/* tc-i370.c -- Assembler for the IBM 360/370/390 instruction set. Loosely based on the ppc files by Linas Vepstas 1998, 99 Copyright (C) 1994, 95, 96, 97, 98, 99, 2000 Free Software Foundation, Inc. Written by Ian Lance Taylor, Cygnus Support. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This assembler implements a very hacked version of an elf-like thing * that gcc emits (when gcc is suitably hacked). To make it behave more * HLASM-like, try turning on the -M or --mri flag (as there are various * similarities between HLASM and the MRI assemblers, such as section * names, lack of leading . in pseudo-ops, DC and DS, etc ... */ #include #include #include "as.h" #include "subsegs.h" #include "struc-symbol.h" #include "opcode/i370.h" #ifdef OBJ_ELF #include "elf/i370.h" #endif /* This is the assembler for the System/390 Architecture */ /* Tell the main code what the endianness is. */ extern int target_big_endian; /* Generic assembler global variables which must be defined by all targets. */ #ifdef OBJ_ELF /* This string holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful. The macro tc_comment_chars points to this. We use this, rather than the usual comment_chars, so that we can switch for Solaris conventions. */ static const char i370_eabi_comment_chars[] = "#"; const char *i370_comment_chars = i370_eabi_comment_chars; #else const char comment_chars[] = "#"; #endif /* Characters which start a comment at the beginning of a line. */ const char line_comment_chars[] = "#*"; /* Characters which may be used to separate multiple commands on a single line. */ const char line_separator_chars[] = ";"; /* Characters which are used to indicate an exponent in a floating point number. */ const char EXP_CHARS[] = "eE"; /* Characters which mean that a number is a floating point constant, as in 0d1.0. */ const char FLT_CHARS[] = "dD"; void md_show_usage (stream) FILE *stream; { fprintf(stream, "\ S/370 options: (these have not yet been tested and may not work) \n\ -u ignored\n\ -mregnames Allow symbolic names for registers\n\ -mno-regnames Do not allow symbolic names for registers\n"); #ifdef OBJ_ELF fprintf(stream, "\ -mrelocatable support for GCC's -mrelocatble option\n\ -mrelocatable-lib support for GCC's -mrelocatble-lib option\n\ -V print assembler version number\n"); #endif } static void i370_byte PARAMS ((int)); static void i370_tc PARAMS ((int)); static void i370_ebcdic PARAMS ((int)); static void i370_dc PARAMS ((int)); static void i370_ds PARAMS ((int)); static void i370_rmode PARAMS ((int)); static void i370_csect PARAMS ((int)); static void i370_dsect PARAMS ((int)); static void i370_ltorg PARAMS ((int)); static void i370_using PARAMS ((int)); static void i370_drop PARAMS ((int)); static void i370_make_relative PARAMS ((expressionS *exp, expressionS *baseaddr)); #ifdef OBJ_ELF static bfd_reloc_code_real_type i370_elf_suffix PARAMS ((char **, expressionS *)); static void i370_elf_cons PARAMS ((int)); static void i370_elf_rdata PARAMS ((int)); static void i370_elf_lcomm PARAMS ((int)); static void i370_elf_validate_fix PARAMS ((fixS *, segT)); #endif /* The target specific pseudo-ops which we support. */ const pseudo_typeS md_pseudo_table[] = { /* Pseudo-ops which must be overridden. */ { "byte", i370_byte, 0 }, { "dc", i370_dc, 0 }, { "ds", i370_ds, 0 }, { "rmode", i370_rmode, 0 }, { "csect", i370_csect, 0 }, { "dsect", i370_dsect, 0 }, /* enable ebcdic strings e.g. for 3270 support */ { "ebcdic", i370_ebcdic, 0 }, #ifdef OBJ_ELF { "long", i370_elf_cons, 4 }, { "word", i370_elf_cons, 4 }, { "short", i370_elf_cons, 2 }, { "rdata", i370_elf_rdata, 0 }, { "rodata", i370_elf_rdata, 0 }, { "lcomm", i370_elf_lcomm, 0 }, #endif /* This pseudo-op is used even when not generating XCOFF output. */ { "tc", i370_tc, 0 }, /* dump the literal pool */ { "ltorg", i370_ltorg, 0 }, /* support the hlasm-style USING directive */ { "using", i370_using, 0 }, { "drop", i370_drop, 0 }, { NULL, NULL, 0 } }; /* ***************************************************************** */ /* Whether to use user friendly register names. */ #define TARGET_REG_NAMES_P true static boolean reg_names_p = TARGET_REG_NAMES_P; static boolean register_name PARAMS ((expressionS *)); static void i370_set_cpu PARAMS ((void)); static i370_insn_t i370_insert_operand PARAMS ((i370_insn_t insn, const struct i370_operand *operand, offsetT val)); static void i370_macro PARAMS ((char *str, const struct i370_macro *macro)); /* Predefined register names if -mregnames */ /* In general, there are lots of them, in an attempt to be compatible */ /* with a number of assemblers. */ /* Structure to hold information about predefined registers. */ struct pd_reg { char *name; int value; }; /* List of registers that are pre-defined: Each general register has predefined names of the form: 1. r which has the value . 2. r. which has the value . Each floating point register has predefined names of the form: 1. f which has the value . 2. f. which has the value . There are only four floating point registers, and these are commonly labelled 0,2,4 and 6. Thus, there is no f1, f3, etc. There are individual registers as well: rbase or r.base has the value 3 (base register) rpgt or r.pgt has the value 4 (page origin table pointer) rarg or r.arg has the value 11 (argument pointer) rtca or r.tca has the value 12 (table of contents pointer) rtoc or r.toc has the value 12 (table of contents pointer) sp or r.sp has the value 13 (stack pointer) dsa or r.dsa has the value 13 (stack pointer) lr has the value 14 (link reg) The table is sorted. Suitable for searching by a binary search. */ static const struct pd_reg pre_defined_registers[] = { { "arg", 11 }, /* Argument Pointer */ { "base", 3 }, /* Base Reg */ { "f.0", 0 }, /* Floating point registers */ { "f.2", 2 }, { "f.4", 4 }, { "f.6", 6 }, { "f0", 0 }, { "f2", 2 }, { "f4", 4 }, { "f6", 6 }, { "dsa",13 }, /* stack pointer */ { "lr", 14 }, /* Link Register */ { "pgt", 4 }, /* Page Origin Table Pointer */ { "r.0", 0 }, /* General Purpose Registers */ { "r.1", 1 }, { "r.10", 10 }, { "r.11", 11 }, { "r.12", 12 }, { "r.13", 13 }, { "r.14", 14 }, { "r.15", 15 }, { "r.2", 2 }, { "r.3", 3 }, { "r.4", 4 }, { "r.5", 5 }, { "r.6", 6 }, { "r.7", 7 }, { "r.8", 8 }, { "r.9", 9 }, { "r.arg", 11 }, /* Argument Pointer */ { "r.base", 3 }, /* Base Reg */ { "r.dsa", 13 }, /* Stack Pointer */ { "r.pgt", 4 }, /* Page Origin Table Pointer */ { "r.sp", 13 }, /* Stack Pointer */ { "r.tca", 12 }, /* Pointer to the table of contents */ { "r.toc", 12 }, /* Pointer to the table of contents */ { "r0", 0 }, /* More general purpose registers */ { "r1", 1 }, { "r10", 10 }, { "r11", 11 }, { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 }, { "r2", 2 }, { "r3", 3 }, { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 }, { "r8", 8 }, { "r9", 9 }, { "rbase", 3 }, /* Base Reg */ { "rtca", 12 }, /* Pointer to the table of contents */ { "rtoc", 12 }, /* Pointer to the table of contents */ { "sp", 13 }, /* Stack Pointer */ }; #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg)) /* Given NAME, find the register number associated with that name, return the integer value associated with the given name or -1 on failure. */ static int reg_name_search PARAMS ((const struct pd_reg *, int, const char * name)); static int reg_name_search (regs, regcount, name) const struct pd_reg *regs; int regcount; const char *name; { int middle, low, high; int cmp; low = 0; high = regcount - 1; do { middle = (low + high) / 2; cmp = strcasecmp (name, regs[middle].name); if (cmp < 0) high = middle - 1; else if (cmp > 0) low = middle + 1; else return regs[middle].value; } while (low <= high); return -1; } /* * Summary of register_name(). * * in: Input_line_pointer points to 1st char of operand. * * out: A expressionS. * The operand may have been a register: in this case, X_op == O_register, * X_add_number is set to the register number, and truth is returned. * Input_line_pointer->(next non-blank) char after operand, or is in its * original state. */ static boolean register_name (expressionP) expressionS *expressionP; { int reg_number; char *name; char *start; char c; /* Find the spelling of the operand */ start = name = input_line_pointer; if (name[0] == '%' && isalpha (name[1])) name = ++input_line_pointer; else if (!reg_names_p) return false; while (' ' == *name) name = ++input_line_pointer; /* if its a number, treat it as a number */ /* if its alpha, look to see if it's in the register table */ if (!isalpha (name[0])) { reg_number = get_single_number(); c = get_symbol_end (); } else { c = get_symbol_end (); reg_number = reg_name_search (pre_defined_registers, REG_NAME_CNT, name); } /* if numeric, make sure its not out of bounds */ if ((0 <= reg_number) && (16 >= reg_number)) { expressionP->X_op = O_register; expressionP->X_add_number = reg_number; /* make the rest nice */ expressionP->X_add_symbol = NULL; expressionP->X_op_symbol = NULL; *input_line_pointer = c; /* put back the delimiting char */ return true; } /* reset the line as if we had not done anything */ *input_line_pointer = c; /* put back the delimiting char */ input_line_pointer = start; /* reset input_line pointer */ return false; } /* Local variables. */ /* The type of processor we are assembling for. This is one or more of the I370_OPCODE flags defined in opcode/i370.h. */ static int i370_cpu = 0; /* The base register to use for opcode with optional operands. * We define two of these: "text" and "other". Normally, "text" * would get used in the .text section for branches, while "other" * gets used in the .data section for address constants. * * The idea of a second base register in a different section * is foreign to the usual HLASM-style semantics; however, it * allows us to provide support for dynamically loaded libraries, * by allowing us to place address constants in a section other * than the text section. The "other" section need not be the * .data section, it can be any section that isn't the .text section. * * Note that HLASM defines a multiple, concurrent .using semantic * that we do not: in calculating offsets, it uses either the most * recent .using directive, or the one with the smallest displacement. * This allows HLASM to support a quasi-block-scope-like behaviour. * Handy for people writing assembly by hand ... but not supported * by us. */ static int i370_using_text_regno = -1; static int i370_using_other_regno = -1; /* The base address for address literals */ static expressionS i370_using_text_baseaddr; static expressionS i370_using_other_baseaddr; /* the "other" section, used only for syntax error detection */ static segT i370_other_section = undefined_section; /* Opcode hash table. */ static struct hash_control *i370_hash; /* Macro hash table. */ static struct hash_control *i370_macro_hash; #ifdef OBJ_ELF /* What type of shared library support to use */ static enum { SHLIB_NONE, SHLIB_PIC, SHILB_MRELOCATABLE } shlib = SHLIB_NONE; #endif /* Flags to set in the elf header */ static flagword i370_flags = 0; #ifndef WORKING_DOT_WORD const int md_short_jump_size = 4; const int md_long_jump_size = 4; #endif #ifdef OBJ_ELF CONST char *md_shortopts = "l:um:K:VQ:"; #else CONST char *md_shortopts = "um:"; #endif struct option md_longopts[] = { {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof(md_longopts); int md_parse_option (c, arg) int c; char *arg; { switch (c) { case 'u': /* -u means that any undefined symbols should be treated as external, which is the default for gas anyhow. */ break; #ifdef OBJ_ELF case 'K': /* Recognize -K PIC */ if (strcmp (arg, "PIC") == 0 || strcmp (arg, "pic") == 0) { shlib = SHLIB_PIC; i370_flags |= EF_I370_RELOCATABLE_LIB; } else return 0; break; #endif case 'm': /* -m360 mean to assemble for the ancient 360 architecture */ if (strcmp (arg, "360") == 0 || strcmp (arg, "i360") == 0) i370_cpu = I370_OPCODE_360; /* -mxa means to assemble for the IBM 370 XA */ else if (strcmp (arg, "xa") == 0) i370_cpu = I370_OPCODE_370_XA; /* -many means to assemble for any architecture (370/XA). */ else if (strcmp (arg, "any") == 0) i370_cpu = I370_OPCODE_370; else if (strcmp (arg, "regnames") == 0) reg_names_p = true; else if (strcmp (arg, "no-regnames") == 0) reg_names_p = false; #ifdef OBJ_ELF /* -mrelocatable/-mrelocatable-lib -- warn about initializations that require relocation */ else if (strcmp (arg, "relocatable") == 0) { shlib = SHILB_MRELOCATABLE; i370_flags |= EF_I370_RELOCATABLE; } else if (strcmp (arg, "relocatable-lib") == 0) { shlib = SHILB_MRELOCATABLE; i370_flags |= EF_I370_RELOCATABLE_LIB; } #endif else { as_bad ("invalid switch -m%s", arg); return 0; } break; #ifdef OBJ_ELF /* -V: SVR4 argument to print version ID. */ case 'V': print_version_id (); break; /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section should be emitted or not. FIXME: Not implemented. */ case 'Q': break; #endif default: return 0; } return 1; } /* Set i370_cpu if it is not already set. Currently defaults to the reasonable superset; but can be made more fine grained if desred. */ static void i370_set_cpu () { const char *default_os = TARGET_OS; const char *default_cpu = TARGET_CPU; /* override with the superset for the moment. */ i370_cpu = I370_OPCODE_ESA390_SUPERSET; if (i370_cpu == 0) { if (strcmp (default_cpu, "i360") == 0) i370_cpu = I370_OPCODE_360; else if (strcmp (default_cpu, "i370") == 0) i370_cpu = I370_OPCODE_370; else if (strcmp (default_cpu, "XA") == 0) i370_cpu = I370_OPCODE_370_XA; else as_fatal ("Unknown default cpu = %s, os = %s", default_cpu, default_os); } } /* Figure out the BFD architecture to use. */ // hack alert -- specify the different 370 architectures enum bfd_architecture i370_arch () { return bfd_arch_i370; } /* This function is called when the assembler starts up. It is called after the options have been parsed and the output file has been opened. */ void md_begin () { register const struct i370_opcode *op; const struct i370_opcode *op_end; const struct i370_macro *macro; const struct i370_macro *macro_end; boolean dup_insn = false; i370_set_cpu (); #ifdef OBJ_ELF /* Set the ELF flags if desired. */ if (i370_flags) bfd_set_private_flags (stdoutput, i370_flags); #endif /* Insert the opcodes into a hash table. */ i370_hash = hash_new (); op_end = i370_opcodes + i370_num_opcodes; for (op = i370_opcodes; op < op_end; op++) { know ((op->opcode & op->mask) == op->opcode); if ((op->flags & i370_cpu) != 0) { const char *retval; retval = hash_insert (i370_hash, op->name, (PTR) op); if (retval != (const char *) NULL) { as_bad ("Internal assembler error for instruction %s", op->name); dup_insn = true; } } } /* Insert the macros into a hash table. */ i370_macro_hash = hash_new (); macro_end = i370_macros + i370_num_macros; for (macro = i370_macros; macro < macro_end; macro++) { if ((macro->flags & i370_cpu) != 0) { const char *retval; retval = hash_insert (i370_macro_hash, macro->name, (PTR) macro); if (retval != (const char *) NULL) { as_bad ("Internal assembler error for macro %s", macro->name); dup_insn = true; } } } if (dup_insn) abort (); } /* Insert an operand value into an instruction. */ static i370_insn_t i370_insert_operand (insn, operand, val) i370_insn_t insn; const struct i370_operand *operand; offsetT val; { if (operand->insert) { const char *errmsg; /* used for 48-bit insn's */ errmsg = NULL; insn = (*operand->insert) (insn, (long) val, &errmsg); if (errmsg) as_bad ("%s", errmsg); } else { /* this is used only for 16, 32 bit insn's */ insn.i[0] |= (((long) val & ((1 << operand->bits) - 1)) << operand->shift); } return insn; } #ifdef OBJ_ELF /* Parse @got, etc. and return the desired relocation. * Currently, i370 does not support (don't really need to support) any * of these fancier markups ... for example, no one is going to * write 'L 6,=V(bogus)@got' it just doesn't make sense (at least to me). * So basically, we could get away with this routine returning * BFD_RELOC_UNUSED in all circumstances. However, I'll leave * in for now in case someone ambitious finds a good use for this stuff ... * this routine was pretty much just copied from the powerpc code ... */ static bfd_reloc_code_real_type i370_elf_suffix (str_p, exp_p) char **str_p; expressionS *exp_p; { struct map_bfd { char *string; int length; bfd_reloc_code_real_type reloc; }; char ident[20]; char *str = *str_p; char *str2; int ch; int len; struct map_bfd *ptr; #define MAP(str,reloc) { str, sizeof(str)-1, reloc } static struct map_bfd mapping[] = { // MAP ("l", BFD_RELOC_LO16), // MAP ("h", BFD_RELOC_HI16), // MAP ("ha", BFD_RELOC_HI16_S), MAP ("fixup", BFD_RELOC_CTOR), /* warnings with -mrelocatable */ { (char *)0, 0, BFD_RELOC_UNUSED } }; if (*str++ != '@') return BFD_RELOC_UNUSED; for (ch = *str, str2 = ident; (str2 < ident + sizeof (ident) - 1 && (isalnum (ch) || ch == '@')); ch = *++str) { *str2++ = (islower (ch)) ? ch : tolower (ch); } *str2 = '\0'; len = str2 - ident; ch = ident[0]; for (ptr = &mapping[0]; ptr->length > 0; ptr++) if (ch == ptr->string[0] && len == ptr->length && memcmp (ident, ptr->string, ptr->length) == 0) { if (exp_p->X_add_number != 0 && (ptr->reloc == BFD_RELOC_16_GOTOFF || ptr->reloc == BFD_RELOC_LO16_GOTOFF || ptr->reloc == BFD_RELOC_HI16_GOTOFF || ptr->reloc == BFD_RELOC_HI16_S_GOTOFF)) as_warn ("identifier+constant@got means identifier@got+constant"); /* Now check for identifier@suffix+constant */ if (*str == '-' || *str == '+') { char *orig_line = input_line_pointer; expressionS new_exp; input_line_pointer = str; expression (&new_exp); if (new_exp.X_op == O_constant) { exp_p->X_add_number += new_exp.X_add_number; str = input_line_pointer; } if (&input_line_pointer != str_p) input_line_pointer = orig_line; } *str_p = str; return ptr->reloc; } return BFD_RELOC_UNUSED; } /* Like normal .long/.short/.word, except support @got, etc. */ /* clobbers input_line_pointer, checks end-of-line. */ static void i370_elf_cons (nbytes) register int nbytes; /* 1=.byte, 2=.word, 4=.long */ { expressionS exp; bfd_reloc_code_real_type reloc; if (is_it_end_of_statement ()) { demand_empty_rest_of_line (); return; } do { expression (&exp); if (exp.X_op == O_symbol && *input_line_pointer == '@' && (reloc = i370_elf_suffix (&input_line_pointer, &exp)) != BFD_RELOC_UNUSED) { reloc_howto_type *reloc_howto = bfd_reloc_type_lookup (stdoutput, reloc); int size = bfd_get_reloc_size (reloc_howto); if (size > nbytes) as_bad ("%s relocations do not fit in %d bytes\n", reloc_howto->name, nbytes); else { register char *p = frag_more ((int) nbytes); int offset = nbytes - size; fix_new_exp (frag_now, p - frag_now->fr_literal + offset, size, &exp, 0, reloc); } } else emit_expr (&exp, (unsigned int) nbytes); } while (*input_line_pointer++ == ','); input_line_pointer--; /* Put terminator back into stream. */ demand_empty_rest_of_line (); } /* ASCII to EBCDIC conversion table. */ static unsigned char ascebc[256] = { /*00 NL SH SX EX ET NQ AK BL */ 0x00, 0x01, 0x02, 0x03, 0x37, 0x2D, 0x2E, 0x2F, /*08 BS HT LF VT FF CR SO SI */ 0x16, 0x05, 0x15, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, /*10 DL D1 D2 D3 D4 NK SN EB */ 0x10, 0x11, 0x12, 0x13, 0x3C, 0x3D, 0x32, 0x26, /*18 CN EM SB EC FS GS RS US */ 0x18, 0x19, 0x3F, 0x27, 0x1C, 0x1D, 0x1E, 0x1F, /*20 SP ! " # $ % & ' */ 0x40, 0x5A, 0x7F, 0x7B, 0x5B, 0x6C, 0x50, 0x7D, /*28 ( ) * + , - . / */ 0x4D, 0x5D, 0x5C, 0x4E, 0x6B, 0x60, 0x4B, 0x61, /*30 0 1 2 3 4 5 6 7 */ 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, /*38 8 9 : ; < = > ? */ 0xF8, 0xF9, 0x7A, 0x5E, 0x4C, 0x7E, 0x6E, 0x6F, /*40 @ A B C D E F G */ 0x7C, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, /*48 H I J K L M N O */ 0xC8, 0xC9, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, /*50 P Q R S T U V W */ 0xD7, 0xD8, 0xD9, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, /*58 X Y Z [ \ ] ^ _ */ 0xE7, 0xE8, 0xE9, 0xAD, 0xE0, 0xBD, 0x5F, 0x6D, /*60 ` a b c d e f g */ 0x79, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, /*68 h i j k l m n o */ 0x88, 0x89, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, /*70 p q r s t u v w */ 0x97, 0x98, 0x99, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, /*78 x y z { | } ~ DL */ 0xA7, 0xA8, 0xA9, 0xC0, 0x4F, 0xD0, 0xA1, 0x07, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0xFF }; /* EBCDIC to ASCII conversion table. */ unsigned char ebcasc[256] = { /*00 NU SH SX EX PF HT LC DL */ 0x00, 0x01, 0x02, 0x03, 0x00, 0x09, 0x00, 0x7F, /*08 SM VT FF CR SO SI */ 0x00, 0x00, 0x00, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, /*10 DE D1 D2 TM RS NL BS IL */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x0A, 0x08, 0x00, /*18 CN EM CC C1 FS GS RS US */ 0x18, 0x19, 0x00, 0x00, 0x1C, 0x1D, 0x1E, 0x1F, /*20 DS SS FS BP LF EB EC */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x0A, 0x17, 0x1B, /*28 SM C2 EQ AK BL */ 0x00, 0x00, 0x00, 0x00, 0x05, 0x06, 0x07, 0x00, /*30 SY PN RS UC ET */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, /*38 C3 D4 NK SU */ 0x00, 0x00, 0x00, 0x00, 0x14, 0x15, 0x00, 0x1A, /*40 SP */ 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /*48 . < ( + | */ 0x00, 0x00, 0x00, 0x2E, 0x3C, 0x28, 0x2B, 0x7C, /*50 & */ 0x26, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /*58 ! $ * ) ; ^ */ 0x00, 0x00, 0x21, 0x24, 0x2A, 0x29, 0x3B, 0x5E, /*60 - / */ 0x2D, 0x2F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /*68 , % _ > ? */ 0x00, 0x00, 0x00, 0x2C, 0x25, 0x5F, 0x3E, 0x3F, /*70 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /*78 ` : # @ ' = " */ 0x00, 0x60, 0x3A, 0x23, 0x40, 0x27, 0x3D, 0x22, /*80 a b c d e f g */ 0x00, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, /*88 h i { */ 0x68, 0x69, 0x00, 0x7B, 0x00, 0x00, 0x00, 0x00, /*90 j k l m n o p */ 0x00, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, /*98 q r } */ 0x71, 0x72, 0x00, 0x7D, 0x00, 0x00, 0x00, 0x00, /*A0 ~ s t u v w x */ 0x00, 0x7E, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, /*A8 y z [ */ 0x79, 0x7A, 0x00, 0x00, 0x00, 0x5B, 0x00, 0x00, /*B0 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /*B8 ] */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x5D, 0x00, 0x00, /*C0 { A B C D E F G */ 0x7B, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, /*C8 H I */ 0x48, 0x49, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /*D0 } J K L M N O P */ 0x7D, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50, /*D8 Q R */ 0x51, 0x52, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /*E0 \ S T U V W X */ 0x5C, 0x00, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, /*E8 Y Z */ 0x59, 0x5A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /*F0 0 1 2 3 4 5 6 7 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, /*F8 8 9 */ 0x38, 0x39, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF }; /* ebcdic translation tables needed for 3270 support */ static void i370_ebcdic (unused) int unused; { char *p, *end; char delim = 0; size_t nbytes; nbytes = strlen (input_line_pointer); end = input_line_pointer + nbytes; while ('\r' == *end) end --; while ('\n' == *end) end --; delim = *input_line_pointer; if (('\'' == delim) || ('\"' == delim)) { input_line_pointer ++; end = rindex (input_line_pointer, delim); } if (end > input_line_pointer) { nbytes = end - input_line_pointer +1; p = frag_more (nbytes); while (end > input_line_pointer) { *p = ascebc [(unsigned char)(*input_line_pointer)]; ++p; ++input_line_pointer; } *p = '\0'; } if (delim == *input_line_pointer) ++input_line_pointer; } /* stub out a couple of routines */ static void i370_rmode (unused) int unused; { as_tsktsk ("rmode ignored"); } static void i370_dsect (sect) int sect; { char *save_line = input_line_pointer; static char section[] = ".data\n"; /* Just pretend this is .section .data */ input_line_pointer = section; obj_elf_section (sect); input_line_pointer = save_line; } static void i370_csect (unused) int unused; { as_tsktsk ("csect not supported"); } /* DC Define Const is only partially supported. * For samplecode on what to do, look at i370_elf_cons() above. * This code handles pseudoops of the style * DC D'3.141592653' # in sysv4, .double 3.14159265 * DC F'1' # in sysv4, .long 1 */ static void i370_dc(unused) int unused; { char * p, tmp[50]; int nbytes=0; expressionS exp; char type=0; if (is_it_end_of_statement ()) { demand_empty_rest_of_line (); return; } /* figure out the size */ type = *input_line_pointer++; switch (type) { case 'H': /* 16-bit */ nbytes = 2; break; case 'E': /* 32-bit */ case 'F': /* 32-bit */ nbytes = 4; break; case 'D': /* 64-bit */ nbytes = 8; break; default: as_bad ("unsupported DC type"); return; } /* get rid of pesky quotes */ if ('\'' == *input_line_pointer) { char * close; ++input_line_pointer; close = strchr (input_line_pointer, '\''); if (close) *close= ' '; else as_bad ("missing end-quote"); } if ('\"' == *input_line_pointer) { char * close; ++input_line_pointer; close = strchr (input_line_pointer, '\"'); if (close) *close= ' '; else as_bad ("missing end-quote"); } switch (type) { case 'H': /* 16-bit */ case 'F': /* 32-bit */ expression (&exp); emit_expr (&exp, nbytes); break; case 'E': /* 32-bit */ case 'D': /* 64-bit */ md_atof (type, tmp, &nbytes); p = frag_more (nbytes); memcpy (p, tmp, nbytes); break; default: as_bad ("unsupported DC type"); return; } demand_empty_rest_of_line (); } /* provide minimal support for DS Define Storage */ static void i370_ds (unused) int unused; { /* DS 0H or DS 0F or DS 0D */ if ('0' == *input_line_pointer) { int alignment = 0; /* left shift 1<>= 1, ++align2) ; if (align != 1) { as_bad ("Common alignment not a power of 2"); ignore_rest_of_line (); return; } } else align2 = 0; record_alignment (bss_section, align2); subseg_set (bss_section, 0); if (align2) frag_align (align2, 0, 0); if (S_GET_SEGMENT (symbolP) == bss_section) symbol_get_frag (symbolP)->fr_symbol = 0; symbol_set_frag (symbolP, frag_now); pfrag = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP, size, (char *) 0); *pfrag = 0; S_SET_SIZE (symbolP, size); S_SET_SEGMENT (symbolP, bss_section); subseg_set (old_sec, old_subsec); demand_empty_rest_of_line (); } /* Validate any relocations emitted for -mrelocatable, possibly adding fixups for word relocations in writable segments, so we can adjust them at runtime. */ static void i370_elf_validate_fix (fixp, seg) fixS *fixp; segT seg; { if (fixp->fx_done || fixp->fx_pcrel) return; switch (shlib) { case SHLIB_NONE: case SHLIB_PIC: return; case SHILB_MRELOCATABLE: if (fixp->fx_r_type <= BFD_RELOC_UNUSED && fixp->fx_r_type != BFD_RELOC_16_GOTOFF && fixp->fx_r_type != BFD_RELOC_HI16_GOTOFF && fixp->fx_r_type != BFD_RELOC_LO16_GOTOFF && fixp->fx_r_type != BFD_RELOC_HI16_S_GOTOFF && fixp->fx_r_type != BFD_RELOC_32_BASEREL && fixp->fx_r_type != BFD_RELOC_LO16_BASEREL && fixp->fx_r_type != BFD_RELOC_HI16_BASEREL && fixp->fx_r_type != BFD_RELOC_HI16_S_BASEREL && strcmp (segment_name (seg), ".got2") != 0 && strcmp (segment_name (seg), ".dtors") != 0 && strcmp (segment_name (seg), ".ctors") != 0 && strcmp (segment_name (seg), ".fixup") != 0 && strcmp (segment_name (seg), ".stab") != 0 && strcmp (segment_name (seg), ".gcc_except_table") != 0 && strcmp (segment_name (seg), ".ex_shared") != 0) { if ((seg->flags & (SEC_READONLY | SEC_CODE)) != 0 || fixp->fx_r_type != BFD_RELOC_CTOR) { as_bad_where (fixp->fx_file, fixp->fx_line, "Relocation cannot be done when using -mrelocatable"); } } return; } } #endif /* OBJ_ELF */ #define LITERAL_POOL_SUPPORT #ifdef LITERAL_POOL_SUPPORT /* Provide support for literal pools within the text section. */ /* Loosely based on similar code from tc-arm.c */ /* * We will use four symbols to locate four parts of the literal pool. * These four sections contain 64,32,16 and 8-bit constants; we use * four sections so that all memory access can be appropriately aligned. * That is, we want to avoid mixing these together so that we don't * waste space padding out to alignments. The four pointers * longlong_poolP, word_poolP, etc. point to a symbol labeling the * start of each pool part. * * lit_pool_num increments from zero to infinity and uniquely id's * -- its used to generate the *_poolP symbol name. */ #define MAX_LITERAL_POOL_SIZE 1024 typedef struct literalS { struct expressionS exp; char * sym_name; char size; /* 1,2,4 or 8 */ short offset; } literalT; literalT literals[MAX_LITERAL_POOL_SIZE]; int next_literal_pool_place = 0; /* Next free entry in the pool */ static symbolS *longlong_poolP = NULL; /* 64-bit pool entries */ static symbolS *word_poolP = NULL; /* 32-bit pool entries */ static symbolS *short_poolP = NULL; /* 16-bit pool entries */ static symbolS *byte_poolP = NULL; /* 8-bit pool entries */ static int lit_pool_num = 1; /* create a new, empty symbol */ static symbolS * symbol_make_empty (void) { return symbol_create (FAKE_LABEL_NAME, undefined_section, (valueT) 0, &zero_address_frag); } /* add an expression to the literal pool */ static void add_to_lit_pool (expressionS *exx, char *name, int sz) { int lit_count = 0; int offset_in_pool = 0; /* start a new pool, if necessary */ if (8 == sz && NULL == longlong_poolP) longlong_poolP = symbol_make_empty(); else if (4 == sz && NULL == word_poolP) word_poolP = symbol_make_empty(); else if (2 == sz && NULL == short_poolP) short_poolP = symbol_make_empty(); else if (1 == sz && NULL == byte_poolP) byte_poolP = symbol_make_empty(); /* Check if this literal value is already in the pool: */ /* hack alert -- we should probably be checking expressions * of type O_symbol as well ... */ /* hack alert XXX this is probably(certainly?) broken for O_big, * which includes 64-bit long-longs ... */ while (lit_count < next_literal_pool_place) { if (exx->X_op == O_constant && literals[lit_count].exp.X_op == exx->X_op && literals[lit_count].exp.X_add_number == exx->X_add_number && literals[lit_count].exp.X_unsigned == exx->X_unsigned && literals[lit_count].size == sz) break; else if (literals[lit_count].sym_name && name && !strcmp (name, literals[lit_count].sym_name)) break; if (sz == literals[lit_count].size) offset_in_pool += sz; lit_count ++; } if (lit_count == next_literal_pool_place) /* new entry */ { if (next_literal_pool_place > MAX_LITERAL_POOL_SIZE) { as_bad("Literal Pool Overflow"); } literals[next_literal_pool_place].exp = *exx; literals[next_literal_pool_place].size = sz; literals[next_literal_pool_place].offset = offset_in_pool; if (name) { literals[next_literal_pool_place].sym_name = strdup (name); } else { literals[next_literal_pool_place].sym_name = NULL; } next_literal_pool_place++; } /* ???_poolP points to the begining of the literal pool. * X_add_number is the offset from the begining of the * literal pool to this expr minus the location of the most * recent .using directive. Thus, the grand total value of the * expression is the distance from .using to the literal. */ if (8 == sz) exx->X_add_symbol = longlong_poolP; else if (4 == sz) exx->X_add_symbol = word_poolP; else if (2 == sz) exx->X_add_symbol = short_poolP; else if (1 == sz) exx->X_add_symbol = byte_poolP; exx->X_add_number = offset_in_pool; exx->X_op_symbol = NULL; /* If the user has set up a base reg in another section, * use that; otherwise use the text section. */ if (0 < i370_using_other_regno) { i370_make_relative (exx, &i370_using_other_baseaddr); } else { i370_make_relative (exx, &i370_using_text_baseaddr); } } /* The symbol setup for the literal pool is done in two steps. First, * a symbol that represents the start of the literal pool is created, * above, in the add_to_pool() routine. This sym ???_poolP. * However, we don't know what fragment its in until a bit later. * So we defer the frag_now thing, and the symbol name, until .ltorg time */ /* Can't use symbol_new here, so have to create a symbol and then at a later date assign it a value. Thats what these functions do */ static void symbol_locate (symbolP, name, segment, valu, frag) symbolS *symbolP; CONST char *name; /* It is copied, the caller can modify */ segT segment; /* Segment identifier (SEG_) */ valueT valu; /* Symbol value */ fragS *frag; /* Associated fragment */ { size_t name_length; char *preserved_copy_of_name; name_length = strlen (name) + 1; /* +1 for \0 */ obstack_grow (¬es, name, name_length); preserved_copy_of_name = obstack_finish (¬es); S_SET_NAME (symbolP, preserved_copy_of_name); S_SET_SEGMENT (symbolP, segment); S_SET_VALUE (symbolP, valu); symbol_clear_list_pointers(symbolP); symbol_set_frag (symbolP, frag); /* * Link to end of symbol chain. */ { extern int symbol_table_frozen; if (symbol_table_frozen) abort (); } symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP); obj_symbol_new_hook (symbolP); #ifdef tc_symbol_new_hook tc_symbol_new_hook (symbolP); #endif #define DEBUG_SYMS #ifdef DEBUG_SYMS verify_symbol_chain(symbol_rootP, symbol_lastP); #endif /* DEBUG_SYMS */ } /* i370_addr_offset() will convert operand expressions * that appear to be absolute into thier base-register * relative form. These expressions come in two types: * * (1) of the form "* + const" * where "*" means * relative offset since the last using * i.e. "*" means ".