/* tc-mips.c -- assemble code for a MIPS chip. Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. Contributed by the OSF and Ralph Campbell. Written by Keith Knowles and Ralph Campbell, working independently. Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus Support. This file is part of GAS. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "as.h" #include "config.h" #include "subsegs.h" #include #ifdef USE_STDARG #include #endif #ifdef USE_VARARGS #include #endif #include "opcode/mips.h" #include "itbl-ops.h" #ifdef DEBUG #define DBG(x) printf x #else #define DBG(x) #endif #ifdef OBJ_MAYBE_ELF /* Clean up namespace so we can include obj-elf.h too. */ static int mips_output_flavor PARAMS ((void)); static int mips_output_flavor () { return OUTPUT_FLAVOR; } #undef OBJ_PROCESS_STAB #undef OUTPUT_FLAVOR #undef S_GET_ALIGN #undef S_GET_SIZE #undef S_SET_ALIGN #undef S_SET_SIZE #undef obj_frob_file #undef obj_frob_file_after_relocs #undef obj_frob_symbol #undef obj_pop_insert #undef obj_sec_sym_ok_for_reloc #undef OBJ_COPY_SYMBOL_ATTRIBUTES #include "obj-elf.h" /* Fix any of them that we actually care about. */ #undef OUTPUT_FLAVOR #define OUTPUT_FLAVOR mips_output_flavor() #endif #if defined (OBJ_ELF) #include "elf/mips.h" #endif #ifndef ECOFF_DEBUGGING #define NO_ECOFF_DEBUGGING #define ECOFF_DEBUGGING 0 #endif #include "ecoff.h" #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) static char *mips_regmask_frag; #endif #define AT 1 #define TREG 24 #define PIC_CALL_REG 25 #define KT0 26 #define KT1 27 #define GP 28 #define SP 29 #define FP 30 #define RA 31 #define ILLEGAL_REG (32) /* Allow override of standard little-endian ECOFF format. */ #ifndef ECOFF_LITTLE_FORMAT #define ECOFF_LITTLE_FORMAT "ecoff-littlemips" #endif extern int target_big_endian; /* 1 is we should use the 64 bit MIPS ELF ABI, 0 if we should use the 32 bit ABI. This has no meaning for ECOFF. Note that the default is always 32 bit, even if "configured" for 64 bit [e.g. --target=mips64-elf]. */ static int mips_64; /* The default target format to use. */ const char * mips_target_format () { switch (OUTPUT_FLAVOR) { case bfd_target_aout_flavour: return target_big_endian ? "a.out-mips-big" : "a.out-mips-little"; case bfd_target_ecoff_flavour: return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT; case bfd_target_coff_flavour: return "pe-mips"; case bfd_target_elf_flavour: #ifdef TE_TMIPS /* This is traditional mips */ return (target_big_endian ? (mips_64 ? "elf64-tradbigmips" : "elf32-tradbigmips") : (mips_64 ? "elf64-tradlittlemips" : "elf32-tradlittlemips")); #else return (target_big_endian ? (mips_64 ? "elf64-bigmips" : "elf32-bigmips") : (mips_64 ? "elf64-littlemips" : "elf32-littlemips")); #endif default: abort (); return NULL; } } /* The name of the readonly data section. */ #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_aout_flavour \ ? ".data" \ : OUTPUT_FLAVOR == bfd_target_ecoff_flavour \ ? ".rdata" \ : OUTPUT_FLAVOR == bfd_target_coff_flavour \ ? ".rdata" \ : OUTPUT_FLAVOR == bfd_target_elf_flavour \ ? ".rodata" \ : (abort (), "")) /* This is the set of options which may be modified by the .set pseudo-op. We use a struct so that .set push and .set pop are more reliable. */ struct mips_set_options { /* MIPS ISA (Instruction Set Architecture) level. This is set to -1 if it has not been initialized. Changed by `.set mipsN', and the -mipsN command line option, and the default CPU. */ int isa; /* Whether we are assembling for the mips16 processor. 0 if we are not, 1 if we are, and -1 if the value has not been initialized. Changed by `.set mips16' and `.set nomips16', and the -mips16 and -nomips16 command line options, and the default CPU. */ int mips16; /* Non-zero if we should not reorder instructions. Changed by `.set reorder' and `.set noreorder'. */ int noreorder; /* Non-zero if we should not permit the $at ($1) register to be used in instructions. Changed by `.set at' and `.set noat'. */ int noat; /* Non-zero if we should warn when a macro instruction expands into more than one machine instruction. Changed by `.set nomacro' and `.set macro'. */ int warn_about_macros; /* Non-zero if we should not move instructions. Changed by `.set move', `.set volatile', `.set nomove', and `.set novolatile'. */ int nomove; /* Non-zero if we should not optimize branches by moving the target of the branch into the delay slot. Actually, we don't perform this optimization anyhow. Changed by `.set bopt' and `.set nobopt'. */ int nobopt; /* Non-zero if we should not autoextend mips16 instructions. Changed by `.set autoextend' and `.set noautoextend'. */ int noautoextend; }; /* This is the struct we use to hold the current set of options. Note that we must set the isa field to ISA_UNKNOWN and the mips16 field to -1 to indicate that they have not been initialized. */ static struct mips_set_options mips_opts = { ISA_UNKNOWN, -1, 0, 0, 0, 0, 0, 0 }; /* These variables are filled in with the masks of registers used. The object format code reads them and puts them in the appropriate place. */ unsigned long mips_gprmask; unsigned long mips_cprmask[4]; /* MIPS ISA we are using for this output file. */ static int file_mips_isa = ISA_UNKNOWN; /* The argument of the -mcpu= flag. Historical for code generation. */ static int mips_cpu = CPU_UNKNOWN; /* The argument of the -march= flag. The architecture we are assembling. */ static int mips_arch = CPU_UNKNOWN; /* The argument of the -mtune= flag. The architecture for which we are optimizing. */ static int mips_tune = CPU_UNKNOWN; /* The argument of the -mabi= flag. */ static char * mips_abi_string = 0; /* Whether we should mark the file EABI64 or EABI32. */ static int mips_eabi64 = 0; /* If they asked for mips1 or mips2 and a cpu that is mips3 or greater, then mark the object file 32BITMODE. */ static int mips_32bitmode = 0; /* True if -mgp32 was passed. */ static int mips_gp32 = 0; /* True if -mfp32 was passed. */ static int mips_fp32 = 0; /* True if the selected ABI is defined for 32-bit registers only. */ static int mips_32bit_abi = 0; /* Some ISA's have delay slots for instructions which read or write from a coprocessor (eg. mips1-mips3); some don't (eg mips4). Return true if instructions marked INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, or INSN_WRITE_COND_CODE actually have a delay slot in this ISA. The uses of this macro assume that any ISA that has delay slots for one of these, has them for all. They also assume that ISAs which don't have delays for these insns, don't have delays for the INSN_LOAD_MEMORY_DELAY instructions either. */ #define ISA_HAS_COPROC_DELAYS(ISA) ( \ (ISA) == ISA_MIPS1 \ || (ISA) == ISA_MIPS2 \ || (ISA) == ISA_MIPS3 \ ) /* Return true if ISA supports 64 bit gp register instructions. */ #define ISA_HAS_64BIT_REGS(ISA) ( \ (ISA) == ISA_MIPS3 \ || (ISA) == ISA_MIPS4 \ || (ISA) == ISA_MIPS5 \ || (ISA) == ISA_MIPS64 \ ) #define HAVE_32BIT_GPRS \ (mips_gp32 \ || mips_32bit_abi \ || ! ISA_HAS_64BIT_REGS (mips_opts.isa)) #define HAVE_32BIT_FPRS \ (mips_fp32 \ || mips_32bit_abi \ || ! ISA_HAS_64BIT_REGS (mips_opts.isa)) #define HAVE_64BIT_GPRS (! HAVE_32BIT_GPRS) #define HAVE_64BIT_FPRS (! HAVE_32BIT_FPRS) #define HAVE_32BIT_ADDRESSES \ (HAVE_32BIT_GPRS \ || bfd_arch_bits_per_address (stdoutput) == 32) /* Whether the processor uses hardware interlocks to protect reads from the HI and LO registers, and thus does not require nops to be inserted. */ #define hilo_interlocks (mips_arch == CPU_R4010 \ ) /* Whether the processor uses hardware interlocks to protect reads from the GPRs, and thus does not require nops to be inserted. */ #define gpr_interlocks \ (mips_opts.isa != ISA_MIPS1 \ || mips_arch == CPU_R3900) /* As with other "interlocks" this is used by hardware that has FP (co-processor) interlocks. */ /* Itbl support may require additional care here. */ #define cop_interlocks (mips_arch == CPU_R4300 \ ) /* Is this a mfhi or mflo instruction? */ #define MF_HILO_INSN(PINFO) \ ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO)) /* MIPS PIC level. */ enum mips_pic_level { /* Do not generate PIC code. */ NO_PIC, /* Generate PIC code as in Irix 4. This is not implemented, and I'm not sure what it is supposed to do. */ IRIX4_PIC, /* Generate PIC code as in the SVR4 MIPS ABI. */ SVR4_PIC, /* Generate PIC code without using a global offset table: the data segment has a maximum size of 64K, all data references are off the $gp register, and all text references are PC relative. This is used on some embedded systems. */ EMBEDDED_PIC }; static enum mips_pic_level mips_pic; /* Warn about all NOPS that the assembler generates. */ static int warn_nops = 0; /* 1 if we should generate 32 bit offsets from the GP register in SVR4_PIC mode. Currently has no meaning in other modes. */ static int mips_big_got; /* 1 if trap instructions should used for overflow rather than break instructions. */ static int mips_trap; /* 1 if double width floating point constants should not be constructed by a assembling two single width halves into two single width floating point registers which just happen to alias the double width destination register. On some architectures this aliasing can be disabled by a bit in the status register, and the setting of this bit cannot be determined automatically at assemble time. */ static int mips_disable_float_construction; /* Non-zero if any .set noreorder directives were used. */ static int mips_any_noreorder; /* Non-zero if nops should be inserted when the register referenced in an mfhi/mflo instruction is read in the next two instructions. */ static int mips_7000_hilo_fix; /* The size of the small data section. */ static unsigned int g_switch_value = 8; /* Whether the -G option was used. */ static int g_switch_seen = 0; #define N_RMASK 0xc4 #define N_VFP 0xd4 /* If we can determine in advance that GP optimization won't be possible, we can skip the relaxation stuff that tries to produce GP-relative references. This makes delay slot optimization work better. This function can only provide a guess, but it seems to work for gcc output. It needs to guess right for gcc, otherwise gcc will put what it thinks is a GP-relative instruction in a branch delay slot. I don't know if a fix is needed for the SVR4_PIC mode. I've only fixed it for the non-PIC mode. KR 95/04/07 */ static int nopic_need_relax PARAMS ((symbolS *, int)); /* handle of the OPCODE hash table */ static struct hash_control *op_hash = NULL; /* The opcode hash table we use for the mips16. */ static struct hash_control *mips16_op_hash = NULL; /* This array holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful */ const char comment_chars[] = "#"; /* This array holds the chars that only start a comment at the beginning of a line. If the line seems to have the form '# 123 filename' .line and .file directives will appear in the pre-processed output */ /* Note that input_file.c hand checks for '#' at the beginning of the first line of the input file. This is because the compiler outputs #NO_APP at the beginning of its output. */ /* Also note that C style comments are always supported. */ const char line_comment_chars[] = "#"; /* This array holds machine specific line separator characters. */ const char line_separator_chars[] = ";"; /* Chars that can be used to separate mant from exp in floating point nums */ const char EXP_CHARS[] = "eE"; /* Chars that mean this number is a floating point constant */ /* As in 0f12.456 */ /* or 0d1.2345e12 */ const char FLT_CHARS[] = "rRsSfFdDxXpP"; /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be changed in read.c . Ideally it shouldn't have to know about it at all, but nothing is ideal around here. */ static char *insn_error; static int auto_align = 1; /* When outputting SVR4 PIC code, the assembler needs to know the offset in the stack frame from which to restore the $gp register. This is set by the .cprestore pseudo-op, and saved in this variable. */ static offsetT mips_cprestore_offset = -1; /* This is the register which holds the stack frame, as set by the .frame pseudo-op. This is needed to implement .cprestore. */ static int mips_frame_reg = SP; /* To output NOP instructions correctly, we need to keep information about the previous two instructions. */ /* Whether we are optimizing. The default value of 2 means to remove unneeded NOPs and swap branch instructions when possible. A value of 1 means to not swap branches. A value of 0 means to always insert NOPs. */ static int mips_optimize = 2; /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is equivalent to seeing no -g option at all. */ static int mips_debug = 0; /* The previous instruction. */ static struct mips_cl_insn prev_insn; /* The instruction before prev_insn. */ static struct mips_cl_insn prev_prev_insn; /* If we don't want information for prev_insn or prev_prev_insn, we point the insn_mo field at this dummy integer. */ static const struct mips_opcode dummy_opcode = { NULL, NULL, 0, 0, 0, 0 }; /* Non-zero if prev_insn is valid. */ static int prev_insn_valid; /* The frag for the previous instruction. */ static struct frag *prev_insn_frag; /* The offset into prev_insn_frag for the previous instruction. */ static long prev_insn_where; /* The reloc type for the previous instruction, if any. */ static bfd_reloc_code_real_type prev_insn_reloc_type; /* The reloc for the previous instruction, if any. */ static fixS *prev_insn_fixp; /* Non-zero if the previous instruction was in a delay slot. */ static int prev_insn_is_delay_slot; /* Non-zero if the previous instruction was in a .set noreorder. */ static int prev_insn_unreordered; /* Non-zero if the previous instruction uses an extend opcode (if mips16). */ static int prev_insn_extended; /* Non-zero if the previous previous instruction was in a .set noreorder. */ static int prev_prev_insn_unreordered; /* If this is set, it points to a frag holding nop instructions which were inserted before the start of a noreorder section. If those nops turn out to be unnecessary, the size of the frag can be decreased. */ static fragS *prev_nop_frag; /* The number of nop instructions we created in prev_nop_frag. */ static int prev_nop_frag_holds; /* The number of nop instructions that we know we need in prev_nop_frag. */ static int prev_nop_frag_required; /* The number of instructions we've seen since prev_nop_frag. */ static int prev_nop_frag_since; /* For ECOFF and ELF, relocations against symbols are done in two parts, with a HI relocation and a LO relocation. Each relocation has only 16 bits of space to store an addend. This means that in order for the linker to handle carries correctly, it must be able to locate both the HI and the LO relocation. This means that the relocations must appear in order in the relocation table. In order to implement this, we keep track of each unmatched HI relocation. We then sort them so that they immediately precede the corresponding LO relocation. */ struct mips_hi_fixup { /* Next HI fixup. */ struct mips_hi_fixup *next; /* This fixup. */ fixS *fixp; /* The section this fixup is in. */ segT seg; }; /* The list of unmatched HI relocs. */ static struct mips_hi_fixup *mips_hi_fixup_list; /* Map normal MIPS register numbers to mips16 register numbers. */ #define X ILLEGAL_REG static const int mips32_to_16_reg_map[] = { X, X, 2, 3, 4, 5, 6, 7, X, X, X, X, X, X, X, X, 0, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X }; #undef X /* Map mips16 register numbers to normal MIPS register numbers. */ static const unsigned int mips16_to_32_reg_map[] = { 16, 17, 2, 3, 4, 5, 6, 7 }; /* Since the MIPS does not have multiple forms of PC relative instructions, we do not have to do relaxing as is done on other platforms. However, we do have to handle GP relative addressing correctly, which turns out to be a similar problem. Every macro that refers to a symbol can occur in (at least) two forms, one with GP relative addressing and one without. For example, loading a global variable into a register generally uses a macro instruction like this: lw $4,i If i can be addressed off the GP register (this is true if it is in the .sbss or .sdata section, or if it is known to be smaller than the -G argument) this will generate the following instruction: lw $4,i($gp) This instruction will use a GPREL reloc. If i can not be addressed off the GP register, the following instruction sequence will be used: lui $at,i lw $4,i($at) In this case the first instruction will have a HI16 reloc, and the second reloc will have a LO16 reloc. Both relocs will be against the symbol i. The issue here is that we may not know whether i is GP addressable until after we see the instruction that uses it. Therefore, we want to be able to choose the final instruction sequence only at the end of the assembly. This is similar to the way other platforms choose the size of a PC relative instruction only at the end of assembly. When generating position independent code we do not use GP addressing in quite the same way, but the issue still arises as external symbols and local symbols must be handled differently. We handle these issues by actually generating both possible instruction sequences. The longer one is put in a frag_var with type rs_machine_dependent. We encode what to do with the frag in the subtype field. We encode (1) the number of existing bytes to replace, (2) the number of new bytes to use, (3) the offset from the start of the existing bytes to the first reloc we must generate (that is, the offset is applied from the start of the existing bytes after they are replaced by the new bytes, if any), (4) the offset from the start of the existing bytes to the second reloc, (5) whether a third reloc is needed (the third reloc is always four bytes after the second reloc), and (6) whether to warn if this variant is used (this is sometimes needed if .set nomacro or .set noat is in effect). All these numbers are reasonably small. Generating two instruction sequences must be handled carefully to ensure that delay slots are handled correctly. Fortunately, there are a limited number of cases. When the second instruction sequence is generated, append_insn is directed to maintain the existing delay slot information, so it continues to apply to any code after the second instruction sequence. This means that the second instruction sequence must not impose any requirements not required by the first instruction sequence. These variant frags are then handled in functions called by the machine independent code. md_estimate_size_before_relax returns the final size of the frag. md_convert_frag sets up the final form of the frag. tc_gen_reloc adjust the first reloc and adds a second one if needed. */ #define RELAX_ENCODE(old, new, reloc1, reloc2, reloc3, warn) \ ((relax_substateT) \ (((old) << 23) \ | ((new) << 16) \ | (((reloc1) + 64) << 9) \ | (((reloc2) + 64) << 2) \ | ((reloc3) ? (1 << 1) : 0) \ | ((warn) ? 1 : 0))) #define RELAX_OLD(i) (((i) >> 23) & 0x7f) #define RELAX_NEW(i) (((i) >> 16) & 0x7f) #define RELAX_RELOC1(i) ((bfd_vma) (((i) >> 9) & 0x7f) - 64) #define RELAX_RELOC2(i) ((bfd_vma) (((i) >> 2) & 0x7f) - 64) #define RELAX_RELOC3(i) (((i) >> 1) & 1) #define RELAX_WARN(i) ((i) & 1) /* For mips16 code, we use an entirely different form of relaxation. mips16 supports two versions of most instructions which take immediate values: a small one which takes some small value, and a larger one which takes a 16 bit value. Since branches also follow this pattern, relaxing these values is required. We can assemble both mips16 and normal MIPS code in a single object. Therefore, we need to support this type of relaxation at the same time that we support the relaxation described above. We use the high bit of the subtype field to distinguish these cases. The information we store for this type of relaxation is the argument code found in the opcode file for this relocation, whether the user explicitly requested a small or extended form, and whether the relocation is in a jump or jal delay slot. That tells us the size of the value, and how it should be stored. We also store whether the fragment is considered to be extended or not. We also store whether this is known to be a branch to a different section, whether we have tried to relax this frag yet, and whether we have ever extended a PC relative fragment because of a shift count. */ #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \ (0x80000000 \ | ((type) & 0xff) \ | ((small) ? 0x100 : 0) \ | ((ext) ? 0x200 : 0) \ | ((dslot) ? 0x400 : 0) \ | ((jal_dslot) ? 0x800 : 0)) #define RELAX_MIPS16_P(i) (((i) & 0x80000000) != 0) #define RELAX_MIPS16_TYPE(i) ((i) & 0xff) #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0) #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0) #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0) #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0) #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0) #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000) #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000) #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0) #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000) #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000) /* Prototypes for static functions. */ #ifdef __STDC__ #define internalError() \ as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__) #else #define internalError() as_fatal (_("MIPS internal Error")); #endif enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG }; static int insn_uses_reg PARAMS ((struct mips_cl_insn *ip, unsigned int reg, enum mips_regclass class)); static int reg_needs_delay PARAMS ((unsigned int)); static void mips16_mark_labels PARAMS ((void)); static void append_insn PARAMS ((char *place, struct mips_cl_insn * ip, expressionS * p, bfd_reloc_code_real_type r, boolean)); static void mips_no_prev_insn PARAMS ((int)); static void mips_emit_delays PARAMS ((boolean)); #ifdef USE_STDARG static void macro_build PARAMS ((char *place, int *counter, expressionS * ep, const char *name, const char *fmt, ...)); #else static void macro_build (); #endif static void mips16_macro_build PARAMS ((char *, int *, expressionS *, const char *, const char *, va_list)); static void macro_build_lui PARAMS ((char *place, int *counter, expressionS * ep, int regnum)); static void set_at PARAMS ((int *counter, int reg, int unsignedp)); static void check_absolute_expr PARAMS ((struct mips_cl_insn * ip, expressionS *)); static void load_register PARAMS ((int *, int, expressionS *, int)); static void load_address PARAMS ((int *counter, int reg, expressionS *ep)); static void macro PARAMS ((struct mips_cl_insn * ip)); static void mips16_macro PARAMS ((struct mips_cl_insn * ip)); #ifdef LOSING_COMPILER static void macro2 PARAMS ((struct mips_cl_insn * ip)); #endif static void mips_ip PARAMS ((char *str, struct mips_cl_insn * ip)); static void mips16_ip PARAMS ((char *str, struct mips_cl_insn * ip)); static void mips16_immed PARAMS ((char *, unsigned int, int, offsetT, boolean, boolean, boolean, unsigned long *, boolean *, unsigned short *)); static int my_getSmallExpression PARAMS ((expressionS * ep, char *str)); static void my_getExpression PARAMS ((expressionS * ep, char *str)); static symbolS *get_symbol PARAMS ((void)); static void mips_align PARAMS ((int to, int fill, symbolS *label)); static void s_align PARAMS ((int)); static void s_change_sec PARAMS ((int)); static void s_cons PARAMS ((int)); static void s_float_cons PARAMS ((int)); static void s_mips_globl PARAMS ((int)); static void s_option PARAMS ((int)); static void s_mipsset PARAMS ((int)); static void s_abicalls PARAMS ((int)); static void s_cpload PARAMS ((int)); static void s_cprestore PARAMS ((int)); static void s_gpword PARAMS ((int)); static void s_cpadd PARAMS ((int)); static void s_insn PARAMS ((int)); static void md_obj_begin PARAMS ((void)); static void md_obj_end PARAMS ((void)); static long get_number PARAMS ((void)); static void s_mips_ent PARAMS ((int)); static void s_mips_end PARAMS ((int)); static void s_mips_frame PARAMS ((int)); static void s_mips_mask PARAMS ((int)); static void s_mips_stab PARAMS ((int)); static void s_mips_weakext PARAMS ((int)); static void s_file PARAMS ((int)); static int mips16_extended_frag PARAMS ((fragS *, asection *, long)); static const char *mips_isa_to_str PARAMS ((int)); static const char *mips_cpu_to_str PARAMS ((int)); static int validate_mips_insn PARAMS ((const struct mips_opcode *)); /* Table and functions used to map between CPU/ISA names, and ISA levels, and CPU numbers. */ struct mips_cpu_info { const char *name; /* CPU or ISA name. */ int is_isa; /* Is this an ISA? (If 0, a CPU.) */ int isa; /* ISA level. */ int cpu; /* CPU number (default CPU if ISA). */ }; static const struct mips_cpu_info *mips_cpu_info_from_name PARAMS ((const char *)); static const struct mips_cpu_info *mips_cpu_info_from_isa PARAMS ((int)); static const struct mips_cpu_info *mips_cpu_info_from_cpu PARAMS ((int)); /* Pseudo-op table. The following pseudo-ops from the Kane and Heinrich MIPS book should be defined here, but are currently unsupported: .alias, .galive, .gjaldef, .gjrlive, .livereg, .noalias. The following pseudo-ops from the Kane and Heinrich MIPS book are specific to the type of debugging information being generated, and should be defined by the object format: .aent, .begin, .bend, .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp, .vreg. The following pseudo-ops from the Kane and Heinrich MIPS book are not MIPS CPU specific, but are also not specific to the object file format. This file is probably the best place to define them, but they are not currently supported: .asm0, .endr, .lab, .repeat, .struct. */ static const pseudo_typeS mips_pseudo_table[] = { /* MIPS specific pseudo-ops. */ {"option", s_option, 0}, {"set", s_mipsset, 0}, {"rdata", s_change_sec, 'r'}, {"sdata", s_change_sec, 's'}, {"livereg", s_ignore, 0}, {"abicalls", s_abicalls, 0}, {"cpload", s_cpload, 0}, {"cprestore", s_cprestore, 0}, {"gpword", s_gpword, 0}, {"cpadd", s_cpadd, 0}, {"insn", s_insn, 0}, /* Relatively generic pseudo-ops that happen to be used on MIPS chips. */ {"asciiz", stringer, 1}, {"bss", s_change_sec, 'b'}, {"err", s_err, 0}, {"half", s_cons, 1}, {"dword", s_cons, 3}, {"weakext", s_mips_weakext, 0}, /* These pseudo-ops are defined in read.c, but must be overridden here for one reason or another. */ {"align", s_align, 0}, {"byte", s_cons, 0}, {"data", s_change_sec, 'd'}, {"double", s_float_cons, 'd'}, {"float", s_float_cons, 'f'}, {"globl", s_mips_globl, 0}, {"global", s_mips_globl, 0}, {"hword", s_cons, 1}, {"int", s_cons, 2}, {"long", s_cons, 2}, {"octa", s_cons, 4}, {"quad", s_cons, 3}, {"short", s_cons, 1}, {"single", s_float_cons, 'f'}, {"stabn", s_mips_stab, 'n'}, {"text", s_change_sec, 't'}, {"word", s_cons, 2}, #ifdef MIPS_STABS_ELF { "extern", ecoff_directive_extern, 0}, #endif { NULL, NULL, 0 }, }; static const pseudo_typeS mips_nonecoff_pseudo_table[] = { /* These pseudo-ops should be defined by the object file format. However, a.out doesn't support them, so we have versions here. */ {"aent", s_mips_ent, 1}, {"bgnb", s_ignore, 0}, {"end", s_mips_end, 0}, {"endb", s_ignore, 0}, {"ent", s_mips_ent, 0}, {"file", s_file, 0}, {"fmask", s_mips_mask, 'F'}, {"frame", s_mips_frame, 0}, {"loc", s_ignore, 0}, {"mask", s_mips_mask, 'R'}, {"verstamp", s_ignore, 0}, { NULL, NULL, 0 }, }; extern void pop_insert PARAMS ((const pseudo_typeS *)); void mips_pop_insert () { pop_insert (mips_pseudo_table); if (! ECOFF_DEBUGGING) pop_insert (mips_nonecoff_pseudo_table); } /* Symbols labelling the current insn. */ struct insn_label_list { struct insn_label_list *next; symbolS *label; }; static struct insn_label_list *insn_labels; static struct insn_label_list *free_insn_labels; static void mips_clear_insn_labels PARAMS ((void)); static inline void mips_clear_insn_labels () { register struct insn_label_list **pl; for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next) ; *pl = insn_labels; insn_labels = NULL; } static char *expr_end; /* Expressions which appear in instructions. These are set by mips_ip. */ static expressionS imm_expr; static expressionS offset_expr; /* Relocs associated with imm_expr and offset_expr. */ static bfd_reloc_code_real_type imm_reloc; static bfd_reloc_code_real_type offset_reloc; /* This is set by mips_ip if imm_reloc is an unmatched HI16_S reloc. */ static boolean imm_unmatched_hi; /* These are set by mips16_ip if an explicit extension is used. */ static boolean mips16_small, mips16_ext; #ifdef MIPS_STABS_ELF /* The pdr segment for per procedure frame/regmask info */ static segT pdr_seg; #endif static const char * mips_isa_to_str (isa) int isa; { const struct mips_cpu_info *ci; static char s[20]; ci = mips_cpu_info_from_isa (isa); if (ci != NULL) return (ci->name); sprintf (s, "ISA#%d", isa); return s; } static const char * mips_cpu_to_str (cpu) int cpu; { const struct mips_cpu_info *ci; static char s[16]; ci = mips_cpu_info_from_cpu (cpu); if (ci != NULL) return (ci->name); sprintf (s, "CPU#%d", cpu); return s; } /* This function is called once, at assembler startup time. It should set up all the tables, etc. that the MD part of the assembler will need. */ void md_begin () { register const char *retval = NULL; int i = 0; const char *cpu; char *a = NULL; int broken = 0; int mips_isa_from_cpu; int target_cpu_had_mips16 = 0; const struct mips_cpu_info *ci; /* GP relative stuff not working for PE */ if (strncmp (TARGET_OS, "pe", 2) == 0 && g_switch_value != 0) { if (g_switch_seen) as_bad (_("-G not supported in this configuration.")); g_switch_value = 0; } cpu = TARGET_CPU; if (strcmp (cpu + (sizeof TARGET_CPU) - 3, "el") == 0) { a = xmalloc (sizeof TARGET_CPU); strcpy (a, TARGET_CPU); a[(sizeof TARGET_CPU) - 3] = '\0'; cpu = a; } if (strncmp (cpu, "mips16", sizeof "mips16" - 1) == 0) { target_cpu_had_mips16 = 1; cpu += sizeof "mips16" - 1; } if (mips_opts.mips16 < 0) mips_opts.mips16 = target_cpu_had_mips16; /* At this point, mips_arch will either be CPU_UNKNOWN if no ARCH was specified on the command line, or some other value if one was. Similarly, mips_opts.isa will be ISA_UNKNOWN if not specified on the command line, or will be set otherwise if one was. */ if (mips_arch != CPU_UNKNOWN && mips_opts.isa != ISA_UNKNOWN) { /* We have it all. There's nothing to do. */ } else if (mips_arch != CPU_UNKNOWN && mips_opts.isa == ISA_UNKNOWN) { /* We have ARCH, we need ISA. */ ci = mips_cpu_info_from_cpu (mips_arch); assert (ci != NULL); mips_opts.isa = ci->isa; } else if (mips_arch == CPU_UNKNOWN && mips_opts.isa != ISA_UNKNOWN) { /* We have ISA, we need default ARCH. */ ci = mips_cpu_info_from_isa (mips_opts.isa); assert (ci != NULL); mips_arch = ci->cpu; } else if (mips_arch == CPU_UNKNOWN && mips_opts.isa == ISA_UNKNOWN && mips_cpu != CPU_UNKNOWN) { /* Historic -mcpu= option. Warn. */ ci = mips_cpu_info_from_cpu (mips_cpu); assert (ci != NULL); mips_arch = ci->cpu; mips_tune = ci->cpu; mips_opts.isa = ci->isa; as_warn (_("The -mcpu option is deprecated. Please use -march and -mtune instead.")); } else { /* We need to set both ISA and ARCH from target cpu. */ ci = mips_cpu_info_from_name (cpu); if (ci == NULL) ci = mips_cpu_info_from_cpu (CPU_R3000); assert (ci != NULL); mips_opts.isa = ci->isa; mips_arch = ci->cpu; } if (mips_tune == CPU_UNKNOWN) mips_tune = mips_arch; ci = mips_cpu_info_from_cpu (mips_arch); assert (ci != NULL); mips_isa_from_cpu = ci->isa; /* End of TARGET_CPU processing, get rid of malloced memory if necessary. */ cpu = NULL; if (a != NULL) { free (a); a = NULL; } if (mips_opts.isa == ISA_MIPS1 && mips_trap) as_bad (_("trap exception not supported at ISA 1")); /* Set the EABI kind based on the ISA before the user gets to change the ISA with directives. This isn't really the best, but then neither is basing the abi on the isa. */ if (ISA_HAS_64BIT_REGS (mips_opts.isa) && mips_abi_string && 0 == strcmp (mips_abi_string, "eabi")) mips_eabi64 = 1; /* If they asked for mips1 or mips2 and a cpu that is mips3 or greater, then mark the object file 32BITMODE. */ if (mips_isa_from_cpu != ISA_UNKNOWN && ! ISA_HAS_64BIT_REGS (mips_opts.isa) && ISA_HAS_64BIT_REGS (mips_isa_from_cpu)) mips_32bitmode = 1; if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, mips_arch)) as_warn (_("Could not set architecture and machine")); file_mips_isa = mips_opts.isa; op_hash = hash_new (); for (i = 0; i < NUMOPCODES;) { const char *name = mips_opcodes[i].name; retval = hash_insert (op_hash, name, (PTR) &mips_opcodes[i]); if (retval != NULL) { fprintf (stderr, _("internal error: can't hash `%s': %s\n"), mips_opcodes[i].name, retval); /* Probably a memory allocation problem? Give up now. */ as_fatal (_("Broken assembler. No assembly attempted.")); } do { if (mips_opcodes[i].pinfo != INSN_MACRO) { if (!validate_mips_insn (&mips_opcodes[i])) broken = 1; } ++i; } while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name)); } mips16_op_hash = hash_new (); i = 0; while (i < bfd_mips16_num_opcodes) { const char *name = mips16_opcodes[i].name; retval = hash_insert (mips16_op_hash, name, (PTR) &mips16_opcodes[i]); if (retval != NULL) as_fatal (_("internal: can't hash `%s': %s"), mips16_opcodes[i].name, retval); do { if (mips16_opcodes[i].pinfo != INSN_MACRO && ((mips16_opcodes[i].match & mips16_opcodes[i].mask) != mips16_opcodes[i].match)) { fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"), mips16_opcodes[i].name, mips16_opcodes[i].args); broken = 1; } ++i; } while (i < bfd_mips16_num_opcodes && strcmp (mips16_opcodes[i].name, name) == 0); } if (broken) as_fatal (_("Broken assembler. No assembly attempted.")); /* We add all the general register names to the symbol table. This helps us detect invalid uses of them. */ for (i = 0; i < 32; i++) { char buf[5]; sprintf (buf, "$%d", i); symbol_table_insert (symbol_new (buf, reg_section, i, &zero_address_frag)); } symbol_table_insert (symbol_new ("$fp", reg_section, FP, &zero_address_frag)); symbol_table_insert (symbol_new ("$sp", reg_section, SP, &zero_address_frag)); symbol_table_insert (symbol_new ("$gp", reg_section, GP, &zero_address_frag)); symbol_table_insert (symbol_new ("$at", reg_section, AT, &zero_address_frag)); symbol_table_insert (symbol_new ("$kt0", reg_section, KT0, &zero_address_frag)); symbol_table_insert (symbol_new ("$kt1", reg_section, KT1, &zero_address_frag)); symbol_table_insert (symbol_new ("$pc", reg_section, -1, &zero_address_frag)); mips_no_prev_insn (false); mips_gprmask = 0; mips_cprmask[0] = 0; mips_cprmask[1] = 0; mips_cprmask[2] = 0; mips_cprmask[3] = 0; /* set the default alignment for the text section (2**2) */ record_alignment (text_section, 2); if (USE_GLOBAL_POINTER_OPT) bfd_set_gp_size (stdoutput, g_switch_value); if (OUTPUT_FLAVOR == bfd_target_elf_flavour) { /* On a native system, sections must be aligned to 16 byte boundaries. When configured for an embedded ELF target, we don't bother. */ if (strcmp (TARGET_OS, "elf") != 0) { (void) bfd_set_section_alignment (stdoutput, text_section, 4); (void) bfd_set_section_alignment (stdoutput, data_section, 4); (void) bfd_set_section_alignment (stdoutput, bss_section, 4); } /* Create a .reginfo section for register masks and a .mdebug section for debugging information. */ { segT seg; subsegT subseg; flagword flags; segT sec; seg = now_seg; subseg = now_subseg; /* The ABI says this section should be loaded so that the running program can access it. However, we don't load it if we are configured for an embedded target */ flags = SEC_READONLY | SEC_DATA; if (strcmp (TARGET_OS, "elf") != 0) flags |= SEC_ALLOC | SEC_LOAD; if (! mips_64) { sec = subseg_new (".reginfo", (subsegT) 0); (void) bfd_set_section_flags (stdoutput, sec, flags); (void) bfd_set_section_alignment (stdoutput, sec, 2); #ifdef OBJ_ELF mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo)); #endif } else { /* The 64-bit ABI uses a .MIPS.options section rather than .reginfo section. */ sec = subseg_new (".MIPS.options", (subsegT) 0); (void) bfd_set_section_flags (stdoutput, sec, flags); (void) bfd_set_section_alignment (stdoutput, sec, 3); #ifdef OBJ_ELF /* Set up the option header. */ { Elf_Internal_Options opthdr; char *f; opthdr.kind = ODK_REGINFO; opthdr.size = (sizeof (Elf_External_Options) + sizeof (Elf64_External_RegInfo)); opthdr.section = 0; opthdr.info = 0; f = frag_more (sizeof (Elf_External_Options)); bfd_mips_elf_swap_options_out (stdoutput, &opthdr, (Elf_External_Options *) f); mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo)); } #endif } if (ECOFF_DEBUGGING) { sec = subseg_new (".mdebug", (subsegT) 0); (void) bfd_set_section_flags (stdoutput, sec, SEC_HAS_CONTENTS | SEC_READONLY); (void) bfd_set_section_alignment (stdoutput, sec, 2); } #ifdef MIPS_STABS_ELF pdr_seg = subseg_new (".pdr", (subsegT) 0); (void) bfd_set_section_flags (stdoutput, pdr_seg, SEC_READONLY | SEC_RELOC | SEC_DEBUGGING); (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2); #endif subseg_set (seg, subseg); } } if (! ECOFF_DEBUGGING) md_obj_begin (); } void md_mips_end () { if (! ECOFF_DEBUGGING) md_obj_end (); } void md_assemble (str) char *str; { struct mips_cl_insn insn; imm_expr.X_op = O_absent; imm_reloc = BFD_RELOC_UNUSED; imm_unmatched_hi = false; offset_expr.X_op = O_absent; offset_reloc = BFD_RELOC_UNUSED; if (mips_opts.mips16) mips16_ip (str, &insn); else { mips_ip (str, &insn); DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"), str, insn.insn_opcode)); } if (insn_error) { as_bad ("%s `%s'", insn_error, str); return; } if (insn.insn_mo->pinfo == INSN_MACRO) { if (mips_opts.mips16) mips16_macro (&insn); else macro (&insn); } else { if (imm_expr.X_op != O_absent) append_insn ((char *) NULL, &insn, &imm_expr, imm_reloc, imm_unmatched_hi); else if (offset_expr.X_op != O_absent) append_insn ((char *) NULL, &insn, &offset_expr, offset_reloc, false); else append_insn ((char *) NULL, &insn, NULL, BFD_RELOC_UNUSED, false); } } /* See whether instruction IP reads register REG. CLASS is the type of register. */ static int insn_uses_reg (ip, reg, class) struct mips_cl_insn *ip; unsigned int reg; enum mips_regclass class; { if (class == MIPS16_REG) { assert (mips_opts.mips16); reg = mips16_to_32_reg_map[reg]; class = MIPS_GR_REG; } /* Don't report on general register 0, since it never changes. */ if (class == MIPS_GR_REG && reg == 0) return 0; if (class == MIPS_FP_REG) { assert (! mips_opts.mips16); /* If we are called with either $f0 or $f1, we must check $f0. This is not optimal, because it will introduce an unnecessary NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would need to distinguish reading both $f0 and $f1 or just one of them. Note that we don't have to check the other way, because there is no instruction that sets both $f0 and $f1 and requires a delay. */ if ((ip->insn_mo->pinfo & INSN_READ_FPR_S) && ((((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS) &~(unsigned)1) == (reg &~ (unsigned) 1))) return 1; if ((ip->insn_mo->pinfo & INSN_READ_FPR_T) && ((((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT) &~(unsigned)1) == (reg &~ (unsigned) 1))) return 1; } else if (! mips_opts.mips16) { if ((ip->insn_mo->pinfo & INSN_READ_GPR_S) && ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == reg) return 1; if ((ip->insn_mo->pinfo & INSN_READ_GPR_T) && ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT) == reg) return 1; } else { if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X) && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX)] == reg)) return 1; if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y) && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_RY) & MIPS16OP_MASK_RY)] == reg)) return 1; if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z) && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_MOVE32Z) & MIPS16OP_MASK_MOVE32Z)] == reg)) return 1; if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG) return 1; if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP) return 1; if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA) return 1; if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X) && ((ip->insn_opcode >> MIPS16OP_SH_REGR32) & MIPS16OP_MASK_REGR32) == reg) return 1; } return 0; } /* This function returns true if modifying a register requires a delay. */ static int reg_needs_delay (reg) unsigned int reg; { unsigned long prev_pinfo; prev_pinfo = prev_insn.insn_mo->pinfo; if (! mips_opts.noreorder && ISA_HAS_COPROC_DELAYS (mips_opts.isa) && ((prev_pinfo & INSN_LOAD_COPROC_DELAY) || (! gpr_interlocks && (prev_pinfo & INSN_LOAD_MEMORY_DELAY)))) { /* A load from a coprocessor or from memory. All load delays delay the use of general register rt for one instruction on the r3000. The r6000 and r4000 use interlocks. */ /* Itbl support may require additional care here. */ know (prev_pinfo & INSN_WRITE_GPR_T); if (reg == ((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT)) return 1; } return 0; } /* Mark instruction labels in mips16 mode. This permits the linker to handle them specially, such as generating jalx instructions when needed. We also make them odd for the duration of the assembly, in order to generate the right sort of code. We will make them even in the adjust_symtab routine, while leaving them marked. This is convenient for the debugger and the disassembler. The linker knows to make them odd again. */ static void mips16_mark_labels () { if (mips_opts.mips16) { struct insn_label_list *l; valueT val; for (l = insn_labels; l != NULL; l = l->next) { #ifdef OBJ_ELF if (OUTPUT_FLAVOR == bfd_target_elf_flavour) S_SET_OTHER (l->label, STO_MIPS16); #endif val = S_GET_VALUE (l->label); if ((val & 1) == 0) S_SET_VALUE (l->label, val + 1); } } } /* Output an instruction. PLACE is where to put the instruction; if it is NULL, this uses frag_more to get room. IP is the instruction information. ADDRESS_EXPR is an operand of the instruction to be used with RELOC_TYPE. */ static void append_insn (place, ip, address_expr, reloc_type, unmatched_hi) char *place; struct mips_cl_insn *ip; expressionS *address_expr; bfd_reloc_code_real_type reloc_type; boolean unmatched_hi; { register unsigned long prev_pinfo, pinfo; char *f; fixS *fixp; int nops = 0; /* Mark instruction labels in mips16 mode. */ if (mips_opts.mips16) mips16_mark_labels (); prev_pinfo = prev_insn.insn_mo->pinfo; pinfo = ip->insn_mo->pinfo; if (place == NULL && (! mips_opts.noreorder || prev_nop_frag != NULL)) { int prev_prev_nop; /* If the previous insn required any delay slots, see if we need to insert a NOP or two. There are eight kinds of possible hazards, of which an instruction can have at most one type. (1) a load from memory delay (2) a load from a coprocessor delay (3) an unconditional branch delay (4) a conditional branch delay (5) a move to coprocessor register delay (6) a load coprocessor register from memory delay (7) a coprocessor condition code delay (8) a HI/LO special register delay There are a lot of optimizations we could do that we don't. In particular, we do not, in general, reorder instructions. If you use gcc with optimization, it will reorder instructions and generally do much more optimization then we do here; repeating all that work in the assembler would only benefit hand written assembly code, and does not seem worth it. */ /* This is how a NOP is emitted. */ #define emit_nop() \ (mips_opts.mips16 \ ? md_number_to_chars (frag_more (2), 0x6500, 2) \ : md_number_to_chars (frag_more (4), 0, 4)) /* The previous insn might require a delay slot, depending upon the contents of the current insn. */ if (! mips_opts.mips16 && ISA_HAS_COPROC_DELAYS (mips_opts.isa) && (((prev_pinfo & INSN_LOAD_COPROC_DELAY) && ! cop_interlocks) || (! gpr_interlocks && (prev_pinfo & INSN_LOAD_MEMORY_DELAY)))) { /* A load from a coprocessor or from memory. All load delays delay the use of general register rt for one instruction on the r3000. The r6000 and r4000 use interlocks. */ /* Itbl support may require additional care here. */ know (prev_pinfo & INSN_WRITE_GPR_T); if (mips_optimize == 0 || insn_uses_reg (ip, ((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT), MIPS_GR_REG)) ++nops; } else if (! mips_opts.mips16 && ISA_HAS_COPROC_DELAYS (mips_opts.isa) && (((prev_pinfo & INSN_COPROC_MOVE_DELAY) && ! cop_interlocks) || (mips_opts.isa == ISA_MIPS1 && (prev_pinfo & INSN_COPROC_MEMORY_DELAY)))) { /* A generic coprocessor delay. The previous instruction modified a coprocessor general or control register. If it modified a control register, we need to avoid any coprocessor instruction (this is probably not always required, but it sometimes is). If it modified a general register, we avoid using that register. On the r6000 and r4000 loading a coprocessor register from memory is interlocked, and does not require a delay. This case is not handled very well. There is no special knowledge of CP0 handling, and the coprocessors other than the floating point unit are not distinguished at all. */ /* Itbl support may require additional care here. FIXME! Need to modify this to include knowledge about user specified delays! */ if (prev_pinfo & INSN_WRITE_FPR_T) { if (mips_optimize == 0 || insn_uses_reg (ip, ((prev_insn.insn_opcode >> OP_SH_FT) & OP_MASK_FT), MIPS_FP_REG)) ++nops; } else if (prev_pinfo & INSN_WRITE_FPR_S) { if (mips_optimize == 0 || insn_uses_reg (ip, ((prev_insn.insn_opcode >> OP_SH_FS) & OP_MASK_FS), MIPS_FP_REG)) ++nops; } else { /* We don't know exactly what the previous instruction does. If the current instruction uses a coprocessor register, we must insert a NOP. If previous instruction may set the condition codes, and the current instruction uses them, we must insert two NOPS. */ /* Itbl support may require additional care here. */ if (mips_optimize == 0 || ((prev_pinfo & INSN_WRITE_COND_CODE) && (pinfo & INSN_READ_COND_CODE))) nops += 2; else if (pinfo & INSN_COP) ++nops; } } else if (! mips_opts.mips16 && ISA_HAS_COPROC_DELAYS (mips_opts.isa) && (prev_pinfo & INSN_WRITE_COND_CODE) && ! cop_interlocks) { /* The previous instruction sets the coprocessor condition codes, but does not require a general coprocessor delay (this means it is a floating point comparison instruction). If this instruction uses the condition codes, we need to insert a single NOP. */ /* Itbl support may require additional care here. */ if (mips_optimize == 0 || (pinfo & INSN_READ_COND_CODE)) ++nops; } /* If we're fixing up mfhi/mflo for the r7000 and the previous insn was an mfhi/mflo and the current insn reads the register that the mfhi/mflo wrote to, then insert two nops. */ else if (mips_7000_hilo_fix && MF_HILO_INSN (prev_pinfo) && insn_uses_reg (ip, ((prev_insn.insn_opcode >> OP_SH_RD) & OP_MASK_RD), MIPS_GR_REG)) { nops += 2; } /* If we're fixing up mfhi/mflo for the r7000 and the 2nd previous insn was an mfhi/mflo and the current insn reads the register that the mfhi/mflo wrote to, then insert one nop. */ else if (mips_7000_hilo_fix && MF_HILO_INSN (prev_prev_insn.insn_opcode) && insn_uses_reg (ip, ((prev_prev_insn.insn_opcode >> OP_SH_RD) & OP_MASK_RD), MIPS_GR_REG)) { nops += 1; } else if (prev_pinfo & INSN_READ_LO) { /* The previous instruction reads the LO register; if the current instruction writes to the LO register, we must insert two NOPS. Some newer processors have interlocks. Also the tx39's multiply instructions can be exectuted immediatly after a read from HI/LO (without the delay), though the tx39's divide insns still do require the delay. */ if (! (hilo_interlocks || (mips_tune == CPU_R3900 && (pinfo & INSN_MULT))) && (mips_optimize == 0 || (pinfo & INSN_WRITE_LO))) nops += 2; /* Most mips16 branch insns don't have a delay slot. If a read from LO is immediately followed by a branch to a write to LO we have a read followed by a write less than 2 insns away. We assume the target of a branch might be a write to LO, and insert a nop between a read and an immediately following branch. */ else if (mips_opts.mips16 && (mips_optimize == 0 || (pinfo & MIPS16_INSN_BRANCH))) nops += 1; } else if (prev_insn.insn_mo->pinfo & INSN_READ_HI) { /* The previous instruction reads the HI register; if the current instruction writes to the HI register, we must insert a NOP. Some newer processors have interlocks. Also the note tx39's multiply above. */ if (! (hilo_interlocks || (mips_tune == CPU_R3900 && (pinfo & INSN_MULT))) && (mips_optimize == 0 || (pinfo & INSN_WRITE_HI))) nops += 2; /* Most mips16 branch insns don't have a delay slot. If a read from HI is immediately followed by a branch to a write to HI we have a read followed by a write less than 2 insns away. We assume the target of a branch might be a write to HI, and insert a nop between a read and an immediately following branch. */ else if (mips_opts.mips16 && (mips_optimize == 0 || (pinfo & MIPS16_INSN_BRANCH))) nops += 1; } /* If the previous instruction was in a noreorder section, then we don't want to insert the nop after all. */ /* Itbl support may require additional care here. */ if (prev_insn_unreordered) nops = 0; /* There are two cases which require two intervening instructions: 1) setting the condition codes using a move to coprocessor instruction which requires a general coprocessor delay and then reading the condition codes 2) reading the HI or LO register and then writing to it (except on processors which have interlocks). If we are not already emitting a NOP instruction, we must check for these cases compared to the instruction previous to the previous instruction. */ if ((! mips_opts.mips16 && ISA_HAS_COPROC_DELAYS (mips_opts.isa) && (prev_prev_insn.insn_mo->pinfo & INSN_COPROC_MOVE_DELAY) && (prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE) && (pinfo & INSN_READ_COND_CODE) && ! cop_interlocks) || ((prev_prev_insn.insn_mo->pinfo & INSN_READ_LO) && (pinfo & INSN_WRITE_LO) && ! (hilo_interlocks || (mips_tune == CPU_R3900 && (pinfo & INSN_MULT)))) || ((prev_prev_insn.insn_mo->pinfo & INSN_READ_HI) && (pinfo & INSN_WRITE_HI) && ! (hilo_interlocks || (mips_tune == CPU_R3900 && (pinfo & INSN_MULT))))) prev_prev_nop = 1; else prev_prev_nop = 0; if (prev_prev_insn_unreordered) prev_prev_nop = 0; if (prev_prev_nop && nops == 0) ++nops; /* If we are being given a nop instruction, don't bother with one of the nops we would otherwise output. This will only happen when a nop instruction is used with mips_optimize set to 0. */ if (nops > 0 && ! mips_opts.noreorder && ip->insn_opcode == (unsigned) (mips_opts.mips16 ? 0x6500 : 0)) --nops; /* Now emit the right number of NOP instructions. */ if (nops > 0 && ! mips_opts.noreorder) { fragS *old_frag; unsigned long old_frag_offset; int i; struct insn_label_list *l; old_frag = frag_now; old_frag_offset = frag_now_fix (); for (i = 0; i < nops; i++) emit_nop (); if (listing) { listing_prev_line (); /* We may be at the start of a variant frag. In case we are, make sure there is enough space for the frag after the frags created by listing_prev_line. The argument to frag_grow here must be at least as large as the argument to all other calls to frag_grow in this file. We don't have to worry about being in the middle of a variant frag, because the variants insert all needed nop instructions themselves. */ frag_grow (40); } for (l = insn_labels; l != NULL; l = l->next) { valueT val; assert (S_GET_SEGMENT (l->label) == now_seg); symbol_set_frag (l->label, frag_now); val = (valueT) frag_now_fix (); /* mips16 text labels are stored as odd. */ if (mips_opts.mips16) val += 1; S_SET_VALUE (l->label, val); } #ifndef NO_ECOFF_DEBUGGING if (ECOFF_DEBUGGING) ecoff_fix_loc (old_frag, old_frag_offset); #endif } else if (prev_nop_frag != NULL) { /* We have a frag holding nops we may be able to remove. If we don't need any nops, we can decrease the size of prev_nop_frag by the size of one instruction. If we do need some nops, we count them in prev_nops_required. */ if (prev_nop_frag_since == 0) { if (nops == 0) { prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4; --prev_nop_frag_holds; } else prev_nop_frag_required += nops; } else { if (prev_prev_nop == 0) { prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4; --prev_nop_frag_holds; } else ++prev_nop_frag_required; } if (prev_nop_frag_holds <= prev_nop_frag_required) prev_nop_frag = NULL; ++prev_nop_frag_since; /* Sanity check: by the time we reach the second instruction after prev_nop_frag, we should have used up all the nops one way or another. */ assert (prev_nop_frag_since <= 1 || prev_nop_frag == NULL); } } if (reloc_type > BFD_RELOC_UNUSED) { /* We need to set up a variant frag. */ assert (mips_opts.mips16 && address_expr != NULL); f = frag_var (rs_machine_dependent, 4, 0, RELAX_MIPS16_ENCODE (reloc_type - BFD_RELOC_UNUSED, mips16_small, mips16_ext, (prev_pinfo & INSN_UNCOND_BRANCH_DELAY), (prev_insn_reloc_type == BFD_RELOC_MIPS16_JMP)), make_expr_symbol (address_expr), (offsetT) 0, (char *) NULL); } else if (place != NULL) f = place; else if (mips_opts.mips16 && ! ip->use_extend && reloc_type != BFD_RELOC_MIPS16_JMP) { /* Make sure there is enough room to swap this instruction with a following jump instruction. */ frag_grow (6); f = frag_more (2); } else { if (mips_opts.mips16 && mips_opts.noreorder && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0) as_warn (_("extended instruction in delay slot")); f = frag_more (4); } fixp = NULL; if (address_expr != NULL && reloc_type < BFD_RELOC_UNUSED) { if (address_expr->X_op == O_constant) { switch (reloc_type) { case BFD_RELOC_32: ip->insn_opcode |= address_expr->X_add_number; break; case BFD_RELOC_LO16: ip->insn_opcode |= address_expr->X_add_number & 0xffff; break; case BFD_RELOC_MIPS_JMP: if ((address_expr->X_add_number & 3) != 0) as_bad (_("jump to misaligned address (0x%lx)"), (unsigned long) address_expr->X_add_number); ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff; break; case BFD_RELOC_MIPS16_JMP: if ((address_expr->X_add_number & 3) != 0) as_bad (_("jump to misaligned address (0x%lx)"), (unsigned long) address_expr->X_add_number); ip->insn_opcode |= (((address_expr->X_add_number & 0x7c0000) << 3) | ((address_expr->X_add_number & 0xf800000) >> 7) | ((address_expr->X_add_number & 0x3fffc) >> 2)); break; case BFD_RELOC_16_PCREL_S2: goto need_reloc; default: internalError (); } } else { need_reloc: /* Don't generate a reloc if we are writing into a variant frag. */ if (place == NULL) { fixp = fix_new_exp (frag_now, f - frag_now->fr_literal, 4, address_expr, reloc_type == BFD_RELOC_16_PCREL_S2, reloc_type); if (unmatched_hi) { struct mips_hi_fixup *hi_fixup; assert (reloc_type == BFD_RELOC_HI16_S); hi_fixup = ((struct mips_hi_fixup *) xmalloc (sizeof (struct mips_hi_fixup))); hi_fixup->fixp = fixp; hi_fixup->seg = now_seg; hi_fixup->next = mips_hi_fixup_list; mips_hi_fixup_list = hi_fixup; } } } } if (! mips_opts.mips16) md_number_to_chars (f, ip->insn_opcode, 4); else if (reloc_type == BFD_RELOC_MIPS16_JMP) { md_number_to_chars (f, ip->insn_opcode >> 16, 2); md_number_to_chars (f + 2, ip->insn_opcode & 0xffff, 2); } else { if (ip->use_extend) { md_number_to_chars (f, 0xf000 | ip->extend, 2); f += 2; } md_number_to_chars (f, ip->insn_opcode, 2); } /* Update the register mask information. */ if (! mips_opts.mips16) { if (pinfo & INSN_WRITE_GPR_D) mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD); if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0) mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT); if (pinfo & INSN_READ_GPR_S) mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS); if (pinfo & INSN_WRITE_GPR_31) mips_gprmask |= 1 << 31; if (pinfo & INSN_WRITE_FPR_D) mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FD) & OP_MASK_FD); if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0) mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS); if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0) mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT); if ((pinfo & INSN_READ_FPR_R) != 0) mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FR) & OP_MASK_FR); if (pinfo & INSN_COP) { /* We don't keep enough information to sort these cases out. The itbl support does keep this information however, although we currently don't support itbl fprmats as part of the cop instruction. May want to add this support in the future. */ } /* Never set the bit for $0, which is always zero. */ mips_gprmask &= ~1 << 0; } else { if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X)) mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX); if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y)) mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RY) & MIPS16OP_MASK_RY); if (pinfo & MIPS16_INSN_WRITE_Z) mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RZ) & MIPS16OP_MASK_RZ); if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T)) mips_gprmask |= 1 << TREG; if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP)) mips_gprmask |= 1 << SP; if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31)) mips_gprmask |= 1 << RA; if (pinfo & MIPS16_INSN_WRITE_GPR_Y) mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode); if (pinfo & MIPS16_INSN_READ_Z) mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_MOVE32Z) & MIPS16OP_MASK_MOVE32Z); if (pinfo & MIPS16_INSN_READ_GPR_X) mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_REGR32) & MIPS16OP_MASK_REGR32); } if (place == NULL && ! mips_opts.noreorder) { /* Filling the branch delay slot is more complex. We try to switch the branch with the previous instruction, which we can do if the previous instruction does not set up a condition that the branch tests and if the branch is not itself the target of any branch. */ if ((pinfo & INSN_UNCOND_BRANCH_DELAY) || (pinfo & INSN_COND_BRANCH_DELAY)) { if (mips_optimize < 2 /* If we have seen .set volatile or .set nomove, don't optimize. */ || mips_opts.nomove != 0 /* If we had to emit any NOP instructions, then we already know we can not swap. */ || nops != 0 /* If we don't even know the previous insn, we can not swap. */ || ! prev_insn_valid /* If the previous insn is already in a branch delay slot, then we can not swap. */ || prev_insn_is_delay_slot /* If the previous previous insn was in a .set noreorder, we can't swap. Actually, the MIPS assembler will swap in this situation. However, gcc configured -with-gnu-as will generate code like .set noreorder lw $4,XXX .set reorder INSN bne $4,$0,foo in which we can not swap the bne and INSN. If gcc is not configured -with-gnu-as, it does not output the .set pseudo-ops. We don't have to check prev_insn_unreordered, because prev_insn_valid will be 0 in that case. We don't want to use prev_prev_insn_valid, because we do want to be able to swap at the start of a function. */ || prev_prev_insn_unreordered /* If the branch is itself the target of a branch, we can not swap. We cheat on this; all we check for is whether there is a label on this instruction. If there are any branches to anything other than a label, users must use .set noreorder. */ || insn_labels != NULL /* If the previous instruction is in a variant frag, we can not do the swap. This does not apply to the mips16, which uses variant frags for different purposes. */ || (! mips_opts.mips16 && prev_insn_frag->fr_type == rs_machine_dependent) /* If the branch reads the condition codes, we don't even try to swap, because in the sequence ctc1 $X,$31 INSN INSN bc1t LABEL we can not swap, and I don't feel like handling that case. */ || (! mips_opts.mips16 && ISA_HAS_COPROC_DELAYS (mips_opts.isa) && (pinfo & INSN_READ_COND_CODE)) /* We can not swap with an instruction that requires a delay slot, becase the target of the branch might interfere with that instruction. */ || (! mips_opts.mips16 && ISA_HAS_COPROC_DELAYS (mips_opts.isa) && (prev_pinfo /* Itbl support may require additional care here. */ & (INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY | INSN_WRITE_COND_CODE))) || (! (hilo_interlocks || (mips_tune == CPU_R3900 && (pinfo & INSN_MULT))) && (prev_pinfo & (INSN_READ_LO | INSN_READ_HI))) || (! mips_opts.mips16 && ! gpr_interlocks && (prev_pinfo & INSN_LOAD_MEMORY_DELAY)) || (! mips_opts.mips16 && mips_opts.isa == ISA_MIPS1 /* Itbl support may require additional care here. */ && (prev_pinfo & INSN_COPROC_MEMORY_DELAY)) /* We can not swap with a branch instruction. */ || (prev_pinfo & (INSN_UNCOND_BRANCH_DELAY | INSN_COND_BRANCH_DELAY | INSN_COND_BRANCH_LIKELY)) /* We do not swap with a trap instruction, since it complicates trap handlers to have the trap instruction be in a delay slot. */ || (prev_pinfo & INSN_TRAP) /* If the branch reads a register that the previous instruction sets, we can not swap. */ || (! mips_opts.mips16 && (prev_pinfo & INSN_WRITE_GPR_T) && insn_uses_reg (ip, ((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT), MIPS_GR_REG)) || (! mips_opts.mips16 && (prev_pinfo & INSN_WRITE_GPR_D) && insn_uses_reg (ip, ((prev_insn.insn_opcode >> OP_SH_RD) & OP_MASK_RD), MIPS_GR_REG)) || (mips_opts.mips16 && (((prev_pinfo & MIPS16_INSN_WRITE_X) && insn_uses_reg (ip, ((prev_insn.insn_opcode >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX), MIPS16_REG)) || ((prev_pinfo & MIPS16_INSN_WRITE_Y) && insn_uses_reg (ip, ((prev_insn.insn_opcode >> MIPS16OP_SH_RY) & MIPS16OP_MASK_RY), MIPS16_REG)) || ((prev_pinfo & MIPS16_INSN_WRITE_Z) && insn_uses_reg (ip, ((prev_insn.insn_opcode >> MIPS16OP_SH_RZ) & MIPS16OP_MASK_RZ), MIPS16_REG)) || ((prev_pinfo & MIPS16_INSN_WRITE_T) && insn_uses_reg (ip, TREG, MIPS_GR_REG)) || ((prev_pinfo & MIPS16_INSN_WRITE_31) && insn_uses_reg (ip, RA, MIPS_GR_REG)) || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y) && insn_uses_reg (ip, MIPS16OP_EXTRACT_REG32R (prev_insn. insn_opcode), MIPS_GR_REG)))) /* If the branch writes a register that the previous instruction sets, we can not swap (we know that branches write only to RD or to $31). */ || (! mips_opts.mips16 && (prev_pinfo & INSN_WRITE_GPR_T) && (((pinfo & INSN_WRITE_GPR_D) && (((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT) == ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD))) || ((pinfo & INSN_WRITE_GPR_31) && (((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT) == 31)))) || (! mips_opts.mips16 && (prev_pinfo & INSN_WRITE_GPR_D) && (((pinfo & INSN_WRITE_GPR_D) && (((prev_insn.insn_opcode >> OP_SH_RD) & OP_MASK_RD) == ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD))) || ((pinfo & INSN_WRITE_GPR_31) && (((prev_insn.insn_opcode >> OP_SH_RD) & OP_MASK_RD) == 31)))) || (mips_opts.mips16 && (pinfo & MIPS16_INSN_WRITE_31) && ((prev_pinfo & MIPS16_INSN_WRITE_31) || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y) && (MIPS16OP_EXTRACT_REG32R (prev_insn.insn_opcode) == RA)))) /* If the branch writes a register that the previous instruction reads, we can not swap (we know that branches only write to RD or to $31). */ || (! mips_opts.mips16 && (pinfo & INSN_WRITE_GPR_D) && insn_uses_reg (&prev_insn, ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD), MIPS_GR_REG)) || (! mips_opts.mips16 && (pinfo & INSN_WRITE_GPR_31) && insn_uses_reg (&prev_insn, 31, MIPS_GR_REG)) || (mips_opts.mips16 && (pinfo & MIPS16_INSN_WRITE_31) && insn_uses_reg (&prev_insn, RA, MIPS_GR_REG)) /* If we are generating embedded PIC code, the branch might be expanded into a sequence which uses $at, so we can't swap with an instruction which reads it. */ || (mips_pic == EMBEDDED_PIC && insn_uses_reg (&prev_insn, AT, MIPS_GR_REG)) /* If the previous previous instruction has a load delay, and sets a register that the branch reads, we can not swap. */ || (! mips_opts.mips16 && ISA_HAS_COPROC_DELAYS (mips_opts.isa) /* Itbl support may require additional care here. */ && ((prev_prev_insn.insn_mo->pinfo & INSN_LOAD_COPROC_DELAY) || (! gpr_interlocks && (prev_prev_insn.insn_mo->pinfo & INSN_LOAD_MEMORY_DELAY))) && insn_uses_reg (ip, ((prev_prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT), MIPS_GR_REG)) /* If one instruction sets a condition code and the other one uses a condition code, we can not swap. */ || ((pinfo & INSN_READ_COND_CODE) && (prev_pinfo & INSN_WRITE_COND_CODE)) || ((pinfo & INSN_WRITE_COND_CODE) && (prev_pinfo & INSN_READ_COND_CODE)) /* If the previous instruction uses the PC, we can not swap. */ || (mips_opts.mips16 && (prev_pinfo & MIPS16_INSN_READ_PC)) /* If the previous instruction was extended, we can not swap. */ || (mips_opts.mips16 && prev_insn_extended) /* If the previous instruction had a fixup in mips16 mode, we can not swap. This normally means that the previous instruction was a 4 byte branch anyhow. */ || (mips_opts.mips16 && prev_insn_fixp) /* If the previous instruction is a sync, sync.l, or sync.p, we can not swap. */ || (prev_pinfo & INSN_SYNC)) { /* We could do even better for unconditional branches to portions of this object file; we could pick up the instruction at the destination, put it in the delay slot, and bump the destination address. */ emit_nop (); /* Update the previous insn information. */ prev_prev_insn = *ip; prev_insn.insn_mo = &dummy_opcode; } else { /* It looks like we can actually do the swap. */ if (! mips_opts.mips16) { char *prev_f; char temp[4]; prev_f = prev_insn_frag->fr_literal + prev_insn_where; memcpy (temp, prev_f, 4); memcpy (prev_f, f, 4); memcpy (f, temp, 4); if (prev_insn_fixp) { prev_insn_fixp->fx_frag = frag_now; prev_insn_fixp->fx_where = f - frag_now->fr_literal; } if (fixp) { fixp->fx_frag = prev_insn_frag; fixp->fx_where = prev_insn_where; } } else { char *prev_f; char temp[2]; assert (prev_insn_fixp == NULL); prev_f = prev_insn_frag->fr_literal + prev_insn_where; memcpy (temp, prev_f, 2); memcpy (prev_f, f, 2); if (reloc_type != BFD_RELOC_MIPS16_JMP) { assert (reloc_type == BFD_RELOC_UNUSED); memcpy (f, temp, 2); } else { memcpy (f, f + 2, 2); memcpy (f + 2, temp, 2); } if (fixp) { fixp->fx_frag = prev_insn_frag; fixp->fx_where = prev_insn_where; } } /* Update the previous insn information; leave prev_insn unchanged. */ prev_prev_insn = *ip; } prev_insn_is_delay_slot = 1; /* If that was an unconditional branch, forget the previous insn information. */ if (pinfo & INSN_UNCOND_BRANCH_DELAY) { prev_prev_insn.insn_mo = &dummy_opcode; prev_insn.insn_mo = &dummy_opcode; } prev_insn_fixp = NULL; prev_insn_reloc_type = BFD_RELOC_UNUSED; prev_insn_extended = 0; } else if (pinfo & INSN_COND_BRANCH_LIKELY) { /* We don't yet optimize a branch likely. What we should do is look at the target, copy the instruction found there into the delay slot, and increment the branch to jump to the next instruction. */ emit_nop (); /* Update the previous insn information. */ prev_prev_insn = *ip; prev_insn.insn_mo = &dummy_opcode; prev_insn_fixp = NULL; prev_insn_reloc_type = BFD_RELOC_UNUSED; prev_insn_extended = 0; } else { /* Update the previous insn information. */ if (nops > 0) prev_prev_insn.insn_mo = &dummy_opcode; else prev_prev_insn = prev_insn; prev_insn = *ip; /* Any time we see a branch, we always fill the delay slot immediately; since this insn is not a branch, we know it is not in a delay slot. */ prev_insn_is_delay_slot = 0; prev_insn_fixp = fixp; prev_insn_reloc_type = reloc_type; if (mips_opts.mips16) prev_insn_extended = (ip->use_extend || reloc_type > BFD_RELOC_UNUSED); } prev_prev_insn_unreordered = prev_insn_unreordered; prev_insn_unreordered = 0; prev_insn_frag = frag_now; prev_insn_where = f - frag_now->fr_literal; prev_insn_valid = 1; } else if (place == NULL) { /* We need to record a bit of information even when we are not reordering, in order to determine the base address for mips16 PC relative relocs. */ prev_prev_insn = prev_insn; prev_insn = *ip; prev_insn_reloc_type = reloc_type; prev_prev_insn_unreordered = prev_insn_unreordered; prev_insn_unreordered = 1; } /* We just output an insn, so the next one doesn't have a label. */ mips_clear_insn_labels (); /* We must ensure that a fixup associated with an unmatched %hi reloc does not become a variant frag. Otherwise, the rearrangement of %hi relocs in frob_file may confuse tc_gen_reloc. */ if (unmatched_hi) { frag_wane (frag_now); frag_new (0); } } /* This function forgets that there was any previous instruction or label. If PRESERVE is non-zero, it remembers enough information to know whether nops are needed before a noreorder section. */ static void mips_no_prev_insn (preserve) int preserve; { if (! preserve) { prev_insn.insn_mo = &dummy_opcode; prev_prev_insn.insn_mo = &dummy_opcode; prev_nop_frag = NULL; prev_nop_frag_holds = 0; prev_nop_frag_required = 0; prev_nop_frag_since = 0; } prev_insn_valid = 0; prev_insn_is_delay_slot = 0; prev_insn_unreordered = 0; prev_insn_extended = 0; prev_insn_reloc_type = BFD_RELOC_UNUSED; prev_prev_insn_unreordered = 0; mips_clear_insn_labels (); } /* This function must be called whenever we turn on noreorder or emit something other than instructions. It inserts any NOPS which might be needed by the previous instruction, and clears the information kept for the previous instructions. The INSNS parameter is true if instructions are to follow. */ static void mips_emit_delays (insns) boolean insns; { if (! mips_opts.noreorder) { int nops; nops = 0; if ((! mips_opts.mips16 && ISA_HAS_COPROC_DELAYS (mips_opts.isa) && (! cop_interlocks && (prev_insn.insn_mo->pinfo & (INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY | INSN_WRITE_COND_CODE)))) || (! hilo_interlocks && (prev_insn.insn_mo->pinfo & (INSN_READ_LO | INSN_READ_HI))) || (! mips_opts.mips16 && ! gpr_interlocks && (prev_insn.insn_mo->pinfo & INSN_LOAD_MEMORY_DELAY)) || (! mips_opts.mips16 && mips_opts.isa == ISA_MIPS1 && (prev_insn.insn_mo->pinfo & INSN_COPROC_MEMORY_DELAY))) { /* Itbl support may require additional care here. */ ++nops; if ((! mips_opts.mips16 && ISA_HAS_COPROC_DELAYS (mips_opts.isa) && (! cop_interlocks && prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)) || (! hilo_interlocks && ((prev_insn.insn_mo->pinfo & INSN_READ_HI) || (prev_insn.insn_mo->pinfo & INSN_READ_LO)))) ++nops; if (prev_insn_unreordered) nops = 0; } else if ((! mips_opts.mips16 && ISA_HAS_COPROC_DELAYS (mips_opts.isa) && (! cop_interlocks && prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)) || (! hilo_interlocks && ((prev_prev_insn.insn_mo->pinfo & INSN_READ_HI) || (prev_prev_insn.insn_mo->pinfo & INSN_READ_LO)))) { /* Itbl support may require additional care here. */ if (! prev_prev_insn_unreordered) ++nops; } if (nops > 0) { struct insn_label_list *l; if (insns) { /* Record the frag which holds the nop instructions, so that we can remove them if we don't need them. */ frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4); prev_nop_frag = frag_now; prev_nop_frag_holds = nops; prev_nop_frag_required = 0; prev_nop_frag_since = 0; } for (; nops > 0; --nops) emit_nop (); if (insns) { /* Move on to a new frag, so that it is safe to simply decrease the size of prev_nop_frag. */ frag_wane (frag_now); frag_new (0); } for (l = insn_labels; l != NULL; l = l->next) { valueT val; assert (S_GET_SEGMENT (l->label) == now_seg); symbol_set_frag (l->label, frag_now); val = (valueT) frag_now_fix (); /* mips16 text labels are stored as odd. */ if (mips_opts.mips16) val += 1; S_SET_VALUE (l->label, val); } } } /* Mark instruction labels in mips16 mode. */ if (mips_opts.mips16 && insns) mips16_mark_labels (); mips_no_prev_insn (insns); } /* Build an instruction created by a macro expansion. This is passed a pointer to the count of instructions created so far, an expression, the name of the instruction to build, an operand format string, and corresponding arguments. */ #ifdef USE_STDARG static void macro_build (char *place, int *counter, expressionS * ep, const char *name, const char *fmt, ...) #else static void macro_build (place, counter, ep, name, fmt, va_alist) char *place; int *counter; expressionS *ep; const char *name; const char *fmt; va_dcl #endif { struct mips_cl_insn insn; bfd_reloc_code_real_type r; va_list args; #ifdef USE_STDARG va_start (args, fmt); #else va_start (args); #endif /* * If the macro is about to expand into a second instruction, * print a warning if needed. We need to pass ip as a parameter * to generate a better warning message here... */ if (mips_opts.warn_about_macros && place == NULL && *counter == 1) as_warn (_("Macro instruction expanded into multiple instructions")); if (place == NULL) *counter += 1; /* bump instruction counter */ if (mips_opts.mips16) { mips16_macro_build (place, counter, ep, name, fmt, args); va_end (args); return; } r = BFD_RELOC_UNUSED; insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name); assert (insn.insn_mo); assert (strcmp (name, insn.insn_mo->name) == 0); /* Search until we get a match for NAME. */ while (1) { if (strcmp (fmt, insn.insn_mo->args) == 0 && insn.insn_mo->pinfo != INSN_MACRO && OPCODE_IS_MEMBER (insn.insn_mo, mips_opts.isa, mips_arch, HAVE_32BIT_GPRS) && (mips_arch != CPU_R4650 || (insn.insn_mo->pinfo & FP_D) == 0)) break; ++insn.insn_mo; assert (insn.insn_mo->name); assert (strcmp (name, insn.insn_mo->name) == 