/* tc-mips.c -- assemble code for a MIPS chip. Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc. Contributed by the OSF and Ralph Campbell. Written by Keith Knowles and Ralph Campbell, working independently. Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus Support. This file is part of GAS. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "as.h" #include "config.h" #include "subsegs.h" #include "safe-ctype.h" #include "opcode/mips.h" #include "itbl-ops.h" #include "dwarf2dbg.h" #include "dw2gencfi.h" /* Check assumptions made in this file. */ typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1]; typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1]; #ifdef DEBUG #define DBG(x) printf x #else #define DBG(x) #endif #define SKIP_SPACE_TABS(S) \ do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0) /* Clean up namespace so we can include obj-elf.h too. */ static int mips_output_flavor (void); static int mips_output_flavor (void) { return OUTPUT_FLAVOR; } #undef OBJ_PROCESS_STAB #undef OUTPUT_FLAVOR #undef S_GET_ALIGN #undef S_GET_SIZE #undef S_SET_ALIGN #undef S_SET_SIZE #undef obj_frob_file #undef obj_frob_file_after_relocs #undef obj_frob_symbol #undef obj_pop_insert #undef obj_sec_sym_ok_for_reloc #undef OBJ_COPY_SYMBOL_ATTRIBUTES #include "obj-elf.h" /* Fix any of them that we actually care about. */ #undef OUTPUT_FLAVOR #define OUTPUT_FLAVOR mips_output_flavor() #include "elf/mips.h" #ifndef ECOFF_DEBUGGING #define NO_ECOFF_DEBUGGING #define ECOFF_DEBUGGING 0 #endif int mips_flag_mdebug = -1; /* Control generation of .pdr sections. Off by default on IRIX: the native linker doesn't know about and discards them, but relocations against them remain, leading to rld crashes. */ #ifdef TE_IRIX int mips_flag_pdr = FALSE; #else int mips_flag_pdr = TRUE; #endif #include "ecoff.h" static char *mips_regmask_frag; #define ZERO 0 #define ATREG 1 #define S0 16 #define S7 23 #define TREG 24 #define PIC_CALL_REG 25 #define KT0 26 #define KT1 27 #define GP 28 #define SP 29 #define FP 30 #define RA 31 #define ILLEGAL_REG (32) #define AT mips_opts.at extern int target_big_endian; /* The name of the readonly data section. */ #define RDATA_SECTION_NAME ".rodata" /* Ways in which an instruction can be "appended" to the output. */ enum append_method { /* Just add it normally. */ APPEND_ADD, /* Add it normally and then add a nop. */ APPEND_ADD_WITH_NOP, /* Turn an instruction with a delay slot into a "compact" version. */ APPEND_ADD_COMPACT, /* Insert the instruction before the last one. */ APPEND_SWAP }; /* Information about an instruction, including its format, operands and fixups. */ struct mips_cl_insn { /* The opcode's entry in mips_opcodes or mips16_opcodes. */ const struct mips_opcode *insn_mo; /* The 16-bit or 32-bit bitstring of the instruction itself. This is a copy of INSN_MO->match with the operands filled in. If we have decided to use an extended MIPS16 instruction, this includes the extension. */ unsigned long insn_opcode; /* The frag that contains the instruction. */ struct frag *frag; /* The offset into FRAG of the first instruction byte. */ long where; /* The relocs associated with the instruction, if any. */ fixS *fixp[3]; /* True if this entry cannot be moved from its current position. */ unsigned int fixed_p : 1; /* True if this instruction occurred in a .set noreorder block. */ unsigned int noreorder_p : 1; /* True for mips16 instructions that jump to an absolute address. */ unsigned int mips16_absolute_jump_p : 1; /* True if this instruction is complete. */ unsigned int complete_p : 1; /* True if this instruction is cleared from history by unconditional branch. */ unsigned int cleared_p : 1; }; /* The ABI to use. */ enum mips_abi_level { NO_ABI = 0, O32_ABI, O64_ABI, N32_ABI, N64_ABI, EABI_ABI }; /* MIPS ABI we are using for this output file. */ static enum mips_abi_level mips_abi = NO_ABI; /* Whether or not we have code that can call pic code. */ int mips_abicalls = FALSE; /* Whether or not we have code which can be put into a shared library. */ static bfd_boolean mips_in_shared = TRUE; /* This is the set of options which may be modified by the .set pseudo-op. We use a struct so that .set push and .set pop are more reliable. */ struct mips_set_options { /* MIPS ISA (Instruction Set Architecture) level. This is set to -1 if it has not been initialized. Changed by `.set mipsN', and the -mipsN command line option, and the default CPU. */ int isa; /* Enabled Application Specific Extensions (ASEs). Changed by `.set ', by command line options, and based on the default architecture. */ int ase; /* Whether we are assembling for the mips16 processor. 0 if we are not, 1 if we are, and -1 if the value has not been initialized. Changed by `.set mips16' and `.set nomips16', and the -mips16 and -nomips16 command line options, and the default CPU. */ int mips16; /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not, 1 if we are, and -1 if the value has not been initialized. Changed by `.set micromips' and `.set nomicromips', and the -mmicromips and -mno-micromips command line options, and the default CPU. */ int micromips; /* Non-zero if we should not reorder instructions. Changed by `.set reorder' and `.set noreorder'. */ int noreorder; /* Non-zero if we should not permit the register designated "assembler temporary" to be used in instructions. The value is the register number, normally $at ($1). Changed by `.set at=REG', `.set noat' (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */ unsigned int at; /* Non-zero if we should warn when a macro instruction expands into more than one machine instruction. Changed by `.set nomacro' and `.set macro'. */ int warn_about_macros; /* Non-zero if we should not move instructions. Changed by `.set move', `.set volatile', `.set nomove', and `.set novolatile'. */ int nomove; /* Non-zero if we should not optimize branches by moving the target of the branch into the delay slot. Actually, we don't perform this optimization anyhow. Changed by `.set bopt' and `.set nobopt'. */ int nobopt; /* Non-zero if we should not autoextend mips16 instructions. Changed by `.set autoextend' and `.set noautoextend'. */ int noautoextend; /* True if we should only emit 32-bit microMIPS instructions. Changed by `.set insn32' and `.set noinsn32', and the -minsn32 and -mno-insn32 command line options. */ bfd_boolean insn32; /* Restrict general purpose registers and floating point registers to 32 bit. This is initially determined when -mgp32 or -mfp32 is passed but can changed if the assembler code uses .set mipsN. */ int gp32; int fp32; /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march command line option, and the default CPU. */ int arch; /* True if ".set sym32" is in effect. */ bfd_boolean sym32; /* True if floating-point operations are not allowed. Changed by .set softfloat or .set hardfloat, by command line options -msoft-float or -mhard-float. The default is false. */ bfd_boolean soft_float; /* True if only single-precision floating-point operations are allowed. Changed by .set singlefloat or .set doublefloat, command-line options -msingle-float or -mdouble-float. The default is false. */ bfd_boolean single_float; }; /* This is the struct we use to hold the current set of options. Note that we must set the isa field to ISA_UNKNOWN and the ASE fields to -1 to indicate that they have not been initialized. */ /* True if -mgp32 was passed. */ static int file_mips_gp32 = -1; /* True if -mfp32 was passed. */ static int file_mips_fp32 = -1; /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */ static int file_mips_soft_float = 0; /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */ static int file_mips_single_float = 0; /* True if -mnan=2008, false if -mnan=legacy. */ static bfd_boolean mips_flag_nan2008 = FALSE; static struct mips_set_options mips_opts = { /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1, /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE }; /* The set of ASEs that were selected on the command line, either explicitly via ASE options or implicitly through things like -march. */ static unsigned int file_ase; /* Which bits of file_ase were explicitly set or cleared by ASE options. */ static unsigned int file_ase_explicit; /* These variables are filled in with the masks of registers used. The object format code reads them and puts them in the appropriate place. */ unsigned long mips_gprmask; unsigned long mips_cprmask[4]; /* MIPS ISA we are using for this output file. */ static int file_mips_isa = ISA_UNKNOWN; /* True if any MIPS16 code was produced. */ static int file_ase_mips16; #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \ || mips_opts.isa == ISA_MIPS32R2 \ || mips_opts.isa == ISA_MIPS64 \ || mips_opts.isa == ISA_MIPS64R2) /* True if any microMIPS code was produced. */ static int file_ase_micromips; /* True if we want to create R_MIPS_JALR for jalr $25. */ #ifdef TE_IRIX #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI #else /* As a GNU extension, we use R_MIPS_JALR for o32 too. However, because there's no place for any addend, the only acceptable expression is a bare symbol. */ #define MIPS_JALR_HINT_P(EXPR) \ (!HAVE_IN_PLACE_ADDENDS \ || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0)) #endif /* The argument of the -march= flag. The architecture we are assembling. */ static int file_mips_arch = CPU_UNKNOWN; static const char *mips_arch_string; /* The argument of the -mtune= flag. The architecture for which we are optimizing. */ static int mips_tune = CPU_UNKNOWN; static const char *mips_tune_string; /* True when generating 32-bit code for a 64-bit processor. */ static int mips_32bitmode = 0; /* True if the given ABI requires 32-bit registers. */ #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI) /* Likewise 64-bit registers. */ #define ABI_NEEDS_64BIT_REGS(ABI) \ ((ABI) == N32_ABI \ || (ABI) == N64_ABI \ || (ABI) == O64_ABI) /* Return true if ISA supports 64 bit wide gp registers. */ #define ISA_HAS_64BIT_REGS(ISA) \ ((ISA) == ISA_MIPS3 \ || (ISA) == ISA_MIPS4 \ || (ISA) == ISA_MIPS5 \ || (ISA) == ISA_MIPS64 \ || (ISA) == ISA_MIPS64R2) /* Return true if ISA supports 64 bit wide float registers. */ #define ISA_HAS_64BIT_FPRS(ISA) \ ((ISA) == ISA_MIPS3 \ || (ISA) == ISA_MIPS4 \ || (ISA) == ISA_MIPS5 \ || (ISA) == ISA_MIPS32R2 \ || (ISA) == ISA_MIPS64 \ || (ISA) == ISA_MIPS64R2) /* Return true if ISA supports 64-bit right rotate (dror et al.) instructions. */ #define ISA_HAS_DROR(ISA) \ ((ISA) == ISA_MIPS64R2 \ || (mips_opts.micromips \ && ISA_HAS_64BIT_REGS (ISA)) \ ) /* Return true if ISA supports 32-bit right rotate (ror et al.) instructions. */ #define ISA_HAS_ROR(ISA) \ ((ISA) == ISA_MIPS32R2 \ || (ISA) == ISA_MIPS64R2 \ || (mips_opts.ase & ASE_SMARTMIPS) \ || mips_opts.micromips \ ) /* Return true if ISA supports single-precision floats in odd registers. */ #define ISA_HAS_ODD_SINGLE_FPR(ISA) \ ((ISA) == ISA_MIPS32 \ || (ISA) == ISA_MIPS32R2 \ || (ISA) == ISA_MIPS64 \ || (ISA) == ISA_MIPS64R2) /* Return true if ISA supports move to/from high part of a 64-bit floating-point register. */ #define ISA_HAS_MXHC1(ISA) \ ((ISA) == ISA_MIPS32R2 \ || (ISA) == ISA_MIPS64R2) #define HAVE_32BIT_GPRS \ (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa)) #define HAVE_32BIT_FPRS \ (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa)) #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS) #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS) #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI) #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI) /* True if relocations are stored in-place. */ #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI) /* The ABI-derived address size. */ #define HAVE_64BIT_ADDRESSES \ (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI)) #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES) /* The size of symbolic constants (i.e., expressions of the form "SYMBOL" or "SYMBOL + OFFSET"). */ #define HAVE_32BIT_SYMBOLS \ (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32) #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS) /* Addresses are loaded in different ways, depending on the address size in use. The n32 ABI Documentation also mandates the use of additions with overflow checking, but existing implementations don't follow it. */ #define ADDRESS_ADD_INSN \ (HAVE_32BIT_ADDRESSES ? "addu" : "daddu") #define ADDRESS_ADDI_INSN \ (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu") #define ADDRESS_LOAD_INSN \ (HAVE_32BIT_ADDRESSES ? "lw" : "ld") #define ADDRESS_STORE_INSN \ (HAVE_32BIT_ADDRESSES ? "sw" : "sd") /* Return true if the given CPU supports the MIPS16 ASE. */ #define CPU_HAS_MIPS16(cpu) \ (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \ || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0) /* Return true if the given CPU supports the microMIPS ASE. */ #define CPU_HAS_MICROMIPS(cpu) 0 /* True if CPU has a dror instruction. */ #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500) /* True if CPU has a ror instruction. */ #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU) /* True if CPU is in the Octeon family */ #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2) /* True if CPU has seq/sne and seqi/snei instructions. */ #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU)) /* True, if CPU has support for ldc1 and sdc1. */ #define CPU_HAS_LDC1_SDC1(CPU) \ ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900)) /* True if mflo and mfhi can be immediately followed by instructions which write to the HI and LO registers. According to MIPS specifications, MIPS ISAs I, II, and III need (at least) two instructions between the reads of HI/LO and instructions which write them, and later ISAs do not. Contradicting the MIPS specifications, some MIPS IV processor user manuals (e.g. the UM for the NEC Vr5000) document needing the instructions between HI/LO reads and writes, as well. Therefore, we declare only MIPS32, MIPS64 and later ISAs to have the interlocks, plus any specific earlier-ISA CPUs for which CPU documentation declares that the instructions are really interlocked. */ #define hilo_interlocks \ (mips_opts.isa == ISA_MIPS32 \ || mips_opts.isa == ISA_MIPS32R2 \ || mips_opts.isa == ISA_MIPS64 \ || mips_opts.isa == ISA_MIPS64R2 \ || mips_opts.arch == CPU_R4010 \ || mips_opts.arch == CPU_R5900 \ || mips_opts.arch == CPU_R10000 \ || mips_opts.arch == CPU_R12000 \ || mips_opts.arch == CPU_R14000 \ || mips_opts.arch == CPU_R16000 \ || mips_opts.arch == CPU_RM7000 \ || mips_opts.arch == CPU_VR5500 \ || mips_opts.micromips \ ) /* Whether the processor uses hardware interlocks to protect reads from the GPRs after they are loaded from memory, and thus does not require nops to be inserted. This applies to instructions marked INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA level I and microMIPS mode instructions are always interlocked. */ #define gpr_interlocks \ (mips_opts.isa != ISA_MIPS1 \ || mips_opts.arch == CPU_R3900 \ || mips_opts.arch == CPU_R5900 \ || mips_opts.micromips \ ) /* Whether the processor uses hardware interlocks to avoid delays required by coprocessor instructions, and thus does not require nops to be inserted. This applies to instructions marked INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays between instructions marked INSN_WRITE_COND_CODE and ones marked INSN_READ_COND_CODE. These nops are only required at MIPS ISA levels I, II, and III and microMIPS mode instructions are always interlocked. */ /* Itbl support may require additional care here. */ #define cop_interlocks \ ((mips_opts.isa != ISA_MIPS1 \ && mips_opts.isa != ISA_MIPS2 \ && mips_opts.isa != ISA_MIPS3) \ || mips_opts.arch == CPU_R4300 \ || mips_opts.micromips \ ) /* Whether the processor uses hardware interlocks to protect reads from coprocessor registers after they are loaded from memory, and thus does not require nops to be inserted. This applies to instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only requires at MIPS ISA level I and microMIPS mode instructions are always interlocked. */ #define cop_mem_interlocks \ (mips_opts.isa != ISA_MIPS1 \ || mips_opts.micromips \ ) /* Is this a mfhi or mflo instruction? */ #define MF_HILO_INSN(PINFO) \ ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO)) /* Whether code compression (either of the MIPS16 or the microMIPS ASEs) has been selected. This implies, in particular, that addresses of text labels have their LSB set. */ #define HAVE_CODE_COMPRESSION \ ((mips_opts.mips16 | mips_opts.micromips) != 0) /* The minimum and maximum signed values that can be stored in a GPR. */ #define GPR_SMAX ((offsetT) (((valueT) 1 << (HAVE_64BIT_GPRS ? 63 : 31)) - 1)) #define GPR_SMIN (-GPR_SMAX - 1) /* MIPS PIC level. */ enum mips_pic_level mips_pic; /* 1 if we should generate 32 bit offsets from the $gp register in SVR4_PIC mode. Currently has no meaning in other modes. */ static int mips_big_got = 0; /* 1 if trap instructions should used for overflow rather than break instructions. */ static int mips_trap = 0; /* 1 if double width floating point constants should not be constructed by assembling two single width halves into two single width floating point registers which just happen to alias the double width destination register. On some architectures this aliasing can be disabled by a bit in the status register, and the setting of this bit cannot be determined automatically at assemble time. */ static int mips_disable_float_construction; /* Non-zero if any .set noreorder directives were used. */ static int mips_any_noreorder; /* Non-zero if nops should be inserted when the register referenced in an mfhi/mflo instruction is read in the next two instructions. */ static int mips_7000_hilo_fix; /* The size of objects in the small data section. */ static unsigned int g_switch_value = 8; /* Whether the -G option was used. */ static int g_switch_seen = 0; #define N_RMASK 0xc4 #define N_VFP 0xd4 /* If we can determine in advance that GP optimization won't be possible, we can skip the relaxation stuff that tries to produce GP-relative references. This makes delay slot optimization work better. This function can only provide a guess, but it seems to work for gcc output. It needs to guess right for gcc, otherwise gcc will put what it thinks is a GP-relative instruction in a branch delay slot. I don't know if a fix is needed for the SVR4_PIC mode. I've only fixed it for the non-PIC mode. KR 95/04/07 */ static int nopic_need_relax (symbolS *, int); /* handle of the OPCODE hash table */ static struct hash_control *op_hash = NULL; /* The opcode hash table we use for the mips16. */ static struct hash_control *mips16_op_hash = NULL; /* The opcode hash table we use for the microMIPS ASE. */ static struct hash_control *micromips_op_hash = NULL; /* This array holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful */ const char comment_chars[] = "#"; /* This array holds the chars that only start a comment at the beginning of a line. If the line seems to have the form '# 123 filename' .line and .file directives will appear in the pre-processed output */ /* Note that input_file.c hand checks for '#' at the beginning of the first line of the input file. This is because the compiler outputs #NO_APP at the beginning of its output. */ /* Also note that C style comments are always supported. */ const char line_comment_chars[] = "#"; /* This array holds machine specific line separator characters. */ const char line_separator_chars[] = ";"; /* Chars that can be used to separate mant from exp in floating point nums */ const char EXP_CHARS[] = "eE"; /* Chars that mean this number is a floating point constant */ /* As in 0f12.456 */ /* or 0d1.2345e12 */ const char FLT_CHARS[] = "rRsSfFdDxXpP"; /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be changed in read.c . Ideally it shouldn't have to know about it at all, but nothing is ideal around here. */ static char *insn_error; static int auto_align = 1; /* When outputting SVR4 PIC code, the assembler needs to know the offset in the stack frame from which to restore the $gp register. This is set by the .cprestore pseudo-op, and saved in this variable. */ static offsetT mips_cprestore_offset = -1; /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some more optimizations, it can use a register value instead of a memory-saved offset and even an other register than $gp as global pointer. */ static offsetT mips_cpreturn_offset = -1; static int mips_cpreturn_register = -1; static int mips_gp_register = GP; static int mips_gprel_offset = 0; /* Whether mips_cprestore_offset has been set in the current function (or whether it has already been warned about, if not). */ static int mips_cprestore_valid = 0; /* This is the register which holds the stack frame, as set by the .frame pseudo-op. This is needed to implement .cprestore. */ static int mips_frame_reg = SP; /* Whether mips_frame_reg has been set in the current function (or whether it has already been warned about, if not). */ static int mips_frame_reg_valid = 0; /* To output NOP instructions correctly, we need to keep information about the previous two instructions. */ /* Whether we are optimizing. The default value of 2 means to remove unneeded NOPs and swap branch instructions when possible. A value of 1 means to not swap branches. A value of 0 means to always insert NOPs. */ static int mips_optimize = 2; /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is equivalent to seeing no -g option at all. */ static int mips_debug = 0; /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */ #define MAX_VR4130_NOPS 4 /* The maximum number of NOPs needed to fill delay slots. */ #define MAX_DELAY_NOPS 2 /* The maximum number of NOPs needed for any purpose. */ #define MAX_NOPS 4 /* A list of previous instructions, with index 0 being the most recent. We need to look back MAX_NOPS instructions when filling delay slots or working around processor errata. We need to look back one instruction further if we're thinking about using history[0] to fill a branch delay slot. */ static struct mips_cl_insn history[1 + MAX_NOPS]; /* Arrays of operands for each instruction. */ #define MAX_OPERANDS 6 struct mips_operand_array { const struct mips_operand *operand[MAX_OPERANDS]; }; static struct mips_operand_array *mips_operands; static struct mips_operand_array *mips16_operands; static struct mips_operand_array *micromips_operands; /* Nop instructions used by emit_nop. */ static struct mips_cl_insn nop_insn; static struct mips_cl_insn mips16_nop_insn; static struct mips_cl_insn micromips_nop16_insn; static struct mips_cl_insn micromips_nop32_insn; /* The appropriate nop for the current mode. */ #define NOP_INSN (mips_opts.mips16 \ ? &mips16_nop_insn \ : (mips_opts.micromips \ ? (mips_opts.insn32 \ ? µmips_nop32_insn \ : µmips_nop16_insn) \ : &nop_insn)) /* The size of NOP_INSN in bytes. */ #define NOP_INSN_SIZE ((mips_opts.mips16 \ || (mips_opts.micromips && !mips_opts.insn32)) \ ? 2 : 4) /* If this is set, it points to a frag holding nop instructions which were inserted before the start of a noreorder section. If those nops turn out to be unnecessary, the size of the frag can be decreased. */ static fragS *prev_nop_frag; /* The number of nop instructions we created in prev_nop_frag. */ static int prev_nop_frag_holds; /* The number of nop instructions that we know we need in prev_nop_frag. */ static int prev_nop_frag_required; /* The number of instructions we've seen since prev_nop_frag. */ static int prev_nop_frag_since; /* Relocations against symbols are sometimes done in two parts, with a HI relocation and a LO relocation. Each relocation has only 16 bits of space to store an addend. This means that in order for the linker to handle carries correctly, it must be able to locate both the HI and the LO relocation. This means that the relocations must appear in order in the relocation table. In order to implement this, we keep track of each unmatched HI relocation. We then sort them so that they immediately precede the corresponding LO relocation. */ struct mips_hi_fixup { /* Next HI fixup. */ struct mips_hi_fixup *next; /* This fixup. */ fixS *fixp; /* The section this fixup is in. */ segT seg; }; /* The list of unmatched HI relocs. */ static struct mips_hi_fixup *mips_hi_fixup_list; /* The frag containing the last explicit relocation operator. Null if explicit relocations have not been used. */ static fragS *prev_reloc_op_frag; /* Map mips16 register numbers to normal MIPS register numbers. */ static const unsigned int mips16_to_32_reg_map[] = { 16, 17, 2, 3, 4, 5, 6, 7 }; /* Map microMIPS register numbers to normal MIPS register numbers. */ #define micromips_to_32_reg_d_map mips16_to_32_reg_map /* The microMIPS registers with type h. */ static const unsigned int micromips_to_32_reg_h_map1[] = { 5, 5, 6, 4, 4, 4, 4, 4 }; static const unsigned int micromips_to_32_reg_h_map2[] = { 6, 7, 7, 21, 22, 5, 6, 7 }; /* The microMIPS registers with type m. */ static const unsigned int micromips_to_32_reg_m_map[] = { 0, 17, 2, 3, 16, 18, 19, 20 }; #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map /* Classifies the kind of instructions we're interested in when implementing -mfix-vr4120. */ enum fix_vr4120_class { FIX_VR4120_MACC, FIX_VR4120_DMACC, FIX_VR4120_MULT, FIX_VR4120_DMULT, FIX_VR4120_DIV, FIX_VR4120_MTHILO, NUM_FIX_VR4120_CLASSES }; /* ...likewise -mfix-loongson2f-jump. */ static bfd_boolean mips_fix_loongson2f_jump; /* ...likewise -mfix-loongson2f-nop. */ static bfd_boolean mips_fix_loongson2f_nop; /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */ static bfd_boolean mips_fix_loongson2f; /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if there must be at least one other instruction between an instruction of type X and an instruction of type Y. */ static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES]; /* True if -mfix-vr4120 is in force. */ static int mips_fix_vr4120; /* ...likewise -mfix-vr4130. */ static int mips_fix_vr4130; /* ...likewise -mfix-24k. */ static int mips_fix_24k; /* ...likewise -mfix-cn63xxp1 */ static bfd_boolean mips_fix_cn63xxp1; /* We don't relax branches by default, since this causes us to expand `la .l2 - .l1' if there's a branch between .l1 and .l2, because we fail to compute the offset before expanding the macro to the most efficient expansion. */ static int mips_relax_branch; /* The expansion of many macros depends on the type of symbol that they refer to. For example, when generating position-dependent code, a macro that refers to a symbol may have two different expansions, one which uses GP-relative addresses and one which uses absolute addresses. When generating SVR4-style PIC, a macro may have different expansions for local and global symbols. We handle these situations by generating both sequences and putting them in variant frags. In position-dependent code, the first sequence will be the GP-relative one and the second sequence will be the absolute one. In SVR4 PIC, the first sequence will be for global symbols and the second will be for local symbols. The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and SECOND are the lengths of the two sequences in bytes. These fields can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition, the subtype has the following flags: RELAX_USE_SECOND Set if it has been decided that we should use the second sequence instead of the first. RELAX_SECOND_LONGER Set in the first variant frag if the macro's second implementation is longer than its first. This refers to the macro as a whole, not an individual relaxation. RELAX_NOMACRO Set in the first variant frag if the macro appeared in a .set nomacro block and if one alternative requires a warning but the other does not. RELAX_DELAY_SLOT Like RELAX_NOMACRO, but indicates that the macro appears in a branch delay slot. RELAX_DELAY_SLOT_16BIT Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a 16-bit instruction. RELAX_DELAY_SLOT_SIZE_FIRST Like RELAX_DELAY_SLOT, but indicates that the first implementation of the macro is of the wrong size for the branch delay slot. RELAX_DELAY_SLOT_SIZE_SECOND Like RELAX_DELAY_SLOT, but indicates that the second implementation of the macro is of the wrong size for the branch delay slot. The frag's "opcode" points to the first fixup for relaxable code. Relaxable macros are generated using a sequence such as: relax_start (SYMBOL); ... generate first expansion ... relax_switch (); ... generate second expansion ... relax_end (); The code and fixups for the unwanted alternative are discarded by md_convert_frag. */ #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND)) #define RELAX_FIRST(X) (((X) >> 8) & 0xff) #define RELAX_SECOND(X) ((X) & 0xff) #define RELAX_USE_SECOND 0x10000 #define RELAX_SECOND_LONGER 0x20000 #define RELAX_NOMACRO 0x40000 #define RELAX_DELAY_SLOT 0x80000 #define RELAX_DELAY_SLOT_16BIT 0x100000 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000 /* Branch without likely bit. If label is out of range, we turn: beq reg1, reg2, label delay slot into bne reg1, reg2, 0f nop j label 0: delay slot with the following opcode replacements: beq <-> bne blez <-> bgtz bltz <-> bgez bc1f <-> bc1t bltzal <-> bgezal (with jal label instead of j label) Even though keeping the delay slot instruction in the delay slot of the branch would be more efficient, it would be very tricky to do correctly, because we'd have to introduce a variable frag *after* the delay slot instruction, and expand that instead. Let's do it the easy way for now, even if the branch-not-taken case now costs one additional instruction. Out-of-range branches are not supposed to be common, anyway. Branch likely. If label is out of range, we turn: beql reg1, reg2, label delay slot (annulled if branch not taken) into beql reg1, reg2, 1f nop beql $0, $0, 2f nop 1: j[al] label delay slot (executed only if branch taken) 2: It would be possible to generate a shorter sequence by losing the likely bit, generating something like: bne reg1, reg2, 0f nop j[al] label delay slot (executed only if branch taken) 0: beql -> bne bnel -> beq blezl -> bgtz bgtzl -> blez bltzl -> bgez bgezl -> bltz bc1fl -> bc1t bc1tl -> bc1f bltzall -> bgezal (with jal label instead of j label) bgezall -> bltzal (ditto) but it's not clear that it would actually improve performance. */ #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \ ((relax_substateT) \ (0xc0000000 \ | ((at) & 0x1f) \ | ((toofar) ? 0x20 : 0) \ | ((link) ? 0x40 : 0) \ | ((likely) ? 0x80 : 0) \ | ((uncond) ? 0x100 : 0))) #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000) #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0) #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0) #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0) #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0) #define RELAX_BRANCH_AT(i) ((i) & 0x1f) /* For mips16 code, we use an entirely different form of relaxation. mips16 supports two versions of most instructions which take immediate values: a small one which takes some small value, and a larger one which takes a 16 bit value. Since branches also follow this pattern, relaxing these values is required. We can assemble both mips16 and normal MIPS code in a single object. Therefore, we need to support this type of relaxation at the same time that we support the relaxation described above. We use the high bit of the subtype field to distinguish these cases. The information we store for this type of relaxation is the argument code found in the opcode file for this relocation, whether the user explicitly requested a small or extended form, and whether the relocation is in a jump or jal delay slot. That tells us the size of the value, and how it should be stored. We also store whether the fragment is considered to be extended or not. We also store whether this is known to be a branch to a different section, whether we have tried to relax this frag yet, and whether we have ever extended a PC relative fragment because of a shift count. */ #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \ (0x80000000 \ | ((type) & 0xff) \ | ((small) ? 0x100 : 0) \ | ((ext) ? 0x200 : 0) \ | ((dslot) ? 0x400 : 0) \ | ((jal_dslot) ? 0x800 : 0)) #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000) #define RELAX_MIPS16_TYPE(i) ((i) & 0xff) #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0) #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0) #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0) #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0) #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0) #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000) #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000) #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0) #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000) #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000) /* For microMIPS code, we use relaxation similar to one we use for MIPS16 code. Some instructions that take immediate values support two encodings: a small one which takes some small value, and a larger one which takes a 16 bit value. As some branches also follow this pattern, relaxing these values is required. We can assemble both microMIPS and normal MIPS code in a single object. Therefore, we need to support this type of relaxation at the same time that we support the relaxation described above. We use one of the high bits of the subtype field to distinguish these cases. The information we store for this type of relaxation is the argument code found in the opcode file for this relocation, the register selected as the assembler temporary, whether the branch is unconditional, whether it is compact, whether it stores the link address implicitly in $ra, whether relaxation of out-of-range 32-bit branches to a sequence of instructions is enabled, and whether the displacement of a branch is too large to fit as an immediate argument of a 16-bit and a 32-bit branch, respectively. */ #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \ relax32, toofar16, toofar32) \ (0x40000000 \ | ((type) & 0xff) \ | (((at) & 0x1f) << 8) \ | ((uncond) ? 0x2000 : 0) \ | ((compact) ? 0x4000 : 0) \ | ((link) ? 0x8000 : 0) \ | ((relax32) ? 0x10000 : 0) \ | ((toofar16) ? 0x20000 : 0) \ | ((toofar32) ? 0x40000 : 0)) #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000) #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff) #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f) #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0) #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0) #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0) #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0) #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0) #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000) #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000) #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0) #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000) #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000) /* Sign-extend 16-bit value X. */ #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000) /* Is the given value a sign-extended 32-bit value? */ #define IS_SEXT_32BIT_NUM(x) \ (((x) &~ (offsetT) 0x7fffffff) == 0 \ || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff)) /* Is the given value a sign-extended 16-bit value? */ #define IS_SEXT_16BIT_NUM(x) \ (((x) &~ (offsetT) 0x7fff) == 0 \ || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff)) /* Is the given value a sign-extended 12-bit value? */ #define IS_SEXT_12BIT_NUM(x) \ (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x)) /* Is the given value a sign-extended 9-bit value? */ #define IS_SEXT_9BIT_NUM(x) \ (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x)) /* Is the given value a zero-extended 32-bit value? Or a negated one? */ #define IS_ZEXT_32BIT_NUM(x) \ (((x) &~ (offsetT) 0xffffffff) == 0 \ || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff)) /* Extract bits MASK << SHIFT from STRUCT and shift them right SHIFT places. */ #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \ (((STRUCT) >> (SHIFT)) & (MASK)) /* Extract the operand given by FIELD from mips_cl_insn INSN. */ #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \ (!(MICROMIPS) \ ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \ : EXTRACT_BITS ((INSN).insn_opcode, \ MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD)) #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \ EXTRACT_BITS ((INSN).insn_opcode, \ MIPS16OP_MASK_##FIELD, \ MIPS16OP_SH_##FIELD) /* The MIPS16 EXTEND opcode, shifted left 16 places. */ #define MIPS16_EXTEND (0xf000U << 16) /* Whether or not we are emitting a branch-likely macro. */ static bfd_boolean emit_branch_likely_macro = FALSE; /* Global variables used when generating relaxable macros. See the comment above RELAX_ENCODE for more details about how relaxation is used. */ static struct { /* 0 if we're not emitting a relaxable macro. 1 if we're emitting the first of the two relaxation alternatives. 2 if we're emitting the second alternative. */ int sequence; /* The first relaxable fixup in the current frag. (In other words, the first fixup that refers to relaxable code.) */ fixS *first_fixup; /* sizes[0] says how many bytes of the first alternative are stored in the current frag. Likewise sizes[1] for the second alternative. */ unsigned int sizes[2]; /* The symbol on which the choice of sequence depends. */ symbolS *symbol; } mips_relax; /* Global variables used to decide whether a macro needs a warning. */ static struct { /* True if the macro is in a branch delay slot. */ bfd_boolean delay_slot_p; /* Set to the length in bytes required if the macro is in a delay slot that requires a specific length of instruction, otherwise zero. */ unsigned int delay_slot_length; /* For relaxable macros, sizes[0] is the length of the first alternative in bytes and sizes[1] is the length of the second alternative. For non-relaxable macros, both elements give the length of the macro in bytes. */ unsigned int sizes[2]; /* For relaxable macros, first_insn_sizes[0] is the length of the first instruction of the first alternative in bytes and first_insn_sizes[1] is the length of the first instruction of the second alternative. For non-relaxable macros, both elements give the length of the first instruction in bytes. Set to zero if we haven't yet seen the first instruction. */ unsigned int first_insn_sizes[2]; /* For relaxable macros, insns[0] is the number of instructions for the first alternative and insns[1] is the number of instructions for the second alternative. For non-relaxable macros, both elements give the number of instructions for the macro. */ unsigned int insns[2]; /* The first variant frag for this macro. */ fragS *first_frag; } mips_macro_warning; /* Prototypes for static functions. */ enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG }; static void append_insn (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *, bfd_boolean expansionp); static void mips_no_prev_insn (void); static void macro_build (expressionS *, const char *, const char *, ...); static void mips16_macro_build (expressionS *, const char *, const char *, va_list *); static void load_register (int, expressionS *, int); static void macro_start (void); static void macro_end (void); static void macro (struct mips_cl_insn *ip, char *str); static void mips16_macro (struct mips_cl_insn * ip); static void mips_ip (char *str, struct mips_cl_insn * ip); static void mips16_ip (char *str, struct mips_cl_insn * ip); static void mips16_immed (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT, unsigned int, unsigned long *); static size_t my_getSmallExpression (expressionS *, bfd_reloc_code_real_type *, char *); static void my_getExpression (expressionS *, char *); static void s_align (int); static void s_change_sec (int); static void s_change_section (int); static void s_cons (int); static void s_float_cons (int); static void s_mips_globl (int); static void s_option (int); static void s_mipsset (int); static void s_abicalls (int); static void s_cpload (int); static void s_cpsetup (int); static void s_cplocal (int); static void s_cprestore (int); static void s_cpreturn (int); static void s_dtprelword (int); static void s_dtpreldword (int); static void s_tprelword (int); static void s_tpreldword (int); static void s_gpvalue (int); static void s_gpword (int); static void s_gpdword (int); static void s_ehword (int); static void s_cpadd (int); static void s_insn (int); static void s_nan (int); static void md_obj_begin (void); static void md_obj_end (void); static void s_mips_ent (int); static void s_mips_end (int); static void s_mips_frame (int); static void s_mips_mask (int reg_type); static void s_mips_stab (int); static void s_mips_weakext (int); static void s_mips_file (int); static void s_mips_loc (int); static bfd_boolean pic_need_relax (symbolS *, asection *); static int relaxed_branch_length (fragS *, asection *, int); static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int); static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int); /* Table and functions used to map between CPU/ISA names, and ISA levels, and CPU numbers. */ struct mips_cpu_info { const char *name; /* CPU or ISA name. */ int flags; /* MIPS_CPU_* flags. */ int ase; /* Set of ASEs implemented by the CPU. */ int isa; /* ISA level. */ int cpu; /* CPU number (default CPU if ISA). */ }; #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */ static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *); static const struct mips_cpu_info *mips_cpu_info_from_isa (int); static const struct mips_cpu_info *mips_cpu_info_from_arch (int); /* Command-line options. */ const char *md_shortopts = "O::g::G:"; enum options { OPTION_MARCH = OPTION_MD_BASE, OPTION_MTUNE, OPTION_MIPS1, OPTION_MIPS2, OPTION_MIPS3, OPTION_MIPS4, OPTION_MIPS5, OPTION_MIPS32, OPTION_MIPS64, OPTION_MIPS32R2, OPTION_MIPS64R2, OPTION_MIPS16, OPTION_NO_MIPS16, OPTION_MIPS3D, OPTION_NO_MIPS3D, OPTION_MDMX, OPTION_NO_MDMX, OPTION_DSP, OPTION_NO_DSP, OPTION_MT, OPTION_NO_MT, OPTION_VIRT, OPTION_NO_VIRT, OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS, OPTION_DSPR2, OPTION_NO_DSPR2, OPTION_EVA, OPTION_NO_EVA, OPTION_MICROMIPS, OPTION_NO_MICROMIPS, OPTION_MCU, OPTION_NO_MCU, OPTION_COMPAT_ARCH_BASE, OPTION_M4650, OPTION_NO_M4650, OPTION_M4010, OPTION_NO_M4010, OPTION_M4100, OPTION_NO_M4100, OPTION_M3900, OPTION_NO_M3900, OPTION_M7000_HILO_FIX, OPTION_MNO_7000_HILO_FIX, OPTION_FIX_24K, OPTION_NO_FIX_24K, OPTION_FIX_LOONGSON2F_JUMP, OPTION_NO_FIX_LOONGSON2F_JUMP, OPTION_FIX_LOONGSON2F_NOP, OPTION_NO_FIX_LOONGSON2F_NOP, OPTION_FIX_VR4120, OPTION_NO_FIX_VR4120, OPTION_FIX_VR4130, OPTION_NO_FIX_VR4130, OPTION_FIX_CN63XXP1, OPTION_NO_FIX_CN63XXP1, OPTION_TRAP, OPTION_BREAK, OPTION_EB, OPTION_EL, OPTION_FP32, OPTION_GP32, OPTION_CONSTRUCT_FLOATS, OPTION_NO_CONSTRUCT_FLOATS, OPTION_FP64, OPTION_GP64, OPTION_RELAX_BRANCH, OPTION_NO_RELAX_BRANCH, OPTION_INSN32, OPTION_NO_INSN32, OPTION_MSHARED, OPTION_MNO_SHARED, OPTION_MSYM32, OPTION_MNO_SYM32, OPTION_SOFT_FLOAT, OPTION_HARD_FLOAT, OPTION_SINGLE_FLOAT, OPTION_DOUBLE_FLOAT, OPTION_32, OPTION_CALL_SHARED, OPTION_CALL_NONPIC, OPTION_NON_SHARED, OPTION_XGOT, OPTION_MABI, OPTION_N32, OPTION_64, OPTION_MDEBUG, OPTION_NO_MDEBUG, OPTION_PDR, OPTION_NO_PDR, OPTION_MVXWORKS_PIC, OPTION_NAN, OPTION_END_OF_ENUM }; struct option md_longopts[] = { /* Options which specify architecture. */ {"march", required_argument, NULL, OPTION_MARCH}, {"mtune", required_argument, NULL, OPTION_MTUNE}, {"mips0", no_argument, NULL, OPTION_MIPS1}, {"mips1", no_argument, NULL, OPTION_MIPS1}, {"mips2", no_argument, NULL, OPTION_MIPS2}, {"mips3", no_argument, NULL, OPTION_MIPS3}, {"mips4", no_argument, NULL, OPTION_MIPS4}, {"mips5", no_argument, NULL, OPTION_MIPS5}, {"mips32", no_argument, NULL, OPTION_MIPS32}, {"mips64", no_argument, NULL, OPTION_MIPS64}, {"mips32r2", no_argument, NULL, OPTION_MIPS32R2}, {"mips64r2", no_argument, NULL, OPTION_MIPS64R2}, /* Options which specify Application Specific Extensions (ASEs). */ {"mips16", no_argument, NULL, OPTION_MIPS16}, {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16}, {"mips3d", no_argument, NULL, OPTION_MIPS3D}, {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D}, {"mdmx", no_argument, NULL, OPTION_MDMX}, {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX}, {"mdsp", no_argument, NULL, OPTION_DSP}, {"mno-dsp", no_argument, NULL, OPTION_NO_DSP}, {"mmt", no_argument, NULL, OPTION_MT}, {"mno-mt", no_argument, NULL, OPTION_NO_MT}, {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS}, {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS}, {"mdspr2", no_argument, NULL, OPTION_DSPR2}, {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2}, {"meva", no_argument, NULL, OPTION_EVA}, {"mno-eva", no_argument, NULL, OPTION_NO_EVA}, {"mmicromips", no_argument, NULL, OPTION_MICROMIPS}, {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS}, {"mmcu", no_argument, NULL, OPTION_MCU}, {"mno-mcu", no_argument, NULL, OPTION_NO_MCU}, {"mvirt", no_argument, NULL, OPTION_VIRT}, {"mno-virt", no_argument, NULL, OPTION_NO_VIRT}, /* Old-style architecture options. Don't add more of these. */ {"m4650", no_argument, NULL, OPTION_M4650}, {"no-m4650", no_argument, NULL, OPTION_NO_M4650}, {"m4010", no_argument, NULL, OPTION_M4010}, {"no-m4010", no_argument, NULL, OPTION_NO_M4010}, {"m4100", no_argument, NULL, OPTION_M4100}, {"no-m4100", no_argument, NULL, OPTION_NO_M4100}, {"m3900", no_argument, NULL, OPTION_M3900}, {"no-m3900", no_argument, NULL, OPTION_NO_M3900}, /* Options which enable bug fixes. */ {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX}, {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX}, {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX}, {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP}, {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP}, {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP}, {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP}, {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120}, {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120}, {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130}, {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130}, {"mfix-24k", no_argument, NULL, OPTION_FIX_24K}, {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K}, {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1}, {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1}, /* Miscellaneous options. */ {"trap", no_argument, NULL, OPTION_TRAP}, {"no-break", no_argument, NULL, OPTION_TRAP}, {"break", no_argument, NULL, OPTION_BREAK}, {"no-trap", no_argument, NULL, OPTION_BREAK}, {"EB", no_argument, NULL, OPTION_EB}, {"EL", no_argument, NULL, OPTION_EL}, {"mfp32", no_argument, NULL, OPTION_FP32}, {"mgp32", no_argument, NULL, OPTION_GP32}, {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS}, {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS}, {"mfp64", no_argument, NULL, OPTION_FP64}, {"mgp64", no_argument, NULL, OPTION_GP64}, {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH}, {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH}, {"minsn32", no_argument, NULL, OPTION_INSN32}, {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32}, {"mshared", no_argument, NULL, OPTION_MSHARED}, {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED}, {"msym32", no_argument, NULL, OPTION_MSYM32}, {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32}, {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT}, {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT}, {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT}, {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT}, /* Strictly speaking this next option is ELF specific, but we allow it for other ports as well in order to make testing easier. */ {"32", no_argument, NULL, OPTION_32}, /* ELF-specific options. */ {"KPIC", no_argument, NULL, OPTION_CALL_SHARED}, {"call_shared", no_argument, NULL, OPTION_CALL_SHARED}, {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC}, {"non_shared", no_argument, NULL, OPTION_NON_SHARED}, {"xgot", no_argument, NULL, OPTION_XGOT}, {"mabi", required_argument, NULL, OPTION_MABI}, {"n32", no_argument, NULL, OPTION_N32}, {"64", no_argument, NULL, OPTION_64}, {"mdebug", no_argument, NULL, OPTION_MDEBUG}, {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG}, {"mpdr", no_argument, NULL, OPTION_PDR}, {"mno-pdr", no_argument, NULL, OPTION_NO_PDR}, {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC}, {"mnan", required_argument, NULL, OPTION_NAN}, {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof (md_longopts); /* Information about either an Application Specific Extension or an optional architecture feature that, for simplicity, we treat in the same way as an ASE. */ struct mips_ase { /* The name of the ASE, used in both the command-line and .set options. */ const char *name; /* The associated ASE_* flags. If the ASE is available on both 32-bit and 64-bit architectures, the flags here refer to the subset that is available on both. */ unsigned int flags; /* The ASE_* flag used for instructions that are available on 64-bit architectures but that are not included in FLAGS. */ unsigned int flags64; /* The command-line options that turn the ASE on and off. */ int option_on; int option_off; /* The minimum required architecture revisions for MIPS32, MIPS64, microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */ int mips32_rev; int mips64_rev; int micromips32_rev; int micromips64_rev; }; /* A table of all supported ASEs. */ static const struct mips_ase mips_ases[] = { { "dsp", ASE_DSP, ASE_DSP64, OPTION_DSP, OPTION_NO_DSP, 2, 2, 2, 2 }, { "dspr2", ASE_DSP | ASE_DSPR2, 0, OPTION_DSPR2, OPTION_NO_DSPR2, 2, 2, 2, 2 }, { "eva", ASE_EVA, 0, OPTION_EVA, OPTION_NO_EVA, 2, 2, 2, 2 }, { "mcu", ASE_MCU, 0, OPTION_MCU, OPTION_NO_MCU, 2, 2, 2, 2 }, /* Deprecated in MIPS64r5, but we don't implement that yet. */ { "mdmx", ASE_MDMX, 0, OPTION_MDMX, OPTION_NO_MDMX, -1, 1, -1, -1 }, /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */ { "mips3d", ASE_MIPS3D, 0, OPTION_MIPS3D, OPTION_NO_MIPS3D, 2, 1, -1, -1 }, { "mt", ASE_MT, 0, OPTION_MT, OPTION_NO_MT, 2, 2, -1, -1 }, { "smartmips", ASE_SMARTMIPS, 0, OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS, 1, -1, -1, -1 }, { "virt", ASE_VIRT, ASE_VIRT64, OPTION_VIRT, OPTION_NO_VIRT, 2, 2, 2, 2 } }; /* The set of ASEs that require -mfp64. */ #define FP64_ASES (ASE_MIPS3D | ASE_MDMX) /* Groups of ASE_* flags that represent different revisions of an ASE. */ static const unsigned int mips_ase_groups[] = { ASE_DSP | ASE_DSPR2 }; /* Pseudo-op table. The following pseudo-ops from the Kane and Heinrich MIPS book should be defined here, but are currently unsupported: .alias, .galive, .gjaldef, .gjrlive, .livereg, .noalias. The following pseudo-ops from the Kane and Heinrich MIPS book are specific to the type of debugging information being generated, and should be defined by the object format: .aent, .begin, .bend, .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp, .vreg. The following pseudo-ops from the Kane and Heinrich MIPS book are not MIPS CPU specific, but are also not specific to the object file format. This file is probably the best place to define them, but they are not currently supported: .asm0, .endr, .lab, .struct. */ static const pseudo_typeS mips_pseudo_table[] = { /* MIPS specific pseudo-ops. */ {"option", s_option, 0}, {"set", s_mipsset, 0}, {"rdata", s_change_sec, 'r'}, {"sdata", s_change_sec, 's'}, {"livereg", s_ignore, 0}, {"abicalls", s_abicalls, 0}, {"cpload", s_cpload, 0}, {"cpsetup", s_cpsetup, 0}, {"cplocal", s_cplocal, 0}, {"cprestore", s_cprestore, 0}, {"cpreturn", s_cpreturn, 0}, {"dtprelword", s_dtprelword, 0}, {"dtpreldword", s_dtpreldword, 0}, {"tprelword", s_tprelword, 0}, {"tpreldword", s_tpreldword, 0}, {"gpvalue", s_gpvalue, 0}, {"gpword", s_gpword, 0}, {"gpdword", s_gpdword, 0}, {"ehword", s_ehword, 0}, {"cpadd", s_cpadd, 0}, {"insn", s_insn, 0}, {"nan", s_nan, 0}, /* Relatively generic pseudo-ops that happen to be used on MIPS chips. */ {"asciiz", stringer, 8 + 1}, {"bss", s_change_sec, 'b'}, {"err", s_err, 0}, {"half", s_cons, 1}, {"dword", s_cons, 3}, {"weakext", s_mips_weakext, 0}, {"origin", s_org, 0}, {"repeat", s_rept, 0}, /* For MIPS this is non-standard, but we define it for consistency. */ {"sbss", s_change_sec, 'B'}, /* These pseudo-ops are defined in read.c, but must be overridden here for one reason or another. */ {"align", s_align, 0}, {"byte", s_cons, 0}, {"data", s_change_sec, 'd'}, {"double", s_float_cons, 'd'}, {"float", s_float_cons, 'f'}, {"globl", s_mips_globl, 0}, {"global", s_mips_globl, 0}, {"hword", s_cons, 1}, {"int", s_cons, 2}, {"long", s_cons, 2}, {"octa", s_cons, 4}, {"quad", s_cons, 3}, {"section", s_change_section, 0}, {"short", s_cons, 1}, {"single", s_float_cons, 'f'}, {"stabd", s_mips_stab, 'd'}, {"stabn", s_mips_stab, 'n'}, {"stabs", s_mips_stab, 's'}, {"text", s_change_sec, 't'}, {"word", s_cons, 2}, { "extern", ecoff_directive_extern, 0}, { NULL, NULL, 0 }, }; static const pseudo_typeS mips_nonecoff_pseudo_table[] = { /* These pseudo-ops should be defined by the object file format. However, a.out doesn't support them, so we have versions here. */ {"aent", s_mips_ent, 1}, {"bgnb", s_ignore, 0}, {"end", s_mips_end, 0}, {"endb", s_ignore, 0}, {"ent", s_mips_ent, 0}, {"file", s_mips_file, 0}, {"fmask", s_mips_mask, 'F'}, {"frame", s_mips_frame, 0}, {"loc", s_mips_loc, 0}, {"mask", s_mips_mask, 'R'}, {"verstamp", s_ignore, 0}, { NULL, NULL, 0 }, }; /* Export the ABI address size for use by TC_ADDRESS_BYTES for the purpose of the `.dc.a' internal pseudo-op. */ int mips_address_bytes (void) { return HAVE_64BIT_ADDRESSES ? 8 : 4; } extern void pop_insert (const pseudo_typeS *); void mips_pop_insert (void) { pop_insert (mips_pseudo_table); if (! ECOFF_DEBUGGING) pop_insert (mips_nonecoff_pseudo_table); } /* Symbols labelling the current insn. */ struct insn_label_list { struct insn_label_list *next; symbolS *label; }; static struct insn_label_list *free_insn_labels; #define label_list tc_segment_info_data.labels static void mips_clear_insn_labels (void); static void mips_mark_labels (void); static void mips_compressed_mark_labels (void); static inline void mips_clear_insn_labels (void) { register struct insn_label_list **pl; segment_info_type *si; if (now_seg) { for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next) ; si = seg_info (now_seg); *pl = si->label_list; si->label_list = NULL; } } /* Mark instruction labels in MIPS16/microMIPS mode. */ static inline void mips_mark_labels (void) { if (HAVE_CODE_COMPRESSION) mips_compressed_mark_labels (); } static char *expr_end; /* Expressions which appear in macro instructions. These are set by mips_ip and read by macro. */ static expressionS imm_expr; static expressionS imm2_expr; /* The relocatable field in an instruction and the relocs associated with it. These variables are used for instructions like LUI and JAL as well as true offsets. They are also used for address operands in macros. */ static expressionS offset_expr; static bfd_reloc_code_real_type offset_reloc[3] = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED}; /* This is set to the resulting size of the instruction to be produced by mips16_ip if an explicit extension is used or by mips_ip if an explicit size is supplied. */ static unsigned int forced_insn_length; /* True if we are assembling an instruction. All dot symbols defined during this time should be treated as code labels. */ static bfd_boolean mips_assembling_insn; /* The pdr segment for per procedure frame/regmask info. Not used for ECOFF debugging. */ static segT pdr_seg; /* The default target format to use. */ #if defined (TE_FreeBSD) #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd" #elif defined (TE_TMIPS) #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips" #else #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips" #endif const char * mips_target_format (void) { switch (OUTPUT_FLAVOR) { case bfd_target_elf_flavour: #ifdef TE_VXWORKS if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI) return (target_big_endian ? "elf32-bigmips-vxworks" : "elf32-littlemips-vxworks"); #endif return (target_big_endian ? (HAVE_64BIT_OBJECTS ? ELF_TARGET ("elf64-", "big") : (HAVE_NEWABI ? ELF_TARGET ("elf32-n", "big") : ELF_TARGET ("elf32-", "big"))) : (HAVE_64BIT_OBJECTS ? ELF_TARGET ("elf64-", "little") : (HAVE_NEWABI ? ELF_TARGET ("elf32-n", "little") : ELF_TARGET ("elf32-", "little")))); default: abort (); return NULL; } } /* Return the ISA revision that is currently in use, or 0 if we are generating code for MIPS V or below. */ static int mips_isa_rev (void) { if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2) return 2; /* microMIPS implies revision 2 or above. */ if (mips_opts.micromips) return 2; if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64) return 1; return 0; } /* Return the mask of all ASEs that are revisions of those in FLAGS. */ static unsigned int mips_ase_mask (unsigned int flags) { unsigned int i; for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++) if (flags & mips_ase_groups[i]) flags |= mips_ase_groups[i]; return flags; } /* Check whether the current ISA supports ASE. Issue a warning if appropriate. */ static void mips_check_isa_supports_ase (const struct mips_ase *ase) { const char *base; int min_rev, size; static unsigned int warned_isa; static unsigned int warned_fp32; if (ISA_HAS_64BIT_REGS (mips_opts.isa)) min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev; else min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev; if ((min_rev < 0 || mips_isa_rev () < min_rev) && (warned_isa & ase->flags) != ase->flags) { warned_isa |= ase->flags; base = mips_opts.micromips ? "microMIPS" : "MIPS"; size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32; if (min_rev < 0) as_warn (_("The %d-bit %s architecture does not support the" " `%s' extension"), size, base, ase->name); else as_warn (_("The `%s' extension requires %s%d revision %d or greater"), ase->name, base, size, min_rev); } if ((ase->flags & FP64_ASES) && mips_opts.fp32 && (warned_fp32 & ase->flags) != ase->flags) { warned_fp32 |= ase->flags; as_warn (_("The `%s' extension requires 64-bit FPRs"), ase->name); } } /* Check all enabled ASEs to see whether they are supported by the chosen architecture. */ static void mips_check_isa_supports_ases (void) { unsigned int i, mask; for (i = 0; i < ARRAY_SIZE (mips_ases); i++) { mask = mips_ase_mask (mips_ases[i].flags); if ((mips_opts.ase & mask) == mips_ases[i].flags) mips_check_isa_supports_ase (&mips_ases[i]); } } /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags that were affected. */ static unsigned int mips_set_ase (const struct mips_ase *ase, bfd_boolean enabled_p) { unsigned int mask; mask = mips_ase_mask (ase->flags); mips_opts.ase &= ~mask; if (enabled_p) mips_opts.ase |= ase->flags; return mask; } /* Return the ASE called NAME, or null if none. */ static const struct mips_ase * mips_lookup_ase (const char *name) { unsigned int i; for (i = 0; i < ARRAY_SIZE (mips_ases); i++) if (strcmp (name, mips_ases[i].name) == 0) return &mips_ases[i]; return NULL; } /* Return the length of a microMIPS instruction in bytes. If bits of the mask beyond the low 16 are 0, then it is a 16-bit instruction. Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f major opcode) will require further modifications to the opcode table. */ static inline unsigned int micromips_insn_length (const struct mips_opcode *mo) { return (mo->mask >> 16) == 0 ? 2 : 4; } /* Return the length of MIPS16 instruction OPCODE. */ static inline unsigned int mips16_opcode_length (unsigned long opcode) { return (opcode >> 16) == 0 ? 2 : 4; } /* Return the length of instruction INSN. */ static inline unsigned int insn_length (const struct mips_cl_insn *insn) { if (mips_opts.micromips) return micromips_insn_length (insn->insn_mo); else if (mips_opts.mips16) return mips16_opcode_length (insn->insn_opcode); else return 4; } /* Initialise INSN from opcode entry MO. Leave its position unspecified. */ static void create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo) { size_t i; insn->insn_mo = mo; insn->insn_opcode = mo->match; insn->frag = NULL; insn->where = 0; for (i = 0; i < ARRAY_SIZE (insn->fixp); i++) insn->fixp[i] = NULL; insn->fixed_p = (mips_opts.noreorder > 0); insn->noreorder_p = (mips_opts.noreorder > 0); insn->mips16_absolute_jump_p = 0; insn->complete_p = 0; insn->cleared_p = 0; } /* Get a list of all the operands in INSN. */ static const struct mips_operand_array * insn_operands (const struct mips_cl_insn *insn) { if (insn->insn_mo >= &mips_opcodes[0] && insn->insn_mo < &mips_opcodes[NUMOPCODES]) return &mips_operands[insn->insn_mo - &mips_opcodes[0]]; if (insn->insn_mo >= &mips16_opcodes[0] && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes]) return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]]; if (insn->insn_mo >= µmips_opcodes[0] && insn->insn_mo < µmips_opcodes[bfd_micromips_num_opcodes]) return µmips_operands[insn->insn_mo - µmips_opcodes[0]]; abort (); } /* Get a description of operand OPNO of INSN. */ static const struct mips_operand * insn_opno (const struct mips_cl_insn *insn, unsigned opno) { const struct mips_operand_array *operands; operands = insn_operands (insn); if (opno >= MAX_OPERANDS || !operands->operand[opno]) abort (); return operands->operand[opno]; } /* Install UVAL as the value of OPERAND in INSN. */ static inline void insn_insert_operand (struct mips_cl_insn *insn, const struct mips_operand *operand, unsigned int uval) { insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval); } /* Extract the value of OPERAND from INSN. */ static inline unsigned insn_extract_operand (const struct mips_cl_insn *insn, const struct mips_operand *operand) { return mips_extract_operand (operand, insn->insn_opcode); } /* Record the current MIPS16/microMIPS mode in now_seg. */ static void mips_record_compressed_mode (void) { segment_info_type *si; si = seg_info (now_seg); if (si->tc_segment_info_data.mips16 != mips_opts.mips16) si->tc_segment_info_data.mips16 = mips_opts.mips16; if (si->tc_segment_info_data.micromips != mips_opts.micromips) si->tc_segment_info_data.micromips = mips_opts.micromips; } /* Read a standard MIPS instruction from BUF. */ static unsigned long read_insn (char *buf) { if (target_big_endian) return bfd_getb32 ((bfd_byte *) buf); else return bfd_getl32 ((bfd_byte *) buf); } /* Write standard MIPS instruction INSN to BUF. Return a pointer to the next byte. */ static char * write_insn (char *buf, unsigned int insn) { md_number_to_chars (buf, insn, 4); return buf + 4; } /* Read a microMIPS or MIPS16 opcode from BUF, given that it has length LENGTH. */ static unsigned long read_compressed_insn (char *buf, unsigned int length) { unsigned long insn; unsigned int i; insn = 0; for (i = 0; i < length; i += 2) { insn <<= 16; if (target_big_endian) insn |= bfd_getb16 ((char *) buf); else insn |= bfd_getl16 ((char *) buf); buf += 2; } return insn; } /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the instruction is LENGTH bytes long. Return a pointer to the next byte. */ static char * write_compressed_insn (char *buf, unsigned int insn, unsigned int length) { unsigned int i; for (i = 0; i < length; i += 2) md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2); return buf + length; } /* Install INSN at the location specified by its "frag" and "where" fields. */ static void install_insn (const struct mips_cl_insn *insn) { char *f = insn->frag->fr_literal + insn->where; if (HAVE_CODE_COMPRESSION) write_compressed_insn (f, insn->insn_opcode, insn_length (insn)); else write_insn (f, insn->insn_opcode); mips_record_compressed_mode (); } /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly and install the opcode in the new location. */ static void move_insn (struct mips_cl_insn *insn, fragS *frag, long where) { size_t i; insn->frag = frag; insn->where = where; for (i = 0; i < ARRAY_SIZE (insn->fixp); i++) if (insn->fixp[i] != NULL) { insn->fixp[i]->fx_frag = frag; insn->fixp[i]->fx_where = where; } install_insn (insn); } /* Add INSN to the end of the output. */ static void add_fixed_insn (struct mips_cl_insn *insn) { char *f = frag_more (insn_length (insn)); move_insn (insn, frag_now, f - frag_now->fr_literal); } /* Start a variant frag and move INSN to the start of the variant part, marking it as fixed. The other arguments are as for frag_var. */ static void add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var, relax_substateT subtype, symbolS *symbol, offsetT offset) { frag_grow (max_chars); move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal); insn->fixed_p = 1; frag_var (rs_machine_dependent, max_chars, var, subtype, symbol, offset, NULL); } /* Insert N copies of INSN into the history buffer, starting at position FIRST. Neither FIRST nor N need to be clipped. */ static void insert_into_history (unsigned int first, unsigned int n, const struct mips_cl_insn *insn) { if (mips_relax.sequence != 2) { unsigned int i; for (i = ARRAY_SIZE (history); i-- > first;) if (i >= first + n) history[i] = history[i - n]; else history[i] = *insn; } } /* Initialize vr4120_conflicts. There is a bit of duplication here: the idea is to make it obvious at a glance that each errata is included. */ static void init_vr4120_conflicts (void) { #define CONFLICT(FIRST, SECOND) \ vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND /* Errata 21 - [D]DIV[U] after [D]MACC */ CONFLICT (MACC, DIV); CONFLICT (DMACC, DIV); /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */ CONFLICT (DMULT, DMULT); CONFLICT (DMULT, DMACC); CONFLICT (DMACC, DMULT); CONFLICT (DMACC, DMACC); /* Errata 24 - MT{LO,HI} after [D]MACC */ CONFLICT (MACC, MTHILO); CONFLICT (DMACC, MTHILO); /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU instruction is executed immediately after a MACC or DMACC instruction, the result of [either instruction] is incorrect." */ CONFLICT (MACC, MULT); CONFLICT (MACC, DMULT); CONFLICT (DMACC, MULT); CONFLICT (DMACC, DMULT); /* VR4181A errata MD(4): "If a MACC or DMACC instruction is executed immediately after a DMULT, DMULTU, DIV, DIVU, DDIV or DDIVU instruction, the result of the MACC or DMACC instruction is incorrect.". */ CONFLICT (DMULT, MACC); CONFLICT (DMULT, DMACC); CONFLICT (DIV, MACC); CONFLICT (DIV, DMACC); #undef CONFLICT } struct regname { const char *name; unsigned int num; }; #define RNUM_MASK 0x00000ff #define RTYPE_MASK 0x0efff00 #define RTYPE_NUM 0x0000100 #define RTYPE_FPU 0x0000200 #define RTYPE_FCC 0x0000400 #define RTYPE_VEC 0x0000800 #define RTYPE_GP 0x0001000 #define RTYPE_CP0 0x0002000 #define RTYPE_PC 0x0004000 #define RTYPE_ACC 0x0008000 #define RTYPE_CCC 0x0010000 #define RTYPE_VI 0x0020000 #define RTYPE_VF 0x0040000 #define RTYPE_R5900_I 0x0080000 #define RTYPE_R5900_Q 0x0100000 #define RTYPE_R5900_R 0x0200000 #define RTYPE_R5900_ACC 0x0400000 #define RWARN 0x8000000 #define GENERIC_REGISTER_NUMBERS \ {"$0", RTYPE_NUM | 0}, \ {"$1", RTYPE_NUM | 1}, \ {"$2", RTYPE_NUM | 2}, \ {"$3", RTYPE_NUM | 3}, \ {"$4", RTYPE_NUM | 4}, \ {"$5", RTYPE_NUM | 5}, \ {"$6", RTYPE_NUM | 6}, \ {"$7", RTYPE_NUM | 7}, \ {"$8", RTYPE_NUM | 8}, \ {"$9", RTYPE_NUM | 9}, \ {"$10", RTYPE_NUM | 10}, \ {"$11", RTYPE_NUM | 11}, \ {"$12", RTYPE_NUM | 12}, \ {"$13", RTYPE_NUM | 13}, \ {"$14", RTYPE_NUM | 14}, \ {"$15", RTYPE_NUM | 15}, \ {"$16", RTYPE_NUM | 16}, \ {"$17", RTYPE_NUM | 17}, \ {"$18", RTYPE_NUM | 18}, \ {"$19", RTYPE_NUM | 19}, \ {"$20", RTYPE_NUM | 20}, \ {"$21", RTYPE_NUM | 21}, \ {"$22", RTYPE_NUM | 22}, \ {"$23", RTYPE_NUM | 23}, \ {"$24", RTYPE_NUM | 24}, \ {"$25", RTYPE_NUM | 25}, \ {"$26", RTYPE_NUM | 26}, \ {"$27", RTYPE_NUM | 27}, \ {"$28", RTYPE_NUM | 28}, \ {"$29", RTYPE_NUM | 29}, \ {"$30", RTYPE_NUM | 30}, \ {"$31", RTYPE_NUM | 31} #define FPU_REGISTER_NAMES \ {"$f0", RTYPE_FPU | 0}, \ {"$f1", RTYPE_FPU | 1}, \ {"$f2", RTYPE_FPU | 2}, \ {"$f3", RTYPE_FPU | 3}, \ {"$f4", RTYPE_FPU | 4}, \ {"$f5", RTYPE_FPU | 5}, \ {"$f6", RTYPE_FPU | 6}, \ {"$f7", RTYPE_FPU | 7}, \ {"$f8", RTYPE_FPU | 8}, \ {"$f9", RTYPE_FPU | 9}, \ {"$f10", RTYPE_FPU | 10}, \ {"$f11", RTYPE_FPU | 11}, \ {"$f12", RTYPE_FPU | 12}, \ {"$f13", RTYPE_FPU | 13}, \ {"$f14", RTYPE_FPU | 14}, \ {"$f15", RTYPE_FPU | 15}, \ {"$f16", RTYPE_FPU | 16}, \ {"$f17", RTYPE_FPU | 17}, \ {"$f18", RTYPE_FPU | 18}, \ {"$f19", RTYPE_FPU | 19}, \ {"$f20", RTYPE_FPU | 20}, \ {"$f21", RTYPE_FPU | 21}, \ {"$f22", RTYPE_FPU | 22}, \ {"$f23", RTYPE_FPU | 23}, \ {"$f24", RTYPE_FPU | 24}, \ {"$f25", RTYPE_FPU | 25}, \ {"$f26", RTYPE_FPU | 26}, \ {"$f27", RTYPE_FPU | 27}, \ {"$f28", RTYPE_FPU | 28}, \ {"$f29", RTYPE_FPU | 29}, \ {"$f30", RTYPE_FPU | 30}, \ {"$f31", RTYPE_FPU | 31} #define FPU_CONDITION_CODE_NAMES \ {"$fcc0", RTYPE_FCC | 0}, \ {"$fcc1", RTYPE_FCC | 1}, \ {"$fcc2", RTYPE_FCC | 2}, \ {"$fcc3", RTYPE_FCC | 3}, \ {"$fcc4", RTYPE_FCC | 4}, \ {"$fcc5", RTYPE_FCC | 5}, \ {"$fcc6", RTYPE_FCC | 6}, \ {"$fcc7", RTYPE_FCC | 7} #define COPROC_CONDITION_CODE_NAMES \ {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \ {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \ {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \ {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \ {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \ {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \ {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \ {"$cc7", RTYPE_FCC | RTYPE_CCC | 7} #define N32N64_SYMBOLIC_REGISTER_NAMES \ {"$a4", RTYPE_GP | 8}, \ {"$a5", RTYPE_GP | 9}, \ {"$a6", RTYPE_GP | 10}, \ {"$a7", RTYPE_GP | 11}, \ {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \ {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \ {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \ {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \ {"$t0", RTYPE_GP | 12}, \ {"$t1", RTYPE_GP | 13}, \ {"$t2", RTYPE_GP | 14}, \ {"$t3", RTYPE_GP | 15} #define O32_SYMBOLIC_REGISTER_NAMES \ {"$t0", RTYPE_GP | 8}, \ {"$t1", RTYPE_GP | 9}, \ {"$t2", RTYPE_GP | 10}, \ {"$t3", RTYPE_GP | 11}, \ {"$t4", RTYPE_GP | 12}, \ {"$t5", RTYPE_GP | 13}, \ {"$t6", RTYPE_GP | 14}, \ {"$t7", RTYPE_GP | 15}, \ {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \ {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \ {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \ {"$ta3", RTYPE_GP | 15} /* alias for $t7 */ /* Remaining symbolic register names */ #define SYMBOLIC_REGISTER_NAMES \ {"$zero", RTYPE_GP | 0}, \ {"$at", RTYPE_GP | 1}, \ {"$AT", RTYPE_GP | 1}, \ {"$v0", RTYPE_GP | 2}, \ {"$v1", RTYPE_GP | 3}, \ {"$a0", RTYPE_GP | 4}, \ {"$a1", RTYPE_GP | 5}, \ {"$a2", RTYPE_GP | 6}, \ {"$a3", RTYPE_GP | 7}, \ {"$s0", RTYPE_GP | 16}, \ {"$s1", RTYPE_GP | 17}, \ {"$s2", RTYPE_GP | 18}, \ {"$s3", RTYPE_GP | 19}, \ {"$s4", RTYPE_GP | 20}, \ {"$s5", RTYPE_GP | 21}, \ {"$s6", RTYPE_GP | 22}, \ {"$s7", RTYPE_GP | 23}, \ {"$t8", RTYPE_GP | 24}, \ {"$t9", RTYPE_GP | 25}, \ {"$k0", RTYPE_GP | 26}, \ {"$kt0", RTYPE_GP | 26}, \ {"$k1", RTYPE_GP | 27}, \ {"$kt1", RTYPE_GP | 27}, \ {"$gp", RTYPE_GP | 28}, \ {"$sp", RTYPE_GP | 29}, \ {"$s8", RTYPE_GP | 30}, \ {"$fp", RTYPE_GP | 30}, \ {"$ra", RTYPE_GP | 31} #define MIPS16_SPECIAL_REGISTER_NAMES \ {"$pc", RTYPE_PC | 0} #define MDMX_VECTOR_REGISTER_NAMES \ /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \ /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \ {"$v2", RTYPE_VEC | 2}, \ {"$v3", RTYPE_VEC | 3}, \ {"$v4", RTYPE_VEC | 4}, \ {"$v5", RTYPE_VEC | 5}, \ {"$v6", RTYPE_VEC | 6}, \ {"$v7", RTYPE_VEC | 7}, \ {"$v8", RTYPE_VEC | 8}, \ {"$v9", RTYPE_VEC | 9}, \ {"$v10", RTYPE_VEC | 10}, \ {"$v11", RTYPE_VEC | 11}, \ {"$v12", RTYPE_VEC | 12}, \ {"$v13", RTYPE_VEC | 13}, \ {"$v14", RTYPE_VEC | 14}, \ {"$v15", RTYPE_VEC | 15}, \ {"$v16", RTYPE_VEC | 16}, \ {"$v17", RTYPE_VEC | 17}, \ {"$v18", RTYPE_VEC | 18}, \ {"$v19", RTYPE_VEC | 19}, \ {"$v20", RTYPE_VEC | 20}, \ {"$v21", RTYPE_VEC | 21}, \ {"$v22", RTYPE_VEC | 22}, \ {"$v23", RTYPE_VEC | 23}, \ {"$v24", RTYPE_VEC | 24}, \ {"$v25", RTYPE_VEC | 25}, \ {"$v26", RTYPE_VEC | 26}, \ {"$v27", RTYPE_VEC | 27}, \ {"$v28", RTYPE_VEC | 28}, \ {"$v29", RTYPE_VEC | 29}, \ {"$v30", RTYPE_VEC | 30}, \ {"$v31", RTYPE_VEC | 31} #define R5900_I_NAMES \ {"$I", RTYPE_R5900_I | 0} #define R5900_Q_NAMES \ {"$Q", RTYPE_R5900_Q | 0} #define R5900_R_NAMES \ {"$R", RTYPE_R5900_R | 0} #define R5900_ACC_NAMES \ {"$ACC", RTYPE_R5900_ACC | 0 } #define MIPS_DSP_ACCUMULATOR_NAMES \ {"$ac0", RTYPE_ACC | 0}, \ {"$ac1", RTYPE_ACC | 1}, \ {"$ac2", RTYPE_ACC | 2}, \ {"$ac3", RTYPE_ACC | 3} static const struct regname reg_names[] = { GENERIC_REGISTER_NUMBERS, FPU_REGISTER_NAMES, FPU_CONDITION_CODE_NAMES, COPROC_CONDITION_CODE_NAMES, /* The $txx registers depends on the abi, these will be added later into the symbol table from one of the tables below once mips_abi is set after parsing of arguments from the command line. */ SYMBOLIC_REGISTER_NAMES, MIPS16_SPECIAL_REGISTER_NAMES, MDMX_VECTOR_REGISTER_NAMES, R5900_I_NAMES, R5900_Q_NAMES, R5900_R_NAMES, R5900_ACC_NAMES, MIPS_DSP_ACCUMULATOR_NAMES, {0, 0} }; static const struct regname reg_names_o32[] = { O32_SYMBOLIC_REGISTER_NAMES, {0, 0} }; static const struct regname reg_names_n32n64[] = { N32N64_SYMBOLIC_REGISTER_NAMES, {0, 0} }; /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be interpreted as vector registers 0 and 1. If SYMVAL is the value of one of these register symbols, return the associated vector register, otherwise return SYMVAL itself. */ static unsigned int mips_prefer_vec_regno (unsigned int symval) { if ((symval & -2) == (RTYPE_GP | 2)) return RTYPE_VEC | (symval & 1); return symval; } /* Return true if string [S, E) is a valid register name, storing its symbol value in *SYMVAL_PTR if so. */ static bfd_boolean mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr) { char save_c; symbolS *symbol; /* Terminate name. */ save_c = *e; *e = '\0'; /* Look up the name. */ symbol = symbol_find (s); *e = save_c; if (!symbol || S_GET_SEGMENT (symbol) != reg_section) return FALSE; *symval_ptr = S_GET_VALUE (symbol); return TRUE; } /* Return true if the string at *SPTR is a valid register name. Allow it to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR is nonnull. When returning true, move *SPTR past the register, store the register's symbol value in *SYMVAL_PTR and the channel mask in *CHANNELS_PTR (if nonnull). The symbol value includes the register number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask is a 4-bit value of the form XYZW and is 0 if no suffix was given. */ static bfd_boolean mips_parse_register (char **sptr, unsigned int *symval_ptr, unsigned int *channels_ptr) { char *s, *e, *m; const char *q; unsigned int channels, symval, bit; /* Find end of name. */ s = e = *sptr; if (is_name_beginner (*e)) ++e; while (is_part_of_name (*e)) ++e; channels = 0; if (!mips_parse_register_1 (s, e, &symval)) { if (!channels_ptr) return FALSE; /* Eat characters from the end of the string that are valid channel suffixes. The preceding register must be $ACC or end with a digit, so there is no ambiguity. */ bit = 1; m = e; for (q = "wzyx"; *q; q++, bit <<= 1) if (m > s && m[-1] == *q) { --m; channels |= bit; } if (channels == 0 || !mips_parse_register_1 (s, m, &symval) || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0) return FALSE; } *sptr = e; *symval_ptr = symval; if (channels_ptr) *channels_ptr = channels; return TRUE; } /* Check if SPTR points at a valid register specifier according to TYPES. If so, then return 1, advance S to consume the specifier and store the register's number in REGNOP, otherwise return 0. */ static int reg_lookup (char **s, unsigned int types, unsigned int *regnop) { unsigned int regno; if (mips_parse_register (s, ®no, NULL)) { if (types & RTYPE_VEC) regno = mips_prefer_vec_regno (regno); if (regno & types) regno &= RNUM_MASK; else regno = ~0; } else { if (types & RWARN) as_warn (_("Unrecognized register name `%s'"), *s); regno = ~0; } if (regnop) *regnop = regno; return regno <= RNUM_MASK; } /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated mask in *CHANNELS. Return a pointer to the first unconsumed character. */ static char * mips_parse_vu0_channels (char *s, unsigned int *channels) { unsigned int i; *channels = 0; for (i = 0; i < 4; i++) if (*s == "xyzw"[i]) { *channels |= 1 << (3 - i); ++s; } return s; } /* Token types for parsed operand lists. */ enum mips_operand_token_type { /* A plain register, e.g. $f2. */ OT_REG, /* A 4-bit XYZW channel mask. */ OT_CHANNELS, /* An element of a vector, e.g. $v0[1]. */ OT_REG_ELEMENT, /* A continuous range of registers, e.g. $s0-$s4. */ OT_REG_RANGE, /* A (possibly relocated) expression. */ OT_INTEGER, /* A floating-point value. */ OT_FLOAT, /* A single character. This can be '(', ')' or ',', but '(' only appears before OT_REGs. */ OT_CHAR, /* A doubled character, either "--" or "++". */ OT_DOUBLE_CHAR, /* The end of the operand list. */ OT_END }; /* A parsed operand token. */ struct mips_operand_token { /* The type of token. */ enum mips_operand_token_type type; union { /* The register symbol value for an OT_REG. */ unsigned int regno; /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */ unsigned int channels; /* The register symbol value and index for an OT_REG_ELEMENT. */ struct { unsigned int regno; addressT index; } reg_element; /* The two register symbol values involved in an OT_REG_RANGE. */ struct { unsigned int regno1; unsigned int regno2; } reg_range; /* The value of an OT_INTEGER. The value is represented as an expression and the relocation operators that were applied to that expression. The reloc entries are BFD_RELOC_UNUSED if no relocation operators were used. */ struct { expressionS value; bfd_reloc_code_real_type relocs[3]; } integer; /* The binary data for an OT_FLOAT constant, and the number of bytes in the constant. */ struct { unsigned char data[8]; int length; } flt; /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */ char ch; } u; }; /* An obstack used to construct lists of mips_operand_tokens. */ static struct obstack mips_operand_tokens; /* Give TOKEN type TYPE and add it to mips_operand_tokens. */ static void mips_add_token (struct mips_operand_token *token, enum mips_operand_token_type type) { token->type = type; obstack_grow (&mips_operand_tokens, token, sizeof (*token)); } /* Check whether S is '(' followed by a register name. Add OT_CHAR and OT_REG tokens for them if so, and return a pointer to the first unconsumed character. Return null otherwise. */ static char * mips_parse_base_start (char *s) { struct mips_operand_token token; unsigned int regno, channels; bfd_boolean decrement_p; if (*s != '(') return 0; ++s; SKIP_SPACE_TABS (s); /* Only match "--" as part of a base expression. In other contexts "--X" is a double negative. */ decrement_p = (s[0] == '-' && s[1] == '-'); if (decrement_p) { s += 2; SKIP_SPACE_TABS (s); } /* Allow a channel specifier because that leads to better error messages than treating something like "$vf0x++" as an expression. */ if (!mips_parse_register (&s, ®no, &channels)) return 0; token.u.ch = '('; mips_add_token (&token, OT_CHAR); if (decrement_p) { token.u.ch = '-'; mips_add_token (&token, OT_DOUBLE_CHAR); } token.u.regno = regno; mips_add_token (&token, OT_REG); if (channels) { token.u.channels = channels; mips_add_token (&token, OT_CHANNELS); } /* For consistency, only match "++" as part of base expressions too. */ SKIP_SPACE_TABS (s); if (s[0] == '+' && s[1] == '+') { s += 2; token.u.ch = '+'; mips_add_token (&token, OT_DOUBLE_CHAR); } return s; } /* Parse one or more tokens from S. Return a pointer to the first unconsumed character on success. Return null if an error was found and store the error text in insn_error. FLOAT_FORMAT is as for mips_parse_arguments. */ static char * mips_parse_argument_token (char *s, char float_format) { char *end, *save_in, *err; unsigned int regno1, regno2, channels; struct mips_operand_token token; /* First look for "($reg", since we want to treat that as an OT_CHAR and OT_REG rather than an expression. */ end = mips_parse_base_start (s); if (end) return end; /* Handle other characters that end up as OT_CHARs. */ if (*s == ')' || *s == ',') { token.u.ch = *s; mips_add_token (&token, OT_CHAR); ++s; return s; } /* Handle tokens that start with a register. */ if (mips_parse_register (&s, ®no1, &channels)) { if (channels) { /* A register and a VU0 channel suffix. */ token.u.regno = regno1; mips_add_token (&token, OT_REG); token.u.channels = channels; mips_add_token (&token, OT_CHANNELS); return s; } SKIP_SPACE_TABS (s); if (*s == '-') { /* A register range. */ ++s; SKIP_SPACE_TABS (s); if (!mips_parse_register (&s, ®no2, NULL)) { insn_error = _("Invalid register range"); return 0; } token.u.reg_range.regno1 = regno1; token.u.reg_range.regno2 = regno2; mips_add_token (&token, OT_REG_RANGE); return s; } else if (*s == '[') { /* A vector element. */ expressionS element; ++s; SKIP_SPACE_TABS (s); my_getExpression (&element, s); if (element.X_op != O_constant) { insn_error = _("Vector element must be constant"); return 0; } s = expr_end; SKIP_SPACE_TABS (s); if (*s != ']') { insn_error = _("Missing `]'"); return 0; } ++s; token.u.reg_element.regno = regno1; token.u.reg_element.index = element.X_add_number; mips_add_token (&token, OT_REG_ELEMENT); return s; } /* Looks like just a plain register. */ token.u.regno = regno1; mips_add_token (&token, OT_REG); return s; } if (float_format) { /* First try to treat expressions as floats. */ save_in = input_line_pointer; input_line_pointer = s; err = md_atof (float_format, (char *) token.u.flt.data, &token.u.flt.length); end = input_line_pointer; input_line_pointer = save_in; if (err && *err) { insn_error = err; return 0; } if (s != end) { mips_add_token (&token, OT_FLOAT); return end; } } /* Treat everything else as an integer expression. */ token.u.integer.relocs[0] = BFD_RELOC_UNUSED; token.u.integer.relocs[1] = BFD_RELOC_UNUSED; token.u.integer.relocs[2] = BFD_RELOC_UNUSED; my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s); s = expr_end; mips_add_token (&token, OT_INTEGER); return s; } /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f' if expressions should be treated as 32-bit floating-point constants, 'd' if they should be treated as 64-bit floating-point constants, or 0 if they should be treated as integer expressions (the usual case). Return a list of tokens on success, otherwise return 0. The caller must obstack_free the list after use. */ static struct mips_operand_token * mips_parse_arguments (char *s, char float_format) { struct mips_operand_token token; SKIP_SPACE_TABS (s); while (*s) { s = mips_parse_argument_token (s, float_format); if (!s) { obstack_free (&mips_operand_tokens, obstack_finish (&mips_operand_tokens)); return 0; } SKIP_SPACE_TABS (s); } mips_add_token (&token, OT_END); return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens); } /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */ static bfd_boolean is_opcode_valid (const struct mips_opcode *mo) { int isa = mips_opts.isa; int ase = mips_opts.ase; int fp_s, fp_d; unsigned int i; if (ISA_HAS_64BIT_REGS (mips_opts.isa)) for (i = 0; i < ARRAY_SIZE (mips_ases); i++) if ((ase & mips_ases[i].flags) == mips_ases[i].flags) ase |= mips_ases[i].flags64; if (!opcode_is_member (mo, isa, ase, mips_opts.arch)) return FALSE; /* Check whether the instruction or macro requires single-precision or double-precision floating-point support. Note that this information is stored differently in the opcode table for insns and macros. */ if (mo->pinfo == INSN_MACRO) { fp_s = mo->pinfo2 & INSN2_M_FP_S; fp_d = mo->pinfo2 & INSN2_M_FP_D; } else { fp_s = mo->pinfo & FP_S; fp_d = mo->pinfo & FP_D; } if (fp_d && (mips_opts.soft_float || mips_opts.single_float)) return FALSE; if (fp_s && mips_opts.soft_float) return FALSE; return TRUE; } /* Return TRUE if the MIPS16 opcode MO is valid on the currently selected ISA and architecture. */ static bfd_boolean is_opcode_valid_16 (const struct mips_opcode *mo) { return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch); } /* Return TRUE if the size of the microMIPS opcode MO matches one explicitly requested. Always TRUE in the standard MIPS mode. */ static bfd_boolean is_size_valid (const struct mips_opcode *mo) { if (!mips_opts.micromips) return TRUE; if (mips_opts.insn32) { if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4) return FALSE; if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0) return FALSE; } if (!forced_insn_length) return TRUE; if (mo->pinfo == INSN_MACRO) return FALSE; return forced_insn_length == micromips_insn_length (mo); } /* Return TRUE if the microMIPS opcode MO is valid for the delay slot of the preceding instruction. Always TRUE in the standard MIPS mode. We don't accept macros in 16-bit delay slots to avoid a case where a macro expansion fails because it relies on a preceding 32-bit real instruction to have matched and does not handle the operands correctly. The only macros that may expand to 16-bit instructions are JAL that cannot be placed in a delay slot anyway, and corner cases of BALIGN and BGT (that likewise cannot be placed in a delay slot) that decay to a NOP. In all these cases the macros precede any corresponding real instruction definitions in the opcode table, so they will match in the second pass where the size of the delay slot is ignored and therefore produce correct code. */ static bfd_boolean is_delay_slot_valid (const struct mips_opcode *mo) { if (!mips_opts.micromips) return TRUE; if (mo->pinfo == INSN_MACRO) return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0; if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0 && micromips_insn_length (mo) != 4) return FALSE; if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 && micromips_insn_length (mo) != 2) return FALSE; return TRUE; } /* For consistency checking, verify that all bits of OPCODE are specified either by the match/mask part of the instruction definition, or by the operand list. Also build up a list of operands in OPERANDS. INSN_BITS says which bits of the instruction are significant. If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND provides the mips_operand description of each operand. DECODE_OPERAND is null for MIPS16 instructions. */ static int validate_mips_insn (const struct mips_opcode *opcode, unsigned long insn_bits, const struct mips_operand *(*decode_operand) (const char *), struct mips_operand_array *operands) { const char *s; unsigned long used_bits, doubled, undefined, opno, mask; const struct mips_operand *operand; mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask); if ((mask & opcode->match) != opcode->match) { as_bad (_("internal: bad mips opcode (mask error): %s %s"), opcode->name, opcode->args); return 0; } used_bits = 0; opno = 0; if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1); for (s = opcode->args; *s; ++s) switch (*s) { case ',': case '(': case ')': break; case '#': s++; break; default: if (!decode_operand) operand = decode_mips16_operand (*s, FALSE); else operand = decode_operand (s); if (!operand && opcode->pinfo != INSN_MACRO) { as_bad (_("internal: unknown operand type: %s %s"), opcode->name, opcode->args); return 0; } gas_assert (opno < MAX_OPERANDS); operands->operand[opno] = operand; if (operand && operand->type != OP_VU0_MATCH_SUFFIX) { used_bits = mips_insert_operand (operand, used_bits, -1); if (operand->type == OP_MDMX_IMM_REG) /* Bit 5 is the format selector (OB vs QH). The opcode table has separate entries for each format. */ used_bits &= ~(1 << (operand->lsb + 5)); if (operand->type == OP_ENTRY_EXIT_LIST) used_bits &= ~(mask & 0x700); } /* Skip prefix characters. */ if (decode_operand && (*s == '+' || *s == 'm')) ++s; opno += 1; break; } doubled = used_bits & mask & insn_bits; if (doubled) { as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):" " %s %s"), doubled, opcode->name, opcode->args); return 0; } used_bits |= mask; undefined = ~used_bits & insn_bits; if (opcode->pinfo != INSN_MACRO && undefined) { as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"), undefined, opcode->name, opcode->args); return 0; } used_bits &= ~insn_bits; if (used_bits) { as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"), used_bits, opcode->name, opcode->args); return 0; } return 1; } /* The MIPS16 version of validate_mips_insn. */ static int validate_mips16_insn (const struct mips_opcode *opcode, struct mips_operand_array *operands) { if (opcode->args[0] == 'a' || opcode->args[0] == 'i') { /* In this case OPCODE defines the first 16 bits in a 32-bit jump instruction. Use TMP to describe the full instruction. */ struct mips_opcode tmp; tmp = *opcode; tmp.match <<= 16; tmp.mask <<= 16; return validate_mips_insn (&tmp, 0xffffffff, 0, operands); } return validate_mips_insn (opcode, 0xffff, 0, operands); } /* The microMIPS version of validate_mips_insn. */ static int validate_micromips_insn (const struct mips_opcode *opc, struct mips_operand_array *operands) { unsigned long insn_bits; unsigned long major; unsigned int length; if (opc->pinfo == INSN_MACRO) return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand, operands); length = micromips_insn_length (opc); if (length != 2 && length != 4) { as_bad (_("Internal error: bad microMIPS opcode (incorrect length: %u): " "%s %s"), length, opc->name, opc->args); return 0; } major = opc->match >> (10 + 8 * (length - 2)); if ((length == 2 && (major & 7) != 1 && (major & 6) != 2) || (length == 4 && (major & 7) != 0 && (major & 4) != 4)) { as_bad (_("Internal error: bad microMIPS opcode " "(opcode/length mismatch): %s %s"), opc->name, opc->args); return 0; } /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */ insn_bits = 1 << 4 * length; insn_bits <<= 4 * length; insn_bits -= 1; return validate_mips_insn (opc, insn_bits, decode_micromips_operand, operands); } /* This function is called once, at assembler startup time. It should set up all the tables, etc. that the MD part of the assembler will need. */ void md_begin (void) { const char *retval = NULL; int i = 0; int broken = 0; if (mips_pic != NO_PIC) { if (g_switch_seen && g_switch_value != 0) as_bad (_("-G may not be used in position-independent code")); g_switch_value = 0; } if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch)) as_warn (_("Could not set architecture and machine")); op_hash = hash_new (); mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES); for (i = 0; i < NUMOPCODES;) { const char *name = mips_opcodes[i].name; retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]); if (retval != NULL) { fprintf (stderr, _("internal error: can't hash `%s': %s\n"), mips_opcodes[i].name, retval); /* Probably a memory allocation problem? Give up now. */ as_fatal (_("Broken assembler. No assembly attempted.")); } do { if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff, decode_mips_operand, &mips_operands[i])) broken = 1; if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0) { create_insn (&nop_insn, mips_opcodes + i); if (mips_fix_loongson2f_nop) nop_insn.insn_opcode = LOONGSON2F_NOP_INSN; nop_insn.fixed_p = 1; } ++i; } while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name)); } mips16_op_hash = hash_new (); mips16_operands = XCNEWVEC (struct mips_operand_array, bfd_mips16_num_opcodes); i = 0; while (i < bfd_mips16_num_opcodes) { const char *name = mips16_opcodes[i].name; retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]); if (retval != NULL) as_fatal (_("internal: can't hash `%s': %s"), mips16_opcodes[i].name, retval); do { if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i])) broken = 1; if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0) { create_insn (&mips16_nop_insn, mips16_opcodes + i); mips16_nop_insn.fixed_p = 1; } ++i; } while (i < bfd_mips16_num_opcodes && strcmp (mips16_opcodes[i].name, name) == 0); } micromips_op_hash = hash_new (); micromips_operands = XCNEWVEC (struct mips_operand_array, bfd_micromips_num_opcodes); i = 0; while (i < bfd_micromips_num_opcodes) { const char *name = micromips_opcodes[i].name; retval = hash_insert (micromips_op_hash, name, (void *) µmips_opcodes[i]); if (retval != NULL) as_fatal (_("internal: can't hash `%s': %s"), micromips_opcodes[i].name, retval); do { struct mips_cl_insn *micromips_nop_insn; if (!validate_micromips_insn (µmips_opcodes[i], µmips_operands[i])) broken = 1; if (micromips_opcodes[i].pinfo != INSN_MACRO) { if (micromips_insn_length (micromips_opcodes + i) == 2) micromips_nop_insn = µmips_nop16_insn; else if (micromips_insn_length (micromips_opcodes + i) == 4) micromips_nop_insn = µmips_nop32_insn; else continue; if (micromips_nop_insn->insn_mo == NULL && strcmp (name, "nop") == 0) { create_insn (micromips_nop_insn, micromips_opcodes + i); micromips_nop_insn->fixed_p = 1; } } } while (++i < bfd_micromips_num_opcodes && strcmp (micromips_opcodes[i].name, name) == 0); } if (broken) as_fatal (_("Broken assembler. No assembly attempted.")); /* We add all the general register names to the symbol table. This helps us detect invalid uses of them. */ for (i = 0; reg_names[i].name; i++) symbol_table_insert (symbol_new (reg_names[i].name, reg_section, reg_names[i].num, /* & RNUM_MASK, */ &zero_address_frag)); if (HAVE_NEWABI) for (i = 0; reg_names_n32n64[i].name; i++) symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section, reg_names_n32n64[i].num, /* & RNUM_MASK, */ &zero_address_frag)); else for (i = 0; reg_names_o32[i].name; i++) symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section, reg_names_o32[i].num, /* & RNUM_MASK, */ &zero_address_frag)); for (i = 0; i < 32; i++) { char regname[7]; /* R5900 VU0 floating-point register. */ regname[sizeof (rename) - 1] = 0; snprintf (regname, sizeof (regname) - 1, "$vf%d", i); symbol_table_insert (symbol_new (regname, reg_section, RTYPE_VF | i, &zero_address_frag)); /* R5900 VU0 integer register. */ snprintf (regname, sizeof (regname) - 1, "$vi%d", i); symbol_table_insert (symbol_new (regname, reg_section, RTYPE_VI | i, &zero_address_frag)); } obstack_init (&mips_operand_tokens); mips_no_prev_insn (); mips_gprmask = 0; mips_cprmask[0] = 0; mips_cprmask[1] = 0; mips_cprmask[2] = 0; mips_cprmask[3] = 0; /* set the default alignment for the text section (2**2) */ record_alignment (text_section, 2); bfd_set_gp_size (stdoutput, g_switch_value); /* On a native system other than VxWorks, sections must be aligned to 16 byte boundaries. When configured for an embedded ELF target, we don't bother. */ if (strncmp (TARGET_OS, "elf", 3) != 0 && strncmp (TARGET_OS, "vxworks", 7) != 0) { (void) bfd_set_section_alignment (stdoutput, text_section, 4); (void) bfd_set_section_alignment (stdoutput, data_section, 4); (void) bfd_set_section_alignment (stdoutput, bss_section, 4); } /* Create a .reginfo section for register masks and a .mdebug section for debugging information. */ { segT seg; subsegT subseg; flagword flags; segT sec; seg = now_seg; subseg = now_subseg; /* The ABI says this section should be loaded so that the running program can access it. However, we don't load it if we are configured for an embedded target */ flags = SEC_READONLY | SEC_DATA; if (strncmp (TARGET_OS, "elf", 3) != 0) flags |= SEC_ALLOC | SEC_LOAD; if (mips_abi != N64_ABI) { sec = subseg_new (".reginfo", (subsegT) 0); bfd_set_section_flags (stdoutput, sec, flags); bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2); mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo)); } else { /* The 64-bit ABI uses a .MIPS.options section rather than .reginfo section. */ sec = subseg_new (".MIPS.options", (subsegT) 0); bfd_set_section_flags (stdoutput, sec, flags); bfd_set_section_alignment (stdoutput, sec, 3); /* Set up the option header. */ { Elf_Internal_Options opthdr; char *f; opthdr.kind = ODK_REGINFO; opthdr.size = (sizeof (Elf_External_Options) + sizeof (Elf64_External_RegInfo)); opthdr.section = 0; opthdr.info = 0; f = frag_more (sizeof (Elf_External_Options)); bfd_mips_elf_swap_options_out (stdoutput, &opthdr, (Elf_External_Options *) f); mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo)); } } if (ECOFF_DEBUGGING) { sec = subseg_new (".mdebug", (subsegT) 0); (void) bfd_set_section_flags (stdoutput, sec, SEC_HAS_CONTENTS | SEC_READONLY); (void) bfd_set_section_alignment (stdoutput, sec, 2); } else if (mips_flag_pdr) { pdr_seg = subseg_new (".pdr", (subsegT) 0); (void) bfd_set_section_flags (stdoutput, pdr_seg, SEC_READONLY | SEC_RELOC | SEC_DEBUGGING); (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2); } subseg_set (seg, subseg); } if (! ECOFF_DEBUGGING) md_obj_begin (); if (mips_fix_vr4120) init_vr4120_conflicts (); } void md_mips_end (void) { mips_emit_delays (); if (! ECOFF_DEBUGGING) md_obj_end (); } void md_assemble (char *str) { struct mips_cl_insn insn; bfd_reloc_code_real_type unused_reloc[3] = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED}; imm_expr.X_op = O_absent; imm2_expr.X_op = O_absent; offset_expr.X_op = O_absent; offset_reloc[0] = BFD_RELOC_UNUSED; offset_reloc[1] = BFD_RELOC_UNUSED; offset_reloc[2] = BFD_RELOC_UNUSED; mips_mark_labels (); mips_assembling_insn = TRUE; if (mips_opts.mips16) mips16_ip (str, &insn); else { mips_ip (str, &insn); DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"), str, insn.insn_opcode)); } if (insn_error) as_bad ("%s `%s'", insn_error, str); else if (insn.insn_mo->pinfo == INSN_MACRO) { macro_start (); if (mips_opts.mips16) mips16_macro (&insn); else macro (&insn, str); macro_end (); } else { if (offset_expr.X_op != O_absent) append_insn (&insn, &offset_expr, offset_reloc, FALSE); else append_insn (&insn, NULL, unused_reloc, FALSE); } mips_assembling_insn = FALSE; } /* Convenience functions for abstracting away the differences between MIPS16 and non-MIPS16 relocations. */ static inline bfd_boolean mips16_reloc_p (bfd_reloc_code_real_type reloc) { switch (reloc) { case BFD_RELOC_MIPS16_JMP: case BFD_RELOC_MIPS16_GPREL: case BFD_RELOC_MIPS16_GOT16: case BFD_RELOC_MIPS16_CALL16: case BFD_RELOC_MIPS16_HI16_S: case BFD_RELOC_MIPS16_HI16: case BFD_RELOC_MIPS16_LO16: return TRUE; default: return FALSE; } } static inline bfd_boolean micromips_reloc_p (bfd_reloc_code_real_type reloc) { switch (reloc) { case BFD_RELOC_MICROMIPS_7_PCREL_S1: case BFD_RELOC_MICROMIPS_10_PCREL_S1: case BFD_RELOC_MICROMIPS_16_PCREL_S1: case BFD_RELOC_MICROMIPS_GPREL16: case BFD_RELOC_MICROMIPS_JMP: case BFD_RELOC_MICROMIPS_HI16: case BFD_RELOC_MICROMIPS_HI16_S: case BFD_RELOC_MICROMIPS_LO16: case BFD_RELOC_MICROMIPS_LITERAL: case BFD_RELOC_MICROMIPS_GOT16: case BFD_RELOC_MICROMIPS_CALL16: case BFD_RELOC_MICROMIPS_GOT_HI16: case BFD_RELOC_MICROMIPS_GOT_LO16: case BFD_RELOC_MICROMIPS_CALL_HI16: case BFD_RELOC_MICROMIPS_CALL_LO16: case BFD_RELOC_MICROMIPS_SUB: case BFD_RELOC_MICROMIPS_GOT_PAGE: case BFD_RELOC_MICROMIPS_GOT_OFST: case BFD_RELOC_MICROMIPS_GOT_DISP: case BFD_RELOC_MICROMIPS_HIGHEST: case BFD_RELOC_MICROMIPS_HIGHER: case BFD_RELOC_MICROMIPS_SCN_DISP: case BFD_RELOC_MICROMIPS_JALR: return TRUE; default: return FALSE; } } static inline bfd_boolean jmp_reloc_p (bfd_reloc_code_real_type reloc) { return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP; } static inline bfd_boolean got16_reloc_p (bfd_reloc_code_real_type reloc) { return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16 || reloc == BFD_RELOC_MICROMIPS_GOT16); } static inline bfd_boolean hi16_reloc_p (bfd_reloc_code_real_type reloc) { return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S || reloc == BFD_RELOC_MICROMIPS_HI16_S); } static inline bfd_boolean lo16_reloc_p (bfd_reloc_code_real_type reloc) { return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16 || reloc == BFD_RELOC_MICROMIPS_LO16); } static inline bfd_boolean jalr_reloc_p (bfd_reloc_code_real_type reloc) { return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR; } static inline bfd_boolean gprel16_reloc_p (bfd_reloc_code_real_type reloc) { return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL || reloc == BFD_RELOC_MICROMIPS_GPREL16); } /* Return true if RELOC is a PC-relative relocation that does not have full address range. */ static inline bfd_boolean limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc) { switch (reloc) { case BFD_RELOC_16_PCREL_S2: case BFD_RELOC_MICROMIPS_7_PCREL_S1: case BFD_RELOC_MICROMIPS_10_PCREL_S1: case BFD_RELOC_MICROMIPS_16_PCREL_S1: return TRUE; case BFD_RELOC_32_PCREL: return HAVE_64BIT_ADDRESSES; default: return FALSE; } } /* Return true if the given relocation might need a matching %lo(). This is only "might" because SVR4 R_MIPS_GOT16 relocations only need a matching %lo() when applied to local symbols. */ static inline bfd_boolean reloc_needs_lo_p (bfd_reloc_code_real_type reloc) { return (HAVE_IN_PLACE_ADDENDS && (hi16_reloc_p (reloc) /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo(); all GOT16 relocations evaluate to "G". */ || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC))); } /* Return the type of %lo() reloc needed by RELOC, given that reloc_needs_lo_p. */ static inline bfd_reloc_code_real_type matching_lo_reloc (bfd_reloc_code_real_type reloc) { return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16 : BFD_RELOC_LO16)); } /* Return true if the given fixup is followed by a matching R_MIPS_LO16 relocation. */ static inline bfd_boolean fixup_has_matching_lo_p (fixS *fixp) { return (fixp->fx_next != NULL && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type) && fixp->fx_addsy == fixp->fx_next->fx_addsy && fixp->fx_offset == fixp->fx_next->fx_offset); } /* Move all labels in LABELS to the current insertion point. TEXT_P says whether the labels refer to text or data. */ static void mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p) { struct insn_label_list *l; valueT val; for (l = labels; l != NULL; l = l->next) { gas_assert (S_GET_SEGMENT (l->label) == now_seg); symbol_set_frag (l->label, frag_now); val = (valueT) frag_now_fix (); /* MIPS16/microMIPS text labels are stored as odd. */ if (text_p && HAVE_CODE_COMPRESSION) ++val; S_SET_VALUE (l->label, val); } } /* Move all labels in insn_labels to the current insertion point and treat them as text labels. */ static void mips_move_text_labels (void) { mips_move_labels (seg_info (now_seg)->label_list, TRUE); } static bfd_boolean s_is_linkonce (symbolS *sym, segT from_seg) { bfd_boolean linkonce = FALSE; segT symseg = S_GET_SEGMENT (sym); if (symseg != from_seg && !S_IS_LOCAL (sym)) { if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE)) linkonce = TRUE; /* The GNU toolchain uses an extension for ELF: a section beginning with the magic string .gnu.linkonce is a linkonce section. */ if (strncmp (segment_name (symseg), ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0) linkonce = TRUE; } return linkonce; } /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the linker to handle them specially, such as generating jalx instructions when needed. We also make them odd for the duration of the assembly, in order to generate the right sort of code. We will make them even in the adjust_symtab routine, while leaving them marked. This is convenient for the debugger and the disassembler. The linker knows to make them odd again. */ static void mips_compressed_mark_label (symbolS *label) { gas_assert (HAVE_CODE_COMPRESSION); if (mips_opts.mips16) S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label))); else S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label))); if ((S_GET_VALUE (label) & 1) == 0 /* Don't adjust the address if the label is global or weak, or in a link-once section, since we'll be emitting symbol reloc references to it which will be patched up by the linker, and the final value of the symbol may or may not be MIPS16/microMIPS. */ && !S_IS_WEAK (label) && !S_IS_EXTERNAL (label) && !s_is_linkonce (label, now_seg)) S_SET_VALUE (label, S_GET_VALUE (label) | 1); } /* Mark preceding MIPS16 or microMIPS instruction labels. */ static void mips_compressed_mark_labels (void) { struct insn_label_list *l; for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next) mips_compressed_mark_label (l->label); } /* End the current frag. Make it a variant frag and record the relaxation info. */ static void relax_close_frag (void) { mips_macro_warning.first_frag = frag_now; frag_var (rs_machine_dependent, 0, 0, RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]), mips_relax.symbol, 0, (char *) mips_relax.first_fixup); memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes)); mips_relax.first_fixup = 0; } /* Start a new relaxation sequence whose expansion depends on SYMBOL. See the comment above RELAX_ENCODE for more details. */ static void relax_start (symbolS *symbol) { gas_assert (mips_relax.sequence == 0); mips_relax.sequence = 1; mips_relax.symbol = symbol; } /* Start generating the second version of a relaxable sequence. See the comment above RELAX_ENCODE for more details. */ static void relax_switch (void) { gas_assert (mips_relax.sequence == 1); mips_relax.sequence = 2; } /* End the current relaxable sequence. */ static void relax_end (void) { gas_assert (mips_relax.sequence == 2); relax_close_frag (); mips_relax.sequence = 0; } /* Return true if IP is a delayed branch or jump. */ static inline bfd_boolean delayed_branch_p (const struct mips_cl_insn *ip) { return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY | INSN_COND_BRANCH_DELAY | INSN_COND_BRANCH_LIKELY)) != 0; } /* Return true if IP is a compact branch or jump. */ static inline bfd_boolean compact_branch_p (const struct mips_cl_insn *ip) { return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH | INSN2_COND_BRANCH)) != 0; } /* Return true if IP is an unconditional branch or jump. */ static inline bfd_boolean uncond_branch_p (const struct mips_cl_insn *ip) { return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0); } /* Return true if IP is a branch-likely instruction. */ static inline bfd_boolean branch_likely_p (const struct mips_cl_insn *ip) { return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0; } /* Return the type of nop that should be used to fill the delay slot of delayed branch IP. */ static struct mips_cl_insn * get_delay_slot_nop (const struct mips_cl_insn *ip) { if (mips_opts.micromips && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT)) return µmips_nop32_insn; return NOP_INSN; } /* Return a mask that has bit N set if OPCODE reads the register(s) in operand N. */ static unsigned int insn_read_mask (const struct mips_opcode *opcode) { return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT; } /* Return a mask that has bit N set if OPCODE writes to the register(s) in operand N. */ static unsigned int insn_write_mask (const struct mips_opcode *opcode) { return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT; } /* Return a mask of the registers specified by operand OPERAND of INSN. Ignore registers of type OP_REG_ unless bit OP_REG_ of TYPE_MASK is set. */ static unsigned int operand_reg_mask (const struct mips_cl_insn *insn, const struct mips_operand *operand, unsigned int type_mask) { unsigned int uval, vsel; switch (operand->type) { case OP_INT: case OP_MAPPED_INT: case OP_MSB: case OP_PCREL: case OP_PERF_REG: case OP_ADDIUSP_INT: case OP_ENTRY_EXIT_LIST: case OP_REPEAT_DEST_REG: case OP_REPEAT_PREV_REG: case OP_PC: case OP_VU0_SUFFIX: case OP_VU0_MATCH_SUFFIX: abort (); case OP_REG: { const struct mips_reg_operand *reg_op; reg_op = (const struct mips_reg_operand *) operand; if (!(type_mask & (1 << reg_op->reg_type))) return 0; uval = insn_extract_operand (insn, operand); return 1 << mips_decode_reg_operand (reg_op, uval); } case OP_REG_PAIR: { const struct mips_reg_pair_operand *pair_op; pair_op = (const struct mips_reg_pair_operand *) operand; if (!(type_mask & (1 << pair_op->reg_type))) return 0; uval = insn_extract_operand (insn, operand); return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]); } case OP_CLO_CLZ_DEST: if (!(type_mask & (1 << OP_REG_GP))) return 0; uval = insn_extract_operand (insn, operand); return (1 << (uval & 31)) | (1 << (uval >> 5)); case OP_LWM_SWM_LIST: abort (); case OP_SAVE_RESTORE_LIST: abort (); case OP_MDMX_IMM_REG: if (!