-using_baseaddr" * * (2) labels, which are never absolute, but are always * relative to the last "using". Anything with an alpha * character is considered to be a label (since symbols * can never be operands), and since we've already handled * register operands. For example, "BL .L33" branch low * to .L33 RX form insn frequently terminates for-loops, */ static boolean i370_addr_offset (expressionS *exx) { char *dot, *lab; int islabel = 0; int all_digits = 0; /* search for a label; anything with an alpha char will do */ /* local labels consist of N digits followed by either b or f */ lab = input_line_pointer; while (*lab && (',' != *lab) && ('(' != *lab)) { if (isdigit(*lab)) { all_digits = 1; } else if (isalpha(*lab)) { if (!all_digits) { islabel = 1; break; } else if (('f' == *lab) || ('b' == *lab)) { islabel = 1; break; } if (all_digits) break; } else if ('.' != *lab) break; ++lab; } /* See if operand has a * in it */ dot = strchr (input_line_pointer, '*'); if (!dot && !islabel) return false; /* replace * with . and let expr munch on it. */ if (dot) *dot = '.'; expression (exx); /* OK, now we have to subtract the "using" location */ /* normally branches appear in the text section only... */ if (0 == strncmp (now_seg->name, ".text", 5) || 0 > i370_using_other_regno) { i370_make_relative (exx, &i370_using_text_baseaddr); } else { i370_make_relative (exx, &i370_using_other_baseaddr); } /* put the * back */ if (dot) *dot = '*'; return true; } /* handle address constants of various sorts */ /* The currently supported types are * =A(some_symb) * =V(some_extern) * =X'deadbeef' hexadecimal * =F'1234' 32-bit const int * =H'1234' 16-bit const int */ static boolean i370_addr_cons (expressionS *exp) { char *name; char *sym_name, delim; int name_len; int hex_len=0; int cons_len=0; name = input_line_pointer; sym_name = input_line_pointer; /* Find the spelling of the operand */ if (name[0] == '=' && isalpha (name[1])) { name = ++input_line_pointer; } else { return false; } switch (name[0]) { case 'A': case 'V': /* A == address-of */ /* V == extern */ ++input_line_pointer; expression (exp); /* we use a simple string name to collapse together * multiple refrences to the same address literal */ name_len = strcspn (sym_name, ", "); delim = *(sym_name + name_len); *(sym_name + name_len) = 0x0; add_to_lit_pool (exp, sym_name, 4); *(sym_name + name_len) = delim; break; case 'H': case 'F': case 'X': case 'E': /* single-precision float point */ case 'D': /* double-precision float point */ /* H == 16-bit fixed-point const; expression must be const */ /* F == fixed-point const; expression must be const */ /* X == fixed-point const; expression must be const */ if ('H' == name[0]) cons_len = 2; else if ('F' == name[0]) cons_len = 4; else if ('X' == name[0]) cons_len = -1; else if ('E' == name[0]) cons_len = 4; else if ('D' == name[0]) cons_len = 8; /* extract length, if it is present; hack alert -- assume single-digit * length */ if ('L' == name[1]) { cons_len = name[2] - '0'; /* should work for ascii and ebcdic */ input_line_pointer += 2; } ++input_line_pointer; /* get rid of pesky quotes */ if ('\'' == *input_line_pointer) { char * close; ++input_line_pointer; close = strchr (input_line_pointer, '\''); if (close) *close= ' '; else as_bad ("missing end-quote"); } if ('\"' == *input_line_pointer) { char * close; ++input_line_pointer; close = strchr (input_line_pointer, '\"'); if (close) *close= ' '; else as_bad ("missing end-quote"); } if (('X' == name[0]) || ('E' == name[0]) || ('D' == name[0])) { char tmp[50]; char *save; /* The length of hex constants is specified directly with L, * or implied through the number of hex digits. For example: * =X'AB' one byte * =X'abcd' two bytes * =X'000000AB' four bytes * =XL4'AB' four bytes, left-padded withn zero */ if (('X' == name[0]) && (0 > cons_len)) { save = input_line_pointer; while (*save) { if (isxdigit(*save)) hex_len++; save++; } cons_len = (hex_len+1) /2; } /* I beleive this works even for =XL8'dada0000beeebaaa' * which should parse out to X_op == O_big * Note that floats and doubles get represented as * 0d3.14159265358979 or 0f 2.7 */ tmp[0] = '0'; tmp[1] = name[0]; tmp[2] = 0; strcat (tmp, input_line_pointer); save = input_line_pointer; input_line_pointer = tmp; expression (exp); input_line_pointer = save + (input_line_pointer-tmp-2); /* fix up lengths for floats and doubles */ if (O_big == exp->X_op) { exp->X_add_number = cons_len / CHARS_PER_LITTLENUM; } } else { expression (exp); } /* O_big occurs when more than 4 bytes worth gets parsed */ if ((exp->X_op != O_constant) && (exp->X_op != O_big)) { as_bad ("expression not a constant"); return false; } add_to_lit_pool (exp, 0x0, cons_len); break; default: as_bad ("Unknown/unsupported address literal type"); return false; } return true; } /* Dump the contents of the literal pool that we've accumulated so far. * This aligns the pool to the size of the largest literal in the pool. */ static void i370_ltorg (ignore) int ignore; { int litsize; int lit_count = 0; int biggest_literal_size = 0; int biggest_align = 0; char pool_name[20]; if (strncmp (now_seg->name, ".text", 5)) { if (i370_other_section == undefined_section) { as_bad (".ltorg without prior .using in section %s", now_seg->name); } if (i370_other_section != now_seg) { as_bad (".ltorg in section %s paired to .using in section %s", now_seg->name, i370_other_section->name); } } if (! longlong_poolP && ! word_poolP && ! short_poolP && ! byte_poolP) { /* Nothing to do */ /* as_tsktsk ("Nothing to put in the pool\n"); */ return; } /* find largest literal .. 2 4 or 8 */ lit_count = 0; while (lit_count < next_literal_pool_place) { if (biggest_literal_size < literals[lit_count].size) biggest_literal_size = literals[lit_count].size; lit_count ++; } if (1 == biggest_literal_size) biggest_align = 0; else if (2 == biggest_literal_size) biggest_align = 1; else if (4 == biggest_literal_size) biggest_align = 2; else if (8 == biggest_literal_size) biggest_align = 3; else as_bad ("bad alignment of %d bytes in literal pool", biggest_literal_size); if (0 == biggest_align) biggest_align = 1; /* Align pool for short, word, double word accesses */ frag_align (biggest_align, 0, 0); record_alignment (now_seg, biggest_align); /* Note that the gas listing will print only the first five * entries in the pool .... wonder how to make it print more ... */ /* output largest literals first, then the smaller ones. */ for (litsize=8; litsize; litsize /=2) { symbolS *current_poolP = NULL; switch (litsize) { case 8: current_poolP = longlong_poolP; break; case 4: current_poolP = word_poolP; break; case 2: current_poolP = short_poolP; break; case 1: current_poolP = byte_poolP; break; default: as_bad ("bad literal size\n"); } if (NULL == current_poolP) continue; sprintf (pool_name, ".LITP%01d%06d", litsize, lit_pool_num); symbol_locate (current_poolP, pool_name, now_seg, (valueT) frag_now_fix (), frag_now); symbol_table_insert (current_poolP); lit_count = 0; while (lit_count < next_literal_pool_place) { if (litsize == literals[lit_count].size) { #define EMIT_ADDR_CONS_SYMBOLS #ifdef EMIT_ADDR_CONS_SYMBOLS /* create a bogus symbol, add it to the pool ... * For the most part, I think this is a useless excercise, * except that having these symbol names in the objects * is vaguely useful for debugging ... */ if (literals[lit_count].sym_name) { symbolS * symP = symbol_make_empty(); symbol_locate (symP, literals[lit_count].sym_name, now_seg, (valueT) frag_now_fix (), frag_now); symbol_table_insert (symP); } #endif /* EMIT_ADDR_CONS_SYMBOLS */ emit_expr (&(literals[lit_count].exp), literals[lit_count].size); } lit_count ++; } } next_literal_pool_place = 0; longlong_poolP = NULL; word_poolP = NULL; short_poolP = NULL; byte_poolP = NULL; lit_pool_num++; } #endif /* LITERAL_POOL_SUPPORT */ /* add support for the HLASM-like USING directive to indicate * the base register to use ... we don't support the full * hlasm semantics for this ... we merely pluck a base address * and a register number out. We print a warning if using is * called multiple times. I suppose we should check to see * if the regno is valid ... */ static void i370_using (ignore) int ignore; { expressionS ex, baseaddr; int iregno; char *star; /* if "*" appears in a using, it means "." */ /* replace it with "." so that expr doesn't get confused. */ star = strchr (input_line_pointer, '*'); if (star) *star = '.'; /* the first arg to using will usually be ".", but it can * be a more complex exprsssion too ... */ expression (&baseaddr); if (star) *star = '*'; if (O_constant != baseaddr.X_op && O_symbol != baseaddr.X_op && O_uminus != baseaddr.X_op) { as_bad (".using: base address expression illegal or