/* i960.c - All the i80960-specific stuff Copyright (C) 1989, 1990, 1991 Free Software Foundation, Inc. This file is part of GAS. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* $Id$ */ /* See comment on md_parse_option for 80960-specific invocation options. */ /****************************************************************************** * i80690 NOTE!!!: * Header, symbol, and relocation info will be used on the host machine * only -- only executable code is actually downloaded to the i80960. * Therefore, leave all such information in host byte order. * * (That's a slight lie -- we DO download some header information, but * the downloader converts the file format and corrects the byte-ordering * of the relevant fields while doing so.) * ***************************************************************************** */ /* There are 4 different lengths of (potentially) symbol-based displacements * in the 80960 instruction set, each of which could require address fix-ups * and (in the case of external symbols) emission of relocation directives: * * 32-bit (MEMB) * This is a standard length for the base assembler and requires no * special action. * * 13-bit (COBR) * This is a non-standard length, but the base assembler has a hook for * bit field address fixups: the fixS structure can point to a descriptor * of the field, in which case our md_number_to_field() routine gets called * to process it. * * I made the hook a little cleaner by having fix_new() (in the base * assembler) return a pointer to the fixS in question. And I made it a * little simpler by storing the field size (in this case 13) instead of * of a pointer to another structure: 80960 displacements are ALWAYS * stored in the low-order bits of a 4-byte word. * * Since the target of a COBR cannot be external, no relocation directives * for this size displacement have to be generated. But the base assembler * had to be modified to issue error messages if the symbol did turn out * to be external. * * 24-bit (CTRL) * Fixups are handled as for the 13-bit case (except that 24 is stored * in the fixS). * * The relocation directive generated is the same as that for the 32-bit * displacement, except that it's PC-relative (the 32-bit displacement * never is). The i80960 version of the linker needs a mod to * distinguish and handle the 24-bit case. * * 12-bit (MEMA) * MEMA formats are always promoted to MEMB (32-bit) if the displacement * is based on a symbol, because it could be relocated at link time. * The only time we use the 12-bit format is if an absolute value of * less than 4096 is specified, in which case we need neither a fixup nor * a relocation directive. */ #include #include #include "as.h" #include "obstack.h" #include "opcode/i960.h" extern char *input_line_pointer; extern struct hash_control *po_hash; extern char *next_object_file_charP; #ifdef OBJ_COFF int md_reloc_size = sizeof(struct reloc); #else /* OBJ_COFF */ int md_reloc_size = sizeof(struct relocation_info); #endif /* OBJ_COFF */ /*************************** * Local i80960 routines * ************************** */ static void brcnt_emit(); /* Emit branch-prediction instrumentation code */ static char * brlab_next(); /* Return next branch local label */ void brtab_emit(); /* Emit br-predict instrumentation table */ static void cobr_fmt(); /* Generate COBR instruction */ static void ctrl_fmt(); /* Generate CTRL instruction */ static char * emit(); /* Emit (internally) binary */ static int get_args(); /* Break arguments out of comma-separated list */ static void get_cdisp(); /* Handle COBR or CTRL displacement */ static char * get_ispec(); /* Find index specification string */ static int get_regnum(); /* Translate text to register number */ static int i_scan(); /* Lexical scan of instruction source */ static void mem_fmt(); /* Generate MEMA or MEMB instruction */ static void mema_to_memb(); /* Convert MEMA instruction to MEMB format */ static segT parse_expr(); /* Parse an expression */ static int parse_ldconst();/* Parse and replace a 'ldconst' pseudo-op */ static void parse_memop(); /* Parse a memory operand */ static void parse_po(); /* Parse machine-dependent pseudo-op */ static void parse_regop(); /* Parse a register operand */ static void reg_fmt(); /* Generate a REG format instruction */ void reloc_callj(); /* Relocate a 'callj' instruction */ static void relax_cobr(); /* "De-optimize" cobr into compare/branch */ static void s_leafproc(); /* Process '.leafproc' pseudo-op */ static void s_sysproc(); /* Process '.sysproc' pseudo-op */ static int shift_ok(); /* Will a 'shlo' substiture for a 'ldconst'? */ static void syntax(); /* Give syntax error */ static int targ_has_sfr(); /* Target chip supports spec-func register? */ static int targ_has_iclass();/* Target chip supports instruction set? */ /* static void unlink_sym(); */ /* Remove a symbol from the symbol list */ /* See md_parse_option() for meanings of these options */ static char norelax = 0; /* True if -norelax switch seen */ static char instrument_branches = 0; /* True if -b switch seen */ /* Characters that always start a comment. * If the pre-processor is disabled, these aren't very useful. */ char comment_chars[] = "#"; /* Characters that only start a comment at the beginning of * a line. If the line seems to have the form '# 123 filename' * .line and .file directives will appear in the pre-processed output. * * Note that input_file.c hand checks for '#' at the beginning of the * first line of the input file. This is because the compiler outputs * #NO_APP at the beginning of its output. */ /* Also note that comments started like this one will always work. */ char line_comment_chars[] = ""; /* Chars that can be used to separate mant from exp in floating point nums */ char EXP_CHARS[] = "eE"; /* Chars that mean this number is a floating point constant, * as in 0f12.456 or 0d1.2345e12 */ char FLT_CHARS[] = "fFdDtT"; /* Table used by base assembler to relax addresses based on varying length * instructions. The fields are: * 1) most positive reach of this state, * 2) most negative reach of this state, * 3) how many bytes this mode will add to the size of the current frag * 4) which index into the table to try if we can't fit into this one. * * For i80960, the only application is the (de-)optimization of cobr * instructions into separate compare and branch instructions when a 13-bit * displacement won't hack it. */ const relax_typeS md_relax_table[] = { {0, 0, 0,0}, /* State 0 => no more relaxation possible */ {4088, -4096, 0,2}, /* State 1: conditional branch (cobr) */ {0x800000-8,-0x800000,4,0}, /* State 2: compare (reg) & branch (ctrl) */ }; /* These are the machine dependent pseudo-ops. * * This table describes all the machine specific pseudo-ops the assembler * has to support. The fields are: * pseudo-op name without dot * function to call to execute this pseudo-op * integer arg to pass to the function */ #define S_LEAFPROC 1 #define S_SYSPROC 2 const pseudo_typeS md_pseudo_table[] = { { "bss", s_lcomm, 1 }, { "extended", float_cons, 't' }, { "leafproc", parse_po, S_LEAFPROC }, { "sysproc", parse_po, S_SYSPROC }, { "word", cons, 4 }, { "quad", big_cons, 16 }, { 0, 0, 0 } }; /* Macros to extract info from an 'expressionS' structure 'e' */ #define adds(e) e.X_add_symbol #define subs(e) e.X_subtract_symbol #define offs(e) e.X_add_number #define segs(e) e.X_seg /* Branch-prediction bits for CTRL/COBR format opcodes */ #define BP_MASK 0x00000002 /* Mask for branch-prediction bit */ #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */ #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */ /* Some instruction opcodes that we need explicitly */ #define BE 0x12000000 #define BG 0x11000000 #define BGE 0x13000000 #define BL 0x14000000 #define BLE 0x16000000 #define BNE 0x15000000 #define BNO 0x10000000 #define BO 0x17000000 #define CHKBIT 0x5a002700 #define CMPI 0x5a002080 #define CMPO 0x5a002000 #define B 0x08000000 #define BAL 0x0b000000 #define CALL 0x09000000 #define CALLS 0x66003800 #define RET 0x0a000000 /* These masks are used to build up a set of MEMB mode bits. */ #define A_BIT 0x0400 #define I_BIT 0x0800 #define MEMB_BIT 0x1000 #define D_BIT 0x2000 /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is used) */ #define MEMA_ABASE 0x2000 /* Info from which a MEMA or MEMB format instruction can be generated */ typedef struct { long opcode; /* (First) 32 bits of instruction */ int disp; /* 0-(none), 12- or, 32-bit displacement needed */ char *e; /* The expression in the source instruction from * which the displacement should be determined */ } memS; /* The two pieces of info we need to generate a register operand */ struct regop { int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */ int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */ int n; /* Register number or literal value */ }; /* Number and assembler mnemonic for all registers that can appear in operands */ static struct { char *reg_name; int reg_num; } regnames[] = { { "pfp", 0 }, { "sp", 1 }, { "rip", 2 }, { "r3", 3 }, { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 }, { "r8", 8 }, { "r9", 9 }, { "r10", 10 }, { "r11", 11 }, { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 }, { "g0", 16 }, { "g1", 17 }, { "g2", 