(type_mask & (1 << OP_REG_VEC))) return 0; uval = insn_extract_operand (insn, operand); vsel = uval >> 5; if ((vsel & 0x18) == 0x18) return 0; return 1 << (uval & 31); } abort (); } /* Return a mask of the registers specified by operands OPNO_MASK of INSN, where bit N of OPNO_MASK is set if operand N should be included. Ignore registers of type OP_REG_ unless bit OP_REG_ of TYPE_MASK is set. */ static unsigned int insn_reg_mask (const struct mips_cl_insn *insn, unsigned int type_mask, unsigned int opno_mask) { unsigned int opno, reg_mask; opno = 0; reg_mask = 0; while (opno_mask != 0) { if (opno_mask & 1) reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask); opno_mask >>= 1; opno += 1; } return reg_mask; } /* Return the mask of core registers that IP reads. */ static unsigned int gpr_read_mask (const struct mips_cl_insn *ip) { unsigned long pinfo, pinfo2; unsigned int mask; mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo)); pinfo = ip->insn_mo->pinfo; pinfo2 = ip->insn_mo->pinfo2; if (pinfo & INSN_UDI) { /* UDI instructions have traditionally been assumed to read RS and RT. */ mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip); mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip); } if (pinfo & INSN_READ_GPR_24) mask |= 1 << 24; if (pinfo2 & INSN2_READ_GPR_16) mask |= 1 << 16; if (pinfo2 & INSN2_READ_SP) mask |= 1 << SP; if (pinfo2 & INSN2_READ_GPR_31) mask |= 1 << 31; /* Don't include register 0. */ return mask & ~1; } /* Return the mask of core registers that IP writes. */ static unsigned int gpr_write_mask (const struct mips_cl_insn *ip) { unsigned long pinfo, pinfo2; unsigned int mask; mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo)); pinfo = ip->insn_mo->pinfo; pinfo2 = ip->insn_mo->pinfo2; if (pinfo & INSN_WRITE_GPR_24) mask |= 1 << 24; if (pinfo & INSN_WRITE_GPR_31) mask |= 1 << 31; if (pinfo & INSN_UDI) /* UDI instructions have traditionally been assumed to write to RD. */ mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip); if (pinfo2 & INSN2_WRITE_SP) mask |= 1 << SP; /* Don't include register 0. */ return mask & ~1; } /* Return the mask of floating-point registers that IP reads. */ static unsigned int fpr_read_mask (const struct mips_cl_insn *ip) { unsigned long pinfo; unsigned int mask; mask = insn_reg_mask (ip, (1 << OP_REG_FP) | (1 << OP_REG_VEC), insn_read_mask (ip->insn_mo)); pinfo = ip->insn_mo->pinfo; /* Conservatively treat all operands to an FP_D instruction are doubles. (This is overly pessimistic for things like cvt.d.s.) */ if (HAVE_32BIT_FPRS && (pinfo & FP_D)) mask |= mask << 1; return mask; } /* Return the mask of floating-point registers that IP writes. */ static unsigned int fpr_write_mask (const struct mips_cl_insn *ip) { unsigned long pinfo; unsigned int mask; mask = insn_reg_mask (ip, (1 << OP_REG_FP) | (1 << OP_REG_VEC), insn_write_mask (ip->insn_mo)); pinfo = ip->insn_mo->pinfo; /* Conservatively treat all operands to an FP_D instruction are doubles. (This is overly pessimistic for things like cvt.s.d.) */ if (HAVE_32BIT_FPRS && (pinfo & FP_D)) mask |= mask << 1; return mask; } /* Operand OPNUM of INSN is an odd-numbered floating-point register. Check whether that is allowed. */ static bfd_boolean mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum) { const char *s = insn->name; if (insn->pinfo == INSN_MACRO) /* Let a macro pass, we'll catch it later when it is expanded. */ return TRUE; if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa) || mips_opts.arch == CPU_R5900) { /* Allow odd registers for single-precision ops. */ switch (insn->pinfo & (FP_S | FP_D)) { case FP_S: case 0: return TRUE; case FP_D: return FALSE; default: break; } /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */ s = strchr (insn->name, '.'); if (s != NULL && opnum == 2) s = strchr (s + 1, '.'); return (s != NULL && (s[1] == 'w' || s[1] == 's')); } /* Single-precision coprocessor loads and moves are OK too. */ if ((insn->pinfo & FP_S) && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY))) return TRUE; return FALSE; } /* Report that user-supplied argument ARGNUM for INSN was VAL, but should have been in the range [MIN_VAL, MAX_VAL]. PRINT_HEX says whether this operand is normally printed in hex or decimal. */ static void report_bad_range (struct mips_cl_insn *insn, int argnum, offsetT val, int min_val, int max_val, bfd_boolean print_hex) { if (print_hex && val >= 0) as_bad (_("Operand %d of `%s' must be in the range [0x%x, 0x%x]," " was 0x%lx."), argnum, insn->insn_mo->name, min_val, max_val, (unsigned long) val); else if (print_hex) as_bad (_("Operand %d of `%s' must be in the range [0x%x, 0x%x]," " was %ld."), argnum, insn->insn_mo->name, min_val, max_val, (unsigned long) val); else as_bad (_("Operand %d of `%s' must be in the range [%d, %d]," " was %ld."), argnum, insn->insn_mo->name, min_val, max_val, (unsigned long) val); } /* Report an invalid combination of position and size operands for a bitfield operation. POS and SIZE are the values that were given. */ static void report_bad_field (offsetT pos, offsetT size) { as_bad (_("Invalid field specification (position %ld, size %ld)"), (unsigned long) pos, (unsigned long) size); } /* Information about an instruction argument that we're trying to match. */ struct mips_arg_info { /* The instruction so far. */ struct mips_cl_insn *insn; /* The first unconsumed operand token. */ struct mips_operand_token *token; /* The 1-based operand number, in terms of insn->insn_mo->args. */ int opnum; /* The 1-based argument number, for error reporting. This does not count elided optional registers, etc.. */ int argnum; /* The last OP_REG operand seen, or ILLEGAL_REG if none. */ unsigned int last_regno; /* If the first operand was an OP_REG, this is the register that it specified, otherwise it is ILLEGAL_REG. */ unsigned int dest_regno; /* The value of the last OP_INT operand. Only used for OP_MSB, where it gives the lsb position. */ unsigned int last_op_int; /* If true, match routines should silently reject invalid arguments. If false, match routines can accept invalid arguments as long as they report an appropriate error. They still have the option of silently rejecting arguments, in which case a generic "Invalid operands" style of error will be used instead. */ bfd_boolean soft_match; /* If true, the OP_INT match routine should treat plain symbolic operands as if a relocation operator like %lo(...) had been used. This is only ever true if the operand can be relocated. */ bfd_boolean allow_nonconst; /* When true, the OP_INT match routine should allow unsigned N-bit arguments to be used where a signed N-bit operand is expected. */ bfd_boolean lax_max; /* True if a reference to the current AT register was seen. */ bfd_boolean seen_at; }; /* Try to match an OT_CHAR token for character CH. Consume the token and return true on success, otherwise return false. */ static bfd_boolean match_char (struct mips_arg_info *arg, char ch) { if (arg->token->type == OT_CHAR && arg->token->u.ch == ch) { ++arg->token; if (ch == ',') arg->argnum += 1; return TRUE; } return FALSE; } /* Try to get an expression from the next tokens in ARG. Consume the tokens and return true on success, storing the expression value in VALUE and relocation types in R. */ static bfd_boolean match_expression (struct mips_arg_info *arg, expressionS *value, bfd_reloc_code_real_type *r) { if (arg->token->type == OT_INTEGER) { *value = arg->token->u.integer.value; memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r)); ++arg->token; return TRUE; } /* Error-reporting is more consistent if we treat registers as O_register rather than rejecting them outright. "$1", "($1)" and "(($1))" are then handled in the same way. */ if (arg->token->type == OT_REG) { value->X_add_number = arg->token->u.regno; ++arg->token; } else if (arg->token[0].type == OT_CHAR && arg->token[0].u.ch == '(' && arg->token[1].type == OT_REG && arg->token[2].type == OT_CHAR && arg->token[2].u.ch == ')') { value->X_add_number = arg->token[1].u.regno; arg->token += 3; } else return FALSE; value->X_op = O_register; r[0] = r[1] = r[2] = BFD_RELOC_UNUSED; return TRUE; } /* Try to get a constant expression from the next tokens in ARG. Consume the tokens and return return true on success, storing the constant value in *VALUE. Use FALLBACK as the value if the match succeeded with an error. */ static bfd_boolean match_const_int (struct mips_arg_info *arg, offsetT *value, offsetT fallback) { expressionS ex; bfd_reloc_code_real_type r[3]; if (!match_expression (arg, &ex, r)) return FALSE; if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant) *value = ex.X_add_number; else { if (arg->soft_match) return FALSE; as_bad (_("Operand %d of `%s' must be constant"), arg->argnum, arg->insn->insn_mo->name); *value = fallback; } return TRUE; } /* Return the RTYPE_* flags for a register operand of type TYPE that appears in instruction OPCODE. */ static unsigned int convert_reg_type (const struct mips_opcode *opcode, enum mips_reg_operand_type type) { switch (type) { case OP_REG_GP: return RTYPE_NUM | RTYPE_GP; case OP_REG_FP: /* Allow vector register names for MDMX if the instruction is a 64-bit FPR load, store or move (including moves to and from GPRs). */ if ((mips_opts.ase & ASE_MDMX) && (opcode->pinfo & FP_D) && (opcode->pinfo & (INSN_COPROC_MOVE_DELAY | INSN_COPROC_MEMORY_DELAY | INSN_LOAD_COPROC_DELAY | INSN_LOAD_MEMORY_DELAY | INSN_STORE_MEMORY))) return RTYPE_FPU | RTYPE_VEC; return RTYPE_FPU; case OP_REG_CCC: if (opcode->pinfo & (FP_D | FP_S)) return RTYPE_CCC | RTYPE_FCC; return RTYPE_CCC; case OP_REG_VEC: if (opcode->membership & INSN_5400) return RTYPE_FPU; return RTYPE_FPU | RTYPE_VEC; case OP_REG_ACC: return RTYPE_ACC; case OP_REG_COPRO: if (opcode->name[strlen (opcode->name) - 1] == '0') return RTYPE_NUM | RTYPE_CP0; return RTYPE_NUM; case OP_REG_HW: return RTYPE_NUM; case OP_REG_VI: return RTYPE_NUM | RTYPE_VI; case OP_REG_VF: return RTYPE_NUM | RTYPE_VF; case OP_REG_R5900_I: return RTYPE_R5900_I; case OP_REG_R5900_Q: return RTYPE_R5900_Q; case OP_REG_R5900_R: return RTYPE_R5900_R; case OP_REG_R5900_ACC: return RTYPE_R5900_ACC; } abort (); } /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */ static void check_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type, unsigned int regno) { if (AT && type == OP_REG_GP && regno == AT) arg->seen_at = TRUE; if (type == OP_REG_FP && (regno & 1) != 0 && HAVE_32BIT_FPRS && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum)) as_warn (_("Float register should be even, was %d"), regno); if (type == OP_REG_CCC) { const char *name; size_t length; name = arg->insn->insn_mo->name; length = strlen (name); if ((regno & 1) != 0 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0) || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0))) as_warn (_("Condition code register should be even for %s, was %d"), name, regno); if ((regno & 3) != 0 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0)) as_warn (_("Condition code register should be 0 or 4 for %s, was %d"), name, regno); } } /* ARG is a register with symbol value SYMVAL. Try to interpret it as a register of type TYPE. Return true on success, storing the register number in *REGNO and warning about any dubious uses. */ static bfd_boolean match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type, unsigned int symval, unsigned int *regno) { if (type == OP_REG_VEC) symval = mips_prefer_vec_regno (symval); if (!(symval & convert_reg_type (arg->insn->insn_mo, type))) return FALSE; *regno = symval & RNUM_MASK; check_regno (arg, type, *regno); return TRUE; } /* Try to interpret the next token in ARG as a register of type TYPE. Consume the token and return true on success, storing the register number in *REGNO. Return false on failure. */ static bfd_boolean match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type, unsigned int *regno) { if (arg->token->type == OT_REG && match_regno (arg, type, arg->token->u.regno, regno)) { ++arg->token; return TRUE; } return FALSE; } /* Try to interpret the next token in ARG as a range of registers of type TYPE. Consume the token and return true on success, storing the register numbers in *REGNO1 and *REGNO2. Return false on failure. */ static bfd_boolean match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type, unsigned int *regno1, unsigned int *regno2) { if (match_reg (arg, type, regno1)) { *regno2 = *regno1; return TRUE; } if (arg->token->type == OT_REG_RANGE && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1) && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2) && *regno1 <= *regno2) { ++arg->token; return TRUE; } return FALSE; } /* OP_INT matcher. */ static bfd_boolean match_int_operand (struct mips_arg_info *arg, const struct mips_operand *operand_base) { const struct mips_int_operand *operand; unsigned int uval; int min_val, max_val, factor; offsetT sval; bfd_boolean print_hex; operand = (const struct mips_int_operand *) operand_base; factor = 1 << operand->shift; min_val = mips_int_operand_min (operand); max_val = mips_int_operand_max (operand); if (arg->lax_max) max_val = ((1 << operand_base->size) - 1) << operand->shift; if (arg->token->type == OT_CHAR && arg->token->u.ch == '(') /* Assume we have an elided offset. The later match will fail if this turns out to be wrong. */ sval = 0; else if (operand_base->lsb == 0 && operand_base->size == 16 && operand->shift == 0 && operand->bias == 0 && (operand->max_val == 32767 || operand->max_val == 65535)) { /* The operand can be relocated. */ if (!match_expression (arg, &offset_expr, offset_reloc)) return FALSE; if (offset_reloc[0] != BFD_RELOC_UNUSED) /* Relocation operators were used. Accept the arguent and leave the relocation value in offset_expr and offset_relocs for the caller to process. */ return TRUE; if (offset_expr.X_op != O_constant) { /* If non-constant operands are allowed then leave them for the caller to process, otherwise fail the match. */ if (!arg->allow_nonconst) return FALSE; offset_reloc[0] = BFD_RELOC_LO16; return TRUE; } /* Clear the global state; we're going to install the operand ourselves. */ sval = offset_expr.X_add_number; offset_expr.X_op = O_absent; } else { if (!match_const_int (arg, &sval, min_val)) return FALSE; } arg->last_op_int = sval; /* Check the range. If there's a problem, record the lowest acceptable value in arg->last_op_int in order to prevent an unhelpful error from OP_MSB too. Bit counts have traditionally been printed in hex by the disassembler but printed as decimal in error messages. Only resort to hex if the operand is bigger than 6 bits. */ print_hex = operand->print_hex && operand_base->size > 6; if (sval < min_val || sval > max_val) { if (arg->soft_match) return FALSE; report_bad_range (arg->insn, arg->argnum, sval, min_val, max_val, print_hex); arg->last_op_int = min_val; } else if (sval % factor) { if (arg->soft_match) return FALSE; as_bad (print_hex && sval >= 0 ? _("Operand %d of `%s' must be a factor of %d, was 0x%lx.") : _("Operand %d of `%s' must be a factor of %d, was %ld."), arg->argnum, arg->insn->insn_mo->name, factor, (unsigned long) sval); arg->last_op_int = min_val; } uval = (unsigned int) sval >> operand->shift; uval -= operand->bias; /* Handle -mfix-cn63xxp1. */ if (arg->opnum == 1 && mips_fix_cn63xxp1 && !mips_opts.micromips && strcmp ("pref", arg->insn->insn_mo->name) == 0) switch (uval) { case 5: case 25: case 26: case 27: case 28: case 29: case 30: case 31: /* These are ok. */ break; default: /* The rest must be changed to 28. */ uval = 28; break; } insn_insert_operand (arg->insn, operand_base, uval); return TRUE; } /* OP_MAPPED_INT matcher. */ static bfd_boolean match_mapped_int_operand (struct mips_arg_info *arg, const struct mips_operand *operand_base) { const struct mips_mapped_int_operand *operand; unsigned int uval, num_vals; offsetT sval; operand = (const struct mips_mapped_int_operand *) operand_base; if (!match_const_int (arg, &sval, operand->int_map[0])) return FALSE; num_vals = 1 << operand_base->size; for (uval = 0; uval < num_vals; uval++) if (operand->int_map[uval] == sval) break; if (uval == num_vals) return FALSE; insn_insert_operand (arg->insn, operand_base, uval); return TRUE; } /* OP_MSB matcher. */ static bfd_boolean match_msb_operand (struct mips_arg_info *arg, const struct mips_operand *operand_base) { const struct mips_msb_operand *operand; int min_val, max_val, max_high; offsetT size, sval, high; operand = (const struct mips_msb_operand *) operand_base; min_val = operand->bias; max_val = min_val + (1 << operand_base->size) - 1; max_high = operand->opsize; if (!match_const_int (arg, &size, 1)) return FALSE; high = size + arg->last_op_int; sval = operand->add_lsb ? high : size; if (size < 0 || high > max_high || sval < min_val || sval > max_val) { if (arg->soft_match) return FALSE; report_bad_field (arg->last_op_int, size); sval = min_val; } insn_insert_operand (arg->insn, operand_base, sval - min_val); return TRUE; } /* OP_REG matcher. */ static bfd_boolean match_reg_operand (struct mips_arg_info *arg, const struct mips_operand *operand_base) { const struct mips_reg_operand *operand; unsigned int regno, uval, num_vals; operand = (const struct mips_reg_operand *) operand_base; if (!match_reg (arg, operand->reg_type, ®no)) return FALSE; if (operand->reg_map) { num_vals = 1 << operand->root.size; for (uval = 0; uval < num_vals; uval++) if (operand->reg_map[uval] == regno) break; if (num_vals == uval) return FALSE; } else uval = regno; arg->last_regno = regno; if (arg->opnum == 1) arg->dest_regno = regno; insn_insert_operand (arg->insn, operand_base, uval); return TRUE; } /* OP_REG_PAIR matcher. */ static bfd_boolean match_reg_pair_operand (struct mips_arg_info *arg, const struct mips_operand *operand_base) { const struct mips_reg_pair_operand *operand; unsigned int regno1, regno2, uval, num_vals; operand = (const struct mips_reg_pair_operand *) operand_base; if (!match_reg (arg, operand->reg_type, ®no1) || !match_char (arg, ',') || !match_reg (arg, operand->reg_type, ®no2)) return FALSE; num_vals = 1 << operand_base->size; for (uval = 0; uval < num_vals; uval++) if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2) break; if (uval == num_vals) return FALSE; insn_insert_operand (arg->insn, operand_base, uval); return TRUE; } /* OP_PCREL matcher. The caller chooses the relocation type. */ static bfd_boolean match_pcrel_operand (struct mips_arg_info *arg) { bfd_reloc_code_real_type r[3]; return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED; } /* OP_PERF_REG matcher. */ static bfd_boolean match_perf_reg_operand (struct mips_arg_info *arg, const struct mips_operand *operand) { offsetT sval; if (!match_const_int (arg, &sval, 0)) return FALSE; if (sval != 0 && (sval != 1 || (mips_opts.arch == CPU_R5900 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0 || strcmp (arg->insn->insn_mo->name, "mtps") == 0)))) { if (arg->soft_match) return FALSE; as_bad (_("Invalid performance register (%ld)"), (unsigned long) sval); } insn_insert_operand (arg->insn, operand, sval); return TRUE; } /* OP_ADDIUSP matcher. */ static bfd_boolean match_addiusp_operand (struct mips_arg_info *arg, const struct mips_operand *operand) { offsetT sval; unsigned int uval; if (!match_const_int (arg, &sval, -256)) return FALSE; if (sval % 4) return FALSE; sval /= 4; if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1)) return FALSE; uval = (unsigned int) sval; uval = ((uval >> 1) & ~0xff) | (uval & 0xff); insn_insert_operand (arg->insn, operand, uval); return TRUE; } /* OP_CLO_CLZ_DEST matcher. */ static bfd_boolean match_clo_clz_dest_operand (struct mips_arg_info *arg, const struct mips_operand *operand) { unsigned int regno; if (!match_reg (arg, OP_REG_GP, ®no)) return FALSE; insn_insert_operand (arg->insn, operand, regno | (regno << 5)); return TRUE; } /* OP_LWM_SWM_LIST matcher. */ static bfd_boolean match_lwm_swm_list_operand (struct mips_arg_info *arg, const struct mips_operand *operand) { unsigned int reglist, sregs, ra, regno1, regno2; struct mips_arg_info reset; reglist = 0; if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2)) return FALSE; do { if (regno2 == FP && regno1 >= S0 && regno1 <= S7) { reglist |= 1 << FP; regno2 = S7; } reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1); reset = *arg; } while (match_char (arg, ',') && match_reg_range (arg, OP_REG_GP, ®no1, ®no2)); *arg = reset; if (operand->size == 2) { /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.: s0, ra s0, s1, ra, s2, s3 s0-s2, ra and any permutations of these. */ if ((reglist & 0xfff1ffff) != 0x80010000) return FALSE; sregs = (reglist >> 17) & 7; ra = 0; } else { /* The list must include at least one of ra and s0-sN, for 0 <= N <= 8. (Note that there is a gap between s7 and s8, which are $23 and $30 respectively.) E.g.: ra s0 ra, s0, s1, s2 s0-s8 s0-s5, ra and any permutations of these. */ if ((reglist & 0x3f00ffff) != 0) return FALSE; ra = (reglist >> 27) & 0x10; sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff); } sregs += 1; if ((sregs & -sregs) != sregs) return FALSE; insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra); return TRUE; } /* OP_ENTRY_EXIT_LIST matcher. */ static unsigned int match_entry_exit_operand (struct mips_arg_info *arg, const struct mips_operand *operand) { unsigned int mask; bfd_boolean is_exit; /* The format is the same for both ENTRY and EXIT, but the constraints are different. */ is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0; mask = (is_exit ? 7 << 3 : 0); do { unsigned int regno1, regno2; bfd_boolean is_freg; if (match_reg_range (arg, OP_REG_GP, ®no1, ®no2)) is_freg = FALSE; else if (match_reg_range (arg, OP_REG_FP, ®no1, ®no2)) is_freg = TRUE; else return FALSE; if (is_exit && is_freg && regno1 == 0 && regno2 < 2) { mask &= ~(7 << 3); mask |= (5 + regno2) << 3; } else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7) mask |= (regno2 - 3) << 3; else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17) mask |= (regno2 - 15) << 1; else if (regno1 == RA && regno2 == RA) mask |= 1; else return FALSE; } while (match_char (arg, ',')); insn_insert_operand (arg->insn, operand, mask); return TRUE; } /* OP_SAVE_RESTORE_LIST matcher. */ static bfd_boolean match_save_restore_list_operand (struct mips_arg_info *arg) { unsigned int opcode, args, statics, sregs; unsigned int num_frame_sizes, num_args, num_statics, num_sregs; offsetT frame_size; const char *error; error = 0; opcode = arg->insn->insn_opcode; frame_size = 0; num_frame_sizes = 0; args = 0; statics = 0; sregs = 0; do { unsigned int regno1, regno2; if (arg->token->type == OT_INTEGER) { /* Handle the frame size. */ if (!match_const_int (arg, &frame_size, 0)) return FALSE; num_frame_sizes += 1; } else { if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2)) return FALSE; while (regno1 <= regno2) { if (regno1 >= 4 && regno1 <= 7) { if (num_frame_sizes == 0) /* args $a0-$a3 */ args |= 1 << (regno1 - 4); else /* statics $a0-$a3 */ statics |= 1 << (regno1 - 4); } else if (regno1 >= 16 && regno1 <= 23) /* $s0-$s7 */ sregs |= 1 << (regno1 - 16); else if (regno1 == 30) /* $s8 */ sregs |= 1 << 8; else if (regno1 == 31) /* Add $ra to insn. */ opcode |= 0x40; else return FALSE; regno1 += 1; if (regno1 == 24) regno1 = 30; } } } while (match_char (arg, ',')); /* Encode args/statics combination. */ if (args & statics) return FALSE; else if (args == 0xf) /* All $a0-$a3 are args. */ opcode |= MIPS16_ALL_ARGS << 16; else if (statics == 0xf) /* All $a0-$a3 are statics. */ opcode |= MIPS16_ALL_STATICS << 16; else { /* Count arg registers. */ num_args = 0; while (args & 0x1) { args >>= 1; num_args += 1; } if (args != 0) return FALSE; /* Count static registers. */ num_statics = 0; while (statics & 0x8) { statics = (statics << 1) & 0xf; num_statics += 1; } if (statics != 0) return FALSE; /* Encode args/statics. */ opcode |= ((num_args << 2) | num_statics) << 16; } /* Encode $s0/$s1. */ if (sregs & (1 << 0)) /* $s0 */ opcode |= 0x20; if (sregs & (1 << 1)) /* $s1 */ opcode |= 0x10; sregs >>= 2; /* Encode $s2-$s8. */ num_sregs = 0; while (sregs & 1) { sregs >>= 1; num_sregs += 1; } if (sregs != 0) return FALSE; opcode |= num_sregs << 24; /* Encode frame size. */ if (num_frame_sizes == 0) error = _("Missing frame size"); else if (num_frame_sizes > 1) error = _("Frame size specified twice"); else if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8) error = _("Invalid frame size"); else if (frame_size != 128 || (opcode >> 16) != 0) { frame_size /= 8; opcode |= (((frame_size & 0xf0) << 16) | (frame_size & 0x0f)); } if (error) { if (arg->soft_match) return FALSE; as_bad ("%s", error); } /* Finally build the instruction. */ if ((opcode >> 16) != 0 || frame_size == 0) opcode |= MIPS16_EXTEND; arg->insn->insn_opcode = opcode; return TRUE; } /* OP_MDMX_IMM_REG matcher. */ static bfd_boolean match_mdmx_imm_reg_operand (struct mips_arg_info *arg, const struct mips_operand *operand) { unsigned int regno, uval; bfd_boolean is_qh; const struct mips_opcode *opcode; /* The mips_opcode records whether this is an octobyte or quadhalf instruction. Start out with that bit in place. */ opcode = arg->insn->insn_mo; uval = mips_extract_operand (operand, opcode->match); is_qh = (uval != 0); if (arg->token->type == OT_REG || arg->token->type == OT_REG_ELEMENT) { if ((opcode->membership & INSN_5400) && strcmp (opcode->name, "rzu.ob") == 0) { if (arg->soft_match) return FALSE; as_bad (_("Operand %d of `%s' must be an immediate"), arg->argnum, opcode->name); } /* Check whether this is a vector register or a broadcast of a single element. */ if (arg->token->type == OT_REG_ELEMENT) { if (!match_regno (arg, OP_REG_VEC, arg->token->u.reg_element.regno, ®no)) return FALSE; if (arg->token->u.reg_element.index > (is_qh ? 3 : 7)) { if (arg->soft_match) return FALSE; as_bad (_("Invalid element selector")); } else uval |= arg->token->u.reg_element.index << (is_qh ? 2 : 1) << 5; } else { /* A full vector. */ if ((opcode->membership & INSN_5400) && (strcmp (opcode->name, "sll.ob") == 0 || strcmp (opcode->name, "srl.ob") == 0)) { if (arg->soft_match) return FALSE; as_bad (_("Operand %d of `%s' must be scalar"), arg->argnum, opcode->name); } if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, ®no)) return FALSE; if (is_qh) uval |= MDMX_FMTSEL_VEC_QH << 5; else uval |= MDMX_FMTSEL_VEC_OB << 5; } uval |= regno; ++arg->token; } else { offsetT sval; if (!match_const_int (arg, &sval, 0)) return FALSE; if (sval < 0 || sval > 31) { if (arg->soft_match) return FALSE; report_bad_range (arg->insn, arg->argnum, sval, 0, 31, FALSE); } uval |= (sval & 31); if (is_qh) uval |= MDMX_FMTSEL_IMM_QH << 5; else uval |= MDMX_FMTSEL_IMM_OB << 5; } insn_insert_operand (arg->insn, operand, uval); return TRUE; } /* OP_PC matcher. */ static bfd_boolean match_pc_operand (struct mips_arg_info *arg) { if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC)) { ++arg->token; return TRUE; } return FALSE; } /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the register that we need to match. */ static bfd_boolean match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno) { unsigned int regno; return match_reg (arg, OP_REG_GP, ®no) && regno == other_regno; } /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is the length of the value in bytes (4 for float, 8 for double) and USING_GPRS says whether the destination is a GPR rather than an FPR. Return the constant in IMM and OFFSET as follows: - If the constant should be loaded via memory, set IMM to O_absent and OFFSET to the memory address. - Otherwise, if the constant should be loaded into two 32-bit registers, set IMM to the O_constant to load into the high register and OFFSET to the corresponding value for the low register. - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent. These constants only appear as the last operand in an instruction, and every instruction that accepts them in any variant accepts them in all variants. This means we don't have to worry about backing out any changes if the instruction does not match. We just match unconditionally and report an error if the constant is invalid. */ static bfd_boolean match_float_constant (struct mips_arg_info *arg, expressionS *imm, expressionS *offset, int length, bfd_boolean using_gprs) { char *p; segT seg, new_seg; subsegT subseg; const char *newname; unsigned char *data; /* Where the constant is placed is based on how the MIPS assembler does things: length == 4 && using_gprs -- immediate value only length == 8 && using_gprs -- .rdata or immediate value length == 4 && !using_gprs -- .lit4 or immediate value length == 8 && !using_gprs -- .lit8 or immediate value The .lit4 and .lit8 sections are only used if permitted by the -G argument. */ if (arg->token->type != OT_FLOAT) return FALSE; gas_assert (arg->token->u.flt.length == length); data = arg->token->u.flt.data; ++arg->token; /* Handle 32-bit constants for which an immediate value is best. */ if (length == 4 && (using_gprs || g_switch_value < 4 || (data[0] == 0 && data[1] == 0) || (data[2] == 0 && data[3] == 0))) { imm->X_op = O_constant; if (!target_big_endian) imm->X_add_number = bfd_getl32 (data); else imm->X_add_number = bfd_getb32 (data); offset->X_op = O_absent; return TRUE; } /* Handle 64-bit constants for which an immediate value is best. */ if (length == 8 && !mips_disable_float_construction /* Constants can only be constructed in GPRs and copied to FPRs if the GPRs are at least as wide as the FPRs. Force the constant into memory if we are using 64-bit FPRs but the GPRs are only 32 bits wide. */ /* ??? No longer true with the addition of MTHC1, but this is legacy code... */ && (using_gprs || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS)) && ((data[0] == 0 && data[1] == 0) || (data[2] == 0 && data[3] == 0)) && ((data[4] == 0 && data[5] == 0) || (data[6] == 0 && data[7] == 0))) { /* The value is simple enough to load with a couple of instructions. If using 32-bit registers, set IMM to the high order 32 bits and OFFSET to the low order 32 bits. Otherwise, set IMM to the entire 64 bit constant. */ if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS) { imm->X_op = O_constant; offset->X_op = O_constant; if (!target_big_endian) { imm->X_add_number = bfd_getl32 (data + 4); offset->X_add_number = bfd_getl32 (data); } else { imm->X_add_number = bfd_getb32 (data); offset->X_add_number = bfd_getb32 (data + 4); } if (offset->X_add_number == 0) offset->X_op = O_absent; } else { imm->X_op = O_constant; if (!target_big_endian) imm->X_add_number = bfd_getl64 (data); else imm->X_add_number = bfd_getb64 (data); offset->X_op = O_absent; } return TRUE; } /* Switch to the right section. */ seg = now_seg; subseg = now_subseg; if (length == 4) { gas_assert (!using_gprs && g_switch_value >= 4); newname = ".lit4"; } else { if (using_gprs || g_switch_value < 8) newname = RDATA_SECTION_NAME; else newname = ".lit8"; } new_seg = subseg_new (newname, (subsegT) 0); bfd_set_section_flags (stdoutput, new_seg, SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA); frag_align (length == 4 ? 2 : 3, 0, 0); if (strncmp (TARGET_OS, "elf", 3) != 0) record_alignment (new_seg, 4); else record_alignment (new_seg, length == 4 ? 2 : 3); if (seg == now_seg) as_bad (_("Can't use floating point insn in this section")); /* Set the argument to the current address in the section. */ imm->X_op = O_absent; offset->X_op = O_symbol; offset->X_add_symbol = symbol_temp_new_now (); offset->X_add_number = 0; /* Put the floating point number into the section. */ p = frag_more (length); memcpy (p, data, length); /* Switch back to the original section. */ subseg_set (seg, subseg); return TRUE; } /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between them. */ static bfd_boolean match_vu0_suffix_operand (struct mips_arg_info *arg, const struct mips_operand *operand, bfd_boolean match_p) { unsigned int uval; /* The operand can be an XYZW mask or a single 2-bit channel index (with X being 0). */ gas_assert (operand->size == 2 || operand->size == 4); /* The suffix can be omitted when matching a previous 4-bit mask. */ if (arg->token->type != OT_CHANNELS) return operand->size == 4 && match_p; uval = arg->token->u.channels; if (operand->size == 2) { /* Check that a single bit is set and convert it into a 2-bit index. */ if ((uval & -uval) != uval) return FALSE; uval = 4 - ffs (uval); } if (match_p && insn_extract_operand (arg->insn, operand) != uval) return FALSE; ++arg->token; if (!match_p) insn_insert_operand (arg->insn, operand, uval); return TRUE; } /* S is the text seen for ARG. Match it against OPERAND. Return the end of the argument text if the match is successful, otherwise return null. */ static bfd_boolean match_operand (struct mips_arg_info *arg, const struct mips_operand *operand) { switch (operand->type) { case OP_INT: return match_int_operand (arg, operand); case OP_MAPPED_INT: return match_mapped_int_operand (arg, operand); case OP_MSB: return match_msb_operand (arg, operand); case OP_REG: return match_reg_operand (arg, operand); case OP_REG_PAIR: return match_reg_pair_operand (arg, operand); case OP_PCREL: return match_pcrel_operand (arg); case OP_PERF_REG: return match_perf_reg_operand (arg, operand); case OP_ADDIUSP_INT: return match_addiusp_operand (arg, operand); case OP_CLO_CLZ_DEST: return match_clo_clz_dest_operand (arg, operand); case OP_LWM_SWM_LIST: return match_lwm_swm_list_operand (arg, operand); case OP_ENTRY_EXIT_LIST: return match_entry_exit_operand (arg, operand); case OP_SAVE_RESTORE_LIST: return match_save_restore_list_operand (arg); case OP_MDMX_IMM_REG: return match_mdmx_imm_reg_operand (arg, operand); case OP_REPEAT_DEST_REG: return match_tied_reg_operand (arg, arg->dest_regno); case OP_REPEAT_PREV_REG: return match_tied_reg_operand (arg, arg->last_regno); case OP_PC: return match_pc_operand (arg); case OP_VU0_SUFFIX: return match_vu0_suffix_operand (arg, operand, FALSE); case OP_VU0_MATCH_SUFFIX: return match_vu0_suffix_operand (arg, operand, TRUE); } abort (); } /* ARG is the state after successfully matching an instruction. Issue any queued-up warnings. */ static void check_completed_insn (struct mips_arg_info *arg) { if (arg->seen_at) { if (AT == ATREG) as_warn (_("Used $at without \".set noat\"")); else as_warn (_("Used $%u with \".set at=$%u\""), AT, AT); } } /* Return true if modifying general-purpose register REG needs a delay. */ static bfd_boolean reg_needs_delay (unsigned int reg) { unsigned long prev_pinfo; prev_pinfo = history[0].insn_mo->pinfo; if (!mips_opts.noreorder && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY) && !gpr_interlocks) || ((prev_pinfo & INSN_LOAD_COPROC_DELAY) && !cop_interlocks)) && (gpr_write_mask (&history[0]) & (1 << reg))) return TRUE; return FALSE; } /* Classify an instruction according to the FIX_VR4120_* enumeration. Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected by VR4120 errata. */ static unsigned int classify_vr4120_insn (const char *name) { if (strncmp (name, "macc", 4) == 0) return FIX_VR4120_MACC; if (strncmp (name, "dmacc", 5) == 0) return FIX_VR4120_DMACC; if (strncmp (name, "mult", 4) == 0) return FIX_VR4120_MULT; if (strncmp (name, "dmult", 5) == 0) return FIX_VR4120_DMULT; if (strstr (name, "div")) return FIX_VR4120_DIV; if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0) return FIX_VR4120_MTHILO; return NUM_FIX_VR4120_CLASSES; } #define INSN_ERET 0x42000018 #define INSN_DERET 0x4200001f /* Return the number of instructions that must separate INSN1 and INSN2, where INSN1 is the earlier instruction. Return the worst-case value for any INSN2 if INSN2 is null. */ static unsigned int insns_between (const struct mips_cl_insn *insn1, const struct mips_cl_insn *insn2) { unsigned long pinfo1, pinfo2; unsigned int mask; /* If INFO2 is null, pessimistically assume that all flags are set for the second instruction. */ pinfo1 = insn1->insn_mo->pinfo; pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U; /* For most targets, write-after-read dependencies on the HI and LO registers must be separated by at least two instructions. */ if (!hilo_interlocks) { if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO)) return 2; if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI)) return 2; } /* If we're working around r7000 errata, there must be two instructions between an mfhi or mflo and any instruction that uses the result. */ if (mips_7000_hilo_fix && !mips_opts.micromips && MF_HILO_INSN (pinfo1) && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))) return 2; /* If we're working around 24K errata, one instruction is required if an ERET or DERET is followed by a branch instruction. */ if (mips_fix_24k && !mips_opts.micromips) { if (insn1->insn_opcode == INSN_ERET || insn1->insn_opcode == INSN_DERET) { if (insn2 == NULL || insn2->insn_opcode == INSN_ERET || insn2->insn_opcode == INSN_DERET || delayed_branch_p (insn2)) return 1; } } /* If working around VR4120 errata, check for combinations that need a single intervening instruction. */ if (mips_fix_vr4120 && !mips_opts.micromips) { unsigned int class1, class2; class1 = classify_vr4120_insn (insn1->insn_mo->name); if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0) { if (insn2 == NULL) return 1; class2 = classify_vr4120_insn (insn2->insn_mo->name); if (vr4120_conflicts[class1] & (1 << class2)) return 1; } } if (!HAVE_CODE_COMPRESSION) { /* Check for GPR or coprocessor load delays. All such delays are on the RT register. */ /* Itbl support may require additional care here. */ if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY)) || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY))) { if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))) return 1; } /* Check for generic coprocessor hazards. This case is not handled very well. There is no special knowledge of CP0 handling, and the coprocessors other than the floating point unit are not distinguished at all. */ /* Itbl support may require additional care here. FIXME! Need to modify this to include knowledge about user specified delays! */ else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY)) || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY))) { /* Handle cases where INSN1 writes to a known general coprocessor register. There must be a one instruction delay before INSN2 if INSN2 reads that register, otherwise no delay is needed. */ mask = fpr_write_mask (insn1); if (mask != 0) { if (!insn2 || (mask & fpr_read_mask (insn2)) != 0) return 1; } else { /* Read-after-write dependencies on the control registers require a two-instruction gap. */ if ((pinfo1 & INSN_WRITE_COND_CODE) && (pinfo2 & INSN_READ_COND_CODE)) return 2; /* We don't know exactly what INSN1 does. If INSN2 is also a coprocessor instruction, assume there must be a one instruction gap. */ if (pinfo2 & INSN_COP) return 1; } } /* Check for read-after-write dependencies on the coprocessor control registers in cases where INSN1 does not need a general coprocessor delay. This means that INSN1 is a floating point comparison instruction. */ /* Itbl support may require additional care here. */ else if (!cop_interlocks && (pinfo1 & INSN_WRITE_COND_CODE) && (pinfo2 & INSN_READ_COND_CODE)) return 1; } return 0; } /* Return the number of nops that would be needed to work around the VR4130 mflo/mfhi errata if instruction INSN immediately followed the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards that are contained within the first IGNORE instructions of HIST. */ static int nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist, const struct mips_cl_insn *insn) { int i, j; unsigned int mask; /* Check if the instruction writes to HI or LO. MTHI and MTLO are not affected by the errata. */ if (insn != 0 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0 || strcmp (insn->insn_mo->name, "mtlo") == 0 || strcmp (insn->insn_mo->name, "mthi") == 0)) return 0; /* Search for the first MFLO or MFHI. */ for (i = 0; i < MAX_VR4130_NOPS; i++) if (MF_HILO_INSN (hist[i].insn_mo->pinfo)) { /* Extract the destination register. */ mask = gpr_write_mask (&hist[i]); /* No nops are needed if INSN reads that register. */ if (insn != NULL && (gpr_read_mask (insn) & mask) != 0) return 0; /* ...or if any of the intervening instructions do. */ for (j = 0; j < i; j++) if (gpr_read_mask (&hist[j]) & mask) return 0; if (i >= ignore) return MAX_VR4130_NOPS - i; } return 0; } #define BASE_REG_EQ(INSN1, INSN2) \ ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \ == (((INSN2) >> OP_SH_RS) & OP_MASK_RS)) /* Return the minimum alignment for this store instruction. */ static int fix_24k_align_to (const struct mips_opcode *mo) { if (strcmp (mo->name, "sh") == 0) return 2; if (strcmp (mo->name, "swc1") == 0 || strcmp (mo->name, "swc2") == 0 || strcmp (mo->name, "sw") == 0 || strcmp (mo->name, "sc") == 0 || strcmp (mo->name, "s.s") == 0) return 4; if (strcmp (mo->name, "sdc1") == 0 || strcmp (mo->name, "sdc2") == 0 || strcmp (mo->name, "s.d") == 0) return 8; /* sb, swl, swr */ return 1; } struct fix_24k_store_info { /* Immediate offset, if any, for this store instruction. */ short off; /* Alignment required by this store instruction. */ int align_to; /* True for register offsets. */ int register_offset; }; /* Comparison function used by qsort. */ static int fix_24k_sort (const void *a, const void *b) { const struct fix_24k_store_info *pos1 = a; const struct fix_24k_store_info *pos2 = b; return (pos1->off - pos2->off); } /* INSN is a store instruction. Try to record the store information in STINFO. Return false if the information isn't known. */ static bfd_boolean fix_24k_record_store_info (struct fix_24k_store_info *stinfo, const struct mips_cl_insn *insn) { /* The instruction must have a known offset. */ if (!insn->complete_p || !strstr (insn->insn_mo->args, "o(")) return FALSE; stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE; stinfo->align_to = fix_24k_align_to (insn->insn_mo); return TRUE; } /* Return the number of nops that would be needed to work around the 24k "lost data on stores during refill" errata if instruction INSN immediately followed the 2 instructions described by HIST. Ignore hazards that are contained within the first IGNORE instructions of HIST. Problem: The FSB (fetch store buffer) acts as an intermediate buffer for the data cache refills and store data. The following describes the scenario where the store data could be lost. * A data cache miss, due to either a load or a store, causing fill data to be supplied by the memory subsystem * The first three doublewords of fill data are returned and written into the cache * A sequence of four stores occurs in consecutive cycles around the final doubleword of the fill: * Store A * Store B * Store C * Zero, One or more instructions * Store D The four stores A-D must be to different doublewords of the line that is being filled. The fourth instruction in the sequence above permits the fill of the final doubleword to be transferred from the FSB into the cache. In the sequence above, the stores may be either integer (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2, swxc1, sdxc1, suxc1) stores, as long as the four stores are to different doublewords on the line. If the floating point unit is running in 1:2 mode, it is not possible to create the sequence above using only floating point store instructions. In this case, the cache line being filled is incorrectly marked invalid, thereby losing the data from any store to the line that occurs between the original miss and the completion of the five cycle sequence shown above. The workarounds are: * Run the data cache in write-through mode. * Insert a non-store instruction between Store A and Store B or Store B and Store C. */ static int nops_for_24k (int ignore, const struct mips_cl_insn *hist, const struct mips_cl_insn *insn) { struct fix_24k_store_info pos[3]; int align, i, base_offset; if (ignore >= 2) return 0; /* If the previous instruction wasn't a store, there's nothing to worry about. */ if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0) return 0; /* If the instructions after the previous one are unknown, we have to assume the worst. */ if (!insn) return 1; /* Check whether we are dealing with three consecutive stores. */ if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0) return 0; /* If we don't know the relationship between the store addresses, assume the worst. */ if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode) || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode)) return 1; if (!fix_24k_record_store_info (&pos[0], insn) || !fix_24k_record_store_info (&pos[1], &hist[0]) || !fix_24k_record_store_info (&pos[2], &hist[1])) return 1; qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort); /* Pick a value of ALIGN and X such that all offsets are adjusted by X bytes and such that the base register + X is known to be aligned to align bytes. */ if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP) align = 8; else { align = pos[0].align_to; base_offset = pos[0].off; for (i = 1; i < 3; i++) if (align < pos[i].align_to) { align = pos[i].align_to; base_offset = pos[i].off; } for (i = 0; i < 3; i++) pos[i].off -= base_offset; } pos[0].off &= ~align + 1; pos[1].off &= ~align + 1; pos[2].off &= ~align + 1; /* If any two stores write to the same chunk, they also write to the same doubleword. The offsets are still sorted at this point. */ if (pos[0].off == pos[1].off || pos[1].off == pos[2].off) return 0; /* A range of at least 9 bytes is needed for the stores to be in non-overlapping doublewords. */ if (pos[2].off - pos[0].off <= 8) return 0; if (pos[2].off - pos[1].off >= 24 || pos[1].off - pos[0].off >= 24 || pos[2].off - pos[0].off >= 32) return 0; return 1; } /* Return the number of nops that would be needed if instruction INSN immediately followed the MAX_NOPS instructions given by HIST, where HIST[0] is the most recent instruction. Ignore hazards between INSN and the first IGNORE instructions in HIST. If INSN is null, return the worse-case number of nops for any instruction. */ static int nops_for_insn (int ignore, const struct mips_cl_insn *hist, const struct mips_cl_insn *insn) { int i, nops, tmp_nops; nops = 0; for (i = ignore; i < MAX_DELAY_NOPS; i++) { tmp_nops = insns_between (hist + i, insn) - i; if (tmp_nops > nops) nops = tmp_nops; } if (mips_fix_vr4130 && !mips_opts.micromips) { tmp_nops = nops_for_vr4130 (ignore, hist, insn); if (tmp_nops > nops) nops = tmp_nops; } if (mips_fix_24k && !mips_opts.micromips) { tmp_nops = nops_for_24k (ignore, hist, insn); if (tmp_nops > nops) nops = tmp_nops; } return nops; } /* The variable arguments provide NUM_INSNS extra instructions that might be added to HIST. Return the largest number of nops that would be needed after the extended sequence, ignoring hazards in the first IGNORE instructions. */ static int nops_for_sequence (int num_insns, int ignore, const struct mips_cl_insn *hist, ...) { va_list args; struct mips_cl_insn buffer[MAX_NOPS]; struct mips_cl_insn *cursor; int nops; va_start (args, hist); cursor = buffer + num_insns; memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor)); while (cursor > buffer) *--cursor = *va_arg (args, const struct mips_cl_insn *); nops = nops_for_insn (ignore, buffer, NULL); va_end (args); return nops; } /* Like nops_for_insn, but if INSN is a branch, take into account the worst-case delay for the branch target. */ static int nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist, const struct mips_cl_insn *insn) { int nops, tmp_nops; nops = nops_for_insn (ignore, hist, insn); if (delayed_branch_p (insn)) { tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0, hist, insn, get_delay_slot_nop (insn)); if (tmp_nops > nops) nops = tmp_nops; } else if (compact_branch_p (insn)) { tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn); if (tmp_nops > nops) nops = tmp_nops; } return nops; } /* Fix NOP issue: Replace nops by "or at,at,zero". */ static void fix_loongson2f_nop (struct mips_cl_insn * ip) { gas_assert (!HAVE_CODE_COMPRESSION); if (strcmp (ip->insn_mo->name, "nop") == 0) ip->insn_opcode = LOONGSON2F_NOP_INSN; } /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region jr target pc &= 'hffff_ffff_cfff_ffff. */ static void fix_loongson2f_jump (struct mips_cl_insn * ip) { gas_assert (!HAVE_CODE_COMPRESSION); if (strcmp (ip->insn_mo->name, "j") == 0 || strcmp (ip->insn_mo->name, "jr") == 0 || strcmp (ip->insn_mo->name, "jalr") == 0) { int sreg; expressionS ep; if (! mips_opts.at) return; sreg = EXTRACT_OPERAND (0, RS, *ip); if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG) return; ep.X_op = O_constant; ep.X_add_number = 0xcfff0000; macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16); ep.X_add_number = 0xffff; macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16); macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG); } } static void fix_loongson2f (struct mips_cl_insn * ip) { if (mips_fix_loongson2f_nop) fix_loongson2f_nop (ip); if (mips_fix_loongson2f_jump) fix_loongson2f_jump (ip); } /* IP is a branch that has a delay slot, and we need to fill it automatically. Return true if we can do that by swapping IP with the previous instruction. ADDRESS_EXPR is an operand of the instruction to be used with RELOC_TYPE. */ static bfd_boolean can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr, bfd_reloc_code_real_type *reloc_type) { unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2; unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write; /* -O2 and above is required for this optimization. */ if (mips_optimize < 2) return FALSE; /* If we have seen .set volatile or .set nomove, don't optimize. */ if (mips_opts.nomove) return FALSE; /* We can't swap if the previous instruction's position is fixed. */ if (history[0].fixed_p) return FALSE; /* If the previous previous insn was in a .set noreorder, we can't swap. Actually, the MIPS assembler will swap in this situation. However, gcc configured -with-gnu-as will generate code like .set noreorder lw $4,XXX .set reorder INSN bne $4,$0,foo in which we can not swap the bne and INSN. If gcc is not configured -with-gnu-as, it does not output the .set pseudo-ops. */ if (history[1].noreorder_p) return FALSE; /* If the previous instruction had a fixup in mips16 mode, we can not swap. This means that the previous instruction was a 4-byte one anyhow. */ if (mips_opts.mips16 && history[0].fixp[0]) return FALSE; /* If the branch is itself the target of a branch, we can not swap. We cheat on this; all we check for is whether there is a label on this instruction. If there are any branches to anything other than a label, users must use .set noreorder. */ if (seg_info (now_seg)->label_list) return FALSE; /* If the previous instruction is in a variant frag other than this branch's one, we cannot do the swap. This does not apply to MIPS16 code, which uses variant frags for different purposes. */ if (!mips_opts.mips16 && history[0].frag && history[0].frag->fr_type == rs_machine_dependent) return FALSE; /* We do not swap with instructions that cannot architecturally be placed in a branch delay slot, such as SYNC or ERET. We also refrain from swapping with a trap instruction, since it complicates trap handlers to have the trap instruction be in a delay slot. */ prev_pinfo = history[0].insn_mo->pinfo; if (prev_pinfo & INSN_NO_DELAY_SLOT) return FALSE; /* Check for conflicts between the branch and the instructions before the candidate delay slot. */ if (nops_for_insn (0, history + 1, ip) > 0) return FALSE; /* Check for conflicts between the swapped sequence and the target of the branch. */ if (nops_for_sequence (2, 0, history + 1, ip, history) > 0) return FALSE; /* If the branch reads a register that the previous instruction sets, we can not swap. */ gpr_read = gpr_read_mask (ip); prev_gpr_write = gpr_write_mask (&history[0]); if (gpr_read & prev_gpr_write) return FALSE; /* If the branch writes a register that the previous instruction sets, we can not swap. */ gpr_write = gpr_write_mask (ip); if (gpr_write & prev_gpr_write) return FALSE; /* If the branch writes a register that the previous instruction reads, we can not swap. */ prev_gpr_read = gpr_read_mask (&history[0]); if (gpr_write & prev_gpr_read) return FALSE; /* If one instruction sets a condition code and the other one uses a condition code, we can not swap. */ pinfo = ip->insn_mo->pinfo; if ((pinfo & INSN_READ_COND_CODE) && (prev_pinfo & INSN_WRITE_COND_CODE)) return FALSE; if ((pinfo & INSN_WRITE_COND_CODE) && (prev_pinfo & INSN_READ_COND_CODE)) return FALSE; /* If the previous instruction uses the PC, we can not swap. */ prev_pinfo2 = history[0].insn_mo->pinfo2; if (prev_pinfo2 & INSN2_READ_PC) return FALSE; /* If the previous instruction has an incorrect size for a fixed branch delay slot in microMIPS mode, we cannot swap. */ pinfo2 = ip->insn_mo->pinfo2; if (mips_opts.micromips && (pinfo2 & INSN2_BRANCH_DELAY_16BIT) && insn_length (history) != 2) return FALSE; if (mips_opts.micromips && (pinfo2 & INSN2_BRANCH_DELAY_32BIT) && insn_length (history) != 4) return FALSE; /* On R5900 short loops need to be fixed by inserting a nop in the branch delay slots. A short loop can be terminated too early. */ if (mips_opts.arch == CPU_R5900 /* Check if instruction has a parameter, ignore "j $31". */ && (address_expr != NULL) /* Parameter must be 16 bit. */ && (*reloc_type == BFD_RELOC_16_PCREL_S2) /* Branch to same segment. */ && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg) /* Branch to same code fragment. */ && (symbol_get_frag(address_expr->X_add_symbol) == frag_now) /* Can only calculate branch offset if value is known. */ && symbol_constant_p(address_expr->X_add_symbol) /* Check if branch is really conditional. */ && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */ || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */ || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */ { int distance; /* Check if loop is shorter than 6 instructions including branch and delay slot. */ distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol); if (distance <= 20) { int i; int rv; rv = FALSE; /* When the loop includes branches or jumps, it is not a short loop. */ for (i = 0; i < (distance / 4); i++) { if ((history[i].cleared_p) || delayed_branch_p(&history[i])) { rv = TRUE; break; } } if (rv == FALSE) { /* Insert nop after branch to fix short loop. */ return FALSE; } } } return TRUE; } /* Decide how we should add IP to the instruction stream. ADDRESS_EXPR is an operand of the instruction to be used with RELOC_TYPE. */ static enum append_method get_append_method (struct mips_cl_insn *ip, expressionS *address_expr, bfd_reloc_code_real_type *reloc_type) { /* The relaxed version of a macro sequence must be inherently hazard-free. */ if (mips_relax.sequence == 2) return APPEND_ADD; /* We must not dabble with instructions in a ".set norerorder" block. */ if (mips_opts.noreorder) return APPEND_ADD; /* Otherwise, it's our responsibility to fill branch delay slots. */ if (delayed_branch_p (ip)) { if (!branch_likely_p (ip) && can_swap_branch_p (ip, address_expr, reloc_type)) return APPEND_SWAP; if (mips_opts.mips16 && ISA_SUPPORTS_MIPS16E && gpr_read_mask (ip) != 0) return APPEND_ADD_COMPACT; return APPEND_ADD_WITH_NOP; } return APPEND_ADD; } /* IP is a MIPS16 instruction whose opcode we have just changed. Point IP->insn_mo to the new opcode's definition. */ static void find_altered_mips16_opcode (struct mips_cl_insn *ip) { const struct mips_opcode *mo, *end; end = &mips16_opcodes[bfd_mips16_num_opcodes]; for (mo = ip->insn_mo; mo < end; mo++) if ((ip->insn_opcode & mo->mask) == mo->match) { ip->insn_mo = mo; return; } abort (); } /* For microMIPS macros, we need to generate a local number label as the target of branches. */ #define MICROMIPS_LABEL_CHAR '\037' static unsigned long micromips_target_label; static char micromips_target_name[32]; static char * micromips_label_name (void) { char *p = micromips_target_name; char symbol_name_temporary[24]; unsigned long l; int i; if (*p) return p; i = 0; l = micromips_target_label; #ifdef LOCAL_LABEL_PREFIX *p++ = LOCAL_LABEL_PREFIX; #endif *p++ = 'L'; *p++ = MICROMIPS_LABEL_CHAR; do { symbol_name_temporary[i++] = l % 10 + '0'; l /= 10; } while (l != 0); while (i > 0) *p++ = symbol_name_temporary[--i]; *p = '\0'; return micromips_target_name; } static void micromips_label_expr (expressionS *label_expr) { label_expr->X_op = O_symbol; label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ()); label_expr->X_add_number = 0; } static void micromips_label_inc (void) { micromips_target_label++; *micromips_target_name = '\0'; } static void micromips_add_label (void) { symbolS *s; s = colon (micromips_label_name ()); micromips_label_inc (); S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s))); } /* If assembling microMIPS code, then return the microMIPS reloc corresponding to the requested one if any. Otherwise return the reloc unchanged. */ static bfd_reloc_code_real_type micromips_map_reloc (bfd_reloc_code_real_type reloc) { static const bfd_reloc_code_real_type relocs[][2] = { /* Keep sorted incrementally by the left-hand key. */ { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 }, { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 }, { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP }, { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 }, { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S }, { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 }, { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL }, { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 }, { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 }, { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 }, { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 }, { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 }, { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 }, { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB }, { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE }, { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST }, { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP }, { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST }, { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER }, { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP }, { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD }, { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM }, { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 }, { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 }, { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL }, { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 }, { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 } }; bfd_reloc_code_real_type r; size_t i; if (!mips_opts.micromips) return reloc; for (i = 0; i < ARRAY_SIZE (relocs); i++) { r = relocs[i][0]; if (r > reloc) return reloc; if (r == reloc) return relocs[i][1]; } return reloc; } /* Try to resolve relocation RELOC against constant OPERAND at assembly time. Return true on success, storing the resolved value in RESULT. */ static bfd_boolean calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand, offsetT *result) { switch (reloc) { case BFD_RELOC_MIPS_HIGHEST: case BFD_RELOC_MICROMIPS_HIGHEST: *result = ((operand + 0x800080008000ull) >> 48) & 0xffff; return TRUE; case BFD_RELOC_MIPS_HIGHER: case BFD_RELOC_MICROMIPS_HIGHER: *result = ((operand + 0x80008000ull) >> 32) & 0xffff; return TRUE; case BFD_RELOC_HI16_S: case BFD_RELOC_MICROMIPS_HI16_S: case BFD_RELOC_MIPS16_HI16_S: *result = ((operand + 0x8000) >> 16) & 0xffff; return TRUE; case BFD_RELOC_HI16: case BFD_RELOC_MICROMIPS_HI16: case BFD_RELOC_MIPS16_HI16: *result = (operand >> 16) & 0xffff; return TRUE; case BFD_RELOC_LO16: case BFD_RELOC_MICROMIPS_LO16: case BFD_RELOC_MIPS16_LO16: *result = operand & 0xffff; return TRUE; case BFD_RELOC_UNUSED: *result = operand; return TRUE; default: return FALSE; } } /* Output an instruction. IP is the instruction information. ADDRESS_EXPR is an operand of the instruction to be used with RELOC_TYPE. EXPANSIONP is true if the instruction is part of a macro expansion. */ static void append_insn (struct mips_cl_insn *ip, expressionS *address_expr, bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp) { unsigned long prev_pinfo2, pinfo; bfd_boolean relaxed_branch = FALSE; enum append_method method; bfd_boolean relax32; int branch_disp; if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION) fix_loongson2f (ip); file_ase_mips16 |= mips_opts.mips16; file_ase_micromips |= mips_opts.micromips; prev_pinfo2 = history[0].insn_mo->pinfo2; pinfo = ip->insn_mo->pinfo; if (mips_opts.micromips && !expansionp && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 && micromips_insn_length (ip->insn_mo) != 2) || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0 && micromips_insn_length (ip->insn_mo) != 4))) as_warn (_("Wrong size instruction in a %u-bit branch delay slot"), (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32); if (address_expr == NULL) ip->complete_p = 1; else if (reloc_type[0] <= BFD_RELOC_UNUSED && reloc_type[1] == BFD_RELOC_UNUSED && reloc_type[2] == BFD_RELOC_UNUSED && address_expr->X_op == O_constant) { switch (*reloc_type) { case BFD_RELOC_MIPS_JMP: { int shift; shift = mips_opts.micromips ? 1 : 2; if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0) as_bad (_("jump to misaligned address (0x%lx)"), (unsigned long) address_expr->X_add_number); ip->insn_opcode |= ((address_expr->X_add_number >> shift) & 0x3ffffff); ip->complete_p = 1; } break; case BFD_RELOC_MIPS16_JMP: if ((address_expr->X_add_number & 3) != 0) as_bad (_("jump to misaligned address (0x%lx)"), (unsigned long) address_expr->X_add_number); ip->insn_opcode |= (((address_expr->X_add_number & 0x7c0000) << 3) | ((address_expr->X_add_number & 0xf800000) >> 7) | ((address_expr->X_add_number & 0x3fffc) >> 2)); ip->complete_p = 1; break; case BFD_RELOC_16_PCREL_S2: { int shift; shift = mips_opts.micromips ? 