0); } insn.insn_opcode = insn.insn_mo->match; for (;;) { switch (*fmt++) { case '\0': break; case ',': case '(': case ')': continue; case 't': case 'w': case 'E': insn.insn_opcode |= va_arg (args, int) << 16; continue; case 'c': case 'T': case 'W': insn.insn_opcode |= va_arg (args, int) << 16; continue; case 'd': case 'G': insn.insn_opcode |= va_arg (args, int) << 11; continue; case 'U': { int tmp = va_arg (args, int); insn.insn_opcode |= tmp << 16; insn.insn_opcode |= tmp << 11; continue; } case 'V': case 'S': insn.insn_opcode |= va_arg (args, int) << 11; continue; case 'z': continue; case '<': insn.insn_opcode |= va_arg (args, int) << 6; continue; case 'D': insn.insn_opcode |= va_arg (args, int) << 6; continue; case 'B': insn.insn_opcode |= va_arg (args, int) << 6; continue; case 'J': insn.insn_opcode |= va_arg (args, int) << 6; continue; case 'q': insn.insn_opcode |= va_arg (args, int) << 6; continue; case 'b': case 's': case 'r': case 'v': insn.insn_opcode |= va_arg (args, int) << 21; continue; case 'i': case 'j': case 'o': r = (bfd_reloc_code_real_type) va_arg (args, int); assert (r == BFD_RELOC_MIPS_GPREL || r == BFD_RELOC_MIPS_LITERAL || r == BFD_RELOC_LO16 || r == BFD_RELOC_MIPS_GOT16 || r == BFD_RELOC_MIPS_CALL16 || r == BFD_RELOC_MIPS_GOT_LO16 || r == BFD_RELOC_MIPS_CALL_LO16 || (ep->X_op == O_subtract && r == BFD_RELOC_PCREL_LO16)); continue; case 'u': r = (bfd_reloc_code_real_type) va_arg (args, int); assert (ep != NULL && (ep->X_op == O_constant || (ep->X_op == O_symbol && (r == BFD_RELOC_HI16_S || r == BFD_RELOC_HI16 || r == BFD_RELOC_MIPS_GOT_HI16 || r == BFD_RELOC_MIPS_CALL_HI16)) || (ep->X_op == O_subtract && r == BFD_RELOC_PCREL_HI16_S))); if (ep->X_op == O_constant) { insn.insn_opcode |= (ep->X_add_number >> 16) & 0xffff; ep = NULL; r = BFD_RELOC_UNUSED; } continue; case 'p': assert (ep != NULL); /* * This allows macro() to pass an immediate expression for * creating short branches without creating a symbol. * Note that the expression still might come from the assembly * input, in which case the value is not checked for range nor * is a relocation entry generated (yuck). */ if (ep->X_op == O_constant) { insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff; ep = NULL; } else r = BFD_RELOC_16_PCREL_S2; continue; case 'a': assert (ep != NULL); r = BFD_RELOC_MIPS_JMP; continue; case 'C': insn.insn_opcode |= va_arg (args, unsigned long); continue; default: internalError (); } break; } va_end (args); assert (r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL); append_insn (place, &insn, ep, r, false); } static void mips16_macro_build (place, counter, ep, name, fmt, args) char *place; int *counter ATTRIBUTE_UNUSED; expressionS *ep; const char *name; const char *fmt; va_list args; { struct mips_cl_insn insn; bfd_reloc_code_real_type r; r = BFD_RELOC_UNUSED; insn.insn_mo = (struct mips_opcode *) hash_find (mips16_op_hash, name); assert (insn.insn_mo); assert (strcmp (name, insn.insn_mo->name) == 0); while (strcmp (fmt, insn.insn_mo->args) != 0 || insn.insn_mo->pinfo == INSN_MACRO) { ++insn.insn_mo; assert (insn.insn_mo->name); assert (strcmp (name, insn.insn_mo->name) == 0); } insn.insn_opcode = insn.insn_mo->match; insn.use_extend = false; for (;;) { int c; c = *fmt++; switch (c) { case '\0': break; case ',': case '(': case ')': continue; case 'y': case 'w': insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RY; continue; case 'x': case 'v': insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RX; continue; case 'z': insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RZ; continue; case 'Z': insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_MOVE32Z; continue; case '0': case 'S': case 'P': case 'R': continue; case 'X': insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_REGR32; continue; case 'Y': { int regno; regno = va_arg (args, int); regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3); insn.insn_opcode |= regno << MIPS16OP_SH_REG32R; } continue; case '<': case '>': case '4': case '5': case 'H': case 'W': case 'D': case 'j': case '8': case 'V': case 'C': case 'U': case 'k': case 'K': case 'p': case 'q': { assert (ep != NULL); if (ep->X_op != O_constant) r = BFD_RELOC_UNUSED + c; else { mips16_immed ((char *) NULL, 0, c, ep->X_add_number, false, false, false, &insn.insn_opcode, &insn.use_extend, &insn.extend); ep = NULL; r = BFD_RELOC_UNUSED; } } continue; case '6': insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_IMM6; continue; } break; } assert (r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL); append_insn (place, &insn, ep, r, false); } /* * Generate a "lui" instruction. */ static void macro_build_lui (place, counter, ep, regnum) char *place; int *counter; expressionS *ep; int regnum; { expressionS high_expr; struct mips_cl_insn insn; bfd_reloc_code_real_type r; CONST char *name = "lui"; CONST char *fmt = "t,u"; assert (! mips_opts.mips16); if (place == NULL) high_expr = *ep; else { high_expr.X_op = O_constant; high_expr.X_add_number = ep->X_add_number; } if (high_expr.X_op == O_constant) { /* we can compute the instruction now without a relocation entry */ if (high_expr.X_add_number & 0x8000) high_expr.X_add_number += 0x10000; high_expr.X_add_number = ((unsigned long) high_expr.X_add_number >> 16) & 0xffff; r = BFD_RELOC_UNUSED; } else { assert (ep->X_op == O_symbol); /* _gp_disp is a special case, used from s_cpload. */ assert (mips_pic == NO_PIC || strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0); r = BFD_RELOC_HI16_S; } /* * If the macro is about to expand into a second instruction, * print a warning if needed. We need to pass ip as a parameter * to generate a better warning message here... */ if (mips_opts.warn_about_macros && place == NULL && *counter == 1) as_warn (_("Macro instruction expanded into multiple instructions")); if (place == NULL) *counter += 1; /* bump instruction counter */ insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name); assert (insn.insn_mo); assert (strcmp (name, insn.insn_mo->name) == 0); assert (strcmp (fmt, insn.insn_mo->args) == 0); insn.insn_opcode = insn.insn_mo->match | (regnum << OP_SH_RT); if (r == BFD_RELOC_UNUSED) { insn.insn_opcode |= high_expr.X_add_number; append_insn (place, &insn, NULL, r, false); } else append_insn (place, &insn, &high_expr, r, false); } /* set_at() * Generates code to set the $at register to true (one) * if reg is less than the immediate expression. */ static void set_at (counter, reg, unsignedp) int *counter; int reg; int unsignedp; { if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000) macro_build ((char *) NULL, counter, &imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j", AT, reg, (int) BFD_RELOC_LO16); else { load_register (counter, AT, &imm_expr, 0); macro_build ((char *) NULL, counter, NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT); } } /* Warn if an expression is not a constant. */ static void check_absolute_expr (ip, ex) struct mips_cl_insn *ip; expressionS *ex; { if (ex->X_op == O_big) as_bad (_("unsupported large constant")); else if (ex->X_op != O_constant) as_bad (_("Instruction %s requires absolute expression"), ip->insn_mo->name); } /* Count the leading zeroes by performing a binary chop. This is a bulky bit of source, but performance is a LOT better for the majority of values than a simple loop to count the bits: for (lcnt = 0; (lcnt < 32); lcnt++) if ((v) & (1 << (31 - lcnt))) break; However it is not code size friendly, and the gain will drop a bit on certain cached systems. */ #define COUNT_TOP_ZEROES(v) \ (((v) & ~0xffff) == 0 \ ? ((v) & ~0xff) == 0 \ ? ((v) & ~0xf) == 0 \ ? ((v) & ~0x3) == 0 \ ? ((v) & ~0x1) == 0 \ ? !(v) \ ? 32 \ : 31 \ : 30 \ : ((v) & ~0x7) == 0 \ ? 29 \ : 28 \ : ((v) & ~0x3f) == 0 \ ? ((v) & ~0x1f) == 0 \ ? 27 \ : 26 \ : ((v) & ~0x7f) == 0 \ ? 25 \ : 24 \ : ((v) & ~0xfff) == 0 \ ? ((v) & ~0x3ff) == 0 \ ? ((v) & ~0x1ff) == 0 \ ? 23 \ : 22 \ : ((v) & ~0x7ff) == 0 \ ? 21 \ : 20 \ : ((v) & ~0x3fff) == 0 \ ? ((v) & ~0x1fff) == 0 \ ? 19 \ : 18 \ : ((v) & ~0x7fff) == 0 \ ? 17 \ : 16 \ : ((v) & ~0xffffff) == 0 \ ? ((v) & ~0xfffff) == 0 \ ? ((v) & ~0x3ffff) == 0 \ ? ((v) & ~0x1ffff) == 0 \ ? 15 \ : 14 \ : ((v) & ~0x7ffff) == 0 \ ? 13 \ : 12 \ : ((v) & ~0x3fffff) == 0 \ ? ((v) & ~0x1fffff) == 0 \ ? 11 \ : 10 \ : ((v) & ~0x7fffff) == 0 \ ? 9 \ : 8 \ : ((v) & ~0xfffffff) == 0 \ ? ((v) & ~0x3ffffff) == 0 \ ? ((v) & ~0x1ffffff) == 0 \ ? 7 \ : 6 \ : ((v) & ~0x7ffffff) == 0 \ ? 5 \ : 4 \ : ((v) & ~0x3fffffff) == 0 \ ? ((v) & ~0x1fffffff) == 0 \ ? 3 \ : 2 \ : ((v) & ~0x7fffffff) == 0 \ ? 1 \ : 0) /* load_register() * This routine generates the least number of instructions neccessary to load * an absolute expression value into a register. */ static void load_register (counter, reg, ep, dbl) int *counter; int reg; expressionS *ep; int dbl; { int freg; expressionS hi32, lo32; if (ep->X_op != O_big) { assert (ep->X_op == O_constant); if (ep->X_add_number < 0x8000 && (ep->X_add_number >= 0 || (ep->X_add_number >= -0x8000 && (! dbl || ! ep->X_unsigned || sizeof (ep->X_add_number) > 4)))) { /* We can handle 16 bit signed values with an addiu to $zero. No need to ever use daddiu here, since $zero and the result are always correct in 32 bit mode. */ macro_build ((char *) NULL, counter, ep, "addiu", "t,r,j", reg, 0, (int) BFD_RELOC_LO16); return; } else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000) { /* We can handle 16 bit unsigned values with an ori to $zero. */ macro_build ((char *) NULL, counter, ep, "ori", "t,r,i", reg, 0, (int) BFD_RELOC_LO16); return; } else if ((((ep->X_add_number &~ (offsetT) 0x7fffffff) == 0 || ((ep->X_add_number &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff)) && (! dbl || ! ep->X_unsigned || sizeof (ep->X_add_number) > 4 || (ep->X_add_number & 0x80000000) == 0)) || ((HAVE_32BIT_GPRS || ! dbl) && (ep->X_add_number &~ (offsetT) 0xffffffff) == 0) || (HAVE_32BIT_GPRS && ! dbl && ((ep->X_add_number &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))) { /* 32 bit values require an lui. */ macro_build ((char *) NULL, counter, ep, "lui", "t,u", reg, (int) BFD_RELOC_HI16); if ((ep->X_add_number & 0xffff) != 0) macro_build ((char *) NULL, counter, ep, "ori", "t,r,i", reg, reg, (int) BFD_RELOC_LO16); return; } } /* The value is larger than 32 bits. */ if (HAVE_32BIT_GPRS) { as_bad (_("Number larger than 32 bits")); macro_build ((char *) NULL, counter, ep, "addiu", "t,r,j", reg, 0, (int) BFD_RELOC_LO16); return; } if (ep->X_op != O_big) { hi32 = *ep; hi32.X_add_number = (valueT) hi32.X_add_number >> 16; hi32.X_add_number = (valueT) hi32.X_add_number >> 16; hi32.X_add_number &= 0xffffffff; lo32 = *ep; lo32.X_add_number &= 0xffffffff; } else { assert (ep->X_add_number > 2); if (ep->X_add_number == 3) generic_bignum[3] = 0; else if (ep->X_add_number > 4) as_bad (_("Number larger than 64 bits")); lo32.X_op = O_constant; lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16); hi32.X_op = O_constant; hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16); } if (hi32.X_add_number == 0) freg = 0; else { int shift, bit; unsigned long hi, lo; if (hi32.X_add_number == 0xffffffff) { if ((lo32.X_add_number & 0xffff8000) == 0xffff8000) { macro_build ((char *) NULL, counter, &lo32, "addiu", "t,r,j", reg, 0, (int) BFD_RELOC_LO16); return; } if (lo32.X_add_number & 0x80000000) { macro_build ((char *) NULL, counter, &lo32, "lui", "t,u", reg, (int) BFD_RELOC_HI16); if (lo32.X_add_number & 0xffff) macro_build ((char *) NULL, counter, &lo32, "ori", "t,r,i", reg, reg, (int) BFD_RELOC_LO16); return; } } /* Check for 16bit shifted constant. We know that hi32 is non-zero, so start the mask on the first bit of the hi32 value. */ shift = 17; do { unsigned long himask, lomask; if (shift < 32) { himask = 0xffff >> (32 - shift); lomask = (0xffff << shift) & 0xffffffff; } else { himask = 0xffff << (shift - 32); lomask = 0; } if ((hi32.X_add_number & ~(offsetT) himask) == 0 && (lo32.X_add_number & ~(offsetT) lomask) == 0) { expressionS tmp; tmp.X_op = O_constant; if (shift < 32) tmp.X_add_number = ((hi32.X_add_number << (32 - shift)) | (lo32.X_add_number >> shift)); else tmp.X_add_number = hi32.X_add_number >> (shift - 32); macro_build ((char *) NULL, counter, &tmp, "ori", "t,r,i", reg, 0, (int) BFD_RELOC_LO16); macro_build ((char *) NULL, counter, NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<", reg, reg, (shift >= 32) ? shift - 32 : shift); return; } shift++; } while (shift <= (64 - 16)); /* Find the bit number of the lowest one bit, and store the shifted value in hi/lo. */ hi = (unsigned long) (hi32.X_add_number & 0xffffffff); lo = (unsigned long) (lo32.X_add_number & 0xffffffff); if (lo != 0) { bit = 0; while ((lo & 1) == 0) { lo >>= 1; ++bit; } lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit); hi >>= bit; } else { bit = 32; while ((hi & 1) == 0) { hi >>= 1; ++bit; } lo = hi; hi = 0; } /* Optimize if the shifted value is a (power of 2) - 1. */ if ((hi == 0 && ((lo + 1) & lo) == 0) || (lo == 0xffffffff && ((hi + 1) & hi) == 0)) { shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number); if (shift != 0) { expressionS tmp; /* This instruction will set the register to be all ones. */ tmp.X_op = O_constant; tmp.X_add_number = (offsetT) -1; macro_build ((char *) NULL, counter, &tmp, "addiu", "t,r,j", reg, 0, (int) BFD_RELOC_LO16); if (bit != 0) { bit += shift; macro_build ((char *) NULL, counter, NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<", reg, reg, (bit >= 32) ? bit - 32 : bit); } macro_build ((char *) NULL, counter, NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<", reg, reg, (shift >= 32) ? shift - 32 : shift); return; } } /* Sign extend hi32 before calling load_register, because we can generally get better code when we load a sign extended value. */ if ((hi32.X_add_number & 0x80000000) != 0) hi32.X_add_number |= ~(offsetT) 0xffffffff; load_register (counter, reg, &hi32, 0); freg = reg; } if ((lo32.X_add_number & 0xffff0000) == 0) { if (freg != 0) { macro_build ((char *) NULL, counter, NULL, "dsll32", "d,w,<", reg, freg, 0); freg = reg; } } else { expressionS mid16; if ((freg == 0) && (lo32.X_add_number == 0xffffffff)) { macro_build ((char *) NULL, counter, &lo32, "lui", "t,u", reg, (int) BFD_RELOC_HI16); macro_build ((char *) NULL, counter, NULL, "dsrl32", "d,w,<", reg, reg, 0); return; } if (freg != 0) { macro_build ((char *) NULL, counter, NULL, "dsll", "d,w,<", reg, freg, 16); freg = reg; } mid16 = lo32; mid16.X_add_number >>= 16; macro_build ((char *) NULL, counter, &mid16, "ori", "t,r,i", reg, freg, (int) BFD_RELOC_LO16); macro_build ((char *) NULL, counter, NULL, "dsll", "d,w,<", reg, reg, 16); freg = reg; } if ((lo32.X_add_number & 0xffff) != 0) macro_build ((char *) NULL, counter, &lo32, "ori", "t,r,i", reg, freg, (int) BFD_RELOC_LO16); } /* Load an address into a register. */ static void load_address (counter, reg, ep) int *counter; int reg; expressionS *ep; { char *p; if (ep->X_op != O_constant && ep->X_op != O_symbol) { as_bad (_("expression too complex")); ep->X_op = O_constant; } if (ep->X_op == O_constant) { load_register (counter, reg, ep, 0); return; } if (mips_pic == NO_PIC) { /* If this is a reference to a GP relative symbol, we want addiu $reg,$gp, (BFD_RELOC_MIPS_GPREL) Otherwise we want lui $reg, (BFD_RELOC_HI16_S) addiu $reg,$reg, (BFD_RELOC_LO16) If we have an addend, we always use the latter form. */ if ((valueT) ep->X_add_number >= MAX_GPREL_OFFSET || nopic_need_relax (ep->X_add_symbol, 1)) p = NULL; else { frag_grow (20); macro_build ((char *) NULL, counter, ep, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", reg, GP, (int) BFD_RELOC_MIPS_GPREL); p = frag_var (rs_machine_dependent, 8, 0, RELAX_ENCODE (4, 8, 0, 4, 0, mips_opts.warn_about_macros), ep->X_add_symbol, (offsetT) 0, (char *) NULL); } macro_build_lui (p, counter, ep, reg); if (p != NULL) p += 4; macro_build (p, counter, ep, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", reg, reg, (int) BFD_RELOC_LO16); } else if (mips_pic == SVR4_PIC && ! mips_big_got) { expressionS ex; /* If this is a reference to an external symbol, we want lw $reg,($gp) (BFD_RELOC_MIPS_GOT16) Otherwise we want lw $reg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $reg,$reg, (BFD_RELOC_LO16) If there is a constant, it must be added in after. */ ex.X_add_number = ep->X_add_number; ep->X_add_number = 0; frag_grow (20); macro_build ((char *) NULL, counter, ep, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", reg, (int) BFD_RELOC_MIPS_GOT16, GP); macro_build ((char *) NULL, counter, (expressionS *) NULL, "nop", ""); p = frag_var (rs_machine_dependent, 4, 0, RELAX_ENCODE (0, 4, -8, 0, 0, mips_opts.warn_about_macros), ep->X_add_symbol, (offsetT) 0, (char *) NULL); macro_build (p, counter, ep, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", reg, reg, (int) BFD_RELOC_LO16); if (ex.X_add_number != 0) { if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000) as_bad (_("PIC code offset overflow (max 16 signed bits)")); ex.X_op = O_constant; macro_build ((char *) NULL, counter, &ex, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", reg, reg, (int) BFD_RELOC_LO16); } } else if (mips_pic == SVR4_PIC) { expressionS ex; int off; /* This is the large GOT case. If this is a reference to an external symbol, we want lui $reg, (BFD_RELOC_MIPS_GOT_HI16) addu $reg,$reg,$gp lw $reg,($reg) (BFD_RELOC_MIPS_GOT_LO16) Otherwise, for a reference to a local symbol, we want lw $reg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $reg,$reg, (BFD_RELOC_LO16) If there is a constant, it must be added in after. */ ex.X_add_number = ep->X_add_number; ep->X_add_number = 0; if (reg_needs_delay (GP)) off = 4; else off = 0; frag_grow (32); macro_build ((char *) NULL, counter, ep, "lui", "t,u", reg, (int) BFD_RELOC_MIPS_GOT_HI16); macro_build ((char *) NULL, counter, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", reg, reg, GP); macro_build ((char *) NULL, counter, ep, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", reg, (int) BFD_RELOC_MIPS_GOT_LO16, reg); p = frag_var (rs_machine_dependent, 12 + off, 0, RELAX_ENCODE (12, 12 + off, off, 8 + off, 0, mips_opts.warn_about_macros), ep->X_add_symbol, (offsetT) 0, (char *) NULL); if (off > 0) { /* We need a nop before loading from $gp. This special check is required because the lui which starts the main instruction stream does not refer to $gp, and so will not insert the nop which may be required. */ macro_build (p, counter, (expressionS *) NULL, "nop", ""); p += 4; } macro_build (p, counter, ep, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", reg, (int) BFD_RELOC_MIPS_GOT16, GP); p += 4; macro_build (p, counter, (expressionS *) NULL, "nop", ""); p += 4; macro_build (p, counter, ep, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", reg, reg, (int) BFD_RELOC_LO16); if (ex.X_add_number != 0) { if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000) as_bad (_("PIC code offset overflow (max 16 signed bits)")); ex.X_op = O_constant; macro_build ((char *) NULL, counter, &ex, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", reg, reg, (int) BFD_RELOC_LO16); } } else if (mips_pic == EMBEDDED_PIC) { /* We always do addiu $reg,$gp, (BFD_RELOC_MIPS_GPREL) */ macro_build ((char *) NULL, counter, ep, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", reg, GP, (int) BFD_RELOC_MIPS_GPREL); } else abort (); } /* * Build macros * This routine implements the seemingly endless macro or synthesized * instructions and addressing modes in the mips assembly language. Many * of these macros are simple and are similar to each other. These could * probably be handled by some kind of table or grammer aproach instead of * this verbose method. Others are not simple macros but are more like * optimizing code generation. * One interesting optimization is when several store macros appear * consecutivly that would load AT with the upper half of the same address. * The ensuing load upper instructions are ommited. This implies some kind * of global optimization. We currently only optimize within a single macro. * For many of the load and store macros if the address is specified as a * constant expression in the first 64k of memory (ie ld $2,0x4000c) we * first load register 'at' with zero and use it as the base register. The * mips assembler simply uses register $zero. Just one tiny optimization * we're missing. */ static void macro (ip) struct mips_cl_insn *ip; { register int treg, sreg, dreg, breg; int tempreg; int mask; int icnt = 0; int used_at = 0; expressionS expr1; const char *s; const char *s2; const char *fmt; int likely = 0; int dbl = 0; int coproc = 0; int lr = 0; int imm = 0; offsetT maxnum; int off; bfd_reloc_code_real_type r; char *p; int hold_mips_optimize; assert (! mips_opts.mips16); treg = (ip->insn_opcode >> 16) & 0x1f; dreg = (ip->insn_opcode >> 11) & 0x1f; sreg = breg = (ip->insn_opcode >> 21) & 0x1f; mask = ip->insn_mo->mask; expr1.X_op = O_constant; expr1.X_op_symbol = NULL; expr1.X_add_symbol = NULL; expr1.X_add_number = 1; switch (mask) { case M_DABS: dbl = 1; case M_ABS: /* bgez $a0,.+12 move v0,$a0 sub v0,$zero,$a0 */ mips_emit_delays (true); ++mips_opts.noreorder; mips_any_noreorder = 1; expr1.X_add_number = 8; macro_build ((char *) NULL, &icnt, &expr1, "bgez", "s,p", sreg); if (dreg == sreg) macro_build ((char *) NULL, &icnt, NULL, "nop", "", 0); else macro_build ((char *) NULL, &icnt, NULL, "move", "d,s", dreg, sreg, 0); macro_build ((char *) NULL, &icnt, NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg); --mips_opts.noreorder; return; case M_ADD_I: s = "addi"; s2 = "add"; goto do_addi; case M_ADDU_I: s = "addiu"; s2 = "addu"; goto do_addi; case M_DADD_I: dbl = 1; s = "daddi"; s2 = "dadd"; goto do_addi; case M_DADDU_I: dbl = 1; s = "daddiu"; s2 = "daddu"; do_addi: if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000) { macro_build ((char *) NULL, &icnt, &imm_expr, s, "t,r,j", treg, sreg, (int) BFD_RELOC_LO16); return; } load_register (&icnt, AT, &imm_expr, dbl); macro_build ((char *) NULL, &icnt, NULL, s2, "d,v,t", treg, sreg, AT); break; case M_AND_I: s = "andi"; s2 = "and"; goto do_bit; case M_OR_I: s = "ori"; s2 = "or"; goto do_bit; case M_NOR_I: s = ""; s2 = "nor"; goto do_bit; case M_XOR_I: s = "xori"; s2 = "xor"; do_bit: if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= 0 && imm_expr.X_add_number < 0x10000) { if (mask != M_NOR_I) macro_build ((char *) NULL, &icnt, &imm_expr, s, "t,r,i", treg, sreg, (int) BFD_RELOC_LO16); else { macro_build ((char *) NULL, &icnt, &imm_expr, "ori", "t,r,i", treg, sreg, (int) BFD_RELOC_LO16); macro_build ((char *) NULL, &icnt, NULL, "nor", "d,v,t", treg, treg, 0); } return; } load_register (&icnt, AT, &imm_expr, 0); macro_build ((char *) NULL, &icnt, NULL, s2, "d,v,t", treg, sreg, AT); break; case M_BEQ_I: s = "beq"; goto beq_i; case M_BEQL_I: s = "beql"; likely = 1; goto beq_i; case M_BNE_I: s = "bne"; goto beq_i; case M_BNEL_I: s = "bnel"; likely = 1; beq_i: if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, s, "s,t,p", sreg, 0); return; } load_register (&icnt, AT, &imm_expr, 0); macro_build ((char *) NULL, &icnt, &offset_expr, s, "s,t,p", sreg, AT); break; case M_BGEL: likely = 1; case M_BGE: if (treg == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg); return; } if (sreg == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "blezl" : "blez", "s,p", treg); return; } macro_build ((char *) NULL, &icnt, NULL, "slt", "d,v,t", AT, sreg, treg); macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0); break; case M_BGTL_I: likely = 1; case M_BGT_I: /* check for > max integer */ maxnum = 0x7fffffff; if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4) { maxnum <<= 16; maxnum |= 0xffff; maxnum <<= 16; maxnum |= 0xffff; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= maxnum && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4)) { do_false: /* result is always false */ if (! likely) { if (warn_nops) as_warn (_("Branch %s is always false (nop)"), ip->insn_mo->name); macro_build ((char *) NULL, &icnt, NULL, "nop", "", 0); } else { if (warn_nops) as_warn (_("Branch likely %s is always false"), ip->insn_mo->name); macro_build ((char *) NULL, &icnt, &offset_expr, "bnel", "s,t,p", 0, 0); } return; } if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); imm_expr.X_add_number++; /* FALLTHROUGH */ case M_BGE_I: case M_BGEL_I: if (mask == M_BGEL_I) likely = 1; if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg); return; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg); return; } maxnum = 0x7fffffff; if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4) { maxnum <<= 16; maxnum |= 0xffff; maxnum <<= 16; maxnum |= 0xffff; } maxnum = - maxnum - 1; if (imm_expr.X_op == O_constant && imm_expr.X_add_number <= maxnum && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4)) { do_true: /* result is always true */ as_warn (_("Branch %s is always true"), ip->insn_mo->name); macro_build ((char *) NULL, &icnt, &offset_expr, "b", "p"); return; } set_at (&icnt, sreg, 0); macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0); break; case M_BGEUL: likely = 1; case M_BGEU: if (treg == 0) goto do_true; if (sreg == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "beql" : "beq", "s,t,p", 0, treg); return; } macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", AT, sreg, treg); macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0); break; case M_BGTUL_I: likely = 1; case M_BGTU_I: if (sreg == 0 || (HAVE_32BIT_GPRS && imm_expr.X_op == O_constant && imm_expr.X_add_number == 0xffffffff)) goto do_false; if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); imm_expr.X_add_number++; /* FALLTHROUGH */ case M_BGEU_I: case M_BGEUL_I: if (mask == M_BGEUL_I) likely = 1; if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) goto do_true; if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bnel" : "bne", "s,t,p", sreg, 0); return; } set_at (&icnt, sreg, 1); macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0); break; case M_BGTL: likely = 1; case M_BGT: if (treg == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg); return; } if (sreg == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bltzl" : "bltz", "s,p", treg); return; } macro_build ((char *) NULL, &icnt, NULL, "slt", "d,v,t", AT, treg, sreg); macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0); break; case M_BGTUL: likely = 1; case M_BGTU: if (treg == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bnel" : "bne", "s,t,p", sreg, 0); return; } if (sreg == 0) goto do_false; macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", AT, treg, sreg); macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0); break; case M_BLEL: likely = 1; case M_BLE: if (treg == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "blezl" : "blez", "s,p", sreg); return; } if (sreg == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bgezl" : "bgez", "s,p", treg); return; } macro_build ((char *) NULL, &icnt, NULL, "slt", "d,v,t", AT, treg, sreg); macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0); break; case M_BLEL_I: likely = 1; case M_BLE_I: maxnum = 0x7fffffff; if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4) { maxnum <<= 16; maxnum |= 0xffff; maxnum <<= 16; maxnum |= 0xffff; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= maxnum && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4)) goto do_true; if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); imm_expr.X_add_number++; /* FALLTHROUGH */ case M_BLT_I: case M_BLTL_I: if (mask == M_BLTL_I) likely = 1; if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg); return; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "blezl" : "blez", "s,p", sreg); return; } set_at (&icnt, sreg, 0); macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0); break; case M_BLEUL: likely = 1; case M_BLEU: if (treg == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "beql" : "beq", "s,t,p", sreg, 0); return; } if (sreg == 0) goto do_true; macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", AT, treg, sreg); macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0); break; case M_BLEUL_I: likely = 1; case M_BLEU_I: if (sreg == 0 || (HAVE_32BIT_GPRS && imm_expr.X_op == O_constant && imm_expr.X_add_number == 0xffffffff)) goto do_true; if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); imm_expr.X_add_number++; /* FALLTHROUGH */ case M_BLTU_I: case M_BLTUL_I: if (mask == M_BLTUL_I) likely = 1; if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) goto do_false; if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "beql" : "beq", "s,t,p", sreg, 0); return; } set_at (&icnt, sreg, 1); macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0); break; case M_BLTL: likely = 1; case M_BLT: if (treg == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg); return; } if (sreg == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg); return; } macro_build ((char *) NULL, &icnt, NULL, "slt", "d,v,t", AT, sreg, treg); macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0); break; case M_BLTUL: likely = 1; case M_BLTU: if (treg == 0) goto do_false; if (sreg == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bnel" : "bne", "s,t,p", 0, treg); return; } macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", AT, sreg, treg); macro_build ((char *) NULL, &icnt, &offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0); break; case M_DDIV_3: dbl = 1; case M_DIV_3: s = "mflo"; goto do_div3; case M_DREM_3: dbl = 1; case M_REM_3: s = "mfhi"; do_div3: if (treg == 0) { as_warn (_("Divide by zero.")); if (mips_trap) macro_build ((char *) NULL, &icnt, NULL, "teq", "s,t", 0, 0); else macro_build ((char *) NULL, &icnt, NULL, "break", "c", 7); return; } mips_emit_delays (true); ++mips_opts.noreorder; mips_any_noreorder = 1; if (mips_trap) { macro_build ((char *) NULL, &icnt, NULL, "teq", "s,t", treg, 0); macro_build ((char *) NULL, &icnt, NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg); } else { expr1.X_add_number = 8; macro_build ((char *) NULL, &icnt, &expr1, "bne", "s,t,p", treg, 0); macro_build ((char *) NULL, &icnt, NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg); macro_build ((char *) NULL, &icnt, NULL, "break", "c", 7); } expr1.X_add_number = -1; macro_build ((char *) NULL, &icnt, &expr1, dbl ? "daddiu" : "addiu", "t,r,j", AT, 0, (int) BFD_RELOC_LO16); expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16); macro_build ((char *) NULL, &icnt, &expr1, "bne", "s,t,p", treg, AT); if (dbl) { expr1.X_add_number = 1; macro_build ((char *) NULL, &icnt, &expr1, "daddiu", "t,r,j", AT, 0, (int) BFD_RELOC_LO16); macro_build ((char *) NULL, &icnt, NULL, "dsll32", "d,w,<", AT, AT, 31); } else { expr1.X_add_number = 0x80000000; macro_build ((char *) NULL, &icnt, &expr1, "lui", "t,u", AT, (int) BFD_RELOC_HI16); } if (mips_trap) { macro_build ((char *) NULL, &icnt, NULL, "teq", "s,t", sreg, AT); /* We want to close the noreorder block as soon as possible, so that later insns are available for delay slot filling. */ --mips_opts.noreorder; } else { expr1.X_add_number = 8; macro_build ((char *) NULL, &icnt, &expr1, "bne", "s,t,p", sreg, AT); macro_build ((char *) NULL, &icnt, NULL, "nop", "", 0); /* We want to close the noreorder block as soon as possible, so that later insns are available for delay slot filling. */ --mips_opts.noreorder; macro_build ((char *) NULL, &icnt, NULL, "break", "c", 6); } macro_build ((char *) NULL, &icnt, NULL, s, "d", dreg); break; case M_DIV_3I: s = "div"; s2 = "mflo"; goto do_divi; case M_DIVU_3I: s = "divu"; s2 = "mflo"; goto do_divi; case M_REM_3I: s = "div"; s2 = "mfhi"; goto do_divi; case M_REMU_3I: s = "divu"; s2 = "mfhi"; goto do_divi; case M_DDIV_3I: dbl = 1; s = "ddiv"; s2 = "mflo"; goto do_divi; case M_DDIVU_3I: dbl = 1; s = "ddivu"; s2 = "mflo"; goto do_divi; case M_DREM_3I: dbl = 1; s = "ddiv"; s2 = "mfhi"; goto do_divi; case M_DREMU_3I: dbl = 1; s = "ddivu"; s2 = "mfhi"; do_divi: if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) { as_warn (_("Divide by zero.")); if (mips_trap) macro_build ((char *) NULL, &icnt, NULL, "teq", "s,t", 0, 0); else macro_build ((char *) NULL, &icnt, NULL, "break", "c", 7); return; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) { if (strcmp (s2, "mflo") == 0) macro_build ((char *) NULL, &icnt, NULL, "move", "d,s", dreg, sreg); else macro_build ((char *) NULL, &icnt, NULL, "move", "d,s", dreg, 0); return; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u') { if (strcmp (s2, "mflo") == 0) { if (dbl) macro_build ((char *) NULL, &icnt, NULL, "dneg", "d,w", dreg, sreg); else macro_build ((char *) NULL, &icnt, NULL, "neg", "d,w", dreg, sreg); } else macro_build ((char *) NULL, &icnt, NULL, "move", "d,s", dreg, 0); return; } load_register (&icnt, AT, &imm_expr, dbl); macro_build ((char *) NULL, &icnt, NULL, s, "z,s,t", sreg, AT); macro_build ((char *) NULL, &icnt, NULL, s2, "d", dreg); break; case M_DIVU_3: s = "divu"; s2 = "mflo"; goto do_divu3; case M_REMU_3: s = "divu"; s2 = "mfhi"; goto do_divu3; case M_DDIVU_3: s = "ddivu"; s2 = "mflo"; goto do_divu3; case M_DREMU_3: s = "ddivu"; s2 = "mfhi"; do_divu3: mips_emit_delays (true); ++mips_opts.noreorder; mips_any_noreorder = 1; if (mips_trap) { macro_build ((char *) NULL, &icnt, NULL, "teq", "s,t", treg, 0); macro_build ((char *) NULL, &icnt, NULL, s, "z,s,t", sreg, treg); /* We want to close the noreorder block as soon as possible, so that later insns are available for delay slot filling. */ --mips_opts.noreorder; } else { expr1.X_add_number = 8; macro_build ((char *) NULL, &icnt, &expr1, "bne", "s,t,p", treg, 0); macro_build ((char *) NULL, &icnt, NULL, s, "z,s,t", sreg, treg); /* We want to close the noreorder block as soon as possible, so that later insns are available for delay slot filling. */ --mips_opts.noreorder; macro_build ((char *) NULL, &icnt, NULL, "break", "c", 7); } macro_build ((char *) NULL, &icnt, NULL, s2, "d", dreg); return; case M_DLA_AB: dbl = 1; case M_LA_AB: /* Load the address of a symbol into a register. If breg is not zero, we then add a base register to it. */ /* When generating embedded PIC code, we permit expressions of the form la $4,foo-bar where bar is an address in the current section. These are used when getting the addresses of functions. We don't permit X_add_number to be non-zero, because if the symbol is external the relaxing code needs to know that any addend is purely the offset to X_op_symbol. */ if (mips_pic == EMBEDDED_PIC && offset_expr.X_op == O_subtract && (symbol_constant_p (offset_expr.X_op_symbol) ? S_GET_SEGMENT (offset_expr.X_op_symbol) == now_seg : (symbol_equated_p (offset_expr.X_op_symbol) && (S_GET_SEGMENT (symbol_get_value_expression (offset_expr.X_op_symbol) ->X_add_symbol) == now_seg))) && breg == 0 && (offset_expr.X_add_number == 0 || OUTPUT_FLAVOR == bfd_target_elf_flavour)) { macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u", treg, (int) BFD_RELOC_PCREL_HI16_S); macro_build ((char *) NULL, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", treg, treg, (int) BFD_RELOC_PCREL_LO16); return; } if (offset_expr.X_op != O_symbol && offset_expr.X_op != O_constant) { as_bad (_("expression too complex")); offset_expr.X_op = O_constant; } if (treg == breg) { tempreg = AT; used_at = 1; } else { tempreg = treg; used_at = 0; } if (offset_expr.X_op == O_constant) load_register (&icnt, tempreg, &offset_expr, dbl); else if (mips_pic == NO_PIC) { /* If this is a reference to an GP relative symbol, we want addiu $tempreg,$gp, (BFD_RELOC_MIPS_GPREL) Otherwise we want lui $tempreg, (BFD_RELOC_HI16_S) addiu $tempreg,$tempreg, (BFD_RELOC_LO16) If we have a constant, we need two instructions anyhow, so we may as well always use the latter form. */ if ((valueT) offset_expr.X_add_number >= MAX_GPREL_OFFSET || nopic_need_relax (offset_expr.X_add_symbol, 1)) p = NULL; else { frag_grow (20); macro_build ((char *) NULL, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", tempreg, GP, (int) BFD_RELOC_MIPS_GPREL); p = frag_var (rs_machine_dependent, 8, 0, RELAX_ENCODE (4, 8, 0, 4, 0, mips_opts.warn_about_macros), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); } macro_build_lui (p, &icnt, &offset_expr, tempreg); if (p != NULL) p += 4; macro_build (p, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16); } else if (mips_pic == SVR4_PIC && ! mips_big_got) { int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16; /* If this is a reference to an external symbol, and