/* All the m68k specific stuff in one convenient, huge, slow to compile, easy to find file. Copyright (C) 1987, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #define NO_RELOC 0 #include "as.h" #include "obstack.h" /* The opcode table is too big for some versions of gcc, which require exponential(?) space at compile time for initialized arrays. */ #ifdef __GNUC__ #define DO_BREAK_UP_BIG_DECL #define BREAK_UP_BIG_DECL }; struct m68k_opcode m68k_opcodes_2[] = { #define AND_OTHER_PART sizeof (m68k_opcodes_2) #endif /* Note that this file includes real declarations and thus can only be included by one source file per executable. */ #include "opcode/m68k.h" /* This array holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful */ #ifdef OBJ_ELF CONST char comment_chars[] = "|#"; #else CONST char comment_chars[] = "|"; #endif /* This array holds the chars that only start a comment at the beginning of a line. If the line seems to have the form '# 123 filename' .line and .file directives will appear in the pre-processed output */ /* Note that input_file.c hand checks for '#' at the beginning of the first line of the input file. This is because the compiler outputs #NO_APP at the beginning of its output. */ /* Also note that comments like this one will always work. */ CONST char line_comment_chars[] = "#"; CONST char line_separator_chars[] = ""; /* Chars that can be used to separate mant from exp in floating point nums */ CONST char EXP_CHARS[] = "eE"; /* Chars that mean this number is a floating point constant, as in "0f12.456" or "0d1.2345e12". */ CONST char FLT_CHARS[] = "rRsSfFdDxXeEpP"; /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be changed in read.c . Ideally it shouldn't have to know about it at all, but nothing is ideal around here. */ const int md_reloc_size = 8; /* Size of relocation record */ /* Are we trying to generate PIC code? If so, absolute references ought to be made into linkage table references or pc-relative references. */ int flag_want_pic; static int flag_short_refs; /* -l option */ static int flag_long_jumps; /* -S option */ #ifdef REGISTER_PREFIX_OPTIONAL int flag_reg_prefix_optional = REGISTER_PREFIX_OPTIONAL; #else int flag_reg_prefix_optional; #endif /* Its an arbitrary name: This means I don't approve of it */ /* See flames below */ static struct obstack robyn; #define TAB(x,y) (((x)<<2)+(y)) #define TABTYPE(xy) ((xy) >> 2) #define BYTE 0 #define SHORT 1 #define LONG 2 #define SZ_UNDEF 3 #undef BRANCH /* Case `g' except when BCC68000 is applicable. */ #define ABRANCH 1 /* Coprocessor branches. */ #define FBRANCH 2 /* Mode 7.2 -- program counter indirect with (16-bit) displacement, supported on all cpus. Widens to 32-bit absolute. */ #define PCREL 3 /* For inserting an extra jmp instruction with long offset on 68000, for expanding conditional branches. (Not bsr or bra.) Since the 68000 doesn't support 32-bit displacements for conditional branches, we fake it by reversing the condition and branching around a jmp with an absolute long operand. */ #define BCC68000 4 /* For the DBcc "instructions". If the displacement requires 32 bits, the branch-around-a-jump game is played here too. */ #define DBCC 5 /* Not currently used? */ #define PCLEA 6 /* Mode AINDX (apc-relative) using PC, with variable target, might fit in 16 or 8 bits. */ #define PCINDEX 7 struct m68k_incant { char *m_operands; unsigned long m_opcode; short m_opnum; short m_codenum; int m_arch; struct m68k_incant *m_next; }; #define getone(x) ((((x)->m_opcode)>>16)&0xffff) #define gettwo(x) (((x)->m_opcode)&0xffff) /* Operands we can parse: (And associated modes) numb: 8 bit num numw: 16 bit num numl: 32 bit num dreg: data reg 0-7 reg: address or data register areg: address register apc: address register, PC, ZPC or empty string num: 16 or 32 bit num num2: like num sz: w or l if omitted, l assumed scale: 1 2 4 or 8 if omitted, 1 assumed 7.4 IMMED #num --> NUM 0.? DREG dreg --> dreg 1.? AREG areg --> areg 2.? AINDR areg@ --> *(areg) 3.? AINC areg@+ --> *(areg++) 4.? ADEC areg@- --> *(--areg) 5.? AOFF apc@(numw) --> *(apc+numw) -- empty string and ZPC not allowed here 6.? AINDX apc@(num,reg:sz:scale) --> *(apc+num+reg*scale) 6.? AINDX apc@(reg:sz:scale) --> same, with num=0 6.? APODX apc@(num)@(num2,reg:sz:scale) --> *(*(apc+num)+num2+reg*scale) 6.? APODX apc@(num)@(reg:sz:scale) --> same, with num2=0 6.? AMIND apc@(num)@(num2) --> *(*(apc+num)+num2) (previous mode without an index reg) 6.? APRDX apc@(num,reg:sz:scale)@(num2) --> *(*(apc+num+reg*scale)+num2) 6.? APRDX apc@(reg:sz:scale)@(num2) --> same, with num=0 7.0 ABSL num:sz --> *(num) num --> *(num) (sz L assumed) *** MSCR otherreg --> Magic With -l option 5.? AOFF apc@(num) --> *(apc+num) -- empty string and ZPC not allowed here still ?.? DINDR dreg@ --> (dreg) -- cas2 only examples: #foo #0x35 #12 d2 a4 a3@ a5@+ a6@- a2@(12) pc@(14) a1@(5,d2:w:1) @(45,d6:l:4) pc@(a2) @(d4) etc . . . #name@(numw) -->turn into PC rel mode apc@(num8,reg:sz:scale) --> *(apc+num8+reg*scale) */ enum operand_type { IMMED = 1, DREG, AREG, AINDR, ADEC, AINC, AOFF, AINDX, APODX, AMIND, APRDX, ABSL, MSCR, REGLST, DINDR }; struct m68k_exp { char *e_beg; char *e_end; segT e_seg; expressionS e_exp; short e_siz; /* 0== default 1==short/byte 2==word 3==long */ }; /* DATA and ADDR have to be contiguous, so that reg-DATA gives 0-7==data reg, 8-15==addr reg for operands that take both types. We don't use forms like "ADDR0 = ADDR" here because this file is likely to be used on an Apollo, and the broken Apollo compiler gives an `undefined variable' error if we do that, according to troy@cbme.unsw.edu.au. */ #define DATA DATA0 #define ADDR ADDR0 #define SP ADDR7 #define FPREG FP0 #define COPNUM COP0 #define BAD BAD0 #define BAC BAC0 enum _register { DATA0 = 1, /* 1- 8 == data registers 0-7 */ DATA1, DATA2, DATA3, DATA4, DATA5, DATA6, DATA7, ADDR0, ADDR1, ADDR2, ADDR3, ADDR4, ADDR5, ADDR6, ADDR7, FP0, /* Eight FP registers */ FP1, FP2, FP3, FP4, FP5, FP6, FP7, /* Note that COP0==processor #1 -- COP0+7==#8, which stores as 000 */ /* I think. . . */ COP0, /* Co-processor #1-#8 */ COP1, COP2, COP3, COP4, COP5, COP6, COP7, PC, /* Program counter */ ZPC, /* Hack for Program space, but 0 addressing */ SR, /* Status Reg */ CCR, /* Condition code Reg */ /* These have to be grouped together for the movec instruction to work. */ USP, /* User Stack Pointer */ ISP, /* Interrupt stack pointer */ SFC, DFC, CACR, VBR, CAAR, MSP, ITT0, ITT1, DTT0, DTT1, MMUSR, TC, SRP, URP, BUSCR, /* 68060 added these */ PCR, #define last_movec_reg PCR /* end of movec ordering constraints */ FPI, FPS, FPC, DRP, /* 68851 or 68030 MMU regs */ CRP, CAL, VAL, SCC, AC, BAD0, BAD1, BAD2, BAD3, BAD4, BAD5, BAD6, BAD7, BAC0, BAC1, BAC2, BAC3, BAC4, BAC5, BAC6, BAC7, PSR, /* aka MMUSR on 68030 (but not MMUSR on 68040) and ACUSR on 68ec030 */ PCSR, IC, /* instruction cache token */ DC, /* data cache token */ NC, /* no cache token */ BC, /* both caches token */ TT0, /* 68030 access control unit regs */ TT1, }; static const enum _register m68000_control_regs[] = { 0 }; static const enum _register m68010_control_regs[] = { SFC, DFC, USP, VBR, 0 }; static const enum _register m68020_control_regs[] = { SFC, DFC, USP, VBR, CACR, CAAR, MSP, ISP, 0 }; static const enum _register m68040_control_regs[] = { SFC, DFC, CACR, TC, ITT0, ITT1, DTT0, DTT1, USP, VBR, MSP, ISP, MMUSR, URP, SRP, 0 }; static const enum _register m68060_control_regs[] = { SFC, DFC, CACR, TC, ITT0, ITT1, DTT0, DTT1, BUSCR, USP, VBR, URP, SRP, PCR, 0 }; #define cpu32_control_regs m68010_control_regs static const enum _register *control_regs; /* Internal form of an operand. */ struct m68k_op { char *error; /* Couldn't parse it */ enum operand_type mode; /* What mode this instruction is in. */ enum _register reg; /* Base register */ struct m68k_exp *con1; int ireg; /* Index register */ int isiz; /* 0==unspec 1==byte(?) 2==short 3==long */ int imul; /* Multipy ireg by this (1,2,4,or 8) */ struct m68k_exp *con2; }; /* internal form of a 68020 instruction */ struct m68k_it { char *error; char *args; /* list of opcode info */ int numargs; int numo; /* Number of shorts in opcode */ short opcode[11]; struct m68k_op operands[6]; int nexp; /* number of exprs in use */ struct m68k_exp exprs[4]; int nfrag; /* Number of frags we have to produce */ struct { int fragoff; /* Where in the current opcode[] the frag ends */ symbolS *fadd; long foff; int fragty; } fragb[4]; int nrel; /* Num of reloc strucs in use */ struct { int n; expressionS exp; char wid; char pcrel; /* In a pc relative address the difference between the address of the offset and the address that the offset is relative to. This depends on the addressing mode. Basically this is the value to put in the offset field to address the first byte of the offset, without regarding the special significance of some values (in the branch instruction, for example). */ int pcrel_fix; } reloc[5]; /* Five is enough??? */ }; #define cpu_of_arch(x) ((x) & m68000up) #define float_of_arch(x) ((x) & mfloat) #define mmu_of_arch(x) ((x) & mmmu) static struct m68k_it the_ins; /* the instruction being assembled */ #define seg(exp) ((exp)->e_seg) #define op(exp) ((exp)->e_exp.X_op) #define adds(exp) ((exp)->e_exp.X_add_symbol) #define subs(exp) ((exp)->e_exp.X_op_symbol) #define offs(exp) ((exp)->e_exp.X_add_number) /* Macros for adding things to the m68k_it struct */ #define addword(w) the_ins.opcode[the_ins.numo++]=(w) /* Like addword, but goes BEFORE general operands */ static void insop (w, opcode) int w; struct m68k_incant *opcode; { int z; for(z=the_ins.numo;z>opcode->m_codenum;--z) the_ins.opcode[z]=the_ins.opcode[z-1]; for(z=0;zm_codenum]=w; the_ins.numo++; } static struct m68k_exp * add_exp (beg, end) char *beg; char *end; { the_ins.exprs[the_ins.nexp].e_beg=beg; the_ins.exprs[the_ins.nexp].e_end=end; return &the_ins.exprs[the_ins.nexp++]; } /* The numo+1 kludge is so we can hit the low order byte of the prev word. Blecch. */ static void add_fix (width, exp, pc_rel, pc_fix) char width; struct m68k_exp *exp; int pc_rel; int pc_fix; { the_ins.reloc[the_ins.nrel].n = (((width)=='B') ? (the_ins.numo*2-1) : (((width)=='b') ? (the_ins.numo*2+1) : (the_ins.numo*2))); the_ins.reloc[the_ins.nrel].exp = exp->e_exp; the_ins.reloc[the_ins.nrel].wid = width; the_ins.reloc[the_ins.nrel].pcrel_fix = pc_fix; the_ins.reloc[the_ins.nrel++].pcrel = pc_rel; } /* Cause an extra frag to be generated here, inserting up to 10 bytes (that value is chosen in the frag_var call in md_assemble). TYPE is the subtype of the frag to be generated; its primary type is rs_machine_dependent. The TYPE parameter is also used by md_convert_frag_1 and md_estimate_size_before_relax. The appropriate type of fixup will be emitted by md_convert_frag_1. ADD becomes the FR_SYMBOL field of the frag, and OFF the FR_OFFSET. */ static void add_frag(add,off,type) symbolS *add; long off; int type; { the_ins.fragb[the_ins.nfrag].fragoff=the_ins.numo; the_ins.fragb[the_ins.nfrag].fadd=add; the_ins.fragb[the_ins.nfrag].foff=off; the_ins.fragb[the_ins.nfrag++].fragty=type; } #define isvar(exp) \ ((exp) && op (exp) != O_constant && op (exp) != O_big) static char *crack_operand PARAMS ((char *str, struct m68k_op *opP)); static int get_num PARAMS ((struct m68k_exp *exp, int ok)); static int get_regs PARAMS ((int i, char *str, struct m68k_op *opP)); static int reverse_16_bits PARAMS ((int in)); static int reverse_8_bits PARAMS ((int in)); static int try_index PARAMS ((char **s, struct m68k_op *opP)); static void install_gen_operand PARAMS ((int mode, int val)); static void install_operand PARAMS ((int mode, int val)); static void s_bss PARAMS ((int)); static void s_data1 PARAMS ((int)); static void s_data2 PARAMS ((int)); static void s_even PARAMS ((int)); static void s_proc PARAMS ((int)); static int current_architecture; struct m68k_cpu { unsigned long arch; const char *name; }; static const struct m68k_cpu archs[] = { { m68000, "68000" }, { m68010, "68010" }, { m68020, "68020" }, { m68030, "68030" }, { m68040, "68040" }, { m68060, "68060" }, { cpu32, "cpu32" }, { m68881, "68881" }, { m68851, "68851" }, /* Aliases (effectively, so far as gas is concerned) for the above cpus. */ { m68020, "68k" }, { m68000, "68302" }, { m68000, "68008" }, { cpu32, "68331" }, { cpu32, "68332" }, { cpu32, "68333" }, { cpu32, "68340" }, { cpu32, "68360" }, { m68881, "68882" }, }; static const int n_archs = sizeof (archs) / sizeof (archs[0]); /* BCC68000 is for patching in an extra jmp instruction for long offsets on the 68000. The 68000 doesn't support long branches with branchs */ /* This table desribes how you change sizes for the various types of variable size expressions. This version only supports two kinds. */ /* Note that calls to frag_var need to specify the maximum expansion needed; this is currently 10 bytes for DBCC. */ /* The fields are: How far Forward this mode will reach: How far Backward this mode will reach: How many bytes this mode will add