1 : 2; if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0) as_bad (_("branch to misaligned address (0x%lx)"), (unsigned long) address_expr->X_add_number); if (!mips_relax_branch) { if ((address_expr->X_add_number + (1 << (shift + 15))) & ~((1 << (shift + 16)) - 1)) as_bad (_("branch address range overflow (0x%lx)"), (unsigned long) address_expr->X_add_number); ip->insn_opcode |= ((address_expr->X_add_number >> shift) & 0xffff); } } break; default: { offsetT value; if (calculate_reloc (*reloc_type, address_expr->X_add_number, &value)) { ip->insn_opcode |= value & 0xffff; ip->complete_p = 1; } } break; } } if (mips_relax.sequence != 2 && !mips_opts.noreorder) { /* There are a lot of optimizations we could do that we don't. In particular, we do not, in general, reorder instructions. If you use gcc with optimization, it will reorder instructions and generally do much more optimization then we do here; repeating all that work in the assembler would only benefit hand written assembly code, and does not seem worth it. */ int nops = (mips_optimize == 0 ? nops_for_insn (0, history, NULL) : nops_for_insn_or_target (0, history, ip)); if (nops > 0) { fragS *old_frag; unsigned long old_frag_offset; int i; old_frag = frag_now; old_frag_offset = frag_now_fix (); for (i = 0; i < nops; i++) add_fixed_insn (NOP_INSN); insert_into_history (0, nops, NOP_INSN); if (listing) { listing_prev_line (); /* We may be at the start of a variant frag. In case we are, make sure there is enough space for the frag after the frags created by listing_prev_line. The argument to frag_grow here must be at least as large as the argument to all other calls to frag_grow in this file. We don't have to worry about being in the middle of a variant frag, because the variants insert all needed nop instructions themselves. */ frag_grow (40); } mips_move_text_labels (); #ifndef NO_ECOFF_DEBUGGING if (ECOFF_DEBUGGING) ecoff_fix_loc (old_frag, old_frag_offset); #endif } } else if (mips_relax.sequence != 2 && prev_nop_frag != NULL) { int nops; /* Work out how many nops in prev_nop_frag are needed by IP, ignoring hazards generated by the first prev_nop_frag_since instructions. */ nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip); gas_assert (nops <= prev_nop_frag_holds); /* Enforce NOPS as a minimum. */ if (nops > prev_nop_frag_required) prev_nop_frag_required = nops; if (prev_nop_frag_holds == prev_nop_frag_required) { /* Settle for the current number of nops. Update the history accordingly (for the benefit of any future .set reorder code). */ prev_nop_frag = NULL; insert_into_history (prev_nop_frag_since, prev_nop_frag_holds, NOP_INSN); } else { /* Allow this instruction to replace one of the nops that was tentatively added to prev_nop_frag. */ prev_nop_frag->fr_fix -= NOP_INSN_SIZE; prev_nop_frag_holds--; prev_nop_frag_since++; } } method = get_append_method (ip, address_expr, reloc_type); branch_disp = method == APPEND_SWAP ? insn_length (history) : 0; dwarf2_emit_insn (0); /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses, so "move" the instruction address accordingly. Also, it doesn't seem appropriate for the assembler to reorder .loc entries. If this instruction is a branch that we are going to swap with the previous instruction, the two instructions should be treated as a unit, and the debug information for both instructions should refer to the start of the branch sequence. Using the current position is certainly wrong when swapping a 32-bit branch and a 16-bit delay slot, since the current position would then be in the middle of a branch. */ dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp); relax32 = (mips_relax_branch /* Don't try branch relaxation within .set nomacro, or within .set noat if we use $at for PIC computations. If it turns out that the branch was out-of-range, we'll get an error. */ && !mips_opts.warn_about_macros && (mips_opts.at || mips_pic == NO_PIC) /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F as they have no complementing branches. */ && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP))); if (!HAVE_CODE_COMPRESSION && address_expr && relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2 && delayed_branch_p (ip)) { relaxed_branch = TRUE; add_relaxed_insn (ip, (relaxed_branch_length (NULL, NULL, uncond_branch_p (ip) ? -1 : branch_likely_p (ip) ? 1 : 0)), 4, RELAX_BRANCH_ENCODE (AT, uncond_branch_p (ip), branch_likely_p (ip), pinfo & INSN_WRITE_GPR_31, 0), address_expr->X_add_symbol, address_expr->X_add_number); *reloc_type = BFD_RELOC_UNUSED; } else if (mips_opts.micromips && address_expr && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2) || *reloc_type > BFD_RELOC_UNUSED) && (delayed_branch_p (ip) || compact_branch_p (ip)) /* Don't try branch relaxation when users specify 16-bit/32-bit instructions. */ && !forced_insn_length) { bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED; int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0; int uncond = uncond_branch_p (ip) ? -1 : 0; int compact = compact_branch_p (ip); int al = pinfo & INSN_WRITE_GPR_31; int length32; gas_assert (address_expr != NULL); gas_assert (!mips_relax.sequence); relaxed_branch = TRUE; length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond); add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4, RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al, relax32, 0, 0), address_expr->X_add_symbol, address_expr->X_add_number); *reloc_type = BFD_RELOC_UNUSED; } else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED) { /* We need to set up a variant frag. */ gas_assert (address_expr != NULL); add_relaxed_insn (ip, 4, 0, RELAX_MIPS16_ENCODE (*reloc_type - BFD_RELOC_UNUSED, forced_insn_length == 2, forced_insn_length == 4, delayed_branch_p (&history[0]), history[0].mips16_absolute_jump_p), make_expr_symbol (address_expr), 0); } else if (mips_opts.mips16 && insn_length (ip) == 2) { if (!delayed_branch_p (ip)) /* Make sure there is enough room to swap this instruction with a following jump instruction. */ frag_grow (6); add_fixed_insn (ip); } else { if (mips_opts.mips16 && mips_opts.noreorder && delayed_branch_p (&history[0])) as_warn (_("extended instruction in delay slot")); if (mips_relax.sequence) { /* If we've reached the end of this frag, turn it into a variant frag and record the information for the instructions we've written so far. */ if (frag_room () < 4) relax_close_frag (); mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip); } if (mips_relax.sequence != 2) { if (mips_macro_warning.first_insn_sizes[0] == 0) mips_macro_warning.first_insn_sizes[0] = insn_length (ip); mips_macro_warning.sizes[0] += insn_length (ip); mips_macro_warning.insns[0]++; } if (mips_relax.sequence != 1) { if (mips_macro_warning.first_insn_sizes[1] == 0) mips_macro_warning.first_insn_sizes[1] = insn_length (ip); mips_macro_warning.sizes[1] += insn_length (ip); mips_macro_warning.insns[1]++; } if (mips_opts.mips16) { ip->fixed_p = 1; ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP); } add_fixed_insn (ip); } if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED) { bfd_reloc_code_real_type final_type[3]; reloc_howto_type *howto0; reloc_howto_type *howto; int i; /* Perform any necessary conversion to microMIPS relocations and find out how many relocations there actually are. */ for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++) final_type[i] = micromips_map_reloc (reloc_type[i]); /* In a compound relocation, it is the final (outermost) operator that determines the relocated field. */ howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]); if (!howto) abort (); if (i > 1) howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]); ip->fixp[0] = fix_new_exp (ip->frag, ip->where, bfd_get_reloc_size (howto), address_expr, howto0 && howto0->pc_relative, final_type[0]); /* Tag symbols that have a R_MIPS16_26 relocation against them. */ if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy) *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1; /* These relocations can have an addend that won't fit in 4 octets for 64bit assembly. */ if (HAVE_64BIT_GPRS && ! howto->partial_inplace && (reloc_type[0] == BFD_RELOC_16 || reloc_type[0] == BFD_RELOC_32 || reloc_type[0] == BFD_RELOC_MIPS_JMP || reloc_type[0] == BFD_RELOC_GPREL16 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL || reloc_type[0] == BFD_RELOC_GPREL32 || reloc_type[0] == BFD_RELOC_64 || reloc_type[0] == BFD_RELOC_CTOR || reloc_type[0] == BFD_RELOC_MIPS_SUB || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST || reloc_type[0] == BFD_RELOC_MIPS_HIGHER || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP || reloc_type[0] == BFD_RELOC_MIPS_REL16 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT || reloc_type[0] == BFD_RELOC_MIPS16_GPREL || hi16_reloc_p (reloc_type[0]) || lo16_reloc_p (reloc_type[0]))) ip->fixp[0]->fx_no_overflow = 1; /* These relocations can have an addend that won't fit in 2 octets. */ if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1) ip->fixp[0]->fx_no_overflow = 1; if (mips_relax.sequence) { if (mips_relax.first_fixup == 0) mips_relax.first_fixup = ip->fixp[0]; } else if (reloc_needs_lo_p (*reloc_type)) { struct mips_hi_fixup *hi_fixup; /* Reuse the last entry if it already has a matching %lo. */ hi_fixup = mips_hi_fixup_list; if (hi_fixup == 0 || !fixup_has_matching_lo_p (hi_fixup->fixp)) { hi_fixup = ((struct mips_hi_fixup *) xmalloc (sizeof (struct mips_hi_fixup))); hi_fixup->next = mips_hi_fixup_list; mips_hi_fixup_list = hi_fixup; } hi_fixup->fixp = ip->fixp[0]; hi_fixup->seg = now_seg; } /* Add fixups for the second and third relocations, if given. Note that the ABI allows the second relocation to be against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the moment we only use RSS_UNDEF, but we could add support for the others if it ever becomes necessary. */ for (i = 1; i < 3; i++) if (reloc_type[i] != BFD_RELOC_UNUSED) { ip->fixp[i] = fix_new (ip->frag, ip->where, ip->fixp[0]->fx_size, NULL, 0, FALSE, final_type[i]); /* Use fx_tcbit to mark compound relocs. */ ip->fixp[0]->fx_tcbit = 1; ip->fixp[i]->fx_tcbit = 1; } } install_insn (ip); /* Update the register mask information. */ mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip); mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip); switch (method) { case APPEND_ADD: insert_into_history (0, 1, ip); break; case APPEND_ADD_WITH_NOP: { struct mips_cl_insn *nop; insert_into_history (0, 1, ip); nop = get_delay_slot_nop (ip); add_fixed_insn (nop); insert_into_history (0, 1, nop); if (mips_relax.sequence) mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop); } break; case APPEND_ADD_COMPACT: /* Convert MIPS16 jr/jalr into a "compact" jump. */ gas_assert (mips_opts.mips16); ip->insn_opcode |= 0x0080; find_altered_mips16_opcode (ip); install_insn (ip); insert_into_history (0, 1, ip); break; case APPEND_SWAP: { struct mips_cl_insn delay = history[0]; if (mips_opts.mips16) { know (delay.frag == ip->frag); move_insn (ip, delay.frag, delay.where); move_insn (&delay, ip->frag, ip->where + insn_length (ip)); } else if (relaxed_branch || delay.frag != ip->frag) { /* Add the delay slot instruction to the end of the current frag and shrink the fixed part of the original frag. If the branch occupies the tail of the latter, move it backwards to cover the gap. */ delay.frag->fr_fix -= branch_disp; if (delay.frag == ip->frag) move_insn (ip, ip->frag, ip->where - branch_disp); add_fixed_insn (&delay); } else { move_insn (&delay, ip->frag, ip->where - branch_disp + insn_length (ip)); move_insn (ip, history[0].frag, history[0].where); } history[0] = *ip; delay.fixed_p = 1; insert_into_history (0, 1, &delay); } break; } /* If we have just completed an unconditional branch, clear the history. */ if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1])) || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0]))) { unsigned int i; mips_no_prev_insn (); for (i = 0; i < ARRAY_SIZE (history); i++) history[i].cleared_p = 1; } /* We need to emit a label at the end of branch-likely macros. */ if (emit_branch_likely_macro) { emit_branch_likely_macro = FALSE; micromips_add_label (); } /* We just output an insn, so the next one doesn't have a label. */ mips_clear_insn_labels (); } /* Forget that there was any previous instruction or label. When BRANCH is true, the branch history is also flushed. */ static void mips_no_prev_insn (void) { prev_nop_frag = NULL; insert_into_history (0, ARRAY_SIZE (history), NOP_INSN); mips_clear_insn_labels (); } /* This function must be called before we emit something other than instructions. It is like mips_no_prev_insn except that it inserts any NOPS that might be needed by previous instructions. */ void mips_emit_delays (void) { if (! mips_opts.noreorder) { int nops = nops_for_insn (0, history, NULL); if (nops > 0) { while (nops-- > 0) add_fixed_insn (NOP_INSN); mips_move_text_labels (); } } mips_no_prev_insn (); } /* Start a (possibly nested) noreorder block. */ static void start_noreorder (void) { if (mips_opts.noreorder == 0) { unsigned int i; int nops; /* None of the instructions before the .set noreorder can be moved. */ for (i = 0; i < ARRAY_SIZE (history); i++) history[i].fixed_p = 1; /* Insert any nops that might be needed between the .set noreorder block and the previous instructions. We will later remove any nops that turn out not to be needed. */ nops = nops_for_insn (0, history, NULL); if (nops > 0) { if (mips_optimize != 0) { /* Record the frag which holds the nop instructions, so that we can remove them if we don't need them. */ frag_grow (nops * NOP_INSN_SIZE); prev_nop_frag = frag_now; prev_nop_frag_holds = nops; prev_nop_frag_required = 0; prev_nop_frag_since = 0; } for (; nops > 0; --nops) add_fixed_insn (NOP_INSN); /* Move on to a new frag, so that it is safe to simply decrease the size of prev_nop_frag. */ frag_wane (frag_now); frag_new (0); mips_move_text_labels (); } mips_mark_labels (); mips_clear_insn_labels (); } mips_opts.noreorder++; mips_any_noreorder = 1; } /* End a nested noreorder block. */ static void end_noreorder (void) { mips_opts.noreorder--; if (mips_opts.noreorder == 0 && prev_nop_frag != NULL) { /* Commit to inserting prev_nop_frag_required nops and go back to handling nop insertion the .set reorder way. */ prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required) * NOP_INSN_SIZE); insert_into_history (prev_nop_frag_since, prev_nop_frag_required, NOP_INSN); prev_nop_frag = NULL; } } /* Set up global variables for the start of a new macro. */ static void macro_start (void) { memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes)); memset (&mips_macro_warning.first_insn_sizes, 0, sizeof (mips_macro_warning.first_insn_sizes)); memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns)); mips_macro_warning.delay_slot_p = (mips_opts.noreorder && delayed_branch_p (&history[0])); switch (history[0].insn_mo->pinfo2 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT)) { case INSN2_BRANCH_DELAY_32BIT: mips_macro_warning.delay_slot_length = 4; break; case INSN2_BRANCH_DELAY_16BIT: mips_macro_warning.delay_slot_length = 2; break; default: mips_macro_warning.delay_slot_length = 0; break; } mips_macro_warning.first_frag = NULL; } /* Given that a macro is longer than one instruction or of the wrong size, return the appropriate warning for it. Return null if no warning is needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT, RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND, and RELAX_NOMACRO. */ static const char * macro_warning (relax_substateT subtype) { if (subtype & RELAX_DELAY_SLOT) return _("Macro instruction expanded into multiple instructions" " in a branch delay slot"); else if (subtype & RELAX_NOMACRO) return _("Macro instruction expanded into multiple instructions"); else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST | RELAX_DELAY_SLOT_SIZE_SECOND)) return ((subtype & RELAX_DELAY_SLOT_16BIT) ? _("Macro instruction expanded into a wrong size instruction" " in a 16-bit branch delay slot") : _("Macro instruction expanded into a wrong size instruction" " in a 32-bit branch delay slot")); else return 0; } /* Finish up a macro. Emit warnings as appropriate. */ static void macro_end (void) { /* Relaxation warning flags. */ relax_substateT subtype = 0; /* Check delay slot size requirements. */ if (mips_macro_warning.delay_slot_length == 2) subtype |= RELAX_DELAY_SLOT_16BIT; if (mips_macro_warning.delay_slot_length != 0) { if (mips_macro_warning.delay_slot_length != mips_macro_warning.first_insn_sizes[0]) subtype |= RELAX_DELAY_SLOT_SIZE_FIRST; if (mips_macro_warning.delay_slot_length != mips_macro_warning.first_insn_sizes[1]) subtype |= RELAX_DELAY_SLOT_SIZE_SECOND; } /* Check instruction count requirements. */ if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1) { if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0]) subtype |= RELAX_SECOND_LONGER; if (mips_opts.warn_about_macros) subtype |= RELAX_NOMACRO; if (mips_macro_warning.delay_slot_p) subtype |= RELAX_DELAY_SLOT; } /* If both alternatives fail to fill a delay slot correctly, emit the warning now. */ if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0) { relax_substateT s; const char *msg; s = subtype & (RELAX_DELAY_SLOT_16BIT | RELAX_DELAY_SLOT_SIZE_FIRST | RELAX_DELAY_SLOT_SIZE_SECOND); msg = macro_warning (s); if (msg != NULL) as_warn ("%s", msg); subtype &= ~s; } /* If both implementations are longer than 1 instruction, then emit the warning now. */ if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1) { relax_substateT s; const char *msg; s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT); msg = macro_warning (s); if (msg != NULL) as_warn ("%s", msg); subtype &= ~s; } /* If any flags still set, then one implementation might need a warning and the other either will need one of a different kind or none at all. Pass any remaining flags over to relaxation. */ if (mips_macro_warning.first_frag != NULL) mips_macro_warning.first_frag->fr_subtype |= subtype; } /* Instruction operand formats used in macros that vary between standard MIPS and microMIPS code. */ static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } }; static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" }; static const char * const jalr_fmt[2] = { "d,s", "t,s" }; static const char * const lui_fmt[2] = { "t,u", "s,u" }; static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" }; static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } }; static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" }; static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" }; #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32]) #define COP12_FMT (cop12_fmt[mips_opts.micromips]) #define JALR_FMT (jalr_fmt[mips_opts.micromips]) #define LUI_FMT (lui_fmt[mips_opts.micromips]) #define MEM12_FMT (mem12_fmt[mips_opts.micromips]) #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32]) #define SHFT_FMT (shft_fmt[mips_opts.micromips]) #define TRAP_FMT (trap_fmt[mips_opts.micromips]) /* Read a macro's relocation codes from *ARGS and store them in *R. The first argument in *ARGS will be either the code for a single relocation or -1 followed by the three codes that make up a composite relocation. */ static void macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r) { int i, next; next = va_arg (*args, int); if (next >= 0) r[0] = (bfd_reloc_code_real_type) next; else { for (i = 0; i < 3; i++) r[i] = (bfd_reloc_code_real_type) va_arg (*args, int); /* This function is only used for 16-bit relocation fields. To make the macro code simpler, treat an unrelocated value in the same way as BFD_RELOC_LO16. */ if (r[0] == BFD_RELOC_UNUSED) r[0] = BFD_RELOC_LO16; } } /* Build an instruction created by a macro expansion. This is passed a pointer to the count of instructions created so far, an expression, the name of the instruction to build, an operand format string, and corresponding arguments. */ static void macro_build (expressionS *ep, const char *name, const char *fmt, ...) { const struct mips_opcode *mo = NULL; bfd_reloc_code_real_type r[3]; const struct mips_opcode *amo; const struct mips_operand *operand; struct hash_control *hash; struct mips_cl_insn insn; va_list args; unsigned int uval; va_start (args, fmt); if (mips_opts.mips16) { mips16_macro_build (ep, name, fmt, &args); va_end (args); return; } r[0] = BFD_RELOC_UNUSED; r[1] = BFD_RELOC_UNUSED; r[2] = BFD_RELOC_UNUSED; hash = mips_opts.micromips ? micromips_op_hash : op_hash; amo = (struct mips_opcode *) hash_find (hash, name); gas_assert (amo); gas_assert (strcmp (name, amo->name) == 0); do { /* Search until we get a match for NAME. It is assumed here that macros will never generate MDMX, MIPS-3D, or MT instructions. We try to match an instruction that fulfils the branch delay slot instruction length requirement (if any) of the previous instruction. While doing this we record the first instruction seen that matches all the other conditions and use it anyway if the requirement cannot be met; we will issue an appropriate warning later on. */ if (strcmp (fmt, amo->args) == 0 && amo->pinfo != INSN_MACRO && is_opcode_valid (amo) && is_size_valid (amo)) { if (is_delay_slot_valid (amo)) { mo = amo; break; } else if (!mo) mo = amo; } ++amo; gas_assert (amo->name); } while (strcmp (name, amo->name) == 0); gas_assert (mo); create_insn (&insn, mo); for (; *fmt; ++fmt) { switch (*fmt) { case ',': case '(': case ')': case 'z': break; case 'i': case 'j': macro_read_relocs (&args, r); gas_assert (*r == BFD_RELOC_GPREL16 || *r == BFD_RELOC_MIPS_HIGHER || *r == BFD_RELOC_HI16_S || *r == BFD_RELOC_LO16 || *r == BFD_RELOC_MIPS_GOT_OFST); break; case 'o': macro_read_relocs (&args, r); break; case 'u': macro_read_relocs (&args, r); gas_assert (ep != NULL && (ep->X_op == O_constant || (ep->X_op == O_symbol && (*r == BFD_RELOC_MIPS_HIGHEST || *r == BFD_RELOC_HI16_S || *r == BFD_RELOC_HI16 || *r == BFD_RELOC_GPREL16 || *r == BFD_RELOC_MIPS_GOT_HI16 || *r == BFD_RELOC_MIPS_CALL_HI16)))); break; case 'p': gas_assert (ep != NULL); /* * This allows macro() to pass an immediate expression for * creating short branches without creating a symbol. * * We don't allow branch relaxation for these branches, as * they should only appear in ".set nomacro" anyway. */ if (ep->X_op == O_constant) { /* For microMIPS we always use relocations for branches. So we should not resolve immediate values. */ gas_assert (!mips_opts.micromips); if ((ep->X_add_number & 3) != 0) as_bad (_("branch to misaligned address (0x%lx)"), (unsigned long) ep->X_add_number); if ((ep->X_add_number + 0x20000) & ~0x3ffff) as_bad (_("branch address range overflow (0x%lx)"), (unsigned long) ep->X_add_number); insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff; ep = NULL; } else *r = BFD_RELOC_16_PCREL_S2; break; case 'a': gas_assert (ep != NULL); *r = BFD_RELOC_MIPS_JMP; break; default: operand = (mips_opts.micromips ? decode_micromips_operand (fmt) : decode_mips_operand (fmt)); if (!operand) abort (); uval = va_arg (args, int); if (operand->type == OP_CLO_CLZ_DEST) uval |= (uval << 5); insn_insert_operand (&insn, operand, uval); if (*fmt == '+' || *fmt == 'm') ++fmt; break; } } va_end (args); gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL); append_insn (&insn, ep, r, TRUE); } static void mips16_macro_build (expressionS *ep, const char *name, const char *fmt, va_list *args) { struct mips_opcode *mo; struct mips_cl_insn insn; const struct mips_operand *operand; bfd_reloc_code_real_type r[3] = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED}; mo = (struct mips_opcode *) hash_find (mips16_op_hash, name); gas_assert (mo); gas_assert (strcmp (name, mo->name) == 0); while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO) { ++mo; gas_assert (mo->name); gas_assert (strcmp (name, mo->name) == 0); } create_insn (&insn, mo); for (; *fmt; ++fmt) { int c; c = *fmt; switch (c) { case ',': case '(': case ')': break; case '0': case 'S': case 'P': case 'R': break; case '<': case '>': case '4': case '5': case 'H': case 'W': case 'D': case 'j': case '8': case 'V': case 'C': case 'U': case 'k': case 'K': case 'p': case 'q': { offsetT value; gas_assert (ep != NULL); if (ep->X_op != O_constant) *r = (int) BFD_RELOC_UNUSED + c; else if (calculate_reloc (*r, ep->X_add_number, &value)) { mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode); ep = NULL; *r = BFD_RELOC_UNUSED; } } break; default: operand = decode_mips16_operand (c, FALSE); if (!operand) abort (); insn_insert_operand (&insn, operand, va_arg (*args, int)); break; } } gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL); append_insn (&insn, ep, r, TRUE); } /* * Sign-extend 32-bit mode constants that have bit 31 set and all * higher bits unset. */ static void normalize_constant_expr (expressionS *ex) { if (ex->X_op == O_constant && IS_ZEXT_32BIT_NUM (ex->X_add_number)) ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000) - 0x80000000); } /* * Sign-extend 32-bit mode address offsets that have bit 31 set and * all higher bits unset. */ static void normalize_address_expr (expressionS *ex) { if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES) || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS)) && IS_ZEXT_32BIT_NUM (ex->X_add_number)) ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000) - 0x80000000); } /* * Generate a "jalr" instruction with a relocation hint to the called * function. This occurs in NewABI PIC code. */ static void macro_build_jalr (expressionS *ep, int cprestore) { static const bfd_reloc_code_real_type jalr_relocs[2] = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR }; bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips]; const char *jalr; char *f = NULL; if (MIPS_JALR_HINT_P (ep)) { frag_grow (8); f = frag_more (0); } if (mips_opts.micromips) { jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32 ? "jalr" : "jalrs"); if (MIPS_JALR_HINT_P (ep) || mips_opts.insn32 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT)) macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG); else macro_build (NULL, jalr, "mj", PIC_CALL_REG); } else macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG); if (MIPS_JALR_HINT_P (ep)) fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc); } /* * Generate a "lui" instruction. */ static void macro_build_lui (expressionS *ep, int regnum) { gas_assert (! mips_opts.mips16); if (ep->X_op != O_constant) { gas_assert (ep->X_op == O_symbol); /* _gp_disp is a special case, used from s_cpload. __gnu_local_gp is used if mips_no_shared. */ gas_assert (mips_pic == NO_PIC || (! HAVE_NEWABI && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0) || (! mips_in_shared && strcmp (S_GET_NAME (ep->X_add_symbol), "__gnu_local_gp") == 0)); } macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S); } /* Generate a sequence of instructions to do a load or store from a constant offset off of a base register (breg) into/from a target register (treg), using AT if necessary. */ static void macro_build_ldst_constoffset (expressionS *ep, const char *op, int treg, int breg, int dbl) { gas_assert (ep->X_op == O_constant); /* Sign-extending 32-bit constants makes their handling easier. */ if (!dbl) normalize_constant_expr (ep); /* Right now, this routine can only handle signed 32-bit constants. */ if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000)) as_warn (_("operand overflow")); if (IS_SEXT_16BIT_NUM(ep->X_add_number)) { /* Signed 16-bit offset will fit in the op. Easy! */ macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg); } else { /* 32-bit offset, need multiple instructions and AT, like: lui $tempreg,const_hi (BFD_RELOC_HI16_S) addu $tempreg,$tempreg,$breg $treg,const_lo($tempreg) (BFD_RELOC_LO16) to handle the complete offset. */ macro_build_lui (ep, AT); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg); macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT); if (!mips_opts.at) as_bad (_("Macro used $at after \".set noat\"")); } } /* set_at() * Generates code to set the $at register to true (one) * if reg is less than the immediate expression. */ static void set_at (int reg, int unsignedp) { if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000) macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j", AT, reg, BFD_RELOC_LO16); else { load_register (AT, &imm_expr, HAVE_64BIT_GPRS); macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT); } } /* Count the leading zeroes by performing a binary chop. This is a bulky bit of source, but performance is a LOT better for the majority of values than a simple loop to count the bits: for (lcnt = 0; (lcnt < 32); lcnt++) if ((v) & (1 << (31 - lcnt))) break; However it is not code size friendly, and the gain will drop a bit on certain cached systems. */ #define COUNT_TOP_ZEROES(v) \ (((v) & ~0xffff) == 0 \ ? ((v) & ~0xff) == 0 \ ? ((v) & ~0xf) == 0 \ ? ((v) & ~0x3) == 0 \ ? ((v) & ~0x1) == 0 \ ? !(v) \ ? 32 \ : 31 \ : 30 \ : ((v) & ~0x7) == 0 \ ? 29 \ : 28 \ : ((v) & ~0x3f) == 0 \ ? ((v) & ~0x1f) == 0 \ ? 27 \ : 26 \ : ((v) & ~0x7f) == 0 \ ? 25 \ : 24 \ : ((v) & ~0xfff) == 0 \ ? ((v) & ~0x3ff) == 0 \ ? ((v) & ~0x1ff) == 0 \ ? 23 \ : 22 \ : ((v) & ~0x7ff) == 0 \ ? 21 \ : 20 \ : ((v) & ~0x3fff) == 0 \ ? ((v) & ~0x1fff) == 0 \ ? 19 \ : 18 \ : ((v) & ~0x7fff) == 0 \ ? 17 \ : 16 \ : ((v) & ~0xffffff) == 0 \ ? ((v) & ~0xfffff) == 0 \ ? ((v) & ~0x3ffff) == 0 \ ? ((v) & ~0x1ffff) == 0 \ ? 15 \ : 14 \ : ((v) & ~0x7ffff) == 0 \ ? 13 \ : 12 \ : ((v) & ~0x3fffff) == 0 \ ? ((v) & ~0x1fffff) == 0 \ ? 11 \ : 10 \ : ((v) & ~0x7fffff) == 0 \ ? 9 \ : 8 \ : ((v) & ~0xfffffff) == 0 \ ? ((v) & ~0x3ffffff) == 0 \ ? ((v) & ~0x1ffffff) == 0 \ ? 7 \ : 6 \ : ((v) & ~0x7ffffff) == 0 \ ? 5 \ : 4 \ : ((v) & ~0x3fffffff) == 0 \ ? ((v) & ~0x1fffffff) == 0 \ ? 3 \ : 2 \ : ((v) & ~0x7fffffff) == 0 \ ? 1 \ : 0) /* load_register() * This routine generates the least number of instructions necessary to load * an absolute expression value into a register. */ static void load_register (int reg, expressionS *ep, int dbl) { int freg; expressionS hi32, lo32; if (ep->X_op != O_big) { gas_assert (ep->X_op == O_constant); /* Sign-extending 32-bit constants makes their handling easier. */ if (!dbl) normalize_constant_expr (ep); if (IS_SEXT_16BIT_NUM (ep->X_add_number)) { /* We can handle 16 bit signed values with an addiu to $zero. No need to ever use daddiu here, since $zero and the result are always correct in 32 bit mode. */ macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16); return; } else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000) { /* We can handle 16 bit unsigned values with an ori to $zero. */ macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16); return; } else if ((IS_SEXT_32BIT_NUM (ep->X_add_number))) { /* 32 bit values require an lui. */ macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16); if ((ep->X_add_number & 0xffff) != 0) macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16); return; } } /* The value is larger than 32 bits. */ if (!dbl || HAVE_32BIT_GPRS) { char value[32]; sprintf_vma (value, ep->X_add_number); as_bad (_("Number (0x%s) larger than 32 bits"), value); macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16); return; } if (ep->X_op != O_big) { hi32 = *ep; hi32.X_add_number = (valueT) hi32.X_add_number >> 16; hi32.X_add_number = (valueT) hi32.X_add_number >> 16; hi32.X_add_number &= 0xffffffff; lo32 = *ep; lo32.X_add_number &= 0xffffffff; } else { gas_assert (ep->X_add_number > 2); if (ep->X_add_number == 3) generic_bignum[3] = 0; else if (ep->X_add_number > 4) as_bad (_("Number larger than 64 bits")); lo32.X_op = O_constant; lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16); hi32.X_op = O_constant; hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16); } if (hi32.X_add_number == 0) freg = 0; else { int shift, bit; unsigned long hi, lo; if (hi32.X_add_number == (offsetT) 0xffffffff) { if ((lo32.X_add_number & 0xffff8000) == 0xffff8000) { macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16); return; } if (lo32.X_add_number & 0x80000000) { macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16); if (lo32.X_add_number & 0xffff) macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16); return; } } /* Check for 16bit shifted constant. We know that hi32 is non-zero, so start the mask on the first bit of the hi32 value. */ shift = 17; do { unsigned long himask, lomask; if (shift < 32) { himask = 0xffff >> (32 - shift); lomask = (0xffff << shift) & 0xffffffff; } else { himask = 0xffff << (shift - 32); lomask = 0; } if ((hi32.X_add_number & ~(offsetT) himask) == 0 && (lo32.X_add_number & ~(offsetT) lomask) == 0) { expressionS tmp; tmp.X_op = O_constant; if (shift < 32) tmp.X_add_number = ((hi32.X_add_number << (32 - shift)) | (lo32.X_add_number >> shift)); else tmp.X_add_number = hi32.X_add_number >> (shift - 32); macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16); macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT, reg, reg, (shift >= 32) ? shift - 32 : shift); return; } ++shift; } while (shift <= (64 - 16)); /* Find the bit number of the lowest one bit, and store the shifted value in hi/lo. */ hi = (unsigned long) (hi32.X_add_number & 0xffffffff); lo = (unsigned long) (lo32.X_add_number & 0xffffffff); if (lo != 0) { bit = 0; while ((lo & 1) == 0) { lo >>= 1; ++bit; } lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit); hi >>= bit; } else { bit = 32; while ((hi & 1) == 0) { hi >>= 1; ++bit; } lo = hi; hi = 0; } /* Optimize if the shifted value is a (power of 2) - 1. */ if ((hi == 0 && ((lo + 1) & lo) == 0) || (lo == 0xffffffff && ((hi + 1) & hi) == 0)) { shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number); if (shift != 0) { expressionS tmp; /* This instruction will set the register to be all ones. */ tmp.X_op = O_constant; tmp.X_add_number = (offsetT) -1; macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16); if (bit != 0) { bit += shift; macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT, reg, reg, (bit >= 32) ? bit - 32 : bit); } macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT, reg, reg, (shift >= 32) ? shift - 32 : shift); return; } } /* Sign extend hi32 before calling load_register, because we can generally get better code when we load a sign extended value. */ if ((hi32.X_add_number & 0x80000000) != 0) hi32.X_add_number |= ~(offsetT) 0xffffffff; load_register (reg, &hi32, 0); freg = reg; } if ((lo32.X_add_number & 0xffff0000) == 0) { if (freg != 0) { macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0); freg = reg; } } else { expressionS mid16; if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff)) { macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16); macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0); return; } if (freg != 0) { macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16); freg = reg; } mid16 = lo32; mid16.X_add_number >>= 16; macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16); macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16); freg = reg; } if ((lo32.X_add_number & 0xffff) != 0) macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16); } static inline void load_delay_nop (void) { if (!gpr_interlocks) macro_build (NULL, "nop", ""); } /* Load an address into a register. */ static void load_address (int reg, expressionS *ep, int *used_at) { if (ep->X_op != O_constant && ep->X_op != O_symbol) { as_bad (_("expression too complex")); ep->X_op = O_constant; } if (ep->X_op == O_constant) { load_register (reg, ep, HAVE_64BIT_ADDRESSES); return; } if (mips_pic == NO_PIC) { /* If this is a reference to a GP relative symbol, we want addiu $reg,$gp, (BFD_RELOC_GPREL16) Otherwise we want lui $reg, (BFD_RELOC_HI16_S) addiu $reg,$reg, (BFD_RELOC_LO16) If we have an addend, we always use the latter form. With 64bit address space and a usable $at we want lui $reg, (BFD_RELOC_MIPS_HIGHEST) lui $at, (BFD_RELOC_HI16_S) daddiu $reg, (BFD_RELOC_MIPS_HIGHER) daddiu $at, (BFD_RELOC_LO16) dsll32 $reg,0 daddu $reg,$reg,$at If $at is already in use, we use a path which is suboptimal on superscalar processors. lui $reg, (BFD_RELOC_MIPS_HIGHEST) daddiu $reg, (BFD_RELOC_MIPS_HIGHER) dsll $reg,16 daddiu $reg, (BFD_RELOC_HI16_S) dsll $reg,16 daddiu $reg, (BFD_RELOC_LO16) For GP relative symbols in 64bit address space we can use the same sequence as in 32bit address space. */ if (HAVE_64BIT_SYMBOLS) { if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET && !nopic_need_relax (ep->X_add_symbol, 1)) { relax_start (ep->X_add_symbol); macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, mips_gp_register, BFD_RELOC_GPREL16); relax_switch (); } if (*used_at == 0 && mips_opts.at) { macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST); macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S); macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_MIPS_HIGHER); macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16); macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0); macro_build (NULL, "daddu", "d,v,t", reg, reg, AT); *used_at = 1; } else { macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST); macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_MIPS_HIGHER); macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16); macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S); macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16); macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16); } if (mips_relax.sequence) relax_end (); } else { if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET && !nopic_need_relax (ep->X_add_symbol, 1)) { relax_start (ep->X_add_symbol); macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, mips_gp_register, BFD_RELOC_GPREL16); relax_switch (); } macro_build_lui (ep, reg); macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg, BFD_RELOC_LO16); if (mips_relax.sequence) relax_end (); } } else if (!mips_big_got) { expressionS ex; /* If this is a reference to an external symbol, we want lw $reg,($gp) (BFD_RELOC_MIPS_GOT16) Otherwise we want lw $reg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $reg,$reg, (BFD_RELOC_LO16) If there is a constant, it must be added in after. If we have NewABI, we want lw $reg,($gp) (BFD_RELOC_MIPS_GOT_DISP) unless we're referencing a global symbol with a non-zero offset, in which case cst must be added separately. */ if (HAVE_NEWABI) { if (ep->X_add_number) { ex.X_add_number = ep->X_add_number; ep->X_add_number = 0; relax_start (ep->X_add_symbol); macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg, BFD_RELOC_MIPS_GOT_DISP, mips_gp_register); if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000) as_bad (_("PIC code offset overflow (max 16 signed bits)")); ex.X_op = O_constant; macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg, BFD_RELOC_LO16); ep->X_add_number = ex.X_add_number; relax_switch (); } macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg, BFD_RELOC_MIPS_GOT_DISP, mips_gp_register); if (mips_relax.sequence) relax_end (); } else { ex.X_add_number = ep->X_add_number; ep->X_add_number = 0; macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg, BFD_RELOC_MIPS_GOT16, mips_gp_register); load_delay_nop (); relax_start (ep->X_add_symbol); relax_switch (); macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg, BFD_RELOC_LO16); relax_end (); if (ex.X_add_number != 0) { if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000) as_bad (_("PIC code offset overflow (max 16 signed bits)")); ex.X_op = O_constant; macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg, BFD_RELOC_LO16); } } } else if (mips_big_got) { expressionS ex; /* This is the large GOT case. If this is a reference to an external symbol, we want lui $reg, (BFD_RELOC_MIPS_GOT_HI16) addu $reg,$reg,$gp lw $reg,($reg) (BFD_RELOC_MIPS_GOT_LO16) Otherwise, for a reference to a local symbol in old ABI, we want lw $reg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $reg,$reg, (BFD_RELOC_LO16) If there is a constant, it must be added in after. In the NewABI, for local symbols, with or without offsets, we want: lw $reg,($gp) (BFD_RELOC_MIPS_GOT_PAGE) addiu $reg,$reg, (BFD_RELOC_MIPS_GOT_OFST) */ if (HAVE_NEWABI) { ex.X_add_number = ep->X_add_number; ep->X_add_number = 0; relax_start (ep->X_add_symbol); macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register); macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg, BFD_RELOC_MIPS_GOT_LO16, reg); if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000) as_bad (_("PIC code offset overflow (max 16 signed bits)")); else if (ex.X_add_number) { ex.X_op = O_constant; macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg, BFD_RELOC_LO16); } ep->X_add_number = ex.X_add_number; relax_switch (); macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg, BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register); macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg, BFD_RELOC_MIPS_GOT_OFST); relax_end (); } else { ex.X_add_number = ep->X_add_number; ep->X_add_number = 0; relax_start (ep->X_add_symbol); macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register); macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg, BFD_RELOC_MIPS_GOT_LO16, reg); relax_switch (); if (reg_needs_delay (mips_gp_register)) { /* We need a nop before loading from $gp. This special check is required because the lui which starts the main instruction stream does not refer to $gp, and so will not insert the nop which may be required. */ macro_build (NULL, "nop", ""); } macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg, BFD_RELOC_MIPS_GOT16, mips_gp_register); load_delay_nop (); macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg, BFD_RELOC_LO16); relax_end (); if (ex.X_add_number != 0) { if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000) as_bad (_("PIC code offset overflow (max 16 signed bits)")); ex.X_op = O_constant; macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg, BFD_RELOC_LO16); } } } else abort (); if (!mips_opts.at && *used_at == 1) as_bad (_("Macro used $at after \".set noat\"")); } /* Move the contents of register SOURCE into register DEST. */ static void move_register (int dest, int source) { /* Prefer to use a 16-bit microMIPS instruction unless the previous instruction specifically requires a 32-bit one. */ if (mips_opts.micromips && !mips_opts.insn32 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT)) macro_build (NULL, "move", "mp,mj", dest, source); else macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t", dest, source, 0); } /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement. The two alternatives are: Global symbol Local sybmol ------------- ------------ lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET) ... ... addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET) load_got_offset emits the first instruction and add_got_offset emits the second for a 16-bit offset or add_got_offset_hilo emits a sequence to add a 32-bit offset using a scratch register. */ static void load_got_offset (int dest, expressionS *local) { expressionS global; global = *local; global.X_add_number = 0; relax_start (local->X_add_symbol); macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest, BFD_RELOC_MIPS_GOT16, mips_gp_register); relax_switch (); macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest, BFD_RELOC_MIPS_GOT16, mips_gp_register); relax_end (); } static void add_got_offset (int dest, expressionS *local) { expressionS global; global.X_op = O_constant; global.X_op_symbol = NULL; global.X_add_symbol = NULL; global.X_add_number = local->X_add_number; relax_start (local->X_add_symbol); macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16); relax_switch (); macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16); relax_end (); } static void add_got_offset_hilo (int dest, expressionS *local, int tmp) { expressionS global; int hold_mips_optimize; global.X_op = O_constant; global.X_op_symbol = NULL; global.X_add_symbol = NULL; global.X_add_number = local->X_add_number; relax_start (local->X_add_symbol); load_register (tmp, &global, HAVE_64BIT_ADDRESSES); relax_switch (); /* Set mips_optimize around the lui instruction to avoid inserting an unnecessary nop after the lw. */ hold_mips_optimize = mips_optimize; mips_optimize = 2; macro_build_lui (&global, tmp); mips_optimize = hold_mips_optimize; macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16); relax_end (); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp); } /* Emit a sequence of instructions to emulate a branch likely operation. BR is an ordinary branch corresponding to one to be emulated. BRNEG is its complementing branch with the original condition negated. CALL is set if the original branch specified the link operation. EP, FMT, SREG and TREG specify the usual macro_build() parameters. Code like this is produced in the noreorder mode: BRNEG , 1f nop b delay slot (executed only if branch taken) 1: or, if CALL is set: BRNEG , 1f nop bal delay slot (executed only if branch taken) 1: In the reorder mode the delay slot would be filled with a nop anyway, so code produced is simply: BR , nop This function is used when producing code for the microMIPS ASE that does not implement branch likely instructions in hardware. */ static void macro_build_branch_likely (const char *br, const char *brneg, int call, expressionS *ep, const char *fmt, unsigned int sreg, unsigned int treg) { int noreorder = mips_opts.noreorder; expressionS expr1; gas_assert (mips_opts.micromips); start_noreorder (); if (noreorder) { micromips_label_expr (&expr1); macro_build (&expr1, brneg, fmt, sreg, treg); macro_build (NULL, "nop", ""); macro_build (ep, call ? "bal" : "b", "p"); /* Set to true so that append_insn adds a label. */ emit_branch_likely_macro = TRUE; } else { macro_build (ep, br, fmt, sreg, treg); macro_build (NULL, "nop", ""); } end_noreorder (); } /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as the condition code tested. EP specifies the branch target. */ static void macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc) { const int call = 0; const char *brneg; const char *br; switch (type) { case M_BC1FL: br = "bc1f"; brneg = "bc1t"; break; case M_BC1TL: br = "bc1t"; brneg = "bc1f"; break; case M_BC2FL: br = "bc2f"; brneg = "bc2t"; break; case M_BC2TL: br = "bc2t"; brneg = "bc2f"; break; default: abort (); } macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO); } /* Emit a two-argument branch macro specified by TYPE, using SREG as the register tested. EP specifies the branch target. */ static void macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg) { const char *brneg = NULL; const char *br; int call = 0; switch (type) { case M_BGEZ: br = "bgez"; break; case M_BGEZL: br = mips_opts.micromips ? "bgez" : "bgezl"; brneg = "bltz"; break; case M_BGEZALL: gas_assert (mips_opts.micromips); br = mips_opts.insn32 ? "bgezal" : "bgezals"; brneg = "bltz"; call = 1; break; case M_BGTZ: br = "bgtz"; break; case M_BGTZL: br = mips_opts.micromips ? "bgtz" : "bgtzl"; brneg = "blez"; break; case M_BLEZ: br = "blez"; break; case M_BLEZL: br = mips_opts.micromips ? "blez" : "blezl"; brneg = "bgtz"; break; case M_BLTZ: br = "bltz"; break; case M_BLTZL: br = mips_opts.micromips ? "bltz" : "bltzl"; brneg = "bgez"; break; case M_BLTZALL: gas_assert (mips_opts.micromips); br = mips_opts.insn32 ? "bltzal" : "bltzals"; brneg = "bgez"; call = 1; break; default: abort (); } if (mips_opts.micromips && brneg) macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO); else macro_build (ep, br, "s,p", sreg); } /* Emit a three-argument branch macro specified by TYPE, using SREG and TREG as the registers tested. EP specifies the branch target. */ static void macro_build_branch_rsrt (int type, expressionS *ep, unsigned int sreg, unsigned int treg) { const char *brneg = NULL; const int call = 0; const char *br; switch (type) { case M_BEQ: case M_BEQ_I: br = "beq"; break; case M_BEQL: case M_BEQL_I: br = mips_opts.micromips ? "beq" : "beql"; brneg = "bne"; break; case M_BNE: case M_BNE_I: br = "bne"; break; case M_BNEL: case M_BNEL_I: br = mips_opts.micromips ? "bne" : "bnel"; brneg = "beq"; break; default: abort (); } if (mips_opts.micromips && brneg) macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg); else macro_build (ep, br, "s,t,p", sreg, treg); } /* Return the high part that should be loaded in order to make the low part of VALUE accessible using an offset of OFFBITS bits. */ static offsetT offset_high_part (offsetT value, unsigned int offbits) { offsetT bias; addressT low_mask; if (offbits == 0) return value; bias = 1 << (offbits - 1); low_mask = bias * 2 - 1; return (value + bias) & ~low_mask; } /* Return true if the value stored in offset_expr and offset_reloc fits into a signed offset of OFFBITS bits. RANGE is the maximum amount that the caller wants to add without inducing overflow and ALIGN is the known alignment of the value in bytes. */ static bfd_boolean small_offset_p (unsigned int range, unsigned int align, unsigned int offbits) { if (offbits == 16) { /* Accept any relocation operator if overflow isn't a concern. */ if (range < align && *offset_reloc != BFD_RELOC_UNUSED) return TRUE; /* These relocations are guaranteed not to overflow in correct links. */ if (*offset_reloc == BFD_RELOC_MIPS_LITERAL || gprel16_reloc_p (*offset_reloc)) return TRUE; } if (offset_expr.X_op == O_constant && offset_high_part (offset_expr.X_add_number, offbits) == 0 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0) return TRUE; return FALSE; } /* * Build macros * This routine implements the seemingly endless macro or synthesized * instructions and addressing modes in the mips assembly language. Many * of these macros are simple and are similar to each other. These could * probably be handled by some kind of table or grammar approach instead of * this verbose method. Others are not simple macros but are more like * optimizing code generation. * One interesting optimization is when several store macros appear * consecutively that would load AT with the upper half of the same address. * The ensuing load upper instructions are ommited. This implies some kind * of global optimization. We currently only optimize within a single macro. * For many of the load and store macros if the address is specified as a * constant expression in the first 64k of memory (ie ld $2,0x4000c) we * first load register 'at' with zero and use it as the base register. The * mips assembler simply uses register $zero. Just one tiny optimization * we're missing. */ static void macro (struct mips_cl_insn *ip, char *str) { const struct mips_operand_array *operands; unsigned int breg, i; unsigned int tempreg; int mask; int used_at = 0; expressionS label_expr; expressionS expr1; expressionS *ep; const char *s; const char *s2; const char *fmt; int likely = 0; int coproc = 0; int offbits = 16; int call = 0; int jals = 0; int dbl = 0; int imm = 0; int ust = 0; int lp = 0; bfd_boolean large_offset; int off; int hold_mips_optimize; unsigned int align; unsigned int op[MAX_OPERANDS]; gas_assert (! mips_opts.mips16); operands = insn_operands (ip); for (i = 0; i < MAX_OPERANDS; i++) if (operands->operand[i]) op[i] = insn_extract_operand (ip, operands->operand[i]); else op[i] = -1; mask = ip->insn_mo->mask; label_expr.X_op = O_constant; label_expr.X_op_symbol = NULL; label_expr.X_add_symbol = NULL; label_expr.X_add_number = 0; expr1.X_op = O_constant; expr1.X_op_symbol = NULL; expr1.X_add_symbol = NULL; expr1.X_add_number = 1; align = 1; switch (mask) { case M_DABS: dbl = 1; case M_ABS: /* bgez $a0,1f move v0,$a0 sub v0,$zero,$a0 1: */ start_noreorder (); if (mips_opts.micromips) micromips_label_expr (&label_expr); else label_expr.X_add_number = 8; macro_build (&label_expr, "bgez", "s,p", op[1]); if (op[0] == op[1]) macro_build (NULL, "nop", ""); else move_register (op[0], op[1]); macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]); if (mips_opts.micromips) micromips_add_label (); end_noreorder (); break; case M_ADD_I: s = "addi"; s2 = "add"; goto do_addi; case M_ADDU_I: s = "addiu"; s2 = "addu"; goto do_addi; case M_DADD_I: dbl = 1; s = "daddi"; s2 = "dadd"; if (!mips_opts.micromips) goto do_addi; if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= -0x200 && imm_expr.X_add_number < 0x200) { macro_build (NULL, s, "t,r,.", op[0], op[1], imm_expr.X_add_number); break; } goto do_addi_i; case M_DADDU_I: dbl = 1; s = "daddiu"; s2 = "daddu"; do_addi: if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000) { macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16); break; } do_addi_i: used_at = 1; load_register (AT, &imm_expr, dbl); macro_build (NULL, s2, "d,v,t", op[0], op[1], AT); break; case M_AND_I: s = "andi"; s2 = "and"; goto do_bit; case M_OR_I: s = "ori"; s2 = "or"; goto do_bit; case M_NOR_I: s = ""; s2 = "nor"; goto do_bit; case M_XOR_I: s = "xori"; s2 = "xor"; do_bit: if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= 0 && imm_expr.X_add_number < 0x10000) { if (mask != M_NOR_I) macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16); else { macro_build (&imm_expr, "ori", "t,r,i", op[0], op[1], BFD_RELOC_LO16); macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0); } break; } used_at = 1; load_register (AT, &imm_expr, HAVE_64BIT_GPRS); macro_build (NULL, s2, "d,v,t", op[0], op[1], AT); break; case M_BALIGN: switch (imm_expr.X_add_number) { case 0: macro_build (NULL, "nop", ""); break; case 2: macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]); break; case 1: case 3: macro_build (NULL, "balign", "t,s,2", op[0], op[1], (int) imm_expr.X_add_number); break; default: as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"), (unsigned long) imm_expr.X_add_number); break; } break; case M_BC1FL: case M_BC1TL: case M_BC2FL: case M_BC2TL: gas_assert (mips_opts.micromips); macro_build_branch_ccl (mask, &offset_expr, EXTRACT_OPERAND (1, BCC, *ip)); break; case M_BEQ_I: case M_BEQL_I: case M_BNE_I: case M_BNEL_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) op[1] = 0; else { op[1] = AT; used_at = 1; load_register (op[1], &imm_expr, HAVE_64BIT_GPRS); } /* Fall through. */ case M_BEQL: case M_BNEL: macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]); break; case M_BGEL: likely = 1; case M_BGE: if (op[1] == 0) macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]); else if (op[0] == 0) macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]); else { used_at = 1; macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]); macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ, &offset_expr, AT, ZERO); } break; case M_BGEZL: case M_BGEZALL: case M_BGTZL: case M_BLEZL: case M_BLTZL: case M_BLTZALL: macro_build_branch_rs (mask, &offset_expr, op[0]); break; case M_BGTL_I: likely = 1; case M_BGT_I: /* Check for > max integer. */ if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= GPR_SMAX) { do_false: /* Result is always false. */ if (! likely) macro_build (NULL, "nop", ""); else macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO); break; } if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); ++imm_expr.X_add_number; /* FALLTHROUGH */ case M_BGE_I: case M_BGEL_I: if (mask == M_BGEL_I) likely = 1; if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) { macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]); break; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) { macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]); break; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number <= GPR_SMIN) { do_true: /* result is always true */ as_warn (_("Branch %s is always true"), ip->insn_mo->name); macro_build (&offset_expr, "b", "p"); break; } used_at = 1; set_at (op[0], 0); macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ, &offset_expr, AT, ZERO); break; case M_BGEUL: likely = 1; case M_BGEU: if (op[1] == 0) goto do_true; else if (op[0] == 0) macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ, &offset_expr, ZERO, op[1]); else { used_at = 1; macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]); macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ, &offset_expr, AT, ZERO); } break; case M_BGTUL_I: likely = 1; case M_BGTU_I: if (op[0] == 0 || (HAVE_32BIT_GPRS && imm_expr.X_op == O_constant && imm_expr.X_add_number == -1)) goto do_false; if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); ++imm_expr.X_add_number; /* FALLTHROUGH */ case M_BGEU_I: case M_BGEUL_I: if (mask == M_BGEUL_I) likely = 1; if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) goto do_true; else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) macro_build_branch_rsrt (likely ? M_BNEL : M_BNE, &offset_expr, op[0], ZERO); else { used_at = 1; set_at (op[0], 1); macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ, &offset_expr, AT, ZERO); } break; case M_BGTL: likely = 1; case M_BGT: if (op[1] == 0) macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]); else if (op[0] == 0) macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]); else { used_at = 1; macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]); macro_build_branch_rsrt (likely ? M_BNEL : M_BNE, &offset_expr, AT, ZERO); } break; case M_BGTUL: likely = 1; case M_BGTU: if (op[1] == 0) macro_build_branch_rsrt (likely ? M_BNEL : M_BNE, &offset_expr, op[0], ZERO); else if (op[0] == 0) goto do_false; else { used_at = 1; macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]); macro_build_branch_rsrt (likely ? M_BNEL : M_BNE, &offset_expr, AT, ZERO); } break; case M_BLEL: likely = 1; case M_BLE: if (op[1] == 0) macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]); else if (op[0] == 0) macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]); else { used_at = 1; macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]); macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ, &offset_expr, AT, ZERO); } break; case M_BLEL_I: likely = 1; case M_BLE_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= GPR_SMAX) goto do_true; if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); ++imm_expr.X_add_number; /* FALLTHROUGH */ case M_BLT_I: case M_BLTL_I: if (mask == M_BLTL_I) likely = 1; if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]); else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]); else { used_at = 1; set_at (op[0], 0); macro_build_branch_rsrt (likely ? M_BNEL : M_BNE, &offset_expr, AT, ZERO); } break; case M_BLEUL: likely = 1; case M_BLEU: if (op[1] == 0) macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ, &offset_expr, op[0], ZERO); else if (op[0] == 0) goto do_true; else { used_at = 1; macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]); macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ, &offset_expr, AT, ZERO); } break; case M_BLEUL_I: likely = 1; case M_BLEU_I: if (op[0] == 0 || (HAVE_32BIT_GPRS && imm_expr.X_op == O_constant && imm_expr.X_add_number == -1)) goto do_true; if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); ++imm_expr.X_add_number; /* FALLTHROUGH */ case M_BLTU_I: case M_BLTUL_I: if (mask == M_BLTUL_I) likely = 1; if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) goto do_false; else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ, &offset_expr, op[0], ZERO); else { used_at = 1; set_at (op[0], 1); macro_build_branch_rsrt (likely ? M_BNEL : M_BNE, &offset_expr, AT, ZERO); } break; case M_BLTL: likely = 1; case M_BLT: if (op[1] == 0) macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]); else if (op[0] == 0) macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]); else { used_at = 1; macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]); macro_build_branch_rsrt (likely ? M_BNEL : M_BNE, &offset_expr, AT, ZERO); } break; case M_BLTUL: likely = 1; case M_BLTU: if (op[1] == 0) goto do_false; else if (op[0] == 0) macro_build_branch_rsrt (likely ? M_BNEL : M_BNE, &offset_expr, ZERO, op[1]); else { used_at = 1; macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]); macro_build_branch_rsrt (likely ? M_BNEL : M_BNE, &offset_expr, AT, ZERO); } break; case M_DEXT: { /* Use unsigned arithmetic. */ addressT pos; addressT size; if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant) { as_bad (_("Unsupported large constant")); pos = size = 1; } else { pos = imm_expr.X_add_number; size = imm2_expr.X_add_number; } if (pos > 63) { report_bad_range (ip, 3, pos, 0, 63, FALSE); pos = 1; } if (size == 0 || size > 64 || (pos + size - 1) > 63) { report_bad_field (pos, size); size = 1; } if (size <= 32 && pos < 32) { s = "dext"; fmt = "t,r,+A,+C"; } else if (size <= 32) { s = "dextu"; fmt = "t,r,+E,+H"; } else { s = "dextm"; fmt = "t,r,+A,+G"; } macro_build ((expressionS *) NULL, s, fmt, op[0], op[1], (int) pos, (int) (size - 1)); } break; case M_DINS: { /* Use unsigned arithmetic. */ addressT pos; addressT size; if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant) { as_bad (_("Unsupported large constant")); pos = size = 1; } else { pos = imm_expr.X_add_number; size = imm2_expr.X_add_number; } if (pos > 63) { report_bad_range (ip, 3, pos, 0, 63, FALSE); pos = 1; } if (size == 0 || size > 64 || (pos + size - 1) > 63) { report_bad_field (pos, size); size = 1; } if (pos < 32 && (pos + size - 1) < 32) { s = "dins"; fmt = "t,r,+A,+B"; } else if (pos >= 32) { s = "dinsu"; fmt = "t,r,+E,+F"; } else { s = "dinsm"; fmt = "t,r,+A,+F"; } macro_build ((expressionS *) NULL, s, fmt, op[0], op[1], (int) pos, (int) (pos + size - 1)); } break; case M_DDIV_3: dbl = 1; case M_DIV_3: s = "mflo"; goto do_div3; case M_DREM_3: dbl = 1; case M_REM_3: s = "mfhi"; do_div3: if (op[2] == 0) { as_warn (_("Divide by zero.")); if (mips_trap) macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7); else macro_build (NULL, "break", BRK_FMT, 7); break; } start_noreorder (); if (mips_trap) { macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7); macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]); } else { if (mips_opts.micromips) micromips_label_expr (&label_expr); else label_expr.X_add_number = 8; macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO); macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]); macro_build (NULL, "break", BRK_FMT, 7); if (mips_opts.micromips) micromips_add_label (); } expr1.X_add_number = -1; used_at = 1; load_register (AT, &expr1, dbl); if (mips_opts.micromips) micromips_label_expr (&label_expr); else label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16); macro_build (&label_expr, "bne", "s,t,p", op[2], AT); if (dbl) { expr1.X_add_number = 1; load_register (AT, &expr1, dbl); macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31); } else { expr1.X_add_number = 0x80000000; macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16); } if (mips_trap) { macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6); /* We want to close the noreorder block as soon as possible, so that later insns are available for delay slot filling. */ end_noreorder (); } else { if (mips_opts.micromips) micromips_label_expr (&label_expr); else label_expr.X_add_number = 8; macro_build (&label_expr, "bne", "s,t,p", op[1], AT); macro_build (NULL, "nop", ""); /* We want to close the noreorder block as soon as possible, so that later insns are available for delay slot filling. */ end_noreorder (); macro_build (NULL, "break", BRK_FMT, 6); } if (mips_opts.micromips) micromips_add_label (); macro_build (NULL, s, MFHL_FMT, op[0]); break; case M_DIV_3I: s = "div"; s2 = "mflo"; goto do_divi; case M_DIVU_3I: s = "divu"; s2 = "mflo"; goto do_divi; case M_REM_3I: s = "div"; s2 = "mfhi"; goto do_divi; case M_REMU_3I: s = "divu"; s2 = "mfhi"; goto do_divi; case M_DDIV_3I: dbl = 1; s = "ddiv"; s2 = "mflo"; goto do_divi; case M_DDIVU_3I: dbl = 1; s = "ddivu"; s2 = "mflo"; goto do_divi; case M_DREM_3I: dbl = 1; s = "ddiv"; s2 = "mfhi"; goto do_divi; case M_DREMU_3I: dbl = 1; s = "ddivu"; s2 = "mfhi"; do_divi: if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) { as_warn (_("Divide by zero.")); if (mips_trap) macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7); else macro_build (NULL, "break", BRK_FMT, 7); break; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) { if (strcmp (s2, "mflo") == 0) move_register (op[0], op[1]); else move_register (op[0], ZERO); break; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u') { if (strcmp (s2, "mflo") == 0) macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]); else move_register (op[0], ZERO); break; } used_at = 1; load_register (AT, &imm_expr, dbl); macro_build (NULL, s, "z,s,t", op[1], AT); macro_build (NULL, s2, MFHL_FMT, op[0]); break; case M_DIVU_3: s = "divu"; s2 = "mflo"; goto do_divu3; case M_REMU_3: s = "divu"; s2 = "mfhi"; goto do_divu3; case M_DDIVU_3: s = "ddivu"; s2 = "mflo"; goto do_divu3; case M_DREMU_3: s = "ddivu"; s2 = "mfhi"; do_divu3: start_noreorder (); if (mips_trap) { macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7); macro_build (NULL, s, "z,s,t", op[1], op[2]); /* We want to close the noreorder block as soon as possible, so that later insns are available for delay slot filling. */ end_noreorder (); } else { if (mips_opts.micromips) micromips_label_expr (&label_expr); else label_expr.X_add_number = 8; macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO); macro_build (NULL, s, "z,s,t", op[1], op[2]); /* We want to close the noreorder block as soon as possible, so that later insns are available for delay slot filling. */ end_noreorder (); macro_build (NULL, "break", BRK_FMT, 7); if (mips_opts.micromips) micromips_add_label (); } macro_build (NULL, s2, MFHL_FMT, op[0]); break; case M_DLCA_AB: dbl = 1; case M_LCA_AB: call = 1; goto do_la; case M_DLA_AB: dbl = 1; case M_LA_AB: do_la: /* Load the address of a symbol into a register. If breg is not zero, we then add a base register to it. */ breg = op[2]; if (dbl && HAVE_32BIT_GPRS) as_warn (_("dla used to load 32-bit register")); if (!dbl && HAVE_64BIT_OBJECTS) as_warn (_("la used to load 64-bit address")); if (small_offset_p (0, align, 16)) { macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg, -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]); break; } if (mips_opts.at && (op[0] == breg)) { tempreg = AT; used_at = 1; } else tempreg = op[0]; if (offset_expr.X_op != O_symbol && offset_expr.X_op != O_constant) { as_bad (_("Expression too complex")); offset_expr.X_op = O_constant; } if (offset_expr.X_op == O_constant) load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES); else if (mips_pic == NO_PIC) { /* If this is a reference to a GP relative symbol, we want addiu $tempreg,$gp, (BFD_RELOC_GPREL16) Otherwise we want lui $tempreg, (BFD_RELOC_HI16_S) addiu $tempreg,$tempreg, (BFD_RELOC_LO16) If we have a constant, we need two instructions anyhow, so we may as well always use the latter form. With 64bit address space and a usable $at we want lui $tempreg, (BFD_RELOC_MIPS_HIGHEST) lui $at, (BFD_RELOC_HI16_S) daddiu $tempreg, (BFD_RELOC_MIPS_HIGHER) daddiu $at, (BFD_RELOC_LO16) dsll32 $tempreg,0 daddu $tempreg,$tempreg,$at If $at is already in use, we use a path which is suboptimal on superscalar processors. lui $tempreg, (BFD_RELOC_MIPS_HIGHEST) daddiu $tempreg, (BFD_RELOC_MIPS_HIGHER) dsll $tempreg,16 daddiu $tempreg, (BFD_RELOC_HI16_S) dsll $tempreg,16 daddiu $tempreg, (BFD_RELOC_LO16) For GP relative symbols in 64bit address space we can use the same sequence as in 32bit address space. */ if (HAVE_64BIT_SYMBOLS) { if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET && !nopic_need_relax (offset_expr.X_add_symbol, 1)) { relax_start (offset_expr.X_add_symbol); macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg, mips_gp_register, BFD_RELOC_GPREL16); relax_switch (); } if (used_at == 0 && mips_opts.at) { macro_build (&offset_expr, "lui", LUI_FMT, tempreg, BFD_RELOC_MIPS_HIGHEST); macro_build (&offset_expr, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S); macro_build (&offset_expr, "daddiu", "t,r,j", tempreg, tempreg, BFD_RELOC_MIPS_HIGHER); macro_build (&offset_expr, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16); macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0); macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT); used_at = 1; } else { macro_build (&offset_expr, "lui", LUI_FMT, tempreg, BFD_RELOC_MIPS_HIGHEST); macro_build (&offset_expr, "daddiu", "t,r,j", tempreg, tempreg, BFD_RELOC_MIPS_HIGHER); macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16); macro_build (&offset_expr, "daddiu", "t,r,j", tempreg, tempreg, BFD_RELOC_HI16_S); macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16); macro_build (&offset_expr, "daddiu", "t,r,j", tempreg, tempreg, BFD_RELOC_LO16); } if (mips_relax.sequence) relax_end (); } else { if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET && !nopic_need_relax (offset_expr.X_add_symbol, 1)) { relax_start (offset_expr.X_add_symbol); macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg, mips_gp_register, BFD_RELOC_GPREL16); relax_switch (); } if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number)) as_bad (_("Offset too large")); macro_build_lui (&offset_expr, tempreg); macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg, tempreg, BFD_RELOC_LO16); if (mips_relax.sequence) relax_end (); } } else if (!mips_big_got && !HAVE_NEWABI) { int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16; /* If this is a reference to an external symbol, and there is no constant, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) or for lca or if tempreg is PIC_CALL_REG lw $tempreg,($gp) (BFD_RELOC_MIPS_CALL16) For a local symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $tempreg,$tempreg, (BFD_RELOC_LO16) If we have a small constant, and this is a reference to an external symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $tempreg,$tempreg, For a local symbol, we want the same instruction sequence, but we output a BFD_RELOC_LO16 reloc on the addiu instruction. If we have a large constant, and this is a reference to an external symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) lui $at, addiu $at,$at, addu $tempreg,$tempreg,$at For a local symbol, we want the same instruction sequence, but we output a BFD_RELOC_LO16 reloc on the addiu instruction. */ if (offset_expr.X_add_number == 0) { if (mips_pic == SVR4_PIC && breg == 0 && (call || tempreg == PIC_CALL_REG)) lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16; relax_start (offset_expr.X_add_symbol); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, lw_reloc_type, mips_gp_register); if (breg != 0) { /* We're going to put in an addu instruction using tempreg, so we may as well insert the nop right now. */ load_delay_nop (); } relax_switch (); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register); load_delay_nop (); macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg, tempreg, BFD_RELOC_LO16); relax_end (); /* FIXME: If breg == 0, and the next instruction uses $tempreg, then if this variant case is used an extra nop will be generated. */ } else if (offset_expr.X_add_number >= -0x8000 && offset_expr.X_add_number < 0x8000) { load_got_offset (tempreg, &offset_expr); load_delay_nop (); add_got_offset (tempreg, &offset_expr); } else { expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = SEXT_16BIT (offset_expr.X_add_number); load_got_offset (tempreg, &offset_expr); offset_expr.X_add_number = expr1.X_add_number; /* If we are going to add in a base register, and the target register and the base register are the same, then we are using AT as a temporary register. Since we want to load the constant into AT, we add our current AT (from the global offset table) and the register into the register now, and pretend we were not using a base register. */ if (breg == op[0]) { load_delay_nop (); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], AT, breg); breg = 0; tempreg = op[0]; } add_got_offset_hilo (tempreg, &offset_expr, AT); used_at = 1; } } else if (!mips_big_got && HAVE_NEWABI) { int add_breg_early = 0; /* If this is a reference to an external, and there is no constant, or local symbol (*), with or without a constant, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT_DISP) or for lca or if tempreg is PIC_CALL_REG lw $tempreg,($gp) (BFD_RELOC_MIPS_CALL16) If we have a small constant, and this is a reference to an external symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT_DISP) addiu $tempreg,$tempreg, If we have a large constant, and this is a reference to an external symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT_DISP) lui $at, addiu $at,$at, addu $tempreg,$tempreg,$at (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for local symbols, even though it introduces an additional instruction. */ if (offset_expr.X_add_number) { expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = 0; relax_start (offset_expr.X_add_symbol); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, BFD_RELOC_MIPS_GOT_DISP, mips_gp_register); if (expr1.X_add_number >= -0x8000 && expr1.X_add_number < 0x8000) { macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j", tempreg, tempreg, BFD_RELOC_LO16); } else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000)) { unsigned int dreg; /* If we are going to add in a base register, and the target register and the base register are the same, then we are using AT as a temporary register. Since we want to load the constant into AT, we add our current AT (from the global offset table) and the register into the register now, and pretend we were not using a base register. */ if (breg != op[0]) dreg = tempreg; else { gas_assert (tempreg == AT); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], AT, breg); dreg = op[0]; add_breg_early = 1; } load_register (AT, &expr1, HAVE_64BIT_ADDRESSES); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT); used_at = 1; } else as_bad (_("PIC code offset overflow (max 32 signed bits)")); relax_switch (); offset_expr.X_add_number = expr1.X_add_number; macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, BFD_RELOC_MIPS_GOT_DISP, mips_gp_register); if (add_breg_early) { macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg); breg = 0; tempreg = op[0]; } relax_end (); } else if (breg == 0 && (call || tempreg == PIC_CALL_REG)) { relax_start (offset_expr.X_add_symbol); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, BFD_RELOC_MIPS_CALL16, mips_gp_register); relax_switch (); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, BFD_RELOC_MIPS_GOT_DISP, mips_gp_register); relax_end (); } else { macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, BFD_RELOC_MIPS_GOT_DISP, mips_gp_register); } } else if (mips_big_got && !HAVE_NEWABI) { int gpdelay; int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16; int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16; int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16; /* This is the large GOT case. If this is a reference to an external symbol, and there is no constant, we want lui $tempreg, (BFD_RELOC_MIPS_GOT_HI16) addu $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_GOT_LO16) or for lca or if tempreg is PIC_CALL_REG lui $tempreg, (BFD_RELOC_MIPS_CALL_HI16) addu $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_CALL_LO16) For a local symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $tempreg,$tempreg, (BFD_RELOC_LO16) If we have a small constant, and this is a reference to an external symbol, we want lui $tempreg, (BFD_RELOC_MIPS_GOT_HI16) addu $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_GOT_LO16) nop addiu $tempreg,$tempreg, For a local symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $tempreg,$tempreg, (BFD_RELOC_LO16) If we have a large constant, and this is a reference to an external symbol, we want lui $tempreg, (BFD_RELOC_MIPS_GOT_HI16) addu $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_GOT_LO16) lui $at, addiu $at,$at, addu $tempreg,$tempreg,$at For a local symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) lui $at, addiu $at,$at, (BFD_RELOC_LO16) addu $tempreg,$tempreg,$at */ expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = 0; relax_start (offset_expr.X_add_symbol); gpdelay = reg_needs_delay (mips_gp_register); if (expr1.X_add_number == 0 && breg == 0 && (call || tempreg == PIC_CALL_REG)) { lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16; lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16; } macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, mips_gp_register); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, lw_reloc_type, tempreg); if (expr1.X_add_number == 0) { if (breg != 0) { /* We're going to put in an addu instruction using tempreg, so we may as well insert the nop right now. */ load_delay_nop (); } } else if (expr1.X_add_number >= -0x8000 && expr1.X_add_number < 0x8000) { load_delay_nop (); macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j", tempreg, tempreg, BFD_RELOC_LO16); } else { unsigned int dreg; /* If we are going to add in a base register, and the target register and the base register are the same, then we are using AT as a temporary register. Since we want to load the constant into AT, we add our current AT (from the global offset table) and the register into the register now, and pretend we were not using a base register. */ if (breg != op[0]) dreg = tempreg; else { gas_assert (tempreg == AT); load_delay_nop (); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], AT, breg); dreg = op[0]; } load_register (AT, &expr1, HAVE_64BIT_ADDRESSES); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT); used_at = 1; } offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number); relax_switch (); if (gpdelay) { /* This is needed because this instruction uses $gp, but the first instruction on the main stream does not. */ macro_build (NULL, "nop", ""); } macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, local_reloc_type, mips_gp_register); if (expr1.X_add_number >= -0x8000 && expr1.X_add_number < 0x8000) { load_delay_nop (); macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg, tempreg, BFD_RELOC_LO16); /* FIXME: If add_number is 0, and there was no base register, the external symbol case ended with a load, so if the symbol turns out to not be external, and the next instruction uses tempreg, an unnecessary nop will be inserted. */ } else { if (breg == op[0]) { /* We must add in the base register now, as in the external symbol case. */ gas_assert (tempreg == AT); load_delay_nop (); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], AT, breg); tempreg = op[0]; /* We set breg to 0 because we have arranged to add it in in both cases. */ breg = 0; } macro_build_lui (&expr1, AT); macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, AT, BFD_RELOC_LO16); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, AT); used_at = 1; } relax_end (); } else if (mips_big_got && HAVE_NEWABI) { int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16; int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16; int add_breg_early = 0; /* This is the large GOT case. If this is a reference to an external symbol, and there is no constant, we want lui $tempreg, (BFD_RELOC_MIPS_GOT_HI16) add $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_GOT_LO16) or for lca or if tempreg is PIC_CALL_REG lui $tempreg, (BFD_RELOC_MIPS_CALL_HI16) add $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_CALL_LO16) If we have a small constant, and this is a reference to an external symbol, we want lui $tempreg, (BFD_RELOC_MIPS_GOT_HI16) add $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_GOT_LO16) addi $tempreg,$tempreg, If we have a large constant, and this is a reference to an external symbol, we want lui $tempreg, (BFD_RELOC_MIPS_GOT_HI16) addu $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_GOT_LO16) lui $at, addi $at,$at, add $tempreg,$tempreg,$at If we have NewABI, and we know it's a local symbol, we want lw $reg,($gp) (BFD_RELOC_MIPS_GOT_PAGE) addiu $reg,$reg, (BFD_RELOC_MIPS_GOT_OFST) otherwise we have to resort to GOT_HI16/GOT_LO16. */ relax_start (offset_expr.X_add_symbol); expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = 0; if (expr1.X_add_number == 0 && breg == 0 && (call || tempreg == PIC_CALL_REG)) { lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16; lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16; } macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, mips_gp_register); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, lw_reloc_type, tempreg); if (expr1.X_add_number == 0) ; else if (expr1.X_add_number >= -0x8000 && expr1.X_add_number < 0x8000) { macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j", tempreg, tempreg, BFD_RELOC_LO16); } else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000)) { unsigned int dreg; /* If we are going to add in a base register, and the target register and the base register are the same, then we are using AT as a temporary register. Since we want to load the constant into AT, we add our current AT (from the global offset table) and the register into the register now, and pretend we were not using a base register. */ if (breg != op[0]) dreg = tempreg; else { gas_assert (tempreg == AT); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], AT, breg); dreg = op[0]; add_breg_early = 1; } load_register (AT, &expr1, HAVE_64BIT_ADDRESSES); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT); used_at = 1; } else as_bad (_("PIC code offset overflow (max 32 signed bits)")); relax_switch (); offset_expr.X_add_number = expr1.X_add_number; macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register); macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg, tempreg, BFD_RELOC_MIPS_GOT_OFST); if (add_breg_early) { macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg); breg = 0; tempreg = op[0]; } relax_end (); } else abort (); if (breg != 0) macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg); break; case M_MSGSND: gas_assert (!mips_opts.micromips); macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01); break; case M_MSGLD: gas_assert (!mips_opts.micromips); macro_build (NULL, "c2", "C", 0x02); break; case M_MSGLD_T: gas_assert (!mips_opts.micromips); macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02); break; case M_MSGWAIT: gas_assert (!mips_opts.micromips); macro_build (NULL, "c2", "C", 3); break; case M_MSGWAIT_T: gas_assert (!mips_opts.micromips); macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03); break; case M_J_A: /* The j instruction may not be used in PIC code, since it requires an absolute address. We convert it to a b instruction. */ if (mips_pic == NO_PIC) macro_build (&offset_expr, "j", "a"); else macro_build (&offset_expr, "b", "p"); break; /* The jal instructions must be handled as macros because when generating PIC code they expand to multi-instruction sequences. Normally they are simple instructions. */ case M_JALS_1: op[1] = op[0]; op[0] = RA; /* Fall through. */ case M_JALS_2: gas_assert (mips_opts.micromips); if (mips_opts.insn32) { as_bad (_("Opcode not supported in the `insn32' mode `%s'"), str); break; } jals = 1; goto jal; case M_JAL_1: op[1] = op[0]; op[0] = RA; /* Fall through. */ case M_JAL_2: jal: if (mips_pic == NO_PIC) { s = jals ? "jalrs" : "jalr"; if (mips_opts.micromips && !mips_opts.insn32 && op[0] == RA && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT)) macro_build (NULL, s, "mj", op[1]); else macro_build (NULL, s, JALR_FMT, op[0], op[1]); } else { int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI && mips_cprestore_offset >= 0); if (op[1] != PIC_CALL_REG) as_warn (_("MIPS PIC call to register other than $25")); s = ((mips_opts.micromips && !mips_opts.insn32 && (!mips_opts.noreorder || cprestore)) ? "jalrs" : "jalr"); if (mips_opts.micromips && !mips_opts.insn32 && op[0] == RA && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT)) macro_build (NULL, s, "mj", op[1]); else macro_build (NULL, s, JALR_FMT, op[0], op[1]); if (mips_pic == SVR4_PIC && !HAVE_NEWABI) { if (mips_cprestore_offset < 0) as_warn (_("No .cprestore pseudo-op used in PIC code")); else { if (!mips_frame_reg_valid) { as_warn (_("No .frame pseudo-op used in PIC code")); /* Quiet this warning. */ mips_frame_reg_valid = 1; } if (!mips_cprestore_valid) { as_warn (_("No .cprestore pseudo-op used in PIC code")); /* Quiet this warning. */ mips_cprestore_valid = 1; } if (mips_opts.noreorder) macro_build (NULL, "nop", ""); expr1.X_add_number = mips_cprestore_offset; macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN, mips_gp_register, mips_frame_reg, HAVE_64BIT_ADDRESSES); } } } break; case M_JALS_A: gas_assert (mips_opts.micromips); if (mips_opts.insn32) { as_bad (_("Opcode not supported in the `insn32' mode `%s'"), str); break; } jals = 1; /* Fall through. */ case M_JAL_A: if (mips_pic == NO_PIC) macro_build (&offset_expr, jals ? "jals" : "jal", "a"); else if (mips_pic == SVR4_PIC) { /* If this is a reference to an external symbol, and we are using a small GOT, we want lw $25,($gp) (BFD_RELOC_MIPS_CALL16) nop jalr $ra,$25 nop lw $gp,cprestore($sp) The cprestore value is set using the .cprestore pseudo-op. If we are using a big GOT, we want lui $25, (BFD_RELOC_MIPS_CALL_HI16) addu $25,$25,$gp lw $25,($25) (BFD_RELOC_MIPS_CALL_LO16) nop jalr $ra,$25 nop lw $gp,cprestore($sp) If the symbol is not external, we want lw $25,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $25,$25, (BFD_RELOC_LO16) jalr $ra,$25 nop lw $gp,cprestore($sp) For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16 sequences above, minus nops, unless the symbol is local, which enables us to use GOT_PAGE/GOT_OFST (big got) or GOT_DISP. */ if (HAVE_NEWABI) { if (!mips_big_got) { relax_start (offset_expr.X_add_symbol); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", PIC_CALL_REG, BFD_RELOC_MIPS_CALL16, mips_gp_register); relax_switch (); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP, mips_gp_register); relax_end (); } else { relax_start (offset_expr.X_add_symbol); macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG, BFD_RELOC_MIPS_CALL_HI16); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG, PIC_CALL_REG, mips_gp_register); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16, PIC_CALL_REG); relax_switch (); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register); macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_MIPS_GOT_OFST); relax_end (); } macro_build_jalr (&offset_expr, 0); } else { relax_start (offset_expr.X_add_symbol); if (!mips_big_got) { macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", PIC_CALL_REG, BFD_RELOC_MIPS_CALL16, mips_gp_register); load_delay_nop (); relax_switch (); } else { int gpdelay; gpdelay = reg_needs_delay (mips_gp_register); macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG, BFD_RELOC_MIPS_CALL_HI16); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG, PIC_CALL_REG, mips_gp_register); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16, PIC_CALL_REG); load_delay_nop (); relax_switch (); if (gpdelay) macro_build (NULL, "nop", ""); } macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", PIC_CALL_REG, BFD_RELOC_MIPS_GOT16, mips_gp_register); load_delay_nop (); macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16); relax_end (); macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0); if (mips_cprestore_offset < 0) as_warn (_("No .cprestore pseudo-op used in PIC code")); else { if (!mips_frame_reg_valid) { as_warn (_("No .frame pseudo-op used in PIC code")); /* Quiet this warning. */ mips_frame_reg_valid = 1; } if (!mips_cprestore_valid) { as_warn (_("No .cprestore pseudo-op used in PIC code")); /* Quiet this warning. */ mips_cprestore_valid = 1; } if (mips_opts.noreorder) macro_build (NULL, "nop", ""); expr1.X_add_number = mips_cprestore_offset; macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN, mips_gp_register, mips_frame_reg, HAVE_64BIT_ADDRESSES); } } } else if (mips_pic == VXWORKS_PIC) as_bad (_("Non-PIC jump used in PIC library")); else abort (); break; case M_LBUE_AB: s = "lbue"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_LHUE_AB: s = "lhue"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_LBE_AB: s = "lbe"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_LHE_AB: s = "lhe"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_LLE_AB: s = "lle"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_LWE_AB: s = "lwe"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_LWLE_AB: s = "lwle"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_LWRE_AB: s = "lwre"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_SBE_AB: s = "sbe"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_SCE_AB: s = "sce"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_SHE_AB: s = "she"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_SWE_AB: s = "swe"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_SWLE_AB: s = "swle"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_SWRE_AB: s = "swre"; fmt = "t,+j(b)"; offbits = 9; goto ld_st; case M_ACLR_AB: s = "aclr"; fmt = "\\,~(b)"; offbits = 12; goto ld_st; case M_ASET_AB: s = "aset"; fmt = "\\,~(b)"; offbits = 12; goto ld_st; case M_LB_AB: s = "lb"; fmt = "t,o(b)"; goto ld; case M_LBU_AB: s = "lbu"; fmt = "t,o(b)"; goto ld; case M_LH_AB: s = "lh"; fmt = "t,o(b)"; goto ld; case M_LHU_AB: s = "lhu"; fmt = "t,o(b)"; goto ld; case M_LW_AB: s = "lw"; fmt = "t,o(b)"; goto ld; case M_LWC0_AB: gas_assert (!mips_opts.micromips); s = "lwc0"; fmt = "E,o(b)"; /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_LWC1_AB: s = "lwc1"; fmt = "T,o(b)"; /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_LWC2_AB: s = "lwc2"; fmt = COP12_FMT; offbits = (mips_opts.micromips ? 12 : 16); /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_LWC3_AB: gas_assert (!mips_opts.micromips); s = "lwc3"; fmt = "E,o(b)"; /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_LWL_AB: s = "lwl"; fmt = MEM12_FMT; offbits = (mips_opts.micromips ? 12 : 16); goto ld_st; case M_LWR_AB: s = "lwr"; fmt = MEM12_FMT; offbits = (mips_opts.micromips ? 12 : 16); goto ld_st; case M_LDC1_AB: s = "ldc1"; fmt = "T,o(b)"; /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_LDC2_AB: s = "ldc2"; fmt = COP12_FMT; offbits = (mips_opts.micromips ? 12 : 16); /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_LQC2_AB: s = "lqc2"; fmt = "+7,o(b)"; /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_LDC3_AB: s = "ldc3"; fmt = "E,o(b)"; /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_LDL_AB: s = "ldl"; fmt = MEM12_FMT; offbits = (mips_opts.micromips ? 12 : 16); goto ld_st; case M_LDR_AB: s = "ldr"; fmt = MEM12_FMT; offbits = (mips_opts.micromips ? 12 : 16); goto ld_st; case M_LL_AB: s = "ll"; fmt = MEM12_FMT; offbits = (mips_opts.micromips ? 12 : 16); goto ld; case M_LLD_AB: s = "lld"; fmt = MEM12_FMT; offbits = (mips_opts.micromips ? 12 : 16); goto ld; case M_LWU_AB: s = "lwu"; fmt = MEM12_FMT; offbits = (mips_opts.micromips ? 12 : 16); goto ld; case M_LWP_AB: gas_assert (mips_opts.micromips); s = "lwp"; fmt = "t,~(b)"; offbits = 12; lp = 1; goto ld; case M_LDP_AB: gas_assert (mips_opts.micromips); s = "ldp"; fmt = "t,~(b)"; offbits = 12; lp = 1; goto ld; case M_LWM_AB: gas_assert (mips_opts.micromips); s = "lwm"; fmt = "n,~(b)"; offbits = 12; goto ld_st; case M_LDM_AB: gas_assert (mips_opts.micromips); s = "ldm"; fmt = "n,~(b)"; offbits = 12; goto ld_st; ld: /* We don't want to use $0 as tempreg. */ if (op[2] == op[0] + lp || op[0] + lp == ZERO) goto ld_st; else tempreg = op[0] + lp; goto ld_noat; case M_SB_AB: s = "sb"; fmt = "t,o(b)"; goto ld_st; case M_SH_AB: s = "sh"; fmt = "t,o(b)"; goto ld_st; case M_SW_AB: s = "sw"; fmt = "t,o(b)"; goto ld_st; case M_SWC0_AB: gas_assert (!mips_opts.micromips); s = "swc0"; fmt = "E,o(b)"; /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_SWC1_AB: s = "swc1"; fmt = "T,o(b)"; /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_SWC2_AB: s = "swc2"; fmt = COP12_FMT; offbits = (mips_opts.micromips ? 12 : 16); /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_SWC3_AB: gas_assert (!mips_opts.micromips); s = "swc3"; fmt = "E,o(b)"; /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_SWL_AB: s = "swl"; fmt = MEM12_FMT; offbits = (mips_opts.micromips ? 12 : 16); goto ld_st; case M_SWR_AB: s = "swr"; fmt = MEM12_FMT; offbits = (mips_opts.micromips ? 12 : 16); goto ld_st; case M_SC_AB: s = "sc"; fmt = MEM12_FMT; offbits = (mips_opts.micromips ? 12 : 16); goto ld_st; case M_SCD_AB: s = "scd"; fmt = MEM12_FMT; offbits = (mips_opts.micromips ? 12 : 16); goto ld_st; case M_CACHE_AB: s = "cache"; fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)"; offbits = (mips_opts.micromips ? 12 : 16); goto ld_st; case M_CACHEE_AB: s = "cachee"; fmt = "k,+j(b)"; offbits = 9; goto ld_st; case M_PREF_AB: s = "pref"; fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)"; offbits = (mips_opts.micromips ? 12 : 16); goto ld_st; case M_PREFE_AB: s = "prefe"; fmt = "k,+j(b)"; offbits = 9; goto ld_st; case M_SDC1_AB: s = "sdc1"; fmt = "T,o(b)"; coproc = 1; /* Itbl support may require additional care here. */ goto ld_st; case M_SDC2_AB: s = "sdc2"; fmt = COP12_FMT; offbits = (mips_opts.micromips ? 12 : 16); /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_SQC2_AB: s = "sqc2"; fmt = "+7,o(b)"; /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_SDC3_AB: gas_assert (!mips_opts.micromips); s = "sdc3"; fmt = "E,o(b)"; /* Itbl support may require additional care here. */ coproc = 1; goto ld_st; case M_SDL_AB: s = "sdl"; fmt = MEM12_FMT; offbits = (mips_opts.micromips ? 12 : 16); goto ld_st; case M_SDR_AB: s = "sdr"; fmt = MEM12_FMT; offbits = (mips_opts.micromips ? 12 : 16); goto ld_st; case M_SWP_AB: gas_assert (mips_opts.micromips); s = "swp"; fmt = "t,~(b)"; offbits = 12; goto ld_st; case M_SDP_AB: gas_assert (mips_opts.micromips); s = "sdp"; fmt = "t,~(b)"; offbits = 12; goto ld_st; case M_SWM_AB: gas_assert (mips_opts.micromips); s = "swm"; fmt = "n,~(b)"; offbits = 12; goto ld_st; case M_SDM_AB: gas_assert (mips_opts.micromips); s = "sdm"; fmt = "n,~(b)"; offbits = 12; ld_st: tempreg = AT; ld_noat: breg = op[2]; if (small_offset_p (0, align, 16)) { /* The first case exists for M_LD_AB and M_SD_AB, which are macros for o32 but which should act like normal instructions otherwise. */ if (offbits == 16) macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0], offset_reloc[1], offset_reloc[2], breg); else if (small_offset_p (0, align, offbits)) { if (offbits == 0) macro_build (NULL, s, fmt, op[0], breg); else macro_build (NULL, s, fmt, op[0], (int) offset_expr.X_add_number, breg); } else { if (tempreg == AT) used_at = 1; macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]); if (offbits == 0) macro_build (NULL, s, fmt, op[0], tempreg); else macro_build (NULL, s, fmt, op[0], 0, tempreg); } break; } if (tempreg == AT) used_at = 1; if (offset_expr.X_op != O_constant && offset_expr.X_op != O_symbol) { as_bad (_("Expression too complex")); offset_expr.X_op = O_constant; } if (HAVE_32BIT_ADDRESSES && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number)) { char value [32]; sprintf_vma (value, offset_expr.X_add_number); as_bad (_("Number (0x%s) larger than 32 bits"), value); } /* A constant expression in PIC code can be handled just as it is in non PIC code. */ if (offset_expr.X_op == O_constant) { expr1.X_add_number = offset_high_part (offset_expr.X_add_number, offbits == 0 ? 16 : offbits); offset_expr.X_add_number -= expr1.X_add_number; load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES); if (breg != 0) macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, breg); if (offbits == 0) { if (offset_expr.X_add_number != 0) macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg, tempreg, BFD_RELOC_LO16); macro_build (NULL, s, fmt, op[0], tempreg); } else if (offbits == 16) macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg); else macro_build (NULL, s, fmt, op[0], (int) offset_expr.X_add_number, tempreg); } else if (offbits != 16) { /* The offset field is too narrow to be used for a low-part relocation, so load the whole address into the auxillary register. */ load_address (tempreg, &offset_expr, &used_at); if (breg != 0) macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, breg); if (offbits == 0) macro_build (NULL, s, fmt, op[0], tempreg); else macro_build (NULL, s, fmt, op[0], 0, tempreg); } else if (mips_pic == NO_PIC) { /* If this is a reference to a GP relative symbol, and there is no base register, we want op[0],($gp) (BFD_RELOC_GPREL16) Otherwise, if there is no base register, we want lui $tempreg, (BFD_RELOC_HI16_S) op[0],($tempreg) (BFD_RELOC_LO16) If we have a constant, we need two instructions anyhow, so we always use the latter form. If we have a base register, and this is a reference to a GP relative symbol, we want addu $tempreg,$breg,$gp op[0],($tempreg) (BFD_RELOC_GPREL16) Otherwise we want lui $tempreg, (BFD_RELOC_HI16_S) addu $tempreg,$tempreg,$breg op[0],($tempreg) (BFD_RELOC_LO16) With a constant we always use the latter case. With 64bit address space and no base register and $at usable, we want lui $tempreg, (BFD_RELOC_MIPS_HIGHEST) lui $at, (BFD_RELOC_HI16_S) daddiu $tempreg, (BFD_RELOC_MIPS_HIGHER) dsll32 $tempreg,0 daddu $tempreg,$at op[0],($tempreg) (BFD_RELOC_LO16) If we have a base register, we want lui $tempreg, (BFD_RELOC_MIPS_HIGHEST) lui $at, (BFD_RELOC_HI16_S) daddiu $tempreg, (BFD_RELOC_MIPS_HIGHER) daddu $at,$breg dsll32 $tempreg,0 daddu $tempreg,$at op[0],($tempreg) (BFD_RELOC_LO16) Without $at we can't generate the optimal path for superscalar processors here since this would require two temporary registers. lui $tempreg, (BFD_RELOC_MIPS_HIGHEST) daddiu $tempreg, (BFD_RELOC_MIPS_HIGHER) dsll $tempreg,16 daddiu $tempreg, (BFD_RELOC_HI16_S) dsll $tempreg,16 op[0],($tempreg) (BFD_RELOC_LO16) If we have a base register, we want lui $tempreg, (BFD_RELOC_MIPS_HIGHEST) daddiu $tempreg, (BFD_RELOC_MIPS_HIGHER) dsll $tempreg,16 daddiu $tempreg, (BFD_RELOC_HI16_S) dsll $tempreg,16 daddu $tempreg,$tempreg,$breg op[0],($tempreg) (BFD_RELOC_LO16) For GP relative symbols in 64bit address space we can use the same sequence as in 32bit address space. */ if (HAVE_64BIT_SYMBOLS) { if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET && !nopic_need_relax (offset_expr.X_add_symbol, 1)) { relax_start (offset_expr.X_add_symbol); if (breg == 0) { macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16, mips_gp_register); } else { macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, breg, mips_gp_register); macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16, tempreg); } relax_switch (); } if (used_at == 0 && mips_opts.at) { macro_build (&offset_expr, "lui", LUI_FMT, tempreg, BFD_RELOC_MIPS_HIGHEST); macro_build (&offset_expr, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S); macro_build (&offset_expr, "daddiu", "t,r,j", tempreg, tempreg, BFD_RELOC_MIPS_HIGHER); if (breg != 0) macro_build (NULL, "daddu", "d,v,t", AT, AT, breg); macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0); macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT); macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg); used_at = 1; } else { macro_build (&offset_expr, "lui", LUI_FMT, tempreg, BFD_RELOC_MIPS_HIGHEST); macro_build (&offset_expr, "daddiu", "t,r,j", tempreg, tempreg, BFD_RELOC_MIPS_HIGHER); macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16); macro_build (&offset_expr, "daddiu", "t,r,j", tempreg, tempreg, BFD_RELOC_HI16_S); macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16); if (breg != 0) macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, breg); macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg); } if (mips_relax.sequence) relax_end (); break; } if (breg == 0) { if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET && !nopic_need_relax (offset_expr.X_add_symbol, 1)) { relax_start (offset_expr.X_add_symbol); macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16, mips_gp_register); relax_switch (); } macro_build_lui (&offset_expr, tempreg); macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg); if (mips_relax.sequence) relax_end (); } else { if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET && !nopic_need_relax (offset_expr.X_add_symbol, 1)) { relax_start (offset_expr.X_add_symbol); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, breg, mips_gp_register); macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16, tempreg); relax_switch (); } macro_build_lui (&offset_expr, tempreg); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, breg); macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg); if (mips_relax.sequence) relax_end (); } } else if (!mips_big_got) { int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16; /* If this is a reference to an external symbol, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop op[0],0($tempreg) Otherwise we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $tempreg,$tempreg, (BFD_RELOC_LO16) op[0],0($tempreg) For NewABI, we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT_PAGE) op[0],($tempreg) (BFD_RELOC_MIPS_GOT_OFST) If there is a base register, we add it to $tempreg before the . If there is a constant, we stick it in the instruction. We don't handle constants larger than 16 bits, because we have no way to load the upper 16 bits (actually, we could handle them for the subset of cases in which we are not using $at). */ gas_assert (offset_expr.X_op == O_symbol); if (HAVE_NEWABI) { macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register); if (breg != 0) macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, breg); macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_MIPS_GOT_OFST, tempreg); break; } expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = 0; if (expr1.X_add_number < -0x8000 || expr1.X_add_number >= 0x8000) as_bad (_("PIC code offset overflow (max 16 signed bits)")); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, lw_reloc_type, mips_gp_register); load_delay_nop (); relax_start (offset_expr.X_add_symbol); relax_switch (); macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg, tempreg, BFD_RELOC_LO16); relax_end (); if (breg != 0) macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, breg); macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg); } else if (mips_big_got && !HAVE_NEWABI) { int gpdelay; /* If this is a reference to an external symbol, we want lui $tempreg, (BFD_RELOC_MIPS_GOT_HI16) addu $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_GOT_LO16) op[0],0($tempreg) Otherwise we want lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT16) nop addiu $tempreg,$tempreg, (BFD_RELOC_LO16) op[0],0($tempreg) If there is a base register, we add it to $tempreg before the . If there is a constant, we stick it in the instruction. We don't handle constants larger than 16 bits, because we have no way to load the upper 16 bits (actually, we could handle them for the subset of cases in which we are not using $at). */ gas_assert (offset_expr.X_op == O_symbol); expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = 0; if (expr1.X_add_number < -0x8000 || expr1.X_add_number >= 0x8000) as_bad (_("PIC code offset overflow (max 16 signed bits)")); gpdelay = reg_needs_delay (mips_gp_register); relax_start (offset_expr.X_add_symbol); macro_build (&offset_expr, "lui", LUI_FMT, tempreg, BFD_RELOC_MIPS_GOT_HI16); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, mips_gp_register); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, BFD_RELOC_MIPS_GOT_LO16, tempreg); relax_switch (); if (gpdelay) macro_build (NULL, "nop", ""); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register); load_delay_nop (); macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg, tempreg, BFD_RELOC_LO16); relax_end (); if (breg != 0) macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, breg); macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg); } else if (mips_big_got && HAVE_NEWABI) { /* If this is a reference to an external symbol, we want lui $tempreg, (BFD_RELOC_MIPS_GOT_HI16) add $tempreg,$tempreg,$gp lw $tempreg,($tempreg) (BFD_RELOC_MIPS_GOT_LO16) op[0],($tempreg) Otherwise, for local symbols, we want: lw $tempreg,($gp) (BFD_RELOC_MIPS_GOT_PAGE) op[0],($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */ gas_assert (offset_expr.X_op == O_symbol); expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = 0; if (expr1.X_add_number < -0x8000 || expr1.X_add_number >= 0x8000) as_bad (_("PIC code offset overflow (max 16 signed bits)")); relax_start (offset_expr.X_add_symbol); macro_build (&offset_expr, "lui", LUI_FMT, tempreg, BFD_RELOC_MIPS_GOT_HI16); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, mips_gp_register); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, BFD_RELOC_MIPS_GOT_LO16, tempreg); if (breg != 0) macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, breg); macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg); relax_switch (); offset_expr.X_add_number = expr1.X_add_number; macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register); if (breg != 0) macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, breg); macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_MIPS_GOT_OFST, tempreg); relax_end (); } else abort (); break; case M_JRADDIUSP: gas_assert (mips_opts.micromips); gas_assert (mips_opts.insn32); start_noreorder (); macro_build (NULL, "jr", "s", RA); expr1.X_add_number = op[0] << 2; macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16); end_noreorder (); break; case M_JRC: gas_assert (mips_opts.micromips); gas_assert (mips_opts.insn32); macro_build (NULL, "jr", "s", op[0]); if (mips_opts.noreorder) macro_build (NULL, "nop", ""); break; case M_LI: case M_LI_S: load_register (op[0], &imm_expr, 0); break; case M_DLI: load_register (op[0], &imm_expr, 1); break; case M_LI_SS: if (imm_expr.X_op == O_constant) { used_at = 1; load_register (AT, &imm_expr, 0); macro_build (NULL, "mtc1", "t,G", AT, op[0]); break; } else { gas_assert (offset_expr.X_op == O_symbol && strcmp (segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol)), ".lit4") == 0 && offset_expr.X_add_number == 0); macro_build (&offset_expr, "lwc1", "T,o(b)", op[0], BFD_RELOC_MIPS_LITERAL, mips_gp_register); break; } case M_LI_D: /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high order 32 bits of the value and the low order 32 bits are either zero or in OFFSET_EXPR. */ if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big) { if (HAVE_64BIT_GPRS) load_register (op[0], &imm_expr, 1); else { int hreg, lreg; if (target_big_endian) { hreg = op[0]; lreg = op[0] + 1; } else { hreg = op[0] + 1; lreg = op[0]; } if (hreg <= 31) load_register (hreg, &imm_expr, 0); if (lreg <= 31) { if (offset_expr.X_op == O_absent) move_register (lreg, 0); else { gas_assert (offset_expr.X_op == O_constant); load_register (lreg, &offset_expr, 0); } } } break; } /* We know that sym is in the .rdata section. First we get the upper 16 bits of the address. */ if (mips_pic == NO_PIC) { macro_build_lui (&offset_expr, AT); used_at = 1; } else { macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT, BFD_RELOC_MIPS_GOT16, mips_gp_register); used_at = 1; } /* Now we load the register(s). */ if (HAVE_64BIT_GPRS) { used_at = 1; macro_build (&offset_expr, "ld", "t,o(b)", op[0], BFD_RELOC_LO16, AT); } else { used_at = 1; macro_build (&offset_expr, "lw", "t,o(b)", op[0], BFD_RELOC_LO16, AT); if (op[0] != RA) { /* FIXME: How in the world do we deal with the possible overflow here? */ offset_expr.X_add_number += 4; macro_build (&offset_expr, "lw", "t,o(b)", op[0] + 1, BFD_RELOC_LO16, AT); } } break; case M_LI_DD: /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits wide, IMM_EXPR is the entire value and the GPRs are known to be 64 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of the value and the low order 32 bits are either zero or in OFFSET_EXPR. */ if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big) { used_at = 1; load_register (AT, &imm_expr, HAVE_64BIT_FPRS); if (HAVE_64BIT_FPRS) { gas_assert (HAVE_64BIT_GPRS); macro_build (NULL, "dmtc1", "t,S", AT, op[0]); } else { macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1); if (offset_expr.X_op == O_absent) macro_build (NULL, "mtc1", "t,G", 0, op[0]); else { gas_assert (offset_expr.X_op == O_constant); load_register (AT, &offset_expr, 0); macro_build (NULL, "mtc1", "t,G", AT, op[0]); } } break; } gas_assert (offset_expr.X_op == O_symbol && offset_expr.X_add_number == 0); s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol)); if (strcmp (s, ".lit8") == 0) { op[2] = mips_gp_register; offset_reloc[0] = BFD_RELOC_MIPS_LITERAL; offset_reloc[1] = BFD_RELOC_UNUSED; offset_reloc[2] = BFD_RELOC_UNUSED; } else { gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0); used_at = 1; if (mips_pic != NO_PIC) macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT, BFD_RELOC_MIPS_GOT16, mips_gp_register); else { /* FIXME: This won't work for a 64 bit address. */ macro_build_lui (&offset_expr, AT); } op[2] = AT; offset_reloc[0] = BFD_RELOC_LO16; offset_reloc[1] = BFD_RELOC_UNUSED; offset_reloc[2] = BFD_RELOC_UNUSED; } align = 8; /* Fall through */ case M_L_DAB: /* * The MIPS assembler seems to check for X_add_number not * being double aligned and generating: * lui at,%hi(foo+1) * addu at,at,v1 * addiu at,at,%lo(foo+1) * lwc1 f2,0(at) * lwc1 f3,4(at) * But, the resulting address is the same after relocation so why * generate the extra instruction? */ /* Itbl support may require additional care here. */ coproc = 1; fmt = "T,o(b)"; if (CPU_HAS_LDC1_SDC1 (mips_opts.arch)) { s = "ldc1"; goto ld_st; } s = "lwc1"; goto ldd_std; case M_S_DAB: gas_assert (!mips_opts.micromips); /* Itbl support may require additional care here. */ coproc = 1; fmt = "T,o(b)"; if (CPU_HAS_LDC1_SDC1 (mips_opts.arch)) { s = "sdc1"; goto ld_st; } s = "swc1"; goto ldd_std; case M_LQ_AB: fmt = "t,o(b)"; s = "lq"; goto ld; case M_SQ_AB: fmt = "t,o(b)"; s = "sq"; goto ld_st; case M_LD_AB: fmt = "t,o(b)"; if (HAVE_64BIT_GPRS) { s = "ld"; goto ld; } s = "lw"; goto ldd_std; case M_SD_AB: fmt = "t,o(b)"; if (HAVE_64BIT_GPRS) { s = "sd"; goto ld_st; } s = "sw"; ldd_std: /* Even on a big endian machine $fn comes before $fn+1. We have to adjust when loading from memory. We set coproc if we must load $fn+1 first. */ /* Itbl support may require additional care here. */ if (!target_big_endian) coproc = 0; breg = op[2]; if (small_offset_p (0, align, 16)) { ep = &offset_expr; if (!small_offset_p (4, align, 16)) { macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg, -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]); expr1.X_add_number = 0; ep = &expr1; breg = AT; used_at = 1; offset_reloc[0] = BFD_RELOC_LO16; offset_reloc[1] = BFD_RELOC_UNUSED; offset_reloc[2] = BFD_RELOC_UNUSED; } if (strcmp (s, "lw") == 0 && op[0] == breg) { ep->X_add_number += 4; macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0], offset_reloc[1], offset_reloc[2], breg); ep->X_add_number -= 4; macro_build (ep, s, fmt, op[0], -1, offset_reloc[0], offset_reloc[1], offset_reloc[2], breg); } else { macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1, offset_reloc[0], offset_reloc[1], offset_reloc[2], breg); ep->X_add_number += 4; macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1, offset_reloc[0], offset_reloc[1], offset_reloc[2], breg); } break; } if (offset_expr.X_op != O_symbol && offset_expr.X_op != O_constant) { as_bad (_("Expression too complex")); offset_expr.X_op = O_constant; } if (HAVE_32BIT_ADDRESSES && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number)) { char value [32]; sprintf_vma (value, offset_expr.X_add_number); as_bad (_("Number (0x%s) larger than 32 bits"), value); } if (mips_pic == NO_PIC || offset_expr.X_op == O_constant) { /* If this is a reference to a GP relative symbol, we want op[0],($gp) (BFD_RELOC_GPREL16) op[0]+1,+4($gp) (BFD_RELOC_GPREL16) If we have a base register, we use this addu $at,$breg,$gp op[0],($at) (BFD_RELOC_GPREL16) op[0]+1,+4($at) (BFD_RELOC_GPREL16) If this is not a GP relative symbol, we want lui $at, (BFD_RELOC_HI16_S) op[0],($at) (BFD_RELOC_LO16) op[0]+1,+4($at) (BFD_RELOC_LO16) If there is a base register, we add it to $at after the lui instruction. If there is a constant, we always use the last case. */ if (offset_expr.X_op == O_symbol && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET && !nopic_need_relax (offset_expr.X_add_symbol, 1)) { relax_start (offset_expr.X_add_symbol); if (breg == 0) { tempreg = mips_gp_register; } else { macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, mips_gp_register); tempreg = AT; used_at = 1; } /* Itbl support may require additional care here. */ macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0], BFD_RELOC_GPREL16, tempreg); offset_expr.X_add_number += 4; /* Set mips_optimize to 2 to avoid inserting an undesired nop. */ hold_mips_optimize = mips_optimize; mips_optimize = 2; /* Itbl support may require additional care here. */ macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1, BFD_RELOC_GPREL16, tempreg); mips_optimize = hold_mips_optimize; relax_switch (); offset_expr.X_add_number -= 4; } used_at = 1; if (offset_high_part (offset_expr.X_add_number, 16) != offset_high_part (offset_expr.X_add_number + 4, 16)) { load_address (AT, &offset_expr, &used_at); offset_expr.X_op = O_constant; offset_expr.X_add_number = 0; } else macro_build_lui (&offset_expr, AT); if (breg != 0) macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT); /* Itbl support may require additional care here. */ macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0], BFD_RELOC_LO16, AT); /* FIXME: How do we handle overflow here? */ offset_expr.X_add_number += 4; /* Itbl support may require additional care here. */ macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1, BFD_RELOC_LO16, AT); if (mips_relax.sequence) relax_end (); } else if (!mips_big_got) { /* If this is a reference to an external symbol, we want lw $at,($gp) (BFD_RELOC_MIPS_GOT16) nop op[0],0($at) op[0]+1,4($at) Otherwise we want lw $at,($gp) (BFD_RELOC_MIPS_GOT16) nop op[0],($at) (BFD_RELOC_LO16) op[0]+1,+4($at) (BFD_RELOC_LO16) If there is a base register we add it to $at before the lwc1 instructions. If there is a constant we include it in the lwc1 instructions. */ used_at = 1; expr1.X_add_number = offset_expr.X_add_number; if (expr1.X_add_number < -0x8000 || expr1.X_add_number >= 0x8000 - 4) as_bad (_("PIC code offset overflow (max 16 signed bits)")); load_got_offset (AT, &offset_expr); load_delay_nop (); if (breg != 0) macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT); /* Set mips_optimize to 2 to avoid inserting an undesired nop. */ hold_mips_optimize = mips_optimize; mips_optimize = 2; /* Itbl support may require additional care here. */ relax_start (offset_expr.X_add_symbol); macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0], BFD_RELOC_LO16, AT); expr1.X_add_number += 4; macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1, BFD_RELOC_LO16, AT); relax_switch (); macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0], BFD_RELOC_LO16, AT); offset_expr.X_add_number += 4; macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1, BFD_RELOC_LO16, AT); relax_end (); mips_optimize = hold_mips_optimize; } else if (mips_big_got) { int gpdelay; /* If this is a reference to an external symbol, we want lui $at, (BFD_RELOC_MIPS_GOT_HI16) addu $at,$at,$gp lw $at,($at) (BFD_RELOC_MIPS_GOT_LO16) nop op[0],0($at) op[0]+1,4($at) Otherwise we want lw $at,($gp) (BFD_RELOC_MIPS_GOT16) nop op[0],($at) (BFD_RELOC_LO16) op[0]+1,+4($at) (BFD_RELOC_LO16) If there is a base register we add it to $at before the lwc1 instructions. If there is a constant we include it in the lwc1 instructions. */ used_at = 1; expr1.X_add_number = offset_expr.X_add_number; offset_expr.X_add_number = 0; if (expr1.X_add_number < -0x8000 || expr1.X_add_number >= 0x8000 - 4) as_bad (_("PIC code offset overflow (max 16 signed bits)")); gpdelay = reg_needs_delay (mips_gp_register); relax_start (offset_expr.X_add_symbol); macro_build (&offset_expr, "lui", LUI_FMT, AT, BFD_RELOC_MIPS_GOT_HI16); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, mips_gp_register); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT, BFD_RELOC_MIPS_GOT_LO16, AT); load_delay_nop (); if (breg != 0) macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT); /* Itbl support may require additional care here. */ macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0], BFD_RELOC_LO16, AT); expr1.X_add_number += 4; /* Set mips_optimize to 2 to avoid inserting an undesired nop. */ hold_mips_optimize = mips_optimize; mips_optimize = 2; /* Itbl support may require additional care here. */ macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1, BFD_RELOC_LO16, AT); mips_optimize = hold_mips_optimize; expr1.X_add_number -= 4; relax_switch (); offset_expr.X_add_number = expr1.X_add_number; if (gpdelay) macro_build (NULL, "nop", ""); macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT, BFD_RELOC_MIPS_GOT16, mips_gp_register); load_delay_nop (); if (breg != 0) macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT); /* Itbl support may require additional care here. */ macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0], BFD_RELOC_LO16, AT); offset_expr.X_add_number += 4; /* Set mips_optimize to 2 to avoid inserting an undesired nop. */ hold_mips_optimize = mips_optimize; mips_optimize = 2; /* Itbl support may require additional care here. */ macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1, BFD_RELOC_LO16, AT); mips_optimize = hold_mips_optimize; relax_end (); } else abort (); break; case M_SAA_AB: s = "saa"; offbits = 0; fmt = "t,(b)"; goto ld_st; case M_SAAD_AB: s = "saad"; offbits = 0; fmt = "t,(b)"; goto ld_st; /* New code added to support COPZ instructions. This code builds table entries out of the macros in mip_opcodes. R4000 uses interlocks to handle coproc delays. Other chips (like the R3000) require nops to be inserted for delays. FIXME: Currently, we require that the user handle delays. In order to fill delay slots for non-interlocked chips, we must have a way to specify delays based on the coprocessor. Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc. What are the side-effects of the cop instruction? What cache support might we have and what are its effects? Both coprocessor & memory require delays. how long??? What registers are read/set/modified? If an itbl is provided to interpret cop instructions, this knowledge can be encoded in the itbl spec. */ case M_COP0: s = "c0"; goto copz; case M_COP1: s = "c1"; goto copz; case M_COP2: s = "c2"; goto copz; case M_COP3: s = "c3"; copz: gas_assert (!mips_opts.micromips); /* For now we just do C (same as Cz). The parameter will be stored in insn_opcode by mips_ip. */ macro_build (NULL, s, "C", (int) ip->insn_opcode); break; case M_MOVE: move_register (op[0], op[1]); break; case M_MOVEP: gas_assert (mips_opts.micromips); gas_assert (mips_opts.insn32); move_register (micromips_to_32_reg_h_map1[op[0]], micromips_to_32_reg_m_map[op[1]]); move_register (micromips_to_32_reg_h_map2[op[0]], micromips_to_32_reg_n_map[op[2]]); break; case M_DMUL: dbl = 1; case M_MUL: if (mips_opts.arch == CPU_R5900) macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1], op[2]); else { macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]); macro_build (NULL, "mflo", MFHL_FMT, op[0]); } break; case M_DMUL_I: dbl = 1; case M_MUL_I: /* The MIPS assembler some times generates shifts and adds. I'm not trying to be that fancy. GCC should do this for us anyway. */ used_at = 1; load_register (AT, &imm_expr, dbl); macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT); macro_build (NULL, "mflo", MFHL_FMT, op[0]); break; case M_DMULO_I: dbl = 1; case M_MULO_I: imm = 1; goto do_mulo; case M_DMULO: dbl = 1; case M_MULO: do_mulo: start_noreorder (); used_at = 1; if (imm) load_register (AT, &imm_expr, dbl); macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], imm ? AT : op[2]); macro_build (NULL, "mflo", MFHL_FMT, op[0]); macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31); macro_build (NULL, "mfhi", MFHL_FMT, AT); if (mips_trap) macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6); else { if (mips_opts.micromips) micromips_label_expr (&label_expr); else label_expr.X_add_number = 8; macro_build (&label_expr, "beq", "s,t,p", op[0], AT); macro_build (NULL, "nop", ""); macro_build (NULL, "break", BRK_FMT, 6); if (mips_opts.micromips) micromips_add_label (); } end_noreorder (); macro_build (NULL, "mflo", MFHL_FMT, op[0]); break; case M_DMULOU_I: dbl = 1; case M_MULOU_I: imm = 1; goto do_mulou; case M_DMULOU: dbl = 1; case M_MULOU: do_mulou: start_noreorder (); used_at = 1; if (imm) load_register (AT, &imm_expr, dbl); macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], imm ? AT : op[2]); macro_build (NULL, "mfhi", MFHL_FMT, AT); macro_build (NULL, "mflo", MFHL_FMT, op[0]); if (mips_trap) macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6); else { if (mips_opts.micromips) micromips_label_expr (&label_expr); else label_expr.X_add_number = 8; macro_build (&label_expr, "beq", "s,t,p", AT, ZERO); macro_build (NULL, "nop", ""); macro_build (NULL, "break", BRK_FMT, 6); if (mips_opts.micromips) micromips_add_label (); } end_noreorder (); break; case M_DROL: if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch)) { if (op[0] == op[1]) { tempreg = AT; used_at = 1; } else tempreg = op[0]; macro_build (NULL, "dnegu", "d,w", tempreg, op[2]); macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg); break; } used_at = 1; macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]); macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT); macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]); macro_build (NULL, "or", "d,v,t", op[0], op[0], AT); break; case M_ROL: if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch)) { if (op[0] == op[1]) { tempreg = AT; used_at = 1; } else tempreg = op[0]; macro_build (NULL, "negu", "d,w", tempreg, op[2]); macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg); break; } used_at = 1; macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]); macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT); macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]); macro_build (NULL, "or", "d,v,t", op[0], op[0], AT); break; case M_DROL_I: { unsigned int rot; char *l; char *rr; if (imm_expr.X_op != O_constant) as_bad (_("Improper rotate count")); rot = imm_expr.X_add_number & 0x3f; if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch)) { rot = (64 - rot) & 0x3f; if (rot >= 32) macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32); else macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot); break; } if (rot == 0) { macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0); break; } l = (rot < 0x20) ? "dsll" : "dsll32"; rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32"; rot &= 0x1f; used_at = 1; macro_build (NULL, l, SHFT_FMT, AT, op[1], rot); macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f); macro_build (NULL, "or", "d,v,t", op[0], op[0], AT); } break; case M_ROL_I: { unsigned int rot; if (imm_expr.X_op != O_constant) as_bad (_("Improper rotate count")); rot = imm_expr.X_add_number & 0x1f; if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch)) { macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], (32 - rot) & 0x1f); break; } if (rot == 0) { macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0); break; } used_at = 1; macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot); macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f); macro_build (NULL, "or", "d,v,t", op[0], op[0], AT); } break; case M_DROR: if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch)) { macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]); break; } used_at = 1; macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]); macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT); macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]); macro_build (NULL, "or", "d,v,t", op[0], op[0], AT); break; case M_ROR: if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch)) { macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]); break; } used_at = 1; macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]); macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT); macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]); macro_build (NULL, "or", "d,v,t", op[0], op[0], AT); break; case M_DROR_I: { unsigned int rot; char *l; char *rr; if (imm_expr.X_op != O_constant) as_bad (_("Improper rotate count")); rot = imm_expr.X_add_number & 0x3f; if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch)) { if (rot >= 32) macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32); else macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot); break; } if (rot == 0) { macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0); break; } rr = (rot < 0x20) ? "dsrl" : "dsrl32"; l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32"; rot &= 0x1f; used_at = 1; macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot); macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f); macro_build (NULL, "or", "d,v,t", op[0], op[0], AT); } break; case M_ROR_I: { unsigned int rot; if (imm_expr.X_op != O_constant) as_bad (_("Improper rotate count")); rot = imm_expr.X_add_number & 0x1f; if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch)) { macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot); break; } if (rot == 0) { macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0); break; } used_at = 1; macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot); macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f); macro_build (NULL, "or", "d,v,t", op[0], op[0], AT); } break; case M_SEQ: if (op[1] == 0) macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16); else if (op[2] == 0) macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16); else { macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]); macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16); } break; case M_SEQ_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) { macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16); break; } if (op[1] == 0) { as_warn (_("Instruction %s: result is always false"), ip->insn_mo->name); move_register (op[0], 0); break; } if (CPU_HAS_SEQ (mips_opts.arch) && -512 <= imm_expr.X_add_number && imm_expr.X_add_number < 512) { macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1], (int) imm_expr.X_add_number); break; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= 0 && imm_expr.X_add_number < 0x10000) macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16); else if (imm_expr.X_op == O_constant && imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number < 0) { imm_expr.X_add_number = -imm_expr.X_add_number; macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16); } else if (CPU_HAS_SEQ (mips_opts.arch)) { used_at = 1; load_register (AT, &imm_expr, HAVE_64BIT_GPRS); macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT); break; } else { load_register (AT, &imm_expr, HAVE_64BIT_GPRS); macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT); used_at = 1; } macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16); break; case M_SGE: /* X >= Y <==> not (X < Y) */ s = "slt"; goto sge; case M_SGEU: s = "sltu"; sge: macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]); macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16); break; case M_SGE_I: /* X >= I <==> not (X < I) */ case M_SGEU_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000) macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16); else { load_register (AT, &imm_expr, HAVE_64BIT_GPRS); macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t", op[0], op[1], AT); used_at = 1; } macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16); break; case M_SGT: /* X > Y <==> Y < X */ s = "slt"; goto sgt; case M_SGTU: s = "sltu"; sgt: macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]); break; case M_SGT_I: /* X > I <==> I < X */ s = "slt"; goto sgti; case M_SGTU_I: s = "sltu"; sgti: used_at = 1; load_register (AT, &imm_expr, HAVE_64BIT_GPRS); macro_build (NULL, s, "d,v,t", op[0], AT, op[1]); break; case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */ s = "slt"; goto sle; case M_SLEU: s = "sltu"; sle: macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]); macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16); break; case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */ s = "slt"; goto slei; case M_SLEU_I: s = "sltu"; slei: used_at = 1; load_register (AT, &imm_expr, HAVE_64BIT_GPRS); macro_build (NULL, s, "d,v,t", op[0], AT, op[1]); macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16); break; case M_SLT_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000) { macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1], BFD_RELOC_LO16); break; } used_at = 1; load_register (AT, &imm_expr, HAVE_64BIT_GPRS); macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT); break; case M_SLTU_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000) { macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16); break; } used_at = 1; load_register (AT, &imm_expr, HAVE_64BIT_GPRS); macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT); break; case M_SNE: if (op[1] == 0) macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]); else if (op[2] == 0) macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]); else { macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]); macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]); } break; case M_SNE_I: if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) { macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]); break; } if (op[1] == 0) { as_warn (_("Instruction %s: result is always true"), ip->insn_mo->name); macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j", op[0], 0, BFD_RELOC_LO16); break; } if (CPU_HAS_SEQ (mips_opts.arch) && -512 <= imm_expr.X_add_number && imm_expr.X_add_number < 512) { macro_build (NULL, "snei", "t,r,+Q", op[0], op[1], (int) imm_expr.X_add_number); break; } if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= 0 && imm_expr.X_add_number < 0x10000) { macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16); } else if (imm_expr.X_op == O_constant && imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number < 0) { imm_expr.X_add_number = -imm_expr.X_add_number; macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16); } else if (CPU_HAS_SEQ (mips_opts.arch)) { used_at = 1; load_register (AT, &imm_expr, HAVE_64BIT_GPRS); macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT); break; } else { load_register (AT, &imm_expr, HAVE_64BIT_GPRS); macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT); used_at = 1; } macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]); break; case M_SUB_I: s = "addi"; s2 = "sub"; goto do_subi; case M_SUBU_I: s = "addiu"; s2 = "subu"; goto do_subi; case M_DSUB_I: dbl = 1; s = "daddi"; s2 = "dsub"; if (!mips_opts.micromips) goto do_subi; if (imm_expr.X_op == O_constant && imm_expr.X_add_number > -0x200 && imm_expr.X_add_number <= 0x200) { macro_build (NULL, s, "t,r,.", op[0], op[1], -imm_expr.X_add_number); break; } goto do_subi_i; case M_DSUBU_I: dbl = 1; s = "daddiu"; s2 = "dsubu"; do_subi: if (imm_expr.X_op == O_constant && imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number <= 0x8000) { imm_expr.X_add_number = -imm_expr.X_add_number; macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16); break; } do_subi_i: used_at = 1; load_register (AT, &imm_expr, dbl); macro_build (NULL, s2, "d,v,t", op[0], op[1], AT); break; case M_TEQ_I: s = "teq"; goto trap; case M_TGE_I: s = "tge"; goto trap; case M_TGEU_I: s = "tgeu"; goto trap; case M_TLT_I: s = "tlt"; goto trap; case M_TLTU_I: s = "tltu"; goto trap; case M_TNE_I: s = "tne"; trap: used_at = 1; load_register (AT, &imm_expr, HAVE_64BIT_GPRS); macro_build (NULL, s, "s,t", op[0], AT); break; case M_TRUNCWS: case M_TRUNCWD: gas_assert (!mips_opts.micromips); gas_assert (mips_opts.isa == ISA_MIPS1); used_at = 1; /* * Is the double cfc1 instruction a bug in the mips assembler; * or is there a reason for it? */ start_noreorder (); macro_build (NULL, "cfc1", "t,G", op[2], RA); macro_build (NULL, "cfc1", "t,G", op[2], RA); macro_build (NULL, "nop", ""); expr1.X_add_number = 3; macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16); expr1.X_add_number = 2; macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16); macro_build (NULL, "ctc1", "t,G", AT, RA); macro_build (NULL, "nop", ""); macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S", op[0], op[1]); macro_build (NULL, "ctc1", "t,G", op[2], RA); macro_build (NULL, "nop", ""); end_noreorder (); break; case M_ULH_AB: s = "lb"; s2 = "lbu"; off = 1; goto uld_st; case M_ULHU_AB: s = "lbu"; s2 = "lbu"; off = 1; goto uld_st; case M_ULW_AB: s = "lwl"; s2 = "lwr"; offbits = (mips_opts.micromips ? 12 : 16); off = 3; goto uld_st; case M_ULD_AB: s = "ldl"; s2 = "ldr"; offbits = (mips_opts.micromips ? 12 : 16); off = 7; goto uld_st; case M_USH_AB: s = "sb"; s2 = "sb"; off = 1; ust = 1; goto uld_st; case M_USW_AB: s = "swl"; s2 = "swr"; offbits = (mips_opts.micromips ? 12 : 16); off = 3; ust = 1; goto uld_st; case M_USD_AB: s = "sdl"; s2 = "sdr"; offbits = (mips_opts.micromips ? 12 : 16); off = 7; ust = 1; uld_st: breg = op[2]; large_offset = !small_offset_p (off, align, offbits); ep = &offset_expr; expr1.X_add_number = 0; if (large_offset) { used_at = 1; tempreg = AT; if (small_offset_p (0, align, 16)) macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]); else { load_address (tempreg, ep, &used_at); if (breg != 0) macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, breg); } offset_reloc[0] = BFD_RELOC_LO16; offset_reloc[1] = BFD_RELOC_UNUSED; offset_reloc[2] = BFD_RELOC_UNUSED; breg = tempreg; tempreg = op[0]; ep = &expr1; } else if (!ust && op[0] == breg) { used_at = 1; tempreg = AT; } else tempreg = op[0]; if (off == 1) goto ulh_sh; if (!target_big_endian) ep->X_add_number += off; if (offbits == 12) macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg); else macro_build (ep, s, "t,o(b)", tempreg, -1, offset_reloc[0], offset_reloc[1], offset_reloc[2], breg); if (!target_big_endian) ep->X_add_number -= off; else ep->X_add_number += off; if (offbits == 12) macro_build (NULL, s2, "t,~(b)", tempreg, (int) ep->X_add_number, breg); else macro_build (ep, s2, "t,o(b)", tempreg, -1, offset_reloc[0], offset_reloc[1], offset_reloc[2], breg); /* If necessary, move the result in tempreg to the final destination. */ if (!ust && op[0] != tempreg) { /* Protect second load's delay slot. */ load_delay_nop (); move_register (op[0], tempreg); } break; ulh_sh: used_at = 1; if (target_big_endian == ust) ep->X_add_number += off; tempreg = ust || large_offset ? op[0] : AT; macro_build (ep, s, "t,o(b)", tempreg, -1, offset_reloc[0], offset_reloc[1], offset_reloc[2], breg); /* For halfword transfers we need a temporary register to shuffle bytes. Unfortunately for M_USH_A we have none available before the next store as AT holds the base address. We deal with this case by clobbering TREG and then restoring it as with ULH. */ tempreg = ust == large_offset ? op[0] : AT; if (ust) macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8); if (target_big_endian == ust) ep->X_add_number -= off; else ep->X_add_number += off; macro_build (ep, s2, "t,o(b)", tempreg, -1, offset_reloc[0], offset_reloc[1], offset_reloc[2], breg); /* For M_USH_A re-retrieve the LSB. */ if (ust && large_offset) { if (target_big_endian) ep->X_add_number += off; else ep->X_add_number -= off; macro_build (&expr1, "lbu", "t,o(b)", AT, -1, offset_reloc[0], offset_reloc[1], offset_reloc[2], AT); } /* For ULH and M_USH_A OR the LSB in. */ if (!ust || large_offset) { tempreg = !large_offset ? AT : op[0]; macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8); macro_build (NULL, "or", "d,v,t", op[0], op[0], AT); } break; default: /* FIXME: Check if this is one of the itbl macros, since they are added dynamically. */ as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name); break; } if (!mips_opts.at && used_at) as_bad (_("Macro used $at after \".set noat\"")); } /* Implement macros in mips16 mode. */ static void mips16_macro (struct mips_cl_insn *ip) { const struct mips_operand_array *operands; int mask; int tmp; expressionS expr1; int dbl; const char *s, *s2, *s3; unsigned int op[MAX_OPERANDS]; unsigned int i; mask = ip->insn_mo->mask; operands = insn_operands (ip); for (i = 0; i < MAX_OPERANDS; i++) if (operands->operand[i]) op[i] = insn_extract_operand (ip, operands->operand[i]); else op[i] = -1; expr1.X_op = O_constant; expr1.X_op_symbol = NULL; expr1.X_add_symbol = NULL; expr1.X_add_number = 1; dbl = 0; switch (mask) { default: abort (); case M_DDIV_3: dbl = 1; case M_DIV_3: s = "mflo"; goto do_div3; case M_DREM_3: dbl = 1; case M_REM_3: s = "mfhi"; do_div3: start_noreorder (); macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]); expr1.X_add_number = 2; macro_build (&expr1, "bnez", "x,p", op[2]); macro_build (NULL, "break", "6", 7); /* FIXME: The normal code checks for of -1 / -0x80000000 here, since that causes an overflow. We should do that as well, but I don't see how to do the comparisons without a temporary register. */ end_noreorder (); macro_build (NULL, s, "x", op[0]); break; case M_DIVU_3: s = "divu"; s2 = "mflo"; goto do_divu3; case M_REMU_3: s = "divu"; s2 = "mfhi"; goto do_divu3; case M_DDIVU_3: s = "ddivu"; s2 = "mflo"; goto do_divu3; case M_DREMU_3: s = "ddivu"; s2 = "mfhi"; do_divu3: start_noreorder (); macro_build (NULL, s, "0,x,y", op[1], op[2]); expr1.X_add_number = 2; macro_build (&expr1, "bnez", "x,p", op[2]); macro_build (NULL, "break", "6", 7); end_noreorder (); macro_build (NULL, s2, "x", op[0]); break; case M_DMUL: dbl = 1; case M_MUL: macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]); macro_build (NULL, "mflo", "x", op[0]); break; case M_DSUBU_I: dbl = 1; goto do_subu; case M_SUBU_I: do_subu: if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); imm_expr.X_add_number = -imm_expr.X_add_number; macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]); break; case M_SUBU_I_2: if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); imm_expr.X_add_number = -imm_expr.X_add_number; macro_build (&imm_expr, "addiu", "x,k", op[0]); break; case M_DSUBU_I_2: if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); imm_expr.X_add_number = -imm_expr.X_add_number; macro_build (&imm_expr, "daddiu", "y,j", op[0]); break; case M_BEQ: s = "cmp"; s2 = "bteqz"; goto do_branch; case M_BNE: s = "cmp"; s2 = "btnez"; goto do_branch; case M_BLT: s = "slt"; s2 = "btnez"; goto do_branch; case M_BLTU: s = "sltu"; s2 = "btnez"; goto do_branch; case M_BLE: s = "slt"; s2 = "bteqz"; goto do_reverse_branch; case M_BLEU: s = "sltu"; s2 = "bteqz"; goto do_reverse_branch; case M_BGE: s = "slt"; s2 = "bteqz"; goto do_branch; case M_BGEU: s = "sltu"; s2 = "bteqz"; goto do_branch; case M_BGT: s = "slt"; s2 = "btnez"; goto do_reverse_branch; case M_BGTU: s = "sltu"; s2 = "btnez"; do_reverse_branch: tmp = op[1]; op[1] = op[0]; op[0] = tmp; do_branch: macro_build (NULL, s, "x,y", op[0], op[1]); macro_build (&offset_expr, s2, "p"); break; case M_BEQ_I: s = "cmpi"; s2 = "bteqz"; s3 = "x,U"; goto do_branch_i; case M_BNE_I: s = "cmpi"; s2 = "btnez"; s3 = "x,U"; goto do_branch_i; case M_BLT_I: s = "slti"; s2 = "btnez"; s3 = "x,8"; goto do_branch_i; case M_BLTU_I: s = "sltiu"; s2 = "btnez"; s3 = "x,8"; goto do_branch_i; case M_BLE_I: s = "slti"; s2 = "btnez"; s3 = "x,8"; goto do_addone_branch_i; case M_BLEU_I: s = "sltiu"; s2 = "btnez"; s3 = "x,8"; goto do_addone_branch_i; case M_BGE_I: s = "slti"; s2 = "bteqz"; s3 = "x,8"; goto do_branch_i; case M_BGEU_I: s = "sltiu"; s2 = "bteqz"; s3 = "x,8"; goto do_branch_i; case M_BGT_I: s = "slti"; s2 = "bteqz"; s3 = "x,8"; goto do_addone_branch_i; case M_BGTU_I: s = "sltiu"; s2 = "bteqz"; s3 = "x,8"; do_addone_branch_i: if (imm_expr.X_op != O_constant) as_bad (_("Unsupported large constant")); ++imm_expr.X_add_number; do_branch_i: macro_build (&imm_expr, s, s3, op[0]); macro_build (&offset_expr, s2, "p"); break; case M_ABS: expr1.X_add_number = 0; macro_build (&expr1, "slti", "x,8", op[1]); if (op[0] != op[1]) macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]); expr1.X_add_number = 2; macro_build (&expr1, "bteqz", "p"); macro_build (NULL, "neg", "x,w", op[0], op[0]); break; } } /* Look up instruction [START, START + LENGTH) in HASH. Record any extra opcode bits in *OPCODE_EXTRA. */ static struct mips_opcode * mips_lookup_insn (struct hash_control *hash, const char *start, ssize_t length, unsigned int *opcode_extra) { char *name, *dot, *p; unsigned int mask, suffix; ssize_t opend; struct mips_opcode *insn; /* Make a copy of the instruction so that we can fiddle with it. */ name = alloca (length + 1); memcpy (name, start, length); name[length] = '\0'; /* Look up the instruction as-is. */ insn = (struct mips_opcode *) hash_find (hash, name); if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) == 0) return insn; dot = strchr (name, '.'); if (dot && dot[1]) { /* Try to interpret the text after the dot as a VU0 channel suffix. */ p = mips_parse_vu0_channels (dot + 1, &mask); if (*p == 0 && mask != 0) { *dot = 0; insn = (struct mips_opcode *) hash_find (hash, name); *dot = '.'; if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0) { *opcode_extra |= mask << mips_vu0_channel_mask.lsb; return insn; } } } if (mips_opts.micromips) { /* See if there's an instruction size override suffix, either `16' or `32', at the end of the mnemonic proper, that defines the operation, i.e. before the first `.' character if any. Strip it and retry. */ opend = dot != NULL ? dot - name : length; if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6') suffix = 2; else if (name[opend - 2] == '3' && name[opend - 1] == '2') suffix = 4; else suffix = 0; if (suffix) { memcpy (name + opend - 2, name + opend, length - opend + 1); insn = (struct mips_opcode *) hash_find (hash, name); if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) == 0) { forced_insn_length = suffix; return insn; } } } return NULL; } /* Assemble an instruction into its binary format. If the instruction is a macro, set imm_expr, imm2_expr and offset_expr to the values associated with "I", "+I" and "A" operands respectively. Otherwise store the value of the relocatable field (if any) in offset_expr. In both cases set offset_reloc to the relocation operators applied to offset_expr. */ static void mips_ip (char *str, struct mips_cl_insn *ip) { bfd_boolean wrong_delay_slot_insns = FALSE; bfd_boolean need_delay_slot_ok = TRUE; struct mips_opcode *firstinsn = NULL; const struct mips_opcode *past; struct hash_control *hash; const char *args; char c = 0; struct mips_opcode *first, *insn; char format; size_t end; const struct mips_operand *operand; struct mips_arg_info arg; struct mips_operand_token *tokens; bfd_boolean optional_reg; unsigned int opcode_extra; insn_error = NULL; if (mips_opts.micromips) { hash = micromips_op_hash; past = µmips_opcodes[bfd_micromips_num_opcodes]; } else { hash = op_hash; past = &mips_opcodes[NUMOPCODES]; } forced_insn_length = 0; insn = NULL; opcode_extra = 0; /* We first try to match an instruction up to a space or to the end. */ for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++) continue; first = insn = mips_lookup_insn (hash, str, end, &opcode_extra); if (insn == NULL) { insn_error = _("Unrecognized opcode"); return; } if (strcmp (insn->name, "li.s") == 0) format = 'f'; else if (strcmp (insn->name, "li.d") == 0) format = 'd'; else format = 0; tokens = mips_parse_arguments (str + end, format); if (!tokens) return; /* For microMIPS instructions placed in a fixed-length branch delay slot we make up to two passes over the relevant fragment of the opcode table. First we try instructions that meet the delay slot's length requirement. If none matched, then we retry with the remaining ones and if one matches, then we use it and then issue an appropriate warning later on. */ for (;;) { bfd_boolean delay_slot_ok; bfd_boolean size_ok; bfd_boolean ok; bfd_boolean more_alts; gas_assert (strcmp (insn->name, first->name) == 0); ok = is_opcode_valid (insn); size_ok = is_size_valid (insn); delay_slot_ok = is_delay_slot_valid (insn); if (!delay_slot_ok && !wrong_delay_slot_insns) { firstinsn = insn; wrong_delay_slot_insns = TRUE; } more_alts = (insn + 1 < past && strcmp (insn[0].name, insn[1].name) == 0); if (!ok || !size_ok || delay_slot_ok != need_delay_slot_ok) { static char buf[256]; if (more_alts) { ++insn; continue; } if (wrong_delay_slot_insns && need_delay_slot_ok) { gas_assert (firstinsn); need_delay_slot_ok = FALSE; past = insn + 1; insn = firstinsn; continue; } obstack_free (&mips_operand_tokens, tokens); if (insn_error) return; if (!ok) sprintf (buf, _("Opcode not supported on this processor: %s (%s)"), mips_cpu_info_from_arch (mips_opts.arch)->name, mips_cpu_info_from_isa (mips_opts.isa)->name); else if (mips_opts.insn32) sprintf (buf, _("Opcode not supported in the `insn32' mode")); else sprintf (buf, _("Unrecognized %u-bit version of microMIPS opcode"), 8 * forced_insn_length); insn_error = buf; return; } imm_expr.X_op = O_absent; imm2_expr.X_op = O_absent; offset_expr.X_op = O_absent; offset_reloc[0] = BFD_RELOC_UNUSED; offset_reloc[1] = BFD_RELOC_UNUSED; offset_reloc[2] = BFD_RELOC_UNUSED; create_insn (ip, insn); ip->insn_opcode |= opcode_extra; insn_error = NULL; memset (&arg, 0, sizeof (arg)); arg.insn = ip; arg.token = tokens; arg.argnum = 1; arg.last_regno = ILLEGAL_REG; arg.dest_regno = ILLEGAL_REG; arg.soft_match = (more_alts || (wrong_delay_slot_insns && need_delay_slot_ok)); for (args = insn->args;; ++args) { if (arg.token->type == OT_END) { /* Handle unary instructions in which only one operand is given. The source is then the same as the destination. */ if (arg.opnum == 1 && *args == ',') switch (args[1]) { case 'r': case 'v': case 'w': case 'W': case 'V': arg.token = tokens; arg.argnum = 1; continue; } /* Treat elided base registers as $0. */ if (strcmp (args, "(b)") == 0) args += 3; if (args[0] == '+' && args[1] == 'K') args += 2; /* Fail the match if there were too few operands. */ if (*args) break; /* Successful match. */ if (arg.dest_regno == arg.last_regno && strncmp (ip->insn_mo->name, "jalr", 4) == 0) { if (arg.opnum == 2) as_bad (_("Source and destination must be different")); else if (arg.last_regno == 31) as_bad (_("A destination register must be supplied")); } check_completed_insn (&arg); obstack_free (&mips_operand_tokens, tokens); return; } /* Fail the match if the line has too many operands. */ if (*args == 0) break; /* Handle characters that need to match exactly. */ if (*args == '(' || *args == ')' || *args == ',') { if (match_char (&arg, *args)) continue; break; } if (*args == '#') { ++args; if (arg.token->type == OT_DOUBLE_CHAR && arg.token->u.ch == *args) { ++arg.token; continue; } break; } /* Handle special macro operands. Work out the properties of other operands. */ arg.opnum += 1; arg.lax_max = FALSE; optional_reg = FALSE; switch (*args) { case '+': switch (args[1]) { case '1': case '2': case '3': case '4': case 'B': case 'C': case 'F': case 'G': case 'H': case 'J': case 'Q': case 'S': case 's': /* If these integer forms come last, there is no other form of the instruction that could match. Prefer to give detailed error messages where possible. */ if (args[2] == 0) arg.soft_match = FALSE; break; case 'I': /* "+I" is like "I", except that imm2_expr is used. */ if (match_const_int (&arg, &imm2_expr.X_add_number, 0)) imm2_expr.X_op = O_constant; else insn_error = _("absolute expression required"); if (HAVE_32BIT_GPRS) normalize_constant_expr (&imm2_expr); ++args; continue; case 'i': *offset_reloc = BFD_RELOC_MIPS_JMP; break; } break; case '\'': case ':': case '@': case '^': case '$': case '\\': case '%': case '|': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '8': case 'B': case 'C': case 'J': case 'O': case 'P': case 'Q': case 'c': case 'h': case 'q': /* If these integer forms come last, there is no other form of the instruction that could match. Prefer to give detailed error messages where possible. */ if (args[1] == 0) arg.soft_match = FALSE; break; case 'r': case 'v': case 'w': case 'W': case 'V': /* We have already matched a comma by this point, so the register is only optional if there is another operand to come. */ gas_assert (arg.opnum == 2); optional_reg = (args[1] == ','); break; case 'I': if (match_const_int (&arg, &imm_expr.X_add_number, 0)) imm_expr.X_op = O_constant; else insn_error = _("absolute expression required"); if (HAVE_32BIT_GPRS) normalize_constant_expr (&imm_expr); continue; case 'A': if (arg.token->type == OT_CHAR && arg.token->u.ch == '(') { /* Assume that the offset has been elided and that what we saw was a base register. The match will fail later if that assumption turns out to be wrong. */ offset_expr.X_op = O_constant; offset_expr.X_add_number = 0; } else if (match_expression (&arg, &offset_expr, offset_reloc)) normalize_address_expr (&offset_expr); else insn_error = _("absolute expression required"); continue; case 'F': if (!match_float_constant (&arg, &imm_expr, &offset_expr, 8, TRUE)) insn_error = _("floating-point expression required"); continue; case 'L': if (!match_float_constant (&arg, &imm_expr, &offset_expr, 8, FALSE)) insn_error = _("floating-point expression required"); continue; case 'f': if (!match_float_constant (&arg, &imm_expr, &offset_expr, 4, TRUE)) insn_error = _("floating-point expression required"); continue; case 'l': if (!match_float_constant (&arg, &imm_expr, &offset_expr, 4, FALSE)) insn_error = _("floating-point expression required"); continue; /* ??? This is the traditional behavior, but is flaky if there are alternative versions of the same instruction for different subarchitectures. The next alternative might not be suitable. */ case 'j': /* For compatibility with older assemblers, we accept 0x8000-0xffff as signed 16-bit numbers when only signed numbers are allowed. */ arg.lax_max = !more_alts; case 'i': /* Only accept non-constant operands if this is the final alternative. Later alternatives might include a macro implementation. */ arg.allow_nonconst = !more_alts; break; case 'u': /* There are no macro implementations for out-of-range values. */ arg.allow_nonconst = TRUE; break; case 'o': /* There should always be a macro implementation. */ arg.allow_nonconst = FALSE; break; case 'p': *offset_reloc = BFD_RELOC_16_PCREL_S2; break; case 'a': *offset_reloc = BFD_RELOC_MIPS_JMP; break; case 'm': gas_assert (mips_opts.micromips); c = args[1]; switch (c) { case 't': case 'c': case 'e': /* We have already matched a comma by this point, so the register is only optional if there is another operand to come. */ gas_assert (arg.opnum == 2); optional_reg = (args[2] == ','); break; case 'D': case 'E': if (!forced_insn_length) *offset_reloc = (int) BFD_RELOC_UNUSED + c; else if (c == 'D') *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1; else *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1; break; } break; } operand = (mips_opts.micromips ? decode_micromips_operand (args) : decode_mips_operand (args)); if (!operand) abort (); if (optional_reg && (arg.token[0].type != OT_REG || arg.token[1].type == OT_END)) { /* Assume that the register has been elided and is the same as the first operand. */ arg.token = tokens; arg.argnum = 1; } if (!match_operand (&arg, operand)) break; /* Skip prefixes. */ if (*args == '+' || *args == 'm') args++; continue; } /* Args don't match. */ insn_error = _("Illegal operands"); if (more_alts) { ++insn; continue; } if (wrong_delay_slot_insns && need_delay_slot_ok) { gas_assert (firstinsn); need_delay_slot_ok = FALSE; past = insn + 1; insn = firstinsn; continue; } obstack_free (&mips_operand_tokens, tokens); return; } } /* As for mips_ip, but used when assembling MIPS16 code. Also set forced_insn_length to the resulting instruction size in bytes if the user explicitly requested a small or extended instruction. */ static void mips16_ip (char *str, struct mips_cl_insn *ip) { char *s; const char *args; struct mips_opcode *insn; const struct mips_operand *operand; const struct mips_operand *ext_operand; struct mips_arg_info arg; struct mips_operand_token *tokens; bfd_boolean optional_reg; insn_error = NULL; forced_insn_length = 0; for (s = str; ISLOWER (*s); ++s) ; switch (*s) { case '\0': break; case ' ': *s++ = '\0'; break; case '.': if (s[1] == 't' && s[2] == ' ') { *s = '\0'; forced_insn_length = 2; s += 3; break; } else if (s[1] == 'e' && s[2] == ' ') { *s = '\0'; forced_insn_length = 4; s += 3; break; } /* Fall through. */ default: insn_error = _("unknown opcode"); return; } if (mips_opts.noautoextend && !forced_insn_length) forced_insn_length = 2; if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL) { insn_error = _("unrecognized opcode"); return; } tokens = mips_parse_arguments (s, 0); if (!tokens) return; for (;;) { bfd_boolean ok; bfd_boolean more_alts; char relax_char; gas_assert (strcmp (insn->name, str) == 0); ok = is_opcode_valid_16 (insn); more_alts = (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] && strcmp (insn[0].name, insn[1].name) == 0); if (! ok) { if (more_alts) { ++insn; continue; } else { if (!insn_error) { static char buf[100]; sprintf (buf, _("Opcode not supported on this processor: %s (%s)"), mips_cpu_info_from_arch (mips_opts.arch)->name, mips_cpu_info_from_isa (mips_opts.isa)->name); insn_error = buf; } obstack_free (&mips_operand_tokens, tokens); return; } } create_insn (ip, insn); imm_expr.X_op = O_absent; imm2_expr.X_op = O_absent; offset_expr.X_op = O_absent; offset_reloc[0] = BFD_RELOC_UNUSED; offset_reloc[1] = BFD_RELOC_UNUSED; offset_reloc[2] = BFD_RELOC_UNUSED; relax_char = 0; memset (&arg, 0, sizeof (arg)); arg.insn = ip; arg.token = tokens; arg.argnum = 1; arg.last_regno = ILLEGAL_REG; arg.dest_regno = ILLEGAL_REG; arg.soft_match = more_alts; relax_char = 0; for (args = insn->args; 1; ++args) { int c; if (arg.token->type == OT_END) { offsetT value; /* Handle unary instructions in which only one operand is given. The source is then the same as the destination. */ if (arg.opnum == 1 && *args == ',') switch (args[1]) { case 'v': case 'w': arg.token = tokens; arg.argnum = 1; continue; } /* Fail the match if there were too few operands. */ if (*args) break; /* Successful match. Stuff the immediate value in now, if we can. */ if (insn->pinfo == INSN_MACRO) { gas_assert (relax_char == 0 || relax_char == 'p'); gas_assert (*offset_reloc == BFD_RELOC_UNUSED); } else if (relax_char && offset_expr.X_op == O_constant && calculate_reloc (*offset_reloc, offset_expr.X_add_number, &value)) { mips16_immed (NULL, 0, relax_char, *offset_reloc, value, forced_insn_length, &ip->insn_opcode); offset_expr.X_op = O_absent; *offset_reloc = BFD_RELOC_UNUSED; } else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED) { if (forced_insn_length == 2) as_bad (_("invalid unextended operand value")); forced_insn_length = 4; ip->insn_opcode |= MIPS16_EXTEND; } else if (relax_char) *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char; check_completed_insn (&arg); obstack_free (&mips_operand_tokens, tokens); return; } /* Fail the match if the line has too many operands. */ if (*args == 0) break; /* Handle characters that need to match exactly. */ if (*args == '(' || *args == ')' || *args == ',') { if (match_char (&arg, *args)) continue; break; } arg.opnum += 1; optional_reg = FALSE; c = *args; switch (c) { case 'v': case 'w': optional_reg = (args[1] == ','); break; case 'p': case 'q': case 'A': case 'B': case 'E': relax_char = c; break; case 'I': if (match_const_int (&arg, &imm_expr.X_add_number, 0)) imm_expr.X_op = O_constant; else insn_error = _("absolute expression required"); if (HAVE_32BIT_GPRS) normalize_constant_expr (&imm_expr); continue; case 'a': case 'i': *offset_reloc = BFD_RELOC_MIPS16_JMP; ip->insn_opcode <<= 16; break; } operand = decode_mips16_operand (c, FALSE); if (!operand) abort (); /* '6' is a special case. It is used for BREAK and SDBBP, whose operands are only meaningful to the software that decodes them. This means that there is no architectural reason why they cannot be prefixed by EXTEND, but in practice, exception handlers will only look at the instruction itself. We therefore allow '6' to be extended when disassembling but not when assembling. */ if (operand->type != OP_PCREL && c != '6') { ext_operand = decode_mips16_operand (c, TRUE); if (operand != ext_operand) { if (arg.token->type == OT_CHAR && arg.token->u.ch == '(') { offset_expr.X_op = O_constant; offset_expr.X_add_number = 0; relax_char = c; continue; } /* We need the OT_INTEGER check because some MIPS16 immediate variants are listed before the register ones. */ if (arg.token->type != OT_INTEGER || !match_expression (&arg, &offset_expr, offset_reloc)) break; /* '8' is used for SLTI(U) and has traditionally not been allowed to take relocation operators. */ if (offset_reloc[0] != BFD_RELOC_UNUSED && (ext_operand->size != 16 || c == '8')) break; relax_char = c; continue; } } if (optional_reg && (arg.token[0].type != OT_REG || arg.token[1].type == OT_END)) { /* Assume that the register has been elided and is the same as the first operand. */ arg.token = tokens; arg.argnum = 1; } if (!match_operand (&arg, operand)) break; continue; } /* Args don't match. */ if (more_alts) { ++insn; continue; } insn_error = _("illegal operands"); obstack_free (&mips_operand_tokens, tokens); return; } } /* Marshal immediate value VAL for an extended MIPS16 instruction. NBITS is the number of significant bits in VAL. */ static unsigned long mips16_immed_extend (offsetT val, unsigned int nbits) { int extval; if (nbits == 16) { extval = ((val >> 11) & 0x1f) | (val & 0x7e0); val &= 0x1f; } else if (nbits == 15) { extval = ((val >> 11) & 0xf) | (val & 0x7f0); val &= 0xf; } else { extval = ((val & 0x1f) << 6) | (val & 0x20); val = 0; } return (extval << 16) | val; } /* Like decode_mips16_operand, but require the operand to be defined and require it to be an integer. */ static const struct mips_int_operand * mips16_immed_operand (int type, bfd_boolean extended_p) { const struct mips_operand *operand; operand = decode_mips16_operand (type, extended_p); if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL)) abort (); return (const struct mips_int_operand *) operand; } /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */ static bfd_boolean mips16_immed_in_range_p (const struct mips_int_operand *operand, bfd_reloc_code_real_type reloc, offsetT sval) { int min_val, max_val; min_val = mips_int_operand_min (operand); max_val = mips_int_operand_max (operand); if (reloc != BFD_RELOC_UNUSED) { if (min_val < 0) sval = SEXT_16BIT (sval); else sval &= 0xffff; } return (sval >= min_val && sval <= max_val && (sval & ((1 << operand->shift) - 1)) == 0); } /* Install immediate value VAL into MIPS16 instruction *INSN, extending it if necessary. The instruction in *INSN may already be extended. RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED if none. In the former case, VAL is a 16-bit number with no defined signedness. TYPE is the type of the immediate field. USER_INSN_LENGTH is the length that the user requested, or 0 if none. */ static void mips16_immed (char *file, unsigned int line, int type, bfd_reloc_code_real_type reloc, offsetT val, unsigned int user_insn_length, unsigned long *insn) { const struct mips_int_operand *operand; unsigned int uval, length; operand = mips16_immed_operand (type, FALSE); if (!mips16_immed_in_range_p (operand, reloc, val)) { /* We need an extended instruction. */ if (user_insn_length == 2) as_bad_where (file, line, _("invalid unextended operand value")); else *insn |= MIPS16_EXTEND; } else if (user_insn_length == 4) { /* The operand doesn't force an unextended instruction to be extended. Warn if the user wanted an extended instruction anyway. */ *insn |= MIPS16_EXTEND; as_warn_where (file, line, _("extended operand requested but not required")); } length = mips16_opcode_length (*insn); if (length == 4) { operand = mips16_immed_operand (type, TRUE); if (!mips16_immed_in_range_p (operand, reloc, val)) as_bad_where (file, line, _("operand value out of range for instruction")); } uval = ((unsigned int) val >> operand->shift) - operand->bias; if (length == 2) *insn = mips_insert_operand (&operand->root, *insn, uval); else *insn |= mips16_immed_extend (uval, operand->root.size); } struct percent_op_match { const char *str; bfd_reloc_code_real_type reloc; }; static const struct percent_op_match mips_percent_op[] = { {"%lo", BFD_RELOC_LO16}, {"%call_hi", BFD_RELOC_MIPS_CALL_HI16}, {"%call_lo", BFD_RELOC_MIPS_CALL_LO16}, {"%call16", BFD_RELOC_MIPS_CALL16}, {"%got_disp", BFD_RELOC_MIPS_GOT_DISP}, {"%got_page", BFD_RELOC_MIPS_GOT_PAGE}, {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST}, {"%got_hi", BFD_RELOC_MIPS_GOT_HI16}, {"%got_lo", BFD_RELOC_MIPS_GOT_LO16}, {"%got", BFD_RELOC_MIPS_GOT16}, {"%gp_rel", BFD_RELOC_GPREL16}, {"%half", BFD_RELOC_16}, {"%highest", BFD_RELOC_MIPS_HIGHEST}, {"%higher", BFD_RELOC_MIPS_HIGHER}, {"%neg", BFD_RELOC_MIPS_SUB}, {"%tlsgd", BFD_RELOC_MIPS_TLS_GD}, {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM}, {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16}, {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16}, {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16}, {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16}, {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL}, {"%hi", BFD_RELOC_HI16_S} }; static const struct percent_op_match mips16_percent_op[] = { {"%lo", BFD_RELOC_MIPS16_LO16}, {"%gprel", BFD_RELOC_MIPS16_GPREL}, {"%got", BFD_RELOC_MIPS16_GOT16}, {"%call16", BFD_RELOC_MIPS16_CALL16}, {"%hi", BFD_RELOC_MIPS16_HI16_S}, {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD}, {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM}, {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16}, {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16}, {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16}, {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16}, {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL} }; /* Return true if *STR points to a relocation operator. When returning true, move *STR over the operator and store its relocation code in *RELOC. Leave both *STR and *RELOC alone when returning false. */ static bfd_boolean parse_relocation (char **str, bfd_reloc_code_real_type *reloc) { const struct percent_op_match *percent_op; size_t limit, i; if (mips_opts.mips16) { percent_op = mips16_percent_op; limit = ARRAY_SIZE (mips16_percent_op); } else { percent_op = mips_percent_op; limit = ARRAY_SIZE (mips_percent_op); } for (i = 0; i < limit; i++) if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0) { int len = strlen (percent_op[i].str); if (!ISSPACE ((*str)[len]) && (*str)[len] != '(') continue; *str += strlen (percent_op[i].str); *reloc = percent_op[i].reloc; /* Check whether the output BFD supports this relocation. If not, issue an error and fall back on something safe. */ if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc)) { as_bad (_("relocation %s isn't supported by the current ABI"), percent_op[i].str); *reloc = BFD_RELOC_UNUSED; } return TRUE; } return FALSE; } /* Parse string STR as a 16-bit relocatable operand. Store the expression in *EP and the relocations in the array starting at RELOC. Return the number of relocation operators used. On exit, EXPR_END points to the first character after the expression. */ static size_t my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc, char *str) { bfd_reloc_code_real_type reversed_reloc[3]; size_t reloc_index, i; int crux_depth, str_depth; char *crux; /* Search for the start of the main expression, recoding relocations in REVERSED_RELOC. End the loop with CRUX pointing to the start of the main expression and with CRUX_DEPTH containing the number of open brackets at that point. */ reloc_index = -1; str_depth = 0; do { reloc_index++; crux = str; crux_depth = str_depth; /* Skip over whitespace and brackets, keeping count of the number of brackets. */ while (*str == ' ' || *str == '\t' || *str == '(') if (*str++ == '(') str_depth++; } while (*str == '%' && reloc_index < (HAVE_NEWABI ? 