18 }, { "g3", 19 }, { "g4", 20 }, { "g5", 21 }, { "g6", 22 }, { "g7", 23 }, { "g8", 24 }, { "g9", 25 }, { "g10", 26 }, { "g11", 27 }, { "g12", 28 }, { "g13", 29 }, { "g14", 30 }, { "fp", 31 }, /* Numbers for special-function registers are for assembler internal * use only: they are scaled back to range [0-31] for binary output. */ # define SF0 32 { "sf0", 32 }, { "sf1", 33 }, { "sf2", 34 }, { "sf3", 35 }, { "sf4", 36 }, { "sf5", 37 }, { "sf6", 38 }, { "sf7", 39 }, { "sf8", 40 }, { "sf9", 41 }, { "sf10",42 }, { "sf11",43 }, { "sf12",44 }, { "sf13",45 }, { "sf14",46 }, { "sf15",47 }, { "sf16",48 }, { "sf17",49 }, { "sf18",50 }, { "sf19",51 }, { "sf20",52 }, { "sf21",53 }, { "sf22",54 }, { "sf23",55 }, { "sf24",56 }, { "sf25",57 }, { "sf26",58 }, { "sf27",59 }, { "sf28",60 }, { "sf29",61 }, { "sf30",62 }, { "sf31",63 }, /* Numbers for floating point registers are for assembler internal use * only: they are scaled back to [0-3] for binary output. */ # define FP0 64 { "fp0", 64 }, { "fp1", 65 }, { "fp2", 66 }, { "fp3", 67 }, { NULL, 0 }, /* END OF LIST */ }; #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0)) #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0)) #define IS_FP_REG(n) ((n) >= FP0) /* Number and assembler mnemonic for all registers that can appear as 'abase' * (indirect addressing) registers. */ static struct { char *areg_name; int areg_num; } aregs[] = { { "(pfp)", 0 }, { "(sp)", 1 }, { "(rip)", 2 }, { "(r3)", 3 }, { "(r4)", 4 }, { "(r5)", 5 }, { "(r6)", 6 }, { "(r7)", 7 }, { "(r8)", 8 }, { "(r9)", 9 }, { "(r10)", 10 }, { "(r11)", 11 }, { "(r12)", 12 }, { "(r13)", 13 }, { "(r14)", 14 }, { "(r15)", 15 }, { "(g0)", 16 }, { "(g1)", 17 }, { "(g2)", 18 }, { "(g3)", 19 }, { "(g4)", 20 }, { "(g5)", 21 }, { "(g6)", 22 }, { "(g7)", 23 }, { "(g8)", 24 }, { "(g9)", 25 }, { "(g10)", 26 }, { "(g11)", 27 }, { "(g12)", 28 }, { "(g13)", 29 }, { "(g14)", 30 }, { "(fp)", 31 }, # define IPREL 32 /* for assembler internal use only: this number never appears in binary * output. */ { "(ip)", IPREL }, { NULL, 0 }, /* END OF LIST */ }; /* Hash tables */ static struct hash_control *op_hash = NULL; /* Opcode mnemonics */ static struct hash_control *reg_hash = NULL; /* Register name hash table */ static struct hash_control *areg_hash = NULL; /* Abase register hash table */ /* Architecture for which we are assembling */ #define ARCH_ANY 0 /* Default: no architecture checking done */ #define ARCH_KA 1 #define ARCH_KB 2 #define ARCH_MC 3 #define ARCH_CA 4 int architecture = ARCH_ANY; /* Architecture requested on invocation line */ int iclasses_seen = 0; /* OR of instruction classes (I_* constants) * for which we've actually assembled * instructions. */ /* BRANCH-PREDICTION INSTRUMENTATION * * The following supports generation of branch-prediction instrumentation * (turned on by -b switch). The instrumentation collects counts * of branches taken/not-taken for later input to a utility that will * set the branch prediction bits of the instructions in accordance with * the behavior observed. (Note that the KX series does not have * brach-prediction.) * * The instrumentation consists of: * * (1) before and after each conditional branch, a call to an external * routine that increments and steps over an inline counter. The * counter itself, initialized to 0, immediately follows the call * instruction. For each branch, the counter following the branch * is the number of times the branch was not taken, and the difference * between the counters is the number of times it was taken. An * example of an instrumented conditional branch: * * call BR_CNT_FUNC * .word 0 * LBRANCH23: be label * call BR_CNT_FUNC * .word 0 * * (2) a table of pointers to the instrumented branches, so that an * external postprocessing routine can locate all of the counters. * the table begins with a 2-word header: a pointer to the next in * a linked list of such tables (initialized to 0); and a count * of the number of entries in the table (exclusive of the header. * * Note that input source code is expected to already contain calls * an external routine that will link the branch local table into a * list of such tables. */ static int br_cnt = 0; /* Number of branches instrumented so far. * Also used to generate unique local labels * for each instrumented branch */ #define BR_LABEL_BASE "LBRANCH" /* Basename of local labels on instrumented * branches, to avoid conflict with compiler- * generated local labels. */ #define BR_CNT_FUNC "__inc_branch" /* Name of the external routine that will * increment (and step over) an inline counter. */ #define BR_TAB_NAME "__BRANCH_TABLE__" /* Name of the table of pointers to branches. * A local (i.e., non-external) symbol. */ /***************************************************************************** * md_begin: One-time initialization. * * Set up hash tables. * **************************************************************************** */ void md_begin() { int i; /* Loop counter */ const struct i960_opcode *oP; /* Pointer into opcode table */ char *retval; /* Value returned by hash functions */ if (((op_hash = hash_new()) == 0) || ((reg_hash = hash_new()) == 0) || ((areg_hash = hash_new()) == 0)) { as_fatal("virtual memory exceeded"); } retval = ""; /* For some reason, the base assembler uses an empty * string for "no error message", instead of a NULL * pointer. */ for (oP=i960_opcodes; oP->name && !*retval; oP++) { retval = hash_insert(op_hash, oP->name, oP); } for (i=0; regnames[i].reg_name && !*retval; i++) { retval = hash_insert(reg_hash, regnames[i].reg_name, ®names[i].reg_num); } for (i=0; aregs[i].areg_name && !*retval; i++){ retval = hash_insert(areg_hash, aregs[i].areg_name, &aregs[i].areg_num); } if (*retval) { as_fatal("Hashing returned \"%s\".", retval); } } /* md_begin() */ /***************************************************************************** * md_end: One-time final cleanup * * None necessary * **************************************************************************** */ void md_end() { } /***************************************************************************** * md_assemble: Assemble an instruction * * Assumptions about the passed-in text: * - all comments, labels removed * - text is an instruction * - all white space compressed to single blanks * - all character constants have been replaced with decimal * **************************************************************************** */ void md_assemble(textP) char *textP; /* Source text of instruction */ { char *args[4]; /* Parsed instruction text, containing NO whitespace: * arg[0]->opcode mnemonic * arg[1-3]->operands, with char constants * replaced by decimal numbers */ int n_ops; /* Number of instruction operands */ struct i960_opcode *oP; /* Pointer to instruction description */ int branch_predict; /* TRUE iff opcode mnemonic included branch-prediction * suffix (".f" or ".t") */ long bp_bits; /* Setting of branch-prediction bit(s) to be OR'd * into instruction opcode of CTRL/COBR format * instructions. */ int n; /* Offset of last character in opcode mnemonic */ static const char bp_error_msg[] = "branch prediction invalid on this opcode"; /* Parse instruction into opcode and operands */ bzero(args, sizeof(args)); n_ops = i_scan(textP, args); if (n_ops == -1){ return; /* Error message already issued */ } /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */ if (!strcmp(args[0],"ldconst")){ n_ops = parse_ldconst(args); if (n_ops == -1){ return; } } /* Check for branch-prediction suffix on opcode mnemonic, strip it off */ n = strlen(args[0]) - 1; branch_predict = 0; bp_bits = 0; if (args[0][n-1] == '.' && (args[0][n] == 't' || args[0][n] == 'f')){ /* We could check here to see if the target architecture * supports branch prediction, but why bother? The bit * will just be ignored by processors that don't use it. */ branch_predict = 1; bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN; args[0][n-1] = '\0'; /* Strip suffix from opcode mnemonic */ } /* Look up opcode mnemonic in table and check number of operands. * Check that opcode is legal for the target architecture. * If all looks good, assemble instruction. */ oP = (struct i960_opcode *) hash_find(op_hash, args[0]); if (!oP || !targ_has_iclass(oP->iclass)) { as_bad("invalid opcode, \"%s\".", args[0]); } else if (n_ops != oP->num_ops) { as_bad("improper number of operands. expecting %d, got %d", oP->num_ops, n_ops); } else { switch (oP->format){ case FBRA: case CTRL: ctrl_fmt(args[1], oP->opcode | bp_bits, oP->num_ops); if (oP->format == FBRA){ /* Now generate a 'bno' to same arg */ ctrl_fmt(args[1], BNO | bp_bits, 1); } break; case COBR: case COJ: cobr_fmt(args, oP->opcode | bp_bits, oP); break; case REG: if (branch_predict){ as_warn(bp_error_msg); } reg_fmt(args, oP); break; case MEM1: case MEM2: case MEM4: case MEM8: case MEM12: case MEM16: if (branch_predict){ as_warn(bp_error_msg); } mem_fmt(args, oP); break; case CALLJ: if (branch_predict){ as_warn(bp_error_msg); } /* Output opcode & set up "fixup" (relocation); * flag relocation as 'callj' type. */ know(oP->num_ops == 1); get_cdisp(args[1], "CTRL", oP->opcode, 24, 0, 1); break; default: BAD_CASE(oP->format); break; } } } /* md_assemble() */ /***************************************************************************** * md_number_to_chars: convert a number to target byte order * **************************************************************************** */ void md_number_to_chars(buf, value, n) char *buf; /* Put output here */ long value; /* The integer to be converted */ int n; /* Number of bytes to output (significant bytes * in 'value') */ { while (n--){ *buf++ = value; value >>= 8; } /* XXX line number probably botched for this warning message. */ if (value != 0 && value != -1){ as_bad("Displacement too long for instruction field length."); } return; } /* md_number_to_chars() */ /***************************************************************************** * md_chars_to_number: convert from target byte order to host byte order. * **************************************************************************** */ int md_chars_to_number(val, n) unsigned char *val; /* Value in target byte order */ int n; /* Number of bytes in the input */ { int retval; for (retval=0; n--;){ retval <<= 8; retval |= val[n]; } return retval; } #define MAX_LITTLENUMS 6 #define LNUM_SIZE sizeof(LITTLENUM_TYPE) /***************************************************************************** * md_atof: convert ascii to floating point * * Turn a string at input_line_pointer into a floating point constant of type * 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS * emitted is returned at 'sizeP'. An error message is returned, or a pointer * to an empty message if OK. * * Note we call the i386 floating point routine, rather than complicating * things with more files or symbolic links. * **************************************************************************** */ char * md_atof(type, litP, sizeP) int type; char *litP; int *sizeP; { LITTLENUM_TYPE words[MAX_LITTLENUMS]; LITTLENUM_TYPE *wordP; int prec; char *t; char *atof_ieee(); switch(type) { case 'f': case 'F': prec = 2; break; case 'd': case 'D': prec = 4; break; case 't': case 'T': prec = 5; type = 'x'; /* That's what atof_ieee() understands */ break; default: *sizeP=0; return "Bad call to md_atof()"; } t = atof_ieee(input_line_pointer, type, words); if (t){ input_line_pointer = t; } *sizeP = prec * LNUM_SIZE; /* Output the LITTLENUMs in REVERSE order in accord with i80960 * word-order. (Dunno why atof_ieee doesn't do it in the right * order in the first place -- probably because it's a hack of * atof_m68k.) */ for(wordP = words + prec - 1; prec--;){ md_number_to_chars(litP, (long) (*wordP--), LNUM_SIZE); litP += sizeof(LITTLENUM_TYPE); } return ""; /* Someone should teach Dean about null pointers */ } /***************************************************************************** * md_number_to_imm * **************************************************************************** */ void md_number_to_imm(buf, val, n) char *buf; long val; int n; { md_number_to_chars(buf, val, n); } /***************************************************************************** * md_number_to_disp * **************************************************************************** */ void md_number_to_disp(buf, val, n) char *buf; long val; int n; { md_number_to_chars(buf, val, n); } /***************************************************************************** * md_number_to_field: * * Stick a value (an address fixup) into a bit field of * previously-generated instruction. * **************************************************************************** */ void md_number_to_field(instrP, val, bfixP) char *instrP; /* Pointer to instruction to be fixed */ long val; /* Address fixup value */ bit_fixS *bfixP; /* Description of bit field to be fixed up */ { int numbits; /* Length of bit field to be fixed */ long instr; /* 32-bit instruction to be fixed-up */ long sign; /* 0 or -1, according to sign bit of 'val' */ /* Convert instruction back to host byte order */ instr = md_chars_to_number(instrP, 4); /* Surprise! -- we stored the number of bits * to be modified rather than a pointer to a structure. */ numbits = (int)bfixP; if (numbits == 1){ /* This is a no-op, stuck here by reloc_callj() */ return; } know ((numbits==13) || (numbits==24)); /* Propagate sign bit of 'val' for the given number of bits. * Result should be all 0 or all 1 */ sign = val >> ((int)numbits - 1); if (((val < 0) && (sign != -1)) || ((val > 0) && (sign != 0))){ as_bad("Fixup of %d too large for field width of %d", val, numbits); } else { /* Put bit field into instruction and write back in target * byte order. */ val &= ~(-1 << (int)numbits); /* Clear unused sign bits */ instr |= val; md_number_to_chars(instrP, instr, 4); } } /* md_number_to_field() */ /***************************************************************************** * md_parse_option * Invocation line includes a switch not recognized by the base assembler. * See if it's a processor-specific option. For the 960, these are: * * -norelax: * Conditional branch instructions that require displacements * greater than 13 bits (or that have external targets) should * generate errors. The default is to replace each such * instruction with the corresponding compare (or chkbit) and * branch instructions. Note that the Intel "j" cobr directives * are ALWAYS "de-optimized" in this way when necessary, * regardless of the setting of this option. * * -b: * Add code to collect information about branches taken, for * later optimization of branch prediction bits by a separate * tool. COBR and CNTL format instructions have branch * prediction bits (in the CX architecture); if "BR" represents * an instruction in one of these classes, the following rep- * resents the code generated by the assembler: * * call * .word 0 # pre-counter * Label: BR * call * .word 0 # post-counter * * A table of all such "Labels" is also generated. * * * -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA: * Select the 80960 architecture. Instructions or features not * supported by the selected architecture cause fatal errors. * The default is to generate code for any instruction or feature * that is supported by SOME version of the 960 (even if this * means mixing architectures!). * **************************************************************************** */ int md_parse_option(argP, cntP, vecP) char **argP; int *cntP; char ***vecP; { char *p; struct tabentry { char *flag; int arch; }; static struct tabentry arch_tab[] = { "KA", ARCH_KA, "KB", ARCH_KB, "SA", ARCH_KA, /* Synonym for KA */ "SB", ARCH_KB, /* Synonym for KB */ "KC", ARCH_MC, /* Synonym for MC */ "MC", ARCH_MC, "CA", ARCH_CA, NULL, 0 }; struct tabentry *tp; if (!strcmp(*argP,"norelax")){ norelax = 1; } else if (**argP == 'b'){ instrument_branches = 1; } else if (**argP == 'A'){ p = (*argP) + 1; for (tp = arch_tab; tp->flag != NULL; tp++){ if (!strcmp(p,tp->flag)){ break; } } if (tp->flag == NULL){ as_bad("unknown architecture: %s", p); } else { architecture = tp->arch; } } else { /* Unknown option */ (*argP)++; return 0; } **argP = '\0'; /* Done parsing this switch */ return 1; } /***************************************************************************** * md_convert_frag: * Called by base assembler after address relaxation is finished: modify * variable fragments according to how much relaxation was done. * * If the fragment substate is still 1, a 13-bit displacement was enough * to reach the symbol in question. Set up an address fixup, but otherwise * leave the cobr instruction alone. * * If the fragment substate is 2, a 13-bit displacement was not enough. * Replace the cobr with a two instructions (a compare and a branch). * **************************************************************************** */ void md_convert_frag(headers, fragP) object_headers *headers; fragS * fragP; { fixS *fixP; /* Structure describing needed address fix */ switch (fragP->fr_subtype){ case 1: /* LEAVE SINGLE COBR INSTRUCTION */ fixP = fix_new(fragP, fragP->fr_opcode-fragP->fr_literal, 4, fragP->fr_symbol, 0, fragP->fr_offset, 1, 0); fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */ break; case 2: /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */ relax_cobr(fragP); break; default: BAD_CASE(fragP->fr_subtype); break; } } /***************************************************************************** * md_estimate_size_before_relax: How much does it look like *fragP will grow? * * Called by base assembler just before address relaxation. * Return the amount by which the fragment will grow. * * Any symbol that is now undefined will not become defined; cobr's * based on undefined symbols will have to be replaced with a compare * instruction and a branch instruction, and the code fragment will grow * by 4 bytes. * **************************************************************************** */ int md_estimate_size_before_relax(fragP, segment_type) register fragS *fragP; register segT segment_type; { /* If symbol is undefined in this segment, go to "relaxed" state * (compare and branch instructions instead of cobr) right now. */ if (S_GET_SEGMENT(fragP->fr_symbol) != segment_type) { relax_cobr(fragP); return 4; } return 0; } /* md_estimate_size_before_relax() */ /***************************************************************************** * md_ri_to_chars: * This routine exists in order to overcome machine byte-order