to the size of the frag Which mode to go to if the offset won't fit in this one */ relax_typeS md_relax_table[] = { {1, 1, 0, 0}, /* First entries aren't used */ {1, 1, 0, 0}, /* For no good reason except */ {1, 1, 0, 0}, /* that the VAX doesn't either */ {1, 1, 0, 0}, {(127), (-128), 0, TAB (ABRANCH, SHORT)}, {(32767), (-32768), 2, TAB (ABRANCH, LONG)}, {0, 0, 4, 0}, {1, 1, 0, 0}, {1, 1, 0, 0}, /* FBRANCH doesn't come BYTE */ {(32767), (-32768), 2, TAB (FBRANCH, LONG)}, {0, 0, 4, 0}, {1, 1, 0, 0}, {1, 1, 0, 0}, /* PCREL doesn't come BYTE */ {(32767), (-32768), 2, TAB (PCREL, LONG)}, {0, 0, 4, 0}, {1, 1, 0, 0}, {(127), (-128), 0, TAB (BCC68000, SHORT)}, {(32767), (-32768), 2, TAB (BCC68000, LONG)}, {0, 0, 6, 0}, /* jmp long space */ {1, 1, 0, 0}, {1, 1, 0, 0}, /* DBCC doesn't come BYTE */ {(32767), (-32768), 2, TAB (DBCC, LONG)}, {0, 0, 10, 0}, /* bra/jmp long space */ {1, 1, 0, 0}, {1, 1, 0, 0}, /* PCLEA doesn't come BYTE */ {32767, -32768, 2, TAB (PCLEA, LONG)}, {0, 0, 6, 0}, {1, 1, 0, 0}, /* For, e.g., jmp pcrel indexed. */ {125, -130, 0, TAB (PCINDEX, SHORT)}, {32765, -32770, 2, TAB (PCINDEX, LONG)}, {0, 0, 4, 0}, {1, 1, 0, 0}, }; /* These are the machine dependent pseudo-ops. These are included so the assembler can work on the output from the SUN C compiler, which generates these. */ /* This table describes all the machine specific pseudo-ops the assembler has to support. The fields are: pseudo-op name without dot function to call to execute this pseudo-op Integer arg to pass to the function */ CONST pseudo_typeS md_pseudo_table[] = { {"data1", s_data1, 0}, {"data2", s_data2, 0}, {"bss", s_bss, 0}, {"even", s_even, 0}, {"skip", s_space, 0}, {"proc", s_proc, 0}, #ifdef TE_SUN3 {"align", s_align_bytes, 0}, #endif #ifdef OBJ_ELF {"swbeg", s_ignore, 0}, #endif {0, 0, 0} }; /* The mote pseudo ops are put into the opcode table, since they don't start with a . they look like opcodes to gas. */ extern void obj_coff_section (); CONST pseudo_typeS mote_pseudo_table[] = { {"dcl", cons, 4}, {"dc", cons, 2}, {"dcw", cons, 2}, {"dcb", cons, 1}, {"dsl", s_space, 4}, {"ds", s_space, 2}, {"dsw", s_space, 2}, {"dsb", s_space, 1}, {"xdef", s_globl, 0}, {"align", s_align_ptwo, 0}, #ifdef M68KCOFF {"sect", obj_coff_section, 0}, {"section", obj_coff_section, 0}, #endif {0, 0, 0} }; #define issbyte(x) ((x)>=-128 && (x)<=127) #define isubyte(x) ((x)>=0 && (x)<=255) #define issword(x) ((x)>=-32768 && (x)<=32767) #define isuword(x) ((x)>=0 && (x)<=65535) #define isbyte(x) ((x)>= -255 && (x)<=255) #define isword(x) ((x)>=-32768 && (x)<=65535) #define islong(x) (1) extern char *input_line_pointer; enum { FAIL = 0, OK = 1, }; static char mklower_table[256]; #define mklower(c) (mklower_table[(unsigned char)(c)]) static char notend_table[256]; static char alt_notend_table[256]; #define notend(s) ( !(notend_table[(unsigned char)(*s)] || (*s==':' &&\ alt_notend_table[(unsigned char)(s[1])]))) /* JF modified this to handle cases where the first part of a symbol name looks like a register */ /* * m68k_reg_parse() := if it looks like a register, return it's token & * advance the pointer. */ enum _register m68k_reg_parse (ccp) register char **ccp; { char *start = *ccp; char c; char *p; symbolS *symbolP; if (flag_reg_prefix_optional) { if (*start == REGISTER_PREFIX) start++; p = start; } else { if (*start != REGISTER_PREFIX) return FAIL; p = start + 1; } if (!isalpha (*p) || !is_name_beginner (*p)) return FAIL; c = *p++; while (isalpha (c) || isdigit (c) || c == '_') { c = *p++; } *--p = 0; symbolP = symbol_find (start); *p = c; if (symbolP && S_GET_SEGMENT (symbolP) == reg_section) { *ccp = p; return S_GET_VALUE (symbolP); } return FAIL; } #define SKIP_WHITE() { str++; if(*str==' ') str++;} #define SKIP_W() { ss++; if(*ss==' ') ss++;} /* Parse an index specification using Motorola syntax. */ static int try_moto_index (s, opP) char **s; struct m68k_op *opP; { register int i; char *ss; ss = *s; /* SKIP_W(); */ if (*ss == ' ') ss++; i = m68k_reg_parse (&ss); if (!(i >= DATA + 0 && i <= ADDR + 7)) { /* if i is not DATA or ADDR reg */ opP->error = "Invalid index register"; *s = ss; return FAIL; } opP->ireg = i; /* SKIP_W(); */ if (*ss == ')') { opP->isiz = 0; opP->imul = 1; SKIP_W (); *s = ss; return OK; } if (*ss != '.') { opP->error = "Missing . in index register"; *s = ss; return FAIL; } SKIP_W (); if (mklower (*ss) == 'w') opP->isiz = 2; else if (mklower (*ss) == 'l') opP->isiz = 3; else { opP->error = "Size spec not .W or .L"; *s = ss; return FAIL; } SKIP_W (); if (*ss == '.' || *ss == '*') { SKIP_W (); switch (*ss) { case '1': case '2': case '4': case '8': opP->imul = *ss - '0'; break; default: opP->error = "index multiplier not 1, 2, 4 or 8"; *s = ss; return FAIL; } SKIP_W (); } else opP->imul = 1; if (*ss != ')') { opP->error = "Missing )"; *s = ss; return FAIL; } SKIP_W (); *s = ss; return OK; } /* * * try_index := data_or_address_register + ')' + SKIP_W * | data_or_address_register + ':' + SKIP_W + size_spec + SKIP_W + multiplier + ')' + SKIP_W * * multiplier := * | ':' + multiplier_number * ; * * multiplier_number := '1' | '2' | '4' | '8' ; * * size_spec := 'l' | 'L' | 'w' | 'W' ; * * SKIP_W := | ' ' ; * */ static int try_index (s, opP) char **s; struct m68k_op *opP; { register int i; char *ss; ss = *s; /* SKIP_W(); */ i = m68k_reg_parse (&ss); if (!(i >= DATA + 0 && i <= ADDR + 7)) { /* if i is not DATA or ADDR reg */ *s = ss; return FAIL; } opP->ireg = i; /* SKIP_W(); */ if (*ss == ')') { opP->isiz = 0; opP->imul = 1; SKIP_W (); *s = ss; return OK; } if (*ss != ':') { opP->error = "Missing : in index register"; *s = ss; return FAIL; } SKIP_W (); switch (*ss) { case 'w': case 'W': opP->isiz = 2; break; case 'l': case 'L': opP->isiz = 3; break; default: opP->error = "Index register size spec not :w or :l"; *s = ss; return FAIL; } SKIP_W (); if (*ss == ':') { SKIP_W (); switch (*ss) { case '1': case '2': case '4': case '8': if (cpu_of_arch (current_architecture) < m68020) { opP->error = "no index scaling in pre-68020's"; *s = ss; return FAIL; } opP->imul = *ss - '0'; break; default: opP->error = "index multiplier not 1, 2, 4 or 8"; *s = ss; return FAIL; } SKIP_W (); } else opP->imul = 1; if (*ss != ')') { opP->error = "Missing )"; *s = ss; return FAIL; } SKIP_W (); *s = ss; return OK; } /* try_index() */ /* Ian Taylor expanded this function to accept both MIT and Motorola syntax. I removed the old comment, since it was wrong. The syntax this accepted even before my changes was complex and undocumented. I mainly added a large case when the operand string does not contain an '@', since the Motorola syntax does not use the '@' character. */ int m68k_ip_op (str, opP) char *str; register struct m68k_op *opP; { char *strend; long i; char *parse_index (); int needp; if (*str == ' ') { str++; } /* Find the beginning of the string */ if (!*str) { opP->error = "Missing operand"; return FAIL; } /* Out of gas */ for (strend = str; *strend; strend++) ; --strend; if (*str == '#' || *str == '&') { str++; opP->con1 = add_exp (str, strend); opP->mode = IMMED; return OK; } /* Guess what: A constant. Shar and enjoy */ i = m68k_reg_parse (&str); if (i != FAIL) { if (*str == '/' || *str == '-') { /* "Rm-Rn/Ro-Rp" Register list for MOVEM instruction */ opP->mode = REGLST; return get_regs (i, str, opP); } if (*str == '\0') { opP->reg = i; /* "Rn" Register Direct mode */ if (i >= DATA + 0 && i <= DATA + 7) opP->mode = DREG; else if (i >= ADDR + 0 && i <= ADDR + 7) opP->mode = AREG; else opP->mode = MSCR; return OK; } } if (*str != '@') { char *stmp; if ((stmp = strchr (str, '@')) != 0) { opP->con1 = add_exp (str, stmp - 1); if (stmp == strend) { opP->mode = AINDX; return (OK); } if ((current_architecture & m68020up) == 0) { return (FAIL); } /* if target is not a '20 or better */ stmp++; if (*stmp++ != '(' || *strend-- != ')') { opP->error = "Malformed operand"; return (FAIL); } i = try_index (&stmp, opP); opP->con2 = add_exp (stmp, strend); if (i == FAIL) { opP->mode = AMIND; } else { opP->mode = APODX; } return (OK); } /* if there's an '@' */ #ifndef MIT_SYNTAX_ONLY /* The operand has no '@'. Try to parse it using Motorola syntax. */ /* Logic of the parsing switch(*str): case opP->mode = ---- ----------- #anything IMMED 1 REG AREG or DREG or MSCR 3 or 2 or 13 REG- or REG/ REGLST 14 (REG) AINDR 4 (REG)+ AINC 6 (REG,INDX) AINDX 8 (EXPR,REG) AOFF 7 (EXPR,REG,INDX) AINDX 8 -(REG) ADEC 5 EXP2(REG) AOFF 7 EXP2(REG,INDX) AINDX 8 EXP2 ABSL 12 REG means truth(m68k_reg_parse(&str)) INDX means truth(try_moto_index(&str,opP)) EXPR means not REG EXP2 means not REG and not '(' and not '-(' */ if (*str == '(') { str++; i = m68k_reg_parse (&str); if ((i < ADDR + 0 || i > ADDR + 7) && (i < DATA + 0 || i > DATA + 7 || *str != ')' || str[1] != '0') && i != PC && i != ZPC && i != FAIL) { /* Can't indirect off non address regs */ opP->error = "Invalid indirect register"; return FAIL; } if (i != FAIL) { opP->reg = i; if (*str == ')') { str++; if (*str == '\0') { /* "(An)" Address Register Indirect mode or "(Dn)" for cas2. */ if (i >= DATA + 0 && i <= DATA + 7) opP->mode = DINDR; else opP->mode = AINDR; return OK; } if (*str == '+') { if (str[1] == '\0') { /* "(An)+" Register Indirect w Postincrement */ opP->mode = AINC; return OK; } } opP->error = "Junk after indirect"; return FAIL; } if (*str == ',') { str++; i = try_moto_index (&str, opP); if (i == FAIL) return FAIL; /* "(An,Rn)" Register Indirect with Index mode*/ opP->mode = AINDX; return OK; } else { opP->error = "Bad indirect syntax"; return FAIL; } } else { /* "(EXPR,..." , a displacement */ char *stmp; if ((stmp = strchr (str, ',')) != NULL) { opP->con1 = add_exp (str, stmp - 1); str = stmp; SKIP_WHITE (); i = m68k_reg_parse (&str); if ((i < ADDR + 0 || i > ADDR + 7) && i != PC && i != ZPC) { /* Can't indirect off non address regs */ opP->error = "Invalid indirect register"; return FAIL; } if (i != FAIL) { opP->reg = i; if (*str == ')') { /* "(d,An)" Register Indirect w Displacement */ opP->mode = AOFF; return OK; } if (*str == ',') { str++; i = try_moto_index (&str, opP); if (i == FAIL) return FAIL; /* "(d,An,Rn)" Register Indirect with Index */ opP->mode = AINDX; return OK; } else { opP->error = "Bad indirect syntax"; return FAIL; } } else { opP->error = "Invalid register"; return FAIL; } } else { opP->mode = ABSL; opP->con1 = add_exp (str - 1, strend); return OK; } } } if (*str == '-') { if (str[1] == '(') { str = str + 2; i = m68k_reg_parse (&str); if ((i < ADDR + 0 || i > ADDR + 7) && i != PC && i != ZPC && i != FAIL) { /* Can't indirect off non address regs */ opP->error = "Invalid indirect register"; return FAIL; } if (i != FAIL) { opP->reg = i; if (*str == ')') { str++; if (*str == '\0') { /* "-(An)" Register Indirect with Predecrement */ opP->mode = ADEC; return OK; } opP->error = "Junk after indirect"; return FAIL; } opP->error = "Bad indirect syntax"; return FAIL; } opP->mode = ABSL; opP->con1 = add_exp (str - 2, strend); return OK; } /* if '-' but not "-(', do nothing */ } /* whether *str=='-' or not */ { /* "EXP2" or "EXP2(REG..." */ char *stmp; if ((stmp = strchr (str, '(')) != NULL) { char *ostr = str; opP->con1 = add_exp (str, stmp - 1); str = stmp + 1; i = m68k_reg_parse (&str); if ((i < ADDR + 0 || i > ADDR + 7) && i != PC && i != ZPC && i != FAIL) { /* Can't indirect off non address regs */ opP->error = "Invalid indirect register"; return FAIL; } if (i != FAIL) { opP->reg = i; if (*str == ')') { /* "d(An)" Register Indirect w Displacement */ opP->mode = AOFF; return OK; } if (*str == ',') { str++; i = try_moto_index (&str, opP); if (i == FAIL) return FAIL; /* "d(An,Rn)" Register Indirect with Index */ opP->mode = AINDX; return OK; } else { opP->error = "Bad indirect syntax"; return FAIL; } } else { opP->mode = ABSL; opP->con1 = add_exp (ostr, strend); return OK; } } else { /* "EXP2" Absolute */ opP->mode = ABSL; opP->isiz = 0; if (strend[-1] == '.' || strend[-1] == ':') { /* mode ==foo.