there is no constant, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) or if tempreg is PIC_CALL_REG lw $tempreg,($gp) (BFD_RELOC_MIPS_CALL16) For a local symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $tempreg,$tempreg, (BFD_RELOC_LO16) If we have a small constant, and this is a reference to an external symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $tempreg,$tempreg, For a local symbol, we want the same instruction sequence, but we output a BFD_RELOC_LO16 reloc on the addiu instruction. If we have a large constant, and this is a reference to an external symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) lui $at, addiu $at,$at, addu $tempreg,$tempreg,$at For a local symbol, we want the same instruction sequence, but we output a BFD_RELOC_LO16 reloc on the addiu instruction. */ expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = 0; frag_grow (32); if (expr1.X_add_number == 0 && tempreg == PIC_CALL_REG) lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16; macro_build ((char *) NULL, &icnt, &offset_expr, dbl ? "ld" : "lw", "t,o(b)", tempreg, lw_reloc_type, GP); if (expr1.X_add_number == 0) { int off; if (breg == 0) off = 0; else { /* We're going to put in an addu instruction using tempreg, so we may as well insert the nop right now. */ macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", ""); off = 4; } p = frag_var (rs_machine_dependent, 8 - off, 0, RELAX_ENCODE (0, 8 - off, -4 - off, 4 - off, 0, (breg == 0 ? mips_opts.warn_about_macros : 0)), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); if (breg == 0) { macro_build (p, &icnt, (expressionS *) NULL, "nop", ""); p += 4; } macro_build (p, &icnt, &expr1, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16); /* FIXME: If breg == 0, and the next instruction uses $tempreg, then if this variant case is used an extra nop will be generated. */ } else if (expr1.X_add_number >= -0x8000 && expr1.X_add_number < 0x8000) { macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", ""); macro_build ((char *) NULL, &icnt, &expr1, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16); (void) frag_var (rs_machine_dependent, 0, 0, RELAX_ENCODE (0, 0, -12, -4, 0, 0), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); } else { int off1; /* If we are going to add in a base register, and the target register and the base register are the same, then we are using AT as a temporary register. Since we want to load the constant into AT, we add our current AT (from the global offset table) and the register into the register now, and pretend we were not using a base register. */ if (breg != treg) off1 = 0; else { macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", ""); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", treg, AT, breg); breg = 0; tempreg = treg; off1 = -8; } /* Set mips_optimize around the lui instruction to avoid inserting an unnecessary nop after the lw. */ hold_mips_optimize = mips_optimize; mips_optimize = 2; macro_build_lui ((char *) NULL, &icnt, &expr1, AT); mips_optimize = hold_mips_optimize; macro_build ((char *) NULL, &icnt, &expr1, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", AT, AT, (int) BFD_RELOC_LO16); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", tempreg, tempreg, AT); (void) frag_var (rs_machine_dependent, 0, 0, RELAX_ENCODE (0, 0, -16 + off1, -8, 0, 0), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); used_at = 1; } } else if (mips_pic == SVR4_PIC) { int gpdel; int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16; int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16; /* This is the large GOT case. If this is a reference to an external symbol, and there is no constant, we want lui $tempreg, (BFD_RELOC_MIPS_GOT_HI16) addu $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_GOT_LO16) or if tempreg is PIC_CALL_REG lui $tempreg, (BFD_RELOC_MIPS_CALL_HI16) addu $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_CALL_LO16) For a local symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $tempreg,$tempreg, (BFD_RELOC_LO16) If we have a small constant, and this is a reference to an external symbol, we want lui $tempreg, (BFD_RELOC_MIPS_GOT_HI16) addu $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_GOT_LO16) nop addiu $tempreg,$tempreg, For a local symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $tempreg,$tempreg, (BFD_RELOC_LO16) If we have a large constant, and this is a reference to an external symbol, we want lui $tempreg, (BFD_RELOC_MIPS_GOT_HI16) addu $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_GOT_LO16) lui $at, addiu $at,$at, addu $tempreg,$tempreg,$at For a local symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) lui $at, addiu $at,$at, (BFD_RELOC_LO16) addu $tempreg,$tempreg,$at */ expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = 0; frag_grow (52); if (reg_needs_delay (GP)) gpdel = 4; else gpdel = 0; if (expr1.X_add_number == 0 && tempreg == PIC_CALL_REG) { lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16; lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16; } macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u", tempreg, lui_reloc_type); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", tempreg, tempreg, GP); macro_build ((char *) NULL, &icnt, &offset_expr, dbl ? "ld" : "lw", "t,o(b)", tempreg, lw_reloc_type, tempreg); if (expr1.X_add_number == 0) { int off; if (breg == 0) off = 0; else { /* We're going to put in an addu instruction using tempreg, so we may as well insert the nop right now. */ macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", ""); off = 4; } p = frag_var (rs_machine_dependent, 12 + gpdel, 0, RELAX_ENCODE (12 + off, 12 + gpdel, gpdel, 8 + gpdel, 0, (breg == 0 ? mips_opts.warn_about_macros : 0)), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); } else if (expr1.X_add_number >= -0x8000 && expr1.X_add_number < 0x8000) { macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", ""); macro_build ((char *) NULL, &icnt, &expr1, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16); p = frag_var (rs_machine_dependent, 12 + gpdel, 0, RELAX_ENCODE (20, 12 + gpdel, gpdel, 8 + gpdel, 0, (breg == 0 ? mips_opts.warn_about_macros : 0)), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); } else { int adj, dreg; /* If we are going to add in a base register, and the target register and the base register are the same, then we are using AT as a temporary register. Since we want to load the constant into AT, we add our current AT (from the global offset table) and the register into the register now, and pretend we were not using a base register. */ if (breg != treg) { adj = 0; dreg = tempreg; } else { assert (tempreg == AT); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", ""); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", treg, AT, breg); dreg = treg; adj = 8; } /* Set mips_optimize around the lui instruction to avoid inserting an unnecessary nop after the lw. */ hold_mips_optimize = mips_optimize; mips_optimize = 2; macro_build_lui ((char *) NULL, &icnt, &expr1, AT); mips_optimize = hold_mips_optimize; macro_build ((char *) NULL, &icnt, &expr1, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", AT, AT, (int) BFD_RELOC_LO16); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", dreg, dreg, AT); p = frag_var (rs_machine_dependent, 16 + gpdel + adj, 0, RELAX_ENCODE (24 + adj, 16 + gpdel + adj, gpdel, 8 + gpdel, 0, (breg == 0 ? mips_opts.warn_about_macros : 0)), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); used_at = 1; } if (gpdel > 0) { /* This is needed because this instruction uses $gp, but the first instruction on the main stream does not. */ macro_build (p, &icnt, (expressionS *) NULL, "nop", ""); p += 4; } macro_build (p, &icnt, &offset_expr, dbl ? "ld" : "lw", "t,o(b)", tempreg, (int) BFD_RELOC_MIPS_GOT16, GP); p += 4; if (expr1.X_add_number >= -0x8000 && expr1.X_add_number < 0x8000) { macro_build (p, &icnt, (expressionS *) NULL, "nop", ""); p += 4; macro_build (p, &icnt, &expr1, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16); /* FIXME: If add_number is 0, and there was no base register, the external symbol case ended with a load, so if the symbol turns out to not be external, and the next instruction uses tempreg, an unnecessary nop will be inserted. */ } else { if (breg == treg) { /* We must add in the base register now, as in the external symbol case. */ assert (tempreg == AT); macro_build (p, &icnt, (expressionS *) NULL, "nop", ""); p += 4; macro_build (p, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", treg, AT, breg); p += 4; tempreg = treg; /* We set breg to 0 because we have arranged to add it in in both cases. */ breg = 0; } macro_build_lui (p, &icnt, &expr1, AT); p += 4; macro_build (p, &icnt, &expr1, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", AT, AT, (int) BFD_RELOC_LO16); p += 4; macro_build (p, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", tempreg, tempreg, AT); p += 4; } } else if (mips_pic == EMBEDDED_PIC) { /* We use addiu $tempreg,$gp, (BFD_RELOC_MIPS_GPREL) */ macro_build ((char *) NULL, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", tempreg, GP, (int) BFD_RELOC_MIPS_GPREL); } else abort (); if (breg != 0) macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", treg, tempreg, breg); if (! used_at) return; break; case M_J_A: /* The j instruction may not be used in PIC code, since it requires an absolute address. We convert it to a b instruction. */ if (mips_pic == NO_PIC) macro_build ((char *) NULL, &icnt, &offset_expr, "j", "a"); else macro_build ((char *) NULL, &icnt, &offset_expr, "b", "p"); return; /* The jal instructions must be handled as macros because when generating PIC code they expand to multi-instruction sequences. Normally they are simple instructions. */ case M_JAL_1: dreg = RA; /* Fall through. */ case M_JAL_2: if (mips_pic == NO_PIC || mips_pic == EMBEDDED_PIC) macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "jalr", "d,s", dreg, sreg); else if (mips_pic == SVR4_PIC) { if (sreg != PIC_CALL_REG) as_warn (_("MIPS PIC call to register other than $25")); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "jalr", "d,s", dreg, sreg); if (mips_cprestore_offset < 0) as_warn (_("No .cprestore pseudo-op used in PIC code")); else { expr1.X_add_number = mips_cprestore_offset; macro_build ((char *) NULL, &icnt, &expr1, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", GP, (int) BFD_RELOC_LO16, mips_frame_reg); } } else abort (); return; case M_JAL_A: if (mips_pic == NO_PIC) macro_build ((char *) NULL, &icnt, &offset_expr, "jal", "a"); else if (mips_pic == SVR4_PIC) { /* If this is a reference to an external symbol, and we are using a small GOT, we want lw $25,($gp) (BFD_RELOC_MIPS_CALL16) nop jalr $25 nop lw $gp,cprestore($sp) The cprestore value is set using the .cprestore pseudo-op. If we are using a big GOT, we want lui $25, (BFD_RELOC_MIPS_CALL_HI16) addu $25,$25,$gp lw $25,($25) (BFD_RELOC_MIPS_CALL_LO16) nop jalr $25 nop lw $gp,cprestore($sp) If the symbol is not external, we want lw $25,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $25,$25, (BFD_RELOC_LO16) jalr $25 nop lw $gp,cprestore($sp) */ frag_grow (40); if (! mips_big_got) { macro_build ((char *) NULL, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", PIC_CALL_REG, (int) BFD_RELOC_MIPS_CALL16, GP); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", ""); p = frag_var (rs_machine_dependent, 4, 0, RELAX_ENCODE (0, 4, -8, 0, 0, 0), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); } else { int gpdel; if (reg_needs_delay (GP)) gpdel = 4; else gpdel = 0; macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u", PIC_CALL_REG, (int) BFD_RELOC_MIPS_CALL_HI16); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", PIC_CALL_REG, PIC_CALL_REG, GP); macro_build ((char *) NULL, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", PIC_CALL_REG, (int) BFD_RELOC_MIPS_CALL_LO16, PIC_CALL_REG); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", ""); p = frag_var (rs_machine_dependent, 12 + gpdel, 0, RELAX_ENCODE (16, 12 + gpdel, gpdel, 8 + gpdel, 0, 0), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); if (gpdel > 0) { macro_build (p, &icnt, (expressionS *) NULL, "nop", ""); p += 4; } macro_build (p, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", PIC_CALL_REG, (int) BFD_RELOC_MIPS_GOT16, GP); p += 4; macro_build (p, &icnt, (expressionS *) NULL, "nop", ""); p += 4; } macro_build (p, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", PIC_CALL_REG, PIC_CALL_REG, (int) BFD_RELOC_LO16); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "jalr", "s", PIC_CALL_REG); if (mips_cprestore_offset < 0) as_warn (_("No .cprestore pseudo-op used in PIC code")); else { if (mips_opts.noreorder) macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", ""); expr1.X_add_number = mips_cprestore_offset; macro_build ((char *) NULL, &icnt, &expr1, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", GP, (int) BFD_RELOC_LO16, mips_frame_reg); } } else if (mips_pic == EMBEDDED_PIC) { macro_build ((char *) NULL, &icnt, &offset_expr, "bal", "p"); /* The linker may expand the call to a longer sequence which uses $at, so we must break rather than return. */ break; } else abort (); return; case M_LB_AB: s = "lb"; goto ld; case M_LBU_AB: s = "lbu"; goto ld; case M_LH_AB: s = "lh"; goto ld; case M_LHU_AB: s = "lhu"; goto ld; case M_LW_AB: s = "lw"; goto ld; case M_LWC0_AB: s = "lwc0"; /* Itbl support may require additional care here. */ coproc = 1; goto ld; case M_LWC1_AB: s = "lwc1"; /* Itbl support may require additional care here. */ coproc = 1; goto ld; case M_LWC2_AB: s = "lwc2"; /* Itbl support may require additional care here. */ coproc = 1; goto ld; case M_LWC3_AB: s = "lwc3"; /* Itbl support may require additional care here. */ coproc = 1; goto ld; case M_LWL_AB: s = "lwl"; lr = 1; goto ld; case M_LWR_AB: s = "lwr"; lr = 1; goto ld; case M_LDC1_AB: if (mips_arch == CPU_R4650) { as_bad (_("opcode not supported on this processor")); return; } s = "ldc1"; /* Itbl support may require additional care here. */ coproc = 1; goto ld; case M_LDC2_AB: s = "ldc2"; /* Itbl support may require additional care here. */ coproc = 1; goto ld; case M_LDC3_AB: s = "ldc3"; /* Itbl support may require additional care here. */ coproc = 1; goto ld; case M_LDL_AB: s = "ldl"; lr = 1; goto ld; case M_LDR_AB: s = "ldr"; lr = 1; goto ld; case M_LL_AB: s = "ll"; goto ld; case M_LLD_AB: s = "lld"; goto ld; case M_LWU_AB: s = "lwu"; ld: if (breg == treg || coproc || lr) { tempreg = AT; used_at = 1; } else { tempreg = treg; used_at = 0; } goto ld_st; case M_SB_AB: s = "sb"; goto st; case M_SH_AB: s = "sh"; goto st; case M_SW_AB: s = "sw"; goto st; case M_SWC0_AB: s = "swc0"; /* Itbl support may require additional care here. */ coproc = 1; goto st; case M_SWC1_AB: s = "swc1"; /* Itbl support may require additional care here. */ coproc = 1; goto st; case M_SWC2_AB: s = "swc2"; /* Itbl support may require additional care here. */ coproc = 1; goto st; case M_SWC3_AB: s = "swc3"; /* Itbl support may require additional care here. */ coproc = 1; goto st; case M_SWL_AB: s = "swl"; goto st; case M_SWR_AB: s = "swr"; goto st; case M_SC_AB: s = "sc"; goto st; case M_SCD_AB: s = "scd"; goto st; case M_SDC1_AB: if (mips_arch == CPU_R4650) { as_bad (_("opcode not supported on this processor")); return; } s = "sdc1"; coproc = 1; /* Itbl support may require additional care here. */ goto st; case M_SDC2_AB: s = "sdc2"; /* Itbl support may require additional care here. */ coproc = 1; goto st; case M_SDC3_AB: s = "sdc3"; /* Itbl support may require additional care here. */ coproc = 1; goto st; case M_SDL_AB: s = "sdl"; goto st; case M_SDR_AB: s = "sdr"; st: tempreg = AT; used_at = 1; ld_st: /* Itbl support may require additional care here. */ if (mask == M_LWC1_AB || mask == M_SWC1_AB || mask == M_LDC1_AB || mask == M_SDC1_AB || mask == M_L_DAB || mask == M_S_DAB) fmt = "T,o(b)"; else if (coproc) fmt = "E,o(b)"; else fmt = "t,o(b)"; if (offset_expr.X_op != O_constant && offset_expr.X_op != O_symbol) { as_bad (_("expression too complex")); offset_expr.X_op = O_constant; } /* A constant expression in PIC code can be handled just as it is in non PIC code. */ if (mips_pic == NO_PIC || offset_expr.X_op == O_constant) { /* If this is a reference to a GP relative symbol, and there is no base register, we want $treg,($gp) (BFD_RELOC_MIPS_GPREL) Otherwise, if there is no base register, we want lui $tempreg, (BFD_RELOC_HI16_S) $treg,($tempreg) (BFD_RELOC_LO16) If we have a constant, we need two instructions anyhow, so we always use the latter form. If we have a base register, and this is a reference to a GP relative symbol, we want addu $tempreg,$breg,$gp $treg,($tempreg) (BFD_RELOC_MIPS_GPREL) Otherwise we want lui $tempreg, (BFD_RELOC_HI16_S) addu $tempreg,$tempreg,$breg $treg,($tempreg) (BFD_RELOC_LO16) With a constant we always use the latter case. */ if (breg == 0) { if ((valueT) offset_expr.X_add_number >= MAX_GPREL_OFFSET || nopic_need_relax (offset_expr.X_add_symbol, 1)) p = NULL; else { frag_grow (20); macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt, treg, (int) BFD_RELOC_MIPS_GPREL, GP); p = frag_var (rs_machine_dependent, 8, 0, RELAX_ENCODE (4, 8, 0, 4, 0, (mips_opts.warn_about_macros || (used_at && mips_opts.noat))), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); used_at = 0; } macro_build_lui (p, &icnt, &offset_expr, tempreg); if (p != NULL) p += 4; macro_build (p, &icnt, &offset_expr, s, fmt, treg, (int) BFD_RELOC_LO16, tempreg); } else { if ((valueT) offset_expr.X_add_number >= MAX_GPREL_OFFSET || nopic_need_relax (offset_expr.X_add_symbol, 1)) p = NULL; else { frag_grow (28); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", tempreg, breg, GP); macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt, treg, (int) BFD_RELOC_MIPS_GPREL, tempreg); p = frag_var (rs_machine_dependent, 12, 0, RELAX_ENCODE (8, 12, 0, 8, 0, 0), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); } macro_build_lui (p, &icnt, &offset_expr, tempreg); if (p != NULL) p += 4; macro_build (p, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", tempreg, tempreg, breg); if (p != NULL) p += 4; macro_build (p, &icnt, &offset_expr, s, fmt, treg, (int) BFD_RELOC_LO16, tempreg); } } else if (mips_pic == SVR4_PIC && ! mips_big_got) { /* If this is a reference to an external symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop $treg,0($tempreg) Otherwise we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $tempreg,$tempreg, (BFD_RELOC_LO16) $treg,0($tempreg) If there is a base register, we add it to $tempreg before the . If there is a constant, we stick it in the instruction. We don't handle constants larger than 16 bits, because we have no way to load the upper 16 bits (actually, we could handle them for the subset of cases in which we are not using $at). */ assert (offset_expr.X_op == O_symbol); expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = 0; if (expr1.X_add_number < -0x8000 || expr1.X_add_number >= 0x8000) as_bad (_("PIC code offset overflow (max 16 signed bits)")); frag_grow (20); macro_build ((char *) NULL, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", tempreg, (int) BFD_RELOC_MIPS_GOT16, GP); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", ""); p = frag_var (rs_machine_dependent, 4, 0, RELAX_ENCODE (0, 4, -8, 0, 0, 0), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); macro_build (p, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16); if (breg != 0) macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", tempreg, tempreg, breg); macro_build ((char *) NULL, &icnt, &expr1, s, fmt, treg, (int) BFD_RELOC_LO16, tempreg); } else if (mips_pic == SVR4_PIC) { int gpdel; /* If this is a reference to an external symbol, we want lui $tempreg, (BFD_RELOC_MIPS_GOT_HI16) addu $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_GOT_LO16) $treg,0($tempreg) Otherwise we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $tempreg,$tempreg, (BFD_RELOC_LO16) $treg,0($tempreg) If there is a base register, we add it to $tempreg before the . If there is a constant, we stick it in the instruction. We don't handle constants larger than 16 bits, because we have no way to load the upper 16 bits (actually, we could handle them for the subset of cases in which we are not using $at). */ assert (offset_expr.X_op == O_symbol); expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = 0; if (expr1.X_add_number < -0x8000 || expr1.X_add_number >= 0x8000) as_bad (_("PIC code offset overflow (max 16 signed bits)")); if (reg_needs_delay (GP)) gpdel = 4; else gpdel = 0; frag_grow (36); macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u", tempreg, (int) BFD_RELOC_MIPS_GOT_HI16); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", tempreg, tempreg, GP); macro_build ((char *) NULL, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", tempreg, (int) BFD_RELOC_MIPS_GOT_LO16, tempreg); p = frag_var (rs_machine_dependent, 12 + gpdel, 0, RELAX_ENCODE (12, 12 + gpdel, gpdel, 8 + gpdel, 0, 0), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); if (gpdel > 0) { macro_build (p, &icnt, (expressionS *) NULL, "nop", ""); p += 4; } macro_build (p, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", tempreg, (int) BFD_RELOC_MIPS_GOT16, GP); p += 4; macro_build (p, &icnt, (expressionS *) NULL, "nop", ""); p += 4; macro_build (p, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16); if (breg != 0) macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", tempreg, tempreg, breg); macro_build ((char *) NULL, &icnt, &expr1, s, fmt, treg, (int) BFD_RELOC_LO16, tempreg); } else if (mips_pic == EMBEDDED_PIC) { /* If there is no base register, we want $treg,($gp) (BFD_RELOC_MIPS_GPREL) If there is a base register, we want addu $tempreg,$breg,$gp $treg,($tempreg) (BFD_RELOC_MIPS_GPREL) */ assert (offset_expr.X_op == O_symbol); if (breg == 0) { macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt, treg, (int) BFD_RELOC_MIPS_GPREL, GP); used_at = 0; } else { macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", tempreg, breg, GP); macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt, treg, (int) BFD_RELOC_MIPS_GPREL, tempreg); } } else abort (); if (! used_at) return; break; case M_LI: case M_LI_S: load_register (&icnt, treg, &imm_expr, 0); return; case M_DLI: load_register (&icnt, treg, &imm_expr, 1); return; case M_LI_SS: if (imm_expr.X_op == O_constant) { load_register (&icnt, AT, &imm_expr, 0); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "mtc1", "t,G", AT, treg); break; } else { assert (offset_expr.X_op == O_symbol && strcmp (segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol)), ".lit4") == 0 && offset_expr.X_add_number == 0); macro_build ((char *) NULL, &icnt, &offset_expr, "lwc1", "T,o(b)", treg, (int) BFD_RELOC_MIPS_LITERAL, GP); return; } case M_LI_D: /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high order 32 bits of the value and the low order 32 bits are either zero or in OFFSET_EXPR. */ if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big) { if (HAVE_64BIT_GPRS) load_register (&icnt, treg, &imm_expr, 1); else { int hreg, lreg; if (target_big_endian) { hreg = treg; lreg = treg + 1; } else { hreg = treg + 1; lreg = treg; } if (hreg <= 31) load_register (&icnt, hreg, &imm_expr, 0); if (lreg <= 31) { if (offset_expr.X_op == O_absent) macro_build ((char *) NULL, &icnt, NULL, "move", "d,s", lreg, 0); else { assert (offset_expr.X_op == O_constant); load_register (&icnt, lreg, &offset_expr, 0); } } } return; } /* We know that sym is in the .rdata section. First we get the upper 16 bits of the address. */ if (mips_pic == NO_PIC) { /* FIXME: This won't work for a 64 bit address. */ macro_build_lui ((char *) NULL, &icnt, &offset_expr, AT); } else if (mips_pic == SVR4_PIC) { macro_build ((char *) NULL, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT16, GP); } else if (mips_pic == EMBEDDED_PIC) { /* For embedded PIC we pick up the entire address off $gp in a single instruction. */ macro_build ((char *) NULL, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", AT, GP, (int) BFD_RELOC_MIPS_GPREL); offset_expr.X_op = O_constant; offset_expr.X_add_number = 0; } else abort (); /* Now we load the register(s). */ if (HAVE_64BIT_GPRS) macro_build ((char *) NULL, &icnt, &offset_expr, "ld", "t,o(b)", treg, (int) BFD_RELOC_LO16, AT); else { macro_build ((char *) NULL, &icnt, &offset_expr, "lw", "t,o(b)", treg, (int) BFD_RELOC_LO16, AT); if (treg != 31) { /* FIXME: How in the world do we deal with the possible overflow here? */ offset_expr.X_add_number += 4; macro_build ((char *) NULL, &icnt, &offset_expr, "lw", "t,o(b)", treg + 1, (int) BFD_RELOC_LO16, AT); } } /* To avoid confusion in tc_gen_reloc, we must ensure that this does not become a variant frag. */ frag_wane (frag_now); frag_new (0); break; case M_LI_DD: /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits wide, IMM_EXPR is the entire value and the GPRs are known to be 64 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of the value and the low order 32 bits are either zero or in OFFSET_EXPR. */ if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big) { load_register (&icnt, AT, &imm_expr, HAVE_64BIT_FPRS); if (HAVE_64BIT_FPRS) { assert (HAVE_64BIT_GPRS); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "dmtc1", "t,S", AT, treg); } else { macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "mtc1", "t,G", AT, treg + 1); if (offset_expr.X_op == O_absent) macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "mtc1", "t,G", 0, treg); else { assert (offset_expr.X_op == O_constant); load_register (&icnt, AT, &offset_expr, 0); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "mtc1", "t,G", AT, treg); } } break; } assert (offset_expr.X_op == O_symbol && offset_expr.X_add_number == 0); s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol)); if (strcmp (s, ".lit8") == 0) { if (mips_opts.isa != ISA_MIPS1) { macro_build ((char *) NULL, &icnt, &offset_expr, "ldc1", "T,o(b)", treg, (int) BFD_RELOC_MIPS_LITERAL, GP); return; } breg = GP; r = BFD_RELOC_MIPS_LITERAL; goto dob; } else { assert (strcmp (s, RDATA_SECTION_NAME) == 0); if (mips_pic == SVR4_PIC) macro_build ((char *) NULL, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT16, GP); else { /* FIXME: This won't work for a 64 bit address. */ macro_build_lui ((char *) NULL, &icnt, &offset_expr, AT); } if (mips_opts.isa != ISA_MIPS1) { macro_build ((char *) NULL, &icnt, &offset_expr, "ldc1", "T,o(b)", treg, (int) BFD_RELOC_LO16, AT); /* To avoid confusion in tc_gen_reloc, we must ensure that this does not become a variant frag. */ frag_wane (frag_now); frag_new (0); break; } breg = AT; r = BFD_RELOC_LO16; goto dob; } case M_L_DOB: if (mips_arch == CPU_R4650) { as_bad (_("opcode not supported on this processor")); return; } /* Even on a big endian machine $fn comes before $fn+1. We have to adjust when loading from memory. */ r = BFD_RELOC_LO16; dob: assert (mips_opts.isa == ISA_MIPS1); macro_build ((char *) NULL, &icnt, &offset_expr, "lwc1", "T,o(b)", target_big_endian ? treg + 1 : treg, (int) r, breg); /* FIXME: A possible overflow which I don't know how to deal with. */ offset_expr.X_add_number += 4; macro_build ((char *) NULL, &icnt, &offset_expr, "lwc1", "T,o(b)", target_big_endian ? treg : treg + 1, (int) r, breg); /* To avoid confusion in tc_gen_reloc, we must ensure that this does not become a variant frag. */ frag_wane (frag_now); frag_new (0); if (breg != AT) return; break; case M_L_DAB: /* * The MIPS assembler seems to check for X_add_number not * being double aligned and generating: * lui at,%hi(foo+1) * addu at,at,v1 * addiu at,at,%lo(foo+1) * lwc1 f2,0(at) * lwc1 f3,4(at) * But, the resulting address is the same after relocation so why * generate the extra instruction? */ if (mips_arch == CPU_R4650) { as_bad (_("opcode not supported on this processor")); return; } /* Itbl support may require additional care here. */ coproc = 1; if (mips_opts.isa != ISA_MIPS1) { s = "ldc1"; goto ld; } s = "lwc1"; fmt = "T,o(b)"; goto ldd_std; case M_S_DAB: if (mips_arch == CPU_R4650) { as_bad (_("opcode not supported on this processor")); return; } if (mips_opts.isa != ISA_MIPS1) { s = "sdc1"; goto st; } s = "swc1"; fmt = "T,o(b)"; /* Itbl support may require additional care here. */ coproc = 1; goto ldd_std; case M_LD_AB: if (HAVE_64BIT_GPRS) { s = "ld"; goto ld; } s = "lw"; fmt = "t,o(b)"; goto ldd_std; case M_SD_AB: if (HAVE_64BIT_GPRS) { s = "sd"; goto st; } s = "sw"; fmt = "t,o(b)"; ldd_std: if (offset_expr.X_op != O_symbol && offset_expr.X_op != O_constant) { as_bad (_("expression too complex")); offset_expr.X_op = O_constant; } /* Even on a big endian machine $fn comes before $fn+1. We have to adjust when loading from memory. We set coproc if we must load $fn+1 first. */ /* Itbl support may require additional care here. */ if (! target_big_endian) coproc = 0; if (mips_pic == NO_PIC || offset_expr.X_op == O_constant) { /* If this is a reference to a GP relative symbol, we want $treg,($gp) (BFD_RELOC_MIPS_GPREL) $treg+1,+4($gp) (BFD_RELOC_MIPS_GPREL) If we have a base register, we use this addu $at,$breg,$gp $treg,($at) (BFD_RELOC_MIPS_GPREL) $treg+1,+4($at) (BFD_RELOC_MIPS_GPREL) If this is not a GP relative symbol, we want lui $at, (BFD_RELOC_HI16_S) $treg,($at) (BFD_RELOC_LO16) $treg+1,+4($at) (BFD_RELOC_LO16) If there is a base register, we add it to $at after the lui instruction. If there is a constant, we always use the last case. */ if ((valueT) offset_expr.X_add_number >= MAX_GPREL_OFFSET || nopic_need_relax (offset_expr.X_add_symbol, 1)) { p = NULL; used_at = 1; } else { int off; if (breg == 0) { frag_grow (28); tempreg = GP; off = 0; used_at = 0; } else { frag_grow (36); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", AT, breg, GP); tempreg = AT; off = 4; used_at = 1; } /* Itbl support may require additional care here. */ macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt, coproc ? treg + 1 : treg, (int) BFD_RELOC_MIPS_GPREL, tempreg); offset_expr.X_add_number += 4; /* Set mips_optimize to 2 to avoid inserting an undesired nop. */ hold_mips_optimize = mips_optimize; mips_optimize = 2; /* Itbl support may require additional care here. */ macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt, coproc ? treg : treg + 1, (int) BFD_RELOC_MIPS_GPREL, tempreg); mips_optimize = hold_mips_optimize; p = frag_var (rs_machine_dependent, 12 + off, 0, RELAX_ENCODE (8 + off, 12 + off, 0, 4 + off, 1, used_at && mips_opts.noat), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); /* We just generated two relocs. When tc_gen_reloc handles this case, it will skip the first reloc and handle the second. The second reloc already has an extra addend of 4, which we added above. We must subtract it out, and then subtract another 4 to make the first reloc come out right. The second reloc will come out right because we are going to add 4 to offset_expr when we build its instruction below. If we have a symbol, then we don't want to include the offset, because it will wind up being included when we generate the reloc. */ if (offset_expr.X_op == O_constant) offset_expr.X_add_number -= 8; else { offset_expr.X_add_number = -4; offset_expr.X_op = O_constant; } } macro_build_lui (p, &icnt, &offset_expr, AT); if (p != NULL) p += 4; if (breg != 0) { macro_build (p, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", AT, breg, AT); if (p != NULL) p += 4; } /* Itbl support may require additional care here. */ macro_build (p, &icnt, &offset_expr, s, fmt, coproc ? treg + 1 : treg, (int) BFD_RELOC_LO16, AT); if (p != NULL) p += 4; /* FIXME: How do we handle overflow here? */ offset_expr.X_add_number += 4; /* Itbl support may require additional care here. */ macro_build (p, &icnt, &offset_expr, s, fmt, coproc ? treg : treg + 1, (int) BFD_RELOC_LO16, AT); } else if (mips_pic == SVR4_PIC && ! mips_big_got) { int off; /* If this is a reference to an external symbol, we want lw $at,($gp) (BFD_RELOC_MIPS_GOT16) nop $treg,0($at) $treg+1,4($at) Otherwise we want lw $at,($gp) (BFD_RELOC_MIPS_GOT16) nop $treg,($at) (BFD_RELOC_LO16) $treg+1,+4($at) (BFD_RELOC_LO16) If there is a base register we add it to $at before the lwc1 instructions. If there is a constant we include it in the lwc1 instructions. */ used_at = 1; expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = 0; if (expr1.X_add_number < -0x8000 || expr1.X_add_number >= 0x8000 - 4) as_bad (_("PIC code offset overflow (max 16 signed bits)")); if (breg == 0) off = 0; else off = 4; frag_grow (24 + off); macro_build ((char *) NULL, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT16, GP); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", ""); if (breg != 0) macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", AT, breg, AT); /* Itbl support may require additional care here. */ macro_build ((char *) NULL, &icnt, &expr1, s, fmt, coproc ? treg + 1 : treg, (int) BFD_RELOC_LO16, AT); expr1.X_add_number += 4; /* Set mips_optimize to 2 to avoid inserting an undesired nop. */ hold_mips_optimize = mips_optimize; mips_optimize = 2; /* Itbl support may require additional care here. */ macro_build ((char *) NULL, &icnt, &expr1, s, fmt, coproc ? treg : treg + 1, (int) BFD_RELOC_LO16, AT); mips_optimize = hold_mips_optimize; (void) frag_var (rs_machine_dependent, 0, 0, RELAX_ENCODE (0, 0, -16 - off, -8, 1, 0), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); } else if (mips_pic == SVR4_PIC) { int gpdel, off; /* If this is a reference to an external symbol, we want lui $at, (BFD_RELOC_MIPS_GOT_HI16) addu $at,$at,$gp lw $at,($at) (BFD_RELOC_MIPS_GOT_LO16) nop $treg,0($at) $treg+1,4($at) Otherwise we want lw $at,($gp) (BFD_RELOC_MIPS_GOT16) nop $treg,($at) (BFD_RELOC_LO16) $treg+1,+4($at) (BFD_RELOC_LO16) If there is a base register we add it to $at before the lwc1 instructions. If there is a constant we include it in the lwc1 instructions. */ used_at = 1; expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = 0; if (expr1.X_add_number < -0x8000 || expr1.X_add_number >= 0x8000 - 4) as_bad (_("PIC code offset overflow (max 16 signed bits)")); if (reg_needs_delay (GP)) gpdel = 4; else gpdel = 0; if (breg == 0) off = 0; else off = 4; frag_grow (56); macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u", AT, (int) BFD_RELOC_MIPS_GOT_HI16); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", AT, AT, GP); macro_build ((char *) NULL, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT_LO16, AT); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", ""); if (breg != 0) macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", AT, breg, AT); /* Itbl support may require additional care here. */ macro_build ((char *) NULL, &icnt, &expr1, s, fmt, coproc ? treg + 1 : treg, (int) BFD_RELOC_LO16, AT); expr1.X_add_number += 4; /* Set mips_optimize to 2 to avoid inserting an undesired nop. */ hold_mips_optimize = mips_optimize; mips_optimize = 2; /* Itbl support may require additional care here. */ macro_build ((char *) NULL, &icnt, &expr1, s, fmt, coproc ? treg : treg + 1, (int) BFD_RELOC_LO16, AT); mips_optimize = hold_mips_optimize; expr1.X_add_number -= 4; p = frag_var (rs_machine_dependent, 16 + gpdel + off, 0, RELAX_ENCODE (24 + off, 16 + gpdel + off, gpdel, 8 + gpdel + off, 1, 0), offset_expr.X_add_symbol, (offsetT) 0, (char *) NULL); if (gpdel > 0) { macro_build (p, &icnt, (expressionS *) NULL, "nop", ""); p += 4; } macro_build (p, &icnt, &offset_expr, HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT16, GP); p += 4; macro_build (p, &icnt, (expressionS *) NULL, "nop", ""); p += 4; if (breg != 0) { macro_build (p, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", AT, breg, AT); p += 4; } /* Itbl support may require additional care here. */ macro_build (p, &icnt, &expr1, s, fmt, coproc ? treg + 1 : treg, (int) BFD_RELOC_LO16, AT); p += 4; expr1.X_add_number += 4; /* Set mips_optimize to 2 to avoid inserting an undesired nop. */ hold_mips_optimize = mips_optimize; mips_optimize = 2; /* Itbl support may require additional care here. */ macro_build (p, &icnt, &expr1, s, fmt, coproc ? treg : treg + 1, (int) BFD_RELOC_LO16, AT); mips_optimize = hold_mips_optimize; } else if (mips_pic == EMBEDDED_PIC) { /* If there is no base register, we use $treg,($gp) (BFD_RELOC_MIPS_GPREL) $treg+1,+4($gp) (BFD_RELOC_MIPS_GPREL) If we have a base register, we use addu $at,$breg,$gp $treg,($at) (BFD_RELOC_MIPS_GPREL) $treg+1,+4($at) (BFD_RELOC_MIPS_GPREL) */ if (breg == 0) { tempreg = GP; used_at = 0; } else { macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", AT, breg, GP); tempreg = AT; used_at = 1; } /* Itbl support may require additional care here. */ macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt, coproc ? treg + 1 : treg, (int) BFD_RELOC_MIPS_GPREL, tempreg); offset_expr.X_add_number += 4; /* Itbl support may require additional care here. */ macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt, coproc ? treg : treg + 1, (int) BFD_RELOC_MIPS_GPREL, tempreg); } else abort (); if (! used_at) return; break; case M_LD_OB: s = "lw"; goto sd_ob; case M_SD_OB: s = "sw"; sd_ob: assert (HAVE_32BIT_ADDRESSES); macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg, (int) BFD_RELOC_LO16, breg); offset_expr.X_add_number += 4; macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg + 1, (int) BFD_RELOC_LO16, breg); return; /* New code added to support COPZ instructions. This code builds table entries out of the macros in mip_opcodes. R4000 uses interlocks to handle coproc delays. Other chips (like the R3000) require nops to be inserted for delays. FIXME: Currently, we require that the user handle delays. In order to fill delay slots for non-interlocked chips, we must have a way to specify delays based on the coprocessor. Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc. What are the side-effects of the cop instruction? What cache support might we have and what are its effects? Both coprocessor & memory require delays. how long??? What registers are read/set/modified? If an itbl is provided to interpret cop instructions, this knowledge can be encoded in the itbl spec. */ case M_COP0: s = "c0"; goto copz; case M_COP1: s = "c1"; goto copz; case M_COP2: s = "c2"; goto copz; case M_COP3: s = "c3"; copz: /* For now we just do C (same as Cz). The parameter will be stored in insn_opcode by mips_ip. */ macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "C", ip->insn_opcode); return; #ifdef LOSING_COMPILER default: /* Try and see if this is a new itbl instruction. This code builds table entries out of the macros in mip_opcodes. FIXME: For now we just assemble the expression and pass it's value along as a 32-bit immediate. We may want to have the assembler assemble this value, so that we gain the assembler's knowledge of delay slots, symbols, etc. Would it be more efficient to use mask (id) here? */ if (itbl_have_entries && (immed_expr = itbl_assemble (ip->insn_mo->name, ""))) { s = ip->insn_mo->name; s2 = "cop3"; coproc = ITBL_DECODE_PNUM (immed_expr);; macro_build ((char *) NULL, &icnt, &immed_expr, s, "C"); return; } macro2 (ip); return; } if (mips_opts.noat) as_warn (_("Macro used $at after \".set noat\"")); } static void macro2 (ip) struct mips_cl_insn *ip; { register int treg, sreg, dreg, breg; int tempreg; int mask; int icnt = 0; int used_at; expressionS expr1; const char *s; const char *s2; const char *fmt; int likely = 0; int dbl = 0; int coproc = 0; int lr = 0; int imm = 0; int off; offsetT maxnum; bfd_reloc_code_real_type r; char *p; treg = (ip->insn_opcode >> 16) & 0x1f; dreg = (ip->insn_opcode >> 11) & 0x1f; sreg = breg = (ip->insn_opcode >> 21) & 0x1f; mask = ip->insn_mo->mask; expr1.X_op = O_constant; expr1.X_op_symbol = NULL; expr1.X_add_symbol = NULL; expr1.X_add_number = 1; switch (mask) { #endif /* LOSING_COMPILER */ case M_DMUL: dbl = 1; case M_MUL: macro_build ((char *) NULL, &icnt, NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg); macro_build ((char *) NULL, &icnt, NULL, "mflo", "d", dreg); return; case M_DMUL_I: dbl = 1; case M_MUL_I: /* The MIPS assembler some times generates shifts and adds. I'm not trying to be that fancy. GCC should do this for us anyway. */ load_register (&icnt, AT, &imm_expr, dbl); macro_build ((char *) NULL, &icnt, NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT); macro_build ((char *) NULL, &icnt, NULL, "mflo", "d", dreg); break; case M_DMULO_I: dbl = 1; case M_MULO_I: imm = 1; goto do_mulo; case M_DMULO: dbl = 1; case M_MULO: do_mulo: mips_emit_delays (true); ++mips_opts.noreorder; mips_any_noreorder = 1; if (imm) load_register (&icnt, AT, &imm_expr, dbl); macro_build ((char *) NULL, &icnt, NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg); macro_build ((char *) NULL, &icnt, NULL, "mflo", "d", dreg); macro_build ((char *) NULL, &icnt, NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, 31); macro_build ((char *) NULL, &icnt, NULL, "mfhi", "d", AT); if (mips_trap) macro_build ((char *) NULL, &icnt, NULL, "tne", "s,t", dreg, AT); else { expr1.X_add_number = 8; macro_build ((char *) NULL, &icnt, &expr1, "beq", "s,t,p", dreg, AT); macro_build ((char *) NULL, &icnt, NULL, "nop", "", 0); macro_build ((char *) NULL, &icnt, NULL, "break", "c", 6); } --mips_opts.noreorder; macro_build ((char *) NULL, &icnt, NULL, "mflo", "d", dreg); break; case M_DMULOU_I: dbl = 1; case M_MULOU_I: imm = 1; goto do_mulou; case M_DMULOU: dbl = 1; case M_MULOU: do_mulou: mips_emit_delays (true); ++mips_opts.noreorder; mips_any_noreorder = 1; if (imm) load_register (&icnt, AT, &imm_expr, dbl); macro_build ((char *) NULL, &icnt, NULL, dbl ? "dmultu" : "multu", "s,t", sreg, imm ? AT : treg); macro_build ((char *) NULL, &icnt, NULL, "mfhi", "d", AT); macro_build ((char *) NULL, &icnt, NULL, "mflo", "d", dreg); if (mips_trap) macro_build ((char *) NULL, &icnt, NULL, "tne", "s,t", AT, 0); else { expr1.X_add_number = 8; macro_build ((char *) NULL, &icnt, &expr1, "beq", "s,t,p", AT, 0); macro_build ((char *) NULL, &icnt, NULL, "nop", "", 0); macro_build ((char *) NULL, &icnt, NULL, "break", "c", 6); } --mips_opts.noreorder; break; case M_ROL: macro_build ((char *) NULL, &icnt, NULL, "subu", "d,v,t", AT, 0, treg); macro_build ((char *) NULL, &icnt, NULL, "srlv", "d,t,s", AT, sreg, AT); macro_build ((char *) NULL, &icnt, NULL, "sllv", "d,t,s", dreg, sreg, treg); macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", dreg, dreg, AT); break; case M_ROL_I: if (imm_expr.X_op != O_constant) as_bad (_("rotate count too large")); macro_build ((char *) NULL, &icnt, NULL, "sll", "d,w,<", AT, sreg, (int) (imm_expr.X_add_number & 0x1f)); macro_build ((char *) NULL, &icnt, NULL, "srl", "d,w,<", dreg, sreg, (int) ((0 - imm_expr.X_add_number) & 0x1f)); macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", dreg, dreg, AT); break; case M_ROR: macro_build ((char *) NULL, &icnt, NULL, "subu", "d,v,t", AT, 0, treg); macro_build ((char *) NULL, &icnt, NULL, "sllv", "d,t,s", AT, sreg, AT); macro_build ((char *) NULL, &icnt, NULL, "srlv", "d,t,s", dreg, sreg, treg); macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", dreg, dreg, AT); break; case M_ROR_I: if (imm_expr.X_op != O_constant) as_bad (_("rotate count too large")); macro_build ((char *) NULL, &icnt, NULL, "srl", "d,w,<", AT, sreg, (int) (imm_expr.X_add_number & 0x1f)); macro_build ((char *) NULL, &icnt, NULL, "sll", "d,w,<", dreg, sreg, (int) ((0 - imm_expr.X_add_number) & 0x1f)); macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", dreg, dreg, AT); break; case M_S_DOB: if (mips_arch == CPU_R4650) { as_bad (_("opcode not supported on this processor")); return; } assert (mips_opts.isa == ISA_MIPS1); /* Even on a big endian machine $fn comes before $fn+1. We have to adjust when storing to memory. */ macro_build ((char *) NULL, &icnt, &offset_expr, "swc1", "T,o(b)", target_big_endian ? treg + 1 : treg, (int) BFD_RELOC_LO16, breg); offset_expr.X_add_number += 4; macro_build ((char *) NULL, &icnt, &offset_expr, "swc1", "T,o(b)", target_big_endian ? treg : treg + 1, (int) BFD_RELOC_LO16, breg); return; case M_SEQ: if (sreg == 0) macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg, treg, (int) BFD_RELOC_LO16); else if (treg == 0) macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg, sreg, (int) BFD_RELOC_LO16); else { macro_build ((char *) NULL, &icnt, NULL, "xor", "d,v,t", dreg, sreg, treg); macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg, dreg, (int) BFD_RELOC_LO16); } return; case M_SEQ_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) { macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg, sreg, (int) BFD_RELOC_LO16); return; } if (sreg == 0) { as_warn (_("Instruction %s: result is always false"), ip->insn_mo->name); macro_build ((char *) NULL, &icnt, NULL, "move", "d,s", dreg, 0); return; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= 0 && imm_expr.X_add_number < 0x10000) { macro_build ((char *) NULL, &icnt, &imm_expr, "xori", "t,r,i", dreg, sreg, (int) BFD_RELOC_LO16); used_at = 0; } else if (imm_expr.X_op == O_constant && imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number < 0) { imm_expr.X_add_number = -imm_expr.X_add_number; macro_build ((char *) NULL, &icnt, &imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j", dreg, sreg, (int) BFD_RELOC_LO16); used_at = 0; } else { load_register (&icnt, AT, &imm_expr, 0); macro_build ((char *) NULL, &icnt, NULL, "xor", "d,v,t", dreg, sreg, AT); used_at = 1; } macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg, dreg, (int) BFD_RELOC_LO16); if (used_at) break; return; case M_SGE: /* sreg >= treg <==> not (sreg < treg) */ s = "slt"; goto sge; case M_SGEU: s = "sltu"; sge: macro_build ((char *) NULL, &icnt, NULL, s, "d,v,t", dreg, sreg, treg); macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", dreg, dreg, (int) BFD_RELOC_LO16); return; case M_SGE_I: /* sreg >= I <==> not (sreg < I) */ case M_SGEU_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000) { macro_build ((char *) NULL, &icnt, &imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j", dreg, sreg, (int) BFD_RELOC_LO16); used_at = 0; } else { load_register (&icnt, AT, &imm_expr, 0); macro_build ((char *) NULL, &icnt, NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t", dreg, sreg, AT); used_at = 1; } macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", dreg, dreg, (int) BFD_RELOC_LO16); if (used_at) break; return; case M_SGT: /* sreg > treg <==> treg < sreg */ s = "slt"; goto sgt; case M_SGTU: s = "sltu"; sgt: macro_build ((char *) NULL, &icnt, NULL, s, "d,v,t", dreg, treg, sreg); return; case M_SGT_I: /* sreg > I <==> I < sreg */ s = "slt"; goto sgti; case M_SGTU_I: s = "sltu"; sgti: load_register (&icnt, AT, &imm_expr, 0); macro_build ((char *) NULL, &icnt, NULL, s, "d,v,t", dreg, AT, sreg); break; case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */ s = "slt"; goto sle; case M_SLEU: s = "sltu"; sle: macro_build ((char *) NULL, &icnt, NULL, s, "d,v,t", dreg, treg, sreg); macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", dreg, dreg, (int) BFD_RELOC_LO16); return; case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */ s = "slt"; goto slei; case M_SLEU_I: s = "sltu"; slei: load_register (&icnt, AT, &imm_expr, 0); macro_build ((char *) NULL, &icnt, NULL, s, "d,v,t", dreg, AT, sreg); macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", dreg, dreg, (int) BFD_RELOC_LO16); break; case M_SLT_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000) { macro_build ((char *) NULL, &icnt, &imm_expr, "slti", "t,r,j", dreg, sreg, (int) BFD_RELOC_LO16); return; } load_register (&icnt, AT, &imm_expr, 0); macro_build ((char *) NULL, &icnt, NULL, "slt", "d,v,t", dreg, sreg, AT); break; case M_SLTU_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000) { macro_build ((char *) NULL, &icnt, &imm_expr, "sltiu", "t,r,j", dreg, sreg, (int) BFD_RELOC_LO16); return; } load_register (&icnt, AT, &imm_expr, 0); macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", dreg, sreg, AT); break; case M_SNE: if (sreg == 0) macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", dreg, 0, treg); else if (treg == 0) macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", dreg, 0, sreg); else { macro_build ((char *) NULL, &icnt, NULL, "xor", "d,v,t", dreg, sreg, treg); macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", dreg, 0, dreg); } return; case M_SNE_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) { macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", dreg, 0, sreg); return; } if (sreg == 0) { as_warn (_("Instruction %s: result is always true"), ip->insn_mo->name); macro_build ((char *) NULL, &icnt, &expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j", dreg, 0, (int) BFD_RELOC_LO16); return; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= 0 && imm_expr.X_add_number < 0x10000) { macro_build ((char *) NULL, &icnt, &imm_expr, "xori", "t,r,i", dreg, sreg, (int) BFD_RELOC_LO16); used_at = 0; } else if (imm_expr.X_op == O_constant && imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number < 0) { imm_expr.X_add_number = -imm_expr.X_add_number; macro_build ((char *) NULL, &icnt, &imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j", dreg, sreg, (int) BFD_RELOC_LO16); used_at = 0; } else { load_register (&icnt, AT, &imm_expr, 0); macro_build ((char *) NULL, &icnt, NULL, "xor", "d,v,t", dreg, sreg, AT); used_at = 1; } macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", dreg, 0, dreg); if (used_at) break; return; case M_DSUB_I: dbl = 1; case M_SUB_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number <= 0x8000) { imm_expr.X_add_number = -imm_expr.X_add_number; macro_build ((char *) NULL, &icnt, &imm_expr, dbl ? "daddi" : "addi", "t,r,j", dreg, sreg, (int) BFD_RELOC_LO16); return; } load_register (&icnt, AT, &imm_expr, dbl); macro_build ((char *) NULL, &icnt, NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT); break; case M_DSUBU_I: dbl = 1; case M_SUBU_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number <= 0x8000) { imm_expr.X_add_number = -imm_expr.X_add_number; macro_build ((char *) NULL, &icnt, &imm_expr, dbl ? "daddiu" : "addiu", "t,r,j", dreg, sreg, (int) BFD_RELOC_LO16); return; } load_register (&icnt, AT, &imm_expr, dbl); macro_build ((char *) NULL, &icnt, NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT); break; case M_TEQ_I: s = "teq"; goto trap; case M_TGE_I: s = "tge"; goto trap; case M_TGEU_I: s = "tgeu"; goto trap; case M_TLT_I: s = "tlt"; goto trap; case M_TLTU_I: s = "tltu"; goto trap; case M_TNE_I: s = "tne"; trap: load_register (&icnt, AT, &imm_expr, 0); macro_build ((char *) NULL, &icnt, NULL, s, "s,t", sreg, AT); break; case M_TRUNCWS: case M_TRUNCWD: assert (mips_opts.isa == ISA_MIPS1); sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */ dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */ /* * Is the double cfc1 instruction a bug in the mips assembler; * or is there a reason for it? */ mips_emit_delays (true); ++mips_opts.noreorder; mips_any_noreorder = 1; macro_build ((char *) NULL, &icnt, NULL, "cfc1", "t,G", treg, 31); macro_build ((char *) NULL, &icnt, NULL, "cfc1", "t,G", treg, 31); macro_build ((char *) NULL, &icnt, NULL, "nop", ""); expr1.X_add_number = 3; macro_build ((char *) NULL, &icnt, &expr1, "ori", "t,r,i", AT, treg, (int) BFD_RELOC_LO16); expr1.X_add_number = 2; macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", AT, AT, (int) BFD_RELOC_LO16); macro_build ((char *) NULL, &icnt, NULL, "ctc1", "t,G", AT, 31); macro_build ((char *) NULL, &icnt, NULL, "nop", ""); macro_build ((char *) NULL, &icnt, NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S", dreg, sreg); macro_build ((char *) NULL, &icnt, NULL, "ctc1", "t,G", treg, 31); macro_build ((char *) NULL, &icnt, NULL, "nop", ""); --mips_opts.noreorder; break; case M_ULH: s = "lb"; goto ulh; case M_ULHU: s = "lbu"; ulh: if (offset_expr.X_add_number >= 0x7fff) as_bad (_("operand overflow")); /* avoid load delay */ if (! target_big_endian) offset_expr.X_add_number += 1; macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg, (int) BFD_RELOC_LO16, breg); if (! target_big_endian) offset_expr.X_add_number -= 1; else offset_expr.X_add_number += 1; macro_build ((char *) NULL, &icnt, &offset_expr, "lbu", "t,o(b)", AT, (int) BFD_RELOC_LO16, breg); macro_build ((char *) NULL, &icnt, NULL, "sll", "d,w,<", treg, treg, 8); macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", treg, treg, AT); break; case M_ULD: s = "ldl"; s2 = "ldr"; off = 7; goto ulw; case M_ULW: s = "lwl"; s2 = "lwr"; off = 3; ulw: if (offset_expr.X_add_number >= 0x8000 - off) as_bad (_("operand overflow")); if (! target_big_endian) offset_expr.X_add_number += off; macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg, (int) BFD_RELOC_LO16, breg); if (! target_big_endian) offset_expr.X_add_number -= off; else offset_expr.X_add_number += off; macro_build ((char *) NULL, &icnt, &offset_expr, s2, "t,o(b)", treg, (int) BFD_RELOC_LO16, breg); return; case M_ULD_A: s = "ldl"; s2 = "ldr"; off = 7; goto ulwa; case M_ULW_A: s = "lwl"; s2 = "lwr"; off = 3; ulwa: load_address (&icnt, AT, &offset_expr); if (breg != 0) macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", AT, AT, breg); if (! target_big_endian) expr1.X_add_number = off; else expr1.X_add_number = 0; macro_build ((char *) NULL, &icnt, &expr1, s, "t,o(b)", treg, (int) BFD_RELOC_LO16, AT); if (! target_big_endian) expr1.X_add_number = 0; else expr1.X_add_number = off; macro_build ((char *) NULL, &icnt, &expr1, s2, "t,o(b)", treg, (int) BFD_RELOC_LO16, AT); break; case M_ULH_A: case M_ULHU_A: load_address (&icnt, AT, &offset_expr); if (breg != 0) macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", AT, AT, breg); if (target_big_endian) expr1.X_add_number = 0; macro_build ((char *) NULL, &icnt, &expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)", treg, (int) BFD_RELOC_LO16, AT); if (target_big_endian) expr1.X_add_number = 1; else expr1.X_add_number = 0; macro_build ((char *) NULL, &icnt, &expr1, "lbu", "t,o(b)", AT, (int) BFD_RELOC_LO16, AT); macro_build ((char *) NULL, &icnt, NULL, "sll", "d,w,<", treg, treg, 8); macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", treg, treg, AT); break; case M_USH: if (offset_expr.X_add_number >= 0x7fff) as_bad (_("operand overflow")); if (target_big_endian) offset_expr.X_add_number += 1; macro_build ((char *) NULL, &icnt, &offset_expr, "sb", "t,o(b)", treg, (int) BFD_RELOC_LO16, breg); macro_build ((char *) NULL, &icnt, NULL, "srl", "d,w,<", AT, treg, 8); if (target_big_endian) offset_expr.X_add_number -= 1; else offset_expr.X_add_number += 1; macro_build ((char *) NULL, &icnt, &offset_expr, "sb", "t,o(b)", AT, (int) BFD_RELOC_LO16, breg); break; case M_USD: s = "sdl"; s2 = "sdr"; off = 7; goto usw; case M_USW: s = "swl"; s2 = "swr"; off = 3; usw: if (offset_expr.X_add_number >= 0x8000 - off) as_bad (_("operand overflow")); if (! target_big_endian) offset_expr.X_add_number += off; macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg, (int) BFD_RELOC_LO16, breg); if (! target_big_endian) offset_expr.X_add_number -= off; else offset_expr.X_add_number += off; macro_build ((char *) NULL, &icnt, &offset_expr, s2, "t,o(b)", treg, (int) BFD_RELOC_LO16, breg); return; case M_USD_A: s = "sdl"; s2 = "sdr"; off = 7; goto uswa; case M_USW_A: s = "swl"; s2 = "swr"; off = 3; uswa: load_address (&icnt, AT, &offset_expr); if (breg != 0) macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", AT, AT, breg); if (! target_big_endian) expr1.X_add_number = off; else expr1.X_add_number = 0; macro_build ((char *) NULL, &icnt, &expr1, s, "t,o(b)", treg, (int) BFD_RELOC_LO16, AT); if (! target_big_endian) expr1.X_add_number = 0; else expr1.X_add_number = off; macro_build ((char *) NULL, &icnt, &expr1, s2, "t,o(b)", treg, (int) BFD_RELOC_LO16, AT); break; case M_USH_A: load_address (&icnt, AT, &offset_expr); if (breg != 0) macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", AT, AT, breg); if (! target_big_endian) expr1.X_add_number = 0; macro_build ((char *) NULL, &icnt, &expr1, "sb", "t,o(b)", treg, (int) BFD_RELOC_LO16, AT); macro_build ((char *) NULL, &icnt, NULL, "srl", "d,w,<", treg, treg, 8); if (! target_big_endian) expr1.X_add_number = 1; else expr1.X_add_number = 0; macro_build ((char *) NULL, &icnt, &expr1, "sb", "t,o(b)", treg, (int) BFD_RELOC_LO16, AT); if (! target_big_endian) expr1.X_add_number = 0; else expr1.X_add_number = 1; macro_build ((char *) NULL, &icnt, &expr1, "lbu", "t,o(b)", AT, (int) BFD_RELOC_LO16, AT); macro_build ((char *) NULL, &icnt, NULL, "sll", "d,w,<", treg, treg, 8); macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", treg, treg, AT); break; default: /* FIXME: Check if this is one of the itbl macros, since they are added dynamically. */ as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name); break; } if (mips_opts.noat) as_warn (_("Macro used $at after \".set noat\"")); } /* Implement macros in mips16 mode. */ static void mips16_macro (ip) struct mips_cl_insn *ip; { int mask; int xreg, yreg, zreg, tmp; int icnt; expressionS expr1; int dbl; const char *s, *s2, *s3; mask = ip->insn_mo->mask; xreg = (ip->insn_opcode >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX; yreg = (ip->insn_opcode >> MIPS16OP_SH_RY) & MIPS16OP_MASK_RY; zreg = (ip->insn_opcode >> MIPS16OP_SH_RZ) & MIPS16OP_MASK_RZ; icnt = 0; expr1.X_op = O_constant; expr1.X_op_symbol = NULL; expr1.X_add_symbol = NULL; expr1.X_add_number = 1; dbl = 0; switch (mask) { default: internalError (); case M_DDIV_3: dbl = 1; case M_DIV_3: s = "mflo"; goto do_div3; case M_DREM_3: dbl = 1; case M_REM_3: s = "mfhi"; do_div3: mips_emit_delays (true); ++mips_opts.noreorder; mips_any_noreorder = 1; macro_build ((char *) NULL, &icnt, NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg); expr1.X_add_number = 2; macro_build ((char *) NULL, &icnt, &expr1, "bnez", "x,p", yreg); macro_build ((char *) NULL, &icnt, NULL, "break", "6", 7); /* FIXME: The normal code checks for of -1 / -0x80000000 here, since that causes an overflow. We should do that as well, but I don't see how to do the comparisons without a temporary register. */ --mips_opts.noreorder; macro_build ((char *) NULL, &icnt, NULL, s, "x", zreg); break; case M_DIVU_3: s = "divu"; s2 = "mflo"; goto do_divu3; case M_REMU_3: s = "divu"; s2 = "mfhi"; goto do_divu3; case M_DDIVU_3: s = "ddivu"; s2 = "mflo"; goto do_divu3; case M_DREMU_3: s = "ddivu"; s2 = "mfhi"; do_divu3: mips_emit_delays (true); ++mips_opts.noreorder; mips_any_noreorder = 1; macro_build ((char *) NULL, &icnt, NULL, s, "0,x,y", xreg, yreg); expr1.X_add_number = 2; macro_build ((char *) NULL, &icnt, &expr1, "bnez", "x,p", yreg); macro_build ((char *) NULL, &icnt, NULL, "break", "6", 7); --mips_opts.noreorder; macro_build ((char *) NULL, &icnt, NULL, s2, "x", zreg); break; case M_DMUL: dbl = 1; case M_MUL: macro_build ((char *) NULL, &icnt, NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg); macro_build ((char *) NULL, &icnt, NULL, "mflo", "x", zreg); return; case M_DSUBU_I: dbl = 1; goto do_subu; case M_SUBU_I: do_subu: if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); imm_expr.X_add_number = -imm_expr.X_add_number; macro_build ((char *) NULL, &icnt, &imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg); break; case M_SUBU_I_2: if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); imm_expr.X_add_number = -imm_expr.X_add_number; macro_build ((char *) NULL, &icnt, &imm_expr, "addiu", "x,k", xreg); break; case M_DSUBU_I_2: if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); imm_expr.X_add_number = -imm_expr.X_add_number; macro_build ((char *) NULL, &icnt, &imm_expr, "daddiu", "y,j", yreg); break; case M_BEQ: s = "cmp"; s2 = "bteqz"; goto do_branch; case M_BNE: s = "cmp"; s2 = "btnez"; goto do_branch; case M_BLT: s = "slt"; s2 = "btnez"; goto do_branch; case M_BLTU: s = "sltu"; s2 = "btnez"; goto do_branch; case M_BLE: s = "slt"; s2 = "bteqz"; goto do_reverse_branch; case M_BLEU: s = "sltu"; s2 = "bteqz"; goto do_reverse_branch; case M_BGE: s = "slt"; s2 = "bteqz"; goto do_branch; case M_BGEU: s = "sltu"; s2 = "bteqz"; goto do_branch; case M_BGT: s = "slt"; s2 = "btnez"; goto do_reverse_branch; case M_BGTU: s = "sltu"; s2 = "btnez"; do_reverse_branch: tmp = xreg; xreg = yreg; yreg = tmp; do_branch: macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "x,y", xreg, yreg); macro_build ((char *) NULL, &icnt, &offset_expr, s2, "p"); break; case M_BEQ_I: s = "cmpi"; s2 = "bteqz"; s3 = "x,U"; goto do_branch_i; case M_BNE_I: s = "cmpi"; s2 = "btnez"; s3 = "x,U"; goto do_branch_i; case M_BLT_I: s = "slti"; s2 = "btnez"; s3 = "x,8"; goto do_branch_i; case M_BLTU_I: s = "sltiu"; s2 = "btnez"; s3 = "x,8"; goto do_branch_i; case M_BLE_I: s = "slti"; s2 = "btnez"; s3 = "x,8"; goto do_addone_branch_i; case M_BLEU_I: s = "sltiu"; s2 = "btnez"; s3 = "x,8"; goto do_addone_branch_i; case M_BGE_I: s = "slti"; s2 = "bteqz"; s3 = "x,8"; goto do_branch_i; case M_BGEU_I: s = "sltiu"; s2 = "bteqz"; s3 = "x,8"; goto do_branch_i; case M_BGT_I: s = "slti"; s2 = "bteqz"; s3 = "x,8"; goto do_addone_branch_i; case M_BGTU_I: s = "sltiu"; s2 = "bteqz"; s3 = "x,8"; do_addone_branch_i: if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); ++imm_expr.X_add_number; do_branch_i: macro_build ((char *) NULL, &icnt, &imm_expr, s, s3, xreg); macro_build ((char *) NULL, &icnt, &offset_expr, s2, "p"); break; case M_ABS: expr1.X_add_number = 0; macro_build ((char *) NULL, &icnt, &expr1, "slti", "x,8", yreg); if (xreg != yreg) macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "move", "y,X", xreg, yreg); expr1.X_add_number = 2; macro_build ((char *) NULL, &icnt, &expr1, "bteqz", "p"); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "neg", "x,w", xreg, xreg); } } /* For consistency checking, verify that all bits are specified either by the match/mask part of the instruction definition, or by the operand list. */ static int validate_mips_insn (opc) const struct mips_opcode *opc; { const char *p = opc->args; char c; unsigned long used_bits = opc->mask; if ((used_bits & opc->match) != opc->match) { as_bad (_("internal: bad mips opcode (mask error): %s %s"), opc->name, opc->args); return 0; } #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift))) while (*p) switch (c = *p++) { case ',': break; case '(': break; case ')': break; case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break; case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break; case 'A': break; case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break; case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break; case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break; case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break; case 'F': break; case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break; case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break; case 'I': break; case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break; case 'L': break; case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break; case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break; case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break; case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break; case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break; case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break; case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break; case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break; case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break; case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break; case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break; case 'f': break; case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break; case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break; case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break; case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break; case 'l': break; case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break; case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break; case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break; case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break; case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break; case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break; case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break; case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break; case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break; case 'x': break; case 'z': break; case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break; case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD); USE_BITS (OP_MASK_RT, OP_SH_RT); break; default: as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"), c, opc->name, opc->args); return 0; } #undef USE_BITS if (used_bits != 0xffffffff) { as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"), ~used_bits & 0xffffffff, opc->name, opc->args); return 0; } return 1; } /* This routine assembles an instruction into its binary format. As a side effect, it sets one of the global variables imm_reloc or offset_reloc to the type of relocation to do if one of the operands is an address expression. */ static void mips_ip (str, ip) char *str; struct mips_cl_insn *ip; { char *s; const char *args; char c = 0; struct mips_opcode *insn; char *argsStart; unsigned int regno; unsigned int lastregno = 0; char *s_reset; char save_c = 0; int full_opcode_match = 1; insn_error = NULL; /* If the instruction contains a '.', we first try to match an instruction including the '.'. Then we try again without the '.'. */ insn = NULL; for (s = str; *s != '\0' && !isspace ((unsigned char) *s); ++s) continue; /* If we stopped on whitespace, then replace the whitespace with null for the call to hash_find. Save the character we replaced just in case we have to re-parse the instruction. */ if (isspace ((unsigned char) *s)) { save_c = *s; *s++ = '\0'; } insn = (struct mips_opcode *) hash_find (op_hash, str); /* If we didn't find the instruction in the opcode table, try again, but this time with just the instruction up to, but not including the first '.'. */ if (insn == NULL) { /* Restore the character we overwrite above (if any). */ if (save_c) *(--s) = save_c; /* Scan up to the first '.' or whitespace. */ for (s = str; *s != '\0' && *s != '.' && !isspace ((unsigned char) *s); ++s) continue; /* If we did not find a '.', then we can quit now. */ if (*s != '.') { insn_error = "unrecognized opcode"; return; } /* Lookup the instruction in the hash table. */ *s++ = '\0'; if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL) { insn_error = "unrecognized opcode"; return; } full_opcode_match = 0; } argsStart = s; for (;;) { boolean ok; assert (strcmp (insn->name, str) == 0); if (OPCODE_IS_MEMBER (insn, mips_opts.isa, mips_arch, HAVE_32BIT_GPRS)) ok = true; else ok = false; if (insn->pinfo != INSN_MACRO) { if (mips_arch == CPU_R4650 && (insn->pinfo & FP_D) != 0) ok = false; } if (! ok) { if (insn + 1 < &mips_opcodes[NUMOPCODES] && strcmp (insn->name, insn[1].name) == 0) { ++insn; continue; } else { if (!insn_error) { static char buf[100]; sprintf (buf, _("opcode not supported on this processor: %s (%s)"), mips_cpu_to_str (mips_arch), mips_isa_to_str (mips_opts.isa)); insn_error = buf; } if (save_c) *(--s) = save_c; return; } } ip->insn_mo = insn; ip->insn_opcode = insn->match; insn_error = NULL; for (args = insn->args;; ++args) { if (*s == ' ') ++s; switch (*args) { case '\0': /* end of args */ if (*s == '\0') return; break; case ',': if (*s++ == *args) continue; s--; switch (*++args) { case 'r': case 'v': ip->insn_opcode |= lastregno << 21; continue; case 'w': case 'W': ip->insn_opcode |= lastregno << 16; continue; case 'V': ip->insn_opcode |= lastregno << 11; continue; } break; case '(': /* Handle optional base register. Either the base register is omitted or we must have a left paren. */ /* This is dependent on the next operand specifier is a base register specification. */ assert (args[1] == 'b' || args[1] == '5' || args[1] == '-' || args[1] == '4'); if (*s == '\0') return; case ')': /* these must match exactly */ if (*s++ == *args) continue; break; case '<': /* must be at least one digit */ /* * According to the manual, if the shift amount is greater * than 31 or less than 0 the the shift amount should be * mod 32. In reality the mips assembler issues an error. * We issue a warning and mask out all but the low 5 bits. */ my_getExpression (&imm_expr, s); check_absolute_expr (ip, &imm_expr); if ((unsigned long) imm_expr.X_add_number > 31) { as_warn (_("Improper shift amount (%ld)"), (long) imm_expr.X_add_number); imm_expr.X_add_number = imm_expr.X_add_number & 0x1f; } ip->insn_opcode |= imm_expr.X_add_number << 6; imm_expr.X_op = O_absent; s = expr_end; continue; case '>': /* shift amount minus 32 */ my_getExpression (&imm_expr, s); check_absolute_expr (ip, &imm_expr); if ((unsigned long) imm_expr.X_add_number < 32 || (unsigned long) imm_expr.X_add_number > 63) break; ip->insn_opcode |= (imm_expr.X_add_number - 32) << 6; imm_expr.X_op = O_absent; s = expr_end; continue; case 'k': /* cache code */ case 'h': /* prefx code */ my_getExpression (&imm_expr, s); check_absolute_expr (ip, &imm_expr); if ((unsigned long) imm_expr.X_add_number > 31) { as_warn (_("Invalid value for `%s' (%lu)"), ip->insn_mo->name, (unsigned long) imm_expr.X_add_number); imm_expr.X_add_number &= 0x1f; } if (*args == 'k') ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CACHE; else ip->insn_opcode |= imm_expr.X_add_number << OP_SH_PREFX; imm_expr.X_op = O_absent; s = expr_end; continue; case 'c': /* break code */ my_getExpression (&imm_expr, s); check_absolute_expr (ip, &imm_expr); if ((unsigned) imm_expr.X_add_number > 1023) { as_warn (_("Illegal break code (%ld)"), (long) imm_expr.X_add_number); imm_expr.X_add_number &= 0x3ff; } ip->insn_opcode |= imm_expr.X_add_number << 16; imm_expr.X_op = O_absent; s = expr_end; continue; case 'q': /* lower break code */ my_getExpression (&imm_expr, s); check_absolute_expr (ip, &imm_expr); if ((unsigned) imm_expr.X_add_number > 1023) { as_warn (_("Illegal lower break code (%ld)"), (long) imm_expr.X_add_number); imm_expr.X_add_number &= 0x3ff; } ip->insn_opcode |= imm_expr.X_add_number << 6; imm_expr.X_op = O_absent; s = expr_end; continue; case 'B': /* 20-bit syscall/break code. */ my_getExpression (&imm_expr, s); check_absolute_expr (ip, &imm_expr); if ((unsigned) imm_expr.X_add_number > 0xfffff) as_warn (_("Illegal 20-bit code (%ld)"), (long) imm_expr.X_add_number); ip->insn_opcode |= imm_expr.X_add_number << 6; imm_expr.X_op = O_absent; s = expr_end; continue; case 'C': /* Coprocessor code */ my_getExpression (&imm_expr, s); check_absolute_expr (ip, &imm_expr); if ((unsigned long) imm_expr.X_add_number >= (1<<25)) { as_warn (_("Coproccesor code > 25 bits (%ld)"), (long) imm_expr.X_add_number); imm_expr.X_add_number &= ((1<<25) - 1); } ip->insn_opcode |= imm_expr.X_add_number; imm_expr.X_op = O_absent; s = expr_end; continue; case 'J': /* 19-bit wait code. */ my_getExpression (&imm_expr, s); check_absolute_expr (ip, &imm_expr); if ((unsigned) imm_expr.X_add_number > 0x7ffff) as_warn (_("Illegal 19-bit code (%ld)"), (long) imm_expr.X_add_number); ip->insn_opcode |= imm_expr.X_add_number << 6; imm_expr.X_op = O_absent; s = expr_end; continue; case 'P': /* Performance register */ my_getExpression (&imm_expr, s); check_absolute_expr (ip, &imm_expr); if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1) { as_warn (_("Invalidate performance regster (%ld)"), (long) imm_expr.X_add_number); imm_expr.X_add_number &= 1; } ip->insn_opcode |= (imm_expr.X_add_number << 1); imm_expr.X_op = O_absent; s = expr_end; continue; case 'b': /* base register */ case 'd': /* destination register */ case 's': /* source register */ case 't': /* target register */ case 'r': /* both target and source */ case 'v': /* both dest and source */ case 'w': /* both dest and target */ case 'E': /* coprocessor target register */ case 'G': /* coprocessor destination register */ case 'x': /* ignore register name */ case 'z': /* must be zero register */ case 'U': /* destination register (clo/clz). */ s_reset = s; if (s[0] == '$') { if (isdigit ((unsigned char) s[1])) { ++s; regno = 0; do { regno *= 10; regno += *s - '0'; ++s; } while (isdigit ((unsigned char) *s)); if (regno > 31) as_bad (_("Invalid register number (%d)"), regno); } else if (*args == 'E' || *args == 'G') goto notreg; else { if (s[1] == 'f' && s[2] == 'p') { s += 3; regno = FP; } else if (s[1] == 's' && s[2] == 'p') { s += 3; regno = SP; } else if (s[1] == 'g' && s[2] == 'p') { s += 3; regno = GP; } else if (s[1] == 'a' && s[2] == 't') { s += 3; regno = AT; } else if (s[1] == 'k' && s[2] == 't' && s[3] == '0') { s += 4; regno = KT0; } else if (s[1] == 'k' && s[2] == 't' && s[3] == '1') { s += 4; regno = KT1; } else if (itbl_have_entries) { char *p, *n; unsigned long r; p = s + 1; /* advance past '$' */ n = itbl_get_field (&p); /* n is name */ /* See if this is a register defined in an itbl entry. */ if (itbl_get_reg_val (n, &r)) { /* Get_field advances to the start of the next field, so we need to back rack to the end of the last field. */ if (p) s = p - 1; else s = strchr (s, '\0'); regno = r; } else goto notreg; } else goto notreg; } if (regno == AT && ! mips_opts.noat && *args != 'E' && *args != 'G') as_warn (_("Used $at without \".set noat\"")); c = *args; if (*s == ' ') s++; if (args[1] != *s) { if (c == 'r' || c == 'v' || c == 'w') { regno = lastregno; s = s_reset; args++; } } /* 'z' only matches $0. */ if (c == 'z' && regno != 0) break; /* Now that we have assembled one operand, we use the args string * to figure out where it goes in the instruction. */ switch (c) { case 'r': case 's': case 'v': case 'b': ip->insn_opcode |= regno << 21; break; case 'd': case 'G': ip->insn_opcode |= regno << 11; break; case 'U': ip->insn_opcode |= regno << 11; ip->insn_opcode |= regno << 16; break; case 'w': case 't': case 'E': ip->insn_opcode |= regno << 16; break; case 'x': /* This case exists because on the r3000 trunc expands into a macro which requires a gp register. On the r6000 or r4000 it is assembled into a single instruction which ignores the register. Thus the insn version is MIPS_ISA2 and uses 'x', and the macro version is MIPS_ISA1 and uses 't'. */ break; case 'z': /* This case is for the div instruction, which acts differently if the destination argument is $0. This only matches $0, and is checked outside the switch. */ break; case 'D': /* Itbl operand; not yet implemented. FIXME ?? */ break; /* What about all other operands like 'i', which can be specified in the opcode table? */ } lastregno = regno; continue; } notreg: switch (*args++) { case 'r': case 'v': ip->insn_opcode |= lastregno << 21; continue; case 'w': ip->insn_opcode |= lastregno << 16; continue; } break; case 'D': /* floating point destination register */ case 'S': /* floating point source register */ case 'T': /* floating point target register */ case 'R': /* floating point source register */ case 'V': case 'W': s_reset = s; if (s[0] == '$' && s[1] == 'f' && isdigit ((unsigned char) s[2])) { s += 2; regno = 0; do { regno *= 10; regno += *s - '0'; ++s; } while (isdigit ((unsigned char) *s)); if (regno > 31) as_bad (_("Invalid float register number (%d)"), regno); if ((regno & 1) != 0 && HAVE_32BIT_FPRS && ! (strcmp (str, "mtc1") == 0 || strcmp (str, "mfc1") == 0 || strcmp (str, "lwc1") == 0 || strcmp (str, "swc1") == 0 || strcmp (str, "l.s") == 0 || strcmp (str, "s.s") == 0)) as_warn (_("Float register should be even, was %d"), regno); c = *args; if (*s == ' ') s++; if (args[1] != *s) { if (c == 'V' || c == 'W') { regno = lastregno; s = s_reset; args++; } } switch (c) { case 'D': ip->insn_opcode |= regno << 6; break; case 'V': case 'S': ip->insn_opcode |= regno << 11; break; case 'W': case 'T': ip->insn_opcode |= regno << 16; break; case 'R': ip->insn_opcode |= regno << 21; break; } lastregno = regno; continue; } switch (*args++) { case 'V': ip->insn_opcode |= lastregno << 11; continue; case 'W': ip->insn_opcode |= lastregno << 16; continue; } break; case 'I': my_getExpression (&imm_expr, s); if (imm_expr.X_op != O_big && imm_expr.X_op != O_constant) insn_error = _("absolute expression required"); s = expr_end; continue; case 'A': my_getExpression (&offset_expr, s); imm_reloc = BFD_RELOC_32; s = expr_end; continue; case 'F': case 'L': case 'f': case 'l': { int f64; int using_gprs; char *save_in; char *err; unsigned char temp[8]; int len; unsigned int length; segT seg; subsegT subseg; char *p; /* These only appear as the last operand in an instruction, and every instruction that accepts them in any variant accepts them in all variants. This means we don't have to worry about backing out any changes if the instruction does not match. The difference between them is the size of the floating point constant and where it goes. For 'F' and 'L' the constant is 64 bits; for 'f' and 'l' it is 32 bits. Where the constant is placed is based on how the MIPS assembler does things: F -- .rdata L -- .lit8 f -- immediate value l -- .lit4 The .lit4 and .lit8 sections are only used if permitted by the -G argument. When generating embedded PIC code, we use the .lit8 section but not the .lit4 section (we can do .lit4 inline easily; we need to put .lit8 somewhere in the data segment, and using .lit8 permits the linker to eventually combine identical .lit8 entries). The code below needs to know whether the target register is 32 or 64 bits wide. It relies on the fact 'f' and 'F' are used with GPR-based instructions and 'l' and 'L' are used with FPR-based instructions. */ f64 = *args == 'F' || *args == 'L'; using_gprs = *args == 'F' || *args == 'f'; save_in = input_line_pointer; input_line_pointer = s; err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len); length = len; s = input_line_pointer; input_line_pointer = save_in; if (err != NULL && *err != '\0') { as_bad (_("Bad floating point constant: %s"), err); memset (temp, '\0', sizeof temp); length = f64 ? 