_of_line (); return; } input_line_pointer++; /* skip ',' */ if ((temp = get_absolute_expression ()) < 0) { as_bad (".COMMon length (%d.) <0! Ignored.", temp); ignore_rest_of_line (); return; } size = temp; *p = 0; symbolP = symbol_find_or_make (name); *p = c; if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP)) { as_bad ("Ignoring attempt to re-define symbol"); ignore_rest_of_line (); return; } if (S_GET_VALUE (symbolP) != 0) { if (S_GET_VALUE (symbolP) != size) { as_warn ("Length of .comm \"%s\" is already %ld. Not changed to %d.", S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), size); } } else { #ifndef OBJ_ELF S_SET_VALUE (symbolP, (valueT) size); S_SET_EXTERNAL (symbolP); #endif } know (symbolP->sy_frag == &zero_address_frag); if (*input_line_pointer != ',') { as_bad ("Expected comma after common length"); ignore_rest_of_line (); return; } input_line_pointer++; SKIP_WHITESPACE (); if (*input_line_pointer != '"') { temp = get_absolute_expression (); #ifndef OBJ_ELF if (temp > max_alignment) { temp = max_alignment; as_warn ("Common alignment too large: %d. assumed", temp); } #endif if (temp < 0) { temp = 0; as_warn ("Common alignment negative; 0 assumed"); } #ifdef OBJ_ELF if (symbolP->local) { segT old_sec; int old_subsec; char *p; int align; old_sec = now_seg; old_subsec = now_subseg; align = temp; record_alignment (bss_section, align); subseg_set (bss_section, 0); if (align) frag_align (align, 0, 0); if (S_GET_SEGMENT (symbolP) == bss_section) symbolP->sy_frag->fr_symbol = 0; symbolP->sy_frag = frag_now; p = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP, (offsetT) size, (char *) 0); *p = 0; S_SET_SEGMENT (symbolP, bss_section); S_CLEAR_EXTERNAL (symbolP); subseg_set (old_sec, old_subsec); } else #endif { allocate_common: S_SET_VALUE (symbolP, (valueT) size); #ifdef OBJ_ELF S_SET_ALIGN (symbolP, temp); #endif S_SET_EXTERNAL (symbolP); S_SET_SEGMENT (symbolP, bfd_com_section_ptr); } } else { input_line_pointer++; /* @@ Some use the dot, some don't. Can we get some consistency?? */ if (*input_line_pointer == '.') input_line_pointer++; /* @@ Some say data, some say bss. */ if (strncmp (input_line_pointer, "bss\"", 4) && strncmp (input_line_pointer, "data\"", 5)) { while (*--input_line_pointer != '"') ; input_line_pointer--; goto bad_common_segment; } while (*input_line_pointer++ != '"') ; goto allocate_common; } #ifdef BFD_ASSEMBLER symbolP->bsym->flags |= BSF_OBJECT; #endif demand_empty_rest_of_line (); return; { bad_common_segment: p = input_line_pointer; while (*p && *p != '\n') p++; c = *p; *p = '\0'; as_bad ("bad .common segment %s", input_line_pointer + 1); *p = c; input_line_pointer = p; ignore_rest_of_line (); return; } } /* Handle the .empty pseudo-op. This supresses the warnings about invalid delay slot usage. */ static void s_empty (ignore) int ignore; { /* The easy way to implement is to just forget about the last instruction. */ last_insn = NULL; } static void s_seg (ignore) int ignore; { if (strncmp (input_line_pointer, "\"text\"", 6) == 0) { input_line_pointer += 6; s_text (0); return; } if (strncmp (input_line_pointer, "\"data\"", 6) == 0) { input_line_pointer += 6; s_data (0); return; } if (strncmp (input_line_pointer, "\"data1\"", 7) == 0) { input_line_pointer += 7; s_data1 (); return; } if (strncmp (input_line_pointer, "\"bss\"", 5) == 0) { input_line_pointer += 5; /* We only support 2 segments -- text and data -- for now, so things in the "bss segment" will have to go into data for now. You can still allocate SEG_BSS stuff with .lcomm or .reserve. */ subseg_set (data_section, 255); /* FIXME-SOMEDAY */ return; } as_bad ("Unknown segment type"); demand_empty_rest_of_line (); } static void s_data1 () { subseg_set (data_section, 1); demand_empty_rest_of_line (); } static void s_proc (ignore) int ignore; { while (!is_end_of_line[(unsigned char) *input_line_pointer]) { ++input_line_pointer; } ++input_line_pointer; } /* This static variable is set by s_uacons to tell sparc_cons_align that the expession does not need to be aligned. */ static int sparc_no_align_cons = 0; /* This handles the unaligned space allocation pseudo-ops, such as .uaword. .uaword is just like .word, but the value does not need to be aligned. */ static void s_uacons (bytes) int bytes; { /* Tell sparc_cons_align not to align this value. */ sparc_no_align_cons = 1; cons (bytes); } /* If the --enforce-aligned-data option is used, we require .word, et. al., to be aligned correctly. We do it by setting up an rs_align_code frag, and checking in HANDLE_ALIGN to make sure that no unexpected alignment was introduced. The SunOS and Solaris native assemblers enforce aligned data by default. We don't want to do that, because gcc can deliberately generate misaligned data if the packed attribute is used. Instead, we permit misaligned data by default, and permit the user to set an option to check for it. */ void sparc_cons_align (nbytes) int nbytes; { int nalign; char *p; /* Only do this if we are enforcing aligned data. */ if (! enforce_aligned_data) return; if (sparc_no_align_cons) { /* This is an unaligned pseudo-op. */ sparc_no_align_cons = 0; return; } nalign = 0; while ((nbytes & 1) == 0) { ++nalign; nbytes >>= 1; } if (nalign == 0) return; if (now_seg == absolute_section) { if ((abs_section_offset & ((1 << nalign) - 1)) != 0) as_bad ("misaligned data"); return; } p = frag_var (rs_align_code, 1, 1, (relax_substateT) 0, (symbolS *) NULL, (offsetT) nalign, (char *) NULL); record_alignment (now_seg, nalign); } /* This is where we do the unexpected alignment check. */ void sparc_handle_align (fragp) fragS *fragp; { if (fragp->fr_type == rs_align_code && fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix != 0) as_bad_where (fragp->fr_file, fragp->fr_line, "misaligned data"); } /* sparc64 priviledged registers */ struct priv_reg_entry { char *name; int regnum; }; struct priv_reg_entry priv_reg_table[] = { {"tpc", 0}, {"tnpc", 1}, {"tstate", 2}, {"tt", 3}, {"tick", 4}, {"tba", 5}, {"pstate", 6}, {"tl", 7}, {"pil", 8}, {"cwp", 9}, {"cansave", 10}, {"canrestore", 11}, {"cleanwin", 12}, {"otherwin", 13}, {"wstate", 14}, {"fq", 15}, {"ver", 31}, {"", -1}, /* end marker */ }; static int cmp_reg_entry (parg, qarg) const PTR parg; const PTR qarg; { const struct priv_reg_entry *p = (const struct priv_reg_entry *) parg; const struct priv_reg_entry *q = (const struct priv_reg_entry *) qarg; return strcmp (q->name, p->name); } /* This function is called once, at assembler startup time. It should set up all the tables, etc. that the MD part of the assembler will need. */ void md_begin () { register