[wl] */ switch (*strend) { case 'w': case 'W': opP->isiz = 2; break; case 'l': case 'L': opP->isiz = 3; break; } } opP->con1 = add_exp (str, strend); return OK; } } /*NOTREACHED*/ #else /* defined (MIT_SYNTAX_ONLY) */ opP->mode = ABSL; opP->con1 = add_exp (str, strend); return OK; #endif /* defined (MIT_SYNTAX_ONLY) */ } opP->reg = i; /* Can't indirect off non address regs, but Dx@ is OK for cas2 */ if ((i < ADDR + 0 || i > ADDR + 7) && i != PC && i != ZPC && i != FAIL && (str[1] != '\0' || i < DATA + 0 || i > DATA + 7)) { opP->error = "Invalid indirect register"; return FAIL; } know (*str == '@'); str++; switch (*str) { case '\0': if (i < DATA + 0 || i > DATA + 7) opP->mode = AINDR; else opP->mode = DINDR; return OK; case '-': opP->mode = ADEC; return OK; case '+': opP->mode = AINC; return OK; case '(': str++; break; default: opP->error = "Junk after indirect"; return FAIL; } /* Some kind of indexing involved. Lets find out how bad it is */ i = try_index (&str, opP); /* Didn't start with an index reg, maybe its offset or offset,reg */ if (i == FAIL) { char *beg_str; beg_str = str; for (i = 1; i;) { switch (*str++) { case '\0': opP->error = "Missing )"; return FAIL; case ',': i = 0; break; case '(': i++; break; case ')': --i; break; } } opP->con1 = add_exp (beg_str, str - 2); /* Should be offset,reg */ if (str[-1] == ',') { i = try_index (&str, opP); if (i == FAIL) { opP->error = "Malformed index reg"; return FAIL; } } } /* We've now got offset) offset,reg) or reg) */ if (*str == '\0') { /* Th-the-thats all folks */ if (opP->reg == FAIL) opP->mode = AINDX; /* Other form of indirect */ else if (opP->ireg == FAIL) opP->mode = AOFF; else opP->mode = AINDX; return (OK); } /* Next thing had better be another @ */ if (*str == '@') { if (str[1] == '(') { needp = 1; str += 2; } else { needp = 0; str++; } } if ((current_architecture & m68020up) == 0) { return (FAIL); } /* if target is not a '20 or better */ if (opP->ireg != FAIL) { opP->mode = APRDX; i = try_index (&str, opP); if (i != FAIL) { opP->error = "Two index registers! not allowed!"; return (FAIL); } } else { i = try_index (&str, opP); } if (i == FAIL) { char *beg_str; beg_str = str; for (i = 1; i;) { switch (*str++) { case '\0': if (needp) opP->error = "Missing )"; return (FAIL); break; case ',': i = 0; break; case '(': i++; break; case ')': --i; break; } } opP->con2 = add_exp (beg_str, str - 2); if (str[-1] == ',') { if (opP->ireg != FAIL) { opP->error = "Can't have two index regs"; return (FAIL); } i = try_index (&str, opP); if (i == FAIL) { opP->error = "malformed index reg"; return (FAIL); } opP->mode = APODX; } else if (opP->ireg != FAIL) { opP->mode = APRDX; } else { opP->mode = AMIND; } } else { opP->mode = APODX; } if (*str != '\0') { opP->error = "Junk after indirect"; return FAIL; } return (OK); } #if defined (M68KCOFF) && !defined (BFD_ASSEMBLER) #ifdef NO_PCREL_RELOCS int make_pcrel_absolute(fixP, add_number) fixS *fixP; long *add_number; { register unsigned char *opcode = fixP->fx_frag->fr_opcode; /* rewrite the PC relative instructions to absolute address ones. * these are rumoured to be faster, and the apollo linker refuses * to deal with the PC relative relocations. */ if (opcode[0] == 0x60 && opcode[1] == 0xff) /* BRA -> JMP */ { opcode[0] = 0x4e; opcode[1] = 0xf9; } else if (opcode[0] == 0x61 && opcode[1] == 0xff) /* BSR -> JSR */ { opcode[0] = 0x4e; opcode[1] = 0xb9; } else as_fatal ("Unknown PC relative instruction"); *add_number -= 4; return 0; } #endif /* NO_PCREL_RELOCS */ short tc_coff_fix2rtype (fixP) fixS *fixP; { #ifdef NO_PCREL_RELOCS know (fixP->fx_pcrel == 0); return (fixP->fx_size == 1 ? R_RELBYTE : fixP->fx_size == 2 ? R_DIR16 : R_DIR32); #else return (fixP->fx_pcrel ? (fixP->fx_size == 1 ? R_PCRBYTE : fixP->fx_size == 2 ? R_PCRWORD : R_PCRLONG) : (fixP->fx_size == 1 ? R_RELBYTE : fixP->fx_size == 2 ? R_RELWORD : R_RELLONG)); #endif } #endif #ifdef BFD_ASSEMBLER arelent * tc_gen_reloc (section, fixp) asection *section; fixS *fixp; { arelent *reloc; bfd_reloc_code_real_type code; #define F(SZ,PCREL) (((SZ) << 1) + (PCREL)) switch (F (fixp->fx_size, fixp->fx_pcrel)) { #define MAP(SZ,PCREL,TYPE) case F(SZ,PCREL): code = (TYPE); break MAP (1, 0, BFD_RELOC_8); MAP (2, 0, BFD_RELOC_16); MAP (4, 0, BFD_RELOC_32); MAP (1, 1, BFD_RELOC_8_PCREL); MAP (2, 1, BFD_RELOC_16_PCREL); MAP (4, 1, BFD_RELOC_32_PCREL); default: abort (); } reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent)); assert (reloc != 0); reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym; reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; if (fixp->fx_pcrel) reloc->addend = fixp->fx_addnumber; else reloc->addend = 0; reloc->howto = bfd_reloc_type_lookup (stdoutput, code); assert (reloc->howto != 0); return reloc; } #endif /* BFD_ASSEMBLER */ #ifdef TEST1 /* TEST1 tests m68k_ip_op(), which parses operands */ main () { char buf[128]; struct m68k_op thark; for (;;) { if (!gets (buf)) break; memset (&thark, '\0', sizeof (thark)); if (!m68k_ip_op (buf, &thark)) printf ("FAIL:"); if (thark.error) printf ("op1 error %s in %s\n", thark.error, buf); printf ("mode %d, reg %d, ", thark.mode, thark.reg); if (thark.b_const) printf ("Constant: '%.*s',", 1 + thark.e_const - thark.b_const, thark.b_const); printf ("ireg %d, isiz %d, imul %d ", thark.ireg, thark.isiz, thark.imul); if (thark.b_iadd) printf ("Iadd: '%.*s'", 1 + thark.e_iadd - thark.b_iadd, thark.b_iadd); printf ("\n"); } exit (EXIT_SUCCESS); } #endif /* Handle of the OPCODE hash table. NULL means any use before m68k_ip_begin() will crash. */ static struct hash_control *op_hash; /* * m 6 8 k _ i p ( ) * * This converts a string into a 68k instruction. * The string must be a bare single instruction in sun format * with RMS-style 68020 indirects * (example: ) * * It provides some error messages: at most one fatal error message (which * stops the scan) and at most one warning message for each operand. * The 68k instruction is returned in exploded form, since we have no * knowledge of how you parse (or evaluate) your expressions. * We do however strip off and decode addressing modes and operation * mnemonic. * * This function's value is a string. If it is not "" then an internal * logic error was found: read this code to assign meaning to the string. * No argument string should generate such an error string: * it means a bug in our code, not in the user's text. * * You MUST have called m68k_ip_begin() once and m86_ip_end() never before using * this function. */ /* JF this function no longer returns a useful value. Sorry */ void m68k_ip (instring) char *instring; { register char *p; register struct m68k_op *opP; register struct m68k_incant *opcode; register char *s; register int tmpreg = 0, baseo = 0, outro = 0, nextword; char *pdot, *pdotmove; int siz1, siz2; char c; int losing; int opsfound; char *crack_operand (); LITTLENUM_TYPE words[6]; LITTLENUM_TYPE *wordp; unsigned long ok_arch = 0; if (*instring == ' ') instring++; /* skip leading whitespace */ /* Scan up to end of operation-code, which MUST end in end-of-string or exactly 1 space. */ pdot = 0; for (p = instring; *p != '\0'; p++) { if (*p == ' ') break; if (*p == '.') pdot = p; } if (p == instring) { the_ins.error = "No operator"; the_ins.opcode[0] = 0; /* the_ins.numo=1; */ return; } /* p now points to the end of the opcode name, probably whitespace. make sure the name is null terminated by clobbering the whitespace, look it up in the hash table, then fix it back. Remove a dot, first, since the opcode tables have none. */ if (pdot != NULL) { for (pdotmove = pdot; pdotmove < p; pdotmove++) *pdotmove = pdotmove[1]; p--; } c = *p; *p = '\0'; opcode = (struct m68k_incant *) hash_find (op_hash, instring); *p = c; if (pdot != NULL) { for (pdotmove = p; pdotmove > pdot; pdotmove--) *pdotmove = pdotmove[-1]; *pdot = '.'; ++p; } if (opcode == NULL) { the_ins.error = "Unknown operator"; the_ins.opcode[0] = 0; /* the_ins.numo=1; */ return; } /* found a legitimate opcode, start matching operands */ while (*p == ' ') ++p; if (opcode->m_operands == 0) { char *old = input_line_pointer; *old = '\n'; input_line_pointer = p; /* Ahh - it's a motorola style psuedo op */ mote_pseudo_table[opcode->m_opnum].poc_handler (mote_pseudo_table[opcode->m_opnum].poc_val); input_line_pointer = old; *old = 0; return; } for (opP = &the_ins.operands[0]; *p; opP++) { p = crack_operand (p, opP); if (opP->error) { the_ins.error = opP->error; return; } } opsfound = opP - &the_ins.operands[0]; /* This ugly hack is to support the floating pt opcodes in their standard form */ /* Essentially, we fake a first enty of type COP#1 */ if (opcode->m_operands[0] == 'I') { int n; for (n = opsfound; n > 0; --n) the_ins.operands[n] = the_ins.operands[n - 1]; memset ((char *) (&the_ins.operands[0]), '\0', sizeof (the_ins.operands[0])); the_ins.operands[0].mode = MSCR; the_ins.operands[0].reg = COPNUM; /* COP #1 */ opsfound++; } /* We've got the operands. Find an opcode that'll accept them */ for (losing = 0;;) { /* If we didn't get the right number of ops, or we have no common model with this pattern then reject this pattern. */ if (opsfound != opcode->m_opnum || ((opcode->m_arch & current_architecture) == 0)) { ++losing; ok_arch |= opcode->m_arch; } else { for (s = opcode->m_operands, opP = &the_ins.operands[0]; *s && !losing; s += 2, opP++) { /* Warning: this switch is huge! */ /* I've tried to organize the cases into this order: non-alpha first, then alpha by letter. Lower-case goes directly before uppercase counterpart. */ /* Code with multiple case ...: gets sorted by the lowest case ... it belongs to. I hope this makes sense. */ switch (*s) { case '!': if (opP->mode == MSCR || opP->mode == IMMED || opP->mode == DREG || opP->mode == AREG || opP->mode == AINC || opP->mode == ADEC || opP->mode == REGLST) losing++; break; case '`': switch (opP->mode) { case MSCR: case IMMED: case DREG: case AREG: case AINC: case REGLST: case AINDR: losing++; break; default: break; } break; case '#': if (opP->mode != IMMED) losing++; else { long t; t = get_num (opP->con1, 80); if (s[1] == 'b' && !isbyte (t)) losing++; else if (s[1] == 'w' && !isword (t)) losing++; } break; case '^': case 'T': if (opP->mode != IMMED) losing++; break; case '$': if (opP->mode == MSCR || opP->mode == AREG || opP->mode == IMMED || opP->reg == PC || opP->reg == ZPC || opP->mode == REGLST) losing++; break; case '%': if (opP->mode == MSCR || opP->reg == PC || opP->reg == ZPC || opP->mode == REGLST) losing++; break; case '&': if (opP->mode == MSCR || opP->mode == DREG || opP->mode == AREG || opP->mode == IMMED || opP->reg == PC || opP->reg == ZPC || opP->mode == AINC || opP->mode == ADEC || opP->mode == REGLST) losing++; break; case '*': if (opP->mode == MSCR || opP->mode == REGLST) losing++; break; case '+': if (opP->mode != AINC) losing++; break; case '-': if (opP->mode != ADEC) losing++; break; case '/': if (opP->mode == MSCR || opP->mode == AREG || opP->mode == AINC || opP->mode == ADEC || opP->mode == IMMED || opP->mode == REGLST) losing++; break; case ';': if (opP->mode == MSCR || opP->mode == AREG || opP->mode == REGLST) losing++; break; case '?': if (opP->mode == MSCR || opP->mode == AREG || opP->mode == AINC || opP->mode == ADEC || opP->mode == IMMED || opP->reg == PC || opP->reg == ZPC || opP->mode == REGLST) losing++; break; case '@': if (opP->mode == MSCR || opP->mode == AREG || opP->mode == IMMED || opP->mode == REGLST) losing++; break; case '~': /* For now! (JF FOO is this right?) */ if (opP->mode == MSCR || opP->mode == DREG || opP->mode == AREG || opP->mode == IMMED || opP->reg == PC || opP->reg == ZPC || opP->mode == REGLST) losing++; break; case '3': if (opP->mode != MSCR || (opP->reg != TT0 && opP->reg != TT1)) losing++; break; case 'A': if (opP->mode != AREG) losing++; break; case 'a': if (opP->mode != AINDR) { ++losing; } /* if not address register indirect */ break; case 'B': /* FOO */ if (opP->mode != ABSL || (flag_long_jumps && instring[0] == 'j' && instring[1] == 'b' && instring[2] == 's' && instring[3] == 'r')) losing++; break; case 'C': if (opP->mode != MSCR || opP->reg != CCR) losing++; break; case 'd': /* FOO This mode is a KLUDGE!! */ if (opP->mode != AOFF && (opP->mode != ABSL || opP->con1->e_beg[0] != '(' || opP->con1->e_end[0] != ')')) losing++; break; case 'D': if (opP->mode != DREG) losing++; break; case 'F': if (opP->mode != MSCR || opP->reg < (FPREG + 0) || opP->reg > (FPREG + 7)) losing++; break; case 'I': if (opP->mode != MSCR || opP->reg < COPNUM || opP->reg >= COPNUM + 7) losing++; break; case 'J': if (opP->mode != MSCR || opP->reg < USP || opP->reg > last_movec_reg) losing++; else { const enum _register *rp; for (rp = control_regs; *rp; rp++) if (*rp == opP->reg) break; if (*rp == 0) losing++; } break; case 'k': if (opP->mode != IMMED) losing++; break; case 'l': case 'L': if (opP->mode == DREG || opP->mode == AREG || opP->mode == FPREG) { if (s[1] == '8') losing++; else { opP->mode = REGLST; opP->reg = 1 << (opP->reg - DATA); } } else if (opP->mode != REGLST) { losing++; } else if (s[1] == '8' && opP->reg & 0x0FFffFF) losing++; else if (s[1] == '3' && opP->reg & 0x7000000) losing++; break; case 'M': if (opP->mode != IMMED) losing++; else { long t; t = get_num (opP->con1, 0); if (!issbyte (t) || isvar (opP->con1)) losing++; } break; case 'O': if (opP->mode != DREG && opP->mode != IMMED) losing++; break; case 'Q': if (opP->mode != IMMED) losing++; else { long t; t = get_num (opP->con1, 80); if (t < 1 || t > 8 || isvar (opP->con1)) losing++; } break; case 'R': if (opP->mode != DREG && opP->mode != AREG) losing++; break; case 'r': if (opP->mode != AINDR && opP->mode != DINDR) losing++; break; case 's': if (opP->mode != MSCR || !