8 : 4; } assert (length == (unsigned) (f64 ? 8 : 4)); if (*args == 'f' || (*args == 'l' && (! USE_GLOBAL_POINTER_OPT || mips_pic == EMBEDDED_PIC || g_switch_value < 4 || (temp[0] == 0 && temp[1] == 0) || (temp[2] == 0 && temp[3] == 0)))) { imm_expr.X_op = O_constant; if (! target_big_endian) imm_expr.X_add_number = bfd_getl32 (temp); else imm_expr.X_add_number = bfd_getb32 (temp); } else if (length > 4 && ! mips_disable_float_construction /* Constants can only be constructed in GPRs and copied to FPRs if the GPRs are at least as wide as the FPRs. Force the constant into memory if we are using 64-bit FPRs but the GPRs are only 32 bits wide. */ && (using_gprs || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS)) && ((temp[0] == 0 && temp[1] == 0) || (temp[2] == 0 && temp[3] == 0)) && ((temp[4] == 0 && temp[5] == 0) || (temp[6] == 0 && temp[7] == 0))) { /* The value is simple enough to load with a couple of instructions. If using 32-bit registers, set imm_expr to the high order 32 bits and offset_expr to the low order 32 bits. Otherwise, set imm_expr to the entire 64 bit constant. */ if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS) { imm_expr.X_op = O_constant; offset_expr.X_op = O_constant; if (! target_big_endian) { imm_expr.X_add_number = bfd_getl32 (temp + 4); offset_expr.X_add_number = bfd_getl32 (temp); } else { imm_expr.X_add_number = bfd_getb32 (temp); offset_expr.X_add_number = bfd_getb32 (temp + 4); } if (offset_expr.X_add_number == 0) offset_expr.X_op = O_absent; } else if (sizeof (imm_expr.X_add_number) > 4) { imm_expr.X_op = O_constant; if (! target_big_endian) imm_expr.X_add_number = bfd_getl64 (temp); else imm_expr.X_add_number = bfd_getb64 (temp); } else { imm_expr.X_op = O_big; imm_expr.X_add_number = 4; if (! target_big_endian) { generic_bignum[0] = bfd_getl16 (temp); generic_bignum[1] = bfd_getl16 (temp + 2); generic_bignum[2] = bfd_getl16 (temp + 4); generic_bignum[3] = bfd_getl16 (temp + 6); } else { generic_bignum[0] = bfd_getb16 (temp + 6); generic_bignum[1] = bfd_getb16 (temp + 4); generic_bignum[2] = bfd_getb16 (temp + 2); generic_bignum[3] = bfd_getb16 (temp); } } } else { const char *newname; segT new_seg; /* Switch to the right section. */ seg = now_seg; subseg = now_subseg; switch (*args) { default: /* unused default case avoids warnings. */ case 'L': newname = RDATA_SECTION_NAME; if ((USE_GLOBAL_POINTER_OPT && g_switch_value >= 8) || mips_pic == EMBEDDED_PIC) newname = ".lit8"; break; case 'F': if (mips_pic == EMBEDDED_PIC) newname = ".lit8"; else newname = RDATA_SECTION_NAME; break; case 'l': assert (!USE_GLOBAL_POINTER_OPT || g_switch_value >= 4); newname = ".lit4"; break; } new_seg = subseg_new (newname, (subsegT) 0); if (OUTPUT_FLAVOR == bfd_target_elf_flavour) bfd_set_section_flags (stdoutput, new_seg, (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA)); frag_align (*args == 'l' ? 2 : 3, 0, 0); if (OUTPUT_FLAVOR == bfd_target_elf_flavour && strcmp (TARGET_OS, "elf") != 0) record_alignment (new_seg, 4); else record_alignment (new_seg, *args == 'l' ? 2 : 3); if (seg == now_seg) as_bad (_("Can't use floating point insn in this section")); /* Set the argument to the current address in the section. */ offset_expr.X_op = O_symbol; offset_expr.X_add_symbol = symbol_new ("L0\001", now_seg, (valueT) frag_now_fix (), frag_now); offset_expr.X_add_number = 0; /* Put the floating point number into the section. */ p = frag_more ((int) length); memcpy (p, temp, length); /* Switch back to the original section. */ subseg_set (seg, subseg); } } continue; case 'i': /* 16 bit unsigned immediate */ case 'j': /* 16 bit signed immediate */ imm_reloc = BFD_RELOC_LO16; c = my_getSmallExpression (&imm_expr, s); if (c != '\0') { if (c != 'l') { if (imm_expr.X_op == O_constant) imm_expr.X_add_number = (imm_expr.X_add_number >> 16) & 0xffff; else if (c == 'h') { imm_reloc = BFD_RELOC_HI16_S; imm_unmatched_hi = true; } else imm_reloc = BFD_RELOC_HI16; } else if (imm_expr.X_op == O_constant) imm_expr.X_add_number &= 0xffff; } if (*args == 'i') { if ((c == '\0' && imm_expr.X_op != O_constant) || ((imm_expr.X_add_number < 0 || imm_expr.X_add_number >= 0x10000) && imm_expr.X_op == O_constant)) { if (insn + 1 < &mips_opcodes[NUMOPCODES] && !strcmp (insn->name, insn[1].name)) break; if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big) as_bad (_("16 bit expression not in range 0..65535")); } } else { int more; offsetT max; /* The upper bound should be 0x8000, but unfortunately the MIPS assembler accepts numbers from 0x8000 to 0xffff and sign extends them, and we want to be compatible. We only permit this extended range for an instruction which does not provide any further alternates, since those alternates may handle other cases. People should use the numbers they mean, rather than relying on a mysterious sign extension. */ more = (insn + 1 < &mips_opcodes[NUMOPCODES] && strcmp (insn->name, insn[1].name) == 0); if (more) max = 0x8000; else max = 0x10000; if ((c == '\0' && imm_expr.X_op != O_constant) || ((imm_expr.X_add_number < -0x8000 || imm_expr.X_add_number >= max) && imm_expr.X_op == O_constant) || (more && imm_expr.X_add_number < 0 && HAVE_64BIT_GPRS && imm_expr.X_unsigned && sizeof (imm_expr.X_add_number) <= 4)) { if (more) break; if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big) as_bad (_("16 bit expression not in range -32768..32767")); } } s = expr_end; continue; case 'o': /* 16 bit offset */ c = my_getSmallExpression (&offset_expr, s); /* If this value won't fit into a 16 bit offset, then go find a macro that will generate the 32 bit offset code pattern. As a special hack, we accept the difference of two local symbols as a constant. This is required to suppose embedded PIC switches, which use an instruction which looks like lw $4,$L12-$LS12($4) The problem with handling this in a more general fashion is that the macro function doesn't expect to see anything which can be handled in a single constant instruction. */ if (c == 0 && (offset_expr.X_op != O_constant || offset_expr.X_add_number >= 0x8000 || offset_expr.X_add_number < -0x8000) && (mips_pic != EMBEDDED_PIC || offset_expr.X_op != O_subtract || (S_GET_SEGMENT (offset_expr.X_add_symbol) != S_GET_SEGMENT (offset_expr.X_op_symbol)))) break; if (c == 'h' || c == 'H') { if (offset_expr.X_op != O_constant) break; offset_expr.X_add_number = (offset_expr.X_add_number >> 16) & 0xffff; } offset_reloc = BFD_RELOC_LO16; s = expr_end; continue; case 'p': /* pc relative offset */ offset_reloc = BFD_RELOC_16_PCREL_S2; my_getExpression (&offset_expr, s); s = expr_end; continue; case 'u': /* upper 16 bits */ c = my_getSmallExpression (&imm_expr, s); imm_reloc = BFD_RELOC_LO16; if (c) { if (c != 'l') { if (imm_expr.X_op == O_constant) imm_expr.X_add_number = (imm_expr.X_add_number >> 16) & 0xffff; else if (c == 'h') { imm_reloc = BFD_RELOC_HI16_S; imm_unmatched_hi = true; } else imm_reloc = BFD_RELOC_HI16; } else if (imm_expr.X_op == O_constant) imm_expr.X_add_number &= 0xffff; } if (imm_expr.X_op == O_constant && (imm_expr.X_add_number < 0 || imm_expr.X_add_number >= 0x10000)) as_bad (_("lui expression not in range 0..65535")); s = expr_end; continue; case 'a': /* 26 bit address */ my_getExpression (&offset_expr, s); s = expr_end; offset_reloc = BFD_RELOC_MIPS_JMP; continue; case 'N': /* 3 bit branch condition code */ case 'M': /* 3 bit compare condition code */ if (strncmp (s, "$fcc", 4) != 0) break; s += 4; regno = 0; do { regno *= 10; regno += *s - '0'; ++s; } while (isdigit ((unsigned char) *s)); if (regno > 7) as_bad (_("invalid condition code register $fcc%d"), regno); if (*args == 'N') ip->insn_opcode |= regno << OP_SH_BCC; else ip->insn_opcode |= regno << OP_SH_CCC; continue; case 'H': if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) s += 2; if (isdigit ((unsigned char) *s)) { c = 0; do { c *= 10; c += *s - '0'; ++s; } while (isdigit ((unsigned char) *s)); } else c = 8; /* Invalid sel value. */ if (c > 7) as_bad (_("invalid coprocessor sub-selection value (0-7)")); ip->insn_opcode |= c; continue; default: as_bad (_("bad char = '%c'\n"), *args); internalError (); } break; } /* Args don't match. */ if (insn + 1 < &mips_opcodes[NUMOPCODES] && !strcmp (insn->name, insn[1].name)) { ++insn; s = argsStart; insn_error = _("illegal operands"); continue; } if (save_c) *(--s) = save_c; insn_error = _("illegal operands"); return; } } /* This routine assembles an instruction into its binary format when assembling for the mips16. As a side effect, it sets one of the global variables imm_reloc or offset_reloc to the type of relocation to do if one of the operands is an address expression. It also sets mips16_small and mips16_ext if the user explicitly requested a small or extended instruction. */ static void mips16_ip (str, ip) char *str; struct mips_cl_insn *ip; { char *s; const char *args; struct mips_opcode *insn; char *argsstart; unsigned int regno; unsigned int lastregno = 0; char *s_reset; insn_error = NULL; mips16_small = false; mips16_ext = false; for (s = str; islower ((unsigned char) *s); ++s) ; switch (*s) { case '\0': break; case ' ': *s++ = '\0'; break; case '.': if (s[1] == 't' && s[2] == ' ') { *s = '\0'; mips16_small = true; s += 3; break; } else if (s[1] == 'e' && s[2] == ' ') { *s = '\0'; mips16_ext = true; s += 3; break; } /* Fall through. */ default: insn_error = _("unknown opcode"); return; } if (mips_opts.noautoextend && ! mips16_ext) mips16_small = true; if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL) { insn_error = _("unrecognized opcode"); return; } argsstart = s; for (;;) { assert (strcmp (insn->name, str) == 0); ip->insn_mo = insn; ip->insn_opcode = insn->match; ip->use_extend = false; imm_expr.X_op = O_absent; imm_reloc = BFD_RELOC_UNUSED; offset_expr.X_op = O_absent; offset_reloc = BFD_RELOC_UNUSED; for (args = insn->args; 1; ++args) { int c; if (*s == ' ') ++s; /* In this switch statement we call break if we did not find a match, continue if we did find a match, or return if we are done. */ c = *args; switch (c) { case '\0': if (*s == '\0') { /* Stuff the immediate value in now, if we can. */ if (imm_expr.X_op == O_constant && imm_reloc > BFD_RELOC_UNUSED && insn->pinfo != INSN_MACRO) { mips16_immed ((char *) NULL, 0, imm_reloc - BFD_RELOC_UNUSED, imm_expr.X_add_number, true, mips16_small, mips16_ext, &ip->insn_opcode, &ip->use_extend, &ip->extend); imm_expr.X_op = O_absent; imm_reloc = BFD_RELOC_UNUSED; } return; } break; case ',': if (*s++ == c) continue; s--; switch (*++args) { case 'v': ip->insn_opcode |= lastregno << MIPS16OP_SH_RX; continue; case 'w': ip->insn_opcode |= lastregno << MIPS16OP_SH_RY; continue; } break; case '(': case ')': if (*s++ == c) continue; break; case 'v': case 'w': if (s[0] != '$') { if (c == 'v') ip->insn_opcode |= lastregno << MIPS16OP_SH_RX; else ip->insn_opcode |= lastregno << MIPS16OP_SH_RY; ++args; continue; } /* Fall through. */ case 'x': case 'y': case 'z': case 'Z': case '0': case 'S': case 'R': case 'X': case 'Y': if (s[0] != '$') break; s_reset = s; if (isdigit ((unsigned char) s[1])) { ++s; regno = 0; do { regno *= 10; regno += *s - '0'; ++s; } while (isdigit ((unsigned char) *s)); if (regno > 31) { as_bad (_("invalid register number (%d)"), regno); regno = 2; } } else { if (s[1] == 'f' && s[2] == 'p') { s += 3; regno = FP; } else if (s[1] == 's' && s[2] == 'p') { s += 3; regno = SP; } else if (s[1] == 'g' && s[2] == 'p') { s += 3; regno = GP; } else if (s[1] == 'a' && s[2] == 't') { s += 3; regno = AT; } else if (s[1] == 'k' && s[2] == 't' && s[3] == '0') { s += 4; regno = KT0; } else if (s[1] == 'k' && s[2] == 't' && s[3] == '1') { s += 4; regno = KT1; } else break; } if (*s == ' ') ++s; if (args[1] != *s) { if (c == 'v' || c == 'w') { regno = mips16_to_32_reg_map[lastregno]; s = s_reset; args++; } } switch (c) { case 'x': case 'y': case 'z': case 'v': case 'w': case 'Z': regno = mips32_to_16_reg_map[regno]; break; case '0': if (regno != 0) regno = ILLEGAL_REG; break; case 'S': if (regno != SP) regno = ILLEGAL_REG; break; case 'R': if (regno != RA) regno = ILLEGAL_REG; break; case 'X': case 'Y': if (regno == AT && ! mips_opts.noat) as_warn (_("used $at without \".set noat\"")); break; default: internalError (); } if (regno == ILLEGAL_REG) break; switch (c) { case 'x': case 'v': ip->insn_opcode |= regno << MIPS16OP_SH_RX; break; case 'y': case 'w': ip->insn_opcode |= regno << MIPS16OP_SH_RY; break; case 'z': ip->insn_opcode |= regno << MIPS16OP_SH_RZ; break; case 'Z': ip->insn_opcode |= regno << MIPS16OP_SH_MOVE32Z; case '0': case 'S': case 'R': break; case 'X': ip->insn_opcode |= regno << MIPS16OP_SH_REGR32; break; case 'Y': regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3); ip->insn_opcode |= regno << MIPS16OP_SH_REG32R; break; default: internalError (); } lastregno = regno; continue; case 'P': if (strncmp (s, "$pc", 3) == 0) { s += 3; continue; } break; case '<': case '>': case '[': case ']': case '4': case '5': case 'H': case 'W': case 'D': case 'j': case '8': case 'V': case 'C': case 'U': case 'k': case 'K': if (s[0] == '%' && strncmp (s + 1, "gprel(", sizeof "gprel(" - 1) == 0) { /* This is %gprel(SYMBOL). We need to read SYMBOL, and generate the appropriate reloc. If the text inside %gprel is not a symbol name with an optional offset, then we generate a normal reloc and will probably fail later. */ my_getExpression (&imm_expr, s + sizeof "%gprel" - 1); if (imm_expr.X_op == O_symbol) { mips16_ext = true; imm_reloc = BFD_RELOC_MIPS16_GPREL; s = expr_end; ip->use_extend = true; ip->extend = 0; continue; } } else { /* Just pick up a normal expression. */ my_getExpression (&imm_expr, s); } if (imm_expr.X_op == O_register) { /* What we thought was an expression turned out to be a register. */ if (s[0] == '(' && args[1] == '(') { /* It looks like the expression was omitted before a register indirection, which means that the expression is implicitly zero. We still set up imm_expr, so that we handle explicit extensions correctly. */ imm_expr.X_op = O_constant; imm_expr.X_add_number = 0; imm_reloc = (int) BFD_RELOC_UNUSED + c; continue; } break; } /* We need to relax this instruction. */ imm_reloc = (int) BFD_RELOC_UNUSED + c; s = expr_end; continue; case 'p': case 'q': case 'A': case 'B': case 'E': /* We use offset_reloc rather than imm_reloc for the PC relative operands. This lets macros with both immediate and address operands work correctly. */ my_getExpression (&offset_expr, s); if (offset_expr.X_op == O_register) break; /* We need to relax this instruction. */ offset_reloc = (int) BFD_RELOC_UNUSED + c; s = expr_end; continue; case '6': /* break code */ my_getExpression (&imm_expr, s); check_absolute_expr (ip, &imm_expr); if ((unsigned long) imm_expr.X_add_number > 63) { as_warn (_("Invalid value for `%s' (%lu)"), ip->insn_mo->name, (unsigned long) imm_expr.X_add_number); imm_expr.X_add_number &= 0x3f; } ip->insn_opcode |= imm_expr.X_add_number << MIPS16OP_SH_IMM6; imm_expr.X_op = O_absent; s = expr_end; continue; case 'a': /* 26 bit address */ my_getExpression (&offset_expr, s); s = expr_end; offset_reloc = BFD_RELOC_MIPS16_JMP; ip->insn_opcode <<= 16; continue; case 'l': /* register list for entry macro */ case 'L': /* register list for exit macro */ { int mask; if (c == 'l') mask = 0; else mask = 7 << 3; while (*s != '\0') { int freg, reg1, reg2; while (*s == ' ' || *s == ',') ++s; if (*s != '$') { as_bad (_("can't parse register list")); break; } ++s; if (*s != 'f') freg = 0; else { freg = 1; ++s; } reg1 = 0; while (isdigit ((unsigned char) *s)) { reg1 *= 10; reg1 += *s - '0'; ++s; } if (*s == ' ') ++s; if (*s != '-') reg2 = reg1; else { ++s; if (*s != '$') break; ++s; if (freg) { if (*s == 'f') ++s; else { as_bad (_("invalid register list")); break; } } reg2 = 0; while (isdigit ((unsigned char) *s)) { reg2 *= 10; reg2 += *s - '0'; ++s; } } if (freg && reg1 == 0 && reg2 == 0 && c == 'L') { mask &= ~ (7 << 3); mask |= 5 << 3; } else if (freg && reg1 == 0 && reg2 == 1 && c == 'L') { mask &= ~ (7 << 3); mask |= 6 << 3; } else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L') mask |= (reg2 - 3) << 3; else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17) mask |= (reg2 - 15) << 1; else if (reg1 == 31 && reg2 == 31) mask |= 1; else { as_bad (_("invalid register list")); break; } } /* The mask is filled in in the opcode table for the benefit of the disassembler. We remove it before applying the actual mask. */ ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6); ip->insn_opcode |= mask << MIPS16OP_SH_IMM6; } continue; case 'e': /* extend code */ my_getExpression (&imm_expr, s); check_absolute_expr (ip, &imm_expr); if ((unsigned long) imm_expr.X_add_number > 0x7ff) { as_warn (_("Invalid value for `%s' (%lu)"), ip->insn_mo->name, (unsigned long) imm_expr.X_add_number); imm_expr.X_add_number &= 0x7ff; } ip->insn_opcode |= imm_expr.X_add_number; imm_expr.X_op = O_absent; s = expr_end; continue; default: internalError (); } break; } /* Args don't match. */ if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] && strcmp (insn->name, insn[1].name) == 0) { ++insn; s = argsstart; continue; } insn_error = _("illegal operands"); return; } } /* This structure holds information we know about a mips16 immediate argument type. */ struct mips16_immed_operand { /* The type code used in the argument string in the opcode table. */ int type; /* The number of bits in the short form of the opcode. */ int nbits; /* The number of bits in the extended form of the opcode. */ int extbits; /* The amount by which the short form is shifted when it is used; for example, the sw instruction has a shift count of 2. */ int shift; /* The amount by which the short form is shifted when it is stored into the instruction code. */ int op_shift; /* Non-zero if the short form is unsigned. */ int unsp; /* Non-zero if the extended form is unsigned. */ int extu; /* Non-zero if the value is PC relative. */ int pcrel; }; /* The mips16 immediate operand types. */ static const struct mips16_immed_operand mips16_immed_operands[] = { { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 }, { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 }, { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 }, { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 }, { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 }, { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 }, { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 }, { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 }, { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 }, { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 }, { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 }, { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 }, { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 }, { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 }, { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 }, { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 }, { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 }, { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 }, { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 }, { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 }, { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 } }; #define MIPS16_NUM_IMMED \ (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0]) /* Handle a mips16 instruction with an immediate value. This or's the small immediate value into *INSN. It sets *USE_EXTEND to indicate whether an extended value is needed; if one is needed, it sets *EXTEND to the value. The argument type is TYPE. The value is VAL. If SMALL is true, an unextended opcode was explicitly requested. If EXT is true, an extended opcode was explicitly requested. If WARN is true, warn if EXT does not match reality. */ static void mips16_immed (file, line, type, val, warn, small, ext, insn, use_extend, extend) char *file; unsigned int line; int type; offsetT val; boolean warn; boolean small; boolean ext; unsigned long *insn; boolean *use_extend; unsigned short *extend; { register const struct mips16_immed_operand *op; int mintiny, maxtiny; boolean needext; op = mips16_immed_operands; while (op->type != type) { ++op; assert (op < mips16_immed_operands + MIPS16_NUM_IMMED); } if (op->unsp) { if (type == '<' || type == '>' || type == '[' || type == ']') { mintiny = 1; maxtiny = 1 << op->nbits; } else { mintiny = 0; maxtiny = (1 << op->nbits) - 1; } } else { mintiny = - (1 << (op->nbits - 1)); maxtiny = (1 << (op->nbits - 1)) - 1; } /* Branch offsets have an implicit 0 in the lowest bit. */ if (type == 'p' || type == 'q') val /= 2; if ((val & ((1 << op->shift) - 1)) != 0 || val < (mintiny << op->shift) || val > (maxtiny << op->shift)) needext = true; else needext = false; if (warn && ext && ! needext) as_warn_where (file, line, _("extended operand requested but not required")); if (small && needext) as_bad_where (file, line, _("invalid unextended operand value")); if (small || (! ext && ! needext)) { int insnval; *use_extend = false; insnval = ((val >> op->shift) & ((1 << op->nbits) - 1)); insnval <<= op->op_shift; *insn |= insnval; } else { long minext, maxext; int extval; if (op->extu) { minext = 0; maxext = (1 << op->extbits) - 1; } else { minext = - (1 << (op->extbits - 1)); maxext = (1 << (op->extbits - 1)) - 1; } if (val < minext || val > maxext) as_bad_where (file, line, _("operand value out of range for instruction")); *use_extend = true; if (op->extbits == 16) { extval = ((val >> 11) & 0x1f) | (val & 0x7e0); val &= 0x1f; } else if (op->extbits == 15) { extval = ((val >> 11) & 0xf) | (val & 0x7f0); val &= 0xf; } else { extval = ((val & 0x1f) << 6) | (val & 0x20); val = 0; } *extend = (unsigned short) extval; *insn |= val; } } #define LP '(' #define RP ')' static int my_getSmallExpression (ep, str) expressionS *ep; char *str; { char *sp; int c = 0; if (*str == ' ') str++; if (*str == LP || (*str == '%' && ((str[1] == 'h' && str[2] == 'i') || (str[1] == 'H' && str[2] == 'I') || (str[1] == 'l' && str[2] == 'o')) && str[3] == LP)) { if (*str == LP) c = 0; else { c = str[1]; str += 3; } /* * A small expression may be followed by a base register. * Scan to the end of this operand, and then back over a possible * base register. Then scan the small expression up to that * point. (Based on code in sparc.c...) */ for (sp = str; *sp && *sp != ','; sp++) ; if (sp - 4 >= str && sp[-1] == RP) { if (isdigit ((unsigned char) sp[-2])) { for (sp -= 3; sp >= str && isdigit ((unsigned char) *sp); sp--) ; if (*sp == '$' && sp > str && sp[-1] == LP) { sp--; goto do_it; } } else if (sp - 5 >= str && sp[-5] == LP && sp[-4] == '$' && ((sp[-3] == 'f' && sp[-2] == 'p') || (sp[-3] == 's' && sp[-2] == 'p') || (sp[-3] == 'g' && sp[-2] == 'p') || (sp[-3] == 'a' && sp[-2] == 't'))) { sp -= 5; do_it: if (sp == str) { /* no expression means zero offset */ if (c) { /* %xx(reg) is an error */ ep->X_op = O_absent; expr_end = str - 3; } else { ep->X_op = O_constant; expr_end = sp; } ep->X_add_symbol = NULL; ep->X_op_symbol = NULL; ep->X_add_number = 0; } else { *sp = '\0'; my_getExpression (ep, str); *sp = LP; } return c; } } } my_getExpression (ep, str); return c; /* => %hi or %lo encountered */ } static void my_getExpression (ep, str) expressionS *ep; char *str; { char *save_in; valueT val; save_in = input_line_pointer; input_line_pointer = str; expression (ep); expr_end = input_line_pointer; input_line_pointer = save_in; /* If we are in mips16 mode, and this is an expression based on `.', then we bump the value of the symbol by 1 since that is how other text symbols are handled. We don't bother to handle complex expressions, just `.' plus or minus a constant. */ if (mips_opts.mips16 && ep->X_op == O_symbol && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg && symbol_get_frag (ep->X_add_symbol) == frag_now && symbol_constant_p (ep->X_add_symbol) && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ()) S_SET_VALUE (ep->X_add_symbol, val + 1); } /* Turn a string in input_line_pointer into a floating point constant of type TYPE, and store the appropriate bytes in *LITP. The number of LITTLENUMS emitted is stored in *SIZEP. An error message is returned, or NULL on OK. */ char * md_atof (type, litP, sizeP) int type; char *litP; int *sizeP; { int prec; LITTLENUM_TYPE words[4]; char *t; int i; switch (type) { case 'f': prec = 2; break; case 'd': prec = 4; break; default: *sizeP = 0; return _("bad call to md_atof"); } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizeP = prec * 2; if (! target_big_endian) { for (i = prec - 1; i >= 0; i--) { md_number_to_chars (litP, (valueT) words[i], 2); litP += 2; } } else { for (i = 0; i < prec; i++) { md_number_to_chars (litP, (valueT) words[i], 2); litP += 2; } } return NULL; } void md_number_to_chars (buf, val, n) char *buf; valueT val; int n; { if (target_big_endian) number_to_chars_bigendian (buf, val, n); else number_to_chars_littleendian (buf, val, n); } CONST char *md_shortopts = "nO::g::G:"; struct option md_longopts[] = { #define OPTION_MIPS1 (OPTION_MD_BASE + 1) {"mips0", no_argument, NULL, OPTION_MIPS1}, {"mips1", no_argument, NULL, OPTION_MIPS1}, #define OPTION_MIPS2 (OPTION_MD_BASE + 2) {"mips2", no_argument, NULL, OPTION_MIPS2}, #define OPTION_MIPS3 (OPTION_MD_BASE + 3) {"mips3", no_argument, NULL, OPTION_MIPS3}, #define OPTION_MIPS4 (OPTION_MD_BASE + 4) {"mips4", no_argument, NULL, OPTION_MIPS4}, #define OPTION_MCPU (OPTION_MD_BASE + 5) {"mcpu", required_argument, NULL, OPTION_MCPU}, #define OPTION_MEMBEDDED_PIC (OPTION_MD_BASE + 6) {"membedded-pic", no_argument, NULL, OPTION_MEMBEDDED_PIC}, #define OPTION_TRAP (OPTION_MD_BASE + 7) {"trap", no_argument, NULL, OPTION_TRAP}, {"no-break", no_argument, NULL, OPTION_TRAP}, #define OPTION_BREAK (OPTION_MD_BASE + 8) {"break", no_argument, NULL, OPTION_BREAK}, {"no-trap", no_argument, NULL, OPTION_BREAK}, #define OPTION_EB (OPTION_MD_BASE + 9) {"EB", no_argument, NULL, OPTION_EB}, #define OPTION_EL (OPTION_MD_BASE + 10) {"EL", no_argument, NULL, OPTION_EL}, #define OPTION_M4650 (OPTION_MD_BASE + 11) {"m4650", no_argument, NULL, OPTION_M4650}, #define OPTION_NO_M4650 (OPTION_MD_BASE + 12) {"no-m4650", no_argument, NULL, OPTION_NO_M4650}, #define OPTION_M4010 (OPTION_MD_BASE + 13) {"m4010", no_argument, NULL, OPTION_M4010}, #define OPTION_NO_M4010 (OPTION_MD_BASE + 14) {"no-m4010", no_argument, NULL, OPTION_NO_M4010}, #define OPTION_M4100 (OPTION_MD_BASE + 15) {"m4100", no_argument, NULL, OPTION_M4100}, #define OPTION_NO_M4100 (OPTION_MD_BASE + 16) {"no-m4100", no_argument, NULL, OPTION_NO_M4100}, #define OPTION_MIPS16 (OPTION_MD_BASE + 17) {"mips16", no_argument, NULL, OPTION_MIPS16}, #define OPTION_NO_MIPS16 (OPTION_MD_BASE + 18) {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16}, #define OPTION_M3900 (OPTION_MD_BASE + 19) {"m3900", no_argument, NULL, OPTION_M3900}, #define OPTION_NO_M3900 (OPTION_MD_BASE + 20) {"no-m3900", no_argument, NULL, OPTION_NO_M3900}, #define OPTION_MABI (OPTION_MD_BASE + 21) {"mabi", required_argument, NULL, OPTION_MABI}, #define OPTION_M7000_HILO_FIX (OPTION_MD_BASE + 22) {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX}, #define OPTION_NO_M7000_HILO_FIX (OPTION_MD_BASE + 23) {"no-fix-7000", no_argument, NULL, OPTION_NO_M7000_HILO_FIX}, #define OPTION_GP32 (OPTION_MD_BASE + 24) {"mgp32", no_argument, NULL, OPTION_GP32}, #define OPTION_GP64 (OPTION_MD_BASE + 25) {"mgp64", no_argument, NULL, OPTION_GP64}, #define OPTION_CONSTRUCT_FLOATS (OPTION_MD_BASE + 26) {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS}, #define OPTION_NO_CONSTRUCT_FLOATS (OPTION_MD_BASE + 27) {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS}, #define OPTION_MIPS32 (OPTION_MD_BASE + 28) {"mips32", no_argument, NULL, OPTION_MIPS32}, #define OPTION_MIPS5 (OPTION_MD_BASE + 29) {"mips5", no_argument, NULL, OPTION_MIPS5}, #define OPTION_MIPS64 (OPTION_MD_BASE + 30) {"mips64", no_argument, NULL, OPTION_MIPS64}, #define OPTION_MARCH (OPTION_MD_BASE + 31) {"march", required_argument, NULL, OPTION_MARCH}, #define OPTION_MTUNE (OPTION_MD_BASE + 32) {"mtune", required_argument, NULL, OPTION_MTUNE}, #define OPTION_FP32 (OPTION_MD_BASE + 33) {"mfp32", no_argument, NULL, OPTION_FP32}, #ifdef OBJ_ELF #define OPTION_ELF_BASE (OPTION_MD_BASE + 35) #define OPTION_CALL_SHARED (OPTION_ELF_BASE + 0) #define OPTION_NON_SHARED (OPTION_ELF_BASE + 1) #define OPTION_XGOT (OPTION_ELF_BASE + 2) #define OPTION_32 (OPTION_ELF_BASE + 3) #define OPTION_64 (OPTION_ELF_BASE + 4) {"KPIC", no_argument, NULL, OPTION_CALL_SHARED}, {"call_shared", no_argument, NULL, OPTION_CALL_SHARED}, {"non_shared", no_argument, NULL, OPTION_NON_SHARED}, {"xgot", no_argument, NULL, OPTION_XGOT}, {"32", no_argument, NULL, OPTION_32}, {"64", no_argument, NULL, OPTION_64}, #endif {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof (md_longopts); int md_parse_option (c, arg) int c; char *arg; { switch (c) { case OPTION_CONSTRUCT_FLOATS: mips_disable_float_construction = 0; break; case OPTION_NO_CONSTRUCT_FLOATS: mips_disable_float_construction = 1; break; case OPTION_TRAP: mips_trap = 1; break; case OPTION_BREAK: mips_trap = 0; break; case OPTION_EB: target_big_endian = 1; break; case OPTION_EL: target_big_endian = 0; break; case 'n': warn_nops = 1; break; case 'O': if (arg && arg[1] == '0') mips_optimize = 1; else mips_optimize = 2; break; case 'g': if (arg == NULL) mips_debug = 2; else mips_debug = atoi (arg); /* When the MIPS assembler sees -g or -g2, it does not do optimizations which limit full symbolic debugging. We take that to be equivalent to -O0. */ if (mips_debug == 2) mips_optimize = 1; break; case OPTION_MIPS1: mips_opts.isa = ISA_MIPS1; break; case OPTION_MIPS2: mips_opts.isa = ISA_MIPS2; break; case OPTION_MIPS3: mips_opts.isa = ISA_MIPS3; break; case OPTION_MIPS4: mips_opts.isa = ISA_MIPS4; break; case OPTION_MIPS5: mips_opts.isa = ISA_MIPS5; break; case OPTION_MIPS32: mips_opts.isa = ISA_MIPS32; break; case OPTION_MIPS64: mips_opts.isa = ISA_MIPS64; break; case OPTION_MTUNE: case OPTION_MARCH: case OPTION_MCPU: { int cpu = CPU_UNKNOWN; /* Identify the processor type. */ if (strcasecmp (arg, "default") != 0) { const struct mips_cpu_info *ci; ci = mips_cpu_info_from_name (arg); if (ci == NULL || ci->is_isa) { switch (c) { case OPTION_MTUNE: as_fatal (_("invalid architecture -mtune=%s"), arg); break; case OPTION_MARCH: as_fatal (_("invalid architecture -march=%s"), arg); break; case OPTION_MCPU: as_fatal (_("invalid architecture -mcpu=%s"), arg); break; } } else cpu = ci->cpu; } switch (c) { case OPTION_MTUNE: mips_tune = cpu; break; case OPTION_MARCH: mips_arch = cpu; break; case OPTION_MCPU: mips_cpu = cpu; } } break; case OPTION_M4650: mips_arch = CPU_R4650; mips_tune = CPU_R4650; break; case OPTION_NO_M4650: break; case OPTION_M4010: mips_arch = CPU_R4010; mips_tune = CPU_R4010; break; case OPTION_NO_M4010: break; case OPTION_M4100: mips_arch = CPU_VR4100; mips_tune = CPU_VR4100; break; case OPTION_NO_M4100: break; case OPTION_M3900: mips_arch = CPU_R3900; mips_tune = CPU_R3900; break; case OPTION_NO_M3900: break; case OPTION_MIPS16: mips_opts.mips16 = 1; mips_no_prev_insn (false); break; case OPTION_NO_MIPS16: mips_opts.mips16 = 0; mips_no_prev_insn (false); break; case OPTION_MEMBEDDED_PIC: mips_pic = EMBEDDED_PIC; if (USE_GLOBAL_POINTER_OPT && g_switch_seen) { as_bad (_("-G may not be used with embedded PIC code")); return 0; } g_switch_value = 0x7fffffff; break; #ifdef OBJ_ELF /* When generating ELF code, we permit -KPIC and -call_shared to select SVR4_PIC, and -non_shared to select no PIC. This is intended to be compatible with Irix 5. */ case OPTION_CALL_SHARED: if (OUTPUT_FLAVOR != bfd_target_elf_flavour) { as_bad (_("-call_shared is supported only for ELF format")); return 0; } mips_pic = SVR4_PIC; if (g_switch_seen && g_switch_value != 0) { as_bad (_("-G may not be used with SVR4 PIC code")); return 0; } g_switch_value = 0; break; case OPTION_NON_SHARED: if (OUTPUT_FLAVOR != bfd_target_elf_flavour) { as_bad (_("-non_shared is supported only for ELF format")); return 0; } mips_pic = NO_PIC; break; /* The -xgot option tells the assembler to use 32 offsets when accessing the got in SVR4_PIC mode. It is for Irix compatibility. */ case OPTION_XGOT: mips_big_got = 1; break; #endif /* OBJ_ELF */ case 'G': if (! USE_GLOBAL_POINTER_OPT) { as_bad (_("-G is not supported for this configuration")); return 0; } else if (mips_pic == SVR4_PIC || mips_pic == EMBEDDED_PIC) { as_bad (_("-G may not be used with SVR4 or embedded PIC code")); return 0; } else g_switch_value = atoi (arg); g_switch_seen = 1; break; #ifdef OBJ_ELF /* The -32 and -64 options tell the assembler to output the 32 bit or the 64 bit MIPS ELF format. */ case OPTION_32: mips_64 = 0; break; case OPTION_64: { const char **list, **l; list = bfd_target_list (); for (l = list; *l != NULL; l++) if (strcmp (*l, "elf64-bigmips") == 0 || strcmp (*l, "elf64-littlemips") == 0 || strcmp (*l, "elf64-tradbigmips") == 0 || strcmp (*l, "elf64-tradlittlemips") == 0) break; if (*l == NULL) as_fatal (_("No compiled in support for 64 bit object file format")); free (list); mips_64 = 1; } break; #endif /* OBJ_ELF */ case OPTION_GP32: mips_gp32 = 1; mips_64 = 0; /* We deliberately don't allow "-gp32" to set the MIPS_32BITMODE flag in object files because to do so would make it impossible to link with libraries compiled without "-gp32". This is unnecessarily restrictive. We could solve this problem by adding "-gp32" multilibs to gcc, but to set this flag before gcc is built with such multilibs will break too many systems. */ #if 0 mips_32bitmode = 1; #endif break; case OPTION_GP64: mips_gp32 = 0; mips_64 = 1; #if 0 mips_32bitmode = 0; #endif break; case OPTION_FP32: mips_fp32 = 1; break; case OPTION_MABI: if (strcmp (arg, "32") == 0 || strcmp (arg, "n32") == 0 || strcmp (arg, "64") == 0 || strcmp (arg, "o64") == 0 || strcmp (arg, "eabi") == 0) { mips_abi_string = arg; mips_32bit_abi = (strcmp (arg, "32") == 0); } break; case OPTION_M7000_HILO_FIX: mips_7000_hilo_fix = true; break; case OPTION_NO_M7000_HILO_FIX: mips_7000_hilo_fix = false; break; default: return 0; } return 1; } static void show (stream, string, col_p, first_p) FILE *stream; char *string; int *col_p; int *first_p; { if (*first_p) { fprintf (stream, "%24s", ""); *col_p = 24; } else { fprintf (stream, ", "); *col_p += 2; } if (*col_p + strlen (string) > 72) { fprintf (stream, "\n%24s", ""); *col_p = 24; } fprintf (stream, "%s", string); *col_p += strlen (string); *first_p = 0; } void md_show_usage (stream) FILE *stream; { int column, first; fprintf (stream, _("\ MIPS options:\n\ -membedded-pic generate embedded position independent code\n\ -EB generate big endian output\n\ -EL generate little endian output\n\ -g, -g2 do not remove uneeded NOPs or swap branches\n\ -G NUM allow referencing objects up to NUM bytes\n\ implicitly with the gp register [default 8]\n")); fprintf (stream, _("\ -mips1 generate MIPS ISA I instructions\n\ -mips2 generate MIPS ISA II instructions\n\ -mips3 generate MIPS ISA III instructions\n\ -mips4 generate MIPS ISA IV instructions\n\ -mips5 generate MIPS ISA V instructions\n\ -mips32 generate MIPS32 ISA instructions\n\ -mips64 generate MIPS64 ISA instructions\n\ -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n")); first = 1; show (stream, "2000", &column, &first); show (stream, "3000", &column, &first); show (stream, "3900", &column, &first); show (stream, "4000", &column, &first); show (stream, "4010", &column, &first); show (stream, "4100", &column, &first); show (stream, "4111", &column, &first); show (stream, "4300", &column, &first); show (stream, "4400", &column, &first); show (stream, "4600", &column, &first); show (stream, "4650", &column, &first); show (stream, "5000", &column, &first); show (stream, "5200", &column, &first); show (stream, "5230", &column, &first); show (stream, "5231", &column, &first); show (stream, "5261", &column, &first); show (stream, "5721", &column, &first); show (stream, "6000", &column, &first); show (stream, "8000", &column, &first); show (stream, "10000", &column, &first); show (stream, "12000", &column, &first); show (stream, "mips32-4k", &column, &first); show (stream, "sb-1", &column, &first); fputc ('\n', stream); fprintf (stream, _("\ -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\ -no-mCPU don't generate code specific to CPU.