const char *retval = NULL; int lose = 0; register unsigned int i = 0; op_hash = hash_new (); while (i < sparc_num_opcodes) { const char *name = sparc_opcodes[i].name; retval = hash_insert (op_hash, name, (PTR) &sparc_opcodes[i]); if (retval != NULL) { fprintf (stderr, "internal error: can't hash `%s': %s\n", sparc_opcodes[i].name, retval); lose = 1; } do { if (sparc_opcodes[i].match & sparc_opcodes[i].lose) { fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n", sparc_opcodes[i].name, sparc_opcodes[i].args); lose = 1; } ++i; } while (i < sparc_num_opcodes && !strcmp (sparc_opcodes[i].name, name)); } if (lose) as_fatal ("Broken assembler. No assembly attempted."); for (i = '0'; i < '8'; ++i) octal[i] = 1; for (i = '0'; i <= '9'; ++i) toHex[i] = i - '0'; for (i = 'a'; i <= 'f'; ++i) toHex[i] = i + 10 - 'a'; for (i = 'A'; i <= 'F'; ++i) toHex[i] = i + 10 - 'A'; qsort (priv_reg_table, sizeof (priv_reg_table) / sizeof (priv_reg_table[0]), sizeof (priv_reg_table[0]), cmp_reg_entry); /* If -bump, record the architecture level at which we start issuing warnings. The behaviour is different depending upon whether an architecture was explicitly specified. If it wasn't, we issue warnings for all upwards bumps. If it was, we don't start issuing warnings until we need to bump beyond the requested architecture or when we bump between conflicting architectures. */ if (warn_on_bump && architecture_requested) { /* `max_architecture' records the requested architecture. Issue warnings if we go above it. */ warn_after_architecture = max_architecture; /* Find the highest architecture level that doesn't conflict with the requested one. */ for (max_architecture = SPARC_OPCODE_ARCH_MAX; max_architecture > warn_after_architecture; --max_architecture) if (! SPARC_OPCODE_CONFLICT_P (max_architecture, warn_after_architecture)) break; } } /* Called after all assembly has been done. */ void sparc_md_end () { #ifdef SPARC_ARCH64 if (current_architecture == SPARC_OPCODE_ARCH_V9A) bfd_set_arch_mach (stdoutput, bfd_arch_sparc, bfd_mach_sparc_v9a); else bfd_set_arch_mach (stdoutput, bfd_arch_sparc, bfd_mach_sparc_v9); #else if (current_architecture == SPARC_OPCODE_ARCH_V9) bfd_set_arch_mach (stdoutput, bfd_arch_sparc, bfd_mach_sparc_v8plus); else if (current_architecture == SPARC_OPCODE_ARCH_V9A) bfd_set_arch_mach (stdoutput, bfd_arch_sparc, bfd_mach_sparc_v8plusa); else if (current_architecture == SPARC_OPCODE_ARCH_SPARCLET) bfd_set_arch_mach (stdoutput, bfd_arch_sparc, bfd_mach_sparc_sparclet); else { /* The sparclite is treated like a normal sparc. Perhaps it shouldn't be but for now it is (since that's the way it's always been treated). */ bfd_set_arch_mach (stdoutput, bfd_arch_sparc, bfd_mach_sparc); } #endif } /* Utility to output one insn. */ static void output_insn (insn, the_insn) const struct sparc_opcode *insn; struct sparc_it *the_insn; { char *toP = frag_more (4); /* put out the opcode */ if (INSN_BIG_ENDIAN) number_to_chars_bigendian (toP, (valueT) the_insn->opcode, 4); else number_to_chars_littleendian (toP, (valueT) the_insn->opcode, 4); /* put out the symbol-dependent stuff */ if (the_insn->reloc != BFD_RELOC_NONE) { fix_new_exp (frag_now, /* which frag */ (toP - frag_now->fr_literal), /* where */ 4, /* size */ &the_insn->exp, the_insn->pcrel, the_insn->reloc); } last_insn = insn; last_opcode = the_insn->opcode; } void md_assemble (str) char *str; { const struct sparc_opcode *insn; know (str); special_case = 0; sparc_ip (str, &insn); /* We warn about attempts to put a floating point branch in a delay slot, unless the delay slot has been annulled. */ if (insn != NULL && last_insn != NULL && (insn->flags & F_FBR) != 0 && (last_insn->flags & F_DELAYED) != 0 /* ??? This test isn't completely accurate. We assume anything with F_{UNBR,CONDBR,FBR} set is annullable. */ && ((last_insn->flags & (F_UNBR | F_CONDBR | F_FBR)) == 0 || (last_opcode & ANNUL) == 0)) as_warn ("FP branch in delay slot"); /* SPARC before v9 requires a nop instruction between a floating point instruction and a floating point branch. We insert one automatically, with a warning. */ if (max_architecture < SPARC_OPCODE_ARCH_V9 && insn != NULL && last_insn != NULL && (insn->flags & F_FBR) != 0 && (last_insn->flags & F_FLOAT) != 0) { struct sparc_it nop_insn; nop_insn.opcode = NOP_INSN; nop_insn.reloc = BFD_RELOC_NONE; output_insn (insn, &nop_insn); as_warn ("FP branch preceded by FP instruction; NOP inserted"); } switch (special_case) { case 0: /* normal insn */ output_insn (insn, &the_insn); break; case SPECIAL_CASE_SET: { int need_hi22_p = 0; /* "set" is not defined for negative numbers in v9: it doesn't yield what you expect it to. */ if (SPARC_OPCODE_ARCH_V9_P (max_architecture) && the_insn.exp.X_op == O_constant) { if (the_insn.exp.X_add_number < 0) as_warn ("set: used with negative number"); else if (the_insn.exp.X_add_number > 0xffffffff) as_warn ("set: number larger than 4294967295"); } /* See if operand is absolute and small; skip sethi if so. */ if (the_insn.exp.X_op != O_constant || the_insn.exp.X_add_number >= (1 << 12) || the_insn.exp.X_add_number < -(1 << 12)) { output_insn (insn, &the_insn); need_hi22_p = 1; } /* See if operand has no low-order bits; skip OR if so. */ if (the_insn.exp.X_op != O_constant || (need_hi22_p && (the_insn.exp.X_add_number & 0x3FF) != 0) || ! need_hi22_p) { int rd = (the_insn.opcode & RD (~0)) >> 25; the_insn.opcode = (OR_INSN | (need_hi22_p ? RS1 (rd) : 0) | RD (rd) | IMMED | (the_insn.exp.X_add_number & (need_hi22_p ? 0x3ff : 0x1fff))); the_insn.reloc = (the_insn.exp.X_op != O_constant ? BFD_RELOC_LO10 : BFD_RELOC_NONE); output_insn (insn, &the_insn); } break; } case SPECIAL_CASE_SETSW: { /* FIXME: Not finished. */ break; } case SPECIAL_CASE_SETX: { #define SIGNEXT32(x) ((((x) & 0xffffffff) ^ 0x80000000) - 0x80000000) int upper32 = SIGNEXT32 (BSR (the_insn.exp.X_add_number, 32)); int lower32 = SIGNEXT32 (the_insn.exp.X_add_number); #undef SIGNEXT32 int tmpreg = (the_insn.opcode & RS1 (~0)) >> 14; int dstreg = (the_insn.opcode & RD (~0)) >> 25; /* Output directly to dst reg if lower 32 bits are all zero. */ int upper_dstreg = (the_insn.exp.X_op == O_constant && lower32 == 0) ? dstreg : tmpreg; int need_hh22_p = 0, need_hm10_p = 0, need_hi22_p = 0, need_lo10_p = 0; /* The tmp reg should not be the dst reg. */ if (tmpreg == dstreg) as_warn ("setx: temporary register same as destination register"); /* Reset X_add_number, we've extracted it as upper32/lower32. Otherwise fixup_segment will complain about not being able to write an 8 byte number in a 4 byte field. */ the_insn.exp.X_add_number = 