too complex"); } if (*input_line_pointer != '\0') ++input_line_pointer; /* the second arg to using had better be a register */ register_name (&ex); demand_empty_rest_of_line (); iregno = ex.X_add_number; if (0 == strncmp (now_seg->name, ".text", 5)) { i370_using_text_baseaddr = baseaddr; i370_using_text_regno = iregno; } else { i370_using_other_baseaddr = baseaddr; i370_using_other_regno = iregno; i370_other_section = now_seg; } } static void i370_drop (ignore) int ignore; { expressionS ex; int iregno; register_name (&ex); demand_empty_rest_of_line (); iregno = ex.X_add_number; if (0 == strncmp (now_seg->name, ".text", 5)) { if (iregno != i370_using_text_regno) { as_bad ("droping register %d in section %s does not match using register %d", iregno, now_seg->name, i370_using_text_regno); } i370_using_text_regno = -1; i370_using_text_baseaddr.X_op = O_absent; } else { if (iregno != i370_using_other_regno) { as_bad ("droping register %d in section %s does not match using register %d", iregno, now_seg->name, i370_using_other_regno); } if (i370_other_section != now_seg) { as_bad ("droping register %d in section %s previously used in section %s", iregno, now_seg->name, i370_other_section->name); } i370_using_other_regno = -1; i370_using_other_baseaddr.X_op = O_absent; i370_other_section = undefined_section; } } /* Make the first argument an address-relative expression * by subtracting the second argument. */ static void i370_make_relative (expressionS *exx, expressionS *baseaddr) { if (O_constant == baseaddr->X_op) { exx->X_op = O_symbol; exx->X_add_number -= baseaddr->X_add_number; } else if (O_symbol == baseaddr->X_op) { exx->X_op = O_subtract; exx->X_op_symbol = baseaddr->X_add_symbol; exx->X_add_number -= baseaddr->X_add_number; } else if (O_uminus == baseaddr->X_op) { exx->X_op = O_add; exx->X_op_symbol = baseaddr->X_add_symbol; exx->X_add_number += baseaddr->X_add_number; } else { as_bad ("Missing or bad .using directive"); } } /* We need to keep a list of fixups. We can't simply generate them as we go, because that would require us to first create the frag, and that would screw up references to ``.''. */ struct i370_fixup { expressionS exp; int opindex; bfd_reloc_code_real_type reloc; }; #define MAX_INSN_FIXUPS (5) /* This routine is called for each instruction to be assembled. */ void md_assemble (str) char *str; { char *s, *opcode_str; const struct i370_opcode *opcode; i370_insn_t insn; const unsigned char *opindex_ptr; int have_optional_index, have_optional_basereg, have_optional_reg; int skip_optional_index, skip_optional_basereg, skip_optional_reg; int use_text=0, use_other=0; int off_by_one; struct i370_fixup fixups[MAX_INSN_FIXUPS]; int fc; char *f; int i; #ifdef OBJ_ELF bfd_reloc_code_real_type reloc; #endif /* Get the opcode. */ for (s = str; *s != '\0' && ! isspace (*s); s++) ; if (*s != '\0') *s++ = '\0'; opcode_str = str; /* Look up the opcode in the hash table. */ opcode = (const struct i370_opcode *) hash_find (i370_hash, str); if (opcode == (const struct i370_opcode *) NULL) { const struct i370_macro *macro; assert (i370_macro_hash); macro = (const struct i370_macro *) hash_find (i370_macro_hash, str); if (macro == (const struct i370_macro *) NULL) as_bad ("Unrecognized opcode: `%s'", str); else i370_macro (s, macro); return; } insn = opcode->opcode; str = s; while (isspace (*str)) ++str; /* I370 operands are either expressions or address constants. Many operand types are optional. The optional operands are always surrounded by parens, and are used to denote the base register ... e.g. "A R1, D2" or "A R1, D2(,B2) as opposed to the fully-formed "A R1, D2(X2,B2)". Note also the = sign, such as A R1,=A(i) where the address-of operator =A implies use of both a base register, and a missing index register. So, before we start seriously parsing the operands, we check to see if we have an optional operand, and, if we do, we count the number of commas to see which operand should be omitted. */ have_optional_index = have_optional_basereg = have_optional_reg = 0; for (opindex_ptr = opcode->operands; *opindex_ptr != 0; opindex_ptr++) { const struct i370_operand *operand; operand = &i370_operands[*opindex_ptr]; if ((operand->flags & I370_OPERAND_INDEX) != 0) have_optional_index = 1; if ((operand->flags & I370_OPERAND_BASE) != 0) have_optional_basereg = 1; if ((operand->flags & I370_OPERAND_OPTIONAL) != 0) have_optional_reg = 1; } skip_optional_index = skip_optional_basereg = skip_optional_reg = 0; if (have_optional_index || have_optional_basereg) { unsigned int opcount, nwanted; /* There is an optional operand. Count the number of commas and open-parens in the input line. */ if (*str == '\0') opcount = 0; else { opcount = 1; s = str; while ((s = strpbrk (s, ",(=")) != (char *) NULL) { ++opcount; ++s; if (',' == *s) ++s; /* avoid counting things like (, */ if ('=' == *s) { ++s; --opcount; } } } /* If there are fewer operands in the line then are called for by the instruction, we want to skip the optional operand. */ nwanted = strlen (opcode->operands); if (have_optional_index) { if (opcount < nwanted) skip_optional_index = 1; if (have_optional_basereg && ((opcount+1) < nwanted)) skip_optional_basereg = 1; if (have_optional_reg && ((opcount+1) < nwanted)) skip_optional_reg = 1; } else { if (have_optional_basereg && (opcount < nwanted)) skip_optional_basereg = 1; if (have_optional_reg && (opcount < nwanted)) skip_optional_reg = 1; } } /* Perform some off-by-one hacks on the length field of certain instructions. * Its such a shame to have to do this, but the problem is that HLASM got * defined so that the lengths differ by one from the actual machine instructions. * this code should probably be moved to a special inster-operand routine. * Sigh. Affected instructions are Compare Logical, Move and Exclusive OR * hack alert -- aren't *all* SS instructions affected ?? */ off_by_one = 0; if (0 == strcasecmp ("CLC", opcode->name) || 0 == strcasecmp ("ED", opcode->name) || 0 == strcasecmp ("EDMK", opcode->name) || 0 == strcasecmp ("MVC", opcode->name) || 0 == strcasecmp ("MVCIN", opcode->name) || 0 == strcasecmp ("MVN", opcode->name) || 0 == strcasecmp ("MVZ", opcode->name) || 0 == strcasecmp ("NC", opcode->name) || 0 == strcasecmp ("OC", opcode->name) || 0 == strcasecmp ("XC", opcode->name)) off_by_one = 1; /* Gather the operands. */ fc = 0; for (opindex_ptr = opcode->operands; *opindex_ptr != 0; opindex_ptr++) { const struct i370_operand *operand; const char *errmsg; char *hold; expressionS ex; operand = &i370_operands[*opindex_ptr]; errmsg = NULL; /* If this is an index operand, and we are skipping it, just insert a zero. */ if (skip_optional_index && ((operand->flags & I370_OPERAND_INDEX) != 0)) { insn = i370_insert_operand (insn, operand, 0); continue; } /* If this is the base operand, and we are skipping it, just insert the current using basreg. */ if (skip_optional_basereg && ((operand->flags & I370_OPERAND_BASE) != 0)) { int basereg = -1; if (use_text) { if (0 == strncmp (now_seg->name, ".text", 5) || 0 > i370_using_other_regno) { basereg = i370_using_text_regno; } else { basereg = i370_using_other_regno; } } else if (use_other) { if (0 > i370_using_other_regno) { basereg = i370_using_text_regno; } else { basereg = i370_using_other_regno; } } if (0 > basereg) { as_bad ("not using any base register"); } insn = i370_insert_operand (insn, operand, basereg); continue; } /* If this is an optional operand, and we are skipping it, Use zero (since a non-zero value would denote a register) */ if (skip_optional_reg && ((operand->flags & I370_OPERAND_OPTIONAL) != 0)) { insn = i370_insert_operand (insn, operand, 0); continue; } /* Gather the operand. */ hold = input_line_pointer; input_line_pointer = str; /* register names are only allowed where there are registers ... */ if ((operand->flags & I370_OPERAND_GPR) != 0) { /* quickie hack to get past things like (,r13) */ if (skip_optional_index && (',' == *input_line_pointer)) { *input_line_pointer = ' '; input_line_pointer ++; } if (! register_name (&ex)) { as_bad ("expecting a register for operand %d", opindex_ptr - opcode->operands + 1); } } /* check for a address constant expression */ /* We will put PSW-relative addresses in the text section, * and adress literals in the .data (or other) section. */ else if (i370_addr_cons (&ex)) use_other=1; else if (i370_addr_offset (&ex)) use_text=1; else expression (&ex); str = input_line_pointer; input_line_pointer = hold; /* perform some off-by-one hacks on the length field of certain instructions. * Its such a shame to have to do this, but the problem is that HLASM got * defined so that the programmer specifies a length that is one greater * than what the machine instruction wants. * Sigh. */ if (off_by_one && (0 == strcasecmp ("SS L", operand->name))) { ex.X_add_number --; } if (ex.X_op == O_illegal) as_bad ("illegal operand"); else if (ex.X_op == O_absent) as_bad ("missing operand"); else if (ex.X_op == O_register) { insn = i370_insert_operand (insn, operand, ex.X_add_number); } else if (ex.X_op == O_constant) { #ifdef OBJ_ELF /* Allow @HA, @L, @H on constants. * Well actually, no we don't; there really don't make sense * (at least not to me) for the i370. However, this code is * left here for any dubious future expansion reasons ... */ char *orig_str = str; if ((reloc = i370_elf_suffix (&str, &ex)) != BFD_RELOC_UNUSED) switch (reloc) { default: str = orig_str; break; case BFD_RELOC_LO16: /* X_unsigned is the default, so if the user has done something which cleared it, we always produce a signed value. */ ex.X_add_number = (((ex.X_add_number & 0xffff) ^ 0x8000) - 0x8000); break; case BFD_RELOC_HI16: ex.X_add_number = (ex.X_add_number >> 16) & 0xffff; break; case BFD_RELOC_HI16_S: ex.X_add_number = (((ex.X_add_number >> 16) & 0xffff) + ((ex.X_add_number >> 15) & 1)); break; } #endif insn = i370_insert_operand (insn, operand, ex.X_add_number); } #ifdef OBJ_ELF else if ((reloc = i370_elf_suffix (&str, &ex)) != BFD_RELOC_UNUSED) { as_tsktsk ("md_assemble(): suffixed relocations not supported\n"); /* We need to generate a fixup for this expression. */ if (fc >= MAX_INSN_FIXUPS) as_fatal ("too many fixups"); fixups[fc].exp = ex; fixups[fc].opindex = 0; fixups[fc].reloc = reloc; ++fc; } #endif /* OBJ_ELF */ else { /* We need to generate a fixup for this expression. */ /* Typically, the expression will just be a symbol ... * printf ("insn %s needs fixup for %s \n", * opcode->name, ex.X_add_symbol->bsym->name); */ if (fc >= MAX_INSN_FIXUPS) as_fatal ("too many fixups"); fixups[fc].exp = ex; fixups[fc].opindex = *opindex_ptr; fixups[fc].reloc = BFD_RELOC_UNUSED; ++fc; } /* skip over delimiter (close paren, or comma) */ if ((')' == *str) && (',' == *(str+1))) ++str; if (*str != '\0') ++str; } while (isspace (*str)) ++str; if (*str != '\0') as_bad ("junk at end of line: `%s'", str); /* Write out the instruction. */ f = frag_more (opcode->len); if (4 >= opcode->len) { md_number_to_chars (f, insn.i[0], opcode->len); } else { md_number_to_chars (f, insn.i[0], 4); if (6 == opcode->len) { md_number_to_chars ((f+4), ((insn.i[1])>>16), 2); } else { /* not used --- don't have any 8 byte instructions */ as_bad ("Internal Error: bad instruction length"); md_number_to_chars ((f+4), insn.i[1], opcode->len -4); } } /* Create any fixups. At this point we do not use a bfd_reloc_code_real_type, but instead just use the BFD_RELOC_UNUSED plus the operand index. This lets us easily handle fixups for any operand type, although that is admittedly not a very exciting feature. We pick a BFD reloc type in md_apply_fix. */ for (i = 0; i < fc; i++) { const struct i370_operand *operand; operand = &i370_operands[fixups[i].opindex]; if (fixups[i].reloc != BFD_RELOC_UNUSED) { reloc_howto_type *reloc_howto = bfd_reloc_type_lookup (stdoutput, fixups[i].reloc); int size; fixS *fixP; if (!reloc_howto) abort (); size = bfd_get_reloc_size (reloc_howto); if (size < 1 || size > 4) abort(); printf (" gwana doo fixup %d \n", i); fixP = fix_new_exp (frag_now, f - frag_now->fr_literal, size, &fixups[i].exp, reloc_howto->pc_relative, fixups[i].reloc); /* Turn off complaints that the addend is too large for things like foo+100000@ha. */ switch (fixups[i].reloc) { case BFD_RELOC_16_GOTOFF: case BFD_RELOC_LO16: case BFD_RELOC_HI16: case BFD_RELOC_HI16_S: fixP->fx_no_overflow = 1; break; default: break; } } else { fix_new_exp (frag_now, f - frag_now->fr_literal, opcode->len, &fixups[i].exp, (operand->flags & I370_OPERAND_RELATIVE) != 0, ((bfd_reloc_code_real_type) (fixups[i].opindex + (int) BFD_RELOC_UNUSED))); } } } /* Handle a macro. Gather all the operands, transform them as described by the macro, and call md_assemble recursively. All the operands are separated by commas; we don't accept parentheses around operands here. */ static void i370_macro (str, macro) char *str; const struct i370_macro *macro; { char *operands[10]; unsigned int count; char *s; unsigned int len; const char *format; int arg; char *send; char *complete; /* Gather the users operands into the operands array. */ count = 0; s = str; while (1) { if (count >= sizeof operands / sizeof operands[0]) break; operands[count++] = s; s = strchr (s, ','); if (s == (char *) NULL) break; *s++ = '\0'; } if (count != macro->operands) { as_bad ("wrong number of operands"); return; } /* Work out how large the string must be (the size is unbounded because it includes user input). */ len = 0; format = macro->format; while (*format != '\0') { if (*format != '%') { ++len; ++format; } else { arg = strtol (format + 1, &send, 10); know (send != format && arg >= 0 && arg < count); len += strlen (operands[arg]); format = send; } } /* Put the string together. */ complete = s = (char *) alloca (len + 1); format = macro->format; while (*format != '\0') { if (*format != '%') *s++ = *format++; else { arg = strtol (format + 1, &send, 10); strcpy (s, operands[arg]); s += strlen (s); format = send; } } *s = '\0'; /* Assemble the constructed instruction. */ md_assemble (complete); } #ifdef OBJ_ELF /* For ELF, add support for SHF_EXCLUDE and SHT_ORDERED */ int i370_section_letter (letter, ptr_msg) int letter; char **ptr_msg; { if (letter == 'e') return SHF_EXCLUDE; *ptr_msg = "Bad .section directive: want a,w,x,e in string"; return 0; } int i370_section_word (str, len) char *str; size_t len; { if (len == 7 && strncmp (str, "exclude", 7) == 0) return SHF_EXCLUDE; return -1; } int i370_section_type (str, len) char *str; size_t len; { if (len == 7 && strncmp (str, "ordered", 7) == 0) return SHT_ORDERED; return -1; } int i370_section_flags (flags, attr, type) int flags; int attr; int type; { if (type == SHT_ORDERED) flags |= SEC_ALLOC | SEC_LOAD | SEC_SORT_ENTRIES; if (attr & SHF_EXCLUDE) flags |= SEC_EXCLUDE; return flags; } #endif /* OBJ_ELF */ /* Pseudo-op handling. */ /* The .byte pseudo-op. This is similar to the normal .byte pseudo-op, but it can also take a single ASCII string. */ static void i370_byte (ignore) int ignore; { if (*input_line_pointer != '\"') { cons (1); return; } /* Gather characters. A real double quote is doubled. Unusual characters are not permitted. */ ++input_line_pointer; while (1) { char c; c = *input_line_pointer++; if (c == '\"') { if (*input_line_pointer != '\"') break; ++input_line_pointer; } FRAG_APPEND_1_CHAR (c); } demand_empty_rest_of_line (); } /* The .tc pseudo-op. This is used when generating XCOFF and ELF. This takes two or more arguments. When generating XCOFF output, the first argument is the name to give to this location in the toc; this will be a symbol with class TC. The rest of the arguments are 4 byte values to actually put at this location in the TOC; often there is just one more argument, a relocateable symbol reference. When not generating XCOFF output, the arguments are the same, but the first argument is simply ignored. */ static void i370_tc (ignore) int ignore; { /* Skip the TOC symbol name. */ while (is_part_of_name (*input_line_pointer) || *input_line_pointer == '[' || *input_line_pointer == ']' || *input_line_pointer == '{' || *input_line_pointer == '}') ++input_line_pointer; /* Align to a four byte boundary. */ frag_align (2, 0, 0); record_alignment (now_seg, 2); if (*input_line_pointer != ',') demand_empty_rest_of_line (); else { ++input_line_pointer; cons (4); } } /* Turn a string in input_line_pointer into a floating point constant of type TYPE, and store the appropriate bytes in *LITP. The number of LITTLENUMS emitted is stored in *SIZEP. An error message is returned, or NULL on OK. */ char * md_atof (type, litp, sizep) int type; char *litp; int *sizep; { int prec; LITTLENUM_TYPE words[4]; char *t; int i; switch (type) { case 'f': case 'E': type = 'f'; prec = 