/* This file is tc-avr.h Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc. Contributed by Denis Chertykov This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef BFD_ASSEMBLER #error AVR support requires BFD_ASSEMBLER #endif /* By convention, you should define this macro in the `.h' file. For example, `tc-m68k.h' defines `TC_M68K'. You might have to use this if it is necessary to add CPU specific code to the object format file. */ #define TC_AVR /* This macro is the BFD target name to use when creating the output file. This will normally depend upon the `OBJ_FMT' macro. */ #define TARGET_FORMAT "elf32-avr" /* This macro is the BFD architecture to pass to `bfd_set_arch_mach'. */ #define TARGET_ARCH bfd_arch_avr /* This macro is the BFD machine number to pass to `bfd_set_arch_mach'. If it is not defined, GAS will use 0. */ #define TARGET_MACH 0 /* You should define this macro to be non-zero if the target is big endian, and zero if the target is little endian. */ #define TARGET_BYTES_BIG_ENDIAN 0 /* If you define this macro, GAS will warn about the use of nonstandard escape sequences in a string. */ #define ONLY_STANDARD_ESCAPES /* GAS will call this function for any expression that can not be recognized. When the function is called, `input_line_pointer' will point to the start of the expression. */ #define md_operand(x) /* You may define this macro to parse an expression used in a data allocation pseudo-op such as `.word'. You can use this to recognize relocation directives that may appear in such directives. */ #define TC_PARSE_CONS_EXPRESSION(EXPR,N) avr_parse_cons_expression (EXPR,N) void avr_parse_cons_expression (expressionS *exp, int nbytes); /* You may define this macro to generate a fixup for a data allocation pseudo-op. */ #define TC_CONS_FIX_NEW(FRAG,WHERE,N,EXP) avr_cons_fix_new(FRAG,WHERE,N,EXP) void avr_cons_fix_new(fragS *frag,int where, int nbytes, expressionS *exp); /* This should just call either `number_to_chars_bigendian' or `number_to_chars_littleendian', whichever is appropriate. On targets like the MIPS which support options to change the endianness, which function to call is a runtime decision. On other targets, `md_number_to_chars' can be a simple macro. */ #define md_number_to_chars number_to_chars_littleendian /* `md_short_jump_size' `md_long_jump_size' `md_create_short_jump' `md_create_long_jump' If `WORKING_DOT_WORD' is defined, GAS will not do broken word processing (*note Broken words::.). Otherwise, you should set `md_short_jump_size' to the size of a short jump (a jump that is just long enough to jump around a long jmp) and `md_long_jump_size' to the size of a long jump (a jump that can go anywhere in the function), You should define `md_create_short_jump' to create a short jump around a long jump, and define `md_create_long_jump' to create a long jump. */ #define WORKING_DOT_WORD /* If you define this macro, it means that `tc_gen_reloc' may return multiple relocation entries for a single fixup. In this case, the return value of `tc_gen_reloc' is a pointer to a null terminated array. */ #undef RELOC_EXPANSION_POSSIBLE /* No shared lib support, so we don't need to ensure externally visible symbols can be overridden. */ #define EXTERN_FORCE_RELOC 0 /* Values passed to md_apply_fix don't include the symbol value. */ #define MD_APPLY_SYM_VALUE(FIX) 0 /* If you define this macro, it should return the offset between the address of a PC relative fixup and the position from which the PC relative adjustment should be made. On many processors, the base of a PC relative instruction is the next instruction, so this macro would return the length of an instruction. */ #define MD_PCREL_FROM_SECTION(FIX, SEC) md_pcrel_from_section(FIX, SEC) extern long md_pcrel_from_section PARAMS ((struct fix *, segT)); /* The number of bytes to put into a word in a listing. This affects the way the bytes are clumped together in the listing. For example, a value of 2 might print `1234 5678' where a value of 1 would print `12 34 56 78'. The default value is 4. */ #define LISTING_WORD_SIZE 2 /* AVR port uses `$' as a logical line separator */ #define LEX_DOLLAR 0 /* An `.lcomm' directive with no explicit alignment parameter will use this macro to set P2VAR to the alignment that a request for SIZE bytes will have. The alignment is expressed as a power of two. If no alignment should take place, the macro definition should do nothing. Some targets define a `.bss' directive that is also affected by this macro. The default definition will set P2VAR to the truncated power of two of sizes up to eight bytes. */ #define TC_IMPLICIT_LCOMM_ALIGNMENT(SIZE, P2VAR) (P2VAR) = 0