3 : 1) && parse_relocation (&str, &reversed_reloc[reloc_index])); my_getExpression (ep, crux); str = expr_end; /* Match every open bracket. */ while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t')) if (*str++ == ')') crux_depth--; if (crux_depth > 0) as_bad (_("unclosed '('")); expr_end = str; if (reloc_index != 0) { prev_reloc_op_frag = frag_now; for (i = 0; i < reloc_index; i++) reloc[i] = reversed_reloc[reloc_index - 1 - i]; } return reloc_index; } static void my_getExpression (expressionS *ep, char *str) { char *save_in; save_in = input_line_pointer; input_line_pointer = str; expression (ep); expr_end = input_line_pointer; input_line_pointer = save_in; } char * md_atof (int type, char *litP, int *sizeP) { return ieee_md_atof (type, litP, sizeP, target_big_endian); } void md_number_to_chars (char *buf, valueT val, int n) { if (target_big_endian) number_to_chars_bigendian (buf, val, n); else number_to_chars_littleendian (buf, val, n); } static int support_64bit_objects(void) { const char **list, **l; int yes; list = bfd_target_list (); for (l = list; *l != NULL; l++) if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0) break; yes = (*l != NULL); free (list); return yes; } /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to NEW_VALUE. Warn if another value was already specified. Note: we have to defer parsing the -march and -mtune arguments in order to handle 'from-abi' correctly, since the ABI might be specified in a later argument. */ static void mips_set_option_string (const char **string_ptr, const char *new_value) { if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0) as_warn (_("A different %s was already specified, is now %s"), string_ptr == &mips_arch_string ? "-march" : "-mtune", new_value); *string_ptr = new_value; } int md_parse_option (int c, char *arg) { unsigned int i; for (i = 0; i < ARRAY_SIZE (mips_ases); i++) if (c == mips_ases[i].option_on || c == mips_ases[i].option_off) { file_ase_explicit |= mips_set_ase (&mips_ases[i], c == mips_ases[i].option_on); return 1; } switch (c) { case OPTION_CONSTRUCT_FLOATS: mips_disable_float_construction = 0; break; case OPTION_NO_CONSTRUCT_FLOATS: mips_disable_float_construction = 1; break; case OPTION_TRAP: mips_trap = 1; break; case OPTION_BREAK: mips_trap = 0; break; case OPTION_EB: target_big_endian = 1; break; case OPTION_EL: target_big_endian = 0; break; case 'O': if (arg == NULL) mips_optimize = 1; else if (arg[0] == '0') mips_optimize = 0; else if (arg[0] == '1') mips_optimize = 1; else mips_optimize = 2; break; case 'g': if (arg == NULL) mips_debug = 2; else mips_debug = atoi (arg); break; case OPTION_MIPS1: file_mips_isa = ISA_MIPS1; break; case OPTION_MIPS2: file_mips_isa = ISA_MIPS2; break; case OPTION_MIPS3: file_mips_isa = ISA_MIPS3; break; case OPTION_MIPS4: file_mips_isa = ISA_MIPS4; break; case OPTION_MIPS5: file_mips_isa = ISA_MIPS5; break; case OPTION_MIPS32: file_mips_isa = ISA_MIPS32; break; case OPTION_MIPS32R2: file_mips_isa = ISA_MIPS32R2; break; case OPTION_MIPS64R2: file_mips_isa = ISA_MIPS64R2; break; case OPTION_MIPS64: file_mips_isa = ISA_MIPS64; break; case OPTION_MTUNE: mips_set_option_string (&mips_tune_string, arg); break; case OPTION_MARCH: mips_set_option_string (&mips_arch_string, arg); break; case OPTION_M4650: mips_set_option_string (&mips_arch_string, "4650"); mips_set_option_string (&mips_tune_string, "4650"); break; case OPTION_NO_M4650: break; case OPTION_M4010: mips_set_option_string (&mips_arch_string, "4010"); mips_set_option_string (&mips_tune_string, "4010"); break; case OPTION_NO_M4010: break; case OPTION_M4100: mips_set_option_string (&mips_arch_string, "4100"); mips_set_option_string (&mips_tune_string, "4100"); break; case OPTION_NO_M4100: break; case OPTION_M3900: mips_set_option_string (&mips_arch_string, "3900"); mips_set_option_string (&mips_tune_string, "3900"); break; case OPTION_NO_M3900: break; case OPTION_MICROMIPS: if (mips_opts.mips16 == 1) { as_bad (_("-mmicromips cannot be used with -mips16")); return 0; } mips_opts.micromips = 1; mips_no_prev_insn (); break; case OPTION_NO_MICROMIPS: mips_opts.micromips = 0; mips_no_prev_insn (); break; case OPTION_MIPS16: if (mips_opts.micromips == 1) { as_bad (_("-mips16 cannot be used with -micromips")); return 0; } mips_opts.mips16 = 1; mips_no_prev_insn (); break; case OPTION_NO_MIPS16: mips_opts.mips16 = 0; mips_no_prev_insn (); break; case OPTION_FIX_24K: mips_fix_24k = 1; break; case OPTION_NO_FIX_24K: mips_fix_24k = 0; break; case OPTION_FIX_LOONGSON2F_JUMP: mips_fix_loongson2f_jump = TRUE; break; case OPTION_NO_FIX_LOONGSON2F_JUMP: mips_fix_loongson2f_jump = FALSE; break; case OPTION_FIX_LOONGSON2F_NOP: mips_fix_loongson2f_nop = TRUE; break; case OPTION_NO_FIX_LOONGSON2F_NOP: mips_fix_loongson2f_nop = FALSE; break; case OPTION_FIX_VR4120: mips_fix_vr4120 = 1; break; case OPTION_NO_FIX_VR4120: mips_fix_vr4120 = 0; break; case OPTION_FIX_VR4130: mips_fix_vr4130 = 1; break; case OPTION_NO_FIX_VR4130: mips_fix_vr4130 = 0; break; case OPTION_FIX_CN63XXP1: mips_fix_cn63xxp1 = TRUE; break; case OPTION_NO_FIX_CN63XXP1: mips_fix_cn63xxp1 = FALSE; break; case OPTION_RELAX_BRANCH: mips_relax_branch = 1; break; case OPTION_NO_RELAX_BRANCH: mips_relax_branch = 0; break; case OPTION_INSN32: mips_opts.insn32 = TRUE; break; case OPTION_NO_INSN32: mips_opts.insn32 = FALSE; break; case OPTION_MSHARED: mips_in_shared = TRUE; break; case OPTION_MNO_SHARED: mips_in_shared = FALSE; break; case OPTION_MSYM32: mips_opts.sym32 = TRUE; break; case OPTION_MNO_SYM32: mips_opts.sym32 = FALSE; break; /* When generating ELF code, we permit -KPIC and -call_shared to select SVR4_PIC, and -non_shared to select no PIC. This is intended to be compatible with Irix 5. */ case OPTION_CALL_SHARED: mips_pic = SVR4_PIC; mips_abicalls = TRUE; break; case OPTION_CALL_NONPIC: mips_pic = NO_PIC; mips_abicalls = TRUE; break; case OPTION_NON_SHARED: mips_pic = NO_PIC; mips_abicalls = FALSE; break; /* The -xgot option tells the assembler to use 32 bit offsets when accessing the got in SVR4_PIC mode. It is for Irix compatibility. */ case OPTION_XGOT: mips_big_got = 1; break; case 'G': g_switch_value = atoi (arg); g_switch_seen = 1; break; /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32 and -mabi=64. */ case OPTION_32: mips_abi = O32_ABI; break; case OPTION_N32: mips_abi = N32_ABI; break; case OPTION_64: mips_abi = N64_ABI; if (!support_64bit_objects()) as_fatal (_("No compiled in support for 64 bit object file format")); break; case OPTION_GP32: file_mips_gp32 = 1; break; case OPTION_GP64: file_mips_gp32 = 0; break; case OPTION_FP32: file_mips_fp32 = 1; break; case OPTION_FP64: file_mips_fp32 = 0; break; case OPTION_SINGLE_FLOAT: file_mips_single_float = 1; break; case OPTION_DOUBLE_FLOAT: file_mips_single_float = 0; break; case OPTION_SOFT_FLOAT: file_mips_soft_float = 1; break; case OPTION_HARD_FLOAT: file_mips_soft_float = 0; break; case OPTION_MABI: if (strcmp (arg, "32") == 0) mips_abi = O32_ABI; else if (strcmp (arg, "o64") == 0) mips_abi = O64_ABI; else if (strcmp (arg, "n32") == 0) mips_abi = N32_ABI; else if (strcmp (arg, "64") == 0) { mips_abi = N64_ABI; if (! support_64bit_objects()) as_fatal (_("No compiled in support for 64 bit object file " "format")); } else if (strcmp (arg, "eabi") == 0) mips_abi = EABI_ABI; else { as_fatal (_("invalid abi -mabi=%s"), arg); return 0; } break; case OPTION_M7000_HILO_FIX: mips_7000_hilo_fix = TRUE; break; case OPTION_MNO_7000_HILO_FIX: mips_7000_hilo_fix = FALSE; break; case OPTION_MDEBUG: mips_flag_mdebug = TRUE; break; case OPTION_NO_MDEBUG: mips_flag_mdebug = FALSE; break; case OPTION_PDR: mips_flag_pdr = TRUE; break; case OPTION_NO_PDR: mips_flag_pdr = FALSE; break; case OPTION_MVXWORKS_PIC: mips_pic = VXWORKS_PIC; break; case OPTION_NAN: if (strcmp (arg, "2008") == 0) mips_flag_nan2008 = TRUE; else if (strcmp (arg, "legacy") == 0) mips_flag_nan2008 = FALSE; else { as_fatal (_("Invalid NaN setting -mnan=%s"), arg); return 0; } break; default: return 0; } mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump; return 1; } /* Set up globals to generate code for the ISA or processor described by INFO. */ static void mips_set_architecture (const struct mips_cpu_info *info) { if (info != 0) { file_mips_arch = info->cpu; mips_opts.arch = info->cpu; mips_opts.isa = info->isa; } } /* Likewise for tuning. */ static void mips_set_tune (const struct mips_cpu_info *info) { if (info != 0) mips_tune = info->cpu; } void mips_after_parse_args (void) { const struct mips_cpu_info *arch_info = 0; const struct mips_cpu_info *tune_info = 0; /* GP relative stuff not working for PE */ if (strncmp (TARGET_OS, "pe", 2) == 0) { if (g_switch_seen && g_switch_value != 0) as_bad (_("-G not supported in this configuration.")); g_switch_value = 0; } if (mips_abi == NO_ABI) mips_abi = MIPS_DEFAULT_ABI; /* The following code determines the architecture and register size. Similar code was added to GCC 3.3 (see override_options() in config/mips/mips.c). The GAS and GCC code should be kept in sync as much as possible. */ if (mips_arch_string != 0) arch_info = mips_parse_cpu ("-march", mips_arch_string); if (file_mips_isa != ISA_UNKNOWN) { /* Handle -mipsN. At this point, file_mips_isa contains the ISA level specified by -mipsN, while arch_info->isa contains the -march selection (if any). */ if (arch_info != 0) { /* -march takes precedence over -mipsN, since it is more descriptive. There's no harm in specifying both as long as the ISA levels are the same. */ if (file_mips_isa != arch_info->isa) as_bad (_("-%s conflicts with the other architecture options, which imply -%s"), mips_cpu_info_from_isa (file_mips_isa)->name, mips_cpu_info_from_isa (arch_info->isa)->name); } else arch_info = mips_cpu_info_from_isa (file_mips_isa); } if (arch_info == 0) { arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT); gas_assert (arch_info); } if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa)) as_bad (_("-march=%s is not compatible with the selected ABI"), arch_info->name); mips_set_architecture (arch_info); /* Optimize for file_mips_arch, unless -mtune selects a different processor. */ if (mips_tune_string != 0) tune_info = mips_parse_cpu ("-mtune", mips_tune_string); if (tune_info == 0) mips_set_tune (arch_info); else mips_set_tune (tune_info); if (file_mips_gp32 >= 0) { /* The user specified the size of the integer registers. Make sure it agrees with the ABI and ISA. */ if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa)) as_bad (_("-mgp64 used with a 32-bit processor")); else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi)) as_bad (_("-mgp32 used with a 64-bit ABI")); else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi)) as_bad (_("-mgp64 used with a 32-bit ABI")); } else { /* Infer the integer register size from the ABI and processor. Restrict ourselves to 32-bit registers if that's all the processor has, or if the ABI cannot handle 64-bit registers. */ file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi) || !ISA_HAS_64BIT_REGS (mips_opts.isa)); } switch (file_mips_fp32) { default: case -1: /* No user specified float register size. ??? GAS treats single-float processors as though they had 64-bit float registers (although it complains when double-precision instructions are used). As things stand, saying they have 32-bit registers would lead to spurious "register must be even" messages. So here we assume float registers are never smaller than the integer ones. */ if (file_mips_gp32 == 0) /* 64-bit integer registers implies 64-bit float registers. */ file_mips_fp32 = 0; else if ((mips_opts.ase & FP64_ASES) && ISA_HAS_64BIT_FPRS (mips_opts.isa)) /* -mips3d and -mdmx imply 64-bit float registers, if possible. */ file_mips_fp32 = 0; else /* 32-bit float registers. */ file_mips_fp32 = 1; break; /* The user specified the size of the float registers. Check if it agrees with the ABI and ISA. */ case 0: if (!ISA_HAS_64BIT_FPRS (mips_opts.isa)) as_bad (_("-mfp64 used with a 32-bit fpu")); else if (ABI_NEEDS_32BIT_REGS (mips_abi) && !ISA_HAS_MXHC1 (mips_opts.isa)) as_warn (_("-mfp64 used with a 32-bit ABI")); break; case 1: if (ABI_NEEDS_64BIT_REGS (mips_abi)) as_warn (_("-mfp32 used with a 64-bit ABI")); break; } /* End of GCC-shared inference code. */ /* This flag is set when we have a 64-bit capable CPU but use only 32-bit wide registers. Note that EABI does not use it. */ if (ISA_HAS_64BIT_REGS (mips_opts.isa) && ((mips_abi == NO_ABI && file_mips_gp32 == 1) || mips_abi == O32_ABI)) mips_32bitmode = 1; if (mips_opts.isa == ISA_MIPS1 && mips_trap) as_bad (_("trap exception not supported at ISA 1")); /* If the selected architecture includes support for ASEs, enable generation of code for them. */ if (mips_opts.mips16 == -1) mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0; if (mips_opts.micromips == -1) mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_arch)) ? 1 : 0; /* MIPS3D and MDMX require 64-bit FPRs, so -mfp32 should stop those ASEs from being selected implicitly. */ if (file_mips_fp32 == 1) file_ase_explicit |= ASE_MIPS3D | ASE_MDMX; /* If the user didn't explicitly select or deselect a particular ASE, use the default setting for the CPU. */ mips_opts.ase |= (arch_info->ase & ~file_ase_explicit); file_mips_isa = mips_opts.isa; file_ase = mips_opts.ase; mips_opts.gp32 = file_mips_gp32; mips_opts.fp32 = file_mips_fp32; mips_opts.soft_float = file_mips_soft_float; mips_opts.single_float = file_mips_single_float; mips_check_isa_supports_ases (); if (mips_flag_mdebug < 0) mips_flag_mdebug = 0; } void mips_init_after_args (void) { /* initialize opcodes */ bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes; mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes; } long md_pcrel_from (fixS *fixP) { valueT addr = fixP->fx_where + fixP->fx_frag->fr_address; switch (fixP->fx_r_type) { case BFD_RELOC_MICROMIPS_7_PCREL_S1: case BFD_RELOC_MICROMIPS_10_PCREL_S1: /* Return the address of the delay slot. */ return addr + 2; case BFD_RELOC_MICROMIPS_16_PCREL_S1: case BFD_RELOC_MICROMIPS_JMP: case BFD_RELOC_16_PCREL_S2: case BFD_RELOC_MIPS_JMP: /* Return the address of the delay slot. */ return addr + 4; case BFD_RELOC_32_PCREL: return addr; default: /* We have no relocation type for PC relative MIPS16 instructions. */ if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg) as_bad_where (fixP->fx_file, fixP->fx_line, _("PC relative MIPS16 instruction references a different section")); return addr; } } /* This is called before the symbol table is processed. In order to work with gcc when using mips-tfile, we must keep all local labels. However, in other cases, we want to discard them. If we were called with -g, but we didn't see any debugging information, it may mean that gcc is smuggling debugging information through to mips-tfile, in which case we must generate all local labels. */ void mips_frob_file_before_adjust (void) { #ifndef NO_ECOFF_DEBUGGING if (ECOFF_DEBUGGING && mips_debug != 0 && ! ecoff_debugging_seen) flag_keep_locals = 1; #endif } /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede the corresponding LO16 reloc. This is called before md_apply_fix and tc_gen_reloc. Unmatched relocs can only be generated by use of explicit relocation operators. For our purposes, a %lo() expression matches a %got() or %hi() expression if: (a) it refers to the same symbol; and (b) the offset applied in the %lo() expression is no lower than the offset applied in the %got() or %hi(). (b) allows us to cope with code like: lui $4,%hi(foo) lh $4,%lo(foo+2)($4) ...which is legal on RELA targets, and has a well-defined behaviour if the user knows that adding 2 to "foo" will not induce a carry to the high 16 bits. When several %lo()s match a particular %got() or %hi(), we use the following rules to distinguish them: (1) %lo()s with smaller offsets are a better match than %lo()s with higher offsets. (2) %lo()s with no matching %got() or %hi() are better than those that already have a matching %got() or %hi(). (3) later %lo()s are better than earlier %lo()s. These rules are applied in order. (1) means, among other things, that %lo()s with identical offsets are chosen if they exist. (2) means that we won't associate several high-part relocations with the same low-part relocation unless there's no alternative. Having several high parts for the same low part is a GNU extension; this rule allows careful users to avoid it. (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order, with the last high-part relocation being at the front of the list. It therefore makes sense to choose the last matching low-part relocation, all other things being equal. It's also easier to code that way. */ void mips_frob_file (void) { struct mips_hi_fixup *l; bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED; for (l = mips_hi_fixup_list; l != NULL; l = l->next) { segment_info_type *seginfo; bfd_boolean matched_lo_p; fixS **hi_pos, **lo_pos, **pos; gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type)); /* If a GOT16 relocation turns out to be against a global symbol, there isn't supposed to be a matching LO. Ignore %gots against constants; we'll report an error for those later. */ if (got16_reloc_p (l->fixp->fx_r_type) && !(l->fixp->fx_addsy && pic_need_relax (l->fixp->fx_addsy, l->seg))) continue; /* Check quickly whether the next fixup happens to be a matching %lo. */ if (fixup_has_matching_lo_p (l->fixp)) continue; seginfo = seg_info (l->seg); /* Set HI_POS to the position of this relocation in the chain. Set LO_POS to the position of the chosen low-part relocation. MATCHED_LO_P is true on entry to the loop if *POS is a low-part relocation that matches an immediately-preceding high-part relocation. */ hi_pos = NULL; lo_pos = NULL; matched_lo_p = FALSE; looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type); for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next) { if (*pos == l->fixp) hi_pos = pos; if ((*pos)->fx_r_type == looking_for_rtype && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy) && (*pos)->fx_offset >= l->fixp->fx_offset && (lo_pos == NULL || (*pos)->fx_offset < (*lo_pos)->fx_offset || (!matched_lo_p && (*pos)->fx_offset == (*lo_pos)->fx_offset))) lo_pos = pos; matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type) && fixup_has_matching_lo_p (*pos)); } /* If we found a match, remove the high-part relocation from its current position and insert it before the low-part relocation. Make the offsets match so that fixup_has_matching_lo_p() will return true. We don't warn about unmatched high-part relocations since some versions of gcc have been known to emit dead "lui ...%hi(...)" instructions. */ if (lo_pos != NULL) { l->fixp->fx_offset = (*lo_pos)->fx_offset; if (l->fixp->fx_next != *lo_pos) { *hi_pos = l->fixp->fx_next; l->fixp->fx_next = *lo_pos; *lo_pos = l->fixp; } } } } int mips_force_relocation (fixS *fixp) { if (generic_force_reloc (fixp)) return 1; /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation, so that the linker relaxation can update targets. */ if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1) return 1; return 0; } /* Read the instruction associated with RELOC from BUF. */ static unsigned int read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc) { if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc)) return read_compressed_insn (buf, 4); else return read_insn (buf); } /* Write instruction INSN to BUF, given that it has been relocated by RELOC. */ static void write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc, unsigned long insn) { if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc)) write_compressed_insn (buf, insn, 4); else write_insn (buf, insn); } /* Apply a fixup to the object file. */ void md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED) { char *buf; unsigned long insn; reloc_howto_type *howto; /* We ignore generic BFD relocations we don't know about. */ howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type); if (! howto) return; gas_assert (fixP->fx_size == 2 || fixP->fx_size == 4 || fixP->fx_r_type == BFD_RELOC_16 || fixP->fx_r_type == BFD_RELOC_64 || fixP->fx_r_type == BFD_RELOC_CTOR || fixP->fx_r_type == BFD_RELOC_MIPS_SUB || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64); buf = fixP->fx_frag->fr_literal + fixP->fx_where; gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1 || fixP->fx_r_type == BFD_RELOC_32_PCREL); /* Don't treat parts of a composite relocation as done. There are two reasons for this: (1) The second and third parts will be against 0 (RSS_UNDEF) but should nevertheless be emitted if the first part is. (2) In normal usage, composite relocations are never assembly-time constants. The easiest way of dealing with the pathological exceptions is to generate a relocation against STN_UNDEF and leave everything up to the linker. */ if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0) fixP->fx_done = 1; switch (fixP->fx_r_type) { case BFD_RELOC_MIPS_TLS_GD: case BFD_RELOC_MIPS_TLS_LDM: case BFD_RELOC_MIPS_TLS_DTPREL32: case BFD_RELOC_MIPS_TLS_DTPREL64: case BFD_RELOC_MIPS_TLS_DTPREL_HI16: case BFD_RELOC_MIPS_TLS_DTPREL_LO16: case BFD_RELOC_MIPS_TLS_GOTTPREL: case BFD_RELOC_MIPS_TLS_TPREL32: case BFD_RELOC_MIPS_TLS_TPREL64: case BFD_RELOC_MIPS_TLS_TPREL_HI16: case BFD_RELOC_MIPS_TLS_TPREL_LO16: case BFD_RELOC_MICROMIPS_TLS_GD: case BFD_RELOC_MICROMIPS_TLS_LDM: case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16: case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16: case BFD_RELOC_MICROMIPS_TLS_GOTTPREL: case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16: case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16: case BFD_RELOC_MIPS16_TLS_GD: case BFD_RELOC_MIPS16_TLS_LDM: case BFD_RELOC_MIPS16_TLS_DTPREL_HI16: case BFD_RELOC_MIPS16_TLS_DTPREL_LO16: case BFD_RELOC_MIPS16_TLS_GOTTPREL: case BFD_RELOC_MIPS16_TLS_TPREL_HI16: case BFD_RELOC_MIPS16_TLS_TPREL_LO16: if (!fixP->fx_addsy) { as_bad_where (fixP->fx_file, fixP->fx_line, _("TLS relocation against a constant")); break; } S_SET_THREAD_LOCAL (fixP->fx_addsy); /* fall through */ case BFD_RELOC_MIPS_JMP: case BFD_RELOC_MIPS_SHIFT5: case BFD_RELOC_MIPS_SHIFT6: case BFD_RELOC_MIPS_GOT_DISP: case BFD_RELOC_MIPS_GOT_PAGE: case BFD_RELOC_MIPS_GOT_OFST: case BFD_RELOC_MIPS_SUB: case BFD_RELOC_MIPS_INSERT_A: case BFD_RELOC_MIPS_INSERT_B: case BFD_RELOC_MIPS_DELETE: case BFD_RELOC_MIPS_HIGHEST: case BFD_RELOC_MIPS_HIGHER: case BFD_RELOC_MIPS_SCN_DISP: case BFD_RELOC_MIPS_REL16: case BFD_RELOC_MIPS_RELGOT: case BFD_RELOC_MIPS_JALR: case BFD_RELOC_HI16: case BFD_RELOC_HI16_S: case BFD_RELOC_LO16: case BFD_RELOC_GPREL16: case BFD_RELOC_MIPS_LITERAL: case BFD_RELOC_MIPS_CALL16: case BFD_RELOC_MIPS_GOT16: case BFD_RELOC_GPREL32: case BFD_RELOC_MIPS_GOT_HI16: case BFD_RELOC_MIPS_GOT_LO16: case BFD_RELOC_MIPS_CALL_HI16: case BFD_RELOC_MIPS_CALL_LO16: case BFD_RELOC_MIPS16_GPREL: case BFD_RELOC_MIPS16_GOT16: case BFD_RELOC_MIPS16_CALL16: case BFD_RELOC_MIPS16_HI16: case BFD_RELOC_MIPS16_HI16_S: case BFD_RELOC_MIPS16_LO16: case BFD_RELOC_MIPS16_JMP: case BFD_RELOC_MICROMIPS_JMP: case BFD_RELOC_MICROMIPS_GOT_DISP: case BFD_RELOC_MICROMIPS_GOT_PAGE: case BFD_RELOC_MICROMIPS_GOT_OFST: case BFD_RELOC_MICROMIPS_SUB: case BFD_RELOC_MICROMIPS_HIGHEST: case BFD_RELOC_MICROMIPS_HIGHER: case BFD_RELOC_MICROMIPS_SCN_DISP: case BFD_RELOC_MICROMIPS_JALR: case BFD_RELOC_MICROMIPS_HI16: case BFD_RELOC_MICROMIPS_HI16_S: case BFD_RELOC_MICROMIPS_LO16: case BFD_RELOC_MICROMIPS_GPREL16: case BFD_RELOC_MICROMIPS_LITERAL: case BFD_RELOC_MICROMIPS_CALL16: case BFD_RELOC_MICROMIPS_GOT16: case BFD_RELOC_MICROMIPS_GOT_HI16: case BFD_RELOC_MICROMIPS_GOT_LO16: case BFD_RELOC_MICROMIPS_CALL_HI16: case BFD_RELOC_MICROMIPS_CALL_LO16: case BFD_RELOC_MIPS_EH: if (fixP->fx_done) { offsetT value; if (calculate_reloc (fixP->fx_r_type, *valP, &value)) { insn = read_reloc_insn (buf, fixP->fx_r_type); if (mips16_reloc_p (fixP->fx_r_type)) insn |= mips16_immed_extend (value, 16); else insn |= (value & 0xffff); write_reloc_insn (buf, fixP->fx_r_type, insn); } else as_bad_where (fixP->fx_file, fixP->fx_line, _("Unsupported constant in relocation")); } break; case BFD_RELOC_64: /* This is handled like BFD_RELOC_32, but we output a sign extended value if we are only 32 bits. */ if (fixP->fx_done) { if (8 <= sizeof (valueT)) md_number_to_chars (buf, *valP, 8); else { valueT hiv; if ((*valP & 0x80000000) != 0) hiv = 0xffffffff; else hiv = 0; md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4); md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4); } } break; case BFD_RELOC_RVA: case BFD_RELOC_32: case BFD_RELOC_32_PCREL: case BFD_RELOC_16: /* If we are deleting this reloc entry, we must fill in the value now. This can happen if we have a .word which is not resolved when it appears but is later defined. */ if (fixP->fx_done) md_number_to_chars (buf, *valP, fixP->fx_size); break; case BFD_RELOC_16_PCREL_S2: if ((*valP & 0x3) != 0) as_bad_where (fixP->fx_file, fixP->fx_line, _("Branch to misaligned address (%lx)"), (long) *valP); /* We need to save the bits in the instruction since fixup_segment() might be deleting the relocation entry (i.e., a branch within the current segment). */ if (! fixP->fx_done) break; /* Update old instruction data. */ insn = read_insn (buf); if (*valP + 0x20000 <= 0x3ffff) { insn |= (*valP >> 2) & 0xffff; write_insn (buf, insn); } else if (mips_pic == NO_PIC && fixP->fx_done && fixP->fx_frag->fr_address >= text_section->vma && (fixP->fx_frag->fr_address < text_section->vma + bfd_get_section_size (text_section)) && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */ || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */ || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */ { /* The branch offset is too large. If this is an unconditional branch, and we are not generating PIC code, we can convert it to an absolute jump instruction. */ if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */ insn = 0x0c000000; /* jal */ else insn = 0x08000000; /* j */ fixP->fx_r_type = BFD_RELOC_MIPS_JMP; fixP->fx_done = 0; fixP->fx_addsy = section_symbol (text_section); *valP += md_pcrel_from (fixP); write_insn (buf, insn); } else { /* If we got here, we have branch-relaxation disabled, and there's nothing we can do to fix this instruction without turning it into a longer sequence. */ as_bad_where (fixP->fx_file, fixP->fx_line, _("Branch out of range")); } break; case BFD_RELOC_MICROMIPS_7_PCREL_S1: case BFD_RELOC_MICROMIPS_10_PCREL_S1: case BFD_RELOC_MICROMIPS_16_PCREL_S1: /* We adjust the offset back to even. */ if ((*valP & 0x1) != 0) --(*valP); if (! fixP->fx_done) break; /* Should never visit here, because we keep the relocation. */ abort (); break; case BFD_RELOC_VTABLE_INHERIT: fixP->fx_done = 0; if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy) && !S_IS_WEAK (fixP->fx_addsy)) S_SET_WEAK (fixP->fx_addsy); break; case BFD_RELOC_VTABLE_ENTRY: fixP->fx_done = 0; break; default: abort (); } /* Remember value for tc_gen_reloc. */ fixP->fx_addnumber = *valP; } static symbolS * get_symbol (void) { int c; char *name; symbolS *p; name = input_line_pointer; c = get_symbol_end (); p = (symbolS *) symbol_find_or_make (name); *input_line_pointer = c; return p; } /* Align the current frag to a given power of two. If a particular fill byte should be used, FILL points to an integer that contains that byte, otherwise FILL is null. This function used to have the comment: The MIPS assembler also automatically adjusts any preceding label. The implementation therefore applied the adjustment to a maximum of one label. However, other label adjustments are applied to batches of labels, and adjusting just one caused problems when new labels were added for the sake of debugging or unwind information. We therefore adjust all preceding labels (given as LABELS) instead. */ static void mips_align (int to, int *fill, struct insn_label_list *labels) { mips_emit_delays (); mips_record_compressed_mode (); if (fill == NULL && subseg_text_p (now_seg)) frag_align_code (to, 0); else frag_align (to, fill ? *fill : 0, 0); record_alignment (now_seg, to); mips_move_labels (labels, FALSE); } /* Align to a given power of two. .align 0 turns off the automatic alignment used by the data creating pseudo-ops. */ static void s_align (int x ATTRIBUTE_UNUSED) { int temp, fill_value, *fill_ptr; long max_alignment = 28; /* o Note that the assembler pulls down any immediately preceding label to the aligned address. o It's not documented but auto alignment is reinstated by a .align pseudo instruction. o Note also that after auto alignment is turned off the mips assembler issues an error on attempt to assemble an improperly aligned data item. We don't. */ temp = get_absolute_expression (); if (temp > max_alignment) as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment); else if (temp < 0) { as_warn (_("Alignment negative: 0 assumed.")); temp = 0; } if (*input_line_pointer == ',') { ++input_line_pointer; fill_value = get_absolute_expression (); fill_ptr = &fill_value; } else fill_ptr = 0; if (temp) { segment_info_type *si = seg_info (now_seg); struct insn_label_list *l = si->label_list; /* Auto alignment should be switched on by next section change. */ auto_align = 1; mips_align (temp, fill_ptr, l); } else { auto_align = 0; } demand_empty_rest_of_line (); } static void s_change_sec (int sec) { segT seg; /* The ELF backend needs to know that we are changing sections, so that .previous works correctly. We could do something like check for an obj_section_change_hook macro, but that might be confusing as it would not be appropriate to use it in the section changing functions in read.c, since obj-elf.c intercepts those. FIXME: This should be cleaner, somehow. */ obj_elf_section_change_hook (); mips_emit_delays (); switch (sec) { case 't': s_text (0); break; case 'd': s_data (0); break; case 'b': subseg_set (bss_section, (subsegT) get_absolute_expression ()); demand_empty_rest_of_line (); break; case 'r': seg = subseg_new (RDATA_SECTION_NAME, (subsegT) get_absolute_expression ()); bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_RELOC | SEC_DATA)); if (strncmp (TARGET_OS, "elf", 3) != 0) record_alignment (seg, 4); demand_empty_rest_of_line (); break; case 's': seg = subseg_new (".sdata", (subsegT) get_absolute_expression ()); bfd_set_section_flags (stdoutput, seg, SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA); if (strncmp (TARGET_OS, "elf", 3) != 0) record_alignment (seg, 4); demand_empty_rest_of_line (); break; case 'B': seg = subseg_new (".sbss", (subsegT) get_absolute_expression ()); bfd_set_section_flags (stdoutput, seg, SEC_ALLOC); if (strncmp (TARGET_OS, "elf", 3) != 0) record_alignment (seg, 4); demand_empty_rest_of_line (); break; } auto_align = 1; } void s_change_section (int ignore ATTRIBUTE_UNUSED) { char *section_name; char c; char next_c = 0; int section_type; int section_flag; int section_entry_size; int section_alignment; section_name = input_line_pointer; c = get_symbol_end (); if (c) next_c = *(input_line_pointer + 1); /* Do we have .section Name<,"flags">? */ if (c != ',' || (c == ',' && next_c == '"')) { /* just after name is now '\0'. */ *input_line_pointer = c; input_line_pointer = section_name; obj_elf_section (ignore); return; } input_line_pointer++; /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */ if (c == ',') section_type = get_absolute_expression (); else section_type = 0; if (*input_line_pointer++ == ',') section_flag = get_absolute_expression (); else section_flag = 0; if (*input_line_pointer++ == ',') section_entry_size = get_absolute_expression (); else section_entry_size = 0; if (*input_line_pointer++ == ',') section_alignment = get_absolute_expression (); else section_alignment = 0; /* FIXME: really ignore? */ (void) section_alignment; section_name = xstrdup (section_name); /* When using the generic form of .section (as implemented by obj-elf.c), there's no way to set the section type to SHT_MIPS_DWARF. Users have traditionally had to fall back on the more common @progbits instead. There's nothing really harmful in this, since bfd will correct SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it means that, for backwards compatibility, the special_section entries for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF. Even so, we shouldn't force users of the MIPS .section syntax to incorrectly label the sections as SHT_PROGBITS. The best compromise seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the generic type-checking code. */ if (section_type == SHT_MIPS_DWARF) section_type = SHT_PROGBITS; obj_elf_change_section (section_name, section_type, section_flag, section_entry_size, 0, 0, 0); if (now_seg->name != section_name) free (section_name); } void mips_enable_auto_align (void) { auto_align = 1; } static void s_cons (int log_size) { segment_info_type *si = seg_info (now_seg); struct insn_label_list *l = si->label_list; mips_emit_delays (); if (log_size > 0 && auto_align) mips_align (log_size, 0, l); cons (1 << log_size); mips_clear_insn_labels (); } static void s_float_cons (int type) { segment_info_type *si = seg_info (now_seg); struct insn_label_list *l = si->label_list; mips_emit_delays (); if (auto_align) { if (type == 'd') mips_align (3, 0, l); else mips_align (2, 0, l); } float_cons (type); mips_clear_insn_labels (); } /* Handle .globl. We need to override it because on Irix 5 you are permitted to say .globl foo .text where foo is an undefined symbol, to mean that foo should be considered to be the address of a function. */ static void s_mips_globl (int x ATTRIBUTE_UNUSED) { char *name; int c; symbolS *symbolP; flagword flag; do { name = input_line_pointer; c = get_symbol_end (); symbolP = symbol_find_or_make (name); S_SET_EXTERNAL (symbolP); *input_line_pointer = c; SKIP_WHITESPACE (); /* On Irix 5, every global symbol that is not explicitly labelled as being a function is apparently labelled as being an object. */ flag = BSF_OBJECT; if (!is_end_of_line[(unsigned char) *input_line_pointer] && (*input_line_pointer != ',')) { char *secname; asection *sec; secname = input_line_pointer; c = get_symbol_end (); sec = bfd_get_section_by_name (stdoutput, secname); if (sec == NULL) as_bad (_("%s: no such section"), secname); *input_line_pointer = c; if (sec != NULL && (sec->flags & SEC_CODE) != 0) flag = BSF_FUNCTION; } symbol_get_bfdsym (symbolP)->flags |= flag; c = *input_line_pointer; if (c == ',') { input_line_pointer++; SKIP_WHITESPACE (); if (is_end_of_line[(unsigned char) *input_line_pointer]) c = '\n'; } } while (c == ','); demand_empty_rest_of_line (); } static void s_option (int x ATTRIBUTE_UNUSED) { char *opt; char c; opt = input_line_pointer; c = get_symbol_end (); if (*opt == 'O') { /* FIXME: What does this mean? */ } else if (strncmp (opt, "pic", 3) == 0) { int i; i = atoi (opt + 3); if (i == 0) mips_pic = NO_PIC; else if (i == 2) { mips_pic = SVR4_PIC; mips_abicalls = TRUE; } else as_bad (_(".option pic%d not supported"), i); if (mips_pic == SVR4_PIC) { if (g_switch_seen && g_switch_value != 0) as_warn (_("-G may not be used with SVR4 PIC code")); g_switch_value = 0; bfd_set_gp_size (stdoutput, 0); } } else as_warn (_("Unrecognized option \"%s\""), opt); *input_line_pointer = c; demand_empty_rest_of_line (); } /* This structure is used to hold a stack of .set values. */ struct mips_option_stack { struct mips_option_stack *next; struct mips_set_options options; }; static struct mips_option_stack *mips_opts_stack; /* Handle the .set pseudo-op. */ static void s_mipsset (int x ATTRIBUTE_UNUSED) { char *name = input_line_pointer, ch; const struct mips_ase *ase; while (!is_end_of_line[(unsigned char) *input_line_pointer]) ++input_line_pointer; ch = *input_line_pointer; *input_line_pointer = '\0'; if (strcmp (name, "reorder") == 0) { if (mips_opts.noreorder) end_noreorder (); } else if (strcmp (name, "noreorder") == 0) { if (!mips_opts.noreorder) start_noreorder (); } else if (strncmp (name, "at=", 3) == 0) { char *s = name + 3; if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at)) as_bad (_("Unrecognized register name `%s'"), s); } else if (strcmp (name, "at") == 0) { mips_opts.at = ATREG; } else if (strcmp (name, "noat") == 0) { mips_opts.at = ZERO; } else if (strcmp (name, "macro") == 0) { mips_opts.warn_about_macros = 0; } else if (strcmp (name, "nomacro") == 0) { if (mips_opts.noreorder == 0) as_bad (_("`noreorder' must be set before `nomacro'")); mips_opts.warn_about_macros = 1; } else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0) { mips_opts.nomove = 0; } else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0) { mips_opts.nomove = 1; } else if (strcmp (name, "bopt") == 0) { mips_opts.nobopt = 0; } else if (strcmp (name, "nobopt") == 0) { mips_opts.nobopt = 1; } else if (strcmp (name, "gp=default") == 0) mips_opts.gp32 = file_mips_gp32; else if (strcmp (name, "gp=32") == 0) mips_opts.gp32 = 1; else if (strcmp (name, "gp=64") == 0) { if (!ISA_HAS_64BIT_REGS (mips_opts.isa)) as_warn (_("%s isa does not support 64-bit registers"), mips_cpu_info_from_isa (mips_opts.isa)->name); mips_opts.gp32 = 0; } else if (strcmp (name, "fp=default") == 0) mips_opts.fp32 = file_mips_fp32; else if (strcmp (name, "fp=32") == 0) mips_opts.fp32 = 1; else if (strcmp (name, "fp=64") == 0) { if (!ISA_HAS_64BIT_FPRS (mips_opts.isa)) as_warn (_("%s isa does not support 64-bit floating point registers"), mips_cpu_info_from_isa (mips_opts.isa)->name); mips_opts.fp32 = 0; } else if (strcmp (name, "softfloat") == 0) mips_opts.soft_float = 1; else if (strcmp (name, "hardfloat") == 0) mips_opts.soft_float = 0; else if (strcmp (name, "singlefloat") == 0) mips_opts.single_float = 1; else if (strcmp (name, "doublefloat") == 0) mips_opts.single_float = 0; else if (strcmp (name, "mips16") == 0 || strcmp (name, "MIPS-16") == 0) { if (mips_opts.micromips == 1) as_fatal (_("`mips16' cannot be used with `micromips'")); mips_opts.mips16 = 1; } else if (strcmp (name, "nomips16") == 0 || strcmp (name, "noMIPS-16") == 0) mips_opts.mips16 = 0; else if (strcmp (name, "micromips") == 0) { if (mips_opts.mips16 == 1) as_fatal (_("`micromips' cannot be used with `mips16'")); mips_opts.micromips = 1; } else if (strcmp (name, "nomicromips") == 0) mips_opts.micromips = 0; else if (name[0] == 'n' && name[1] == 'o' && (ase = mips_lookup_ase (name + 2))) mips_set_ase (ase, FALSE); else if ((ase = mips_lookup_ase (name))) mips_set_ase (ase, TRUE); else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0) { int reset = 0; /* Permit the user to change the ISA and architecture on the fly. Needless to say, misuse can cause serious problems. */ if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0) { reset = 1; mips_opts.isa = file_mips_isa; mips_opts.arch = file_mips_arch; } else if (strncmp (name, "arch=", 5) == 0) { const struct mips_cpu_info *p; p = mips_parse_cpu("internal use", name + 5); if (!p) as_bad (_("unknown architecture %s"), name + 5); else { mips_opts.arch = p->cpu; mips_opts.isa = p->isa; } } else if (strncmp (name, "mips", 4) == 0) { const struct mips_cpu_info *p; p = mips_parse_cpu("internal use", name); if (!p) as_bad (_("unknown ISA level %s"), name + 4); else { mips_opts.arch = p->cpu; mips_opts.isa = p->isa; } } else as_bad (_("unknown ISA or architecture %s"), name); switch (mips_opts.isa) { case 0: break; case ISA_MIPS1: case ISA_MIPS2: case ISA_MIPS32: case ISA_MIPS32R2: mips_opts.gp32 = 1; mips_opts.fp32 = 1; break; case ISA_MIPS3: case ISA_MIPS4: case ISA_MIPS5: case ISA_MIPS64: case ISA_MIPS64R2: mips_opts.gp32 = 0; if (mips_opts.arch == CPU_R5900) { mips_opts.fp32 = 1; } else { mips_opts.fp32 = 0; } break; default: as_bad (_("unknown ISA level %s"), name + 4); break; } if (reset) { mips_opts.gp32 = file_mips_gp32; mips_opts.fp32 = file_mips_fp32; } } else if (strcmp (name, "autoextend") == 0) mips_opts.noautoextend = 0; else if (strcmp (name, "noautoextend") == 0) mips_opts.noautoextend = 1; else if (strcmp (name, "insn32") == 0) mips_opts.insn32 = TRUE; else if (strcmp (name, "noinsn32") == 0) mips_opts.insn32 = FALSE; else if (strcmp (name, "push") == 0) { struct mips_option_stack *s; s = (struct mips_option_stack *) xmalloc (sizeof *s); s->next = mips_opts_stack; s->options = mips_opts; mips_opts_stack = s; } else if (strcmp (name, "pop") == 0) { struct mips_option_stack *s; s = mips_opts_stack; if (s == NULL) as_bad (_(".set pop with no .set push")); else { /* If we're changing the reorder mode we need to handle delay slots correctly. */ if (s->options.noreorder && ! mips_opts.noreorder) start_noreorder (); else if (! s->options.noreorder && mips_opts.noreorder) end_noreorder (); mips_opts = s->options; mips_opts_stack = s->next; free (s); } } else if (strcmp (name, "sym32") == 0) mips_opts.sym32 = TRUE; else if (strcmp (name, "nosym32") == 0) mips_opts.sym32 = FALSE; else if (strchr (name, ',')) { /* Generic ".set" directive; use the generic handler. */ *input_line_pointer = ch; input_line_pointer = name; s_set (0); return; } else { as_warn (_("Tried to set unrecognized symbol: %s\n"), name); } mips_check_isa_supports_ases (); *input_line_pointer = ch; demand_empty_rest_of_line (); } /* Handle the .abicalls pseudo-op. I believe this is equivalent to .option pic2. It means to generate SVR4 PIC calls. */ static void s_abicalls (int ignore ATTRIBUTE_UNUSED) { mips_pic = SVR4_PIC; mips_abicalls = TRUE; if (g_switch_seen && g_switch_value != 0) as_warn (_("-G may not be used with SVR4 PIC code")); g_switch_value = 0; bfd_set_gp_size (stdoutput, 0); demand_empty_rest_of_line (); } /* Handle the .cpload pseudo-op. This is used when generating SVR4 PIC code. It sets the $gp register for the function based on the function address, which is in the register named in the argument. This uses a relocation against _gp_disp, which is handled specially by the linker. The result is: lui $gp,%hi(_gp_disp) addiu $gp,$gp,%lo(_gp_disp) addu $gp,$gp,.cpload argument The .cpload argument is normally $25 == $t9. The -mno-shared option changes this to: lui $gp,%hi(__gnu_local_gp) addiu $gp,$gp,%lo(__gnu_local_gp) and the argument is ignored. This saves an instruction, but the resulting code is not position independent; it uses an absolute address for __gnu_local_gp. Thus code assembled with -mno-shared can go into an ordinary executable, but not into a shared library. */ static void s_cpload (int ignore ATTRIBUTE_UNUSED) { expressionS ex; int reg; int in_shared; /* If we are not generating SVR4 PIC code, or if this is NewABI code, .cpload is ignored. */ if (mips_pic != SVR4_PIC || HAVE_NEWABI) { s_ignore (0); return; } if (mips_opts.mips16) { as_bad (_("%s not supported in MIPS16 mode"), ".cpload"); ignore_rest_of_line (); return; } /* .cpload should be in a .set noreorder section. */ if (mips_opts.noreorder == 0) as_warn (_(".cpload not in noreorder section")); reg = tc_get_register (0); /* If we need to produce a 64-bit address, we are better off using the default instruction sequence. */ in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS; ex.X_op = O_symbol; ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" : "__gnu_local_gp"); ex.X_op_symbol = NULL; ex.X_add_number = 0; /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */ symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT; mips_mark_labels (); mips_assembling_insn = TRUE; macro_start (); macro_build_lui (&ex, mips_gp_register); macro_build (&ex, "addiu", "t,r,j", mips_gp_register, mips_gp_register, BFD_RELOC_LO16); if (in_shared) macro_build (NULL, "addu", "d,v,t", mips_gp_register, mips_gp_register, reg); macro_end (); mips_assembling_insn = FALSE; demand_empty_rest_of_line (); } /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is: .cpsetup $reg1, offset|$reg2, label If offset is given, this results in: sd $gp, offset($sp) lui $gp, %hi(%neg(%gp_rel(label))) addiu $gp, $gp, %lo(%neg(%gp_rel(label))) daddu $gp, $gp, $reg1 If $reg2 is given, this results in: daddu $reg2, $gp, $0 lui $gp, %hi(%neg(%gp_rel(label))) addiu $gp, $gp, %lo(%neg(%gp_rel(label))) daddu $gp, $gp, $reg1 $reg1 is normally $25 == $t9. The -mno-shared option replaces the last three instructions with lui $gp,%hi(_gp) addiu $gp,$gp,%lo(_gp) */ static void s_cpsetup (int ignore ATTRIBUTE_UNUSED) { expressionS ex_off; expressionS ex_sym; int reg1; /* If we are not generating SVR4 PIC code, .cpsetup is ignored. We also need NewABI support. */ if (mips_pic != SVR4_PIC || ! HAVE_NEWABI) { s_ignore (0); return; } if (mips_opts.mips16) { as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup"); ignore_rest_of_line (); return; } reg1 = tc_get_register (0); SKIP_WHITESPACE (); if (*input_line_pointer != ',') { as_bad (_("missing argument separator ',' for .cpsetup")); return; } else ++input_line_pointer; SKIP_WHITESPACE (); if (*input_line_pointer == '$') { mips_cpreturn_register = tc_get_register (0); mips_cpreturn_offset = -1; } else { mips_cpreturn_offset = get_absolute_expression (); mips_cpreturn_register = -1; } SKIP_WHITESPACE (); if (*input_line_pointer != ',') { as_bad (_("missing argument separator ',' for .cpsetup")); return; } else ++input_line_pointer; SKIP_WHITESPACE (); expression (&ex_sym); mips_mark_labels (); mips_assembling_insn = TRUE; macro_start (); if (mips_cpreturn_register == -1) { ex_off.X_op = O_constant; ex_off.X_add_symbol = NULL; ex_off.X_op_symbol = NULL; ex_off.X_add_number = mips_cpreturn_offset; macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP); } else macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register, mips_gp_register, 0); if (mips_in_shared || HAVE_64BIT_SYMBOLS) { macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register, -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB, BFD_RELOC_HI16_S); macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register, mips_gp_register, -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register, mips_gp_register, reg1); } else { expressionS ex; ex.X_op = O_symbol; ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp"); ex.X_op_symbol = NULL; ex.X_add_number = 0; /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */ symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT; macro_build_lui (&ex, mips_gp_register); macro_build (&ex, "addiu", "t,r,j", mips_gp_register, mips_gp_register, BFD_RELOC_LO16); } macro_end (); mips_assembling_insn = FALSE; demand_empty_rest_of_line (); } static void s_cplocal (int ignore ATTRIBUTE_UNUSED) { /* If we are not generating SVR4 PIC code, or if this is not NewABI code, .cplocal is ignored. */ if (mips_pic != SVR4_PIC || ! HAVE_NEWABI) { s_ignore (0); return; } if (mips_opts.mips16) { as_bad (_("%s not supported in MIPS16 mode"), ".cplocal"); ignore_rest_of_line (); return; } mips_gp_register = tc_get_register (0); demand_empty_rest_of_line (); } /* Handle the .cprestore pseudo-op. This stores $gp into a given offset from $sp. The offset is remembered, and after making a PIC call $gp is restored from that location. */ static void s_cprestore (int ignore ATTRIBUTE_UNUSED) { expressionS ex; /* If we are not generating SVR4 PIC code, or if this is NewABI code, .cprestore is ignored. */ if (mips_pic != SVR4_PIC || HAVE_NEWABI) { s_ignore (0); return; } if (mips_opts.mips16) { as_bad (_("%s not supported in MIPS16 mode"), ".cprestore"); ignore_rest_of_line (); return; } mips_cprestore_offset = get_absolute_expression (); mips_cprestore_valid = 1; ex.X_op = O_constant; ex.X_add_symbol = NULL; ex.X_op_symbol = NULL; ex.X_add_number = mips_cprestore_offset; mips_mark_labels (); mips_assembling_insn = TRUE; macro_start (); macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register, SP, HAVE_64BIT_ADDRESSES); macro_end (); mips_assembling_insn = FALSE; demand_empty_rest_of_line (); } /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset was given in the preceding .cpsetup, it results in: ld $gp, offset($sp) If a register $reg2 was given there, it results in: daddu $gp, $reg2, $0 */ static void s_cpreturn (int ignore ATTRIBUTE_UNUSED) { expressionS ex; /* If we are not generating SVR4 PIC code, .cpreturn is ignored. We also need NewABI support. */ if (mips_pic != SVR4_PIC || ! HAVE_NEWABI) { s_ignore (0); return; } if (mips_opts.mips16) { as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn"); ignore_rest_of_line (); return; } mips_mark_labels (); mips_assembling_insn = TRUE; macro_start (); if (mips_cpreturn_register == -1) { ex.X_op = O_constant; ex.X_add_symbol = NULL; ex.X_op_symbol = NULL; ex.X_add_number = mips_cpreturn_offset; macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP); } else macro_build (NULL, "daddu", "d,v,t", mips_gp_register, mips_cpreturn_register, 0); macro_end (); mips_assembling_insn = FALSE; demand_empty_rest_of_line (); } /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size DTP- or TP-relative relocation of type RTYPE, for use in either DWARF debug information or MIPS16 TLS. */ static void s_tls_rel_directive (const size_t bytes, const char *dirstr, bfd_reloc_code_real_type rtype) { expressionS ex; char *p; expression (&ex); if (ex.X_op != O_symbol) { as_bad (_("Unsupported use of %s"), dirstr); ignore_rest_of_line (); } p = frag_more (bytes); md_number_to_chars (p, 0, bytes); fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype); demand_empty_rest_of_line (); mips_clear_insn_labels (); } /* Handle .dtprelword. */ static void s_dtprelword (int ignore ATTRIBUTE_UNUSED) { s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32); } /* Handle .dtpreldword. */ static void s_dtpreldword (int ignore ATTRIBUTE_UNUSED) { s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64); } /* Handle .tprelword. */ static void s_tprelword (int ignore ATTRIBUTE_UNUSED) { s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32); } /* Handle .tpreldword. */ static void s_tpreldword (int ignore ATTRIBUTE_UNUSED) { s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64); } /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC code. It sets the offset to use in gp_rel relocations. */ static void s_gpvalue (int ignore ATTRIBUTE_UNUSED) { /* If we are not generating SVR4 PIC code, .gpvalue is ignored. We also need NewABI support. */ if (mips_pic != SVR4_PIC || ! HAVE_NEWABI) { s_ignore (0); return; } mips_gprel_offset = get_absolute_expression (); demand_empty_rest_of_line (); } /* Handle the .gpword pseudo-op. This is used when generating PIC code. It generates a 32 bit GP relative reloc. */ static void s_gpword (int ignore ATTRIBUTE_UNUSED) { segment_info_type *si; struct insn_label_list *l; expressionS ex; char *p; /* When not generating PIC code, this is treated as .word. */ if (mips_pic != SVR4_PIC) { s_cons (2); return; } si = seg_info (now_seg); l = si->label_list; mips_emit_delays (); if (auto_align) mips_align (2, 0, l); expression (&ex); mips_clear_insn_labels (); if (ex.X_op != O_symbol || ex.X_add_number != 0) { as_bad (_("Unsupported use of .gpword")); ignore_rest_of_line (); } p = frag_more (4); md_number_to_chars (p, 0, 4); fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE, BFD_RELOC_GPREL32); demand_empty_rest_of_line (); } static void s_gpdword (int ignore ATTRIBUTE_UNUSED) { segment_info_type *si; struct insn_label_list *l; expressionS ex; char *p; /* When not generating PIC code, this is treated as .dword. */ if (mips_pic != SVR4_PIC) { s_cons (3); return; } si = seg_info (now_seg); l = si->label_list; mips_emit_delays (); if (auto_align) mips_align (3, 0, l); expression (&ex); mips_clear_insn_labels (); if (ex.X_op != O_symbol || ex.X_add_number != 0) { as_bad (_("Unsupported use of .gpdword")); ignore_rest_of_line (); } p = frag_more (8); md_number_to_chars (p, 0, 8); fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE, BFD_RELOC_GPREL32)->fx_tcbit = 1; /* GPREL32 composed with 64 gives a 64-bit GP offset. */ fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0, FALSE, BFD_RELOC_64)->fx_tcbit = 1; demand_empty_rest_of_line (); } /* Handle the .ehword pseudo-op. This is used when generating unwinding tables. It generates a R_MIPS_EH reloc. */ static void s_ehword (int ignore ATTRIBUTE_UNUSED) { expressionS ex; char *p; mips_emit_delays (); expression (&ex); mips_clear_insn_labels (); if (ex.X_op != O_symbol || ex.X_add_number != 0) { as_bad (_("Unsupported use of .ehword")); ignore_rest_of_line (); } p = frag_more (4); md_number_to_chars (p, 0, 4); fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE, BFD_RELOC_MIPS_EH); demand_empty_rest_of_line (); } /* Handle the .cpadd pseudo-op. This is used when dealing with switch tables in SVR4 PIC code. */ static void s_cpadd (int ignore ATTRIBUTE_UNUSED) { int reg; /* This is ignored when not generating SVR4 PIC code. */ if (mips_pic != SVR4_PIC) { s_ignore (0); return; } mips_mark_labels (); mips_assembling_insn = TRUE; /* Add $gp to the register named as an argument. */ macro_start (); reg = tc_get_register (0); macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register); macro_end (); mips_assembling_insn = FALSE; demand_empty_rest_of_line (); } /* Handle the .insn pseudo-op. This marks instruction labels in mips16/micromips mode. This permits the linker to handle them specially, such as generating jalx instructions when needed. We also make them odd for the duration of the assembly, in order to generate the right sort of code. We will make them even in the adjust_symtab routine, while leaving them marked. This is convenient for the debugger and the disassembler. The linker knows to make them odd again. */ static void s_insn (int ignore ATTRIBUTE_UNUSED) { mips_mark_labels (); demand_empty_rest_of_line (); } /* Handle the .nan pseudo-op. */ static void s_nan (int ignore ATTRIBUTE_UNUSED) { static const char str_legacy[] = "legacy"; static const char str_2008[] = "2008"; size_t i; for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++); if (i == sizeof (str_2008) - 1 && memcmp (input_line_pointer, str_2008, i) == 0) mips_flag_nan2008 = TRUE; else if (i == sizeof (str_legacy) - 1 && memcmp (input_line_pointer, str_legacy, i) == 0) mips_flag_nan2008 = FALSE; else as_bad (_("Bad .nan directive")); input_line_pointer += i; demand_empty_rest_of_line (); } /* Handle a .stab[snd] directive. Ideally these directives would be implemented in a transparent way, so that removing them would not have any effect on the generated instructions. However, s_stab internally changes the section, so in practice we need to decide now whether the preceding label marks compressed code. We do not support changing the compression mode of a label after a .stab* directive, such as in: foo: .stabs ... .set mips16 so the current mode wins. */ static void s_mips_stab (int type) { mips_mark_labels (); s_stab (type); } /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */ static void s_mips_weakext (int ignore ATTRIBUTE_UNUSED) { char *name; int c; symbolS *symbolP; expressionS exp; name = input_line_pointer; c = get_symbol_end (); symbolP = symbol_find_or_make (name); S_SET_WEAK (symbolP); *input_line_pointer = c; SKIP_WHITESPACE (); if (! is_end_of_line[(unsigned char) *input_line_pointer]) { if (S_IS_DEFINED (symbolP)) { as_bad (_("ignoring attempt to redefine symbol %s"), S_GET_NAME (symbolP)); ignore_rest_of_line (); return; } if (*input_line_pointer == ',') { ++input_line_pointer; SKIP_WHITESPACE (); } expression (&exp); if (exp.X_op != O_symbol) { as_bad (_("bad .weakext directive")); ignore_rest_of_line (); return; } symbol_set_value_expression (symbolP, &exp); } demand_empty_rest_of_line (); } /* Parse a register string into a number. Called from the ECOFF code to parse .frame. The argument is non-zero if this is the frame register, so that we can record it in mips_frame_reg. */ int tc_get_register (int frame) { unsigned int reg; SKIP_WHITESPACE (); if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®)) reg = 0; if (frame) { mips_frame_reg = reg != 0 ? reg : SP; mips_frame_reg_valid = 1; mips_cprestore_valid = 0; } return reg; } valueT md_section_align (asection *seg, valueT addr) { int align = bfd_get_section_alignment (stdoutput, seg); /* We don't need to align ELF sections to the full alignment. However, Irix 5 may prefer that we align them at least to a 16 byte boundary. We don't bother to align the sections if we are targeted for an embedded system. */ if (strncmp (TARGET_OS, "elf", 3) == 0) return addr; if (align > 4) align = 4; return ((addr + (1 << align) - 1) & (-1 << align)); } /* Utility routine, called from above as well. If called while the input file is still being read, it's only an approximation. (For example, a symbol may later become defined which appeared to be undefined earlier.) */ static int nopic_need_relax (symbolS *sym, int before_relaxing) { if (sym == 0) return 0; if (g_switch_value > 0) { const char *symname; int change; /* Find out whether this symbol can be referenced off the $gp register. It can be if it is smaller than the -G size or if it is in the .sdata or .sbss section. Certain symbols can not be referenced off the $gp, although it appears as though they can. */ symname = S_GET_NAME (sym); if (symname != (const char *) NULL && (strcmp (symname, "eprol") == 0 || strcmp (symname, "etext") == 0 || strcmp (symname, "_gp") == 0 || strcmp (symname, "edata") == 0 || strcmp (symname, "_fbss") == 0 || strcmp (symname, "_fdata") == 0 || strcmp (symname, "_ftext") == 0 || strcmp (symname, "end") == 0 || strcmp (symname, "_gp_disp") == 0)) change = 1; else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym)) && (0 #ifndef NO_ECOFF_DEBUGGING || (symbol_get_obj (sym)->ecoff_extern_size != 0 && (symbol_get_obj (sym)->ecoff_extern_size <= g_switch_value)) #endif /* We must defer this decision until after the whole file has been read, since there might be a .extern after the first use of this symbol. */ || (before_relaxing #ifndef NO_ECOFF_DEBUGGING && symbol_get_obj (sym)->ecoff_extern_size == 0 #endif && S_GET_VALUE (sym) == 0) || (S_GET_VALUE (sym) != 0 && S_GET_VALUE (sym) <= g_switch_value))) change = 0; else { const char *segname; segname = segment_name (S_GET_SEGMENT (sym)); gas_assert (strcmp (segname, ".lit8") != 0 && strcmp (segname, ".lit4") != 0); change = (strcmp (segname, ".sdata") != 0 && strcmp (segname, ".sbss") != 0 && strncmp (segname, ".sdata.", 7) != 0 && strncmp (segname, ".sbss.", 6) != 0 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0); } return change; } else /* We are not optimizing for the $gp register. */ return 1; } /* Return true if the given symbol should be considered local for SVR4 PIC. */ static bfd_boolean pic_need_relax (symbolS *sym, asection *segtype) { asection *symsec; /* Handle the case of a symbol equated to another symbol. */ while (symbol_equated_reloc_p (sym)) { symbolS *n; /* It's possible to get a loop here in a badly written program. */ n = symbol_get_value_expression (sym)->X_add_symbol; if (n == sym) break; sym = n; } if (symbol_section_p (sym)) return TRUE; symsec = S_GET_SEGMENT (sym); /* This must duplicate the test in adjust_reloc_syms. */ return (!bfd_is_und_section (symsec) && !bfd_is_abs_section (symsec) && !bfd_is_com_section (symsec) && !s_is_linkonce (sym, segtype) /* A global or weak symbol is treated as external. */ && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym))); } /* Given a mips16 variant frag FRAGP, return non-zero if it needs an extended opcode. SEC is the section the frag is in. */ static int mips16_extended_frag (fragS *fragp, asection *sec, long stretch) { int type; const struct mips_int_operand *operand; offsetT val; segT symsec; fragS *sym_frag; if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype)) return 0; if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype)) return 1; type = RELAX_MIPS16_TYPE (fragp->fr_subtype); operand = mips16_immed_operand (type, FALSE); sym_frag = symbol_get_frag (fragp->fr_symbol); val = S_GET_VALUE (fragp->fr_symbol); symsec = S_GET_SEGMENT (fragp->fr_symbol); if (operand->root.type == OP_PCREL) { const struct mips_pcrel_operand *pcrel_op; addressT addr; offsetT maxtiny; /* We won't have the section when we are called from mips_relax_frag. However, we will always have been called from md_estimate_size_before_relax first. If this is a branch to a different section, we mark it as such. If SEC is NULL, and the frag is not marked, then it must be a branch to the same section. */ pcrel_op = (const struct mips_pcrel_operand *) operand; if (sec == NULL) { if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype)) return 1; } else { /* Must have been called from md_estimate_size_before_relax. */ if (symsec != sec) { fragp->fr_subtype = RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype); /* FIXME: We should support this, and let the linker catch branches and loads that are out of range. */ as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported PC relative reference to different section")); return 1; } if (fragp != sym_frag && sym_frag->fr_address == 0) /* Assume non-extended on the first relaxation pass. The address we have calculated will be bogus if this is a forward branch to another frag, as the forward frag will have fr_address == 0. */ return 0; } /* In this case, we know for sure that the symbol fragment is in the same section. If the relax_marker of the symbol fragment differs from the relax_marker of this fragment, we have not yet adjusted the symbol fragment fr_address. We want to add in STRETCH in order to get a better estimate of the address. This particularly matters because of the shift bits. */ if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker) { fragS *f; /* Adjust stretch for any alignment frag. Note that if have been expanding the earlier code, the symbol may be defined in what appears to be an earlier frag. FIXME: This doesn't handle the fr_subtype field, which specifies a maximum number of bytes to skip when doing an alignment. */ for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next) { if (f->fr_type == rs_align || f->fr_type == rs_align_code) { if (stretch < 0) stretch = - ((- stretch) & ~ ((1 << (int) f->fr_offset) - 1)); else stretch &= ~ ((1 << (int) f->fr_offset) - 1); if (stretch == 0) break; } } if (f != NULL) val += stretch; } addr = fragp->fr_address + fragp->fr_fix; /* The base address rules are complicated. The base address of a branch is the following instruction. The base address of a PC relative load or add is the instruction itself, but if it is in a delay slot (in which case it can not be extended) use the address of the instruction whose delay slot it is in. */ if (pcrel_op->include_isa_bit) { addr += 2; /* If we are currently assuming that this frag should be extended, then, the current address is two bytes higher. */ if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype)) addr += 2; /* Ignore the low bit in the target, since it will be set for a text label. */ val &= -2; } else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)) addr -= 4; else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype)) addr -= 2; val -= addr & -(1 << pcrel_op->align_log2); /* If any of the shifted bits are set, we must use an extended opcode. If the address depends on the size of this instruction, this can lead to a loop, so we arrange to always use an extended opcode. We only check this when we are in the main relaxation loop, when SEC is NULL. */ if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL) { fragp->fr_subtype = RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype); return 1; } /* If we are about to mark a frag as extended because the value is precisely the next value above maxtiny, then there is a chance of an infinite loop as in the following code: la $4,foo .skip 1020 .align 2 foo: In this case when the la is extended, foo is 0x3fc bytes away, so the la can be shrunk, but then foo is 0x400 away, so the la must be extended. To avoid this loop, we mark the frag as extended if it was small, and is about to become extended with the next value above maxtiny. */ maxtiny = mips_int_operand_max (operand); if (val == maxtiny + (1 << operand->shift) && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype) && sec == NULL) { fragp->fr_subtype = RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype); return 1; } } else if (symsec != absolute_section && sec != NULL) as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation")); return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val); } /* Compute the length of a branch sequence, and adjust the RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the worst-case length is computed, with UPDATE being used to indicate whether an unconditional (-1), branch-likely (+1) or regular (0) branch is to be computed. */ static int relaxed_branch_length (fragS *fragp, asection *sec, int update) { bfd_boolean toofar; int length; if (fragp && S_IS_DEFINED (fragp->fr_symbol) && sec == S_GET_SEGMENT (fragp->fr_symbol)) { addressT addr; offsetT val; val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset; addr = fragp->fr_address + fragp->fr_fix + 4; val -= addr; toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2); } else if (fragp) /* If the symbol is not defined or it's in a different segment, assume the user knows what's going on and emit a short branch. */ toofar = FALSE; else toofar = TRUE; if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype)) fragp->fr_subtype = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype), RELAX_BRANCH_UNCOND (fragp->fr_subtype), RELAX_BRANCH_LIKELY (fragp->fr_subtype), RELAX_BRANCH_LINK (fragp->fr_subtype), toofar); length = 4; if (toofar) { if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0)) length += 8; if (mips_pic != NO_PIC) { /* Additional space for PIC loading of target address. */ length += 8; if (mips_opts.isa == ISA_MIPS1) /* Additional space for $at-stabilizing nop. */ length += 4; } /* If branch is conditional. */ if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0)) length += 8; } return length; } /* Compute the length of a branch sequence, and adjust the RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the worst-case length is computed, with UPDATE being used to indicate whether an unconditional (-1), or regular (0) branch is to be computed. */ static int relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update) { bfd_boolean toofar; int length; if (fragp && S_IS_DEFINED (fragp->fr_symbol) && sec == S_GET_SEGMENT (fragp->fr_symbol)) { addressT addr; offsetT val; val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset; /* Ignore the low bit in the target, since it will be set for a text label. */ if ((val & 1) != 0) --val; addr = fragp->fr_address + fragp->fr_fix + 4; val -= addr; toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1); } else if (fragp) /* If the symbol is not defined or it's in a different segment, assume the user knows what's going on and emit a short branch. */ toofar = FALSE; else toofar = TRUE; if (fragp && update && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype)) fragp->fr_subtype = (toofar ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype) : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype)); length = 4; if (toofar) { bfd_boolean compact_known = fragp != NULL; bfd_boolean compact = FALSE; bfd_boolean uncond; if (compact_known) compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype); if (fragp) uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype); else uncond = update < 0; /* If label is out of range, we turn branch