2; break; case 'd': case 'D': type = 'd'; prec = 4; break; default: *sizep = 0; return "bad call to md_atof"; } /* 360/370/390 have two float formats: an old, funky 360 single-precision * format, and the ieee format. Support only the ieee format. */ t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizep = prec * 2; for (i = 0; i < prec; i++) { md_number_to_chars (litp, (valueT) words[i], 2); litp += 2; } return NULL; } /* Write a value out to the object file, using the appropriate endianness. */ void md_number_to_chars (buf, val, n) char *buf; valueT val; int n; { number_to_chars_bigendian (buf, val, n); } /* Align a section (I don't know why this is machine dependent). */ valueT md_section_align (seg, addr) asection *seg; valueT addr; { int align = bfd_get_section_alignment (stdoutput, seg); return (addr + (1 << align) - 1) & (-1 << align); } /* We don't have any form of relaxing. */ int md_estimate_size_before_relax (fragp, seg) fragS *fragp; asection *seg; { abort (); return 0; } /* Convert a machine dependent frag. We never generate these. */ void md_convert_frag (abfd, sec, fragp) bfd *abfd; asection *sec; fragS *fragp; { abort (); } /* We have no need to default values of symbols. */ /*ARGSUSED*/ symbolS * md_undefined_symbol (name) char *name; { return 0; } /* Functions concerning relocs. */ /* The location from which a PC relative jump should be calculated, given a PC relative reloc. */ long md_pcrel_from_section (fixp, sec) fixS *fixp; segT sec; { return fixp->fx_frag->fr_address + fixp->fx_where; } /* Apply a fixup to the object code. This is called for all the fixups we generated by the call to fix_new_exp, above. In the call above we used a reloc code which was the largest legal reloc code plus the operand index. Here we undo that to recover the operand index. At this point all symbol values should be fully resolved, and we attempt to completely resolve the reloc. If we can not do that, we determine the correct reloc code and put it back in the fixup. See gas/cgen.c for more sample code and explanations of what's going on here ... */ int md_apply_fix3 (fixp, valuep, seg) fixS *fixp; valueT *valuep; segT seg; { valueT value; value = *valuep; if (fixp->fx_addsy != NULL) { /* Notes: Branches to labels will come in here with fixp->fx_pcrel set to 1 and fixp->fx_subsy not null, and holding the value of the base (i.e. the value of the .using). These we want to ignore. 'Strong' and 'weak' symbols will come in here with fixp->fx_pcrel==0, fixp->fx_addsy defined, and *valuep holding the value of the symbol. 'Strong' symbols will have S_GET_VALUE(fx_addsy) equal to zero, whereas 'weak' symbols will have S_GET_VALUE(fx_addsy) set to the symbol value (usually). We want to subtract S_GET_VALUE(fx_addsy) if it set, and for all practical purposes, do a fixup with value zero. This is because the linker/loader, at a later time, will do this fixup with the correct value. If we fixup now with a value, it will get double-fixed, leading to garbage. Note that subsy will also be set for strong/weak symbols when the user program was compiled with -g. In that case, subsy will hold the base address (i.e. the .using address). */ if (fixp->fx_addsy->sy_used_in_reloc && S_GET_SEGMENT (fixp->fx_addsy) != absolute_section && S_GET_SEGMENT (fixp->fx_addsy) != undefined_section && ! bfd_is_com_section (S_GET_SEGMENT (fixp->fx_addsy))) value -= S_GET_VALUE (fixp->fx_addsy); #ifdef DEBUG printf ("\nmd_apply_fix3: symbol %s at 0x%x (%s:%d) val=0x%x addend=0x%x\n", S_GET_NAME (fixp->fx_addsy), fixp->fx_frag->fr_address + fixp->fx_where, fixp->fx_file, fixp->fx_line, S_GET_VALUE (fixp->fx_addsy), value); #endif } else { fixp->fx_done = 1; return 1; } /* Apply fixups to operands. Note that there should be no relocations for any operands, since no instruction ever takes an operand that requires reloc. */ if ((int) fixp->fx_r_type >= (int) BFD_RELOC_UNUSED) { int opindex; const struct i370_operand *operand; char *where; i370_insn_t insn; opindex = (int) fixp->fx_r_type - (int) BFD_RELOC_UNUSED; operand = &i370_operands[opindex]; #ifdef DEBUG printf ("\nmd_apply_fix3: fixup operand %s at 0x%x in %s:%d addend=0x%x\n", operand->name, fixp->fx_frag->fr_address + fixp->fx_where, fixp->fx_file, fixp->fx_line, value); #endif /* Fetch the instruction, insert the fully resolved operand value, and stuff the instruction back again. fisxp->fx_size is the length of the instruction. */ where = fixp->fx_frag->fr_literal + fixp->fx_where; insn.i[0] = bfd_getb32 ((unsigned char *) where); if (6 <= fixp->fx_size) { /* deal with 48-bit insn's */ insn.i[1] = bfd_getb32 (((unsigned char *) where)+4); } insn = i370_insert_operand (insn, operand, (offsetT) value); bfd_putb32 ((bfd_vma) insn.i[0], (unsigned char *) where); if (6 <= fixp->fx_size) { /* deal with 48-bit insn's */ bfd_putb32 ((bfd_vma) insn.i[1], (((unsigned char *) where)+4)); } /* we are done, right? right !! */ fixp->fx_done = 1; if (fixp->fx_done) { /* Nothing else to do here. */ return 1; } /* Determine a BFD reloc value based on the operand information. We are only prepared to turn a few of the operands into relocs. In fact, we support *zero* operand relocations ... Why? Because we are not expecting the compiler to generate any operands that need relocation. Due to the 12-bit naturew of i370 addressing, this would be unusual. */ #if 0 if ((operand->flags & I370_OPERAND_RELATIVE) != 0 && operand->bits == 12 && operand->shift == 0) fixp->fx_r_type = BFD_RELOC_I370_D12; else #endif { char *sfile; unsigned int sline; /* Use expr_symbol_where to see if this is an expression symbol. */ if (expr_symbol_where (fixp->fx_addsy, &sfile, &sline)) as_bad_where (fixp->fx_file, fixp->fx_line, "unresolved expression that must be resolved"); else as_bad_where (fixp->fx_file, fixp->fx_line, "unsupported relocation type"); fixp->fx_done = 1; return 1; } } else { /* We branch to here if the fixup is not to a symbol that * appears in an instruction operand, but is rather some * declared storage. */ #ifdef OBJ_ELF i370_elf_validate_fix (fixp, seg); #endif #ifdef DEBUG printf ("md_apply_fix3: reloc case %d in segment %s %s:%d\n", fixp->fx_r_type, segment_name (seg), fixp->fx_file, fixp->fx_line); printf ("\tcurrent fixup value is 0x%x \n", value); #endif switch (fixp->fx_r_type) { case BFD_RELOC_32: case BFD_RELOC_CTOR: if (fixp->fx_pcrel) fixp->fx_r_type = BFD_RELOC_32_PCREL; /* fall through */ case BFD_RELOC_RVA: case BFD_RELOC_32_PCREL: case BFD_RELOC_32_BASEREL: #ifdef DEBUG printf ("\t32 bit relocation at 0x%x\n", fixp->fx_frag->fr_address + fixp->fx_where); #endif md_number_to_chars (fixp->fx_frag->fr_literal + fixp->fx_where, value, 4); break; case BFD_RELOC_LO16: case BFD_RELOC_16: if (fixp->fx_pcrel) as_bad_where (fixp->fx_file, fixp->fx_line, "cannot emit PC relative %s relocation%s%s", bfd_get_reloc_code_name (fixp->fx_r_type), fixp->fx_addsy != NULL ? " against " : "", (fixp->fx_addsy != NULL ? S_GET_NAME (fixp->fx_addsy) : "")); md_number_to_chars (fixp->fx_frag->fr_literal + fixp->fx_where, value, 2); break; /* This case happens when you write, for example, lis %r3,(L1-L2)@ha where L1 and L2 are defined later. */ case BFD_RELOC_HI16: if (fixp->fx_pcrel) abort (); md_number_to_chars (fixp->fx_frag->fr_literal + fixp->fx_where, value >> 16, 2); break; case BFD_RELOC_HI16_S: if (fixp->fx_pcrel) abort (); md_number_to_chars (fixp->fx_frag->fr_literal + fixp->fx_where, (value + 0x8000) >> 16, 2); break; case BFD_RELOC_8: if (fixp->fx_pcrel) abort (); md_number_to_chars (fixp->fx_frag->fr_literal + fixp->fx_where, value, 1); break; default: fprintf(stderr, "Gas failure, reloc value %d\n", fixp->fx_r_type); fflush(stderr); abort (); } } fixp->fx_addnumber = value; return 1; } /* Generate a reloc for a fixup. */ arelent * tc_gen_reloc (seg, fixp) asection *seg; fixS *fixp; { arelent *reloc; reloc = (arelent *) xmalloc (sizeof (arelent)); reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); if (reloc->howto == (reloc_howto_type *) NULL) { as_bad_where (fixp->fx_file, fixp->fx_line, "reloc %d not supported by object file format", (int)fixp->fx_r_type); return NULL; } reloc->addend = fixp->fx_addnumber; #ifdef DEBUG printf ("\ngen_reloc(): sym %s (%s:%d) at addr 0x%x addend=0x%x\n", fixp->fx_addsy->bsym->name, fixp->fx_file, fixp->fx_line, reloc->address, reloc->addend); #endif return reloc; }