0; /* ??? Obviously there are other optimizations we can do (e.g. sethi+shift for 0x1f0000000) and perhaps we shouldn't be doing some of these. Later. If you do change things, try to change all of this to be table driven as well. */ /* What to output depends on the number if it's constant. Compute that first, then output what we've decided upon. */ if (the_insn.exp.X_op != O_constant) need_hh22_p = need_hm10_p = need_hi22_p = need_lo10_p = 1; else { /* Only need hh22 if `or' insn can't handle constant. */ if (upper32 < -(1 << 12) || upper32 >= (1 << 12)) need_hh22_p = 1; /* Does bottom part (after sethi) have bits? */ if ((need_hh22_p && (upper32 & 0x3ff) != 0) /* No hh22, but does upper32 still have bits we can't set from lower32? */ || (! need_hh22_p && upper32 != 0 && (upper32 != -1 || lower32 >= 0))) need_hm10_p = 1; /* If the lower half is all zero, we build the upper half directly into the dst reg. */ if (lower32 != 0 /* Need lower half if number is zero. */ || (! need_hh22_p && ! need_hm10_p)) { /* No need for sethi if `or' insn can handle constant. */ if (lower32 < -(1 << 12) || lower32 >= (1 << 12) /* Note that we can't use a negative constant in the `or' insn unless the upper 32 bits are all ones. */ || (lower32 < 0 && upper32 != -1)) need_hi22_p = 1; /* Does bottom part (after sethi) have bits? */ if ((need_hi22_p && (lower32 & 0x3ff) != 0) /* No sethi. */ || (! need_hi22_p && (lower32 & 0x1fff) != 0) /* Need `or' if we didn't set anything else. */ || (! need_hi22_p && ! need_hh22_p && ! need_hm10_p)) need_lo10_p = 1; } } if (need_hh22_p) { the_insn.opcode = (SETHI_INSN | RD (upper_dstreg) | ((upper32 >> 10) & 0x3fffff)); the_insn.reloc = (the_insn.exp.X_op != O_constant ? BFD_RELOC_SPARC_HH22 : BFD_RELOC_NONE); output_insn (insn, &the_insn); } if (need_hm10_p) { the_insn.opcode = (OR_INSN | (need_hh22_p ? RS1 (upper_dstreg) : 0) | RD (upper_dstreg) | IMMED | (upper32 & (need_hh22_p ? 0x3ff : 0x1fff))); the_insn.reloc = (the_insn.exp.X_op != O_constant ? BFD_RELOC_SPARC_HM10 : BFD_RELOC_NONE); output_insn (insn, &the_insn); } if (need_hi22_p) { the_insn.opcode = (SETHI_INSN | RD (dstreg) | ((lower32 >> 10) & 0x3fffff)); the_insn.reloc = BFD_RELOC_HI22; output_insn (insn, &the_insn); } if (need_lo10_p) { /* FIXME: One nice optimization to do here is to OR the low part with the highpart if hi22 isn't needed and the low part is positive. */ the_insn.opcode = (OR_INSN | (need_hi22_p ? RS1 (dstreg) : 0) | RD (dstreg) | IMMED | (lower32 & (need_hi22_p ? 0x3ff : 0x1fff))); the_insn.reloc = BFD_RELOC_LO10; output_insn (insn, &the_insn); } /* If we needed to build the upper part, shift it into place. */ if (need_hh22_p || need_hm10_p) { the_insn.opcode = (SLLX_INSN | RS1 (upper_dstreg) | RD (upper_dstreg) | IMMED | 32); the_insn.reloc = BFD_RELOC_NONE; output_insn (insn, &the_insn); } /* If we needed to build both upper and lower parts, OR them together. */ if ((need_hh22_p || need_hm10_p) && (need_hi22_p || need_lo10_p)) { the_insn.opcode = (OR_INSN | RS1 (dstreg) | RS2 (upper_dstreg) | RD (dstreg)); the_insn.reloc = BFD_RELOC_NONE; output_insn (insn, &the_insn); } /* We didn't need both regs, but we may have to sign extend lower32. */ else if (need_hi22_p && upper32 == -1) { the_insn.opcode = (SRA_INSN | RS1 (dstreg) | RD (dstreg) | IMMED | 0); the_insn.reloc = BFD_RELOC_NONE; output_insn (insn, &the_insn); } break; } case SPECIAL_CASE_FDIV: { int rd = (the_insn.opcode >> 25) & 0x1f; output_insn (insn, &the_insn); /* According to information leaked from Sun, the "fdiv" instructions on early SPARC machines would produce incorrect results sometimes. The workaround is to add an fmovs of the destination register to itself just after the instruction. This was true on machines with Weitek 1165 float chips, such as the Sun-4/260 and /280. */ assert (the_insn.reloc == BFD_RELOC_NONE); the_insn.opcode = FMOVS_INSN | rd | RD (rd); output_insn (insn, &the_insn); break; } default: as_fatal ("failed special case insn sanity check"); } } /* Parse an argument that can be expressed as a keyword. (eg: #StoreStore or %ccfr). The result is a boolean indicating success. If successful, INPUT_POINTER is updated. */ static int parse_keyword_arg (lookup_fn, input_pointerP, valueP) int (*lookup_fn) PARAMS ((const char *)); char **input_pointerP; int *valueP; { int value; char c, *p, *q; p = *input_pointerP; for (q = p + (*p == '#' || *p == '%'); isalnum (*q) || *q == '_'; ++q) continue; c = *q; *q = 0; value = (*lookup_fn) (p); *q = c; if (value == -1) return 0; *valueP = value; *input_pointerP = q; return 1; } /* Parse an argument that is a constant expression. The result is a boolean indicating success. */ static int parse_const_expr_arg (input_pointerP, valueP) char **input_pointerP; int *valueP; { char *save = input_line_pointer; expressionS exp; input_line_pointer = *input_pointerP; /* The next expression may be something other than a constant (say if we're not processing the right variant of the insn). Don't call expression unless we're sure it will succeed as it will signal an error (which we want to defer until later). */ /* FIXME: It might be better to define md_operand and have it recognize things like %asi, etc. but continuing that route through to the end is a lot of work. */ if (*input_line_pointer == '%') { input_line_pointer = save; return 0; } expression (&exp); *input_pointerP = input_line_pointer; input_line_pointer = save; if (exp.X_op != O_constant) return 0; *valueP = exp.X_add_number; return 1; } static void sparc_ip (str, pinsn) char *str; const struct sparc_opcode **pinsn; { char *error_message = ""; char *s; const char *args; char c; const struct sparc_opcode *insn; char *argsStart; unsigned long opcode; unsigned int mask = 0; int match = 0; int comma = 0; long immediate_max = 0; int v9_arg_p; for (s = str; islower (*s) || (*s >= '0' && *s <= '3'); ++s) ; switch (*s) { case '\0': break; case ',': comma = 1; /*FALLTHROUGH */ case ' ': *s++ = '\0'; break; default: as_fatal ("Unknown opcode: `%s'", str); } insn = (struct sparc_opcode *) hash_find (op_hash, str); *pinsn = insn; if (insn == NULL) { as_bad ("Unknown opcode: `%s'", str); return; } if (comma) { *--s = ','; } argsStart = s; for (;;) { opcode = insn->match; memset (&the_insn, '\0', sizeof (the_insn)); the_insn.reloc = BFD_RELOC_NONE; v9_arg_p = 0; /* * Build the opcode, checking as we go to make * sure that the operands match */ for (args = insn->args;; ++args) { switch (*args) { case 'K': { int kmask = 0; /* Parse a series of masks. */ if (*s == '#') { while (*s == '#') { int mask; if (! parse_keyword_arg (sparc_encode_membar, &s, &mask)) { error_message = ": invalid membar mask name"; goto error; } kmask |= mask; while (*s == ' ') { ++s; continue; } if (*s == '|' || *s == '+') ++s; while (*s == ' ') { ++s; continue; } } } else { if (! parse_const_expr_arg (&s, &kmask)) { error_message = ": invalid membar mask expression"; goto error; } if (kmask < 0 || kmask > 127) { error_message = ": invalid membar mask number"; goto error; } } opcode |= MEMBAR (kmask); continue; } case '*': { int fcn = 0; /* Parse a prefetch function. */ if (*s == '#') { if (! parse_keyword_arg (sparc_encode_prefetch, &s, &fcn)) { error_message = ": invalid prefetch function name"; goto error; } } else { if (! parse_const_expr_arg (&s, &fcn)) { error_message = ": invalid prefetch function expression"; goto error; } if (fcn < 0 || fcn > 31) { error_message = ": invalid prefetch function number"; goto error; } } opcode |= RD (fcn); continue; } case '!': case '?': /* Parse a sparc64 privileged register. */ if (*s == '%') { struct priv_reg_entry *p = priv_reg_table; unsigned int len = 9999999; /* init to make gcc happy */ s += 1; while (p->name[0] > s[0]) p++; while (p->name[0] == s[0]) { len = strlen (p->name); if (strncmp (p->name, s, len) == 0) break; p++; } if (p->name[0] != s[0]) { error_message = ": unrecognizable privileged register"; goto error; } if (*args == '?') opcode |= (p->regnum << 14); else opcode |= (p->regnum << 25); s += len; continue; } else { error_message = ": unrecognizable privileged register"; goto error; } case 'M': case 'm': if (strncmp (s, "%asr", 4) == 0) { s += 4; if (isdigit (*s)) { long num = 0; while (isdigit (*s)) { num = num * 10 + *s - '0'; ++s; } if (current_architecture >= SPARC_OPCODE_ARCH_V9) { if (num < 16 || 31 < num) { error_message = ": asr number must be between 16 and 31"; goto error; } } else { if (num < 0 || 31 < num) { error_message = ": asr number must be between 0 and 31"; goto error; } } opcode |= (*args == 'M' ? RS1 (num) : RD (num)); continue; } else { error_message = ": expecting %asrN"; goto error; } } /* if %asr */ break; case 'I': the_insn.reloc = BFD_RELOC_SPARC_11; immediate_max = 0x03FF; goto immediate; case 'j': the_insn.reloc = BFD_RELOC_SPARC_10; immediate_max = 0x01FF; goto immediate; case 'X': /* V8 systems don't understand BFD_RELOC_SPARC_5. */ if (SPARC_OPCODE_ARCH_V9_P (max_architecture)) the_insn.reloc = BFD_RELOC_SPARC_5; else the_insn.reloc = BFD_RELOC_SPARC13; /* These fields are unsigned, but for upward compatibility, allow negative values as well. */ immediate_max = 0x1f; goto immediate; case 'Y': /* V8 systems don't understand BFD_RELOC_SPARC_6. */ if (SPARC_OPCODE_ARCH_V9_P (max_architecture)) the_insn.reloc = BFD_RELOC_SPARC_6; else the_insn.reloc = BFD_RELOC_SPARC13; /* These fields are unsigned, but for upward compatibility, allow negative values as well. */ immediate_max = 0x3f; goto immediate; case 'k': the_insn.reloc = /* RELOC_WDISP2_14 */ BFD_RELOC_SPARC_WDISP16; the_insn.pcrel = 1; goto immediate; case 'G': the_insn.reloc = BFD_RELOC_SPARC_WDISP19; the_insn.pcrel = 1; goto immediate; case 'N': if (*s == 'p' && s[1] == 'n') { s += 2; continue; } break; case 'T': if (*s == 'p' && s[1] == 't') { s += 2; continue; } break; case 'z': if (*s == ' ') { ++s; } if (strncmp (s, "%icc", 4) == 0) { s += 4; continue; } break; case 'Z': if (*s == ' ') { ++s; } if (strncmp (s, "%xcc", 4) == 0) { s += 4; continue; } break; case '6': if (*s == ' ') { ++s; } if (strncmp (s, "%fcc0", 5) == 0) { s += 5; continue; } break; case '7': if (*s == ' ') { ++s; } if (strncmp (s, "%fcc1", 5) == 0) { s += 5; continue; } break; case '8': if (*s == ' ') { ++s; } if (strncmp (s, "%fcc2", 5) == 0) { s += 5; continue; } break; case '9': if (*s == ' ') { ++s; } if (strncmp (s, "%fcc3", 5) == 0) { s += 5; continue; } break; case 'P': if (strncmp (s, "%pc", 3) == 0) { s += 3; continue; } break; case 'W': if (strncmp (s, "%tick", 5) == 0) { s += 5; continue; } break; case '\0': /* end of args */ if (*s == '\0') { match = 1; } break; case '+': if (*s == '+') { ++s; continue; } if (*s == '-') { continue; } break; case '[': /* these must match exactly */ case ']': case ',': case ' ': if (*s++ == *args) continue; break; case '#': /* must be at least one digit */ if (isdigit (*s++)) { while (isdigit (*s)) { ++s; } continue; } break; case 'C': /* coprocessor state register */ if (strncmp (s, "%csr", 4) == 0) { s += 4; continue; } break; case 'b': /* next operand is a coprocessor register */ case 'c': case 'D': if (*s++ == '%' && *s++ == 'c' && isdigit (*s)) { mask = *s++; if (isdigit (*s)) { mask = 10 * (mask - '0') + (*s++ - '0'); if (mask >= 32) { break; } } else { mask -= '0'; } switch (*args) { case 'b': opcode |= mask << 14; continue; case 'c': opcode |= mask; continue; case 'D': opcode |= mask << 25; continue; } } break; case 'r': /* next operand must be a register */ case 'O': case '1': case '2': case 'd': if (*s++ == '%') { switch (c = *s++) { case 'f': /* frame pointer */ if (*s++ == 'p') { mask = 0x1e; break; } goto error; case 'g': /* global register */ if (isoctal (c = *s++)) { mask = c - '0'; break; } goto error; case 'i': /* in register */ if (isoctal (c = *s++)) { mask = c - '0' + 24; break; } goto error; case 'l': /* local register */ if (isoctal (c = *s++)) { mask = (c - '0' + 16); break; } goto error; case 'o': /* out register */ if (isoctal (c = *s++)) { mask = (c - '0' + 8); break; } goto error; case 's': /* stack pointer */ if (*s++ == 'p') { mask = 0xe; break; } goto error; case 'r': /* any register */ if (!isdigit (c = *s++)) { goto error; } /* FALLTHROUGH */ case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': if (isdigit (*s)) { if ((c = 10 * (c - '0') + (*s++ - '0')) >= 32) { goto error; } } else { c -= '0'; } mask = c; break; default: goto error; } /* Got the register, now figure out where it goes in the opcode. */ switch (*args) { case '1': opcode |= mask << 14; continue; case '2': opcode |= mask; continue; case 'd': opcode |= mask << 25; continue; case 'r': opcode |= (mask << 25) | (mask << 14); continue; case 'O': opcode |= (mask << 25) | (mask << 0); continue; } } break; case 'e': /* next operand is a floating point register */ case 'v': case 'V': case 'f': case 'B': case 'R': case 'g': case 'H': case 'J': { char format; if (*s++ == '%' && ((format = *s) == 'f') && isdigit (*++s)) { for (mask = 0; isdigit (*s); ++s) { mask = 10 * mask + (*s - '0'); } /* read the number */ if ((*args == 'v' || *args == 'B' || *args == 'H') && (mask & 1)) { break; } /* register must be even numbered */ if ((*args == 'V' || *args == 'R' || *args == 'J') && (mask & 