/* tc-arm.c -- Assemble for the ARM Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org) Modified by David Taylor (dtaylor@armltd.co.uk) Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com) Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com) Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com) This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include #define NO_RELOC 0 #include "as.h" #include "safe-ctype.h" /* Need TARGET_CPU. */ #include "config.h" #include "subsegs.h" #include "obstack.h" #include "symbols.h" #include "listing.h" #include "opcode/arm.h" #ifdef OBJ_ELF #include "elf/arm.h" #include "dwarf2dbg.h" #include "dw2gencfi.h" #endif /* XXX Set this to 1 after the next binutils release. */ #define WARN_DEPRECATED 0 #ifdef OBJ_ELF /* Must be at least the size of the largest unwind opcode (currently two). */ #define ARM_OPCODE_CHUNK_SIZE 8 /* This structure holds the unwinding state. */ static struct { symbolS * proc_start; symbolS * table_entry; symbolS * personality_routine; int personality_index; /* The segment containing the function. */ segT saved_seg; subsegT saved_subseg; /* Opcodes generated from this function. */ unsigned char * opcodes; int opcode_count; int opcode_alloc; /* The number of bytes pushed to the stack. */ offsetT frame_size; /* We don't add stack adjustment opcodes immediately so that we can merge multiple adjustments. We can also omit the final adjustment when using a frame pointer. */ offsetT pending_offset; /* These two fields are set by both unwind_movsp and unwind_setfp. They hold the reg+offset to use when restoring sp from a frame pointer. */ offsetT fp_offset; int fp_reg; /* Nonzero if an unwind_setfp directive has been seen. */ unsigned fp_used:1; /* Nonzero if the last opcode restores sp from fp_reg. */ unsigned sp_restored:1; } unwind; /* Bit N indicates that an R_ARM_NONE relocation has been output for __aeabi_unwind_cpp_prN already if set. This enables dependencies to be emitted only once per section, to save unnecessary bloat. */ static unsigned int marked_pr_dependency = 0; #endif /* OBJ_ELF */ enum arm_float_abi { ARM_FLOAT_ABI_HARD, ARM_FLOAT_ABI_SOFTFP, ARM_FLOAT_ABI_SOFT }; /* Types of processor to assemble for. */ #define ARM_1 ARM_ARCH_V1 #define ARM_2 ARM_ARCH_V2 #define ARM_3 ARM_ARCH_V2S #define ARM_250 ARM_ARCH_V2S #define ARM_6 ARM_ARCH_V3 #define ARM_7 ARM_ARCH_V3 #define ARM_8 ARM_ARCH_V4 #define ARM_9 ARM_ARCH_V4T #define ARM_STRONG ARM_ARCH_V4 #define ARM_CPU_MASK 0x0000000f /* XXX? */ #ifndef CPU_DEFAULT #if defined __XSCALE__ #define CPU_DEFAULT (ARM_ARCH_XSCALE) #else #if defined __thumb__ #define CPU_DEFAULT (ARM_ARCH_V5T) #else #define CPU_DEFAULT ARM_ANY #endif #endif #endif #ifndef FPU_DEFAULT # ifdef TE_LINUX # define FPU_DEFAULT FPU_ARCH_FPA # elif defined (TE_NetBSD) # ifdef OBJ_ELF # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */ # else /* Legacy a.out format. */ # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */ # endif # elif defined (TE_VXWORKS) # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */ # else /* For backwards compatibility, default to FPA. */ # define FPU_DEFAULT FPU_ARCH_FPA # endif #endif /* ifndef FPU_DEFAULT */ #define streq(a, b) (strcmp (a, b) == 0) static unsigned long cpu_variant; /* Flags stored in private area of BFD structure. */ static int uses_apcs_26 = FALSE; static int atpcs = FALSE; static int support_interwork = FALSE; static int uses_apcs_float = FALSE; static int pic_code = FALSE; /* Variables that we set while parsing command-line options. Once all options have been read we re-process these values to set the real assembly flags. */ static int legacy_cpu = -1; static int legacy_fpu = -1; static int mcpu_cpu_opt = -1; static int mcpu_fpu_opt = -1; static int march_cpu_opt = -1; static int march_fpu_opt = -1; static int mfpu_opt = -1; static int mfloat_abi_opt = -1; #ifdef OBJ_ELF # ifdef EABI_DEFAULT static int meabi_flags = EABI_DEFAULT; # else static int meabi_flags = EF_ARM_EABI_UNKNOWN; # endif #endif #ifdef OBJ_ELF /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */ symbolS * GOT_symbol; #endif /* Size of relocation record. */ const int md_reloc_size = 8; /* 0: assemble for ARM, 1: assemble for Thumb, 2: assemble for Thumb even though target CPU does not support thumb instructions. */ static int thumb_mode = 0; /* If unified_syntax is true, we are processing the new unified ARM/Thumb syntax. Important differences from the old ARM mode: - Immediate operands do not require a # prefix. - Conditional affixes always appear at the end of the instruction. (For backward compatibility, those instructions that formerly had them in the middle, continue to accept them there.) - The IT instruction may appear, and if it does is validated against subsequent conditional affixes. It does not generate machine code. Important differences from the old Thumb mode: - Immediate operands do not require a # prefix. - Most of the V6T2 instructions are only available in unified mode. - The .N and .W suffixes are recognized and honored (it is an error if they cannot be honored). - All instructions set the flags if and only if they have an 's' affix. - Conditional affixes may be used. They are validated against preceding IT instructions. Unlike ARM mode, you cannot use a conditional affix except in the scope of an IT instruction. */ static bfd_boolean unified_syntax = FALSE; struct arm_it { const char * error; unsigned long instruction; int size; int size_req; int cond; struct { bfd_reloc_code_real_type type; expressionS exp; int pc_rel; } reloc; struct { unsigned reg; unsigned imm; unsigned present : 1; /* operand present */ unsigned isreg : 1; /* operand was a register */ unsigned immisreg : 1; /* .imm field is a second register */ unsigned hasreloc : 1; /* operand has relocation suffix */ unsigned writeback : 1; /* operand has trailing ! */ unsigned preind : 1; /* preindexed address */ unsigned postind : 1; /* postindexed address */ unsigned negative : 1; /* index register was negated */ unsigned shifted : 1; /* shift applied to operation */ unsigned shift_kind : 3; /* shift operation (enum shift_kind) */ } operands[6]; }; static struct arm_it inst; #define NUM_FLOAT_VALS 8 const char * fp_const[] = { "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0 }; /* Number of littlenums required to hold an extended precision number. */ #define MAX_LITTLENUMS 6 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS]; #define FAIL (-1) #define SUCCESS (0) #define SUFF_S 1 #define SUFF_D 2 #define SUFF_E 3 #define SUFF_P 4 #define CP_T_X 0x00008000 #define CP_T_Y 0x00400000 #define CONDS_BIT 0x00100000 #define LOAD_BIT 0x00100000 #define DOUBLE_LOAD_FLAG 0x00000001 struct asm_cond { const char * template; unsigned long value; }; #define COND_ALWAYS 0xE struct asm_psr { const char *template; unsigned long field; }; /* The bit that distinguishes CPSR and SPSR. */ #define SPSR_BIT (1 << 22) /* The individual PSR flag bits. */ #define PSR_c (1 << 16) #define PSR_x (1 << 17) #define PSR_s (1 << 18) #define PSR_f (1 << 19) struct reloc_entry { char *name; bfd_reloc_code_real_type reloc; }; enum vfp_sp_reg_pos { VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn }; enum vfp_ldstm_type { VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX }; /* ARM register categories. This includes coprocessor numbers and various architecture extensions' registers. */ enum arm_reg_type { REG_TYPE_RN, REG_TYPE_CP, REG_TYPE_CN, REG_TYPE_FN, REG_TYPE_VFS, REG_TYPE_VFD, REG_TYPE_VFC, REG_TYPE_MVF, REG_TYPE_MVD, REG_TYPE_MVFX, REG_TYPE_MVDX, REG_TYPE_MVAX, REG_TYPE_DSPSC, REG_TYPE_MMXWR, REG_TYPE_MMXWC, REG_TYPE_MMXWCG, REG_TYPE_XSCALE, }; /* Structure for a hash table entry for a register. */ struct reg_entry { const char *name; unsigned char number; unsigned char type; unsigned char builtin; }; /* Diagnostics used when we don't get a register of the expected type. */ const char *const reg_expected_msgs[] = { N_("ARM register expected"), N_("bad or missing co-processor number"), N_("co-processor register expected"), N_("FPA register expected"), N_("VFP single precision register expected"), N_("VFP double precision register expected"), N_("VFP system register expected"), N_("Maverick MVF register expected"), N_("Maverick MVD register expected"), N_("Maverick MVFX register expected"), N_("Maverick MVDX register expected"), N_("Maverick MVAX register expected"), N_("Maverick DSPSC register expected"), N_("iWMMXt data register expected"), N_("iWMMXt control register expected"), N_("iWMMXt scalar register expected"), N_("XScale accumulator register expected"), }; /* Some well known registers that we refer to directly elsewhere. */ #define REG_SP 13 #define REG_LR 14 #define REG_PC 15 /* ARM instructions take 4bytes in the object file, Thumb instructions take 2: */ #define INSN_SIZE 4 struct asm_opcode { /* Basic string to match. */ const char *template; /* Parameters to instruction. */ unsigned char operands[8]; /* Conditional tag - see opcode_lookup. */ unsigned int tag : 4; /* Basic instruction code. */ unsigned int avalue : 28; /* Thumb-format instruction code. */ unsigned int tvalue; /* Which architecture variant provides this instruction. */ unsigned long avariant; unsigned long tvariant; /* Function to call to encode instruction in ARM format. */ void (* aencode) (void); /* Function to call to encode instruction in Thumb format. */ void (* tencode) (void); }; /* Defines for various bits that we will want to toggle. */ #define INST_IMMEDIATE 0x02000000 #define OFFSET_REG 0x02000000 #define HWOFFSET_IMM 0x00400000 #define SHIFT_BY_REG 0x00000010 #define PRE_INDEX 0x01000000 #define INDEX_UP 0x00800000 #define WRITE_BACK 0x00200000 #define LDM_TYPE_2_OR_3 0x00400000 #define LITERAL_MASK 0xf000f000 #define OPCODE_MASK 0xfe1fffff #define V4_STR_BIT 0x00000020 #define DATA_OP_SHIFT 21 /* Codes to distinguish the arithmetic instructions. */ #define OPCODE_AND 0 #define OPCODE_EOR 1 #define OPCODE_SUB 2 #define OPCODE_RSB 3 #define OPCODE_ADD 4 #define OPCODE_ADC 5 #define OPCODE_SBC 6 #define OPCODE_RSC 7 #define OPCODE_TST 8 #define OPCODE_TEQ 9 #define OPCODE_CMP 10 #define OPCODE_CMN 11 #define OPCODE_ORR 12 #define OPCODE_MOV 13 #define OPCODE_BIC 14 #define OPCODE_MVN 15 #define T_OPCODE_MUL 0x4340 #define T_OPCODE_TST 0x4200 #define T_OPCODE_CMN 0x42c0 #define T_OPCODE_NEG 0x4240 #define T_OPCODE_MVN 0x43c0 #define T_OPCODE_ADD_R3 0x1800 #define T_OPCODE_SUB_R3 0x1a00 #define T_OPCODE_ADD_HI 0x4400 #define T_OPCODE_ADD_ST 0xb000 #define T_OPCODE_SUB_ST 0xb080 #define T_OPCODE_ADD_SP 0xa800 #define T_OPCODE_ADD_PC 0xa000 #define T_OPCODE_ADD_I8 0x3000 #define T_OPCODE_SUB_I8 0x3800 #define T_OPCODE_ADD_I3 0x1c00 #define T_OPCODE_SUB_I3 0x1e00 #define T_OPCODE_ASR_R 0x4100 #define T_OPCODE_LSL_R 0x4080 #define T_OPCODE_LSR_R 0x40c0 #define T_OPCODE_ROR_R 0x41c0 #define T_OPCODE_ASR_I 0x1000 #define T_OPCODE_LSL_I 0x0000 #define T_OPCODE_LSR_I 0x0800 #define T_OPCODE_MOV_I8 0x2000 #define T_OPCODE_CMP_I8 0x2800 #define T_OPCODE_CMP_LR 0x4280 #define T_OPCODE_MOV_HR 0x4600 #define T_OPCODE_CMP_HR 0x4500 #define T_OPCODE_LDR_PC 0x4800 #define T_OPCODE_LDR_SP 0x9800 #define T_OPCODE_STR_SP 0x9000 #define T_OPCODE_LDR_IW 0x6800 #define T_OPCODE_STR_IW 0x6000 #define T_OPCODE_LDR_IH 0x8800 #define T_OPCODE_STR_IH 0x8000 #define T_OPCODE_LDR_IB 0x7800 #define T_OPCODE_STR_IB 0x7000 #define T_OPCODE_LDR_RW 0x5800 #define T_OPCODE_STR_RW 0x5000 #define T_OPCODE_LDR_RH 0x5a00 #define T_OPCODE_STR_RH 0x5200 #define T_OPCODE_LDR_RB 0x5c00 #define T_OPCODE_STR_RB 0x5400 #define T_OPCODE_PUSH 0xb400 #define T_OPCODE_POP 0xbc00 #define T_OPCODE_BRANCH 0xe7fe #define THUMB_SIZE 2 /* Size of thumb instruction. */ #define THUMB_PP_PC_LR 0x0100 #define THUMB_LOAD_BIT 0x0800 #define BAD_ARGS _("bad arguments to instruction") #define BAD_PC _("r15 not allowed here") #define BAD_COND _("instruction cannot be conditional") #define BAD_OVERLAP _("registers may not be the same") #define BAD_HIREG _("lo register required") #define BAD_THUMB32 _("instruction not supported in Thumb16 mode") static struct hash_control *arm_ops_hsh; static struct hash_control *arm_cond_hsh; static struct hash_control *arm_shift_hsh; static struct hash_control *arm_psr_hsh; static struct hash_control *arm_reg_hsh; static struct hash_control *arm_reloc_hsh; /* Stuff needed to resolve the label ambiguity As: ... label: may differ from: ... label: */ symbolS * last_label_seen; static int label_is_thumb_function_name = FALSE; /* Literal pool structure. Held on a per-section and per-sub-section basis. */ #define MAX_LITERAL_POOL_SIZE 1024 typedef struct literal_pool { expressionS literals [MAX_LITERAL_POOL_SIZE]; unsigned int next_free_entry; unsigned int id; symbolS * symbol; segT section; subsegT sub_section; struct literal_pool * next; } literal_pool; /* Pointer to a linked list of literal pools. */ literal_pool * list_of_pools = NULL; /* Pure syntax. */ /* This array holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful. */ const char comment_chars[] = "@"; /* This array holds the chars that only start a comment at the beginning of a line. If the line seems to have the form '# 123 filename' .line and .file directives will appear in the pre-processed output. */ /* Note that input_file.c hand checks for '#' at the beginning of the first line of the input file. This is because the compiler outputs #NO_APP at the beginning of its output. */ /* Also note that comments like this one will always work. */ const char line_comment_chars[] = "#"; const char line_separator_chars[] = ";"; /* Chars that can be used to separate mant from exp in floating point numbers. */ const char EXP_CHARS[] = "eE"; /* Chars that mean this number is a floating point constant. */ /* As in 0f12.456 */ /* or 0d1.2345e12 */ const char FLT_CHARS[] = "rRsSfFdDxXeEpP"; /* Prefix characters that indicate the start of an immediate value. */ #define is_immediate_prefix(C) ((C) == '#' || (C) == '$') /* Separator character handling. */ #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0) static inline int skip_past_char (char ** str, char c) { if (**str == c) { (*str)++; return SUCCESS; } else return FAIL; } #define skip_past_comma(str) skip_past_char (str, ',') /* Arithmetic expressions (possibly involving symbols). */ /* Return TRUE if anything in the expression is a bignum. */ static int walk_no_bignums (symbolS * sp) { if (symbol_get_value_expression (sp)->X_op == O_big) return 1; if (symbol_get_value_expression (sp)->X_add_symbol) { return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol) || (symbol_get_value_expression (sp)->X_op_symbol && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol))); } return 0; } static int in_my_get_expression = 0; /* Third argument to my_get_expression. */ #define GE_NO_PREFIX 0 #define GE_IMM_PREFIX 1 #define GE_OPT_PREFIX 2 static int my_get_expression (expressionS * ep, char ** str, int prefix_mode) { char * save_in; segT seg; /* In unified syntax, all prefixes are optional. */ if (unified_syntax) prefix_mode = GE_OPT_PREFIX; switch (prefix_mode) { case GE_NO_PREFIX: break; case GE_IMM_PREFIX: if (!is_immediate_prefix (**str)) { inst.error = _("immediate expression requires a # prefix"); return FAIL; } (*str)++; break; case GE_OPT_PREFIX: if (is_immediate_prefix (**str)) (*str)++; break; default: abort (); } memset (ep, 0, sizeof (expressionS)); save_in = input_line_pointer; input_line_pointer = *str; in_my_get_expression = 1; seg = expression (ep); in_my_get_expression = 0; if (ep->X_op == O_illegal) { /* We found a bad expression in md_operand(). */ *str = input_line_pointer; input_line_pointer = save_in; if (inst.error == NULL) inst.error = _("bad expression"); return 1; } #ifdef OBJ_AOUT if (seg != absolute_section && seg != text_section && seg != data_section && seg != bss_section && seg != undefined_section) { inst.error = _("bad segment"); *str = input_line_pointer; input_line_pointer = save_in; return 1; } #endif /* Get rid of any bignums now, so that we don't generate an error for which we can't establish a line number later on. Big numbers are never valid in instructions, which is where this routine is always called. */ if (ep->X_op == O_big || (ep->X_add_symbol && (walk_no_bignums (ep->X_add_symbol) || (ep->X_op_symbol && walk_no_bignums (ep->X_op_symbol))))) { inst.error = _("invalid constant"); *str = input_line_pointer; input_line_pointer = save_in; return 1; } *str = input_line_pointer; input_line_pointer = save_in; return 0; } /* Turn a string in input_line_pointer into a floating point constant of type TYPE, and store the appropriate bytes in *LITP. The number of LITTLENUMS emitted is stored in *SIZEP. An error message is returned, or NULL on OK. Note that fp constants aren't represent in the normal way on the ARM. In big endian mode, things are as expected. However, in little endian mode fp constants are big-endian word-wise, and little-endian byte-wise within the words. For example, (double) 1.1 in big endian mode is the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is the byte sequence 99 99 f1 3f 9a 99 99 99. ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */ char * md_atof (int type, char * litP, int * sizeP) { int prec; LITTLENUM_TYPE words[MAX_LITTLENUMS]; char *t; int i; switch (type) { case 'f': case 'F': case 's': case 'S': prec = 2; break; case 'd': case 'D': case 'r': case 'R': prec = 4; break; case 'x': case 'X': prec = 6; break; case 'p': case 'P': prec = 6; break; default: *sizeP = 0; return _("bad call to MD_ATOF()"); } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizeP = prec * 2; if (target_big_endian) { for (i = 0; i < prec; i++) { md_number_to_chars (litP, (valueT) words[i], 2); litP += 2; } } else { if (cpu_variant & FPU_ARCH_VFP) for (i = prec - 1; i >= 0; i--) { md_number_to_chars (litP, (valueT) words[i], 2); litP += 2; } else /* For a 4 byte float the order of elements in `words' is 1 0. For an 8 byte float the order is 1 0 3 2. */ for (i = 0; i < prec; i += 2) { md_number_to_chars (litP, (valueT) words[i + 1], 2); md_number_to_chars (litP + 2, (valueT) words[i], 2); litP += 4; } } return 0; } /* We handle all bad expressions here, so that we can report the faulty instruction in the error message. */ void md_operand (expressionS * expr) { if (in_my_get_expression) expr->X_op = O_illegal; } /* Immediate values. */ /* Generic immediate-value read function for use in directives. Accepts anything that 'expression' can fold to a constant. *val receives the number. */ #ifdef OBJ_ELF static int immediate_for_directive (int *val) { expressionS exp; exp.X_op = O_illegal; if (is_immediate_prefix (*input_line_pointer)) { input_line_pointer++; expression (&exp); } if (exp.X_op != O_constant) { as_bad (_("expected #constant")); ignore_rest_of_line (); return FAIL; } *val = exp.X_add_number; return SUCCESS; } #endif /* Register parsing. */ /* Generic register parser. CCP points to what should be the beginning of a register name. If it is indeed a valid register name, advance CCP over it and return the reg_entry structure; otherwise return NULL. Does not issue diagnostics. */ static struct reg_entry * arm_reg_parse_multi (char **ccp) { char *start = *ccp; char *p; struct reg_entry *reg; #ifdef REGISTER_PREFIX if (*start != REGISTER_PREFIX) return FAIL; start++; #endif #ifdef OPTIONAL_REGISTER_PREFIX if (*start == OPTIONAL_REGISTER_PREFIX) start++; #endif p = start; if (!ISALPHA (*p) || !is_name_beginner (*p)) return NULL; do p++; while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_'); reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start); if (!reg) return NULL; *ccp = p; return reg; } /* As above, but the register must be of type TYPE, and the return value is the register number or NULL. */ static int arm_reg_parse (char **ccp, enum arm_reg_type type) { char *start = *ccp; struct reg_entry *reg = arm_reg_parse_multi (ccp); if (reg && reg->type == type) return reg->number; /* Alternative syntaxes are accepted for a few register classes. */ switch (type) { case REG_TYPE_MVF: case REG_TYPE_MVD: case REG_TYPE_MVFX: case REG_TYPE_MVDX: /* Generic coprocessor register names are allowed for these. */ if (reg->type == REG_TYPE_CN) return reg->number; break; case REG_TYPE_CP: /* For backward compatibility, a bare number is valid here. */ { unsigned long processor = strtoul (start, ccp, 10); if (*ccp != start && processor <= 15) return processor; } case REG_TYPE_MMXWC: /* WC includes WCG. ??? I'm not sure this is true for all instructions that take WC registers. */ if (reg->type == REG_TYPE_MMXWCG) return reg->number; break; default: break; } *ccp = start; return FAIL; } /* Parse an ARM register list. Returns the bitmask, or FAIL. */ static long parse_reg_list (char ** strp) { char * str = * strp; long range = 0; int another_range; /* We come back here if we get ranges concatenated by '+' or '|'. */ do { another_range = 0; if (*str == '{') { int in_range = 0; int cur_reg = -1; str++; do { int reg; if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL) { inst.error = _(reg_expected_msgs[REG_TYPE_RN]); return FAIL; } if (in_range) { int i; if (reg <= cur_reg) { inst.error = _("bad range in register list"); return FAIL; } for (i = cur_reg + 1; i < reg; i++) { if (range & (1 << i)) as_tsktsk (_("Warning: duplicated register (r%d) in register list"), i); else range |= 1 << i; } in_range = 0; } if (range & (1 << reg)) as_tsktsk (_("Warning: duplicated register (r%d) in register list"), reg); else if (reg <= cur_reg) as_tsktsk (_("Warning: register range not in ascending order")); range |= 1 << reg; cur_reg = reg; } while (skip_past_comma (&str) != FAIL || (in_range = 1, *str++ == '-')); str--; if (*str++ != '}') { inst.error = _("missing `}'"); return FAIL; } } else { expressionS expr; if (my_get_expression (&expr, &str, GE_NO_PREFIX)) return FAIL; if (expr.X_op == O_constant) { if (expr.X_add_number != (expr.X_add_number & 0x0000ffff)) { inst.error = _("invalid register mask"); return FAIL; } if ((range & expr.X_add_number) != 0) { int regno = range & expr.X_add_number; regno &= -regno; regno = (1 << regno) - 1; as_tsktsk (_("Warning: duplicated register (r%d) in register list"), regno); } range |= expr.X_add_number; } else { if (inst.reloc.type != 0) { inst.error = _("expression too complex"); return FAIL; } memcpy (&inst.reloc.exp, &expr, sizeof (expressionS)); inst.reloc.type = BFD_RELOC_ARM_MULTI; inst.reloc.pc_rel = 0; } } if (*str == '|' || *str == '+') { str++; another_range = 1; } } while (another_range); *strp = str; return range; } /* Parse a VFP register list. If the string is invalid return FAIL. Otherwise return the number of registers, and set PBASE to the first register. Double precision registers are matched if DP is nonzero. */ static int parse_vfp_reg_list (char **str, int *pbase, int dp) { int base_reg; int new_base; int regtype; int max_regs; int count = 0; int warned = 0; unsigned long mask = 0; int i; if (**str != '{') return FAIL; (*str)++; if (dp) { regtype = REG_TYPE_VFD; max_regs = 16; } else { regtype = REG_TYPE_VFS; max_regs = 32; } base_reg = max_regs; do { new_base = arm_reg_parse (str, regtype); if (new_base == FAIL) { inst.error = gettext (reg_expected_msgs[regtype]); return FAIL; } if (new_base < base_reg) base_reg = new_base; if (mask & (1 << new_base)) { inst.error = _("invalid register list"); return FAIL; } if ((mask >> new_base) != 0 && ! warned) { as_tsktsk (_("register list not in ascending order")); warned = 1; } mask |= 1 << new_base; count++; if (**str == '-') /* We have the start of a range expression */ { int high_range; (*str)++; if ((high_range = arm_reg_parse (str, regtype)) == FAIL) { inst.error = gettext (reg_expected_msgs[regtype]); return FAIL; } if (high_range <= new_base) { inst.error = _("register range not in ascending order"); return FAIL; } for (new_base++; new_base <= high_range; new_base++) { if (mask & (1 << new_base)) { inst.error = _("invalid register list"); return FAIL; } mask |= 1 << new_base; count++; } } } while (skip_past_comma (str) != FAIL); (*str)++; /* Sanity check -- should have raised a parse error above. */ if (count == 0 || count > max_regs) abort (); *pbase = base_reg; /* Final test -- the registers must be consecutive. */ mask >>= base_reg; for (i = 0; i < count; i++) { if ((mask & (1u << i)) == 0) { inst.error = _("non-contiguous register range"); return FAIL; } } return count; } /* Parse an explicit relocation suffix on an expression. This is either nothing, or a word in parentheses. Note that if !OBJ_ELF, arm_reloc_hsh contains no entries, so this function can only succeed if there is no () after the word. Returns -1 on error, BFD_RELOC_UNUSED if there wasn't any suffix. */ static int parse_reloc (char **str) { struct reloc_entry *r; char *p, *q; if (**str != '(') return BFD_RELOC_UNUSED; p = *str + 1; q = p; while (*q && *q != ')' && *q != ',') q++; if (*q != ')') return -1; if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL) return -1; *str = q + 1; return r->reloc; } /* Directives: register aliases. */ static void insert_reg_alias (char *str, int number, int type) { struct reg_entry *new; const char *name; if ((new = hash_find (arm_reg_hsh, str)) != 0) { if (new->builtin) as_warn (_("ignoring attempt to redefine built-in register '%s'"), str); /* Only warn about a redefinition if it's not defined as the same register. */ else if (new->number != number || new->type != type) as_warn (_("ignoring redefinition of register alias '%s'"), str); return; } name = xstrdup (str); new = xmalloc (sizeof (struct reg_entry)); new->name = name; new->number = number; new->type = type; new->builtin = FALSE; if (hash_insert (arm_reg_hsh, name, (PTR) new)) abort (); } /* Look for the .req directive. This is of the form: new_register_name .req existing_register_name If we find one, or if it looks sufficiently like one that we want to handle any error here, return non-zero. Otherwise return zero. */ static int create_register_alias (char * newname, char *p) { struct reg_entry *old; char *oldname, *nbuf; size_t nlen; /* The input scrubber ensures that whitespace after the mnemonic is collapsed to single spaces. */ oldname = p; if (strncmp (oldname, " .req ", 6) != 0) return 0; oldname += 6; if (*oldname == '\0') return 0; old = hash_find (arm_reg_hsh, oldname); if (!old) { as_warn (_("unknown register '%s' -- .req ignored"), oldname); return 1; } /* If TC_CASE_SENSITIVE is defined, then newname already points to the desired alias name, and p points to its end. If not, then the desired alias name is in the global original_case_string. */ #ifdef TC_CASE_SENSITIVE nlen = p - newname; #else newname = original_case_string; nlen = strlen (newname); #endif nbuf = alloca (nlen + 1); memcpy (nbuf, newname, nlen); nbuf[nlen] = '\0'; /* Create aliases under the new name as stated; an all-lowercase version of the new name; and an all-uppercase version of the new name. */ insert_reg_alias (nbuf, old->number, old->type); for (p = nbuf; *p; p++) *p = TOUPPER (*p); if (strncmp (nbuf, newname, nlen)) insert_reg_alias (nbuf, old->number, old->type); for (p = nbuf; *p; p++) *p = TOLOWER (*p); if (strncmp (nbuf, newname, nlen)) insert_reg_alias (nbuf, old->number, old->type); return 1; } /* Should never be called, as .req goes between the alias and the register name, not at the beginning of the line. */ static void s_req (int a ATTRIBUTE_UNUSED) { as_bad (_("invalid syntax for .req directive")); } /* The .unreq directive deletes an alias which was previously defined by .req. For example: my_alias .req r11 .unreq my_alias */ static void s_unreq (int a ATTRIBUTE_UNUSED) { char * name; char saved_char; name = input_line_pointer; while (*input_line_pointer != 0 && *input_line_pointer != ' ' && *input_line_pointer != '\n') ++input_line_pointer; saved_char = *input_line_pointer; *input_line_pointer = 0; if (!*name) as_bad (_("invalid syntax for .unreq directive")); else { struct reg_entry *reg = hash_find (arm_reg_hsh, name); if (!reg) as_bad (_("unknown register alias '%s'"), name); else if (reg->builtin) as_warn (_("ignoring attempt to undefine built-in register '%s'"), name); else { hash_delete (arm_reg_hsh, name); free ((char *) reg->name); free (reg); } } *input_line_pointer = saved_char; demand_empty_rest_of_line (); } /* Directives: Instruction set selection. */ #ifdef OBJ_ELF /* This code is to handle mapping symbols as defined in the ARM ELF spec. (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0). Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag), and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */ static enum mstate mapstate = MAP_UNDEFINED; static void mapping_state (enum mstate state) { symbolS * symbolP; const char * symname; int type; if (mapstate == state) /* The mapping symbol has already been emitted. There is nothing else to do. */ return; mapstate = state; switch (state) { case MAP_DATA: symname = "$d"; type = BSF_NO_FLAGS; break; case MAP_ARM: symname = "$a"; type = BSF_NO_FLAGS; break; case MAP_THUMB: symname = "$t"; type = BSF_NO_FLAGS; break; case MAP_UNDEFINED: return; default: abort (); } seg_info (now_seg)->tc_segment_info_data.mapstate = state; symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now); symbol_table_insert (symbolP); symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL; switch (state) { case MAP_ARM: THUMB_SET_FUNC (symbolP, 0); ARM_SET_THUMB (symbolP, 0); ARM_SET_INTERWORK (symbolP, support_interwork); break; case MAP_THUMB: THUMB_SET_FUNC (symbolP, 1); ARM_SET_THUMB (symbolP, 1); ARM_SET_INTERWORK (symbolP, support_interwork); break; case MAP_DATA: default: return; } } #else #define mapping_state(x) /* nothing */ #endif /* Find the real, Thumb encoded start of a Thumb function. */ static symbolS * find_real_start (symbolS * symbolP) { char * real_start; const char * name = S_GET_NAME (symbolP); symbolS * new_target; /* This definition must agree with the one in gcc/config/arm/thumb.c. */ #define STUB_NAME ".real_start_of" if (name == NULL) abort (); /* Names that start with '.' are local labels, not function entry points. The compiler may generate BL instructions to these labels because it needs to perform a branch to a far away location. */ if (name[0] == '.') return symbolP; real_start = malloc (strlen (name) + strlen (STUB_NAME) + 1); sprintf (real_start, "%s%s", STUB_NAME, name); new_target = symbol_find (real_start); if (new_target == NULL) { as_warn ("Failed to find real start of function: %s\n", name); new_target = symbolP; } free (real_start); return new_target; } static void opcode_select (int width) { switch (width) { case 16: if (! thumb_mode) { if (! (cpu_variant & ARM_EXT_V4T)) as_bad (_("selected processor does not support THUMB opcodes")); thumb_mode = 1; /* No need to force the alignment, since we will have been coming from ARM mode, which is word-aligned. */ record_alignment (now_seg, 1); } mapping_state (MAP_THUMB); break; case 32: if (thumb_mode) { if ((cpu_variant & ARM_ALL) == ARM_EXT_V4T) as_bad (_("selected processor does not support ARM opcodes")); thumb_mode = 0; if (!need_pass_2) frag_align (2, 0, 0); record_alignment (now_seg, 1); } mapping_state (MAP_ARM); break; default: as_bad (_("invalid instruction