(opP->reg == FPI || opP->reg == FPS || opP->reg == FPC)) losing++; break; case 'S': if (opP->mode != MSCR || opP->reg != SR) losing++; break; case 't': if (opP->mode != IMMED) losing++; else { long t = get_num (opP->con1, 80); if (t < 0 || t > 7 || isvar (opP->con1)) losing++; } break; case 'U': if (opP->mode != MSCR || opP->reg != USP) losing++; break; /* JF these are out of order. We could put them in order if we were willing to put up with bunches of #ifdef m68851s in the code. Don't forget that you need these operands to use 68030 MMU instructions. */ #ifndef NO_68851 /* Memory addressing mode used by pflushr */ case '|': if (opP->mode == MSCR || opP->mode == DREG || opP->mode == AREG || opP->mode == REGLST) losing++; break; case 'f': if (opP->mode != MSCR || (opP->reg != SFC && opP->reg != DFC)) losing++; break; case 'P': if (opP->mode != MSCR || (opP->reg != TC && opP->reg != CAL && opP->reg != VAL && opP->reg != SCC && opP->reg != AC)) losing++; break; case 'V': if (opP->reg != VAL) losing++; break; case 'W': if (opP->mode != MSCR || (opP->reg != DRP && opP->reg != SRP && opP->reg != CRP)) losing++; break; case 'X': if (opP->mode != MSCR || (!(opP->reg >= BAD && opP->reg <= BAD + 7) && !(opP->reg >= BAC && opP->reg <= BAC + 7))) losing++; break; case 'Y': if (opP->reg != PSR) losing++; break; case 'Z': if (opP->reg != PCSR) losing++; break; #endif case 'c': if (opP->reg != NC && opP->reg != IC && opP->reg != DC && opP->reg != BC) { losing++; } /* not a cache specifier. */ break; case '_': if (opP->mode != ABSL) { ++losing; } /* not absolute */ break; default: as_fatal ("Internal error: Operand mode %c unknown in line %d of file \"%s\"", *s, __LINE__, __FILE__); } /* switch on type of operand */ if (losing) break; } /* for each operand */ } /* if immediately wrong */ if (!losing) { break; } /* got it. */ opcode = opcode->m_next; if (!opcode) { if (ok_arch && !(ok_arch & current_architecture)) { char buf[200], *cp; int len; strcpy (buf, "invalid instruction for this architecture; needs "); cp = buf + strlen (buf); switch (ok_arch) { case mfloat: strcpy (cp, "fpu (68040, 68060 or 68881/68882)"); break; case mmmu: strcpy (cp, "mmu (68030 or 68851)"); break; case m68020up: strcpy (cp, "68020 or higher"); break; case m68000up: strcpy (cp, "68000 or higher"); break; case m68010up: strcpy (cp, "68010 or higher"); break; default: { int got_one = 0, idx; for (idx = 0; idx < sizeof (archs) / sizeof (archs[0]); idx++) { if (archs[idx].arch & ok_arch) { if (got_one) { strcpy (cp, " or "); cp += strlen (cp); } got_one = 1; strcpy (cp, archs[idx].name); cp += strlen (cp); } } } } len = cp - buf + 1; cp = malloc (len); strcpy (cp, buf); the_ins.error = cp; } else the_ins.error = "operands mismatch"; return; } /* Fell off the end */ losing = 0; } /* now assemble it */ the_ins.args = opcode->m_operands; the_ins.numargs = opcode->m_opnum; the_ins.numo = opcode->m_codenum; the_ins.opcode[0] = getone (opcode); the_ins.opcode[1] = gettwo (opcode); for (s = the_ins.args, opP = &the_ins.operands[0]; *s; s += 2, opP++) { /* This switch is a doozy. Watch the first step; its a big one! */ switch (s[0]) { case '*': case '~': case '%': case ';': case '@': case '!': case '&': case '$': case '?': case '/': case '`': #ifndef NO_68851 case '|': #endif switch (opP->mode) { case IMMED: tmpreg = 0x3c; /* 7.4 */ if (strchr ("bwl", s[1])) nextword = get_num (opP->con1, 80); else nextword = get_num (opP->con1, 0); if (isvar (opP->con1)) add_fix (s[1], opP->con1, 0, 0); switch (s[1]) { case 'b': if (!isbyte (nextword)) opP->error = "operand out of range"; addword (nextword); baseo = 0; break; case 'w': if (!isword (nextword)) opP->error = "operand out of range"; addword (nextword); baseo = 0; break; case 'l': addword (nextword >> 16); addword (nextword); baseo = 0; break; case 'f': baseo = 2; outro = 8; break; case 'F': baseo = 4; outro = 11; break; case 'x': baseo = 6; outro = 15; break; case 'p': baseo = 6; outro = -1; break; default: as_fatal ("Internal error: Can't decode %c%c in line %d of file \"%s\"", *s, s[1], __LINE__, __FILE__); } if (!baseo) break; /* We gotta put out some float */ if (op (opP->con1) != O_big) { valueT val; int gencnt; /* Can other cases happen here? */ if (op (opP->con1) != O_constant) abort (); val = (valueT) offs (opP->con1); gencnt = 0; do { generic_bignum[gencnt] = (LITTLENUM_TYPE) val; val >>= LITTLENUM_NUMBER_OF_BITS; ++gencnt; } while (val != 0); offs (opP->con1) = gencnt; } if (offs (opP->con1) > 0) { if (offs (opP->con1) > baseo) { as_warn ("Bignum too big for %c format; truncated", s[1]); offs (opP->con1) = baseo; } baseo -= offs (opP->con1); while (baseo--) addword (0); for (wordp = generic_bignum + offs (opP->con1) - 1; offs (opP->con1)--; --wordp) addword (*wordp); break; } gen_to_words (words, baseo, (long) outro); for (wordp = words; baseo--; wordp++) addword (*wordp); break; case DREG: tmpreg = opP->reg - DATA; /* 0.dreg */ break; case AREG: tmpreg = 0x08 + opP->reg - ADDR; /* 1.areg */ break; case AINDR: tmpreg = 0x10 + opP->reg - ADDR; /* 2.areg */ break; case ADEC: tmpreg = 0x20 + opP->reg - ADDR; /* 4.areg */ break; case AINC: tmpreg = 0x18 + opP->reg - ADDR; /* 3.areg */ break; case AOFF: nextword = get_num (opP->con1, 80); /* Force into index mode. Hope this works */ /* We do the first bit for 32-bit displacements, and the second bit for 16 bit ones. It is possible that we should make the default be WORD instead of LONG, but I think that'd break GCC, so we put up with a little inefficiency for the sake of working output. */ if (!issword (nextword) || (isvar (opP->con1) && ((opP->con1->e_siz == 0 && flag_short_refs == 0 && cpu_of_arch (current_architecture) >= m68020) || opP->con1->e_siz == 3))) { if (opP->reg == PC) tmpreg = 0x3B; /* 7.3 */ else tmpreg = 0x30 + opP->reg - ADDR; /* 6.areg */ if (isvar (opP->con1)) { if (opP->reg == PC) { #if 0 addword (0x0170); add_fix ('l', opP->con1, 1, 2); addword (0), addword (0); #else add_frag (adds (opP->con1), offs (opP->con1), TAB (PCLEA, SZ_UNDEF)); #endif break; } else { addword (0x0170); add_fix ('l', opP->con1, 0, 0); } } else addword (0x0170); addword (nextword >> 16); } else { if (opP->reg == PC) tmpreg = 0x3A; /* 7.2 */ else tmpreg = 0x28 + opP->reg - ADDR; /* 5.areg */ if (isvar (opP->con1)) { if (opP->reg == PC) { add_fix ('w', opP->con1, 1, 0); } else add_fix ('w', opP->con1, 0, 0); } } addword (nextword); break; case APODX: case AMIND: case APRDX: know (current_architecture & m68020up); /* intentional fall-through */ case AINDX: nextword = 0; baseo = get_num (opP->con1, 80); outro = get_num (opP->con2, 80); /* Figure out the `addressing mode'. Also turn on the BASE_DISABLE bit, if needed. */ if (opP->reg == PC || opP->reg == ZPC) { tmpreg = 0x3b;/* 7.3 */ if (opP->reg == ZPC) nextword |= 0x80; } else if (opP->reg == FAIL) { nextword |= 0x80; tmpreg = 0x30;/* 6.garbage */ } else tmpreg = 0x30 + opP->reg - ADDR; /* 6.areg */ siz1 = (opP->con1) ? opP->con1->e_siz : 0; siz2 = (opP->con2) ? opP->con2->e_siz : 0; /* Index register stuff */ if (opP->ireg >= DATA + 0 && opP->ireg <= ADDR + 7) { nextword |= (opP->ireg - DATA) << 12; if (opP->isiz == 0 || opP->isiz == 3) nextword |= 0x800; switch (opP->imul) { case 1: break; case 2: nextword |= 0x200; break; case 4: nextword |= 0x400; break; case 8: nextword |= 0x600; break; default: as_fatal ("failed sanity check."); } /* IF its simple, GET US OUT OF HERE! */ /* Must be INDEX, with an index register. Address register cannot be ZERO-PC, and either :b was forced, or we know it will fit. For a 68000 or 68010, force this mode anyways, because the larger modes aren't supported. */ if (opP->mode == AINDX && opP->reg != FAIL && opP->reg != ZPC && (/* :b specified */ siz1 == 1 /* known to fit in 8 bits */ || (issbyte (baseo) && !isvar (opP->con1)) /* doesn't support wider modes */ || cpu_of_arch (current_architecture) < m68020 /* simple enough to do relaxation */ || subs (opP->con1) == NULL )) { if (((!isvar (opP->con1) || subs (opP->con1) != NULL) && siz1 == 0) || siz1 == 1) { /* Can't handle more complex expressions here yet. Should only wind up here if the CPU doesn't support wider modes, so do a byte relocation and let the fixup processing later complain if it won't reach. */ nextword += baseo & 0xff; addword (nextword); if (isvar (opP->con1)) { if (opP->reg == PC) add_fix ('B', opP->con1, 1, 1); else add_fix ('B', opP->con1, 0, 0); } } else if (opP->reg != PC || siz1 != 0) { goto no_pc_relax; } else { nextword += baseo & 0xff; addword (nextword); add_frag (adds (opP->con1), offs (opP->con1), TAB (PCINDEX, SZ_UNDEF)); } break; } } else nextword |= 0x40; /* No index reg */ no_pc_relax: /* It isn't simple. */ nextword |= 0x100; /* If the guy specified a width, we assume that it is wide enough. Maybe it isn't. If so, we lose. */ switch (siz1) { case 0: if (isvar (opP->con1) || !issword (baseo)) { siz1 = 3; nextword |= 0x30; } else if (baseo == 0) nextword |= 0x10; else { nextword |= 0x20; siz1 = 2; } break; case 1: as_warn ("Byte dispacement won't work. Defaulting to :w"); case 2: nextword |= 0x20; break; case 3: nextword |= 0x30; break; } /* Figure out innner displacement stuff */ if (opP->mode != AINDX) { switch (siz2) { case 0: if (isvar (opP->con2) || !issword (outro)) { siz2 = 3; nextword |= 0x3; } else if (outro == 0) nextword |= 0x1; else { nextword |= 0x2; siz2 = 2; } break; case 1: as_warn ("Byte dispacement won't work. Defaulting to :w"); case 2: nextword |= 0x2; break; case 3: nextword |= 0x3; break; } if (opP->mode == APODX) nextword |= 0x04; else if (opP->mode == AMIND) nextword |= 0x40; } addword (nextword); if (isvar (opP->con1)) { if (opP->reg == PC || opP->reg == ZPC) { add_fix (siz1 == 3 ? 'l' : 'w', opP->con1, 1, 2); } else add_fix (siz1 == 3 ? 'l' : 'w', opP->con1, 0, 0); } if (siz1 == 3) addword (baseo >> 16); if (siz1) addword (baseo); if (isvar (opP->con2)) add_fix (siz2 == 3 ? 'l' : 'w', opP->con2, 0, 0); if (siz2 == 3) addword (outro >> 16); if (siz2) addword (outro); break; case ABSL: nextword = get_num (opP->con1, 80); switch (opP->con1->e_siz) { default: as_warn ("Unknown size for absolute reference"); case 0: if (!isvar (opP->con1) && issword (offs (opP->con1))) { tmpreg = 0x38; /* 7.0 */ addword (nextword); break; } /* Don't generate pc relative code on 68010 and 68000. */ if (isvar (opP->con1) && !subs (opP->con1) && seg (opP->con1) == text_section && now_seg == text_section && cpu_of_arch (current_architecture) >= m68020 && !flag_long_jumps && !strchr ("~%&$?", s[0])) { tmpreg = 0x3A; /* 7.2 */ add_frag (adds (opP->con1), offs (opP->con1), TAB (PCREL, SZ_UNDEF)); break; } /* Fall through into long */ case 3: if (isvar (opP->con1)) add_fix ('l', opP->con1, 0, 0); tmpreg = 0x39;/* 7.1 mode */ addword (nextword >> 16); addword (nextword); break; case 2: /* Word */ if (isvar (opP->con1)) add_fix ('w', opP->con1, 0, 0); tmpreg = 0x38;/* 7.0 mode */ addword (nextword); break; } break; case DINDR: as_bad ("invalid indirect register"); break; case MSCR: default: as_bad ("unknown/incorrect operand"); /* abort(); */ } install_gen_operand (s[1], tmpreg); break; case '#': case '^': switch (s[1]) { /* JF: I hate floating point! */ case 'j': tmpreg = 70; break; case '8': tmpreg = 20; break; case 'C': tmpreg = 50; break; case '3': default: tmpreg = 80; break; } tmpreg = get_num (opP->con1, tmpreg); if (isvar (opP->con1)) add_fix (s[1], opP->con1, 0, 0); switch (s[1]) { case 'b': /* Danger: These do no check for certain types of overflow. user beware! */ if (!isbyte (tmpreg)) opP->error = "out of range"; insop (tmpreg, opcode); if (isvar (opP->con1)) the_ins.reloc[the_ins.nrel - 1].n = (opcode->m_codenum) * 2; break; case 'w': if (!isword (tmpreg)) opP->error = "out of range"; insop (tmpreg, opcode); if (isvar (opP->con1)) the_ins.reloc[the_ins.nrel - 1].n = (opcode->m_codenum) * 2; break; case 'l': /* Because of the way insop works, we put these two out backwards. */ insop (tmpreg, opcode); insop (tmpreg >> 16, opcode); if (isvar (opP->con1)) the_ins.reloc[the_ins.nrel - 1].n = (opcode->m_codenum) * 2; break; case '3': tmpreg &= 0xFF; case '8': case 'C': install_operand (s[1], tmpreg); break; default: as_fatal ("Internal error: Unknown mode #%c in line %d of file \"%s\"", s[1], __LINE__, __FILE__); } break; case '+': case '-': case 'A': case 'a': install_operand (s[1], opP->reg - ADDR); break; case 'B': tmpreg = get_num (opP->con1, 80); switch (s[1]) { case 'B': add_fix ('B', opP->con1, 1, -1); break; case 'W': add_fix ('w', opP->con1, 1, 0); addword (0); break; case 'L': long_branch: if (cpu_of_arch (current_architecture) < m68020) /* 68000 or 010 */ as_warn ("Can't use long branches on 68000/68010"); the_ins.opcode[the_ins.numo - 1] |= 0xff; add_fix ('l', opP->con1, 1, 0); addword (0); addword (0); break; case 'g': if (subs (opP->con1)) /* We can't relax it */ goto long_branch; /* This could either be a symbol, or an absolute address. No matter, the frag hacking will finger it out. Not quite: it can't switch from BRANCH to BCC68000 for the case where opnd is absolute (it needs to use the 68000 hack since no conditional abs jumps). */ if (((cpu_of_arch (current_architecture) < m68020) || (0 == adds (opP->con1))) && (the_ins.opcode[0] >= 0x6200) && (the_ins.opcode[0] <= 0x6f00)) { add_frag (adds (opP->con1), offs (opP->con1), TAB (BCC68000, SZ_UNDEF)); } else { add_frag (adds (opP->con1), offs (opP->con1), TAB (ABRANCH, SZ_UNDEF)); } break; case 'w': if (isvar (opP->con1)) { #if 1 /* check for DBcc instruction */ if ((the_ins.opcode[0] & 0xf0f8) == 0x50c8) { /* size varies if patch */ /* needed for long form */ add_frag (adds (opP->con1), offs (opP->con1), TAB (DBCC, SZ_UNDEF)); break; } #endif add_fix ('w', opP->con1, 1, 0); } addword (0); break; case 'C': /* Fixed size LONG coproc branches */ add_fix ('l', opP->con1, 1, 0); addword (0); addword (0); break; case 'c': /* Var size Coprocesssor branches */ if (subs (opP->con1)) { add_fix ('l', opP->con1, 1, 0); add_frag ((symbolS *) 0, (long) 0, TAB (FBRANCH, LONG)); } else if (adds (opP->con1)) { add_frag (adds (opP->con1), offs (opP->con1), TAB (FBRANCH, SZ_UNDEF)); } else { /* add_frag((symbolS *)0,offs(opP->con1),TAB(FBRANCH,SHORT)); */ the_ins.opcode[the_ins.numo - 1] |= 0x40; add_fix ('l', opP->con1, 1, 0); addword (0); addword (0); } break; default: as_fatal ("Internal error: operand type B%c unknown in line %d of file \"%s\"", s[1], __LINE__, __FILE__); } break; case 'C': /* Ignore it */ break; case 'd': /* JF this is a kludge */ if (opP->mode == AOFF) { install_operand ('s', opP->reg - ADDR); } else { char *tmpP; tmpP = opP->con1->e_end - 2; opP->con1->e_beg++; opP->con1->e_end -= 4; /* point to the , */ baseo = m68k_reg_parse (&tmpP); if (baseo < ADDR + 0 || baseo > ADDR + 7) { as_bad ("Unknown address reg, using A0"); baseo = 0; } else baseo -= ADDR; install_operand ('s', baseo); } tmpreg = get_num (opP->con1, 80); if (!issword (tmpreg)) { as_warn ("Expression out of range, using 0"); tmpreg = 0; } addword (tmpreg); break; case 'D': install_operand (s[1], opP->reg - DATA); break; case 'F': install_operand (s[1], opP->reg - FPREG); break; case 'I': tmpreg = 1 + opP->reg - COPNUM; if (tmpreg == 8) tmpreg = 0; install_operand (s[1], tmpreg); break; case 'J': /* JF foo */ switch (opP->reg) { case SFC: tmpreg = 0x000; break; case DFC: tmpreg = 0x001; break; case CACR: tmpreg = 0x002; break; case TC: tmpreg = 0x003; break; case ITT0: tmpreg = 0x004; break; case ITT1: tmpreg = 0x005; break; case DTT0: tmpreg = 0x006; break; case DTT1: tmpreg = 0x007; break; case BUSCR: tmpreg = 0x008; break; case USP: tmpreg = 0x800; break; case VBR: tmpreg = 0x801; break; case CAAR: tmpreg = 0x802; break; case MSP: tmpreg = 0x803; break; case ISP: tmpreg = 0x804; break; case MMUSR: tmpreg = 0x805; break; case URP: tmpreg = 0x806; break; case SRP: tmpreg = 0x807; break; case PCR: tmpreg = 0x808; break; default: as_fatal ("failed sanity check."); } install_operand (s[1], tmpreg); break; case 'k': tmpreg = get_num (opP->con1, 55); install_operand (s[1], tmpreg & 0x7f); break; case 'l': tmpreg = opP->reg; if (s[1] == 'w') { if (tmpreg & 0x7FF0000) as_bad ("Floating point register in register list"); insop (reverse_16_bits (tmpreg), opcode); } else { if (tmpreg & 0x700FFFF) as_bad ("Wrong register in floating-point reglist"); install_operand (s[1], reverse_8_bits (tmpreg >> 16)); } break; case 'L': tmpreg = opP->reg; if (s[1] == 'w') { if (tmpreg & 0x7FF0000) as_bad ("Floating point register in register list"); insop (tmpreg, opcode); } else if (s[1] == '8') { if (tmpreg & 0x0FFFFFF) as_bad ("incorrect register in reglist"); install_operand (s[1], tmpreg >> 24); } else { if (tmpreg & 0x700FFFF) as_bad ("wrong register in floating-point reglist"); else install_operand (s[1], tmpreg >> 16); } break; case 'M': install_operand (s[1], get_num (opP->con1, 60)); break; case 'O': tmpreg = (opP->mode == DREG) ? 0x20 + opP->reg - DATA : (get_num (opP->con1, 40) & 0x1F); install_operand (s[1], tmpreg); break; case 'Q': tmpreg = get_num (opP->con1, 10); if (tmpreg == 8) tmpreg = 0; install_operand (s[1], tmpreg); break; case 'R': case 'r': /* This depends on the fact that ADDR registers are eight more than their corresponding DATA regs, so the result will have the ADDR_REG bit set */ install_operand (s[1], opP->reg - DATA); break; case 's': if (opP->reg == FPI) tmpreg = 0x1; else if (opP->reg == FPS) tmpreg = 0x2; else if (opP->reg == FPC) tmpreg = 0x4; else as_fatal ("failed sanity check."); install_operand (s[1], tmpreg); break; case 'S': /* Ignore it */ break; case 'T': install_operand (s[1], get_num (opP->con1, 30)); break; case 'U': /* Ignore it */ break; case 'c': switch (opP->reg) { case NC: tmpreg = 0; break; case DC: tmpreg = 1; break; case IC: tmpreg = 2; break; case BC: tmpreg = 3; break; default: as_fatal ("failed sanity check"); } /* switch on cache token */ install_operand (s[1], tmpreg); break; #ifndef NO_68851 /* JF: These are out of order, I fear. */ case 'f': switch (opP->reg) { case SFC: tmpreg = 0; break; case DFC: tmpreg = 1; break; default: as_fatal ("failed sanity check."); } install_operand (s[1], tmpreg); break; case 'P': switch (opP->reg) { case TC: tmpreg = 0; break; case CAL: tmpreg = 4; break; case VAL: tmpreg = 5; break; case SCC: tmpreg = 6; break; case AC: tmpreg = 7; break; default: as_fatal ("failed sanity check."); } install_operand (s[1], tmpreg); break; case 'V': if (opP->reg == VAL) break; as_fatal ("failed sanity check."); case 'W': switch (opP->reg) { case DRP: tmpreg = 1; break; case SRP: tmpreg = 2; break; case CRP: tmpreg = 3; break; default: as_fatal ("failed sanity check."); } install_operand (s[1], tmpreg); break; case 'X': switch (opP->reg) { case BAD: case BAD + 1: case BAD + 2: case BAD + 3: case BAD + 4: case BAD + 5: case BAD + 6: case BAD + 7: tmpreg = (4 << 10) | ((opP->reg - BAD) << 2); break; case BAC: case BAC + 1: case BAC + 2: case BAC + 3: case BAC + 4: case BAC + 5: case BAC + 6: case BAC + 7: tmpreg = (5 << 10) | ((opP->reg - BAC) << 2); break; default: as_fatal ("failed sanity check."); } install_operand (s[1], tmpreg); break; case 'Y': know (opP->reg == PSR); break; case 'Z': know (opP->reg == PCSR); break; #endif /* m68851 */ case '3': switch (opP->reg) { case TT0: tmpreg = 2; break; case TT1: tmpreg = 3; break; default: as_fatal ("failed sanity check"); } install_operand (s[1], tmpreg); break; case 't': tmpreg = get_num (opP->con1, 20); install_operand (s[1], tmpreg); break; case '_': /* used only for move16 absolute 32-bit address */ tmpreg = get_num (opP->con1, 80); addword (tmpreg >> 16); addword (tmpreg & 0xFFFF); break; default: as_fatal ("Internal error: Operand type %c unknown in line %d of file \"%s\"", s[0], __LINE__, __FILE__); } } /* By the time whe get here (FINALLY) the_ins contains the complete instruction, ready to be emitted. . . */ } /* m68k_ip() */ /* * get_regs := '/' + ? * | '-' + * | '-' + + ? * | * ; * * The idea here must be to scan in a set of registers but I don't * understand it. Looks awfully sloppy to me but I don't have any doc on * this format so... * * */ static int get_regs (i, str, opP) int i; struct m68k_op *opP; char *str; { /* 26, 25, 24, 23-16, 15-8, 0-7 */ /* Low order 24 bits encoded fpc,fps,fpi,fp7-fp0,a7-a0,d7-d0 */ unsigned long cur_regs = 0; int reg1, reg2; #define ADD_REG(x) { if(x==FPI) cur_regs|=(1<<24);\ else if(x==FPS) cur_regs|=(1<<25);\ else if(x==FPC) cur_regs|=(1<<26);\ else cur_regs|=(1<<(x-1)); } reg1 = i; for (;;) { if (*str == '/') { ADD_REG (reg1); str++; } else if (*str == '-') { str++; reg2 = m68k_reg_parse (&str); if (reg2 < DATA || reg2 >= FPREG + 8 || reg1 == FPI || reg1 == FPS || reg1 == FPC) { opP->error = "unknown register in register list"; return FAIL; } while (reg1 <= reg2) { ADD_REG (reg1); reg1++; } if (*str == '\0') break; } else if (*str == '\0') { ADD_REG (reg1); break; } else { opP->error = "unknow character in register list"; return FAIL; } /* DJA -- Bug Fix. Did't handle d1-d2/a1 until the following instruction was added */ if (*str == '/') str++; reg1 = m68k_reg_parse (&str); if ((reg1 < DATA || reg1 >= FPREG + 8) && !(reg1 == FPI || reg1 == FPS || reg1 == FPC)) { opP->error = "unknown register in register list"; return FAIL; } } opP->reg = cur_regs; return OK; } /* get_regs() */ static int reverse_16_bits (in) int in; { int out = 0; int n; static int mask[16] = { 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000 }; for (n = 0; n < 16; n++) { if (in & mask[n]) out |= mask[15 - n]; } return out; } /* reverse_16_bits() */ static int reverse_8_bits (in) int in; { int out = 0; int n; static int mask[8] = { 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, }; for (n = 0; n < 8; n++) { if (in & mask[n]) out |= mask[7 - n]; } return out; } /* reverse_8_bits() */ /* Cause an extra frag to be generated here, inserting up to 10 bytes (that value is chosen in the frag_var call in md_assemble). TYPE is the subtype of the frag to be generated; its primary type is rs_machine_dependent. The TYPE parameter is also used by md_convert_frag_1 and md_estimate_size_before_relax. The appropriate type of fixup will be emitted by md_convert_frag_1. ADD becomes the FR_SYMBOL field of the frag, and OFF the FR_OFFSET. */ static void install_operand (mode, val) int mode; int val; { switch (mode) { case 's': the_ins.opcode[0] |= val & 0xFF; /* JF FF is for M kludge */ break; case 'd': the_ins.opcode[0] |= val << 9; break; case '1': the_ins.opcode[1] |= val << 12; break; case '2': the_ins.opcode[1] |= val << 6; break; case '3': the_ins.opcode[1] |= val; break; case '4': the_ins.opcode[2] |= val << 12; break; case '5': the_ins.opcode[2] |= val << 6; break; case '6': /* DANGER! This is a hack to force cas2l and cas2w cmds to be three words long! */ the_ins.numo++; the_ins.opcode[2] |= val; break; case '7': the_ins.opcode[1] |= val << 7; break; case '8': the_ins.opcode[1] |= val << 10; break; #ifndef NO_68851 case '9': the_ins.opcode[1] |= val << 5; break; #endif case 't': the_ins.opcode[1] |= (val << 10) | (val << 7); break; case 'D': the_ins.opcode[1] |= (val << 12) | val; break; case 'g': the_ins.opcode[0] |= val = 0xff; break; case 'i': the_ins.opcode[0] |= val << 9; break; case 'C': the_ins.opcode[1] |= val; break; case 'j': the_ins.opcode[1] |= val; the_ins.numo++; /* What a hack */ break; case 'k': the_ins.opcode[1] |= val << 4; break; case 'b': case 'w': case 'l': break; case 'e': the_ins.opcode[0] |= (val << 6); break; case 'L': the_ins.opcode[1] = (val >> 16); the_ins.opcode[2] = val & 0xffff; break; case 'c': default: as_fatal ("failed sanity check."); } } /* install_operand() */ static void install_gen_operand (mode, val) int mode; int val; { switch (mode) { case 's': the_ins.opcode[0] |= val; break; case 'd': /* This is a kludge!!! */ the_ins.opcode[0] |= (val & 0x07) << 9 | (val & 0x38) << 3; break; case 'b': case 'w': case 'l': case 'f': case 'F': case 'x': case 'p': the_ins.opcode[0] |= val; break; /* more stuff goes here */ default: as_fatal ("failed sanity check."); } } /* install_gen_operand() */ /* * verify that we have some number of paren pairs, do m68k_ip_op(), and * then deal with the bitfield hack. */ static char * crack_operand (str, opP) register char *str; register struct m68k_op *opP; { register int parens; register int c; register char *beg_str; if (!str) { return str; } beg_str = str; for (parens = 0; *str && (parens > 0 || notend (str)); str++) { if (*str == '(') parens++; else if (*str == ')') { if (!parens) { /* ERROR */ opP->error = "Extra )"; return str; } --parens; } } if (!