3)) { break; } /* register must be multiple of 4 */ if (mask >= 64) { if (SPARC_OPCODE_ARCH_V9_P (max_architecture)) error_message = ": There are only 64 f registers; [0-63]"; else error_message = ": There are only 32 f registers; [0-31]"; goto error; } /* on error */ else if (mask >= 32) { if (SPARC_OPCODE_ARCH_V9_P (max_architecture)) { v9_arg_p = 1; mask -= 31; /* wrap high bit */ } else { error_message = ": There are only 32 f registers; [0-31]"; goto error; } } } else { break; } /* if not an 'f' register. */ switch (*args) { case 'v': case 'V': case 'e': opcode |= RS1 (mask); continue; case 'f': case 'B': case 'R': opcode |= RS2 (mask); continue; case 'g': case 'H': case 'J': opcode |= RD (mask); continue; } /* pack it in. */ know (0); break; } /* float arg */ case 'F': if (strncmp (s, "%fsr", 4) == 0) { s += 4; continue; } break; case '0': /* 64 bit immediate (setx insn) */ the_insn.reloc = BFD_RELOC_NONE; /* reloc handled elsewhere */ goto immediate; case 'h': /* high 22 bits */ the_insn.reloc = BFD_RELOC_HI22; goto immediate; case 'l': /* 22 bit PC relative immediate */ the_insn.reloc = BFD_RELOC_SPARC_WDISP22; the_insn.pcrel = 1; goto immediate; case 'L': /* 30 bit immediate */ the_insn.reloc = BFD_RELOC_32_PCREL_S2; the_insn.pcrel = 1; goto immediate; case 'n': /* 22 bit immediate */ the_insn.reloc = BFD_RELOC_SPARC22; goto immediate; case 'i': /* 13 bit immediate */ the_insn.reloc = BFD_RELOC_SPARC13; immediate_max = 0x0FFF; /*FALLTHROUGH */ immediate: if (*s == ' ') s++; if (*s == '%') { if ((c = s[1]) == 'h' && s[2] == 'i') { the_insn.reloc = BFD_RELOC_HI22; s += 3; } else if (c == 'l' && s[2] == 'o') { the_insn.reloc = BFD_RELOC_LO10; s += 3; } else if (c == 'u' && s[2] == 'h' && s[3] == 'i') { the_insn.reloc = BFD_RELOC_SPARC_HH22; s += 4; v9_arg_p = 1; } else if (c == 'u' && s[2] == 'l' && s[3] == 'o') { the_insn.reloc = BFD_RELOC_SPARC_HM10; s += 4; v9_arg_p = 1; } else break; } /* Note that if the getExpression() fails, we will still have created U entries in the symbol table for the 'symbols' in the input string. Try not to create U symbols for registers, etc. */ { /* This stuff checks to see if the expression ends in +%reg. If it does, it removes the register from the expression, and re-sets 's' to point to the right place. */ char *s1; for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++) ; if (s1 != s && isdigit (s1[-1])) { if (s1[-2] == '%' && s1[-3] == '+') { s1 -= 3; *s1 = '\0'; (void) getExpression (s); *s1 = '+'; s = s1; continue; } else if (strchr ("goli0123456789", s1[-2]) && s1[-3] == '%' && s1[-4] == '+') { s1 -= 4; *s1 = '\0'; (void) getExpression (s); *s1 = '+'; s = s1; continue; } } } (void) getExpression (s); s = expr_end; if (the_insn.exp.X_op == O_constant && the_insn.exp.X_add_symbol == 0 && the_insn.exp.X_op_symbol == 0) { /* Handle %uhi/%ulo by moving the upper word to the lower one and pretending it's %hi/%lo. We also need to watch for %hi/%lo: the top word needs to be zeroed otherwise fixup_segment will complain the value is too big. */ switch (the_insn.reloc) { case BFD_RELOC_SPARC_HH22: the_insn.reloc = BFD_RELOC_HI22; the_insn.exp.X_add_number = BSR (the_insn.exp.X_add_number, 32); break; case BFD_RELOC_SPARC_HM10: the_insn.reloc = BFD_RELOC_LO10; the_insn.exp.X_add_number = BSR (the_insn.exp.X_add_number, 32); break; case BFD_RELOC_HI22: case BFD_RELOC_LO10: the_insn.exp.X_add_number &= 0xffffffff; break; default: break; } /* For pc-relative call instructions, we reject constants to get better code. */ if (the_insn.pcrel && the_insn.reloc == BFD_RELOC_32_PCREL_S2 && in_signed_range (the_insn.exp.X_add_number, 0x3fff) ) { error_message = ": PC-relative operand can't be a constant"; goto error; } /* Check for invalid constant values. Don't warn if constant was inside %hi or %lo, since these truncate the constant to fit. */ if (immediate_max != 0 && the_insn.reloc != BFD_RELOC_LO10 && the_insn.reloc != BFD_RELOC_HI22 && !in_signed_range (the_insn.exp.X_add_number, immediate_max) ) { if (the_insn.pcrel) /* Who knows? After relocation, we may be within range. Let the linker figure it out. */ { the_insn.exp.X_op = O_symbol; the_insn.exp.X_add_symbol = section_symbol (absolute_section); } else /* Immediate value is non-pcrel, and out of range. */ as_bad ("constant value %ld out of range (%ld .. %ld)", the_insn.exp.X_add_number, ~immediate_max, immediate_max); } } /* Reset to prevent extraneous range check. */ immediate_max = 0; continue; case 'a': if (*s++ == 'a') { opcode |= ANNUL; continue; } break; case 'A': { int asi = 0; /* Parse an asi. */ if (*s == '#') { if (! parse_keyword_arg (sparc_encode_asi, &s, &asi)) { error_message = ": invalid ASI name"; goto error; } } else { if (! parse_const_expr_arg (&s, &asi)) { error_message = ": invalid ASI expression"; goto error; } if (asi < 0 || asi > 255) { error_message = ": invalid ASI number"; goto error; } } opcode |= ASI (asi); continue; } /* alternate space */ case 'p': if (strncmp (s, "%psr", 4) == 0) { s += 4; continue; } break; case 'q': /* floating point queue */ if (strncmp (s, "%fq", 3) == 0) { s += 3; continue; } break; case 'Q': /* coprocessor queue */ if (strncmp (s, "%cq", 3) == 0) { s += 3; continue; } break; case 'S': if (strcmp (str, "set") == 0 || strcmp (str, "setuw") == 0) { special_case = SPECIAL_CASE_SET; continue; } else if (strcmp (str, "setsw") == 0) { special_case = SPECIAL_CASE_SETSW; continue; } else if (strcmp (str, "setx") == 0) { special_case = SPECIAL_CASE_SETX; continue; } else if (strncmp (str, "fdiv", 4) == 0) { special_case = SPECIAL_CASE_FDIV; continue; } break; case 'o': if (strncmp (s, "%asi", 4) != 0) break; s += 4; continue; case 's': if (strncmp (s, "%fprs", 5) != 0) break; s += 5; continue; case 'E': if (strncmp (s, "%ccr", 4) != 0) break; s += 4; continue; case 't': if (strncmp (s, "%tbr", 4) != 0) break; s += 4; continue; case 'w': if (strncmp (s, "%wim", 4) != 0) break; s += 4; continue; case 'x': { char *push = input_line_pointer; expressionS e; input_line_pointer = s; expression (&e); if (e.X_op == O_constant) { int n = e.X_add_number; if (n != e.X_add_number || (n & ~0x1ff) != 0) as_bad ("OPF immediate operand out of range (0-0x1ff)"); else opcode |= e.X_add_number << 5; } else as_bad ("non-immediate OPF operand, ignored"); s = input_line_pointer; input_line_pointer = push; continue; } case 'y': if (strncmp (s, "%y", 2) != 0) break; s += 2; continue; case 'u': case 'U': { /* Parse a sparclet cpreg. */ int cpreg; if (! parse_keyword_arg (sparc_encode_sparclet_cpreg, &s, &cpreg)) { error_message = ": invalid cpreg name"; goto error; } opcode |= (*args == 