problems * when dealing with bit-field entries in the relocation_info struct. * * But relocation info will be used on the host machine only (only * executable code is actually downloaded to the i80960). Therefore, * we leave it in host byte order. * **************************************************************************** */ void md_ri_to_chars(where, ri) char *where; struct relocation_info *ri; { *((struct relocation_info *) where) = *ri; /* structure assignment */ } /* md_ri_to_chars() */ #ifndef WORKING_DOT_WORD int md_short_jump_size = 0; int md_long_jump_size = 0; void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol) char *ptr; long from_addr; long to_addr; fragS *frag; symbolS *to_symbol; { as_fatal("failed sanity check."); } void md_create_long_jump(ptr,from_addr,to_addr,frag,to_symbol) char *ptr; long from_addr, to_addr; fragS *frag; symbolS *to_symbol; { as_fatal("failed sanity check."); } #endif /************************************************************* * * * FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER * * * ************************************************************ */ /***************************************************************************** * brcnt_emit: Emit code to increment inline branch counter. * * See the comments above the declaration of 'br_cnt' for details on * branch-prediction instrumentation. **************************************************************************** */ static void brcnt_emit() { ctrl_fmt(BR_CNT_FUNC,CALL,1);/* Emit call to "increment" routine */ emit(0); /* Emit inline counter to be incremented */ } /***************************************************************************** * brlab_next: generate the next branch local label * * See the comments above the declaration of 'br_cnt' for details on * branch-prediction instrumentation. **************************************************************************** */ static char * brlab_next() { static char buf[20]; sprintf(buf, "%s%d", BR_LABEL_BASE, br_cnt++); return buf; } /***************************************************************************** * brtab_emit: generate the fetch-prediction branch table. * * See the comments above the declaration of 'br_cnt' for details on * branch-prediction instrumentation. * * The code emitted here would be functionally equivalent to the following * example assembler source. * * .data * .align 2 * BR_TAB_NAME: * .word 0 # link to next table * .word 3 # length of table * .word LBRANCH0 # 1st entry in table proper * .word LBRANCH1 * .word LBRANCH2 ***************************************************************************** */ void brtab_emit() { int i; char buf[20]; char *p; /* Where the binary was output to */ fixS *fixP; /*->description of deferred address fixup */ if (!instrument_branches){ return; } subseg_new(SEG_DATA,0); /* .data */ frag_align(2,0); /* .align 2 */ record_alignment(now_seg,2); colon(BR_TAB_NAME); /* BR_TAB_NAME: */ emit(0); /* .word 0 #link to next table */ emit(br_cnt); /* .word n #length of table */ for (i=0; ifr_literal, 4, symbol_find(buf), 0, 0, 0, 0); fixP->fx_im_disp = 2; /* 32-bit displacement fix */ } } /***************************************************************************** * cobr_fmt: generate a COBR-format instruction * **************************************************************************** */ static void cobr_fmt(arg, opcode, oP) char *arg[]; /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */ long opcode; /* Opcode, with branch-prediction bits already set * if necessary. */ struct i960_opcode *oP; /*->description of instruction */ { long instr; /* 32-bit instruction */ struct regop regop; /* Description of register operand */ int n; /* Number of operands */ int var_frag; /* 1 if varying length code fragment should * be emitted; 0 if an address fix * should be emitted. */ instr = opcode; n = oP->num_ops; if (n >= 1) { /* First operand (if any) of a COBR is always a register * operand. Parse it. */ parse_regop(®op, arg[1], oP->operand[0]); instr |= (regop.n << 19) | (regop.mode << 13); } if (n >= 2) { /* Second operand (if any) of a COBR is always a register * operand. Parse it. */ parse_regop(®op, arg[2], oP->operand[1]); instr |= (regop.n << 14) | regop.special; } if (n < 3){ emit(instr); } else { if (instrument_branches){ brcnt_emit(); colon(brlab_next()); } /* A third operand to a COBR is always a displacement. * Parse it; if it's relaxable (a cobr "j" directive, or any * cobr other than bbs/bbc when the "-norelax" option is not in * use) set up a variable code fragment; otherwise set up an * address fix. */ var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */ get_cdisp(arg[3], "COBR", instr, 13, var_frag, 0); if (instrument_branches){ brcnt_emit(); } } } /* cobr_fmt() */ /***************************************************************************** * ctrl_fmt: generate a CTRL-format instruction * **************************************************************************** */ static void ctrl_fmt(targP, opcode, num_ops) char *targP; /* Pointer to text of lone operand (if any) */ long opcode; /* Template of instruction */ int num_ops; /* Number of operands */ { int instrument; /* TRUE iff we should add instrumentation to track * how often the branch is taken */ if (num_ops == 0){ emit(opcode); /* Output opcode */ } else { instrument = instrument_branches && (opcode!=CALL) && (opcode!=B) && (opcode!=RET) && (opcode!=BAL); if (instrument){ brcnt_emit(); colon(brlab_next()); } /* The operand MUST be an ip-relative displacment. Parse it * and set up address fix for the instruction we just output. */ get_cdisp(targP, "CTRL", opcode, 24, 0, 0); if (instrument){ brcnt_emit(); } } } /***************************************************************************** * emit: output instruction binary * * Output instruction binary, in target byte order, 4 bytes at a time. * Return pointer to where it was placed. * **************************************************************************** */ static char * emit(instr) long instr; /* Word to be output, host byte order */ { char *toP; /* Where to output it */ toP = frag_more(4); /* Allocate storage */ md_number_to_chars(toP, instr, 4); /* Convert to target byte order */ return toP; } /***************************************************************************** * get_args: break individual arguments out of comma-separated list * * Input assumptions: * - all comments and labels have been removed * - all strings of whitespace have been collapsed to a single blank. * - all character constants ('x') have been replaced with decimal * * Output: * args[0] is untouched. args[1] points to first operand, etc. All args: * - are NULL-terminated * - contain no whitespace * * Return value: * Number of operands (0,1,2, or 3) or -1 on error. * **************************************************************************** */ static int get_args(p, args) register char *p; /* Pointer to comma-separated operands; MUCKED BY US */ char *args[]; /* Output arg: pointers to operands placed in args[1-3]. * MUST ACCOMMODATE 4 ENTRIES (args[0-3]). */ { register int n; /* Number of operands */ register char *to; /* char buf[4]; */ /* int len; */ /* Skip lead white space */ while (*p == ' '){ p++; } if (*p == '\0'){ return 0; } n = 1; args[1] = p; /* Squeze blanks out by moving non-blanks toward start of string. * Isolate operands, whenever comma is found. */ to = p; while (*p != '\0'){ if (*p == ' '){ p++; } else if (*p == ','){ /* Start of operand */ if (n == 3){ as_bad("too many operands"); return -1; } *to++ = '\0'; /* Terminate argument */ args[++n] = to; /* Start next argument */ p++; } else { *to++ = *p++; } } *to = '\0'; return n; } /***************************************************************************** * get_cdisp: handle displacement for a COBR or CTRL instruction. * * Parse displacement for a COBR or CTRL instruction. * * If successful, output the instruction opcode and set up for it, * depending on the arg 'var_frag', either: * o an address fixup to be done when all symbol values are known, or * o a varying length code fragment, with address fixup info. This * will be done for cobr instructions that may have to be relaxed * in to compare/branch instructions (8 bytes) if the final address * displacement is greater than 13 bits. * **************************************************************************** */ static void get_cdisp(dispP, ifmtP, instr, numbits, var_frag, callj) char *dispP; /*->displacement as specified in source instruction */ char *ifmtP; /*->"COBR" or "CTRL" (for use in error message) */ long instr; /* Instruction needing the displacement */ int numbits; /* # bits of displacement (13 for COBR, 24 for CTRL) */ int var_frag; /* 1 if varying length code fragment should be emitted; * 0 if an address fix should be emitted. */ int callj; /* 1 if callj relocation should be done; else 0 */ { expressionS e; /* Parsed expression */ fixS *fixP; /* Structure describing needed address fix */ char *outP; /* Where instruction binary is output to */ fixP = NULL; switch (parse_expr(dispP,&e)) { case SEG_GOOF: as_bad("expression syntax error"); break; case SEG_TEXT: case SEG_UNKNOWN: if (var_frag) { outP = frag_more(8); /* Allocate worst-case