*str && parens) { /* ERROR */ opP->error = "Missing )"; return str; } c = *str; *str = '\0'; if (m68k_ip_op (beg_str, opP) == FAIL) { *str = c; return str; } *str = c; if (c == '}') c = *++str; /* JF bitfield hack */ if (c) { c = *++str; if (!c) as_bad ("Missing operand"); } return str; } /* This is the guts of the machine-dependent assembler. STR points to a machine dependent instruction. This function is supposed to emit the frags/bytes it assembles to. */ void insert_reg (regname, regnum) char *regname; int regnum; { char buf[100]; int i; #ifdef REGISTER_PREFIX if (!flag_reg_prefix_optional) { buf[0] = REGISTER_PREFIX; strcpy (buf + 1, regname); regname = buf; } #endif symbol_table_insert (symbol_new (regname, reg_section, regnum, &zero_address_frag)); for (i = 0; regname[i]; i++) buf[i] = islower (regname[i]) ? toupper (regname[i]) : regname[i]; buf[i] = '\0'; symbol_table_insert (symbol_new (buf, reg_section, regnum, &zero_address_frag)); } struct init_entry { const char *name; int number; }; static const struct init_entry init_table[] = { { "d0", DATA0 }, { "d1", DATA1 }, { "d2", DATA2 }, { "d3", DATA3 }, { "d4", DATA4 }, { "d5", DATA5 }, { "d6", DATA6 }, { "d7", DATA7 }, { "a0", ADDR0 }, { "a1", ADDR1 }, { "a2", ADDR2 }, { "a3", ADDR3 }, { "a4", ADDR4 }, { "a5", ADDR5 }, { "a6", ADDR6 }, { "fp", ADDR6 }, { "a7", ADDR7 }, { "sp", ADDR7 }, { "fp0", FP0 }, { "fp1", FP1 }, { "fp2", FP2 }, { "fp3", FP3 }, { "fp4", FP4 }, { "fp5", FP5 }, { "fp6", FP6 }, { "fp7", FP7 }, { "fpi", FPI }, { "fpiar", FPI }, { "fpc", FPI }, { "fps", FPS }, { "fpsr", FPS }, { "fpc", FPC }, { "fpcr", FPC }, { "cop0", COP0 }, { "cop1", COP1 }, { "cop2", COP2 }, { "cop3", COP3 }, { "cop4", COP4 }, { "cop5", COP5 }, { "cop6", COP6 }, { "cop7", COP7 }, { "pc", PC }, { "zpc", ZPC }, { "sr", SR }, { "ccr", CCR }, { "cc", CCR }, { "usp", USP }, { "isp", ISP }, { "sfc", SFC }, { "dfc", DFC }, { "cacr", CACR }, { "caar", CAAR }, { "vbr", VBR }, { "msp", MSP }, { "itt0", ITT0 }, { "itt1", ITT1 }, { "dtt0", DTT0 }, { "dtt1", DTT1 }, { "mmusr", MMUSR }, { "tc", TC }, { "srp", SRP }, { "urp", URP }, { "buscr", BUSCR }, { "pcr", PCR }, { "ac", AC }, { "bc", BC }, { "cal", CAL }, { "crp", CRP }, { "drp", DRP }, { "pcsr", PCSR }, { "psr", PSR }, { "scc", SCC }, { "val", VAL }, { "bad0", BAD0 }, { "bad1", BAD1 }, { "bad2", BAD2 }, { "bad3", BAD3 }, { "bad4", BAD4 }, { "bad5", BAD5 }, { "bad6", BAD6 }, { "bad7", BAD7 }, { "bac0", BAC0 }, { "bac1", BAC1 }, { "bac2", BAC2 }, { "bac3", BAC3 }, { "bac4", BAC4 }, { "bac5", BAC5 }, { "bac6", BAC6 }, { "bac7", BAC7 }, { "ic", IC }, { "dc", DC }, { "nc", NC }, { "tt0", TT0 }, { "tt1", TT1 }, /* 68ec030 versions of same */ { "ac0", TT0 }, { "ac1", TT1 }, /* 68ec030 access control unit, identical to 030 MMU status reg */ { "acusr", PSR }, { 0, 0 } }; void init_regtable () { int i; for (i = 0; init_table[i].name; i++) insert_reg (init_table[i].name, init_table[i].number); } static int no_68851, no_68881; #ifdef OBJ_AOUT /* a.out machine type. Default to 68020. */ int m68k_aout_machtype = 2; #endif void md_assemble (str) char *str; { char *er; short *fromP; char *toP = NULL; int m, n = 0; char *to_beg_P; int shorts_this_frag; fixS *fixP; memset ((char *) (&the_ins), '\0', sizeof (the_ins)); m68k_ip (str); er = the_ins.error; if (!er) { for (n = the_ins.numargs; n; --n) if (the_ins.operands[n].error) { er = the_ins.operands[n].error; break; } } if (er) { as_bad ("%s -- statement `%s' ignored", er, str); return; } if (the_ins.nfrag == 0) { /* No frag hacking involved; just put it out */ toP = frag_more (2 * the_ins.numo); fromP = &the_ins.opcode[0]; for (m = the_ins.numo; m; --m) { md_number_to_chars (toP, (long) (*fromP), 2); toP += 2; fromP++; } /* put out symbol-dependent info */ for (m = 0; m < the_ins.nrel; m++) { switch (the_ins.reloc[m].wid) { case 'B': n = 1; break; case 'b': n = 1; break; case '3': n = 2; break; case 'w': n = 2; break; case 'l': n = 4; break; default: as_fatal ("Don't know how to figure width of %c in md_assemble()", the_ins.reloc[m].wid); } fixP = fix_new_exp (frag_now, ((toP - frag_now->fr_literal) - the_ins.numo * 2 + the_ins.reloc[m].n), n, &the_ins.reloc[m].exp, the_ins.reloc[m].pcrel, NO_RELOC); fixP->fx_pcrel_adjust = the_ins.reloc[m].pcrel_fix; } return; } /* There's some frag hacking */ for (n = 0, fromP = &the_ins.opcode[0]; n < the_ins.nfrag; n++) { int wid; if (n == 0) wid = 2 * the_ins.fragb[n].fragoff; else wid = 2 * (the_ins.numo - the_ins.fragb[n - 1].fragoff); toP = frag_more (wid); to_beg_P = toP; shorts_this_frag = 0; for (m = wid / 2; m; --m) { md_number_to_chars (toP, (long) (*fromP), 2); toP += 2; fromP++; shorts_this_frag++; } for (m = 0; m < the_ins.nrel; m++) { if ((the_ins.reloc[m].n) >= 2 * shorts_this_frag) { the_ins.reloc[m].n -= 2 * shorts_this_frag; break; } wid = the_ins.reloc[m].wid; if (wid == 0) continue; the_ins.reloc[m].wid = 0; wid = (wid == 'b') ? 1 : (wid == 'w') ? 2 : (wid == 'l') ? 4 : 4000; fixP = fix_new_exp (frag_now, ((toP - frag_now->fr_literal) - the_ins.numo * 2 + the_ins.reloc[m].n), wid, &the_ins.reloc[m].exp, the_ins.reloc[m].pcrel, NO_RELOC); fixP->fx_pcrel_adjust = the_ins.reloc[m].pcrel_fix; } (void) frag_var (rs_machine_dependent, 10, 0, (relax_substateT) (the_ins.fragb[n].fragty), the_ins.fragb[n].fadd, the_ins.fragb[n].foff, to_beg_P); } n = (the_ins.numo - the_ins.fragb[n - 1].fragoff); shorts_this_frag = 0; if (n) { toP = frag_more (n * sizeof (short)); while (n--) { md_number_to_chars (toP, (long) (*fromP), 2); toP += 2; fromP++; shorts_this_frag++; } } for (m = 0; m < the_ins.nrel; m++) { int wid; wid = the_ins.reloc[m].wid; if (wid == 0) continue; the_ins.reloc[m].wid = 0; wid = (wid == 'b') ? 1 : (wid == 'w') ? 2 : (wid == 'l') ? 4 : 4000; fixP = fix_new_exp (frag_now, ((the_ins.reloc[m].n + toP - frag_now->fr_literal) - shorts_this_frag * 2), wid, &the_ins.reloc[m].exp, the_ins.reloc[m].pcrel, NO_RELOC); fixP->fx_pcrel_adjust = the_ins.reloc[m].pcrel_fix; } } /* See BREAK_UP_BIG_DECL definition, above. */ #ifdef DO_BREAK_UP_BIG_DECL static const struct m68k_opcode * opcode_ptr (i) int i; { int lim1 = sizeof (m68k_opcodes) / sizeof (m68k_opcodes[0]); if (i >= lim1) return m68k_opcodes_2 + (i - lim1); return m68k_opcodes + i; } #else #define opcode_ptr(i) (m68k_opcodes + i) #endif void md_begin () { /* * md_begin -- set up hash tables with 68000 instructions. * similar to what the vax assembler does. ---phr */ /* RMS claims the thing to do is take the m68k-opcode.h table, and make a copy of it at runtime, adding in the information we want but isn't there. I think it'd be better to have an awk script hack the table at compile time. Or even just xstr the table and use it as-is. But my lord ghod hath spoken, so we do it this way. Excuse the ugly var names. */ register const struct m68k_opcode *ins; register struct m68k_incant *hack, *slak; register const char *retval = 0; /* empty string, or error msg text */ register unsigned int i; register char c; op_hash = hash_new (); obstack_begin (&robyn, 4000); for (i = 0; i < numopcodes; i++) { hack = slak = (struct m68k_incant *) obstack_alloc (&robyn, sizeof (struct m68k_incant)); do { ins = opcode_ptr (i); /* We *could* ignore insns that don't match our arch here but just leaving them out of the hash. */ slak->m_operands = ins->args; slak->m_opnum = strlen (slak->m_operands) / 2; slak->m_arch = ins->arch; slak->m_opcode = ins->opcode; /* This is kludgey */ slak->m_codenum = ((ins->match) & 0xffffL) ? 2 : 1; if (i + 1 != numopcodes && !strcmp (ins->name, opcode_ptr (i + 1)->name)) { slak->m_next = (struct m68k_incant *) obstack_alloc (&robyn, sizeof (struct m68k_incant)); i++; } else slak->m_next = 0; slak = slak->m_next; } while (slak); retval = hash_insert (op_hash, ins->name, (char *) hack); if (retval) as_fatal ("Internal Error: Can't hash %s: %s", ins->name, retval); } for (i = 0; i < numaliases; i++) { const char *name = m68k_opcode_aliases[i].primary; const char *alias = m68k_opcode_aliases[i].alias; PTR val = hash_find (op_hash, name); if (!val) as_fatal ("Internal Error: Can't find %s in hash table", name); retval = hash_insert (op_hash, alias, val); if (retval) as_fatal ("Internal Error: Can't hash %s: %s", alias, retval); } for (i = 0; i < sizeof (mklower_table); i++) mklower_table[i] = (isupper (c = (char) i)) ? tolower (c) : c; for (i = 0; i < sizeof (notend_table); i++) { notend_table[i] = 0; alt_notend_table[i] = 0; } notend_table[','] = 1; notend_table['{'] = 1; notend_table['}'] = 1; alt_notend_table['a'] = 1; alt_notend_table['A'] = 1; alt_notend_table['d'] = 1; alt_notend_table['D'] = 1; alt_notend_table['#'] = 1; alt_notend_table['&'] = 1; alt_notend_table['f'] = 1; alt_notend_table['F'] = 1; #ifdef REGISTER_PREFIX alt_notend_table[REGISTER_PREFIX] = 1; #endif #ifndef MIT_SYNTAX_ONLY /* Insert pseudo ops, these have to go into the opcode table since gas expects pseudo ops to start with a dot */ { int n = 0; while (mote_pseudo_table[n].poc_name) { hack = (struct m68k_incant *) obstack_alloc (&robyn, sizeof (struct m68k_incant)); hash_insert (op_hash, mote_pseudo_table[n].poc_name, (char *) hack); hack->m_operands = 0; hack->m_opnum = n; n++; } } #endif init_regtable (); } void m68k_init_after_args () { if (cpu_of_arch (current_architecture) == 0) { int cpu_type, i; const char *default_cpu = TARGET_CPU; if (*default_cpu == 'm') default_cpu++; for (i = 0; i < n_archs; i++) if (!strcmp (default_cpu, archs[i].name)) break; if (i == n_archs) { as_bad ("unrecognized default cpu `%s' ???", TARGET_CPU); current_architecture |= m68020; } else current_architecture |= archs[i].arch; } /* Permit m68881 specification with all cpus; those that can't work with a coprocessor could be doing emulation. */ if (current_architecture & m68851) { if (current_architecture & m68040) { as_warn ("68040 and 68851 specified; mmu instructions may assemble incorrectly"); } } /* What other incompatibilities could we check for? */ /* Toss in some default assumptions about coprocessors. */ if (!no_68881 && (cpu_of_arch (current_architecture) /* Can CPU32 have a 68881 coprocessor?? */ & (m68020 | m68030 | cpu32))) { current_architecture |= m68881; } if (!no_68851 && (cpu_of_arch (current_architecture) & m68020up) != 0 && (cpu_of_arch (current_architecture) & m68040up) == 0) { current_architecture |= m68851; } if (no_68881 && (current_architecture & m68881)) as_bad ("options for 68881 and no-68881 both given"); if (no_68851 && (current_architecture & m68851)) as_bad ("options for 68851 and no-68851 both given"); #ifdef OBJ_AOUT /* Work out the magic number. This isn't very general. */ if (current_architecture & m68000) m68k_aout_machtype = 0; else if (current_architecture & m68010) m68k_aout_machtype = 1; else if (current_architecture & m68020) m68k_aout_machtype = 2; else m68k_aout_machtype = 2; #endif /* Note which set of "movec" control registers is available. */ switch (cpu_of_arch (current_architecture)) { case m68000: control_regs = m68000_control_regs; break; case m68010: control_regs = m68010_control_regs; break; case m68020: case m68030: control_regs = m68020_control_regs; break; case m68040: control_regs = m68040_control_regs; break; case m68060: control_regs = m68060_control_regs; break; case cpu32: control_regs = cpu32_control_regs; break; default: abort (); } if (cpu_of_arch (current_architecture) < m68020) md_relax_table[TAB (PCINDEX, BYTE)].rlx_more = 0; } /* Equal to MAX_PRECISION in atof-ieee.c */ #define MAX_LITTLENUMS 6 /* Turn a string in input_line_pointer into a floating point constant of type type, and store the appropriate bytes in *litP. The number of LITTLENUMS emitted is stored in *sizeP . An error message is returned, or NULL on OK. */ char * md_atof (type, litP, sizeP) char type; char *litP; int *sizeP; { int prec; LITTLENUM_TYPE words[MAX_LITTLENUMS]; LITTLENUM_TYPE *wordP; char *t; char *atof_ieee (); switch (type) { case 'f': case 'F': case 's': case 'S': prec = 2; break; case 'd': case 'D': case 'r': case 'R': prec = 4; break; case 'x': case 'X': prec = 6; break; case 'p': case 'P': prec = 6; break; default: *sizeP = 0; return "Bad call to MD_ATOF()"; } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizeP = prec * sizeof (LITTLENUM_TYPE); for (wordP = words; prec--;) { md_number_to_chars (litP, (long) (*wordP++), sizeof (LITTLENUM_TYPE)); litP += sizeof (LITTLENUM_TYPE); } return 0; } void md_number_to_chars (buf, val, n) char *buf; valueT val; int n; { number_to_chars_bigendian (buf, val, n); } static void md_apply_fix_2 (fixP, val) fixS *fixP; offsetT val; { addressT upper_limit; offsetT lower_limit; /* This is unnecessary but it convinces the native rs6000 compiler to generate the code we want. */ char *buf = fixP->fx_frag->fr_literal; buf += fixP->fx_where; /* end ibm compiler workaround */ if (val & 0x80000000) val |= ~(addressT)0x7fffffff; else val &= 0x7fffffff; switch (fixP->fx_size) { /* The cast to offsetT below are necessary to make code correct for machines where ints are smaller than offsetT */ case 1: *buf++ = val; upper_limit = 0x7f; lower_limit = - (offsetT) 0x80; break; case 2: *buf++ = (val >> 8); *buf++ = val; upper_limit = 0x7fff; lower_limit = - (offsetT) 0x8000; break; case 4: *buf++ = (val >> 24); *buf++ = (val >> 16); *buf++ = (val >> 8); *buf++ = val; upper_limit = 0x7fffffff; lower_limit = - (offsetT) 0x7fffffff - 1; /* avoid constant overflow */ break; default: BAD_CASE (fixP->fx_size); } /* For non-pc-relative values, it's conceivable we might get something like "0xff" for a byte field. So extend the upper part of the range to accept such numbers. We arbitrarily disallow "-0xff" or "0xff+0xff", so that we can do any range checking at all. */ if (!fixP->fx_pcrel) upper_limit = upper_limit * 2 + 1; if ((addressT) val > upper_limit && (val > 0 || val < lower_limit)) as_bad_where (fixP->fx_file, fixP->fx_line, "value out of range"); /* A one byte PC-relative reloc means a short branch. We can't use a short branch with a value of 0 or -1, because those indicate different opcodes (branches with longer offsets). */ if (fixP->fx_pcrel && fixP->fx_size == 1 && (fixP->fx_addsy == NULL || S_IS_DEFINED (fixP->fx_addsy)) && (val == 0 || val == -1)) as_bad_where (fixP->fx_file, fixP->fx_line, "invalid byte branch offset"); } #ifdef BFD_ASSEMBLER int md_apply_fix (fixP, valp) fixS *fixP; valueT *valp; { md_apply_fix_2 (fixP, (addressT) *valp); return 1; } #else void md_apply_fix (fixP, val) fixS *fixP; long val; { md_apply_fix_2 (fixP, (addressT) val); } #endif /* *fragP has been relaxed to its final size, and now needs to have the bytes inside it modified to conform to the new size There is UGLY MAGIC here. .. */ void md_convert_frag_1 (fragP) register fragS *fragP; { long disp; long ext = 0; fixS *fixP; /* Address in object code of the displacement. */ register int object_address = fragP->fr_fix + fragP->fr_address; /* Address in gas core of the place to store the displacement. */ /* This convinces the native rs6000 compiler to generate the code we want. */ register char *buffer_address = fragP->fr_literal; buffer_address += fragP->fr_fix; /* end ibm compiler workaround */ /* The displacement of the address, from current location. */ disp = fragP->fr_symbol ? S_GET_VALUE (fragP->fr_symbol) : 0; disp = (disp + fragP->fr_offset) - object_address; #ifdef BFD_ASSEMBLER disp += fragP->fr_symbol->sy_frag->fr_address; #endif switch (fragP->fr_subtype) { case TAB (BCC68000, BYTE): case TAB (ABRANCH, BYTE): know (issbyte (disp)); if (disp == 0) as_bad ("short branch with zero offset: use :w"); fragP->fr_opcode[1] = disp; ext = 0; break; case TAB (DBCC, SHORT): know (issword (disp)); ext = 2; break; case TAB (BCC68000, SHORT): case TAB (ABRANCH, SHORT): know (issword (disp)); fragP->fr_opcode[1] = 0x00; ext = 2; break; case TAB (ABRANCH, LONG): if (cpu_of_arch (current_architecture) < m68020) { if (fragP->fr_opcode[0] == 0x61) /* BSR */ { fragP->fr_opcode[0] = 0x4E; fragP->fr_opcode[1] = (char) 0xB9; /* JBSR with ABSL LONG offset */ subseg_change (text_section, 0); /* @@ */ fix_new (fragP, fragP->fr_fix, 4, fragP->fr_symbol, fragP->fr_offset, 0, NO_RELOC); fragP->fr_fix += 4; ext = 0; } /* BRA */ else if (fragP->fr_opcode[0] == 0x60) { fragP->fr_opcode[0] = 0x4E; fragP->fr_opcode[1] = (char) 0xF9; /* JMP with ABSL LONG offset */ subseg_change (text_section, 0); /* @@ */ fix_new (fragP, fragP->fr_fix, 4, fragP->fr_symbol, fragP->fr_offset, 0, NO_RELOC); fragP->fr_fix += 4; ext = 0; } else { as_bad ("Long branch offset not supported."); } } else { fragP->fr_opcode[1] = (char) 0xff; ext = 4; } break; case TAB (BCC68000, LONG): /* only Bcc 68000 instructions can come here */ /* change bcc into b!cc/jmp absl long */ fragP->fr_opcode[0] ^= 0x01; /* invert bcc */ fragP->fr_opcode[1] = 0x6;/* branch offset = 6 */ /* JF: these used to be fr_opcode[2,3], but they may be in a different frag, in which case refering to them is a no-no. Only fr_opcode[0,1] are guaranteed to work. */ *buffer_address++ = 0x4e; /* put in jmp long (0x4ef9) */ *buffer_address++ = (char) 0xf9; fragP->fr_fix += 2; /* account for jmp instruction */ subseg_change (text_section, 0); fix_new (fragP, fragP->fr_fix, 4, fragP->fr_symbol, fragP->fr_offset, 0, NO_RELOC); fragP->fr_fix += 4; ext = 0; break; case TAB (DBCC, LONG): /* only DBcc 68000 instructions can come here */ /* change dbcc into dbcc/jmp absl long */ /* JF: these used to be fr_opcode[2-7], but that's wrong */ *buffer_address++ = 0x00; /* branch offset = 4 */ *buffer_address++ = 0x04; *buffer_address++ = 0x60; /* put in bra pc+6 */ *buffer_address++ = 0x06; *buffer_address++ = 0x4e; /* put in jmp long (0x4ef9) */ *buffer_address++ = (char) 0xf9; fragP->fr_fix += 6; /* account for bra/jmp instructions */ subseg_change (text_section, 0); fix_new (fragP, fragP->fr_fix, 4, fragP->fr_symbol, fragP->fr_offset, 0, NO_RELOC); fragP->fr_fix += 4; ext = 0; break; case TAB (FBRANCH, SHORT): know ((fragP->fr_opcode[1] & 0x40) == 0); ext = 2; break; case TAB (FBRANCH, LONG): fragP->fr_opcode[1] |= 0x40; /* Turn on LONG bit */ ext = 4; break; case TAB (PCREL, SHORT): ext = 2; break; case TAB (PCREL, LONG): /* The thing to do here is force it to ABSOLUTE LONG, since PCREL is really trying to shorten an ABSOLUTE address anyway */ /* JF FOO This code has not been tested */ subseg_change (text_section, 0); fix_new (fragP, fragP->fr_fix, 4, fragP->fr_symbol, fragP->fr_offset, 0, NO_RELOC); if ((fragP->fr_opcode[1] & 0x3F) != 0x3A) as_bad ("Internal error (long PC-relative operand) for insn 0x%04x at 0x%lx", (unsigned) fragP->fr_opcode[0], (unsigned long) fragP->fr_address); fragP->fr_opcode[1] &= ~0x3F; fragP->fr_opcode[1] |= 0x39; /* Mode 7.1 */ fragP->fr_fix += 4; ext = 0; break; case TAB (PCLEA, SHORT): subseg_change (text_section, 0); fix_new (fragP, (int) (fragP->fr_fix), 2, fragP->fr_symbol, fragP->fr_offset, 1, NO_RELOC); fragP->fr_opcode[1] &= ~0x3F; fragP->fr_opcode[1] |= 0x3A; /* 072 - mode 7.2 */ ext = 2; break; case TAB (PCLEA, LONG): subseg_change (text_section, 0); fixP = fix_new (fragP, (int) (fragP->fr_fix) + 2, 4, fragP->fr_symbol, fragP->fr_offset, 1, NO_RELOC); fixP->fx_pcrel_adjust = 2; /* Already set to mode 7.3; this indicates: PC indirect with suppressed index, 32-bit displacement. */ *buffer_address++ = 0x01; *buffer_address++ = 0x70; fragP->fr_fix += 2; ext = 4; break; case TAB (PCINDEX, BYTE): disp += 2; if (!issbyte (disp)) { as_bad ("displacement doesn't fit in one byte"); disp = 0; } assert (fragP->fr_fix >= 2); buffer_address[-2] &= ~1; buffer_address[-1] = disp; ext = 0; break; case TAB (PCINDEX, SHORT): subseg_change (text_section, 0); disp += 2; assert (issword (disp)); assert (fragP->fr_fix >= 2); buffer_address[-2] |= 0x1; buffer_address[-1] = 0x20; fixP = fix_new (fragP, (int) (fragP->fr_fix), 2, fragP->fr_symbol, fragP->fr_offset, (fragP->fr_opcode[1] & 077) == 073, NO_RELOC); fixP->fx_pcrel_adjust = 2; ext = 2; break; case TAB (PCINDEX, LONG): subseg_change (text_section, 0); disp += 2; fixP = fix_new (fragP, (int) (fragP->fr_fix), 4, fragP->fr_symbol, fragP->fr_offset, (fragP->fr_opcode[1] & 077) == 073, NO_RELOC); fixP->fx_pcrel_adjust = 2; assert (fragP->fr_fix >= 2); buffer_address[-2] |= 0x1; buffer_address[-1] = 0x30; ext = 4; break; } if (ext) { md_number_to_chars (buffer_address, (long) disp, (int) ext); fragP->fr_fix += ext; } } #ifndef BFD_ASSEMBLER void md_convert_frag (headers, seg, fragP) object_headers *headers; segT seg; fragS *fragP; { md_convert_frag_1 (fragP); } #else void md_convert_frag (abfd, sec, fragP) bfd *abfd; segT sec; fragS *fragP; { md_convert_frag_1 (fragP); } #endif /* Force truly undefined symbols to their maximum size, and generally set up the frag list to be relaxed */ int md_estimate_size_before_relax (fragP, segment) register fragS *fragP; segT segment; { int old_fix; register char *buffer_address = fragP->fr_fix + fragP->fr_literal; old_fix = fragP->fr_fix; /* handle SZ_UNDEF first, it can be changed to BYTE or SHORT */ switch (fragP->fr_subtype) { case TAB (ABRANCH, SZ_UNDEF): { if ((fragP->fr_symbol != NULL) /* Not absolute */ && S_GET_SEGMENT (fragP->fr_symbol) == segment) { fragP->fr_subtype = TAB (TABTYPE (fragP->fr_subtype), BYTE); break; } else if ((fragP->fr_symbol == 0) || (cpu_of_arch (current_architecture) < m68020)) { /* On 68000, or for absolute value, switch to abs long */ /* FIXME, we should check abs val, pick short or long */ if (fragP->fr_opcode[0] == 0x61) { fragP->fr_opcode[0] = 0x4E; fragP->fr_opcode[1] = (char) 0xB9; /* JBSR with ABSL LONG offset */ subseg_change (text_section, 0); fix_new (fragP, fragP->fr_fix, 4, fragP->fr_symbol, fragP->fr_offset, 0, NO_RELOC); fragP->fr_fix += 4; frag_wane (fragP); } else if (fragP->fr_opcode[0] == 0x60) { fragP->fr_opcode[0] = 0x4E; fragP->fr_opcode[1] = (char) 0xF9; /* JMP with ABSL LONG offset */ subseg_change (text_section, 0); fix_new (fragP, fragP->fr_fix, 4, fragP->fr_symbol, fragP->fr_offset, 0, NO_RELOC); fragP->fr_fix += 4; frag_wane (fragP); } else { as_warn ("Long branch offset to extern symbol not supported."); } } else { /* Symbol is still undefined. Make it simple */ fix_new (fragP, (int) (fragP->fr_fix), 4, fragP->fr_symbol, fragP->fr_offset, 1, NO_RELOC); fragP->fr_fix += 4; fragP->fr_opcode[1] = (char) 0xff; frag_wane (fragP); break; } break; } /* case TAB(ABRANCH,SZ_UNDEF) */ case TAB (FBRANCH, SZ_UNDEF): { if (S_GET_SEGMENT (fragP->fr_symbol) == segment || flag_short_refs) { fragP->fr_subtype = TAB (FBRANCH, SHORT); fragP->fr_var += 2; } else { fix_new (fragP, (int) fragP->fr_fix, 4, fragP->fr_symbol, fragP->fr_offset, 1, NO_RELOC); fragP->fr_fix += 4; fragP->fr_opcode[1] |= 0x40; /* Turn on LONG bit */ frag_wane (fragP); } break; } /* TAB(FBRANCH,SZ_UNDEF) */ case TAB (PCREL, SZ_UNDEF): { if (S_GET_SEGMENT (fragP->fr_symbol) == segment || flag_short_refs || cpu_of_arch (current_architecture) < m68020) { fragP->fr_subtype = TAB (PCREL, SHORT); fragP->fr_var += 2; } else { fragP->fr_subtype = TAB (PCREL, LONG); fragP->fr_var += 4; } break; } /* TAB(PCREL,SZ_UNDEF) */ case TAB (BCC68000, SZ_UNDEF): { if ((fragP->fr_symbol != NULL) && S_GET_SEGMENT (fragP->fr_symbol) == segment) { fragP->fr_subtype = TAB (BCC68000, BYTE); break; } /* only Bcc 68000 instructions can come here */ /* change bcc into b!cc/jmp absl long */ fragP->fr_opcode[0] ^= 0x01; /* invert bcc */ if (flag_short_refs) { fragP->fr_opcode[1] = 0x04; /* branch offset = 6 */ /* JF: these were fr_opcode[2,3] */ buffer_address[0] = 0x4e; /* put in jmp long (0x4ef9) */ buffer_address[1] = (char) 0xf8; fragP->fr_fix += 2; /* account for jmp instruction */ subseg_change (text_section, 0); fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, fragP->fr_offset, 0, NO_RELOC); fragP->fr_fix += 2; } else { fragP->fr_opcode[1] = 0x06; /* branch offset = 6 */ /* JF: these were fr_opcode[2,3] */ buffer_address[0] = 0x4e; /* put in jmp long (0x4ef9) */ buffer_address[1] = (char) 0xf9; fragP->fr_fix += 2; /* account for jmp instruction */ subseg_change (text_section, 0); fix_new (fragP, fragP->fr_fix, 4, fragP->fr_symbol, fragP->fr_offset, 0, NO_RELOC); fragP->fr_fix += 4; } frag_wane (fragP); break; } /* case TAB(BCC68000,SZ_UNDEF) */ case TAB (DBCC, SZ_UNDEF): { if (fragP->fr_symbol != NULL && S_GET_SEGMENT (fragP->fr_symbol) == segment) { fragP->fr_subtype = TAB (DBCC, SHORT); fragP->fr_var += 2; break; } /* only DBcc 68000 instructions can come here */ /* change dbcc into dbcc/jmp absl long */ /* JF: these used to be fr_opcode[2-4], which is wrong. */ buffer_address[0] = 0x00; /* branch offset = 4 */ buffer_address[1] = 0x04; buffer_address[2] = 0x60; /* put in bra pc + ... */ if (flag_short_refs) { /* JF: these were fr_opcode[5-7] */ buffer_address[3] = 0x04; /* plus 4 */ buffer_address[4] = 0x4e; /* Put in Jump Word */ buffer_address[5] = (char) 0xf8; fragP->fr_fix += 6; /* account for bra/jmp instruction */ subseg_change (text_section, 0); fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, fragP->fr_offset, 0, NO_RELOC); fragP->fr_fix += 2; } else { /* JF: these were fr_opcode[5-7] */ buffer_address[3] = 0x06; /* Plus 6 */ buffer_address[4] = 0x4e; /* put in jmp long (0x4ef9) */ buffer_address[5] = (char) 0xf9; fragP->fr_fix += 6; /* account for bra/jmp instruction */ subseg_change (text_section, 0); fix_new (fragP, fragP->fr_fix, 4, fragP->fr_symbol, fragP->fr_offset, 0, NO_RELOC); fragP->fr_fix += 4; } frag_wane (fragP); break; } /* case TAB(DBCC,SZ_UNDEF) */ case TAB (PCLEA, SZ_UNDEF): { if ((S_GET_SEGMENT (fragP->fr_symbol)) == segment || flag_short_refs || cpu_of_arch (current_architecture) < m68020) { fragP->fr_subtype = TAB (PCLEA, SHORT); fragP->fr_var += 2; } else { fragP->fr_subtype = TAB (PCLEA, LONG); fragP->fr_var += 6; } break; } /* TAB(PCLEA,SZ_UNDEF) */ case TAB (PCINDEX, SZ_UNDEF): if (S_GET_SEGMENT (fragP->fr_symbol) == segment || cpu_of_arch (current_architecture) < m68020) { fragP->fr_subtype = TAB (PCINDEX, BYTE); } else { fragP->fr_subtype = TAB (PCINDEX, LONG); fragP->fr_var += 4; } break; default: break; } /* now that SZ_UNDEF are taken care of, check others */ switch (fragP->fr_subtype) { case TAB (BCC68000, BYTE): case TAB (ABRANCH, BYTE): /* We can't do a short jump to the next instruction, so we force word mode. */ if (fragP->fr_symbol && S_GET_VALUE (fragP->fr_symbol) == 0 && fragP->fr_symbol->sy_frag == fragP->fr_next) { fragP->fr_subtype = TAB (TABTYPE (fragP->fr_subtype), SHORT); fragP->fr_var += 2; } break; default: break; } return fragP->fr_var + fragP->fr_fix - old_fix; } #if defined(OBJ_AOUT) | defined(OBJ_BOUT) /* the bit-field entries in the relocation_info struct plays hell with the byte-order problems of cross-assembly. So as a hack, I added this mach. dependent ri twiddler. Ugly, but it gets you there. -KWK */ /* on m68k: first 4 bytes are normal unsigned long, next three bytes are symbolnum, most sig. byte first. Last byte is broken up with bit 7 as pcrel, bits 6 & 5 as length, bit 4 as pcrel, and the lower nibble as nuthin. (on Sun 3 at least) */ /* Translate the internal relocation information into target-specific format. */ #ifdef comment void md_ri_to_chars (the_bytes, ri) char *the_bytes; struct reloc_info_generic *ri; { /* this is easy */ md_number_to_chars (the_bytes, ri->r_address, 4); /* now the fun stuff */ the_bytes[4] = (ri->r_symbolnum >> 16) & 0x0ff; the_bytes[5] = (ri->r_symbolnum >> 8) & 0x0ff; the_bytes[6] = ri->r_symbolnum & 0x0ff; the_bytes[7] = (((ri->r_pcrel << 7) & 0x80) | ((ri->r_length << 5) & 0x60) | ((ri->r_extern << 4) & 0x10)); } #endif /* comment */ #ifndef BFD_ASSEMBLER void tc_aout_fix_to_chars (where, fixP, segment_address_in_file) char *where; fixS *fixP; relax_addressT segment_address_in_file; { /* * In: length of relocation (or of address) in chars: 1, 2 or 4. * Out: GNU LD relocation length code: 0, 1, or 