size selected (%d)"), width); } } static void s_arm (int ignore ATTRIBUTE_UNUSED) { opcode_select (32); demand_empty_rest_of_line (); } static void s_thumb (int ignore ATTRIBUTE_UNUSED) { opcode_select (16); demand_empty_rest_of_line (); } static void s_code (int unused ATTRIBUTE_UNUSED) { int temp; temp = get_absolute_expression (); switch (temp) { case 16: case 32: opcode_select (temp); break; default: as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp); } } static void s_force_thumb (int ignore ATTRIBUTE_UNUSED) { /* If we are not already in thumb mode go into it, EVEN if the target processor does not support thumb instructions. This is used by gcc/config/arm/lib1funcs.asm for example to compile interworking support functions even if the target processor should not support interworking. */ if (! thumb_mode) { thumb_mode = 2; record_alignment (now_seg, 1); } demand_empty_rest_of_line (); } static void s_thumb_func (int ignore ATTRIBUTE_UNUSED) { s_thumb (0); /* The following label is the name/address of the start of a Thumb function. We need to know this for the interworking support. */ label_is_thumb_function_name = TRUE; } /* Perform a .set directive, but also mark the alias as being a thumb function. */ static void s_thumb_set (int equiv) { /* XXX the following is a duplicate of the code for s_set() in read.c We cannot just call that code as we need to get at the symbol that is created. */ char * name; char delim; char * end_name; symbolS * symbolP; /* Especial apologies for the random logic: This just grew, and could be parsed much more simply! Dean - in haste. */ name = input_line_pointer; delim = get_symbol_end (); end_name = input_line_pointer; *end_name = delim; if (*input_line_pointer != ',') { *end_name = 0; as_bad (_("expected comma after name \"%s\""), name); *end_name = delim; ignore_rest_of_line (); return; } input_line_pointer++; *end_name = 0; if (name[0] == '.' && name[1] == '\0') { /* XXX - this should not happen to .thumb_set. */ abort (); } if ((symbolP = symbol_find (name)) == NULL && (symbolP = md_undefined_symbol (name)) == NULL) { #ifndef NO_LISTING /* When doing symbol listings, play games with dummy fragments living outside the normal fragment chain to record the file and line info for this symbol. */ if (listing & LISTING_SYMBOLS) { extern struct list_info_struct * listing_tail; fragS * dummy_frag = xmalloc (sizeof (fragS)); memset (dummy_frag, 0, sizeof (fragS)); dummy_frag->fr_type = rs_fill; dummy_frag->line = listing_tail; symbolP = symbol_new (name, undefined_section, 0, dummy_frag); dummy_frag->fr_symbol = symbolP; } else #endif symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag); #ifdef OBJ_COFF /* "set" symbols are local unless otherwise specified. */ SF_SET_LOCAL (symbolP); #endif /* OBJ_COFF */ } /* Make a new symbol. */ symbol_table_insert (symbolP); * end_name = delim; if (equiv && S_IS_DEFINED (symbolP) && S_GET_SEGMENT (symbolP) != reg_section) as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP)); pseudo_set (symbolP); demand_empty_rest_of_line (); /* XXX Now we come to the Thumb specific bit of code. */ THUMB_SET_FUNC (symbolP, 1); ARM_SET_THUMB (symbolP, 1); #if defined OBJ_ELF || defined OBJ_COFF ARM_SET_INTERWORK (symbolP, support_interwork); #endif } /* Directives: Mode selection. */ /* .syntax [unified|divided] - choose the new unified syntax (same for Arm and Thumb encoding, modulo slight differences in what can be represented) or the old divergent syntax for each mode. */ static void s_syntax (int unused ATTRIBUTE_UNUSED) { char *name, delim; name = input_line_pointer; delim = get_symbol_end (); if (!strcasecmp (name, "unified")) unified_syntax = TRUE; else if (!strcasecmp (name, "divided")) unified_syntax = FALSE; else { as_bad (_("unrecognized syntax mode \"%s\""), name); return; } *input_line_pointer = delim; demand_empty_rest_of_line (); } /* Directives: sectioning and alignment. */ /* Same as s_align_ptwo but align 0 => align 2. */ static void s_align (int unused ATTRIBUTE_UNUSED) { int temp; long temp_fill; long max_alignment = 15; temp = get_absolute_expression (); if (temp > max_alignment) as_bad (_("alignment too large: %d assumed"), temp = max_alignment); else if (temp < 0) { as_bad (_("alignment negative. 0 assumed.")); temp = 0; } if (*input_line_pointer == ',') { input_line_pointer++; temp_fill = get_absolute_expression (); } else temp_fill = 0; if (!temp) temp = 2; /* Only make a frag if we HAVE to. */ if (temp && !need_pass_2) frag_align (temp, (int) temp_fill, 0); demand_empty_rest_of_line (); record_alignment (now_seg, temp); } static void s_bss (int ignore ATTRIBUTE_UNUSED) { /* We don't support putting frags in the BSS segment, we fake it by marking in_bss, then looking at s_skip for clues. */ subseg_set (bss_section, 0); demand_empty_rest_of_line (); mapping_state (MAP_DATA); } static void s_even (int ignore ATTRIBUTE_UNUSED) { /* Never make frag if expect extra pass. */ if (!need_pass_2) frag_align (1, 0, 0); record_alignment (now_seg, 1); demand_empty_rest_of_line (); } /* Directives: Literal pools. */ static literal_pool * find_literal_pool (void) { literal_pool * pool; for (pool = list_of_pools; pool != NULL; pool = pool->next) { if (pool->section == now_seg && pool->sub_section == now_subseg) break; } return pool; } static literal_pool * find_or_make_literal_pool (void) { /* Next literal pool ID number. */ static unsigned int latest_pool_num = 1; literal_pool * pool; pool = find_literal_pool (); if (pool == NULL) { /* Create a new pool. */ pool = xmalloc (sizeof (* pool)); if (! pool) return NULL; pool->next_free_entry = 0; pool->section = now_seg; pool->sub_section = now_subseg; pool->next = list_of_pools; pool->symbol = NULL; /* Add it to the list. */ list_of_pools = pool; } /* New pools, and emptied pools, will have a NULL symbol. */ if (pool->symbol == NULL) { pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section, (valueT) 0, &zero_address_frag); pool->id = latest_pool_num ++; } /* Done. */ return pool; } /* Add the literal in the global 'inst' structure to the relevent literal pool. */ static int add_to_lit_pool (void) { literal_pool * pool; unsigned int entry; pool = find_or_make_literal_pool (); /* Check if this literal value