\n\ For -mCPU and -no-mCPU, CPU must be one of:\n")); first = 1; show (stream, "3900", &column, &first); show (stream, "4010", &column, &first); show (stream, "4100", &column, &first); show (stream, "4650", &column, &first); fputc ('\n', stream); fprintf (stream, _("\ -mips16 generate mips16 instructions\n\ -no-mips16 do not generate mips16 instructions\n")); fprintf (stream, _("\ -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\ -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\ -O0 remove unneeded NOPs, do not swap branches\n\ -O remove unneeded NOPs and swap branches\n\ -n warn about NOPs generated from macros\n\ --[no-]construct-floats [dis]allow floating point values to be constructed\n\ --trap, --no-break trap exception on div by 0 and mult overflow\n\ --break, --no-trap break exception on div by 0 and mult overflow\n")); #ifdef OBJ_ELF fprintf (stream, _("\ -KPIC, -call_shared generate SVR4 position independent code\n\ -non_shared do not generate position independent code\n\ -xgot assume a 32 bit GOT\n\ -32 create 32 bit object file (default)\n\ -64 create 64 bit object file\n")); #endif } void mips_init_after_args () { /* initialize opcodes */ bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes; mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes; } long md_pcrel_from (fixP) fixS *fixP; { if (OUTPUT_FLAVOR != bfd_target_aout_flavour && fixP->fx_addsy != (symbolS *) NULL && ! S_IS_DEFINED (fixP->fx_addsy)) { /* This makes a branch to an undefined symbol be a branch to the current location. */ return 4; } /* return the address of the delay slot */ return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address; } /* This is called by emit_expr via TC_CONS_FIX_NEW when creating a reloc for a cons. We could use the definition there, except that we want to handle 64 bit relocs specially. */ void cons_fix_new_mips (frag, where, nbytes, exp) fragS *frag ATTRIBUTE_UNUSED; int where; unsigned int nbytes; expressionS *exp; { #ifndef OBJ_ELF /* If we are assembling in 32 bit mode, turn an 8 byte reloc into a 4 byte reloc. */ if (nbytes == 8 && ! mips_64) { if (target_big_endian) where += 4; nbytes = 4; } #endif if (nbytes != 2 && nbytes != 4 && nbytes != 8) as_bad (_("Unsupported reloc size %d"), nbytes); fix_new_exp (frag_now, where, (int) nbytes, exp, 0, (nbytes == 2 ? BFD_RELOC_16 : (nbytes == 4 ? BFD_RELOC_32 : BFD_RELOC_64))); } /* This is called before the symbol table is processed. In order to work with gcc when using mips-tfile, we must keep all local labels. However, in other cases, we want to discard them. If we were called with -g, but we didn't see any debugging information, it may mean that gcc is smuggling debugging information through to mips-tfile, in which case we must generate all local labels. */ void mips_frob_file_before_adjust () { #ifndef NO_ECOFF_DEBUGGING if (ECOFF_DEBUGGING && mips_debug != 0 && ! ecoff_debugging_seen) flag_keep_locals = 1; #endif } /* Sort any unmatched HI16_S relocs so that they immediately precede the corresponding LO reloc. This is called before md_apply_fix and tc_gen_reloc. Unmatched HI16_S relocs can only be generated by explicit use of the %hi modifier. */ void mips_frob_file () { struct mips_hi_fixup *l; for (l = mips_hi_fixup_list; l != NULL; l = l->next) { segment_info_type *seginfo; int pass; assert (l->fixp->fx_r_type == BFD_RELOC_HI16_S); /* Check quickly whether the next fixup happens to be a matching %lo. */ if (l->fixp->fx_next != NULL && l->fixp->fx_next->fx_r_type == BFD_RELOC_LO16 && l->fixp->fx_addsy == l->fixp->fx_next->fx_addsy && l->fixp->fx_offset == l->fixp->fx_next->fx_offset) continue; /* Look through the fixups for this segment for a matching %lo. When we find one, move the %hi just in front of it. We do this in two passes. In the first pass, we try to find a unique %lo. In the second pass, we permit multiple %hi relocs for a single %lo (this is a GNU extension). */ seginfo = seg_info (l->seg); for (pass = 0; pass < 2; pass++) { fixS *f, *prev; prev = NULL; for (f = seginfo->fix_root; f != NULL; f = f->fx_next) { /* Check whether this is a %lo fixup which matches l->fixp. */ if (f->fx_r_type == BFD_RELOC_LO16 && f->fx_addsy == l->fixp->fx_addsy && f->fx_offset == l->fixp->fx_offset && (pass == 1 || prev == NULL || prev->fx_r_type != BFD_RELOC_HI16_S || prev->fx_addsy != f->fx_addsy || prev->fx_offset != f->fx_offset)) { fixS **pf; /* Move l->fixp before f. */ for (pf = &seginfo->fix_root; *pf != l->fixp; pf = &(*pf)->fx_next) assert (*pf != NULL); *pf = l->fixp->fx_next; l->fixp->fx_next = f; if (prev == NULL) seginfo->fix_root = l->fixp; else prev->fx_next = l->fixp; break; } prev = f; } if (f != NULL) break; #if 0 /* GCC code motion plus incomplete dead code elimination can leave a %hi without a %lo. */ if (pass == 1) as_warn_where (l->fixp->fx_file, l->fixp->fx_line, _("Unmatched %%hi reloc")); #endif } } } /* When generating embedded PIC code we need to use a special relocation to represent the difference of two symbols in the .text section (switch tables use a difference of this sort). See include/coff/mips.h for details. This macro checks whether this fixup requires the special reloc. */ #define SWITCH_TABLE(fixp) \ ((fixp)->fx_r_type == BFD_RELOC_32 \ && OUTPUT_FLAVOR != bfd_target_elf_flavour \ && (fixp)->fx_addsy != NULL \ && (fixp)->fx_subsy != NULL \ && S_GET_SEGMENT ((fixp)->fx_addsy) == text_section \ && S_GET_SEGMENT ((fixp)->fx_subsy) == text_section) /* When generating embedded PIC code we must keep all PC relative relocations, in case the linker has to relax a call. We also need to keep relocations for switch table entries. */ int mips_force_relocation (fixp) fixS *fixp; { if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY) return 1; return (mips_pic == EMBEDDED_PIC && (fixp->fx_pcrel || SWITCH_TABLE (fixp) || fixp->fx_r_type == BFD_RELOC_PCREL_HI16_S || fixp->fx_r_type == BFD_RELOC_PCREL_LO16)); } /* Apply a fixup to the object file. */ int md_apply_fix (fixP, valueP) fixS *fixP; valueT *valueP; { unsigned char *buf; long insn; valueT value; assert (fixP->fx_size == 4 || fixP->fx_r_type == BFD_RELOC_16 || fixP->fx_r_type == BFD_RELOC_64 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY); value = *valueP; /* If we aren't adjusting this fixup to be against the section symbol, we need to adjust the value. */ #ifdef OBJ_ELF if (fixP->fx_addsy != NULL && OUTPUT_FLAVOR == bfd_target_elf_flavour) { if (S_GET_OTHER (fixP->fx_addsy) == STO_MIPS16 || ((S_IS_WEAK (fixP->fx_addsy) || S_IS_EXTERN (fixP->fx_addsy)) && !S_IS_COMMON (fixP->fx_addsy)) || (symbol_used_in_reloc_p (fixP->fx_addsy) && (((bfd_get_section_flags (stdoutput, S_GET_SEGMENT (fixP->fx_addsy)) & SEC_LINK_ONCE) != 0) || !strncmp (segment_name (S_GET_SEGMENT (fixP->fx_addsy)), ".gnu.linkonce", sizeof (".gnu.linkonce") - 1)))) { valueT symval = S_GET_VALUE (fixP->fx_addsy); value -= symval; if (value != 0 && ! fixP->fx_pcrel) { /* In this case, the bfd_install_relocation routine will incorrectly add the symbol value back in. We just want the addend to appear in the object file. */ value -= symval; /* Make sure the addend is still non-zero. If it became zero after the last operation, set it to a spurious value and subtract the same value from the object file's contents. */ if (value == 0) { value = 8; /* The in-place addends for LO16 relocations are signed; leave the matching HI16 in-place addends as zero. */ if (fixP->fx_r_type != BFD_RELOC_HI16_S) { reloc_howto_type *howto; bfd_vma contents, mask, field; howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type); contents = bfd_get_bits (fixP->fx_frag->fr_literal + fixP->fx_where, fixP->fx_size * 8, target_big_endian); /* MASK has bits set where the relocation should go. FIELD is -value, shifted into the appropriate place for this relocation. */ mask = 1 << (howto->bitsize - 1); mask = (((mask - 1) << 1) | 1) << howto->bitpos; field = (-value >> howto->rightshift) << howto->bitpos; bfd_put_bits ((field & mask) | (contents & ~mask), fixP->fx_frag->fr_literal + fixP->fx_where, fixP->fx_size * 8, target_big_endian); } } } } /* This code was generated using trial and error and so is fragile and not trustworthy. If you change it, you should rerun the elf-rel, elf-rel2, and empic testcases and ensure they still pass. */ if (fixP->fx_pcrel || fixP->fx_subsy != NULL) { value += fixP->fx_frag->fr_address + fixP->fx_where; /* BFD's REL handling, for MIPS, is _very_ weird. This gives the right results, but it can't possibly be the way things are supposed to work. */ if (fixP->fx_r_type != BFD_RELOC_16_PCREL_S2 || S_GET_SEGMENT (fixP->fx_addsy) != undefined_section) value += fixP->fx_frag->fr_address + fixP->fx_where; } } #endif fixP->fx_addnumber = value; /* Remember value for tc_gen_reloc */ if (fixP->fx_addsy == NULL && ! fixP->fx_pcrel) fixP->fx_done = 1; switch (fixP->fx_r_type) { case BFD_RELOC_MIPS_JMP: case BFD_RELOC_HI16: case BFD_RELOC_HI16_S: case BFD_RELOC_MIPS_GPREL: case BFD_RELOC_MIPS_LITERAL: case BFD_RELOC_MIPS_CALL16: case BFD_RELOC_MIPS_GOT16: case BFD_RELOC_MIPS_GPREL32: case BFD_RELOC_MIPS_GOT_HI16: case BFD_RELOC_MIPS_GOT_LO16: case BFD_RELOC_MIPS_CALL_HI16: case BFD_RELOC_MIPS_CALL_LO16: case BFD_RELOC_MIPS16_GPREL: if (fixP->fx_pcrel) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid PC relative reloc")); /* Nothing needed to do. The value comes from the reloc entry */ break; case BFD_RELOC_MIPS16_JMP: /* We currently always generate a reloc against a symbol, which means that we don't want an addend even if the symbol is defined. */ fixP->fx_addnumber = 0; break; case BFD_RELOC_PCREL_HI16_S: /* The addend for this is tricky if it is internal, so we just do everything here rather than in bfd_install_relocation. */ if (OUTPUT_FLAVOR == bfd_target_elf_flavour && !fixP->fx_done && value != 0) break; if (fixP->fx_addsy && (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_SECTION_SYM) == 0) { /* For an external symbol adjust by the address to make it pcrel_offset. We use the address of the RELLO reloc which follows this one. */ value += (fixP->fx_next->fx_frag->fr_address + fixP->fx_next->fx_where); } if (value & 0x8000) value += 0x10000; value >>= 16; buf = (unsigned char *) fixP->fx_frag->fr_literal + fixP->fx_where; if (target_big_endian) buf += 2; md_number_to_chars (buf, value, 2); break; case BFD_RELOC_PCREL_LO16: /* The addend for this is tricky if it is internal, so we just do everything here rather than in bfd_install_relocation. */ if (OUTPUT_FLAVOR == bfd_target_elf_flavour && !fixP->fx_done && value != 0) break; if (fixP->fx_addsy && (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_SECTION_SYM) == 0) value += fixP->fx_frag->fr_address + fixP->fx_where; buf = (unsigned char *) fixP->fx_frag->fr_literal + fixP->fx_where; if (target_big_endian) buf += 2; md_number_to_chars (buf, value, 2); break; case BFD_RELOC_64: /* This is handled like BFD_RELOC_32, but we output a sign extended value if we are only 32 bits. */ if (fixP->fx_done || (mips_pic == EMBEDDED_PIC && SWITCH_TABLE (fixP))) { if (8 <= sizeof (valueT)) md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, value, 8); else { long w1, w2; long hiv; w1 = w2 = fixP->fx_where; if (target_big_endian) w1 += 4; else w2 += 4; md_number_to_chars (fixP->fx_frag->fr_literal + w1, value, 4); if ((value & 0x80000000) != 0) hiv = 0xffffffff; else hiv = 0; md_number_to_chars (fixP->fx_frag->fr_literal + w2, hiv, 4); } } break; case BFD_RELOC_RVA: case BFD_RELOC_32: /* If we are deleting this reloc entry, we must fill in the value now. This can happen if we have a .word which is not resolved when it appears but is later defined. We also need to fill in the value if this is an embedded PIC switch table entry. */ if (fixP->fx_done || (mips_pic == EMBEDDED_PIC && SWITCH_TABLE (fixP))) md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, value, 4); break; case BFD_RELOC_16: /* If we are deleting this reloc entry, we must fill in the value now. */ assert (fixP->fx_size == 2); if (fixP->fx_done) md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, value, 2); break; case BFD_RELOC_LO16: /* When handling an embedded PIC switch statement, we can wind up deleting a LO16 reloc. See the 'o' case in mips_ip. */ if (fixP->fx_done) { if (value + 0x8000 > 0xffff) as_bad_where (fixP->fx_file, fixP->fx_line, _("relocation overflow")); buf = (unsigned char *) fixP->fx_frag->fr_literal + fixP->fx_where; if (target_big_endian) buf += 2; md_number_to_chars (buf, value, 2); } break; case BFD_RELOC_16_PCREL_S2: /* * We need to save the bits in the instruction since fixup_segment() * might be deleting the relocation entry (i.e., a branch within * the current segment). */ if ((value & 0x3) != 0) as_bad_where (fixP->fx_file, fixP->fx_line, _("Branch to odd address (%lx)"), (long) value); if (!fixP->fx_done && value != 0) break; /* If 'value' is zero, the remaining reloc code won't actually do the store, so it must be done here. This is probably a bug somewhere. */ if (!fixP->fx_done) value -= fixP->fx_frag->fr_address + fixP->fx_where; value = (offsetT) value >> 2; /* update old instruction data */ buf = (unsigned char *) (fixP->fx_where + fixP->fx_frag->fr_literal); if (target_big_endian) insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3]; else insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; if (value + 0x8000 <= 0xffff) insn |= value & 0xffff; else { /* The branch offset is too large. If this is an unconditional branch, and we are not generating PIC code, we can convert it to an absolute jump instruction. */ if (mips_pic == NO_PIC && fixP->fx_done && fixP->fx_frag->fr_address >= text_section->vma && (fixP->fx_frag->fr_address < text_section->vma + text_section->_raw_size) && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */ || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */ || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */ { if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */ insn = 0x0c000000; /* jal */ else insn = 0x08000000; /* j */ fixP->fx_r_type = BFD_RELOC_MIPS_JMP; fixP->fx_done = 0; fixP->fx_addsy = section_symbol (text_section); fixP->fx_addnumber = (value << 2) + md_pcrel_from (fixP); } else { /* FIXME. It would be possible in principle to handle conditional branches which overflow. They could be transformed into a branch around a jump. This would require setting up variant frags for each different branch type. The native MIPS assembler attempts to handle these cases, but it appears to do it incorrectly. */ as_bad_where (fixP->fx_file, fixP->fx_line, _("Branch out of range")); } } md_number_to_chars ((char *) buf, (valueT) insn, 4); break; case BFD_RELOC_VTABLE_INHERIT: fixP->fx_done = 0; if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy) && !S_IS_WEAK (fixP->fx_addsy)) S_SET_WEAK (fixP->fx_addsy); break; case BFD_RELOC_VTABLE_ENTRY: fixP->fx_done = 0; break; default: internalError (); } return 1; } #if 0 void printInsn (oc) unsigned long oc; { const struct mips_opcode *p; int treg, sreg, dreg, shamt; short imm; const char *args; int i; for (i = 0; i < NUMOPCODES; ++i) { p = &mips_opcodes[i]; if (((oc & p->mask) == p->match) && (p->pinfo != INSN_MACRO)) { printf ("%08lx %s\t", oc, p->name); treg = (oc >> 16) & 0x1f; sreg = (oc >> 21) & 0x1f; dreg = (oc >> 11) & 0x1f; shamt = (oc >> 6) & 0x1f; imm = oc; for (args = p->args;; ++args) { switch (*args) { case '\0': printf ("\n"); break; case ',': case '(': case ')': printf ("%c", *args); continue; case 'r': assert (treg == sreg); printf ("$%d,$%d", treg, sreg); continue; case 'd': case 'G': printf ("$%d", dreg); continue; case 't': case 'E': printf ("$%d", treg); continue; case 'k': printf ("0x%x", treg); continue; case 'b': case 's': printf ("$%d", sreg); continue; case 'a': printf ("0x%08lx", oc & 0x1ffffff); continue; case 'i': case 'j': case 'o': case 'u': printf ("%d", imm); continue; case '<': case '>': printf ("$%d", shamt); continue; default: internalError (); } break; } return; } } printf (_("%08lx UNDEFINED\n"), oc); } #endif static symbolS * get_symbol () { int c; char *name; symbolS *p; name = input_line_pointer; c = get_symbol_end (); p = (symbolS *) symbol_find_or_make (name); *input_line_pointer = c; return p; } /* Align the current frag to a given power of two. The MIPS assembler also automatically adjusts any preceding label. */ static void mips_align (to, fill, label) int to; int fill; symbolS *label; { mips_emit_delays (false); frag_align (to, fill, 0); record_alignment (now_seg, to); if (label != NULL) { assert (S_GET_SEGMENT (label) == now_seg); symbol_set_frag (label, frag_now); S_SET_VALUE (label, (valueT) frag_now_fix ()); } } /* Align to a given power of two. .align 0 turns off the automatic alignment used by the data creating pseudo-ops. */ static void s_align (x) int x ATTRIBUTE_UNUSED; { register int temp; register long temp_fill; long max_alignment = 15; /* o Note that the assembler pulls down any immediately preceeding label to the aligned address. o It's not documented but auto alignment is reinstated by a .align pseudo instruction. o Note also that after auto alignment is turned off the mips assembler issues an error on attempt to assemble an improperly aligned data item. We don't. */ temp = get_absolute_expression (); if (temp > max_alignment) as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment); else if (temp < 0) { as_warn (_("Alignment negative: 0 assumed.")); temp = 0; } if (*input_line_pointer == ',') { input_line_pointer++; temp_fill = get_absolute_expression (); } else temp_fill = 0; if (temp) { auto_align = 1; mips_align (temp, (int) temp_fill, insn_labels != NULL ? insn_labels->label : NULL); } else { auto_align = 0; } demand_empty_rest_of_line (); } void mips_flush_pending_output () { mips_emit_delays (false); mips_clear_insn_labels (); } static void s_change_sec (sec) int sec; { segT seg; /* When generating embedded PIC code, we only use the .text, .lit8, .sdata and .sbss sections. We change the .data and .rdata pseudo-ops to use .sdata. */ if (mips_pic == EMBEDDED_PIC && (sec == 'd' || sec == 'r')) sec = 's'; #ifdef OBJ_ELF /* The ELF backend needs to know that we are changing sections, so that .previous works correctly. We could do something like check for a obj_section_change_hook macro, but that might be confusing as it would not be appropriate to use it in the section changing functions in read.c, since obj-elf.c intercepts those. FIXME: This should be cleaner, somehow. */ obj_elf_section_change_hook (); #endif mips_emit_delays (false); switch (sec) { case 't': s_text (0); break; case 'd': s_data (0); break; case 'b': subseg_set (bss_section, (subsegT) get_absolute_expression ()); demand_empty_rest_of_line (); break; case 'r': if (USE_GLOBAL_POINTER_OPT) { seg = subseg_new (RDATA_SECTION_NAME, (subsegT) get_absolute_expression ()); if (OUTPUT_FLAVOR == bfd_target_elf_flavour) { bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_RELOC | SEC_DATA)); if (strcmp (TARGET_OS, "elf") != 0) record_alignment (seg, 4); } demand_empty_rest_of_line (); } else { as_bad (_("No read only data section in this object file format")); demand_empty_rest_of_line (); return; } break; case 's': if (USE_GLOBAL_POINTER_OPT) { seg = subseg_new (".sdata", (subsegT) get_absolute_expression ()); if (OUTPUT_FLAVOR == bfd_target_elf_flavour) { bfd_set_section_flags (stdoutput, seg, SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA); if (strcmp (TARGET_OS, "elf") != 0) record_alignment (seg, 4); } demand_empty_rest_of_line (); break; } else { as_bad (_("Global pointers not supported; recompile -G 0")); demand_empty_rest_of_line (); return; } } auto_align = 1; } void mips_enable_auto_align () { auto_align = 1; } static void s_cons (log_size) int log_size; { symbolS *label; label = insn_labels != NULL ? insn_labels->label : NULL; mips_emit_delays (false); if (log_size > 0 && auto_align) mips_align (log_size, 0, label); mips_clear_insn_labels (); cons (1 << log_size); } static void s_float_cons (type) int type; { symbolS *label; label = insn_labels != NULL ? insn_labels->label : NULL; mips_emit_delays (false); if (auto_align) { if (type == 'd') mips_align (3, 0, label); else mips_align (2, 0, label); } mips_clear_insn_labels (); float_cons (type); } /* Handle .globl. We need to override it because on Irix 5 you are permitted to say .globl foo .text where foo is an undefined symbol, to mean that foo should be considered to be the address of a function. */ static void s_mips_globl (x) int x ATTRIBUTE_UNUSED; { char *name; int c; symbolS *symbolP; flagword flag; name = input_line_pointer; c = get_symbol_end (); symbolP = symbol_find_or_make (name); *input_line_pointer = c; SKIP_WHITESPACE (); /* On Irix 5, every global symbol that is not explicitly labelled as being a function is apparently labelled as being an object. */ flag = BSF_OBJECT; if (! is_end_of_line[(unsigned char) *input_line_pointer]) { char *secname; asection *sec; secname = input_line_pointer; c = get_symbol_end (); sec = bfd_get_section_by_name (stdoutput, secname); if (sec == NULL) as_bad (_("%s: no such section"), secname); *input_line_pointer = c; if (sec != NULL && (sec->flags & SEC_CODE) != 0) flag = BSF_FUNCTION; } symbol_get_bfdsym (symbolP)->flags |= flag; S_SET_EXTERNAL (symbolP); demand_empty_rest_of_line (); } static void s_option (x) int x ATTRIBUTE_UNUSED; { char *opt; char c; opt = input_line_pointer; c = get_symbol_end (); if (*opt == 'O') { /* FIXME: What does this mean? */ } else if (strncmp (opt, "pic", 3) == 0) { int i; i = atoi (opt + 3); if (i == 0) mips_pic = NO_PIC; else if (i == 2) mips_pic = SVR4_PIC; else as_bad (_(".option pic%d not supported"), i); if (USE_GLOBAL_POINTER_OPT && mips_pic == SVR4_PIC) { if (g_switch_seen && g_switch_value != 0) as_warn (_("-G may not be used with SVR4 PIC code")); g_switch_value = 0; bfd_set_gp_size (stdoutput, 0); } } else as_warn (_("Unrecognized option \"%s\""), opt); *input_line_pointer = c; demand_empty_rest_of_line (); } /* This structure is used to hold a stack of .set values. */ struct mips_option_stack { struct mips_option_stack *next; struct mips_set_options options; }; static struct mips_option_stack *mips_opts_stack; /* Handle the .set pseudo-op. */ static void s_mipsset (x) int x ATTRIBUTE_UNUSED; { char *name = input_line_pointer, ch; while (!is_end_of_line[(unsigned char) *input_line_pointer]) input_line_pointer++; ch = *input_line_pointer; *input_line_pointer = '\0'; if (strcmp (name, "reorder") == 0) { if (mips_opts.noreorder && prev_nop_frag != NULL) { /* If we still have pending nops, we can discard them. The usual nop handling will insert any that are still needed. */ prev_nop_frag->fr_fix -= (prev_nop_frag_holds * (mips_opts.mips16 ? 2 : 4)); prev_nop_frag = NULL; } mips_opts.noreorder = 0; } else if (strcmp (name, "noreorder") == 0) { mips_emit_delays (true); mips_opts.noreorder = 1; mips_any_noreorder = 1; } else if (strcmp (name, "at") == 0) { mips_opts.noat = 0; } else if (strcmp (name, "noat") == 0) { mips_opts.noat = 1; } else if (strcmp (name, "macro") == 0) { mips_opts.warn_about_macros = 0; } else if (strcmp (name, "nomacro") == 0) { if (mips_opts.noreorder == 0) as_bad (_("`noreorder' must be set before `nomacro'")); mips_opts.warn_about_macros = 1; } else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0) { mips_opts.nomove = 0; } else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0) { mips_opts.nomove = 1; } else if (strcmp (name, "bopt") == 0) { mips_opts.nobopt = 0; } else if (strcmp (name, "nobopt") == 0) { mips_opts.nobopt = 1; } else if (strcmp (name, "mips16") == 0 || strcmp (name, "MIPS-16") == 0) mips_opts.mips16 = 1; else if (strcmp (name, "nomips16") == 0 || strcmp (name, "noMIPS-16") == 0) mips_opts.mips16 = 0; else if (strncmp (name, "mips", 4) == 0) { int isa; /* Permit the user to change the ISA on the fly. Needless to say, misuse can cause serious problems. */ isa = atoi (name + 4); switch (isa) { case 0: mips_opts.isa = file_mips_isa; break; case 1: mips_opts.isa = ISA_MIPS1; break; case 2: mips_opts.isa = ISA_MIPS2; break; case 3: mips_opts.isa = ISA_MIPS3; break; case 5: mips_opts.isa = ISA_MIPS5; break; case 4: mips_opts.isa = ISA_MIPS4; break; case 32: mips_opts.isa = ISA_MIPS32; break; case 64: mips_opts.isa = ISA_MIPS64; break; default: as_bad (_("unknown ISA level")); break; } } else if (strcmp (name, "autoextend") == 0) mips_opts.noautoextend = 0; else if (strcmp (name, "noautoextend") == 0) mips_opts.noautoextend = 1; else if (strcmp (name, "push") == 0) { struct mips_option_stack *s; s = (struct mips_option_stack *) xmalloc (sizeof *s); s->next = mips_opts_stack; s->options = mips_opts; mips_opts_stack = s; } else if (strcmp (name, "pop") == 0) { struct mips_option_stack *s; s = mips_opts_stack; if (s == NULL) as_bad (_(".set pop with no .set push")); else { /* If we're changing the reorder mode we need to handle delay slots correctly. */ if (s->options.noreorder && ! mips_opts.noreorder) mips_emit_delays (true); else if (! s->options.noreorder && mips_opts.noreorder) { if (prev_nop_frag != NULL) { prev_nop_frag->fr_fix -= (prev_nop_frag_holds * (mips_opts.mips16 ? 2 : 4)); prev_nop_frag = NULL; } } mips_opts = s->options; mips_opts_stack = s->next; free (s); } } else { as_warn (_("Tried to set unrecognized symbol: %s\n"), name); } *input_line_pointer = ch; demand_empty_rest_of_line (); } /* Handle the .abicalls pseudo-op. I believe this is equivalent to .option pic2. It means to generate SVR4 PIC calls. */ static void s_abicalls (ignore) int ignore ATTRIBUTE_UNUSED; { mips_pic = SVR4_PIC; if (USE_GLOBAL_POINTER_OPT) { if (g_switch_seen && g_switch_value != 0) as_warn (_("-G may not be used with SVR4 PIC code")); g_switch_value = 0; } bfd_set_gp_size (stdoutput, 0); demand_empty_rest_of_line (); } /* Handle the .cpload pseudo-op. This is used when generating SVR4 PIC code. It sets the $gp register for the function based on the function address, which is in the register named in the argument. This uses a relocation against _gp_disp, which is handled specially by the linker. The result is: lui $gp,%hi(_gp_disp) addiu $gp,$gp,%lo(_gp_disp) addu $gp,$gp,.cpload argument The .cpload argument is normally $25 == $t9. */ static void s_cpload (ignore) int ignore ATTRIBUTE_UNUSED; { expressionS ex; int icnt = 0; /* If we are not generating SVR4 PIC code, .cpload is ignored. */ if (mips_pic != SVR4_PIC) { s_ignore (0); return; } /* .cpload should be a in .set noreorder section. */ if (mips_opts.noreorder == 0) as_warn (_(".cpload not in noreorder section")); ex.X_op = O_symbol; ex.X_add_symbol = symbol_find_or_make ("_gp_disp"); ex.X_op_symbol = NULL; ex.X_add_number = 0; /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */ symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT; macro_build_lui ((char *) NULL, &icnt, &ex, GP); macro_build ((char *) NULL, &icnt, &ex, "addiu", "t,r,j", GP, GP, (int) BFD_RELOC_LO16); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "addu", "d,v,t", GP, GP, tc_get_register (0)); demand_empty_rest_of_line (); } /* Handle the .cprestore pseudo-op. This stores $gp into a given offset from $sp. The offset is remembered, and after making a PIC call $gp is restored from that location. */ static void s_cprestore (ignore) int ignore ATTRIBUTE_UNUSED; { expressionS ex; int icnt = 0; /* If we are not generating SVR4 PIC code, .cprestore is ignored. */ if (mips_pic != SVR4_PIC) { s_ignore (0); return; } mips_cprestore_offset = get_absolute_expression (); ex.X_op = O_constant; ex.X_add_symbol = NULL; ex.X_op_symbol = NULL; ex.X_add_number = mips_cprestore_offset; macro_build ((char *) NULL, &icnt, &ex, HAVE_32BIT_ADDRESSES ? "sw" : "sd", "t,o(b)", GP, (int) BFD_RELOC_LO16, SP); demand_empty_rest_of_line (); } /* Handle the .gpword pseudo-op. This is used when generating PIC code. It generates a 32 bit GP relative reloc. */ static void s_gpword (ignore) int ignore ATTRIBUTE_UNUSED; { symbolS *label; expressionS ex; char *p; /* When not generating PIC code, this is treated as .word. */ if (mips_pic != SVR4_PIC) { s_cons (2); return; } label = insn_labels != NULL ? insn_labels->label : NULL; mips_emit_delays (true); if (auto_align) mips_align (2, 0, label); mips_clear_insn_labels (); expression (&ex); if (ex.X_op != O_symbol || ex.X_add_number != 0) { as_bad (_("Unsupported use of .gpword")); ignore_rest_of_line (); } p = frag_more (4); md_number_to_chars (p, (valueT) 0, 4); fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, 0, BFD_RELOC_MIPS_GPREL32); demand_empty_rest_of_line (); } /* Handle the .cpadd pseudo-op. This is used when dealing with switch tables in SVR4 PIC code. */ static void s_cpadd (ignore) int ignore ATTRIBUTE_UNUSED; { int icnt = 0; int reg; /* This is ignored when not generating SVR4 PIC code. */ if (mips_pic != SVR4_PIC) { s_ignore (0); return; } /* Add $gp to the register named as an argument. */ reg = tc_get_register (0); macro_build ((char *) NULL, &icnt, (expressionS *) NULL, HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", reg, reg, GP); demand_empty_rest_of_line (); } /* Handle the .insn pseudo-op. This marks instruction labels in mips16 mode. This permits the linker to handle them specially, such as generating jalx instructions when needed. We also make them odd for the duration of the assembly, in order to generate the right sort of code. We will make them even in the adjust_symtab routine, while leaving them marked. This is convenient for the debugger and the disassembler. The linker knows to make them odd again. */ static void s_insn (ignore) int ignore ATTRIBUTE_UNUSED; { if (mips_opts.mips16) mips16_mark_labels (); demand_empty_rest_of_line (); } /* Handle a .stabn directive. We need these in order to mark a label as being a mips16 text label correctly. Sometimes the compiler will emit a label, followed by a .stabn, and then switch sections. If the label and .stabn are in mips16 mode, then the label is really a mips16 text label. */ static void s_mips_stab (type) int type; { if (type == 'n' && mips_opts.mips16) mips16_mark_labels (); s_stab (type); } /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */ static void s_mips_weakext (ignore) int ignore ATTRIBUTE_UNUSED; { char *name; int c; symbolS *symbolP; expressionS exp; name = input_line_pointer; c = get_symbol_end (); symbolP = symbol_find_or_make (name); S_SET_WEAK (symbolP); *input_line_pointer = c; SKIP_WHITESPACE (); if (! is_end_of_line[(unsigned char) *input_line_pointer]) { if (S_IS_DEFINED (symbolP)) { as_bad ("Ignoring attempt to redefine symbol `%s'.", S_GET_NAME (symbolP)); ignore_rest_of_line (); return; } if (*input_line_pointer == ',') { ++input_line_pointer; SKIP_WHITESPACE (); } expression (&exp); if (exp.X_op != O_symbol) { as_bad ("bad .weakext directive"); ignore_rest_of_line(); return; } symbol_set_value_expression (symbolP, &exp); } demand_empty_rest_of_line (); } /* Parse a register string into a number. Called from the ECOFF code to parse .frame. The argument is non-zero if this is the frame register, so that we can record it in mips_frame_reg. */ int tc_get_register (frame) int frame; { int reg; SKIP_WHITESPACE (); if (*input_line_pointer++ != '$') { as_warn (_("expected `$'")); reg = 0; } else if (isdigit ((unsigned