storage */ md_number_to_chars(outP, instr, 4); frag_variant(rs_machine_dependent, 4, 4, 1, adds(e), offs(e), outP, 0, 0); } else { /* Set up a new fix structure, so address can be updated * when all symbol values are known. */ outP = emit(instr); fixP = fix_new(frag_now, outP - frag_now->fr_literal, 4, adds(e), 0, offs(e), 1, 0); fixP->fx_callj = callj; /* We want to modify a bit field when the address is * known. But we don't need all the garbage in the * bit_fix structure. So we're going to lie and store * the number of bits affected instead of a pointer. */ fixP->fx_bit_fixP = (bit_fixS *) numbits; } break; case SEG_DATA: case SEG_BSS: as_bad("attempt to branch into different segment"); break; default: as_bad("target of %s instruction must be a label", ifmtP); break; } } /***************************************************************************** * get_ispec: parse a memory operand for an index specification * * Here, an "index specification" is taken to be anything surrounded * by square brackets and NOT followed by anything else. * * If it's found, detach it from the input string, remove the surrounding * square brackets, and return a pointer to it. Otherwise, return NULL. * **************************************************************************** */ static char * get_ispec(textP) char *textP; /*->memory operand from source instruction, no white space */ { char *start; /*->start of index specification */ char *end; /*->end of index specification */ /* Find opening square bracket, if any */ start = strchr(textP, '['); if (start != NULL){ /* Eliminate '[', detach from rest of operand */ *start++ = '\0'; end = strchr(start, ']'); if (end == NULL){ as_bad("unmatched '['"); } else { /* Eliminate ']' and make sure it was the last thing * in the string. */ *end = '\0'; if (*(end+1) != '\0'){ as_bad("garbage after index spec ignored"); } } } return start; } /***************************************************************************** * get_regnum: * * Look up a (suspected) register name in the register table and return the * associated register number (or -1 if not found). * **************************************************************************** */ static int get_regnum(regname) char *regname; /* Suspected register name */ { int *rP; rP = (int *) hash_find(reg_hash, regname); return (rP == NULL) ? -1 : *rP; } /***************************************************************************** * i_scan: perform lexical scan of ascii assembler instruction. * * Input assumptions: * - input string is an i80960 instruction (not a pseudo-op) * - all comments and labels have been removed * - all strings of whitespace have been collapsed to a single blank. * * Output: * args[0] points to opcode, other entries point to operands. All strings: * - are NULL-terminated * - contain no whitespace * - have character constants ('x') replaced with a decimal number * * Return value: * Number of operands (0,1,2, or 3) or -1 on error. * **************************************************************************** */ static int i_scan(iP, args) register char *iP; /* Pointer to ascii instruction; MUCKED BY US. */ char *args[]; /* Output arg: pointers to opcode and operands placed * here. MUST ACCOMMODATE 4 ENTRIES. */ { /* Isolate opcode */ if (*(iP) == ' ') { iP++; } /* Skip lead space, if any */ args[0] = iP; for (; *iP != ' '; iP++) { if (*iP == '\0') { /* There are no operands */ if (args[0] == iP) { /* We never moved: there was no opcode either! */ as_bad("missing opcode"); return -1; } return 0; } } *iP++ = '\0'; /* Terminate opcode */ return(get_args(iP, args)); } /* i_scan() */ /***************************************************************************** * mem_fmt: generate a MEMA- or MEMB-format instruction * **************************************************************************** */ static void mem_fmt(args, oP) char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */ struct i960_opcode *oP; /* Pointer to description of instruction */ { int i; /* Loop counter */ struct regop regop; /* Description of register operand */ char opdesc; /* Operand descriptor byte */ memS instr; /* Description of binary to be output */ char *outP; /* Where the binary was output to */ expressionS expr; /* Parsed expression */ fixS *fixP; /*->description of deferred address fixup */ bzero(&instr, sizeof(memS)); instr.opcode = oP->opcode; /* Process operands. */ for (i = 1; i <= oP->num_ops; i++){ opdesc = oP->operand[i-1]; if (MEMOP(opdesc)){ parse_memop(&instr, args[i], oP->format); } else { parse_regop(®op, args[i], opdesc); instr.opcode |= regop.n << 19; } } /* Output opcode */ outP = emit(instr.opcode); if (instr.disp == 0){ return; } /* Parse and process the displacement */ switch (parse_expr(instr.e,&expr)){ case SEG_GOOF: as_bad("expression syntax error"); break; case SEG_ABSOLUTE: if (instr.disp == 32){ (void) emit(offs(expr)); /* Output displacement */ } else { /* 12-bit displacement */ if (offs(expr) & ~0xfff){ /* Won't fit in 12 bits: convert already-output * instruction to MEMB format, output * displacement. */ mema_to_memb(outP); (void) emit(offs(expr)); } else { /* WILL fit in 12 bits: OR into opcode and * overwrite the binary we already put out */ instr.opcode |= offs(expr); md_number_to_chars(outP, instr.opcode, 4); } } break; case SEG_DIFFERENCE: case SEG_TEXT: case SEG_DATA: case SEG_BSS: case SEG_UNKNOWN: if (instr.disp == 12){ /* Displacement is dependent on a symbol, whose value * may change at link time. We HAVE to reserve 32 bits. * Convert already-output opcode to MEMB format. */ mema_to_memb(outP); } /* Output 0 displacement and set up address fixup for when * this symbol's value becomes known. */ outP = emit((long) 0); fixP = fix_new(frag_now, outP - frag_now->fr_literal, 4, adds(expr), subs(expr), offs(expr), 0, 0); fixP->fx_im_disp = 2; /* 32-bit displacement fix */ break; default: BAD_CASE(segs(expr)); break; } } /* memfmt() */ /***************************************************************************** * mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode. * * There are 2 possible MEMA formats: * - displacement only * - displacement + abase * * They are distinguished by the setting of the MEMA_ABASE bit. * **************************************************************************** */ static void mema_to_memb(opcodeP) char *opcodeP; /* Where to find the opcode, in target byte order */ { long opcode; /* Opcode in host byte order */ long mode; /* Mode bits for MEMB instruction */ opcode = md_chars_to_number(opcodeP, 4); know(!(opcode & MEMB_BIT)); mode = MEMB_BIT | D_BIT; if (opcode & MEMA_ABASE){ mode |= A_BIT; } opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */ opcode |= mode; /* Set MEMB mode bits */ md_number_to_chars(opcodeP, opcode, 4); } /* mema_to_memb() */ /***************************************************************************** * parse_expr: parse an expression * * Use base assembler's expression parser to parse an expression. * It, unfortunately, runs off a global which we have to save/restore * in order to make it work for us. * * An empty expression string is treated as an absolute 0. * * Return "segment" to which the expression evaluates. * Return SEG_GOOF regardless of expression evaluation if entire input * string is not consumed in the evaluation -- tolerate no dangling junk! * **************************************************************************** */ static segT parse_expr(textP, expP) char *textP; /* Text of expression to be parsed */ expressionS *expP; /* Where to put the results of parsing */ { char *save_in; /* Save global here */ segT seg; /* Segment to which expression evaluates */ symbolS *symP; know(textP); if (*textP == '\0') { /* Treat empty string as absolute 0 */ expP->X_add_symbol = expP->X_subtract_symbol = NULL; expP->X_add_number = 0; seg = expP->X_seg = SEG_ABSOLUTE; } else { save_in = input_line_pointer; /* Save global */ input_line_pointer = textP; /* Make parser work for us */ seg = expression(expP); if (input_line_pointer - textP != strlen(textP)) { /* Did not consume all of the input */ seg = SEG_GOOF; } symP = expP->X_add_symbol; if (symP && (hash_find(reg_hash, S_GET_NAME(symP)))) { /* Register name in an expression */ seg = SEG_GOOF; } input_line_pointer = save_in; /* Restore global */ } return seg; } /***************************************************************************** * parse_ldcont: * Parse and replace a 'ldconst' pseudo-instruction with an appropriate * i80960 instruction. * * Assumes the input consists of: * arg[0] opcode mnemonic ('ldconst') * arg[1] first operand (constant) * arg[2] name of register to be loaded * * Replaces opcode and/or operands as appropriate. * * Returns the new number of arguments, or -1 on failure. * **************************************************************************** */ static int parse_ldconst(arg) char *arg[]; /* See above */ { int n; /* Constant to be loaded */ int shift; /* Shift count for "shlo" instruction */ static char buf[5]; /* Literal for first operand */ static char buf2[5]; /* Literal for second operand */ expressionS e; /* Parsed expression */ arg[3] = NULL; /* So we can tell at the end if it got used or not */ switch(parse_expr(arg[1],&e)){ case SEG_TEXT: case SEG_DATA: case SEG_BSS: case SEG_UNKNOWN: case SEG_DIFFERENCE: /* We're dependent on one or more symbols -- use "lda" */ arg[0] = "lda"; break; case SEG_ABSOLUTE: /* Try the following mappings: * ldconst 0, ->mov 0, * ldconst 31, ->mov 31, * ldconst 32, ->addo 1,31, * ldconst 62, ->addo 31,31, * ldconst 64, ->shlo 8,3, * ldconst -1, ->subo 1,0, * ldconst -31,->subo 31,0, * * anthing else becomes: * lda xxx, */ n = offs(e); if ((0 <= n) && (n <= 31)){ arg[0] = "mov"; } else if ((-31 <= n) && (n <= -1)){ arg[0] = "subo"; arg[3] = arg[2]; sprintf(buf, "%d", -n); arg[1] = buf; arg[2] = "0"; } else if ((32 <= n) && (n <= 62)){ arg[0] = "addo"; arg[3] = arg[2]; arg[1] = "31"; sprintf(buf, "%d", n-31); arg[2] = buf; } else if ((shift = shift_ok(n)) != 0){ arg[0] = "shlo"; arg[3] = arg[2]; sprintf(buf, "%d", shift); arg[1] = buf; sprintf(buf2, "%d", n >> shift); arg[2] = buf2; } else { arg[0] = "lda"; } break; default: as_bad("invalid constant"); return -1; break; } return (arg[3] == 0) ? 