'U' ? RS1 (cpreg) : RD (cpreg)); continue; } default: as_fatal ("failed sanity check."); } /* switch on arg code */ /* Break out of for() loop. */ break; } /* for each arg that we expect */ error: if (match == 0) { /* Args don't match. */ if (((unsigned) (&insn[1] - sparc_opcodes)) < sparc_num_opcodes && (insn->name == insn[1].name || !strcmp (insn->name, insn[1].name))) { ++insn; s = argsStart; continue; } else { as_bad ("Illegal operands%s", error_message); return; } } else { /* We have a match. Now see if the architecture is ok. */ int needed_arch_mask = insn->architecture; if (v9_arg_p) { needed_arch_mask &= ~ ((1 << SPARC_OPCODE_ARCH_V9) | (1 << SPARC_OPCODE_ARCH_V9A)); needed_arch_mask |= (1 << SPARC_OPCODE_ARCH_V9); } if (needed_arch_mask & SPARC_OPCODE_SUPPORTED (current_architecture)) ; /* ok */ /* Can we bump up the architecture? */ else if (needed_arch_mask & SPARC_OPCODE_SUPPORTED (max_architecture)) { enum sparc_opcode_arch_val needed_architecture = sparc_ffs (SPARC_OPCODE_SUPPORTED (max_architecture) & needed_arch_mask); assert (needed_architecture <= SPARC_OPCODE_ARCH_MAX); if (warn_on_bump && needed_architecture > warn_after_architecture) { as_warn ("architecture bumped from \"%s\" to \"%s\" on \"%s\"", sparc_opcode_archs[current_architecture].name, sparc_opcode_archs[needed_architecture].name, str); warn_after_architecture = needed_architecture; } current_architecture = needed_architecture; } /* Conflict. */ /* ??? This seems to be a bit fragile. What if the next entry in the opcode table is the one we want and it is supported? It is possible to arrange the table today so that this can't happen but what about tomorrow? */ else { int arch,printed_one_p = 0; char *p; char required_archs[SPARC_OPCODE_ARCH_MAX * 16]; /* Create a list of the architectures that support the insn. */ needed_arch_mask &= ~ SPARC_OPCODE_SUPPORTED (max_architecture); p = required_archs; arch = sparc_ffs (needed_arch_mask); while ((1 << arch) <= needed_arch_mask) { if ((1 << arch) & needed_arch_mask) { if (printed_one_p) *p++ = '|'; strcpy (p, sparc_opcode_archs[arch].name); p += strlen (p); printed_one_p = 1; } ++arch; } as_bad ("Architecture mismatch on \"%s\".", str); as_tsktsk (" (Requires %s; requested architecture is %s.)", required_archs, sparc_opcode_archs[max_architecture].name); return; } } /* if no match */ break; } /* forever looking for a match */ the_insn.opcode = opcode; } static int getExpression (str) char *str; { char *save_in; segT seg; save_in = input_line_pointer; input_line_pointer = str; seg = expression (&the_insn.exp); if (seg != absolute_section && seg != text_section && seg != data_section && seg != bss_section && seg != undefined_section) { the_insn.error = "bad segment"; expr_end = input_line_pointer; input_line_pointer = save_in; return 1; } expr_end = input_line_pointer; input_line_pointer = save_in; return 0; } /* getExpression() */ /* This is identical to the md_atof in m68k.c. I think this is right, but I'm not sure. Turn a string in input_line_pointer into a floating point constant of type type, and store the appropriate bytes in *litP. The number of LITTLENUMS emitted is stored in *sizeP . An error message is returned, or NULL on OK. */ /* Equal to MAX_PRECISION in atof-ieee.c */ #define MAX_LITTLENUMS 6 char * md_atof (type, litP, sizeP) char type; char *litP; int *sizeP; { int i,prec; LITTLENUM_TYPE words[MAX_LITTLENUMS]; char *t; switch (type) { case 'f': case 'F': case 's': case 'S': prec = 2; break; case 'd': case 'D': case 'r': case 'R': prec = 4; break; case 'x': case 'X': prec = 6; break; case 'p': case 'P': prec = 6; break; default: *sizeP = 0; return "Bad call to MD_ATOF()"; } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizeP = prec * sizeof (LITTLENUM_TYPE); if (target_big_endian) { for (i = 0; i < prec; i++) { md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE)); litP += sizeof (LITTLENUM_TYPE); } } else { for (i = prec - 1; i >= 0; i--) { md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE)); litP += sizeof (LITTLENUM_TYPE); } } return 0; } /* Write a value out to the object file, using the appropriate endianness. */ void md_number_to_chars (buf, val, n) char *buf; valueT val; int n; { if (target_big_endian) number_to_chars_bigendian (buf, val, n); else number_to_chars_littleendian (buf, val, n); } /* Apply a fixS to the frags, now that we know the value it ought to hold. */ int md_apply_fix3 (fixP, value, segment) fixS *fixP; valueT *value; segT segment; { char *buf = fixP->fx_where + fixP->fx_frag->fr_literal; offsetT val; long insn; val = *value; assert (fixP->fx_r_type < BFD_RELOC_UNUSED); fixP->fx_addnumber = val; /* Remember value for emit_reloc */ #ifdef OBJ_ELF /* FIXME: SPARC ELF relocations don't use an addend in the data field itself. This whole approach should be somehow combined with the calls to bfd_install_relocation. Also, the value passed in by fixup_segment includes the value of a defined symbol. We don't want to include the value of an externally visible symbol. */ if (fixP->fx_addsy != NULL) { if (fixP->fx_addsy->sy_used_in_reloc && (S_IS_EXTERNAL (fixP->fx_addsy) || S_IS_WEAK (fixP->fx_addsy) || (sparc_pic_code && ! fixP->fx_pcrel) || (S_GET_SEGMENT (fixP->fx_addsy) != segment && ((bfd_get_section_flags (stdoutput, S_GET_SEGMENT (fixP->fx_addsy)) & SEC_LINK_ONCE) != 0 || strncmp (segment_name (S_GET_SEGMENT (fixP->fx_addsy)), ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0))) && S_GET_SEGMENT (fixP->fx_addsy) != absolute_section && S_GET_SEGMENT (fixP->fx_addsy) != undefined_section && ! bfd_is_com_section (S_GET_SEGMENT (fixP->fx_addsy))) fixP->fx_addnumber -= S_GET_VALUE (fixP->fx_addsy); return 1; } #endif /* This is a hack. There should be a better way to handle this. Probably in terms of howto fields, once we can look at these fixups in terms of howtos. */ if (fixP->fx_r_type == BFD_RELOC_32_PCREL_S2 && fixP->fx_addsy) val += fixP->fx_where + fixP->fx_frag->fr_address; #ifdef OBJ_AOUT /* FIXME: More ridiculous gas reloc hacking. If we are going to generate a reloc, then we just want to let the reloc addend set the value. We do not want to also stuff the addend into the object file. Including the addend in the object file works when doing a static link, because the linker will ignore the object file contents. However, the dynamic linker does not ignore the object file contents. */ if (fixP->fx_addsy != NULL && fixP->fx_r_type != BFD_RELOC_32_PCREL_S2) val = 0; /* When generating PIC code, we do not want an addend for a reloc against a local symbol. We adjust fx_addnumber to cancel out the value