char) *input_line_pointer)) { reg = get_absolute_expression (); if (reg < 0 || reg >= 32) { as_warn (_("Bad register number")); reg = 0; } } else { if (strncmp (input_line_pointer, "fp", 2) == 0) reg = FP; else if (strncmp (input_line_pointer, "sp", 2) == 0) reg = SP; else if (strncmp (input_line_pointer, "gp", 2) == 0) reg = GP; else if (strncmp (input_line_pointer, "at", 2) == 0) reg = AT; else { as_warn (_("Unrecognized register name")); reg = 0; } input_line_pointer += 2; } if (frame) mips_frame_reg = reg != 0 ? reg : SP; return reg; } valueT md_section_align (seg, addr) asection *seg; valueT addr; { int align = bfd_get_section_alignment (stdoutput, seg); #ifdef OBJ_ELF /* We don't need to align ELF sections to the full alignment. However, Irix 5 may prefer that we align them at least to a 16 byte boundary. We don't bother to align the sections if we are targeted for an embedded system. */ if (strcmp (TARGET_OS, "elf") == 0) return addr; if (align > 4) align = 4; #endif return ((addr + (1 << align) - 1) & (-1 << align)); } /* Utility routine, called from above as well. If called while the input file is still being read, it's only an approximation. (For example, a symbol may later become defined which appeared to be undefined earlier.) */ static int nopic_need_relax (sym, before_relaxing) symbolS *sym; int before_relaxing; { if (sym == 0) return 0; if (USE_GLOBAL_POINTER_OPT) { const char *symname; int change; /* Find out whether this symbol can be referenced off the GP register. It can be if it is smaller than the -G size or if it is in the .sdata or .sbss section. Certain symbols can not be referenced off the GP, although it appears as though they can. */ symname = S_GET_NAME (sym); if (symname != (const char *) NULL && (strcmp (symname, "eprol") == 0 || strcmp (symname, "etext") == 0 || strcmp (symname, "_gp") == 0 || strcmp (symname, "edata") == 0 || strcmp (symname, "_fbss") == 0 || strcmp (symname, "_fdata") == 0 || strcmp (symname, "_ftext") == 0 || strcmp (symname, "end") == 0 || strcmp (symname, "_gp_disp") == 0)) change = 1; else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym)) && (0 #ifndef NO_ECOFF_DEBUGGING || (symbol_get_obj (sym)->ecoff_extern_size != 0 && (symbol_get_obj (sym)->ecoff_extern_size <= g_switch_value)) #endif /* We must defer this decision until after the whole file has been read, since there might be a .extern after the first use of this symbol. */ || (before_relaxing #ifndef NO_ECOFF_DEBUGGING && symbol_get_obj (sym)->ecoff_extern_size == 0 #endif && S_GET_VALUE (sym) == 0) || (S_GET_VALUE (sym) != 0 && S_GET_VALUE (sym) <= g_switch_value))) change = 0; else { const char *segname; segname = segment_name (S_GET_SEGMENT (sym)); assert (strcmp (segname, ".lit8") != 0 && strcmp (segname, ".lit4") != 0); change = (strcmp (segname, ".sdata") != 0 && strcmp (segname, ".sbss") != 0 && strncmp (segname, ".sdata.", 7) != 0 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0); } return change; } else /* We are not optimizing for the GP register. */ return 1; } /* Given a mips16 variant frag FRAGP, return non-zero if it needs an extended opcode. SEC is the section the frag is in. */ static int mips16_extended_frag (fragp, sec, stretch) fragS *fragp; asection *sec; long stretch; { int type; register const struct mips16_immed_operand *op; offsetT val; int mintiny, maxtiny; segT symsec; fragS *sym_frag; if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype)) return 0; if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype)) return 1; type = RELAX_MIPS16_TYPE (fragp->fr_subtype); op = mips16_immed_operands; while (op->type != type) { ++op; assert (op < mips16_immed_operands + MIPS16_NUM_IMMED); } if (op->unsp) { if (type == '<' || type == '>' || type == '[' || type == ']') { mintiny = 1; maxtiny = 1 << op->nbits; } else { mintiny = 0; maxtiny = (1 << op->nbits) - 1; } } else { mintiny = - (1 << (op->nbits - 1)); maxtiny = (1 << (op->nbits - 1)) - 1; } sym_frag = symbol_get_frag (fragp->fr_symbol); val = S_GET_VALUE (fragp->fr_symbol); symsec = S_GET_SEGMENT (fragp->fr_symbol); if (op->pcrel) { addressT addr; /* We won't have the section when we are called from mips_relax_frag. However, we will always have been called from md_estimate_size_before_relax first. If this is a branch to a different section, we mark it as such. If SEC is NULL, and the frag is not marked, then it must be a branch to the same section. */ if (sec == NULL) { if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype)) return 1; } else { /* Must have been called from md_estimate_size_before_relax. */ if (symsec != sec) { fragp->fr_subtype = RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype); /* FIXME: We should support this, and let the linker catch branches and loads that are out of range. */ as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported PC relative reference to different section")); return 1; } if (fragp != sym_frag && sym_frag->fr_address == 0) /* Assume non-extended on the first relaxation pass. The address we have calculated will be bogus if this is a forward branch to another frag, as the forward frag will have fr_address == 0. */ return 0; } /* In this case, we know for sure that the symbol fragment is in the same section. If the relax_marker of the symbol fragment differs from the relax_marker of this fragment, we have not yet adjusted the symbol fragment fr_address. We want to add in STRETCH in order to get a better estimate of the address. This particularly matters because of the shift bits. */ if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker) { fragS *f; /* Adjust stretch for any alignment frag. Note that if have been expanding the earlier code, the symbol may be defined in what appears to be an earlier frag. FIXME: This doesn't handle the fr_subtype field, which specifies a maximum number of bytes to skip when doing an alignment. */ for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next) { if (f->fr_type == rs_align || f->fr_type == rs_align_code) { if (stretch < 0) stretch = - ((- stretch) & ~ ((1 << (int) f->fr_offset) - 1)); else stretch &= ~ ((1 << (int) f->fr_offset) - 1); if (stretch == 0) break; } } if (f != NULL) val += stretch; } addr = fragp->fr_address + fragp->fr_fix; /* The base address rules are complicated. The base address of a branch is the following instruction. The base address of a PC relative load or add is the instruction itself, but if it is in a delay slot (in which case it can not be extended) use the address of the instruction whose delay slot it is in. */ if (type == 'p' || type == 'q') { addr += 2; /* If we are currently assuming that this frag should be extended, then, the current address is two bytes higher. */ if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype)) addr += 2; /* Ignore the low bit in the target, since it will be set for a text label. */ if ((val & 1) != 0) --val; } else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)) addr -= 4; else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype)) addr -= 2; val -= addr & ~ ((1 << op->shift) - 1); /* Branch offsets have an implicit 0 in the lowest bit. */ if (type == 'p' || type == 'q') val /= 2; /* If any of the shifted bits are set, we must use an extended opcode. If the address depends on the size of this instruction, this can lead to a loop, so we arrange to always use an extended opcode. We only check this when we are in the main relaxation loop, when SEC is NULL. */ if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL) { fragp->fr_subtype = RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype); return 1; } /* If we are about to mark a frag as extended because the value is precisely maxtiny + 1, then there is a chance of an infinite loop as in the following code: la $4,foo .skip 1020 .align 2 foo: In this case when the la is extended, foo is 0x3fc bytes away, so the la can be shrunk, but then foo is 0x400 away, so the la must be extended. To avoid this loop, we mark the frag as extended if it was small, and is about to become extended with a value of maxtiny + 1. */ if (val == ((maxtiny + 1) << op->shift) && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype) && sec == NULL) { fragp->fr_subtype = RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype); return 1; } } else if (symsec != absolute_section && sec != NULL) as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation")); if ((val & ((1 << op->shift) - 1)) != 0 || val < (mintiny << op->shift) || val > (maxtiny << op->shift)) return 1; else return 0; } /* Estimate the size of a frag before relaxing. Unless this is the mips16, we are not really relaxing here, and the final size is encoded in the subtype information. For the mips16, we have to decide whether we are using an extended opcode or not. */ int md_estimate_size_before_relax (fragp, segtype) fragS *fragp; asection *segtype; { int change = 0; boolean linkonce = false; if (RELAX_MIPS16_P (fragp->fr_subtype)) { if (mips16_extended_frag (fragp, segtype, 0)) { fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype); return 4; } else { fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype); return 2; } } if (mips_pic == NO_PIC) { change = nopic_need_relax (fragp->fr_symbol, 0); } else if (mips_pic == SVR4_PIC) { symbolS *sym; asection *symsec; sym = fragp->fr_symbol; /* Handle the case of a symbol equated to another symbol. */ while (symbol_equated_p (sym) && (! S_IS_DEFINED (sym) || S_IS_COMMON (sym))) { symbolS *n; /* It's possible to get a loop here in a badly written program. */ n = symbol_get_value_expression (sym)->X_add_symbol; if (n == sym) break; sym = n; } symsec = S_GET_SEGMENT (sym); /* duplicate the test for LINK_ONCE sections as in adjust_reloc_syms */ if (symsec != segtype && ! S_IS_LOCAL (sym)) { if ((bfd_get_section_flags (stdoutput, symsec) & SEC_LINK_ONCE) != 0) linkonce = true; /* The GNU toolchain uses an extension for ELF: a section beginning with the magic string .gnu.linkonce is a linkonce section. */ if (strncmp (segment_name (symsec), ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0) linkonce = true; } /* This must duplicate the test in adjust_reloc_syms. */ change = (symsec != &bfd_und_section && symsec != &bfd_abs_section && ! bfd_is_com_section (symsec) && !linkonce #ifdef OBJ_ELF /* A global or weak symbol is treated as external. */ && (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! (S_IS_EXTERN (sym) || S_IS_WEAK (sym))) #endif ); } else abort (); if (change) { /* Record the offset to the first reloc in the fr_opcode field. This lets md_convert_frag and tc_gen_reloc know that the code must be expanded. */ fragp->fr_opcode = (fragp->fr_literal + fragp->fr_fix - RELAX_OLD (fragp->fr_subtype) + RELAX_RELOC1 (fragp->fr_subtype)); /* FIXME: This really needs as_warn_where. */ if (RELAX_WARN (fragp->fr_subtype)) as_warn (_("AT used after \".set noat\" or macro used after \".set nomacro\"")); } if (! change) return 0; else return RELAX_NEW (fragp->fr_subtype) - RELAX_OLD (fragp->fr_subtype); } /* This is called to see whether a reloc against a defined symbol should be converted into a reloc against a section. Don't adjust MIPS16 jump relocations, so we don't have to worry about the format of the offset in the .o file. Don't adjust relocations against mips16 symbols, so that the linker can find them if it needs to set up a stub. */ int mips_fix_adjustable (fixp) fixS *fixp; { #ifdef OBJ_ELF /* Prevent all adjustments to global symbols. */ if (OUTPUT_FLAVOR == bfd_target_elf_flavour && (S_IS_EXTERN (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy))) return 0; #endif if (fixp->fx_r_type == BFD_RELOC_MIPS16_JMP) return 0; if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY) return 0; if (fixp->fx_addsy == NULL) return 1; #ifdef OBJ_ELF if (OUTPUT_FLAVOR == bfd_target_elf_flavour && S_GET_OTHER (fixp->fx_addsy) == STO_MIPS16 && fixp->fx_subsy == NULL) return 0; #endif return 1; } /* Translate internal representation of relocation info to BFD target format. */ arelent ** tc_gen_reloc (section, fixp) asection *section ATTRIBUTE_UNUSED; fixS *fixp; { static arelent *retval[4]; arelent *reloc; bfd_reloc_code_real_type code; reloc = retval[0] = (arelent *) xmalloc (sizeof (arelent)); retval[1] = NULL; reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; if (mips_pic == EMBEDDED_PIC && SWITCH_TABLE (fixp)) { /* For a switch table entry we use a special reloc. The addend is actually the difference between the reloc address and the subtrahend. */ reloc->addend = reloc->address - S_GET_VALUE (fixp->fx_subsy); if (OUTPUT_FLAVOR != bfd_target_ecoff_flavour) as_fatal (_("Double check fx_r_type in tc-mips.c:tc_gen_reloc")); fixp->fx_r_type = BFD_RELOC_GPREL32; } else if (fixp->fx_pcrel == 0 || OUTPUT_FLAVOR == bfd_target_elf_flavour) reloc->addend = fixp->fx_addnumber; else if (fixp->fx_r_type == BFD_RELOC_PCREL_LO16) { /* We use a special addend for an internal RELLO reloc. */ if (symbol_section_p (fixp->fx_addsy)) reloc->addend = reloc->address - S_GET_VALUE (fixp->fx_subsy); else reloc->addend = fixp->fx_addnumber + reloc->address; } else if (fixp->fx_r_type == BFD_RELOC_PCREL_HI16_S) { assert (fixp->fx_next != NULL && fixp->fx_next->fx_r_type == BFD_RELOC_PCREL_LO16); /* We use a special addend for an internal RELHI reloc. The reloc is relative to the RELLO; adjust the addend accordingly. */ if (symbol_section_p (fixp->fx_addsy)) reloc->addend = (fixp->fx_next->fx_frag->fr_address + fixp->fx_next->fx_where - S_GET_VALUE (fixp->fx_subsy)); else reloc->addend = (fixp->fx_addnumber + fixp->fx_next->fx_frag->fr_address + fixp->fx_next->fx_where); } else { if (OUTPUT_FLAVOR != bfd_target_aout_flavour) /* A gruesome hack which is a result of the gruesome gas reloc handling. */ reloc->addend = reloc->address; else reloc->addend = -reloc->address; } /* If this is a variant frag, we may need to adjust the existing reloc and generate a new one. */ if (fixp->fx_frag->fr_opcode != NULL && (fixp->fx_r_type == BFD_RELOC_MIPS_GPREL || fixp->fx_r_type == BFD_RELOC_MIPS_GOT16 || fixp->fx_r_type == BFD_RELOC_MIPS_CALL16 || fixp->fx_r_type == BFD_RELOC_MIPS_GOT_HI16 || fixp->fx_r_type == BFD_RELOC_MIPS_GOT_LO16 || fixp->fx_r_type == BFD_RELOC_MIPS_CALL_HI16 || fixp->fx_r_type == BFD_RELOC_MIPS_CALL_LO16)) { arelent *reloc2; assert (! RELAX_MIPS16_P (fixp->fx_frag->fr_subtype)); /* If this is not the last reloc in this frag, then we have two GPREL relocs, or a GOT_HI16/GOT_LO16 pair, or a CALL_HI16/CALL_LO16, both of which are being replaced. Let the second one handle all of them. */ if (fixp->fx_next != NULL && fixp->fx_frag == fixp->fx_next->fx_frag) { assert ((fixp->fx_r_type == BFD_RELOC_MIPS_GPREL && fixp->fx_next->fx_r_type == BFD_RELOC_MIPS_GPREL) || (fixp->fx_r_type == BFD_RELOC_MIPS_GOT_HI16 && (fixp->fx_next->fx_r_type == BFD_RELOC_MIPS_GOT_LO16)) || (fixp->fx_r_type == BFD_RELOC_MIPS_CALL_HI16 && (fixp->fx_next->fx_r_type == BFD_RELOC_MIPS_CALL_LO16))); retval[0] = NULL; return retval; } fixp->fx_where = fixp->fx_frag->fr_opcode - fixp->fx_frag->fr_literal; reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; reloc2 = retval[1] = (arelent *) xmalloc (sizeof (arelent)); retval[2] = NULL; reloc2->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); *reloc2->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); reloc2->address = (reloc->address + (RELAX_RELOC2 (fixp->fx_frag->fr_subtype) - RELAX_RELOC1 (fixp->fx_frag->fr_subtype))); reloc2->addend = fixp->fx_addnumber; reloc2->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_LO16); assert (reloc2->howto != NULL); if (RELAX_RELOC3 (fixp->fx_frag->fr_subtype)) { arelent *reloc3; reloc3 = retval[2] = (arelent *) xmalloc (sizeof (arelent)); retval[3] = NULL; *reloc3 = *reloc2; reloc3->address += 4; } if (mips_pic == NO_PIC) { assert (fixp->fx_r_type == BFD_RELOC_MIPS_GPREL); fixp->fx_r_type = BFD_RELOC_HI16_S; } else if (mips_pic == SVR4_PIC) { switch (fixp->fx_r_type) { default: abort (); case BFD_RELOC_MIPS_GOT16: break; case BFD_RELOC_MIPS_CALL16: case BFD_RELOC_MIPS_GOT_LO16: case BFD_RELOC_MIPS_CALL_LO16: fixp->fx_r_type = BFD_RELOC_MIPS_GOT16; break; } } else abort (); } /* Since MIPS ELF uses Rel instead of Rela, encode the vtable entry to be used in the relocation's section offset. */ if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY) { reloc->address = reloc->addend; reloc->addend = 0; } /* Since DIFF_EXPR_OK is defined in tc-mips.h, it is possible that fixup_segment converted a non-PC relative reloc into a PC relative reloc. In such a case, we need to convert the reloc code. */ code = fixp->fx_r_type; if (fixp->fx_pcrel) { switch (code) { case BFD_RELOC_8: code = BFD_RELOC_8_PCREL; break; case BFD_RELOC_16: code = BFD_RELOC_16_PCREL; break; case BFD_RELOC_32: code = BFD_RELOC_32_PCREL; break; case BFD_RELOC_64: code = BFD_RELOC_64_PCREL; break; case BFD_RELOC_8_PCREL: case BFD_RELOC_16_PCREL: case BFD_RELOC_32_PCREL: case BFD_RELOC_64_PCREL: case BFD_RELOC_16_PCREL_S2: case BFD_RELOC_PCREL_HI16_S: case BFD_RELOC_PCREL_LO16: break; default: as_bad_where (fixp->fx_file, fixp->fx_line, _("Cannot make %s relocation PC relative"), bfd_get_reloc_code_name (code)); } } /* To support a PC relative reloc when generating embedded PIC code for ECOFF, we use a Cygnus extension. We check for that here to make sure that we don't let such a reloc escape normally. */ if ((OUTPUT_FLAVOR == bfd_target_ecoff_flavour || OUTPUT_FLAVOR == bfd_target_elf_flavour) && code == BFD_RELOC_16_PCREL_S2 && mips_pic != EMBEDDED_PIC) reloc->howto = NULL; else reloc->howto = bfd_reloc_type_lookup (stdoutput, code); if (reloc->howto == NULL) { as_bad_where (fixp->fx_file, fixp->fx_line, _("Can not represent %s relocation in this object file format"), bfd_get_reloc_code_name (code)); retval[0] = NULL; } return retval; } /* Relax a machine dependent frag. This returns the amount by which the current size of the frag should change. */ int mips_relax_frag (fragp, stretch) fragS *fragp; long stretch; { if (! RELAX_MIPS16_P (fragp->fr_subtype)) return 0; if (mips16_extended_frag (fragp, (asection *) NULL, stretch)) { if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype)) return 0; fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype); return 2; } else { if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)) return 0; fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype); return -2; } return 0; } /* Convert a machine dependent frag. */ void md_convert_frag (abfd, asec, fragp) bfd *abfd ATTRIBUTE_UNUSED; segT asec; fragS *fragp; { int old, new; char *fixptr; if (RELAX_MIPS16_P (fragp->fr_subtype)) { int type; register const struct mips16_immed_operand *op; boolean small, ext; offsetT val; bfd_byte *buf; unsigned long insn; boolean use_extend; unsigned short extend; type = RELAX_MIPS16_TYPE (fragp->fr_subtype); op = mips16_immed_operands; while (op->type != type) ++op; if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype)) { small = false; ext = true; } else { small = true; ext = false; } resolve_symbol_value (fragp->fr_symbol); val = S_GET_VALUE (fragp->fr_symbol); if (op->pcrel) { addressT addr; addr = fragp->fr_address + fragp->fr_fix; /* The rules for the base address of a PC relative reloc are complicated; see mips16_extended_frag. */ if (type == 'p' || type == 'q') { addr += 2; if (ext) addr += 2; /* Ignore the low bit in the target, since it will be set for a text label. */ if ((val & 1) != 0) --val; } else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)) addr -= 4; else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype)) addr -= 2; addr &= ~ (addressT) ((1 << op->shift) - 1); val -= addr; /* Make sure the section winds up with the alignment we have assumed. */ if (op->shift > 0) record_alignment (asec, op->shift); } if (ext && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype) || RELAX_MIPS16_DSLOT (fragp->fr_subtype))) as_warn_where (fragp->fr_file, fragp->fr_line, _("extended instruction in delay slot")); buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix); if (target_big_endian) insn = bfd_getb16 (buf); else insn = bfd_getl16 (buf); mips16_immed (fragp->fr_file, fragp->fr_line, type, val, RELAX_MIPS16_USER_EXT (fragp->fr_subtype), small, ext, &insn, &use_extend, &extend); if (use_extend) { md_number_to_chars (buf, 0xf000 | extend, 2); fragp->fr_fix += 2; buf += 2; } md_number_to_chars (buf, insn, 2); fragp->fr_fix += 2; buf += 2; } else { if (fragp->fr_opcode == NULL) return; old = RELAX_OLD (fragp->fr_subtype); new = RELAX_NEW (fragp->fr_subtype); fixptr = fragp->fr_literal + fragp->fr_fix; if (new > 0) memcpy (fixptr - old, fixptr, new); fragp->fr_fix += new - old; } } #ifdef OBJ_ELF /* This function is called after the relocs have been generated. We've been storing mips16 text labels as odd. Here we convert them back to even for the convenience of the debugger. */ void mips_frob_file_after_relocs () { asymbol **syms; unsigned int count, i; if (OUTPUT_FLAVOR != bfd_target_elf_flavour) return; syms = bfd_get_outsymbols (stdoutput); count = bfd_get_symcount (stdoutput); for (i = 0; i < count; i++, syms++) { if (elf_symbol (*syms)->internal_elf_sym.st_other == STO_MIPS16 && ((*syms)->value & 1) != 0) { (*syms)->value &= ~1; /* If the symbol has an odd size, it was probably computed incorrectly, so adjust that as well. */ if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0) ++elf_symbol (*syms)->internal_elf_sym.st_size; } } } #endif /* This function is called whenever a label is defined. It is used when handling branch delays; if a branch has a label, we assume we can not move it. */ void mips_define_label (sym) symbolS *sym; { struct insn_label_list *l; if (free_insn_labels == NULL) l = (struct insn_label_list *) xmalloc (sizeof *l); else { l = free_insn_labels; free_insn_labels = l->next; } l->label = sym; l->next = insn_labels; insn_labels = l; } #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) /* Some special processing for a MIPS ELF file. */ void mips_elf_final_processing () { /* Write out the register information. */ if (! mips_64) { Elf32_RegInfo s; s.ri_gprmask = mips_gprmask; s.ri_cprmask[0] = mips_cprmask[0]; s.ri_cprmask[1] = mips_cprmask[1]; s.ri_cprmask[2] = mips_cprmask[2]; s.ri_cprmask[3] = mips_cprmask[3]; /* The gp_value field is set by the MIPS ELF backend. */ bfd_mips_elf32_swap_reginfo_out (stdoutput, &s, ((Elf32_External_RegInfo *) mips_regmask_frag)); } else { Elf64_Internal_RegInfo s; s.ri_gprmask = mips_gprmask; s.ri_pad = 0; s.ri_cprmask[0] = mips_cprmask[0]; s.ri_cprmask[1] = mips_cprmask[1]; s.ri_cprmask[2] = mips_cprmask[2]; s.ri_cprmask[3] = mips_cprmask[3]; /* The gp_value field is set by the MIPS ELF backend. */ bfd_mips_elf64_swap_reginfo_out (stdoutput, &s, ((Elf64_External_RegInfo *) mips_regmask_frag)); } /* Set the MIPS ELF flag bits. FIXME: There should probably be some sort of BFD interface for this. */ if (mips_any_noreorder) elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER; if (mips_pic != NO_PIC) elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC; /* Set the MIPS ELF ABI flags. */ if (mips_abi_string == 0) ; else if (strcmp (mips_abi_string, "32") == 0) elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32; else if (strcmp (mips_abi_string, "o64") == 0) elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64; else if (strcmp (mips_abi_string, "eabi") == 0) { if (mips_eabi64) elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64; else elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32; } if (mips_32bitmode) elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE; } #endif /* OBJ_ELF || OBJ_MAYBE_ELF */ typedef struct proc { symbolS *isym; unsigned long reg_mask; unsigned long reg_offset; unsigned long fpreg_mask; unsigned long fpreg_offset; unsigned long frame_offset; unsigned long frame_reg; unsigned long pc_reg; } procS; static procS cur_proc; static procS *cur_proc_ptr; static int numprocs; /* Fill in an rs_align_code fragment. */ void mips_handle_align (fragp) fragS *fragp; { if (fragp->fr_type != rs_align_code) return; if (mips_opts.mips16) { static const unsigned char be_nop[] = { 0x65, 0x00 }; static const unsigned char le_nop[] = { 0x00, 0x65 }; int bytes; char *p; bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix; p = fragp->fr_literal + fragp->fr_fix; if (bytes & 1) { *p++ = 0; fragp->fr_fix += 1; } memcpy (p, (target_big_endian ? be_nop : le_nop), 2); fragp->fr_var = 2; } /* For mips32, a nop is a zero, which we trivially get by doing nothing. */ } static void md_obj_begin () { } static void md_obj_end () { /* check for premature end, nesting errors, etc */ if (cur_proc_ptr) as_warn (_("missing `.end' at end of assembly")); } static long get_number () { int negative = 0; long val = 0; if (*input_line_pointer == '-') { ++input_line_pointer; negative = 1; } if (!isdigit ((unsigned char) *input_line_pointer)) as_bad (_("Expected simple number.")); if (input_line_pointer[0] == '0') { if (input_line_pointer[1] == 'x') { input_line_pointer += 2; while (isxdigit ((unsigned char) *input_line_pointer)) { val <<= 4; val |= hex_value (*input_line_pointer++); } return negative ? -val : val; } else { ++input_line_pointer; while (isdigit ((unsigned char) *input_line_pointer)) { val <<= 3; val |= *input_line_pointer++ - '0'; } return negative ? -val : val; } } if (!isdigit ((unsigned char) *input_line_pointer)) { printf (_(" *input_line_pointer == '%c' 0x%02x\n"), *input_line_pointer, *input_line_pointer); as_warn (_("Invalid number")); return -1; } while (isdigit ((unsigned char) *input_line_pointer)) { val *= 10; val += *input_line_pointer++ - '0'; } return negative ? -val : val; } /* The .file directive; just like the usual .file directive, but there is an initial number which is the ECOFF file index. */ static void s_file (x) int x ATTRIBUTE_UNUSED; { int line; line = get_number (); s_app_file (0); } /* The .end directive. */ static void s_mips_end (x) int x ATTRIBUTE_UNUSED; { symbolS *p; int maybe_text; if (!is_end_of_line[(unsigned char) *input_line_pointer]) { p = get_symbol (); demand_empty_rest_of_line (); } else p = NULL; #ifdef BFD_ASSEMBLER if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0) maybe_text = 1; else maybe_text = 0; #else if (now_seg != data_section && now_seg != bss_section) maybe_text = 1; else maybe_text = 0; #endif if (!maybe_text) as_warn (_(".end not in text section")); if (!cur_proc_ptr) { as_warn (_(".end directive without a preceding .ent directive.")); demand_empty_rest_of_line (); return; } if (p != NULL) { assert (S_GET_NAME (p)); if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->isym))) as_warn (_(".end symbol does not match .ent symbol.")); } else as_warn (_(".end directive missing or unknown symbol")); #ifdef MIPS_STABS_ELF { segT saved_seg = now_seg; subsegT saved_subseg = now_subseg; valueT dot; expressionS exp; char *fragp; dot = frag_now_fix (); #ifdef md_flush_pending_output md_flush_pending_output (); #endif assert (pdr_seg); subseg_set (pdr_seg, 0); /* Write the symbol. */ exp.X_op = O_symbol; exp.X_add_symbol = p; exp.X_add_number = 0; emit_expr (&exp, 4); fragp = frag_more (7 * 4); md_number_to_chars (fragp, (valueT) cur_proc_ptr->reg_mask, 4); md_number_to_chars (fragp + 4, (valueT) cur_proc_ptr->reg_offset, 4); md_number_to_chars (fragp + 8, (valueT) cur_proc_ptr->fpreg_mask, 4); md_number_to_chars (fragp + 12, (valueT) cur_proc_ptr->fpreg_offset, 4); md_number_to_chars (fragp + 16, (valueT) cur_proc_ptr->frame_offset, 4); md_number_to_chars (fragp + 20, (valueT) cur_proc_ptr->frame_reg, 4); md_number_to_chars (fragp + 24, (valueT) cur_proc_ptr->pc_reg, 4); subseg_set (saved_seg, saved_subseg); } #endif cur_proc_ptr = NULL; } /* The .aent and .ent directives. */ static void s_mips_ent (aent) int aent; { int number = 0; symbolS *symbolP; int maybe_text; symbolP = get_symbol (); if (*input_line_pointer == ',') input_line_pointer++; SKIP_WHITESPACE (); if (isdigit ((unsigned char) *input_line_pointer) || *input_line_pointer == '-') number = get_number (); #ifdef BFD_ASSEMBLER if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0) maybe_text = 1; else maybe_text = 0; #else if (now_seg != data_section && now_seg != bss_section) maybe_text = 1; else maybe_text = 0; #endif if (!maybe_text) as_warn (_(".ent or .aent not in text section.")); if (!aent && cur_proc_ptr) as_warn (_("missing `.end'")); if (!aent) { cur_proc_ptr = &cur_proc; memset (cur_proc_ptr, '\0', sizeof (procS)); cur_proc_ptr->isym = symbolP; symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION; numprocs++; } demand_empty_rest_of_line (); } /* The .frame directive. If the mdebug section is present (IRIX 5 native) then ecoff.c (ecoff_directive_frame) is used. For embedded targets, s_mips_frame is used so that we can set the PDR information correctly. We can't use the ecoff routines because they make reference to the ecoff symbol table (in the mdebug section). */ static void s_mips_frame (ignore) int ignore ATTRIBUTE_UNUSED; { #ifdef MIPS_STABS_ELF long val; if (cur_proc_ptr == (procS *) NULL) { as_warn (_(".frame outside of .ent")); demand_empty_rest_of_line (); return; } cur_proc_ptr->frame_reg = tc_get_register (1); SKIP_WHITESPACE (); if (*input_line_pointer++ != ',' || get_absolute_expression_and_terminator (&val) != ',') { as_warn (_("Bad .frame directive")); --input_line_pointer; demand_empty_rest_of_line (); return; } cur_proc_ptr->frame_offset = val; cur_proc_ptr->pc_reg = tc_get_register (0); demand_empty_rest_of_line (); #else s_ignore (ignore); #endif /* MIPS_STABS_ELF */ } /* The .fmask and .mask directives. If the mdebug section is present (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For embedded targets, s_mips_mask is used so that we can set the PDR information correctly. We can't use the ecoff routines because they make reference to the ecoff symbol table (in the mdebug section). */ static void s_mips_mask (reg_type) char reg_type; { #ifdef MIPS_STABS_ELF long mask, off; if (cur_proc_ptr == (procS *) NULL) { as_warn (_(".mask/.fmask outside of .ent")); demand_empty_rest_of_line (); return; } if (get_absolute_expression_and_terminator (&mask) != ',') { as_warn (_("Bad .mask/.fmask directive")); --input_line_pointer; demand_empty_rest_of_line (); return; } off = get_absolute_expression (); if (reg_type == 'F') { cur_proc_ptr->fpreg_mask = mask; cur_proc_ptr->fpreg_offset = off; } else { cur_proc_ptr->reg_mask = mask; cur_proc_ptr->reg_offset = off; } demand_empty_rest_of_line (); #else s_ignore (reg_type); #endif /* MIPS_STABS_ELF */ } /* The .loc directive. */ #if 0 static void s_loc (x) int x; { symbolS *symbolP; int lineno; int addroff; assert (now_seg == text_section); lineno = get_number (); addroff = frag_now_fix (); symbolP = symbol_new ("", N_SLINE, addroff, frag_now); S_SET_TYPE (symbolP, N_SLINE); S_SET_OTHER (symbolP, 0); S_SET_DESC (symbolP, lineno); symbolP->sy_segment = now_seg; } #endif /* CPU name/ISA/number mapping table. Entries are grouped by type. The first matching CPU or ISA entry gets chosen by CPU or ISA, so it should be the 'canonical' name for that type. Entries after that within the type are sorted alphabetically. Case is ignored in comparison, so put the canonical entry in the appropriate case but everything else in lower case to ease eye pain. */ static const struct mips_cpu_info mips_cpu_info_table[] = { /* MIPS1 ISA */ { "MIPS1", 1, ISA_MIPS1, CPU_R3000, }, { "mips", 1, ISA_MIPS1, CPU_R3000, }, /* MIPS2 ISA */ { "MIPS2", 1, ISA_MIPS2, CPU_R6000, }, /* MIPS3 ISA */ { "MIPS3", 1, ISA_MIPS3, CPU_R4000, }, /* MIPS4 ISA */ { "MIPS4", 1, ISA_MIPS4, CPU_R8000, }, /* MIPS5 ISA */ { "MIPS5", 1, ISA_MIPS5, CPU_MIPS5, }, { "Generic-MIPS5", 0, ISA_MIPS5, CPU_MIPS5, }, /* MIPS32 ISA */ { "MIPS32", 1, ISA_MIPS32, CPU_MIPS32, }, { "Generic-MIPS32", 0, ISA_MIPS32, CPU_MIPS32, }, #if 1 /* XXX for now, MIPS64 -> MIPS3 because of history */ { "MIPS64", 1, ISA_MIPS3, CPU_R4000 }, /* XXX! */ #else /* MIPS64 ISA */ { "MIPS64", 1, ISA_MIPS64, CPU_MIPS64 }, #endif { "mips64isa", 1, ISA_MIPS64, CPU_MIPS64 }, { "Generic-MIPS64", 0, ISA_MIPS64, CPU_MIPS64, }, /* R2000 CPU */ { "R2000", 0, ISA_MIPS1, CPU_R2000, }, { "2000", 0, ISA_MIPS1, CPU_R2000, }, { "2k", 0, ISA_MIPS1, CPU_R2000, }, { "r2k", 0, ISA_MIPS1, CPU_R2000, }, /* R3000 CPU */ { "R3000", 0, ISA_MIPS1, CPU_R3000, }, { "3000", 0, ISA_MIPS1, CPU_R3000, }, { "3k", 0, ISA_MIPS1, CPU_R3000, }, { "r3k", 0, ISA_MIPS1, CPU_R3000, }, /* TX3900 CPU */ { "R3900", 0, ISA_MIPS1, CPU_R3900, }, { "3900", 0, ISA_MIPS1, CPU_R3900, }, { "mipstx39", 0, ISA_MIPS1, CPU_R3900, }, /* R4000 CPU */ { "R4000", 0, ISA_MIPS3, CPU_R4000, }, { "4000", 0, ISA_MIPS3, CPU_R4000, }, { "4k", 0, ISA_MIPS3, CPU_R4000, }, /* beware */ { "r4k", 0, ISA_MIPS3, CPU_R4000, }, /* R4010 CPU */ { "R4010", 0, ISA_MIPS2, CPU_R4010, }, { "4010", 0, ISA_MIPS2, CPU_R4010, }, /* R4400 CPU */ { "R4400", 0, ISA_MIPS3, CPU_R4400, }, { "4400", 0, ISA_MIPS3, CPU_R4400, }, /* R4600 CPU */ { "R4600", 0, ISA_MIPS3, CPU_R4600, }, { "4600", 0, ISA_MIPS3, CPU_R4600, }, { "mips64orion", 0, ISA_MIPS3, CPU_R4600, }, { "orion", 0, ISA_MIPS3, CPU_R4600, }, /* R4650 CPU */ { "R4650", 0, ISA_MIPS3, CPU_R4650, }, { "4650", 0, ISA_MIPS3, CPU_R4650, }, /* R6000 CPU */ { "R6000", 0, ISA_MIPS2, CPU_R6000, }, { "6000", 0, ISA_MIPS2, CPU_R6000, }, { "6k", 0, ISA_MIPS2, CPU_R6000, }, { "r6k", 0, ISA_MIPS2, CPU_R6000, }, /* R8000 CPU */ { "R8000", 0, ISA_MIPS4, CPU_R8000, }, { "8000", 0, ISA_MIPS4, CPU_R8000, }, { "8k", 0, ISA_MIPS4, CPU_R8000, }, { "r8k", 0, ISA_MIPS4, CPU_R8000, }, /* R10000 CPU */ { "R10000", 0, ISA_MIPS4, CPU_R10000, }, { "10000", 0, ISA_MIPS4, CPU_R10000, }, { "10k", 0, ISA_MIPS4, CPU_R10000, }, { "r10k", 0, ISA_MIPS4, CPU_R10000, }, /* R12000 CPU */ { "R12000", 0, ISA_MIPS4, CPU_R12000, }, { "12000", 0, ISA_MIPS4, CPU_R12000, }, { "12k", 0, ISA_MIPS4, CPU_R12000, }, { "r12k", 0, ISA_MIPS4, CPU_R12000, }, /* VR4100 CPU */ { "VR4100", 0, ISA_MIPS3, CPU_VR4100, }, { "4100", 0, ISA_MIPS3, CPU_VR4100, }, { "mips64vr4100", 0, ISA_MIPS3, CPU_VR4100, }, { "r4100", 0, ISA_MIPS3, CPU_VR4100, }, /* VR4111 CPU */ { "VR4111", 0, ISA_MIPS3, CPU_R4111, }, { "4111", 0, ISA_MIPS3, CPU_R4111, }, { "mips64vr4111", 0, ISA_MIPS3, CPU_R4111, }, { "r4111", 0, ISA_MIPS3, CPU_R4111, }, /* VR4300 CPU */ { "VR4300", 0, ISA_MIPS3, CPU_R4300, }, { "4300", 0, ISA_MIPS3, CPU_R4300, }, { "mips64vr4300", 0, ISA_MIPS3, CPU_R4300, }, { "r4300", 0, ISA_MIPS3, CPU_R4300, }, /* VR5000 CPU */ { "VR5000", 0, ISA_MIPS4, CPU_R5000, }, { "5000", 0, ISA_MIPS4, CPU_R5000, }, { "5k", 0, ISA_MIPS4, CPU_R5000, }, { "mips64vr5000", 0, ISA_MIPS4, CPU_R5000, }, { "r5000", 0, ISA_MIPS4, CPU_R5000, }, { "r5200", 0, ISA_MIPS4, CPU_R5000, }, { "rm5200", 0, ISA_MIPS4, CPU_R5000, }, { "r5230", 0, ISA_MIPS4, CPU_R5000, }, { "rm5230", 0, ISA_MIPS4, CPU_R5000, }, { "r5231", 0, ISA_MIPS4, CPU_R5000, }, { "rm5231", 0, ISA_MIPS4, CPU_R5000, }, { "r5261", 0, ISA_MIPS4, CPU_R5000, }, { "rm5261", 0, ISA_MIPS4, CPU_R5000, }, { "r5721", 0, ISA_MIPS4, CPU_R5000, }, { "rm5721", 0, ISA_MIPS4, CPU_R5000, }, { "r5k", 0, ISA_MIPS4, CPU_R5000, }, { "r7000", 0, ISA_MIPS4, CPU_R5000, }, /* MIPS32 4K CPU */ { "MIPS32-4K", 0, ISA_MIPS32, CPU_MIPS32_4K, }, { "4kc", 0, ISA_MIPS32, CPU_MIPS32_4K, }, { "4km", 0, ISA_MIPS32, CPU_MIPS32_4K, }, { "4kp", 0, ISA_MIPS32, CPU_MIPS32_4K, }, { "mips32-4kc", 0, ISA_MIPS32, CPU_MIPS32_4K, }, { "mips32-4km", 0, ISA_MIPS32, CPU_MIPS32_4K, }, { "mips32-4kp", 0, ISA_MIPS32, CPU_MIPS32_4K, }, /* SiByte SB-1 CPU */ { "SB-1", 0, ISA_MIPS64, CPU_SB1, }, { "sb-1250", 0, ISA_MIPS64, CPU_SB1, }, { "sb1", 0, ISA_MIPS64, CPU_SB1, }, { "sb1250", 0, ISA_MIPS64, CPU_SB1, }, /* End marker. */ { NULL, 0, 0, 0, }, }; static const struct mips_cpu_info * mips_cpu_info_from_name (name) const char *name; { int i; for (i = 0; mips_cpu_info_table[i].name != NULL; i++) if (strcasecmp (name, mips_cpu_info_table[i].name) == 0) return (&mips_cpu_info_table[i]); return NULL; } static const struct mips_cpu_info * mips_cpu_info_from_isa (isa) int isa; { int i; for (i = 0; mips_cpu_info_table[i].name != NULL; i++) if (mips_cpu_info_table[i].is_isa && isa == mips_cpu_info_table[i].isa) return (&mips_cpu_info_table[i]); return NULL; } static const struct mips_cpu_info * mips_cpu_info_from_cpu (cpu) int cpu; { int i; for (i = 0; mips_cpu_info_table[i].name != NULL; i++) if (!mips_cpu_info_table[i].is_isa && cpu == mips_cpu_info_table[i].cpu) return (&mips_cpu_info_table[i]); return NULL; }