2. */ static CONST unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2}; long r_symbolnum; know (fixP->fx_addsy != NULL); md_number_to_chars (where, fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file, 4); r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy) ? S_GET_TYPE (fixP->fx_addsy) : fixP->fx_addsy->sy_number); where[4] = (r_symbolnum >> 16) & 0x0ff; where[5] = (r_symbolnum >> 8) & 0x0ff; where[6] = r_symbolnum & 0x0ff; where[7] = (((fixP->fx_pcrel << 7) & 0x80) | ((nbytes_r_length[fixP->fx_size] << 5) & 0x60) | (((!S_IS_DEFINED (fixP->fx_addsy)) << 4) & 0x10)); } #endif #endif /* OBJ_AOUT or OBJ_BOUT */ #ifndef WORKING_DOT_WORD CONST int md_short_jump_size = 4; CONST int md_long_jump_size = 6; void md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol) char *ptr; addressT from_addr, to_addr; fragS *frag; symbolS *to_symbol; { valueT offset; offset = to_addr - (from_addr + 2); md_number_to_chars (ptr, (valueT) 0x6000, 2); md_number_to_chars (ptr + 2, (valueT) offset, 2); } void md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol) char *ptr; addressT from_addr, to_addr; fragS *frag; symbolS *to_symbol; { valueT offset; if (cpu_of_arch (current_architecture) < m68020) { offset = to_addr - S_GET_VALUE (to_symbol); md_number_to_chars (ptr, (valueT) 0x4EF9, 2); md_number_to_chars (ptr + 2, (valueT) offset, 4); fix_new (frag, (ptr + 2) - frag->fr_literal, 4, to_symbol, (offsetT) 0, 0, NO_RELOC); } else { offset = to_addr - (from_addr + 2); md_number_to_chars (ptr, (valueT) 0x60ff, 2); md_number_to_chars (ptr + 2, (valueT) offset, 4); } } #endif /* Different values of OK tell what its OK to return. Things that aren't OK are an error (what a shock, no?) 0: Everything is OK 10: Absolute 1:8 only 20: Absolute 0:7 only 30: absolute 0:15 only 40: Absolute 0:31 only 50: absolute 0:127 only 55: absolute -64:63 only 60: absolute -128:127 only 70: absolute 0:4095 only 80: No bignums */ static int get_num (exp, ok) struct m68k_exp *exp; int ok; { #ifdef TEST2 long l = 0; if (!exp->e_beg) return 0; if (*exp->e_beg == '0') { if (exp->e_beg[1] == 'x') sscanf (exp->e_beg + 2, "%x", &l); else sscanf (exp->e_beg + 1, "%O", &l); return l; } return atol (exp->e_beg); #else char *save_in; char c_save; segT section; if (!exp) { /* Can't do anything */ return 0; } if (!exp->e_beg || !exp->e_end) { seg (exp) = absolute_section; adds (exp) = 0; subs (exp) = 0; offs (exp) = (ok == 10) ? 1 : 0; as_warn ("Null expression defaults to %ld", offs (exp)); return 0; } exp->e_siz = 0; if ( /* ok!=80 && */ (exp->e_end[-1] == ':' || exp->e_end[-1] == '.') && (exp->e_end - exp->e_beg) >= 2) { switch (exp->e_end[0]) { case 's': case 'S': case 'b': case 'B': exp->e_siz = 1; exp->e_end -= 2; break; case 'w': case 'W': exp->e_siz = 2; exp->e_end -= 2; break; case 'l': case 'L': exp->e_siz = 3; exp->e_end -= 2; break; default: if (exp->e_end[-1] == ':') as_bad ("Unknown size for expression \"%c\"", exp->e_end[0]); break; } } c_save = exp->e_end[1]; exp->e_end[1] = '\0'; save_in = input_line_pointer; input_line_pointer = exp->e_beg; section = expression (&exp->e_exp); seg (exp) = section; if (exp->e_exp.X_op == O_absent) { /* Do the same thing the VAX asm does */ seg (exp) = absolute_section; op (exp) = O_constant; adds (exp) = 0; subs (exp) = 0; offs (exp) = 0; if (ok == 10) { as_warn ("expression out of range: defaulting to 1"); offs (exp) = 1; } } else if (exp->e_exp.X_op == O_constant) { switch (ok) { case 10: if (offs (exp) < 1 || offs (exp) > 8) { as_warn ("expression out of range: defaulting to 1"); offs (exp) = 1; } break; case 20: if (offs (exp) < 0 || offs (exp) > 7) goto outrange; break; case 30: if (offs (exp) < 0 || offs (exp) > 15) goto outrange; break; case 40: if (offs (exp) < 0 || offs (exp) > 32) goto outrange; break; case 50: if (offs (exp) < 0 || offs (exp) > 127) goto outrange; break; case 55: if (offs (exp) < -64 || offs (exp) > 63) goto outrange; break; case 60: if (offs (exp) < -128 || offs (exp) > 127) goto outrange; break; case 70: if (offs (exp) < 0 || offs (exp) > 4095) { outrange: as_warn ("expression out of range: defaulting to 0"); offs (exp) = 0; } break; default: break; } } else if (exp->e_exp.X_op == O_big) { if (offs (exp) <= 0 /* flonum */ && (ok == 80 /* no bignums */ || (ok > 10 /* small-int ranges including 0 ok */ /* If we have a flonum zero, a zero integer should do as well (e.g., in moveq). */ && generic_floating_point_number.exponent == 0 && generic_floating_point_number.low[0] == 0))) { /* HACK! Turn it into a long */ LITTLENUM_TYPE words[6]; gen_to_words (words, 2, 8L); /* These numbers are magic! */ seg (exp) = absolute_section; op (exp) = O_constant; adds (exp) = 0; subs (exp) = 0; offs (exp) = words[1] | (words[0] << 16); } else if (ok != 0) { seg (exp) = absolute_section; op (exp) = O_constant; adds (exp) = 0; subs (exp) = 0; offs (exp) = (ok == 10) ? 1 : 0; as_warn ("Can't deal with expression \"%s\": defaulting to %ld", exp->e_beg, offs (exp)); } } else { if (ok >= 10 && ok <= 70) { seg (exp) = absolute_section; op (exp) = O_constant; adds (exp) = 0; subs (exp) = 0; offs (exp) = (ok == 10) ? 1 : 0; as_warn ("Can't deal with expression \"%s\": defaulting to %ld", exp->e_beg, offs (exp)); } } if (input_line_pointer != exp->e_end + 1) as_bad ("Ignoring junk after expression"); exp->e_end[1] = c_save; input_line_pointer = save_in; if (exp->e_siz) { switch (exp->e_siz) { case 1: if (!isbyte (offs (exp))) as_warn ("expression doesn't fit in BYTE"); break; case 2: if (!isword (offs (exp))) as_warn ("expression doesn't fit in WORD"); break; } } return offs (exp); #endif } /* These are the back-ends for the various machine dependent pseudo-ops. */ void demand_empty_rest_of_line (); /* Hate those extra verbose names */ static void s_data1 (ignore) int ignore; { subseg_set (data_section, 1); demand_empty_rest_of_line (); } static void s_data2 (ignore) int ignore; { subseg_set (data_section, 2); demand_empty_rest_of_line (); } static void s_bss (ignore) int ignore; { /* We don't support putting frags in the BSS segment, we fake it by marking in_bss, then looking at s_skip for clues. */ subseg_set (bss_section, 0); demand_empty_rest_of_line (); } static void s_even (ignore) int ignore; { register int temp; register long temp_fill; temp = 1; /* JF should be 2? */ temp_fill = get_absolute_expression (); if (!need_pass_2) /* Never make frag if expect extra pass. */ frag_align (temp, (int) temp_fill); demand_empty_rest_of_line (); } static void s_proc (ignore) int ignore; { demand_empty_rest_of_line (); } /* s_space is defined in read.c .skip is simply an alias to it. */ /* * md_parse_option * Invocation line includes a switch not recognized by the base assembler. * See if it's a processor-specific option. These are: * * -[A]m[c]68000, -[A]m[c]68008, -[A]m[c]68010, -[A]m[c]68020, -[A]m[c]68030, -[A]m[c]68040 * -[A]m[c]68881, -[A]m[c]68882, -[A]m[c]68851 * Select the architecture. Instructions or features not * supported by the selected architecture cause fatal * errors. More than one may be specified. The default is * -m68020 -m68851 -m68881. Note that -m68008 is a synonym * for -m68000, and -m68882 is a synonym for -m68881. * -[A]m[c]no-68851, -[A]m[c]no-68881 * Don't accept 688?1 instructions. (The "c" is kind of silly, * so don't use or document it, but that's the way the parsing * works). * * -pic Indicates PIC. * -k Indicates PIC. (Sun 3 only.) * */ #ifdef OBJ_ELF CONST char *md_shortopts = "lSA:m:kQ:V"; #else CONST char *md_shortopts = "lSA:m:k"; #endif struct option md_longopts[] = { #define OPTION_PIC (OPTION_MD_BASE) {"pic", no_argument, NULL, OPTION_PIC}, #define OPTION_REGISTER_PREFIX_OPTIONAL (OPTION_MD_BASE + 1) {"register-prefix-optional", no_argument, NULL, OPTION_REGISTER_PREFIX_OPTIONAL}, {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof(md_longopts); int md_parse_option (c, arg) int c; char *arg; { int i; unsigned long arch; switch (c) { case 'l': /* -l means keep external to 2 bit offset rather than 16 bit one */ flag_short_refs = 1; break; case 'S': /* -S means that jbsr's always turn into jsr's. */ flag_long_jumps = 1; break; case 'A': if (*arg == 'm') arg++; /* intentional fall-through */ case 'm': if (arg[0] == 'n' && arg[1] == 'o' && arg[2] == '-') { int i, arch; const char *oarg = arg; arg += 3; if (*arg == 'm') { arg++; if (arg[0] == 'c' && arg[1] == '6') arg++; } for (i = 0; i < n_archs; i++) if (!strcmp (arg, archs[i].name)) break; if (i == n_archs) { unknown: as_bad ("unrecognized option `%s'", oarg); return 0; } arch = archs[i].arch; if (arch == m68881) no_68881 = 1; else if (arch == m68851) no_68851 = 1; else goto unknown; } else { int i; if (arg[0] == 'c' && arg[1] == '6') arg++; for (i = 0; i < n_archs; i++) if (!strcmp (arg, archs[i].name)) { unsigned long arch = archs[i].arch; if (cpu_of_arch (arch)) /* It's a cpu spec. */ { current_architecture &= ~m68000up; current_architecture |= arch; } else if (arch == m68881) { current_architecture |= m68881; no_68881 = 0; } else if (arch == m68851) { current_architecture |= m68851; no_68851 = 0; } else /* ??? */ abort (); break; } if (i == n_archs) { as_bad ("unrecognized architecture specification `%s'", arg); return 0; } } break; case OPTION_PIC: case 'k': flag_want_pic = 1; break; /* -pic, Position Independent Code */ case OPTION_REGISTER_PREFIX_OPTIONAL: flag_reg_prefix_optional = 1; break; case 'Q': case 'V': break; default: return 0; } return 1; } void md_show_usage (stream) FILE *stream; { fprintf(stream, "\ 680X0 options:\n\ -l use 1 word for refs to undefined symbols [default 2]\n\ -m68000 | -m68008 | -m68010 | -m68020 | -m68030 | -m68040 | -m68060\n\ | -m68302 | -m68331 | -m68332 | -m68333 | -m68340 | -m68360\n\ | -mcpu32\n\ specify variant of 680X0 architecture [default 68020]\n\ -m68881 | -m68882 | -mno-68881 | -mno-68882\n\ target has/lacks floating-point coprocessor\n\ [default yes for 68020, 68030, and cpu32]\n\ -m68851 | -mno-68851\n\ target has/lacks memory-management unit coprocessor\n\ [default yes for 68020 and up]\n\ -pic, -k generate position independent code\n\ -S turn jbsr into jsr\n\ --register-prefix-optional\n\ recognize register names without prefix character\n"); } #ifdef TEST2 /* TEST2: Test md_assemble() */ /* Warning, this routine probably doesn't work anymore */ main () { struct m68k_it the_ins; char buf[120]; char *cp; int n; m68k_ip_begin (); for (;;) { if (!gets (buf) || !*buf) break; if (buf[0] == '|' || buf[1] == '.') continue; for (cp = buf; *cp; cp++) if (*cp == '\t') *cp = ' '; if (is_label (buf)) continue; memset (&the_ins, '\0', sizeof (the_ins)); m68k_ip (&the_ins, buf); if (the_ins.error) { printf ("Error %s in %s\n", the_ins.error, buf); } else { printf ("Opcode(%d.%s): ", the_ins.numo, the_ins.args); for (n = 0; n < the_ins.numo; n++) printf (" 0x%x", the_ins.opcode[n] & 0xffff); printf (" "); print_the_insn (&the_ins.opcode[0], stdout); (void) putchar ('\n'); } for (n = 0; n < strlen (the_ins.args) / 2; n++) { if (the_ins.operands[n].error) { printf ("op%d Error %s in %s\n", n, the_ins.operands[n].error, buf); continue; } printf ("mode %d, reg %d, ", the_ins.operands[n].mode, the_ins.operands[n].reg); if (the_ins.operands[n].b_const) printf ("Constant: '%.*s', ", 1 + the_ins.operands[n].e_const - the_ins.operands[n].b_const, the_ins.operands[n].b_const); printf ("ireg %d, isiz %d, imul %d, ", the_ins.operands[n].ireg, the_ins.operands[n].isiz, the_ins.operands[n].imul); if (the_ins.operands[n].b_iadd) printf ("Iadd: '%.*s',", 1 + the_ins.operands[n].e_iadd - the_ins.operands[n].b_iadd, the_ins.operands[n].b_iadd); (void) putchar ('\n'); } } m68k_ip_end (); return 0; } is_label (str) char *str; { while (*str == ' ') str++; while (*str && *str != ' ') str++; if (str[-1] == ':' || str[1] == '=') return 1; return 0; } #endif /* Possible states for relaxation: 0 0 branch offset byte (bra, etc) 0 1 word 0 2 long 1 0 indexed offsets byte a0@(32,d4:w:1) etc 1 1 word 1 2 long 2 0 two-offset index word-word a0@(32,d4)@(45) etc 2 1 word-long 2 2 long-word 2 3 long-long */ /* We have no need to default values of symbols. */ /* ARGSUSED */ symbolS * md_undefined_symbol (name) char *name; { return 0; } /* Round up a section size to the appropriate boundary. */ valueT md_section_align (segment, size) segT segment; valueT size; { return size; /* Byte alignment is fine */ } /* Exactly what point is a PC-relative offset relative TO? On the 68k, it is relative to the address of the first extension word. The difference between the addresses of the offset and the first extension word is stored in fx_pcrel_adjust. */ long md_pcrel_from (fixP) fixS *fixP; { return (fixP->fx_where + fixP->fx_frag->fr_address - fixP->fx_pcrel_adjust); } #ifndef BFD_ASSEMBLER /*ARGSUSED*/ void tc_coff_symbol_emit_hook (ignore) symbolS *ignore; { } int tc_coff_sizemachdep (frag) fragS *frag; { switch (frag->fr_subtype & 0x3) { case BYTE: return 1; case SHORT: return 2; case LONG: return 4; default: abort (); } } #endif /* end of tc-m68k.c */