already included in val, and to also cancel out the adjustment which bfd_install_relocation will create. */ if (sparc_pic_code && fixP->fx_r_type != BFD_RELOC_32_PCREL_S2 && fixP->fx_addsy != NULL && ! S_IS_COMMON (fixP->fx_addsy) && (fixP->fx_addsy->bsym->flags & BSF_SECTION_SYM) == 0) fixP->fx_addnumber -= 2 * S_GET_VALUE (fixP->fx_addsy); #endif /* If this is a data relocation, just output VAL. */ if (fixP->fx_r_type == BFD_RELOC_16) { md_number_to_chars (buf, val, 2); } else if (fixP->fx_r_type == BFD_RELOC_32) { md_number_to_chars (buf, val, 4); } else if (fixP->fx_r_type == BFD_RELOC_64) { md_number_to_chars (buf, val, 8); } else { /* It's a relocation against an instruction. */ if (INSN_BIG_ENDIAN) insn = bfd_getb32 ((unsigned char *) buf); else insn = bfd_getl32 ((unsigned char *) buf); switch (fixP->fx_r_type) { case BFD_RELOC_32_PCREL_S2: val = val >> 2; /* FIXME: This increment-by-one deserves a comment of why it's being done! */ if (! sparc_pic_code || fixP->fx_addsy == NULL || (fixP->fx_addsy->bsym->flags & BSF_SECTION_SYM) != 0) ++val; insn |= val & 0x3fffffff; break; case BFD_RELOC_SPARC_11: if (! in_signed_range (val, 0x7ff)) as_bad ("relocation overflow."); insn |= val & 0x7ff; break; case BFD_RELOC_SPARC_10: if (! in_signed_range (val, 0x3ff)) as_bad ("relocation overflow."); insn |= val & 0x3ff; break; case BFD_RELOC_SPARC_6: if (! in_bitfield_range (val, 0x3f)) as_bad ("relocation overflow."); insn |= val & 0x3f; break; case BFD_RELOC_SPARC_5: if (! in_bitfield_range (val, 0x1f)) as_bad ("relocation overflow."); insn |= val & 0x1f; break; case BFD_RELOC_SPARC_WDISP16: /* FIXME: simplify */ if (((val > 0) && (val & ~0x3fffc)) || ((val < 0) && (~(val - 1) & ~0x3fffc))) as_bad ("relocation overflow."); /* FIXME: The +1 deserves a comment. */ val = (val >> 2) + 1; insn |= ((val & 0xc000) << 6) | (val & 0x3fff); break; case BFD_RELOC_SPARC_WDISP19: /* FIXME: simplify */ if (((val > 0) && (val & ~0x1ffffc)) || ((val < 0) && (~(val - 1) & ~0x1ffffc))) as_bad ("relocation overflow."); /* FIXME: The +1 deserves a comment. */ val = (val >> 2) + 1; insn |= val & 0x7ffff; break; case BFD_RELOC_SPARC_HH22: val = BSR (val, 32); /* intentional fallthrough */ case BFD_RELOC_SPARC_LM22: case BFD_RELOC_HI22: if (!fixP->fx_addsy) { insn |= (val >> 10) & 0x3fffff; } else { /* FIXME: Need comment explaining why we do this. */ insn &= ~0xffff; } break; case BFD_RELOC_SPARC22: if (val & ~0x003fffff) as_bad ("relocation overflow"); insn |= (val & 0x3fffff); break; case BFD_RELOC_SPARC_HM10: val = BSR (val, 32); /* intentional fallthrough */ case BFD_RELOC_LO10: if (!fixP->fx_addsy) { insn |= val & 0x3ff; } else { /* FIXME: Need comment explaining why we do this. */ insn &= ~0xff; } break; case BFD_RELOC_SPARC13: if (! in_signed_range (val, 0x1fff)) as_bad ("relocation overflow"); insn |= val & 0x1fff; break; case BFD_RELOC_SPARC_WDISP22: val = (val >> 2) + 1; /* FALLTHROUGH */ case BFD_RELOC_SPARC_BASE22: insn |= val & 0x3fffff; break; case BFD_RELOC_NONE: default: as_bad ("bad or unhandled relocation type: 0x%02x", fixP->fx_r_type); break; } if (INSN_BIG_ENDIAN) bfd_putb32 (insn, (unsigned char *) buf); else bfd_putl32 (insn, (unsigned char *) buf); } /* Are we finished with this relocation now? */ if (fixP->fx_addsy == 0 && !fixP->fx_pcrel) fixP->fx_done = 1; return 1; } /* Translate internal representation of relocation info to BFD target format. */ arelent * tc_gen_reloc (section, fixp) asection *section; fixS *fixp; { arelent *reloc; bfd_reloc_code_real_type code; reloc = (arelent *) xmalloc (sizeof (arelent)); reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym; reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; switch (fixp->fx_r_type) { case BFD_RELOC_16: case BFD_RELOC_32: case BFD_RELOC_HI22: case BFD_RELOC_LO10: case BFD_RELOC_32_PCREL_S2: case BFD_RELOC_SPARC13: case BFD_RELOC_SPARC_BASE13: case BFD_RELOC_SPARC_WDISP16: case BFD_RELOC_SPARC_WDISP19: case BFD_RELOC_SPARC_WDISP22: case BFD_RELOC_64: case BFD_RELOC_SPARC_5: case BFD_RELOC_SPARC_6: case BFD_RELOC_SPARC_10: case BFD_RELOC_SPARC_11: case BFD_RELOC_SPARC_HH22: case BFD_RELOC_SPARC_HM10: case BFD_RELOC_SPARC_LM22: case BFD_RELOC_SPARC_PC_HH22: case BFD_RELOC_SPARC_PC_HM10: case BFD_RELOC_SPARC_PC_LM22: code = fixp->fx_r_type; break; default: abort (); } #if defined (OBJ_ELF) || defined (OBJ_AOUT) /* If we are generating PIC code, we need to generate a different set of relocs. */ #ifdef OBJ_ELF #define GOT_NAME "_GLOBAL_OFFSET_TABLE_" #else #define GOT_NAME "__GLOBAL_OFFSET_TABLE_" #endif if (sparc_pic_code) { switch (code) { case BFD_RELOC_32_PCREL_S2: if (! S_IS_DEFINED (fixp->fx_addsy) || S_IS_COMMON (fixp->fx_addsy) || S_IS_EXTERNAL (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy)) code = BFD_RELOC_SPARC_WPLT30; break; case BFD_RELOC_HI22: if (fixp->fx_addsy != NULL && strcmp (S_GET_NAME (fixp->fx_addsy), GOT_NAME) == 0) code = BFD_RELOC_SPARC_PC22; else code = BFD_RELOC_SPARC_GOT22; break; case BFD_RELOC_LO10: if (fixp->fx_addsy != NULL && strcmp (S_GET_NAME (fixp->fx_addsy), GOT_NAME) == 0) code = BFD_RELOC_SPARC_PC10; else code = BFD_RELOC_SPARC_GOT10; break; case BFD_RELOC_SPARC13: code = BFD_RELOC_SPARC_GOT13; break; default: break; } } #endif /* defined (OBJ_ELF) || defined (OBJ_AOUT) */ reloc->howto = bfd_reloc_type_lookup (stdoutput, code); if (reloc->howto == 0) { as_bad_where (fixp->fx_file, fixp->fx_line, "internal error: can't export reloc type %d (`%s')", fixp->fx_r_type, bfd_get_reloc_code_name (code)); return 0; } /* @@ Why fx_addnumber sometimes and fx_offset other times? */ #ifdef OBJ_AOUT if (reloc->howto->pc_relative == 0 || code == BFD_RELOC_SPARC_PC10 || code == BFD_RELOC_SPARC_PC22) reloc->addend = fixp->fx_addnumber; else reloc->addend = fixp->fx_offset - reloc->address; #else /* elf or coff */ if (reloc->howto->pc_relative == 0 || code == BFD_RELOC_SPARC_PC10 || code == BFD_RELOC_SPARC_PC22) reloc->addend = fixp->fx_addnumber; else if ((fixp->fx_addsy->bsym->flags & BSF_SECTION_SYM) != 0) reloc->addend = (section->vma + fixp->fx_addnumber + md_pcrel_from (fixp)); else reloc->addend = fixp->fx_offset; #endif return reloc; } #if 0 /* for debugging only */ static void print_insn (insn) struct sparc_it *insn; { const char *const Reloc[] = { "RELOC_8", "RELOC_16", "RELOC_32", "RELOC_DISP8", "RELOC_DISP16", "RELOC_DISP32", "RELOC_WDISP30", "RELOC_WDISP22", "RELOC_HI22", "RELOC_22", "RELOC_13", "RELOC_LO10", "RELOC_SFA_BASE", "RELOC_SFA_OFF13", "RELOC_BASE10", "RELOC_BASE13", "RELOC_BASE22", "RELOC_PC10", "RELOC_PC22", "RELOC_JMP_TBL", "RELOC_SEGOFF16", "RELOC_GLOB_DAT", "RELOC_JMP_SLOT", "RELOC_RELATIVE", "NO_RELOC" }; if (insn->error) fprintf (stderr, "ERROR: %s\n"); fprintf (stderr, "opcode=0x%08x\n", insn->opcode); fprintf (stderr, "reloc = %s\n", Reloc[insn->reloc]); fprintf (stderr, "exp = {\n"); fprintf (stderr, "\t\tX_add_symbol = %s\n", ((insn->exp.X_add_symbol != NULL) ? ((S_GET_NAME (insn->exp.X_add_symbol) != NULL) ? S_GET_NAME (insn->exp.X_add_symbol) : "???") : "0")); fprintf (stderr, "\t\tX_sub_symbol = %s\n", ((insn->exp.X_op_symbol != NULL) ? (S_GET_NAME (insn->exp.X_op_symbol) ? S_GET_NAME (insn->exp.X_op_symbol) : "???") : "0")); fprintf (stderr, "\t\tX_add_number = %d\n", insn->exp.X_add_number); fprintf (stderr, "}\n"); } #endif /* * md_parse_option * Invocation line includes a switch not recognized by the base assembler. * See if it's a processor-specific option. These are: * * -bump * Warn on architecture bumps. See also -A. * * -Av6, -Av7, -Av8, -Av9, -Av9a, -Asparclite * -xarch=v8plus, -xarch=v8plusa * Select the architecture. Instructions or features not * supported by the selected architecture cause fatal errors. * * The default is to start at v6, and bump the architecture up * whenever an instruction is seen at a higher level. If 32 bit * environments, v9 is not bumped up to, the user must pass -Av9. * * -xarch=v8plus{,a} is for compatibility with the Sun assembler. * * If -bump is specified, a warning is printing when bumping to * higher levels. * * If an architecture is specified, all instructions must match * that architecture. Any higher level instructions are flagged * as errors. Note that in the 32 bit environment specifying * -Av9 does not automatically create a v9 object file, a v9 * insn must be seen. * * If both an architecture and -bump are specified, the * architecture starts at the specified level, but bumps are * warnings. Note that we can't set `current_architecture' to * the requested level in this case: in the 32 bit environment, * we still must avoid creating v9 object files unless v9 insns * are seen. * * Note: * Bumping between incompatible architectures is always an * error. For example, from sparclite to v9. */ #ifdef OBJ_ELF CONST char *md_shortopts = "A:K:VQ:sq"; #else #ifdef OBJ_AOUT CONST char *md_shortopts = "A:k"; #else CONST char *md_shortopts = "A:"; #endif #endif struct option md_longopts[] = { #define OPTION_BUMP (OPTION_MD_BASE) {"bump", no_argument, NULL, OPTION_BUMP}, #define OPTION_SPARC (OPTION_MD_BASE + 1) {"sparc", no_argument, NULL, OPTION_SPARC}, #define OPTION_XARCH (OPTION_MD_BASE + 2) {"xarch", required_argument, NULL, OPTION_XARCH}, #ifdef SPARC_BIENDIAN #define OPTION_LITTLE_ENDIAN (OPTION_MD_BASE + 3) {"EL", no_argument, NULL, OPTION_LITTLE_ENDIAN}, #define OPTION_BIG_ENDIAN (OPTION_MD_BASE + 4) {"EB", no_argument, NULL, OPTION_BIG_ENDIAN}, #endif #define OPTION_ENFORCE_ALIGNED_DATA (OPTION_MD_BASE + 5) {"enforce-aligned-data", no_argument, NULL, OPTION_ENFORCE_ALIGNED_DATA}, {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof(md_longopts); int md_parse_option (c, arg) int c; char *arg; { switch (c) { case OPTION_BUMP: warn_on_bump = 1; warn_after_architecture = SPARC_OPCODE_ARCH_V6; break; case OPTION_XARCH: /* ??? We could add v8plus and v8plusa to sparc_opcode_archs. But we might want v8plus to mean something different than v9 someday, and we'd recognize more -xarch options than Sun's assembler does (which may lead to a conflict someday). */ if (strcmp (arg, "v8plus") == 0) arg = "v9"; else if (strcmp (arg, "v8plusa") == 0) arg = "v9a"; else { as_bad ("invalid architecture -xarch=%s", arg); return 0; } /* fall through */ case 'A': { enum sparc_opcode_arch_val new_arch = sparc_opcode_lookup_arch (arg); if (new_arch == SPARC_OPCODE_ARCH_BAD) { as_bad ("invalid architecture -A%s", arg); return 0; } else { max_architecture = new_arch; architecture_requested = 1; } } break; case OPTION_SPARC: /* Ignore -sparc, used by SunOS make default .s.o rule. */ break; case OPTION_ENFORCE_ALIGNED_DATA: enforce_aligned_data = 1; break; #ifdef SPARC_BIENDIAN case OPTION_LITTLE_ENDIAN: target_big_endian = 0; break; case OPTION_BIG_ENDIAN: target_big_endian = 1; break; #endif #ifdef OBJ_AOUT case 'k': sparc_pic_code = 1; break; #endif #ifdef OBJ_ELF case 'V': print_version_id (); break; case 'Q': /* Qy - do emit .comment Qn - do not emit .comment */ break; case 's': /* use .stab instead of .stab.excl */ break; case 'q': /* quick -- native assembler does fewer checks */ break; case 'K': if (strcmp (arg, "PIC") != 0) as_warn ("Unrecognized option following -K"); else sparc_pic_code = 1; break; #endif default: return 0; } return 1; } void md_show_usage (stream) FILE *stream; { const struct sparc_opcode_arch *arch; fprintf(stream, "SPARC options:\n"); for (arch = &sparc_opcode_archs[0]; arch->name; arch++) { if (arch != &sparc_opcode_archs[0]) fprintf (stream, " | "); fprintf (stream, "-A%s", arch->name); } fprintf (stream, "\n-xarch=v8plus | -xarch=v8plusa\n"); fprintf (stream, "\ specify variant of SPARC architecture\n\ -bump warn when assembler switches architectures\n\ -sparc ignored\n\ --enforce-aligned-data force .long, etc., to be aligned correctly\n"); #ifdef OBJ_AOUT fprintf (stream, "\ -k generate PIC\n"); #endif #ifdef OBJ_ELF fprintf (stream, "\ -KPIC generate PIC\n\ -V print assembler version number\n\ -q ignored\n\ -Qy, -Qn ignored\n\ -s ignored\n"); #endif #ifdef SPARC_BIENDIAN fprintf (stream, "\ -EL generate code for a little endian machine\n\ -EB generate code for a big endian machine\n"); #endif } /* We have no need to default values of symbols. */ /* ARGSUSED */ symbolS * md_undefined_symbol (name) char *name; { return 0; } /* md_undefined_symbol() */ /* Round up a section size to the appropriate boundary. */ valueT md_section_align (segment, size) segT segment; valueT size; { #ifndef OBJ_ELF /* This is not right for ELF; a.out wants it, and COFF will force the alignment anyways. */ valueT align = ((valueT) 1 << (valueT) bfd_get_section_alignment (stdoutput, segment)); valueT newsize; /* turn alignment value into a mask */ align--; newsize = (size + align) & ~align; return newsize; #else return size; #endif } /* Exactly what point is a PC-relative offset relative TO? On the sparc, they're relative to the address of the offset, plus its size. This gets us to the following instruction. (??? Is this right? FIXME-SOON) */ long md_pcrel_from (fixP) fixS *fixP; { long ret; ret = fixP->fx_where + fixP->fx_frag->fr_address; if (! sparc_pic_code || fixP->fx_addsy == NULL || (fixP->fx_addsy->bsym->flags & BSF_SECTION_SYM) != 0) ret += fixP->fx_size; return ret; } /* end of tc-sparc.c */