:
label # 4 bytes 0: into: j label # 4 bytes nop # 2 bytes if compact && !PIC 0: */ if (mips_pic == NO_PIC && (!compact_known || compact)) length += 2; /* If assembling PIC code, we further turn: j label # 4 bytes into: lw/ld at, %got(label)(gp) # 4 bytes d/addiu at, %lo(label) # 4 bytes jr/c at # 2 bytes */ if (mips_pic != NO_PIC) length += 6; /* If branch
is conditional, we prepend negated branch : 0f # 4 bytes nop # 2 bytes if !compact */ if (!uncond) length += (compact_known && compact) ? 4 : 6; } return length; } /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16 bit accordingly. */ static int relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update) { bfd_boolean toofar; if (fragp && S_IS_DEFINED (fragp->fr_symbol) && sec == S_GET_SEGMENT (fragp->fr_symbol)) { addressT addr; offsetT val; int type; val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset; /* Ignore the low bit in the target, since it will be set for a text label. */ if ((val & 1) != 0) --val; /* Assume this is a 2-byte branch. */ addr = fragp->fr_address + fragp->fr_fix + 2; /* We try to avoid the infinite loop by not adding 2 more bytes for long branches. */ val -= addr; type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype); if (type == 'D') toofar = val < - (0x200 << 1) || val >= (0x200 << 1); else if (type == 'E') toofar = val < - (0x40 << 1) || val >= (0x40 << 1); else abort (); } else /* If the symbol is not defined or it's in a different segment, we emit a normal 32-bit branch. */ toofar = TRUE; if (fragp && update && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype)) fragp->fr_subtype = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype) : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype); if (toofar) return 4; return 2; } /* Estimate the size of a frag before relaxing. Unless this is the mips16, we are not really relaxing here, and the final size is encoded in the subtype information. For the mips16, we have to decide whether we are using an extended opcode or not. */ int md_estimate_size_before_relax (fragS *fragp, asection *segtype) { int change; if (RELAX_BRANCH_P (fragp->fr_subtype)) { fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE); return fragp->fr_var; } if (RELAX_MIPS16_P (fragp->fr_subtype)) /* We don't want to modify the EXTENDED bit here; it might get us into infinite loops. We change it only in mips_relax_frag(). */ return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2); if (RELAX_MICROMIPS_P (fragp->fr_subtype)) { int length = 4; if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0) length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE); if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)) length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE); fragp->fr_var = length; return length; } if (mips_pic == NO_PIC) change = nopic_need_relax (fragp->fr_symbol, 0); else if (mips_pic == SVR4_PIC) change = pic_need_relax (fragp->fr_symbol, segtype); else if (mips_pic == VXWORKS_PIC) /* For vxworks, GOT16 relocations never have a corresponding LO16. */ change = 0; else abort (); if (change) { fragp->fr_subtype |= RELAX_USE_SECOND; return -RELAX_FIRST (fragp->fr_subtype); } else return -RELAX_SECOND (fragp->fr_subtype); } /* This is called to see whether a reloc against a defined symbol should be converted into a reloc against a section. */ int mips_fix_adjustable (fixS *fixp) { if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY) return 0; if (fixp->fx_addsy == NULL) return 1; /* If symbol SYM is in a mergeable section, relocations of the form SYM + 0 can usually be made section-relative. The mergeable data is then identified by the section offset rather than by the symbol. However, if we're generating REL LO16 relocations, the offset is split between the LO16 and parterning high part relocation. The linker will need to recalculate the complete offset in order to correctly identify the merge data. The linker has traditionally not looked for the parterning high part relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be placed anywhere. Rather than break backwards compatibility by changing this, it seems better not to force the issue, and instead keep the original symbol. This will work with either linker behavior. */ if ((lo16_reloc_p (fixp->fx_r_type) || reloc_needs_lo_p (fixp->fx_r_type)) && HAVE_IN_PLACE_ADDENDS && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0) return 0; /* There is no place to store an in-place offset for JALR relocations. Likewise an in-range offset of limited PC-relative relocations may overflow the in-place relocatable field if recalculated against the start address of the symbol's containing section. */ if (HAVE_IN_PLACE_ADDENDS && (limited_pcrel_reloc_p (fixp->fx_r_type) || jalr_reloc_p (fixp->fx_r_type))) return 0; /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve to a floating-point stub. The same is true for non-R_MIPS16_26 relocations against MIPS16 functions; in this case, the stub becomes the function's canonical address. Floating-point stubs are stored in unique .mips16.call.* or .mips16.fn.* sections. If a stub T for function F is in section S, the first relocation in section S must be against F; this is how the linker determines the target function. All relocations that might resolve to T must also be against F. We therefore have the following restrictions, which are given in an intentionally-redundant way: 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16 symbols. 2. We cannot reduce a stub's relocations against non-MIPS16 symbols if that stub might be used. 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16 symbols. 4. We cannot reduce a stub's relocations against MIPS16 symbols if that stub might be used. There is a further restriction: 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on targets with in-place addends; the relocation field cannot encode the low bit. For simplicity, we deal with (3)-(4) by not reducing _any_ relocation against a MIPS16 symbol. We deal with (5) by by not reducing any such relocations on REL targets. We deal with (1)-(2) by saying that, if there's a R_MIPS16_26 relocation against some symbol R, no relocation against R may be reduced. (Note that this deals with (2) as well as (1) because relocations against global symbols will never be reduced on ELF targets.) This approach is a little simpler than trying to detect stub sections, and gives the "all or nothing" per-symbol consistency that we have for MIPS16 symbols. */ if (fixp->fx_subsy == NULL && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy)) || *symbol_get_tc (fixp->fx_addsy) || (HAVE_IN_PLACE_ADDENDS && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy)) && jmp_reloc_p (fixp->fx_r_type)))) return 0; return 1; } /* Translate internal representation of relocation info to BFD target format. */ arelent ** tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp) { static arelent *retval[4]; arelent *reloc; bfd_reloc_code_real_type code; memset (retval, 0, sizeof(retval)); reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent)); reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; if (fixp->fx_pcrel) { gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1 || fixp->fx_r_type == BFD_RELOC_32_PCREL); /* At this point, fx_addnumber is "symbol offset - pcrel address". Relocations want only the symbol offset. */ reloc->addend = fixp->fx_addnumber + reloc->address; } else reloc->addend = fixp->fx_addnumber; /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable entry to be used in the relocation's section offset. */ if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY) { reloc->address = reloc->addend; reloc->addend = 0; } code = fixp->fx_r_type; reloc->howto = bfd_reloc_type_lookup (stdoutput, code); if (reloc->howto == NULL) { as_bad_where (fixp->fx_file, fixp->fx_line, _("Can not represent %s relocation in this object file format"), bfd_get_reloc_code_name (code)); retval[0] = NULL; } return retval; } /* Relax a machine dependent frag. This returns the amount by which the current size of the frag should change. */ int mips_relax_frag (asection *sec, fragS *fragp, long stretch) { if (RELAX_BRANCH_P (fragp->fr_subtype)) { offsetT old_var = fragp->fr_var; fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE); return fragp->fr_var - old_var; } if (RELAX_MICROMIPS_P (fragp->fr_subtype)) { offsetT old_var = fragp->fr_var; offsetT new_var = 4; if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0) new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE); if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)) new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE); fragp->fr_var = new_var; return new_var - old_var; } if (! RELAX_MIPS16_P (fragp->fr_subtype)) return 0; if (mips16_extended_frag (fragp, NULL, stretch)) { if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype)) return 0; fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype); return 2; } else { if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)) return 0; fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype); return -2; } return 0; } /* Convert a machine dependent frag. */ void md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp) { if (RELAX_BRANCH_P (fragp->fr_subtype)) { char *buf; unsigned long insn; expressionS exp; fixS *fixp; buf = fragp->fr_literal + fragp->fr_fix; insn = read_insn (buf); if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype)) { /* We generate a fixup instead of applying it right now because, if there are linker relaxations, we're going to need the relocations. */ exp.X_op = O_symbol; exp.X_add_symbol = fragp->fr_symbol; exp.X_add_number = fragp->fr_offset; fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2); fixp->fx_file = fragp->fr_file; fixp->fx_line = fragp->fr_line; buf = write_insn (buf, insn); } else { int i; as_warn_where (fragp->fr_file, fragp->fr_line, _("Relaxed out-of-range branch into a jump")); if (RELAX_BRANCH_UNCOND (fragp->fr_subtype)) goto uncond; if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype)) { /* Reverse the branch. */ switch ((insn >> 28) & 0xf) { case 4: /* bc[0-3][tf]l? instructions can have the condition reversed by tweaking a single TF bit, and their opcodes all have 0x4???????. */ gas_assert ((insn & 0xf3e00000) == 0x41000000); insn ^= 0x00010000; break; case 0: /* bltz 0x04000000 bgez 0x04010000 bltzal 0x04100000 bgezal 0x04110000 */ gas_assert ((insn & 0xfc0e0000) == 0x04000000); insn ^= 0x00010000; break; case 1: /* beq 0x10000000 bne 0x14000000 blez 0x18000000 bgtz 0x1c000000 */ insn ^= 0x04000000; break; default: abort (); } } if (RELAX_BRANCH_LINK (fragp->fr_subtype)) { /* Clear the and-link bit. */ gas_assert ((insn & 0xfc1c0000) == 0x04100000); /* bltzal 0x04100000 bgezal 0x04110000 bltzall 0x04120000 bgezall 0x04130000 */ insn &= ~0x00100000; } /* Branch over the branch (if the branch was likely) or the full jump (not likely case). Compute the offset from the current instruction to branch to. */ if (RELAX_BRANCH_LIKELY (fragp->fr_subtype)) i = 16; else { /* How many bytes in instructions we've already emitted? */ i = buf - fragp->fr_literal - fragp->fr_fix; /* How many bytes in instructions from here to the end? */ i = fragp->fr_var - i; } /* Convert to instruction count. */ i >>= 2; /* Branch counts from the next instruction. */ i--; insn |= i; /* Branch over the jump. */ buf = write_insn (buf, insn); /* nop */ buf = write_insn (buf, 0); if (RELAX_BRANCH_LIKELY (fragp->fr_subtype)) { /* beql $0, $0, 2f */ insn = 0x50000000; /* Compute the PC offset from the current instruction to the end of the variable frag. */ /* How many bytes in instructions we've already emitted? */ i = buf - fragp->fr_literal - fragp->fr_fix; /* How many bytes in instructions from here to the end? */ i = fragp->fr_var - i; /* Convert to instruction count. */ i >>= 2; /* Don't decrement i, because we want to branch over the delay slot. */ insn |= i; buf = write_insn (buf, insn); buf = write_insn (buf, 0); } uncond: if (mips_pic == NO_PIC) { /* j or jal. */ insn = (RELAX_BRANCH_LINK (fragp->fr_subtype) ? 0x0c000000 : 0x08000000); exp.X_op = O_symbol; exp.X_add_symbol = fragp->fr_symbol; exp.X_add_number = fragp->fr_offset; fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE, BFD_RELOC_MIPS_JMP); fixp->fx_file = fragp->fr_file; fixp->fx_line = fragp->fr_line; buf = write_insn (buf, insn); } else { unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype); /* lw/ld $at, ($gp) R_MIPS_GOT16 */ insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000; insn |= at << OP_SH_RT; exp.X_op = O_symbol; exp.X_add_symbol = fragp->fr_symbol; exp.X_add_number = fragp->fr_offset; if (fragp->fr_offset) { exp.X_add_symbol = make_expr_symbol (&exp); exp.X_add_number = 0; } fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16); fixp->fx_file = fragp->fr_file; fixp->fx_line = fragp->fr_line; buf = write_insn (buf, insn); if (mips_opts.isa == ISA_MIPS1) /* nop */ buf = write_insn (buf, 0); /* d/addiu $at, $at, R_MIPS_LO16 */ insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000; insn |= at << OP_SH_RS | at << OP_SH_RT; fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE, BFD_RELOC_LO16); fixp->fx_file = fragp->fr_file; fixp->fx_line = fragp->fr_line; buf = write_insn (buf, insn); /* j(al)r $at. */ if (RELAX_BRANCH_LINK (fragp->fr_subtype)) insn = 0x0000f809; else insn = 0x00000008; insn |= at << OP_SH_RS; buf = write_insn (buf, insn); } } fragp->fr_fix += fragp->fr_var; gas_assert (buf == fragp->fr_literal + fragp->fr_fix); return; } /* Relax microMIPS branches. */ if (RELAX_MICROMIPS_P (fragp->fr_subtype)) { char *buf = fragp->fr_literal + fragp->fr_fix; bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype); bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype); int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype); bfd_boolean short_ds; unsigned long insn; expressionS exp; fixS *fixp; exp.X_op = O_symbol; exp.X_add_symbol = fragp->fr_symbol; exp.X_add_number = fragp->fr_offset; fragp->fr_fix += fragp->fr_var; /* Handle 16-bit branches that fit or are forced to fit. */ if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype)) { /* We generate a fixup instead of applying it right now, because if there is linker relaxation, we're going to need the relocations. */ if (type == 'D') fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE, BFD_RELOC_MICROMIPS_10_PCREL_S1); else if (type == 'E') fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE, BFD_RELOC_MICROMIPS_7_PCREL_S1); else abort (); fixp->fx_file = fragp->fr_file; fixp->fx_line = fragp->fr_line; /* These relocations can have an addend that won't fit in 2 octets. */ fixp->fx_no_overflow = 1; return; } /* Handle 32-bit branches that fit or are forced to fit. */ if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype) || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype)) { /* We generate a fixup instead of applying it right now, because if there is linker relaxation, we're going to need the relocations. */ fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1); fixp->fx_file = fragp->fr_file; fixp->fx_line = fragp->fr_line; if (type == 0) return; } /* Relax 16-bit branches to 32-bit branches. */ if (type != 0) { insn = read_compressed_insn (buf, 2); if ((insn & 0xfc00) == 0xcc00) /* b16 */ insn = 0x94000000; /* beq */ else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */ { unsigned long regno; regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD; regno = micromips_to_32_reg_d_map [regno]; insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */ insn |= regno << MICROMIPSOP_SH_RS; } else abort (); /* Nothing else to do, just write it out. */ if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype) || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype)) { buf = write_compressed_insn (buf, insn, 4); gas_assert (buf == fragp->fr_literal + fragp->fr_fix); return; } } else insn = read_compressed_insn (buf, 4); /* Relax 32-bit branches to a sequence of instructions. */ as_warn_where (fragp->fr_file, fragp->fr_line, _("Relaxed out-of-range branch into a jump")); /* Set the short-delay-slot bit. */ short_ds = al && (insn & 0x02000000) != 0; if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype)) { symbolS *l; /* Reverse the branch. */ if ((insn & 0xfc000000) == 0x94000000 /* beq */ || (insn & 0xfc000000) == 0xb4000000) /* bne */ insn ^= 0x20000000; else if ((insn & 0xffe00000) == 0x40000000 /* bltz */ || (insn & 0xffe00000) == 0x40400000 /* bgez */ || (insn & 0xffe00000) == 0x40800000 /* blez */ || (insn & 0xffe00000) == 0x40c00000 /* bgtz */ || (insn & 0xffe00000) == 0x40a00000 /* bnezc */ || (insn & 0xffe00000) == 0x40e00000 /* beqzc */ || (insn & 0xffe00000) == 0x40200000 /* bltzal */ || (insn & 0xffe00000) == 0x40600000 /* bgezal */ || (insn & 0xffe00000) == 0x42200000 /* bltzals */ || (insn & 0xffe00000) == 0x42600000) /* bgezals */ insn ^= 0x00400000; else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */ || (insn & 0xffe30000) == 0x43a00000 /* bc1t */ || (insn & 0xffe30000) == 0x42800000 /* bc2f */ || (insn & 0xffe30000) == 0x42a00000) /* bc2t */ insn ^= 0x00200000; else abort (); if (al) { /* Clear the and-link and short-delay-slot bits. */ gas_assert ((insn & 0xfda00000) == 0x40200000); /* bltzal 0x40200000 bgezal 0x40600000 */ /* bltzals 0x42200000 bgezals 0x42600000 */ insn &= ~0x02200000; } /* Make a label at the end for use with the branch. */ l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp); micromips_label_inc (); S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l))); /* Refer to it. */ fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1); fixp->fx_file = fragp->fr_file; fixp->fx_line = fragp->fr_line; /* Branch over the jump. */ buf = write_compressed_insn (buf, insn, 4); if (!compact) /* nop */ buf = write_compressed_insn (buf, 0x0c00, 2); } if (mips_pic == NO_PIC) { unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */ /* j/jal/jals R_MICROMIPS_26_S1 */ insn = al ? jal : 0xd4000000; fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE, BFD_RELOC_MICROMIPS_JMP); fixp->fx_file = fragp->fr_file; fixp->fx_line = fragp->fr_line; buf = write_compressed_insn (buf, insn, 4); if (compact) /* nop */ buf = write_compressed_insn (buf, 0x0c00, 2); } else { unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype); unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */ unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */ /* lw/ld $at, ($gp) R_MICROMIPS_GOT16 */ insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000; insn |= at << MICROMIPSOP_SH_RT; if (exp.X_add_number) { exp.X_add_symbol = make_expr_symbol (&exp); exp.X_add_number = 0; } fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE, BFD_RELOC_MICROMIPS_GOT16); fixp->fx_file = fragp->fr_file; fixp->fx_line = fragp->fr_line; buf = write_compressed_insn (buf, insn, 4); /* d/addiu $at, $at, R_MICROMIPS_LO16 */ insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000; insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS; fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE, BFD_RELOC_MICROMIPS_LO16); fixp->fx_file = fragp->fr_file; fixp->fx_line = fragp->fr_line; buf = write_compressed_insn (buf, insn, 4); /* jr/jrc/jalr/jalrs $at */ insn = al ? jalr : jr; insn |= at << MICROMIPSOP_SH_MJ; buf = write_compressed_insn (buf, insn, 2); } gas_assert (buf == fragp->fr_literal + fragp->fr_fix); return; } if (RELAX_MIPS16_P (fragp->fr_subtype)) { int type; const struct mips_int_operand *operand; offsetT val; char *buf; unsigned int user_length, length; unsigned long insn; bfd_boolean ext; type = RELAX_MIPS16_TYPE (fragp->fr_subtype); operand = mips16_immed_operand (type, FALSE); ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype); val = resolve_symbol_value (fragp->fr_symbol); if (operand->root.type == OP_PCREL) { const struct mips_pcrel_operand *pcrel_op; addressT addr; pcrel_op = (const struct mips_pcrel_operand *) operand; addr = fragp->fr_address + fragp->fr_fix; /* The rules for the base address of a PC relative reloc are complicated; see mips16_extended_frag. */ if (pcrel_op->include_isa_bit) { addr += 2; if (ext) addr += 2; /* Ignore the low bit in the target, since it will be set for a text label. */ val &= -2; } else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)) addr -= 4; else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype)) addr -= 2; addr &= -(1 << pcrel_op->align_log2); val -= addr; /* Make sure the section winds up with the alignment we have assumed. */ if (operand->shift > 0) record_alignment (asec, operand->shift); } if (ext && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype) || RELAX_MIPS16_DSLOT (fragp->fr_subtype))) as_warn_where (fragp->fr_file, fragp->fr_line, _("extended instruction in delay slot")); buf = fragp->fr_literal + fragp->fr_fix; insn = read_compressed_insn (buf, 2); if (ext) insn |= MIPS16_EXTEND; if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype)) user_length = 4; else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype)) user_length = 2; else user_length = 0; mips16_immed (fragp->fr_file, fragp->fr_line, type, BFD_RELOC_UNUSED, val, user_length, &insn); length = (ext ? 4 : 2); gas_assert (mips16_opcode_length (insn) == length); write_compressed_insn (buf, insn, length); fragp->fr_fix += length; } else { relax_substateT subtype = fragp->fr_subtype; bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0; bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0; int first, second; fixS *fixp; first = RELAX_FIRST (subtype); second = RELAX_SECOND (subtype); fixp = (fixS *) fragp->fr_opcode; /* If the delay slot chosen does not match the size of the instruction, then emit a warning. */ if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0) || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)) { relax_substateT s; const char *msg; s = subtype & (RELAX_DELAY_SLOT_16BIT | RELAX_DELAY_SLOT_SIZE_FIRST | RELAX_DELAY_SLOT_SIZE_SECOND); msg = macro_warning (s); if (msg != NULL) as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg); subtype &= ~s; } /* Possibly emit a warning if we've chosen the longer option. */ if (use_second == second_longer) { relax_substateT s; const char *msg; s = (subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT)); msg = macro_warning (s); if (msg != NULL) as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg); subtype &= ~s; } /* Go through all the fixups for the first sequence. Disable them (by marking them as done) if we're going to use the second sequence instead. */ while (fixp && fixp->fx_frag == fragp && fixp->fx_where < fragp->fr_fix - second) { if (subtype & RELAX_USE_SECOND) fixp->fx_done = 1; fixp = fixp->fx_next; } /* Go through the fixups for the second sequence. Disable them if we're going to use the first sequence, otherwise adjust their addresses to account for the relaxation. */ while (fixp && fixp->fx_frag == fragp) { if (subtype & RELAX_USE_SECOND) fixp->fx_where -= first; else fixp->fx_done = 1; fixp = fixp->fx_next; } /* Now modify the frag contents. */ if (subtype & RELAX_USE_SECOND) { char *start; start = fragp->fr_literal + fragp->fr_fix - first - second; memmove (start, start + first, second); fragp->fr_fix -= first; } else fragp->fr_fix -= second; } } /* This function is called after the relocs have been generated. We've been storing mips16 text labels as odd. Here we convert them back to even for the convenience of the debugger. */ void mips_frob_file_after_relocs (void) { asymbol **syms; unsigned int count, i; syms = bfd_get_outsymbols (stdoutput); count = bfd_get_symcount (stdoutput); for (i = 0; i < count; i++, syms++) if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other) && ((*syms)->value & 1) != 0) { (*syms)->value &= ~1; /* If the symbol has an odd size, it was probably computed incorrectly, so adjust that as well. */ if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0) ++elf_symbol (*syms)->internal_elf_sym.st_size; } } /* This function is called whenever a label is defined, including fake labels instantiated off the dot special symbol. It is used when handling branch delays; if a branch has a label, we assume we cannot move it. This also bumps the value of the symbol by 1 in compressed code. */ static void mips_record_label (symbolS *sym) { segment_info_type *si = seg_info (now_seg); struct insn_label_list *l; if (free_insn_labels == NULL) l = (struct insn_label_list *) xmalloc (sizeof *l); else { l = free_insn_labels; free_insn_labels = l->next; } l->label = sym; l->next = si->label_list; si->label_list = l; } /* This function is called as tc_frob_label() whenever a label is defined and adds a DWARF-2 record we only want for true labels. */ void mips_define_label (symbolS *sym) { mips_record_label (sym); dwarf2_emit_label (sym); } /* This function is called by tc_new_dot_label whenever a new dot symbol is defined. */ void mips_add_dot_label (symbolS *sym) { mips_record_label (sym); if (mips_assembling_insn && HAVE_CODE_COMPRESSION) mips_compressed_mark_label (sym); } /* Some special processing for a MIPS ELF file. */ void mips_elf_final_processing (void) { /* Write out the register information. */ if (mips_abi != N64_ABI) { Elf32_RegInfo s; s.ri_gprmask = mips_gprmask; s.ri_cprmask[0] = mips_cprmask[0]; s.ri_cprmask[1] = mips_cprmask[1]; s.ri_cprmask[2] = mips_cprmask[2]; s.ri_cprmask[3] = mips_cprmask[3]; /* The gp_value field is set by the MIPS ELF backend. */ bfd_mips_elf32_swap_reginfo_out (stdoutput, &s, ((Elf32_External_RegInfo *) mips_regmask_frag)); } else { Elf64_Internal_RegInfo s; s.ri_gprmask = mips_gprmask; s.ri_pad = 0; s.ri_cprmask[0] = mips_cprmask[0]; s.ri_cprmask[1] = mips_cprmask[1]; s.ri_cprmask[2] = mips_cprmask[2]; s.ri_cprmask[3] = mips_cprmask[3]; /* The gp_value field is set by the MIPS ELF backend. */ bfd_mips_elf64_swap_reginfo_out (stdoutput, &s, ((Elf64_External_RegInfo *) mips_regmask_frag)); } /* Set the MIPS ELF flag bits. FIXME: There should probably be some sort of BFD interface for this. */ if (mips_any_noreorder) elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER; if (mips_pic != NO_PIC) { elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC; elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC; } if (mips_abicalls) elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC; /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags defined at present; this might need to change in future. */ if (file_ase_mips16) elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16; if (file_ase_micromips) elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS; if (file_ase & ASE_MDMX) elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX; /* Set the MIPS ELF ABI flags. */ if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32) elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32; else if (mips_abi == O64_ABI) elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64; else if (mips_abi == EABI_ABI) { if (!file_mips_gp32) elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64; else elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32; } else if (mips_abi == N32_ABI) elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2; /* Nothing to do for N64_ABI. */ if (mips_32bitmode) elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE; if (mips_flag_nan2008) elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008; #if 0 /* XXX FIXME */ /* 32 bit code with 64 bit FP registers. */ if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi)) elf_elfheader (stdoutput)->e_flags |= ???; #endif } typedef struct proc { symbolS *func_sym; symbolS *func_end_sym; unsigned long reg_mask; unsigned long reg_offset; unsigned long fpreg_mask; unsigned long fpreg_offset; unsigned long frame_offset; unsigned long frame_reg; unsigned long pc_reg; } procS; static procS cur_proc; static procS *cur_proc_ptr; static int numprocs; /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop as "2", and a normal nop as "0". */ #define NOP_OPCODE_MIPS 0 #define NOP_OPCODE_MIPS16 1 #define NOP_OPCODE_MICROMIPS 2 char mips_nop_opcode (void) { if (seg_info (now_seg)->tc_segment_info_data.micromips) return NOP_OPCODE_MICROMIPS; else if (seg_info (now_seg)->tc_segment_info_data.mips16) return NOP_OPCODE_MIPS16; else return NOP_OPCODE_MIPS; } /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use 32-bit microMIPS NOPs here (if applicable). */ void mips_handle_align (fragS *fragp) { char nop_opcode; char *p; int bytes, size, excess; valueT opcode; if (fragp->fr_type != rs_align_code) return; p = fragp->fr_literal + fragp->fr_fix; nop_opcode = *p; switch (nop_opcode) { case NOP_OPCODE_MICROMIPS: opcode = micromips_nop32_insn.insn_opcode; size = 4; break; case NOP_OPCODE_MIPS16: opcode = mips16_nop_insn.insn_opcode; size = 2; break; case NOP_OPCODE_MIPS: default: opcode = nop_insn.insn_opcode; size = 4; break; } bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix; excess = bytes % size; /* Handle the leading part if we're not inserting a whole number of instructions, and make it the end of the fixed part of the frag. Try to fit in a short microMIPS NOP if applicable and possible, and use zeroes otherwise. */ gas_assert (excess < 4); fragp->fr_fix += excess; switch (excess) { case 3: *p++ = '\0'; /* Fall through. */ case 2: if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32) { p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2); break; } *p++ = '\0'; /* Fall through. */ case 1: *p++ = '\0'; /* Fall through. */ case 0: break; } md_number_to_chars (p, opcode, size); fragp->fr_var = size; } static void md_obj_begin (void) { } static void md_obj_end (void) { /* Check for premature end, nesting errors, etc. */ if (cur_proc_ptr) as_warn (_("missing .end at end of assembly")); } static long get_number (void) { int negative = 0; long val = 0; if (*input_line_pointer == '-') { ++input_line_pointer; negative = 1; } if (!ISDIGIT (*input_line_pointer)) as_bad (_("expected simple number")); if (input_line_pointer[0] == '0') { if (input_line_pointer[1] == 'x') { input_line_pointer += 2; while (ISXDIGIT (*input_line_pointer)) { val <<= 4; val |= hex_value (*input_line_pointer++); } return negative ? -val : val; } else { ++input_line_pointer; while (ISDIGIT (*input_line_pointer)) { val <<= 3; val |= *input_line_pointer++ - '0'; } return negative ? -val : val; } } if (!ISDIGIT (*input_line_pointer)) { printf (_(" *input_line_pointer == '%c' 0x%02x\n"), *input_line_pointer, *input_line_pointer); as_warn (_("invalid number")); return -1; } while (ISDIGIT (*input_line_pointer)) { val *= 10; val += *input_line_pointer++ - '0'; } return negative ? -val : val; } /* The .file directive; just like the usual .file directive, but there is an initial number which is the ECOFF file index. In the non-ECOFF case .file implies DWARF-2. */ static void s_mips_file (int x ATTRIBUTE_UNUSED) { static int first_file_directive = 0; if (ECOFF_DEBUGGING) { get_number (); s_app_file (0); } else { char *filename; filename = dwarf2_directive_file (0); /* Versions of GCC up to 3.1 start files with a ".file" directive even for stabs output. Make sure that this ".file" is handled. Note that you need a version of GCC after 3.1 in order to support DWARF-2 on MIPS. */ if (filename != NULL && ! first_file_directive) { (void) new_logical_line (filename, -1); s_app_file_string (filename, 0); } first_file_directive = 1; } } /* The .loc directive, implying DWARF-2. */ static void s_mips_loc (int x ATTRIBUTE_UNUSED) { if (!ECOFF_DEBUGGING) dwarf2_directive_loc (0); } /* The .end directive. */ static void s_mips_end (int x ATTRIBUTE_UNUSED) { symbolS *p; /* Following functions need their own .frame and .cprestore directives. */ mips_frame_reg_valid = 0; mips_cprestore_valid = 0; if (!is_end_of_line[(unsigned char) *input_line_pointer]) { p = get_symbol (); demand_empty_rest_of_line (); } else p = NULL; if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0) as_warn (_(".end not in text section")); if (!cur_proc_ptr) { as_warn (_(".end directive without a preceding .ent directive.")); demand_empty_rest_of_line (); return; } if (p != NULL) { gas_assert (S_GET_NAME (p)); if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym))) as_warn (_(".end symbol does not match .ent symbol.")); if (debug_type == DEBUG_STABS) stabs_generate_asm_endfunc (S_GET_NAME (p), S_GET_NAME (p)); } else as_warn (_(".end directive missing or unknown symbol")); /* Create an expression to calculate the size of the function. */ if (p && cur_proc_ptr) { OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p); expressionS *exp = xmalloc (sizeof (expressionS)); obj->size = exp; exp->X_op = O_subtract; exp->X_add_symbol = symbol_temp_new_now (); exp->X_op_symbol = p; exp->X_add_number = 0; cur_proc_ptr->func_end_sym = exp->X_add_symbol; } /* Generate a .pdr section. */ if (!ECOFF_DEBUGGING && mips_flag_pdr) { segT saved_seg = now_seg; subsegT saved_subseg = now_subseg; expressionS exp; char *fragp; #ifdef md_flush_pending_output md_flush_pending_output (); #endif gas_assert (pdr_seg); subseg_set (pdr_seg, 0); /* Write the symbol. */ exp.X_op = O_symbol; exp.X_add_symbol = p; exp.X_add_number = 0; emit_expr (&exp, 4); fragp = frag_more (7 * 4); md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4); md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4); md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4); md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4); md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4); md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4); md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4); subseg_set (saved_seg, saved_subseg); } cur_proc_ptr = NULL; } /* The .aent and .ent directives. */ static void s_mips_ent (int aent) { symbolS *symbolP; symbolP = get_symbol (); if (*input_line_pointer == ',') ++input_line_pointer; SKIP_WHITESPACE (); if (ISDIGIT (*input_line_pointer) || *input_line_pointer == '-') get_number (); if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0) as_warn (_(".ent or .aent not in text section.")); if (!aent && cur_proc_ptr) as_warn (_("missing .end")); if (!aent) { /* This function needs its own .frame and .cprestore directives. */ mips_frame_reg_valid = 0; mips_cprestore_valid = 0; cur_proc_ptr = &cur_proc; memset (cur_proc_ptr, '\0', sizeof (procS)); cur_proc_ptr->func_sym = symbolP; ++numprocs; if (debug_type == DEBUG_STABS) stabs_generate_asm_func (S_GET_NAME (symbolP), S_GET_NAME (symbolP)); } symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION; demand_empty_rest_of_line (); } /* The .frame directive. If the mdebug section is present (IRIX 5 native) then ecoff.c (ecoff_directive_frame) is used. For embedded targets, s_mips_frame is used so that we can set the PDR information correctly. We can't use the ecoff routines because they make reference to the ecoff symbol table (in the mdebug section). */ static void s_mips_frame (int ignore ATTRIBUTE_UNUSED) { if (ECOFF_DEBUGGING) s_ignore (ignore); else { long val; if (cur_proc_ptr == (procS *) NULL) { as_warn (_(".frame outside of .ent")); demand_empty_rest_of_line (); return; } cur_proc_ptr->frame_reg = tc_get_register (1); SKIP_WHITESPACE (); if (*input_line_pointer++ != ',' || get_absolute_expression_and_terminator (&val) != ',') { as_warn (_("Bad .frame directive")); --input_line_pointer; demand_empty_rest_of_line (); return; } cur_proc_ptr->frame_offset = val; cur_proc_ptr->pc_reg = tc_get_register (0); demand_empty_rest_of_line (); } } /* The .fmask and .mask directives. If the mdebug section is present (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For embedded targets, s_mips_mask is used so that we can set the PDR information correctly. We can't use the ecoff routines because they make reference to the ecoff symbol table (in the mdebug section). */ static void s_mips_mask (int reg_type) { if (ECOFF_DEBUGGING) s_ignore (reg_type); else { long mask, off; if (cur_proc_ptr == (procS *) NULL) { as_warn (_(".mask/.fmask outside of .ent")); demand_empty_rest_of_line (); return; } if (get_absolute_expression_and_terminator (&mask) != ',') { as_warn (_("Bad .mask/.fmask directive")); --input_line_pointer; demand_empty_rest_of_line (); return; } off = get_absolute_expression (); if (reg_type == 'F') { cur_proc_ptr->fpreg_mask = mask; cur_proc_ptr->fpreg_offset = off; } else { cur_proc_ptr->reg_mask = mask; cur_proc_ptr->reg_offset = off; } demand_empty_rest_of_line (); } } /* A table describing all the processors gas knows about. Names are matched in the order listed. To ease comparison, please keep this table in the same order as gcc's mips_cpu_info_table[]. */ static const struct mips_cpu_info mips_cpu_info_table[] = { /* Entries for generic ISAs */ { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 }, { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 }, { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 }, { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 }, { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 }, { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 }, { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 }, { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 }, { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 }, /* MIPS I */ { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 }, { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 }, { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 }, /* MIPS II */ { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 }, /* MIPS III */ { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 }, { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 }, { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 }, { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 }, { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 }, { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 }, { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 }, { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 }, { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 }, { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 }, { "orion", 0, 0, ISA_MIPS3, CPU_R4600 }, { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 }, { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 }, /* ST Microelectronics Loongson 2E and 2F cores */ { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E }, { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F }, /* MIPS IV */ { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 }, { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 }, { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 }, { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 }, { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 }, { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 }, { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 }, { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 }, { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 }, { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 }, { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 }, { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 }, { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 }, { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 }, { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 }, /* MIPS 32 */ { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 }, { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 }, { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 }, { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 }, /* MIPS 32 Release 2 */ { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 }, { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 }, { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 }, { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 }, { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 }, { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 }, { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 }, { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 }, { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 }, { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 }, { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 }, { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 }, { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 }, { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 }, /* Deprecated forms of the above. */ { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 }, { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 }, /* 24KE is a 24K with DSP ASE, other ASEs are optional. */ { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 }, { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 }, { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 }, { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 }, /* Deprecated forms of the above. */ { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 }, { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 }, /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */ { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 }, { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 }, { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 }, { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 }, /* Deprecated forms of the above. */ { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 }, { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 }, /* 34Kn is a 34kc without DSP. */ { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 }, /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */ { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 }, { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 }, { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 }, { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 }, { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 }, /* Deprecated forms of the above. */ { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 }, { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 }, /* 1004K cores are multiprocessor versions of the 34K. */ { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 }, { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 }, { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 }, { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 }, /* MIPS 64 */ { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 }, { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 }, { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 }, { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 }, /* Broadcom SB-1 CPU core */ { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 }, /* Broadcom SB-1A CPU core */ { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 }, { "loongson3a", 0, 0, ISA_MIPS64, CPU_LOONGSON_3A }, /* MIPS 64 Release 2 */ /* Cavium Networks Octeon CPU core */ { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON }, { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP }, { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 }, /* RMI Xlr */ { "xlr", 0, 0, ISA_MIPS64, CPU_XLR }, /* Broadcom XLP. XLP is mostly like XLR, with the prominent exception that it is MIPS64R2 rather than MIPS64. */ { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR }, /* End marker */ { NULL, 0, 0, 0, 0 } }; /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL with a final "000" replaced by "k". Ignore case. Note: this function is shared between GCC and GAS. */ static bfd_boolean mips_strict_matching_cpu_name_p (const char *canonical, const char *given) { while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical)) given++, canonical++; return ((*given == 0 && *canonical == 0) || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0)); } /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied CPU name. We've traditionally allowed a lot of variation here. Note: this function is shared between GCC and GAS. */ static bfd_boolean mips_matching_cpu_name_p (const char *canonical, const char *given) { /* First see if the name matches exactly, or with a final "000" turned into "k". */ if (mips_strict_matching_cpu_name_p (canonical, given)) return TRUE; /* If not, try comparing based on numerical designation alone. See if GIVEN is an unadorned number, or 'r' followed by a number. */ if (TOLOWER (*given) == 'r') given++; if (!ISDIGIT (*given)) return FALSE; /* Skip over some well-known prefixes in the canonical name, hoping to find a number there too. */ if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r') canonical += 2; else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm') canonical += 2; else if (TOLOWER (canonical[0]) == 'r') canonical += 1; return mips_strict_matching_cpu_name_p (canonical, given); } /* Parse an option that takes the name of a processor as its argument. OPTION is the name of the option and CPU_STRING is the argument. Return the corresponding processor enumeration if the CPU_STRING is recognized, otherwise report an error and return null. A similar function exists in GCC. */ static const struct mips_cpu_info * mips_parse_cpu (const char *option, const char *cpu_string) { const struct mips_cpu_info *p; /* 'from-abi' selects the most compatible architecture for the given ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the EABIs, we have to decide whether we're using the 32-bit or 64-bit version. Look first at the -mgp options, if given, otherwise base the choice on MIPS_DEFAULT_64BIT. Treat NO_ABI like the EABIs. One reason to do this is that the plain 'mips' and 'mips64' configs have 'from-abi' as their default architecture. This code picks MIPS I for 'mips' and MIPS III for 'mips64', just as we did in the days before 'from-abi'. */ if (strcasecmp (cpu_string, "from-abi") == 0) { if (ABI_NEEDS_32BIT_REGS (mips_abi)) return mips_cpu_info_from_isa (ISA_MIPS1); if (ABI_NEEDS_64BIT_REGS (mips_abi)) return mips_cpu_info_from_isa (ISA_MIPS3); if (file_mips_gp32 >= 0) return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3); return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT ? ISA_MIPS3 : ISA_MIPS1); } /* 'default' has traditionally been a no-op. Probably not very useful. */ if (strcasecmp (cpu_string, "default") == 0) return 0; for (p = mips_cpu_info_table; p->name != 0; p++) if (mips_matching_cpu_name_p (p->name, cpu_string)) return p; as_bad (_("Bad value (%s) for %s"), cpu_string, option); return 0; } /* Return the canonical processor information for ISA (a member of the ISA_MIPS* enumeration). */ static const struct mips_cpu_info * mips_cpu_info_from_isa (int isa) { int i; for (i = 0; mips_cpu_info_table[i].name != NULL; i++) if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA) && isa == mips_cpu_info_table[i].isa) return (&mips_cpu_info_table[i]); return NULL; } static const struct mips_cpu_info * mips_cpu_info_from_arch (int arch) { int i; for (i = 0; mips_cpu_info_table[i].name != NULL; i++) if (arch == mips_cpu_info_table[i].cpu) return (&mips_cpu_info_table[i]); return NULL; } static void show (FILE *stream, const char *string, int *col_p, int *first_p) { if (*first_p) { fprintf (stream, "%24s", ""); *col_p = 24; } else { fprintf (stream, ", "); *col_p += 2; } if (*col_p + strlen (string) > 72) { fprintf (stream, "\n%24s", ""); *col_p = 24; } fprintf (stream, "%s", string); *col_p += strlen (string); *first_p = 0; } void md_show_usage (FILE *stream) { int column, first; size_t i; fprintf (stream, _("\ MIPS options:\n\ -EB generate big endian output\n\ -EL generate little endian output\n\ -g, -g2 do not remove unneeded NOPs or swap branches\n\ -G NUM allow referencing objects up to NUM bytes\n\ implicitly with the gp register [default 8]\n")); fprintf (stream, _("\ -mips1 generate MIPS ISA I instructions\n\ -mips2 generate MIPS ISA II instructions\n\ -mips3 generate MIPS ISA III instructions\n\ -mips4 generate MIPS ISA IV instructions\n\ -mips5 generate MIPS ISA V instructions\n\ -mips32 generate MIPS32 ISA instructions\n\ -mips32r2 generate MIPS32 release 2 ISA instructions\n\ -mips64 generate MIPS64 ISA instructions\n\ -mips64r2 generate MIPS64 release 2 ISA instructions\n\ -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n")); first = 1; for (i = 0; mips_cpu_info_table[i].name != NULL; i++) show (stream, mips_cpu_info_table[i].name, &column, &first); show (stream, "from-abi", &column, &first); fputc ('\n', stream); fprintf (stream, _("\ -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\ -no-mCPU don't generate code specific to CPU.\n\ For -mCPU and -no-mCPU, CPU must be one of:\n")); first = 1; show (stream, "3900", &column, &first); show (stream, "4010", &column, &first); show (stream, "4100", &column, &first); show (stream, "4650", &column, &first); fputc ('\n', stream); fprintf (stream, _("\ -mips16 generate mips16 instructions\n\ -no-mips16 do not generate mips16 instructions\n")); fprintf (stream, _("\ -mmicromips generate microMIPS instructions\n\ -mno-micromips do not generate microMIPS instructions\n")); fprintf (stream, _("\ -msmartmips generate smartmips instructions\n\ -mno-smartmips do not generate smartmips instructions\n")); fprintf (stream, _("\ -mdsp generate DSP instructions\n\ -mno-dsp do not generate DSP instructions\n")); fprintf (stream, _("\ -mdspr2 generate DSP R2 instructions\n\ -mno-dspr2 do not generate DSP R2 instructions\n")); fprintf (stream, _("\ -mmt generate MT instructions\n\ -mno-mt do not generate MT instructions\n")); fprintf (stream, _("\ -mmcu generate MCU instructions\n\ -mno-mcu do not generate MCU instructions\n")); fprintf (stream, _("\ -mvirt generate Virtualization instructions\n\ -mno-virt do not generate Virtualization instructions\n")); fprintf (stream, _("\ -minsn32 only generate 32-bit microMIPS instructions\n\ -mno-insn32 generate all microMIPS instructions\n")); fprintf (stream, _("\ -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\ -mfix-loongson2f-nop work around Loongson2F NOP errata\n\ -mfix-vr4120 work around certain VR4120 errata\n\ -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\ -mfix-24k insert a nop after ERET and DERET instructions\n\ -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\ -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\ -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\ -msym32 assume all symbols have 32-bit values\n\ -O0 remove unneeded NOPs, do not swap branches\n\ -O remove unneeded NOPs and swap branches\n\ --trap, --no-break trap exception on div by 0 and mult overflow\n\ --break, --no-trap break exception on div by 0 and mult overflow\n")); fprintf (stream, _("\ -mhard-float allow floating-point instructions\n\ -msoft-float do not allow floating-point instructions\n\ -msingle-float only allow 32-bit floating-point operations\n\ -mdouble-float allow 32-bit and 64-bit floating-point operations\n\ --[no-]construct-floats [dis]allow floating point values to be constructed\n\ --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\ -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n")); first = 1; show (stream, "legacy", &column, &first); show (stream, "2008", &column, &first); fputc ('\n', stream); fprintf (stream, _("\ -KPIC, -call_shared generate SVR4 position independent code\n\ -call_nonpic generate non-PIC code that can operate with DSOs\n\ -mvxworks-pic generate VxWorks position independent code\n\ -non_shared do not generate code that can operate with DSOs\n\ -xgot assume a 32 bit GOT\n\ -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\ -mshared, -mno-shared disable/enable .cpload optimization for\n\ position dependent (non shared) code\n\ -mabi=ABI create ABI conformant object file for:\n")); first = 1; show (stream, "32", &column, &first); show (stream, "o64", &column, &first); show (stream, "n32", &column, &first); show (stream, "64", &column, &first); show (stream, "eabi", &column, &first); fputc ('\n', stream); fprintf (stream, _("\ -32 create o32 ABI object file (default)\n\ -n32 create n32 ABI object file\n\ -64 create 64 ABI object file\n")); } #ifdef TE_IRIX enum dwarf2_format mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED) { if (HAVE_64BIT_SYMBOLS) return dwarf2_format_64bit_irix; else return dwarf2_format_32bit; } #endif int mips_dwarf2_addr_size (void) { if (HAVE_64BIT_OBJECTS) return 8; else return 4; } /* Standard calling conventions leave the CFA at SP on entry. */ void mips_cfi_frame_initial_instructions (void) { cfi_add_CFA_def_cfa_register (SP); } int tc_mips_regname_to_dw2regnum (char *regname) { unsigned int regnum = -1; unsigned int reg; if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®)) regnum = reg; return regnum; }