2: 3; } /***************************************************************************** * parse_memop: parse a memory operand * * This routine is based on the observation that the 4 mode bits of the * MEMB format, taken individually, have fairly consistent meaning: * * M3 (bit 13): 1 if displacement is present (D_BIT) * M2 (bit 12): 1 for MEMB instructions (MEMB_BIT) * M1 (bit 11): 1 if index is present (I_BIT) * M0 (bit 10): 1 if abase is present (A_BIT) * * So we parse the memory operand and set bits in the mode as we find * things. Then at the end, if we go to MEMB format, we need only set * the MEMB bit (M2) and our mode is built for us. * * Unfortunately, I said "fairly consistent". The exceptions: * * DBIA * 0100 Would seem illegal, but means "abase-only". * * 0101 Would seem to mean "abase-only" -- it means IP-relative. * Must be converted to 0100. * * 0110 Would seem to mean "index-only", but is reserved. * We turn on the D bit and provide a 0 displacement. * * The other thing to observe is that we parse from the right, peeling * things * off as we go: first any index spec, then any abase, then * the displacement. * **************************************************************************** */ static void parse_memop(memP, argP, optype) memS *memP; /* Where to put the results */ char *argP; /* Text of the operand to be parsed */ int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */ { char *indexP; /* Pointer to index specification with "[]" removed */ char *p; /* Temp char pointer */ char iprel_flag;/* True if this is an IP-relative operand */ int regnum; /* Register number */ int scale; /* Scale factor: 1,2,4,8, or 16. Later converted * to internal format (0,1,2,3,4 respectively). */ int mode; /* MEMB mode bits */ int *intP; /* Pointer to register number */ /* The following table contains the default scale factors for each * type of memory instruction. It is accessed using (optype-MEM1) * as an index -- thus it assumes the 'optype' constants are assigned * consecutive values, in the order they appear in this table */ static int def_scale[] = { 1, /* MEM1 */ 2, /* MEM2 */ 4, /* MEM4 */ 8, /* MEM8 */ -1, /* MEM12 -- no valid default */ 16 /* MEM16 */ }; iprel_flag = mode = 0; /* Any index present? */ indexP = get_ispec(argP); if (indexP) { p = strchr(indexP, '*'); if (p == NULL) { /* No explicit scale -- use default for this *instruction type. */ scale = def_scale[ optype - MEM1 ]; } else { *p++ = '\0'; /* Eliminate '*' */ /* Now indexP->a '\0'-terminated register name, * and p->a scale factor. */ if (!strcmp(p,"16")){ scale = 16; } else if (strchr("1248",*p) && (p[1] == '\0')){ scale = *p - '0'; } else { scale = -1; } } regnum = get_regnum(indexP); /* Get index reg. # */ if (!IS_RG_REG(regnum)){ as_bad("invalid index register"); return; } /* Convert scale to its binary encoding */ switch (scale){ case 1: scale = 0 << 7; break; case 2: scale = 1 << 7; break; case 4: scale = 2 << 7; break; case 8: scale = 3 << 7; break; case 16: scale = 4 << 7; break; default: as_bad("invalid scale factor"); return; }; memP->opcode |= scale | regnum; /* Set index bits in opcode */ mode |= I_BIT; /* Found a valid index spec */ } /* Any abase (Register Indirect) specification present? */ if ((p = strrchr(argP,'(')) != NULL) { /* "(" is there -- does it start a legal abase spec? * (If not it could be part of a displacement expression.) */ intP = (int *) hash_find(areg_hash, p); if (intP != NULL){ /* Got an abase here */ regnum = *intP; *p = '\0'; /* discard register spec */ if (regnum == IPREL){ /* We have to specialcase ip-rel mode */ iprel_flag = 1; } else { memP->opcode |= regnum << 14; mode |= A_BIT; } } } /* Any expression present? */ memP->e = argP; if (*argP != '\0'){ mode |= D_BIT; } /* Special-case ip-relative addressing */ if (iprel_flag){ if (mode & I_BIT){ syntax(); } else { memP->opcode |= 5 << 10; /* IP-relative mode */ memP->disp = 32; } return; } /* Handle all other modes */ switch (mode){ case D_BIT | A_BIT: /* Go with MEMA instruction format for now (grow to MEMB later * if 12 bits is not enough for the displacement). * MEMA format has a single mode bit: set it to indicate * that abase is present. */ memP->opcode |= MEMA_ABASE; memP->disp = 12; break; case D_BIT: /* Go with MEMA instruction format for now (grow to MEMB later * if 12 bits is not enough for the displacement). */ memP->disp = 12; break; case A_BIT: /* For some reason, the bit string for this mode is not * consistent: it should be 0 (exclusive of the MEMB bit), * so we set it "by hand" here. */ memP->opcode |= MEMB_BIT; break; case A_BIT | I_BIT: /* set MEMB bit in mode, and OR in mode bits */ memP->opcode |= mode | MEMB_BIT; break; case I_BIT: /* Treat missing displacement as displacement of 0 */ mode |= D_BIT; /*********************** * Fall into next case * ********************** */ case D_BIT | A_BIT | I_BIT: case D_BIT | I_BIT: /* set MEMB bit in mode, and OR in mode bits */ memP->opcode |= mode | MEMB_BIT; memP->disp = 32; break; default: syntax(); break; } } /***************************************************************************** * parse_po: parse machine-dependent pseudo-op * * This is a top-level routine for machine-dependent pseudo-ops. It slurps * up the rest of the input line, breaks out the individual arguments, * and dispatches them to the correct handler. **************************************************************************** */ static void parse_po(po_num) int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */ { char *args[4]; /* Pointers operands, with no embedded whitespace. * arg[0] unused. * arg[1-3]->operands */ int n_ops; /* Number of operands */ char *p; /* Pointer to beginning of unparsed argument string */ char eol; /* Character that indicated end of line */ extern char is_end_of_line[]; /* Advance input pointer to end of line. */ p = input_line_pointer; while (!is_end_of_line[ *input_line_pointer ]){ input_line_pointer++; } eol = *input_line_pointer; /* Save end-of-line char */ *input_line_pointer = '\0'; /* Terminate argument list */ /* Parse out operands */ n_ops = get_args(p, args); if (n_ops == -1){ return; } /* Dispatch to correct handler */ switch(po_num){ case S_SYSPROC: s_sysproc(n_ops, args); break; case S_LEAFPROC: s_leafproc(n_ops, args); break; default: BAD_CASE(po_num); break; } /* Restore eol, so line numbers get updated correctly. Base assembler * assumes we leave input pointer pointing at char following the eol. */ *input_line_pointer++ = eol; } /***************************************************************************** * parse_regop: parse a register operand. * * In case of illegal operand, issue a message and return some valid * information so instruction processing can continue. **************************************************************************** */ static void parse_regop(regopP, optext, opdesc) struct regop *regopP; /* Where to put description of register operand */ char *optext; /* Text of operand */ char opdesc; /* Descriptor byte: what's legal for this operand */ { int n; /* Register number */ expressionS e; /* Parsed expression */ /* See if operand is a register */ n = get_regnum(optext); if (n >= 0){ if (IS_RG_REG(n)){ /* global or local register */ if (!REG_ALIGN(opdesc,n)){ as_bad("unaligned register"); } regopP->n = n; regopP->mode = 0; regopP->special = 0; return; } else if (IS_FP_REG(n) && FP_OK(opdesc)){ /* Floating point register, and it's allowed */ regopP->n = n - FP0; regopP->mode = 1; regopP->special = 0; return; } else if (IS_SF_REG(n) && SFR_OK(opdesc)){ /* Special-function register, and it's allowed */ regopP->n = n - SF0; regopP->mode = 0; regopP->special = 1; if (!targ_has_sfr(regopP->n)){ as_bad("no such sfr in this architecture"); } return; } } else if (LIT_OK(opdesc)){ /* * How about a literal? */ regopP->mode = 1; regopP->special = 0; if (FP_OK(opdesc)){ /* floating point literal acceptable */ /* Skip over 0f, 0d, or 0e prefix */ if ( (optext[0] == '0') && (optext[1] >= 'd') && (optext[1] <= 'f') ){ optext += 2; } if (!strcmp(optext,"0.0") || !strcmp(optext,"0") ){ regopP->n = 0x10; return; } if (!strcmp(optext,"1.0") || !strcmp(optext,"1") ){ regopP->n = 0x16; return; } } else { /* fixed point literal acceptable */ if ((parse_expr(optext,&e) != SEG_ABSOLUTE) || (offs(e) < 0) || (offs(e) > 31)){ as_bad("illegal literal"); offs(e) = 0; } regopP->n = offs(e); return; } } /* Nothing worked */ syntax(); regopP->mode = 0; /* Register r0 is always a good one */ regopP->n = 0; regopP->special = 0; } /* parse_regop() */ /***************************************************************************** * reg_fmt: generate a REG-format instruction * **************************************************************************** */ static void reg_fmt(args, oP) char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */ struct i960_opcode *oP; /* Pointer to description of instruction */ { long instr; /* Binary to be output */ struct regop regop; /* Description of register operand */ int n_ops; /* Number of operands */ instr = oP->opcode; n_ops = oP->num_ops; if (n_ops >= 1){ parse_regop(®op, args[1], oP->operand[0]); if ((n_ops == 1) && !(instr & M3)){ /* 1-operand instruction in which the dst field should * be used (instead of src1). */ regop.n <<= 19; if (regop.special){ regop.mode = regop.special; } regop.mode <<= 13; regop.special = 0; } else { /* regop.n goes in bit 0, needs no shifting */ regop.mode <<= 11; regop.special <<= 5; } instr |= regop.n | regop.mode | regop.special; } if (n_ops >= 2) { parse_regop(®op, args[2], oP->operand[1]); if ((n_ops == 2) && !(instr & M3)){ /* 2-operand instruction in which the dst field should * be used instead of src2). */ regop.n <<= 19; if (regop.special){ regop.mode = regop.special; } regop.mode <<= 13; regop.special = 0; } else { regop.n <<= 14; regop.mode <<= 12; regop.special <<= 6; } instr |= regop.n | regop.mode | regop.special; } if (n_ops == 3){ parse_regop(®op, args[3], oP->operand[2]); if (regop.special){ regop.mode = regop.special; } instr |= (regop.n <<= 19) | (regop.mode <<= 13); } emit(instr); } /***************************************************************************** * relax_cobr: * Replace cobr instruction in a code fragment with equivalent branch and * compare instructions, so it can reach beyond a 13-bit displacement. * Set up an address fix/relocation for the new branch instruction. * **************************************************************************** */ /* This "conditional jump" table maps cobr instructions into equivalent * compare and branch opcodes. */ static struct { long compare; long branch; } coj[] = { /* COBR OPCODE: */ CHKBIT, BNO, /* 0x30 - bbc */ CMPO, BG, /* 0x31 - cmpobg */ CMPO, BE, /* 0x32 - cmpobe */ CMPO, BGE, /* 0x33 - cmpobge */ CMPO, BL, /* 0x34 - cmpobl */ CMPO, BNE, /* 0x35 - cmpobne */ CMPO, BLE, /* 0x36 - cmpoble */ CHKBIT, BO, /* 0x37 - bbs */ CMPI, BNO, /* 0x38 - cmpibno */ CMPI, BG, /* 0x39 - cmpibg */ CMPI, BE, /* 0x3a - cmpibe */ CMPI, BGE, /* 0x3b - cmpibge */ CMPI, BL, /* 0x3c - cmpibl */ CMPI, BNE, /* 0x3d - cmpibne */ CMPI, BLE, /* 0x3e - cmpible */ CMPI, BO, /* 0x3f - cmpibo */ }; static void relax_cobr(fragP) register fragS *fragP; /* fragP->fr_opcode is assumed to point to * the cobr instruction, which comes at the * end of the code fragment. */ { int opcode, src1, src2, m1, s2; /* Bit fields from cobr instruction */ long bp_bits; /* Branch prediction bits from cobr instruction */ long instr; /* A single i960 instruction */ char *iP; /*->instruction to be replaced */ fixS *fixP; /* Relocation that can be done at assembly time */ /* PICK UP & PARSE COBR INSTRUCTION */ iP = fragP->fr_opcode; instr = md_chars_to_number(iP, 4); opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */ src1 = (instr >> 19) & 0x1f; m1 = (instr >> 13) & 1; s2 = instr & 1; src2 = (instr >> 14) & 0x1f; bp_bits= instr & BP_MASK; /* GENERATE AND OUTPUT COMPARE INSTRUCTION */ instr = coj[opcode].compare | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14); md_number_to_chars(iP, instr, 4); /* OUTPUT BRANCH INSTRUCTION */ md_number_to_chars(iP+4, coj[opcode].branch | bp_bits, 4); /* SET UP ADDRESS FIXUP/RELOCATION */ fixP = fix_new(fragP, iP+4 - fragP->fr_literal, 4, fragP->fr_symbol, 0, fragP->fr_offset, 1, 0); fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */ fragP->fr_fix += 4; frag_wane(fragP); } /***************************************************************************** * reloc_callj: Relocate a 'callj' instruction * * This is a "non-(GNU)-standard" machine-dependent hook. The base * assembler calls it when it decides it can relocate an address at * assembly time instead of emitting a relocation directive. * * Check to see if the relocation involves a 'callj' instruction to a: * sysproc: Replace the default 'call' instruction with a 'calls' * leafproc: Replace the default 'call' instruction with a 'bal'. * other proc: Do nothing. * * See b.out.h for details on the 'n_other' field in a symbol structure. * * IMPORTANT!: * Assumes the caller has already figured out, in the case of a leafproc, * to use the 'bal' entry point, and has substituted that symbol into the * passed fixup structure. * **************************************************************************** */ void reloc_callj(fixP) fixS *fixP; /* Relocation that can be done at assembly time */ { char *where; /*->the binary for the instruction being relocated */ if (!fixP->fx_callj) { return; } /* This wasn't a callj instruction in the first place */ where = fixP->fx_frag->fr_literal + fixP->fx_where; if (TC_S_IS_SYSPROC(fixP->fx_addsy)) { /* Symbol is a .sysproc: replace 'call' with 'calls'. * System procedure number is (other-1). */ md_number_to_chars(where, CALLS|TC_S_GET_SYSPROC(fixP->fx_addsy), 4); /* Nothing else needs to be done for this instruction. * Make sure 'md_number_to_field()' will perform a no-op. */ fixP->fx_bit_fixP = (bit_fixS *) 1; } else if (TC_S_IS_CALLNAME(fixP->fx_addsy)) { /* Should not happen: see block comment above */ as_fatal("Trying to 'bal' to %s", S_GET_NAME(fixP->fx_addsy)); } else if (TC_S_IS_BALNAME(fixP->fx_addsy)) { /* Replace 'call' with 'bal'; both instructions have * the same format, so calling code should complete * relocation as if nothing happened here. */ md_number_to_chars(where, BAL, 4); } else if (TC_S_IS_BADPROC(fixP->fx_addsy)) { as_bad("Looks like a proc, but can't tell what kind.\n"); } /* switch on proc type */ /* else Symbol is neither a sysproc nor a leafproc */ return; } /* reloc_callj() */ /***************************************************************************** * s_leafproc: process .leafproc pseudo-op * * .leafproc takes two arguments, the second one is optional: * arg[1]: name of 'call' entry point to leaf procedure * arg[2]: name of 'bal' entry point to leaf procedure * * If the two arguments are identical, or if the second one is missing, * the first argument is taken to be the 'bal' entry point. * * If there are 2 distinct arguments, we must make sure that the 'bal' * entry point immediately follows the 'call' entry point in the linked * list of symbols. * **************************************************************************** */ static void s_leafproc(n_ops, args) int n_ops; /* Number of operands */ char *args[]; /* args[1]->1st operand, args[2]->2nd operand */ { symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */ symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */ if ((n_ops != 1) && (n_ops != 2)) { as_bad("should have 1 or 2 operands"); return; } /* Check number of arguments */ /* Find or create symbol for 'call' entry point. */ callP = symbol_find_or_make(args[1]); if (TC_S_IS_CALLNAME(callP)) { as_warn("Redefining leafproc %s", S_GET_NAME(callP)); } /* is leafproc */ /* If that was the only argument, use it as the 'bal' entry point. * Otherwise, mark it as the 'call' entry point and find or create * another symbol for the 'bal' entry point. */ if ((n_ops == 1) || !strcmp(args[1],args[2])) { TC_S_FORCE_TO_BALNAME(callP); } else { TC_S_FORCE_TO_CALLNAME(callP); balP = symbol_find_or_make(args[2]); if (TC_S_IS_CALLNAME(balP)) { as_warn("Redefining leafproc %s", S_GET_NAME(balP)); } TC_S_FORCE_TO_BALNAME(balP); tc_set_bal_of_call(callP, balP); } /* if only one arg, or the args are the same */ return; } /* s_leafproc() */ /* * s_sysproc: process .sysproc pseudo-op * * .sysproc takes two arguments: * arg[1]: name of entry point to system procedure * arg[2]: 'entry_num' (index) of system procedure in the range * [0,31] inclusive. * * For [ab].out, we store the 'entrynum' in the 'n_other' field of * the symbol. Since that entry is normally 0, we bias 'entrynum' * by adding 1 to it. It must be unbiased before it is used. */ static void s_sysproc(n_ops, args) int n_ops; /* Number of operands */ char *args[]; /* args[1]->1st operand, args[2]->2nd operand */ { expressionS exp; symbolS *symP; if (n_ops != 2) { as_bad("should have two operands"); return; } /* bad arg count */ /* Parse "entry_num" argument and check it for validity. */ if ((parse_expr(args[2],&exp) != SEG_ABSOLUTE) || (offs(exp) < 0) || (offs(exp) > 31)) { as_bad("'entry_num' must be absolute number in [0,31]"); return; } /* Find/make symbol and stick entry number (biased by +1) into it */ symP = symbol_find_or_make(args[1]); if (TC_S_IS_SYSPROC(symP)) { as_warn("Redefining entrynum for sysproc %s", S_GET_NAME(symP)); } /* redefining */ TC_S_SET_SYSPROC(symP, offs(exp)); /* encode entry number */ TC_S_FORCE_TO_SYSPROC(symP); return; } /* s_sysproc() */ /***************************************************************************** * shift_ok: * Determine if a "shlo" instruction can be used to implement a "ldconst". * This means that some number X < 32 can be shifted left to produce the * constant of interest. * * Return the shift count, or 0 if we can't do it. * Caller calculates X by shifting original constant right 'shift' places. * **************************************************************************** */ static int shift_ok(n) int n; /* The constant of interest */ { int shift; /* The shift count */ if (n <= 0){ /* Can't do it for negative numbers */ return 0; } /* Shift 'n' right until a 1 is about to be lost */ for (shift = 0; (n & 1) == 0; shift++){ n >>= 1; } if (n >= 32){ return 0; } return shift; } /***************************************************************************** * syntax: issue syntax error * **************************************************************************** */ static void syntax() { as_bad("syntax error"); } /* syntax() */ /***************************************************************************** * targ_has_sfr: * Return TRUE iff the target architecture supports the specified * special-function register (sfr). * **************************************************************************** */ static int targ_has_sfr(n) int n; /* Number (0-31) of sfr */ { switch (architecture){ case ARCH_KA: case ARCH_KB: case ARCH_MC: return 0; case ARCH_CA: default: return ((0<=n) && (n<=2)); } } /***************************************************************************** * targ_has_iclass: * Return TRUE iff the target architecture supports the indicated * class of instructions. * **************************************************************************** */ static int targ_has_iclass(ic) int ic; /* Instruction class; one of: * I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM */ { iclasses_seen |= ic; switch (architecture){ case ARCH_KA: return ic & (I_BASE | I_KX); case ARCH_KB: return ic & (I_BASE | I_KX | I_FP | I_DEC); case ARCH_MC: return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL); case ARCH_CA: return ic & (I_BASE | I_CX | I_CASIM); default: if ((iclasses_seen & (I_KX|I_FP|I_DEC|I_MIL)) && (iclasses_seen & I_CX)){ as_warn("architecture of opcode conflicts with that of earlier instruction(s)"); iclasses_seen &= ~ic; } return 1; } } /* Parse an operand that is machine-specific. We just return without modifying the expression if we have nothing to do. */ /* ARGSUSED */ void md_operand (expressionP) expressionS *expressionP; { } /* We have no need to default values of symbols. */ /* ARGSUSED */ symbolS *md_undefined_symbol(name) char *name; { return 0; } /* md_undefined_symbol() */ /* Exactly what point is a PC-relative offset relative TO? On the i960, they're relative to the address of the instruction, which we have set up as the address of the fixup too. */ long md_pcrel_from (fixP) fixS *fixP; { return fixP->fx_where + fixP->fx_frag->fr_address; } void md_apply_fix(fixP, val) fixS *fixP; long val; { char *place = fixP->fx_where + fixP->fx_frag->fr_literal; if (!fixP->fx_bit_fixP) { switch (fixP->fx_im_disp) { case 0: fixP->fx_addnumber = val; md_number_to_imm(place, val, fixP->fx_size, fixP); break; case 1: md_number_to_disp(place, fixP->fx_pcrel ? val + fixP->fx_pcrel_adjust : val, fixP->fx_size); break; case 2: /* fix requested for .long .word etc */ md_number_to_chars(place, val, fixP->fx_size); break; default: as_fatal("Internal error in md_apply_fix() in file \"%s\"", __FILE__); } /* OVE: maybe one ought to put _imm _disp _chars in one md-func */ } else { md_number_to_field(place, val, fixP->fx_bit_fixP); } return; } /* md_apply_fix() */ #if defined(OBJ_AOUT) | defined(OBJ_BOUT) void tc_bout_fix_to_chars(where, fixP, segment_address_in_file) char *where; fixS *fixP; relax_addressT segment_address_in_file; { static unsigned char nbytes_r_length [] = { 42, 0, 1, 42, 2 }; struct relocation_info ri; symbolS *symbolP; /* JF this is for paranoia */ bzero((char *)&ri, sizeof(ri)); know((symbolP = fixP->fx_addsy) != 0); /* These two 'cuz of NS32K */ ri.r_callj = fixP->fx_callj; ri.r_length = nbytes_r_length[fixP->fx_size]; ri.r_pcrel = fixP->fx_pcrel; ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file; if (!S_IS_DEFINED(symbolP)) { ri.r_extern = 1; ri.r_index = symbolP->sy_number; } else { ri.r_extern = 0; ri.r_index = S_GET_TYPE(symbolP); } /* Output the relocation information in machine-dependent form. */ md_ri_to_chars(where, &ri); return; } /* tc_bout_fix_to_chars() */ #endif /* OBJ_AOUT or OBJ_BOUT */ /* Align an address by rounding it up to the specified boundary. */ long md_section_align(seg, addr) segT seg; long addr; /* Address to be rounded up */ { return((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg])); } /* md_section_align() */ #ifdef OBJ_COFF void tc_headers_hook(headers) object_headers *headers; { /* FIXME: remove this line */ /* unsigned short arch_flag = 0; */ if (iclasses_seen == I_BASE){ headers->filehdr.f_flags |= F_I960CORE; } else if (iclasses_seen & I_CX){ headers->filehdr.f_flags |= F_I960CA; } else if (iclasses_seen & I_MIL){ headers->filehdr.f_flags |= F_I960MC; } else if (iclasses_seen & (I_DEC|I_FP)){ headers->filehdr.f_flags |= F_I960KB; } else { headers->filehdr.f_flags |= F_I960KA; } /* set arch flag */ if (flagseen['R']) { headers->filehdr.f_magic = I960RWMAGIC; headers->aouthdr.magic = OMAGIC; } else { headers->filehdr.f_magic = I960ROMAGIC; headers->aouthdr.magic = NMAGIC; } /* set magic numbers */ return; } /* tc_headers_hook() */ #endif /* OBJ_COFF */ /* * Things going on here: * * For bout, We need to assure a couple of simplifying * assumptions about leafprocs for the linker: the leafproc * entry symbols will be defined in the same assembly in * which they're declared with the '.leafproc' directive; * and if a leafproc has both 'call' and 'bal' entry points * they are both global or both local. * * For coff, the call symbol has a second aux entry that * contains the bal entry point. The bal symbol becomes a * label. * * For coff representation, the call symbol has a second aux entry that * contains the bal entry point. The bal symbol becomes a label. * */ void tc_crawl_symbol_chain(headers) object_headers *headers; { symbolS *symbolP; for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next(symbolP)) { #ifdef OBJ_COFF if (TC_S_IS_SYSPROC(symbolP)) { /* second aux entry already contains the sysproc number */ S_SET_NUMBER_AUXILIARY(symbolP, 2); S_SET_STORAGE_CLASS(symbolP, C_SCALL); S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT)); continue; } /* rewrite sysproc */ #endif /* OBJ_COFF */ if (!TC_S_IS_BALNAME(symbolP) && !TC_S_IS_CALLNAME(symbolP)) { continue; } /* Not a leafproc symbol */ if (!S_IS_DEFINED(symbolP)) { as_bad("leafproc symbol '%s' undefined", S_GET_NAME(symbolP)); } /* undefined leaf */ if (TC_S_IS_CALLNAME(symbolP)) { symbolS *balP = tc_get_bal_of_call(symbolP); if (S_IS_EXTERNAL(symbolP) != S_IS_EXTERNAL(balP)) { S_SET_EXTERNAL(symbolP); S_SET_EXTERNAL(balP); as_warn("Warning: making leafproc entries %s and %s both global\n", S_GET_NAME(symbolP), S_GET_NAME(balP)); } /* externality mismatch */ } /* if callname */ } /* walk the symbol chain */ return; } /* tc_crawl_symbol_chain() */ /* * For aout or bout, the bal immediately follows the call. * * For coff, we cheat and store a pointer to the bal symbol * in the second aux entry of the call. */ void tc_set_bal_of_call(callP, balP) symbolS *callP; symbolS *balP; { know(TC_S_IS_CALLNAME(callP)); know(TC_S_IS_BALNAME(balP)); #ifdef OBJ_COFF callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP; S_SET_NUMBER_AUXILIARY(callP,2); #elif defined(OBJ_AOUT) || defined(OBJ_BOUT) /* If the 'bal' entry doesn't immediately follow the 'call' * symbol, unlink it from the symbol list and re-insert it. */ if (symbol_next(callP) != balP) { symbol_remove(balP, &symbol_rootP, &symbol_lastP); symbol_append(balP, callP, &symbol_rootP, &symbol_lastP); } /* if not in order */ #else (as yet unwritten.); #endif /* switch on OBJ_FORMAT */ return; } /* tc_set_bal_of_call() */ char *_tc_get_bal_of_call(callP) symbolS *callP; { symbolS *retval; know(TC_S_IS_CALLNAME(callP)); #ifdef OBJ_COFF retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry); #elif defined(OBJ_AOUT) || defined(OBJ_BOUT) retval = symbol_next(callP); #else (as yet unwritten.); #endif /* switch on OBJ_FORMAT */ know(TC_S_IS_BALNAME(retval)); return((char *) retval); } /* _tc_get_bal_of_call() */ void tc_coff_symbol_emit_hook(symbolP) symbolS *symbolP; { if (TC_S_IS_CALLNAME(symbolP)) { #ifdef OBJ_COFF symbolS *balP = tc_get_bal_of_call(symbolP); /* second aux entry contains the bal entry point */ /* S_SET_NUMBER_AUXILIARY(symbolP, 2); */ symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE(balP); S_SET_STORAGE_CLASS(symbolP, (!SF_GET_LOCAL(symbolP) ? C_LEAFEXT : C_LEAFSTAT)); S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT)); /* fix up the bal symbol */ S_SET_STORAGE_CLASS(balP, C_LABEL); #endif /* OBJ_COFF */ } /* only on calls */ return; } /* tc_coff_symbol_emit_hook() */ /* * Local Variables: * comment-column: 0 * fill-column: 131 * End: */ /* end of i960.c */