is already in the pool. */ for (entry = 0; entry < pool->next_free_entry; entry ++) { if ((pool->literals[entry].X_op == inst.reloc.exp.X_op) && (inst.reloc.exp.X_op == O_constant) && (pool->literals[entry].X_add_number == inst.reloc.exp.X_add_number) && (pool->literals[entry].X_unsigned == inst.reloc.exp.X_unsigned)) break; if ((pool->literals[entry].X_op == inst.reloc.exp.X_op) && (inst.reloc.exp.X_op == O_symbol) && (pool->literals[entry].X_add_number == inst.reloc.exp.X_add_number) && (pool->literals[entry].X_add_symbol == inst.reloc.exp.X_add_symbol) && (pool->literals[entry].X_op_symbol == inst.reloc.exp.X_op_symbol)) break; } /* Do we need to create a new entry? */ if (entry == pool->next_free_entry) { if (entry >= MAX_LITERAL_POOL_SIZE) { inst.error = _("literal pool overflow"); return FAIL; } pool->literals[entry] = inst.reloc.exp; pool->next_free_entry += 1; } inst.reloc.exp.X_op = O_symbol; inst.reloc.exp.X_add_number = ((int) entry) * 4; inst.reloc.exp.X_add_symbol = pool->symbol; return SUCCESS; } /* Can't use symbol_new here, so have to create a symbol and then at a later date assign it a value. Thats what these functions do. */ static void symbol_locate (symbolS * symbolP, const char * name, /* It is copied, the caller can modify. */ segT segment, /* Segment identifier (SEG_). */ valueT valu, /* Symbol value. */ fragS * frag) /* Associated fragment. */ { unsigned int name_length; char * preserved_copy_of_name; name_length = strlen (name) + 1; /* +1 for \0. */ obstack_grow (¬es, name, name_length); preserved_copy_of_name = obstack_finish (¬es); #ifdef tc_canonicalize_symbol_name preserved_copy_of_name = tc_canonicalize_symbol_name (preserved_copy_of_name); #endif S_SET_NAME (symbolP, preserved_copy_of_name); S_SET_SEGMENT (symbolP, segment); S_SET_VALUE (symbolP, valu); symbol_clear_list_pointers (symbolP); symbol_set_frag (symbolP, frag); /* Link to end of symbol chain. */ { extern int symbol_table_frozen; if (symbol_table_frozen) abort (); } symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP); obj_symbol_new_hook (symbolP); #ifdef tc_symbol_new_hook tc_symbol_new_hook (symbolP); #endif #ifdef DEBUG_SYMS verify_symbol_chain (symbol_rootP, symbol_lastP); #endif /* DEBUG_SYMS */ } static void s_ltorg (int ignored ATTRIBUTE_UNUSED) { unsigned int entry; literal_pool * pool; char sym_name[20]; pool = find_literal_pool (); if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0) return; mapping_state (MAP_DATA); /* Align pool as you have word accesses. Only make a frag if we have to. */ if (!need_pass_2) frag_align (2, 0, 0); record_alignment (now_seg, 2); sprintf (sym_name, "$$lit_\002%x", pool->id); symbol_locate (pool->symbol, sym_name, now_seg, (valueT) frag_now_fix (), frag_now); symbol_table_insert (pool->symbol); ARM_SET_THUMB (pool->symbol, thumb_mode); #if defined OBJ_COFF || defined OBJ_ELF ARM_SET_INTERWORK (pool->symbol, support_interwork); #endif for (entry = 0; entry < pool->next_free_entry; entry ++) /* First output the expression in the instruction to the pool. */ emit_expr (&(pool->literals[entry]), 4); /* .word */ /* Mark the pool as empty. */ pool->next_free_entry = 0; pool->symbol = NULL; } #ifdef OBJ_ELF /* Forward declarations for functions below, in the MD interface section. */ static void fix_new_arm (fragS *, int, short, expressionS *, int, int); static valueT create_unwind_entry (int); static void start_unwind_section (const segT, int); static void add_unwind_opcode (valueT, int); static void flush_pending_unwind (void); /* Directives: Data. */ static void s_arm_elf_cons (int nbytes) { expressionS exp; #ifdef md_flush_pending_output md_flush_pending_output (); #endif if (is_it_end_of_statement ()) { demand_empty_rest_of_line (); return; } #ifdef md_cons_align md_cons_align (nbytes); #endif mapping_state (MAP_DATA); do { int reloc; char *base = input_line_pointer; expression (& exp); if (exp.X_op != O_symbol) emit_expr (&exp, (unsigned int) nbytes); else { char *before_reloc = input_line_pointer; reloc = parse_reloc (&input_line_pointer); if (reloc == -1) { as_bad (_("unrecognized relocation suffix")); ignore_rest_of_line (); return; } else if (reloc == BFD_RELOC_UNUSED) emit_expr (&exp, (unsigned int) nbytes); else { reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc); int size = bfd_get_reloc_size (howto); if (size > nbytes) as_bad ("%s relocations do not fit in %d bytes", howto->name, nbytes); else { /* We've parsed an expression stopping at O_symbol. But there may be more expression left now that we have parsed the relocation marker. Parse it again. XXX Surely there is a cleaner way to do this. */ char *p = input_line_pointer; int offset; char *save_buf = alloca (input_line_pointer - base); memcpy (save_buf, base, input_line_pointer - base); memmove (base + (input_line_pointer - before_reloc), base, before_reloc - base); input_line_pointer = base + (input_line_pointer-before_reloc); expression (&exp); memcpy (base, save_buf, p - base); offset = nbytes - size; p = frag_more ((int) nbytes); fix_new_exp (frag_now, p - frag_now->fr_literal + offset, size, &exp, 0, reloc); } } } } while (*input_line_pointer++ == ','); /* Put terminator back into stream. */ input_line_pointer --; demand_empty_rest_of_line (); } /* Parse a .rel31 directive. */ static void s_arm_rel31 (int ignored ATTRIBUTE_UNUSED) { expressionS exp; char *p; valueT highbit; highbit = 0; if (*input_line_pointer == '1') highbit = 0x80000000; else if (*input_line_pointer != '0') as_bad (_("expected 0 or 1")); input_line_pointer++; if (*input_line_pointer != ',') as_bad (_("missing comma")); input_line_pointer++; #ifdef md_flush_pending_output md_flush_pending_output (); #endif #ifdef md_cons_align md_cons_align (4); #endif mapping_state (MAP_DATA); expression (&exp); p = frag_more (4); md_number_to_chars (p, highbit, 4); fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1, BFD_RELOC_ARM_PREL31); demand_empty_rest_of_line (); } /* Directives: AEABI stack-unwind tables. */ /* Parse an unwind_fnstart directive. Simply records the current location. */ static void s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED) { demand_empty_rest_of_line (); /* Mark the start of the function. */ unwind.proc_start = expr_build_dot (); /* Reset the rest of the unwind info. */ unwind.opcode_count = 0; unwind.table_entry = NULL; unwind.personality_routine = NULL; unwind.personality_index = -1; unwind.frame_size = 0; unwind.fp_offset = 0; unwind.fp_reg = 13; unwind.fp_used = 0; unwind.sp_restored = 0; } /* Parse a handlerdata directive. Creates the exception handling table entry for the function. */ static void s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED) { demand_empty_rest_of_line (); if (unwind.table_entry) as_bad (_("dupicate .handlerdata directive")); create_unwind_entry (1); } /* Parse an unwind_fnend directive. Generates the index table entry. */ static void s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED) { long where; char *ptr; valueT val; demand_empty_rest_of_line (); /* Add eh table entry. */ if (unwind.table_entry == NULL) val = create_unwind_entry (0); else val = 0; /* Add index table entry. This is two words. */ start_unwind_section (unwind.saved_seg, 1); frag_align (2, 0, 0); record_alignment (now_seg, 2); ptr = frag_more (8); where = frag_now_fix () - 8; /* Self relative offset of the function start. */ fix_new (frag_now, where, 4, unwind.proc_start, 0, 1, BFD_RELOC_ARM_PREL31); /* Indicate dependency on EHABI-defined personality routines to the linker, if it hasn't been done already. */ if (unwind.personality_index >= 0 && unwind.personality_index < 3 && !(marked_pr_dependency & (1 << unwind.personality_index))) { static const char *const name[] = { "__aeabi_unwind_cpp_pr0", "__aeabi_unwind_cpp_pr1", "__aeabi_unwind_cpp_pr2" }; symbolS *pr = symbol_find_or_make (name[unwind.personality_index]); fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE); marked_pr_dependency |= 1 << unwind.personality_index; seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency = marked_pr_dependency; } if (val) /* Inline exception table entry. */ md_number_to_chars (ptr + 4, val, 4); else /* Self relative offset of the table entry. */ fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1, BFD_RELOC_ARM_PREL31); /* Restore the original section. */ subseg_set (unwind.saved_seg, unwind.saved_subseg); } /* Parse an unwind_cantunwind directive. */ static void s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED) { demand_empty_rest_of_line (); if (unwind.personality_routine || unwind.personality_index != -1) as_bad (_("personality routine specified for cantunwind frame")); unwind.personality_index = -2; } /* Parse a personalityindex directive. */ static void s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED) { expressionS exp; if (unwind.personality_routine || unwind.personality_index != -1) as_bad (_("duplicate .personalityindex directive")); expression (&exp); if (exp.X_op != O_constant || exp.X_add_number < 0 || exp.X_add_number > 15) { as_bad (_("bad personality routine number")); ignore_rest_of_line (); return; } unwind.personality_index = exp.X_add_number; demand_empty_rest_of_line (); } /* Parse a personality directive. */ static void s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED) { char *name, *p, c; if (unwind.personality_routine || unwind.personality_index != -1) as_bad (_("duplicate .personality directive")); name = input_line_pointer; c = get_symbol_end (); p = input_line_pointer; unwind.personality_routine = symbol_find_or_make (name); *p = c; demand_empty_rest_of_line (); } /* Parse a directive saving core registers. */ static void s_arm_unwind_save_core (void) { valueT op; long range; int n; range = parse_reg_list (&input_line_pointer); if (range == FAIL) { as_bad (_("expected register list")); ignore_rest_of_line (); return; } demand_empty_rest_of_line (); /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...} into .unwind_save {..., sp...}. We aren't bothered about the value of ip because it is clobbered by calls. */ if (unwind.sp_restored && unwind.fp_reg == 12 && (range & 0x3000) == 0x1000) { unwind.opcode_count--; unwind.sp_restored = 0; range = (range | 0x2000) & ~0x1000; unwind.pending_offset = 0; } /* See if we can use the short opcodes. These pop a block of upto 8 registers starting with r4, plus maybe r14. */ for (n = 0; n < 8; n++) { /* Break at the first non-saved register. */ if ((range & (1 << (n + 4))) == 0) break; } /* See if there are any other bits set. */ if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0) { /* Use the long form. */ op = 0x8000 | ((range >> 4) & 0xfff); add_unwind_opcode (op, 2); } else { /* Use the short form. */ if (range & 0x4000) op = 0xa8; /* Pop r14. */ else op = 0xa0; /* Do not pop r14. */ op |= (n - 1); add_unwind_opcode (op, 1); } /* Pop r0-r3. */ if (range & 0xf) { op = 0xb100 | (range & 0xf); add_unwind_opcode (op, 2); } /* Record the number of bytes pushed. */ for (n = 0; n < 16; n++) { if (range & (1 << n)) unwind.frame_size += 4; } } /* Parse a directive saving FPA registers. */ static void s_arm_unwind_save_fpa (int reg) { expressionS exp; int num_regs; valueT op; /* Get Number of registers to transfer. */ if (skip_past_comma (&input_line_pointer) != FAIL) expression (&exp); else exp.X_op = O_illegal; if (exp.X_op != O_constant) { as_bad (_("expected , ")); ignore_rest_of_line (); return; } num_regs = exp.X_add_number; if (num_regs < 1 || num_regs > 4) { as_bad (_("number of registers must be in the range [1:4]")); ignore_rest_of_line (); return; } demand_empty_rest_of_line (); if (reg == 4) { /* Short form. */ op = 0xb4 | (num_regs - 1); add_unwind_opcode (op, 1); } else { /* Long form. */ op = 0xc800 | (reg << 4) | (num_regs - 1); add_unwind_opcode (op, 2); } unwind.frame_size += num_regs * 12; } /* Parse a directive saving VFP registers. */ static void s_arm_unwind_save_vfp (void) { int count; int reg; valueT op; count = parse_vfp_reg_list (&input_line_pointer, ®, 1); if (count == FAIL) { as_bad (_("expected register list")); ignore_rest_of_line (); return; } demand_empty_rest_of_line (); if (reg == 8) { /* Short form. */ op = 0xb8 | (count - 1); add_unwind_opcode (op, 1); } else { /* Long form. */ op = 0xb300 | (reg << 4) | (count - 1); add_unwind_opcode (op, 2); } unwind.frame_size += count * 8 + 4; } /* Parse a directive saving iWMMXt data registers. */ static void s_arm_unwind_save_mmxwr (void) { int reg; int hi_reg; int i; unsigned mask = 0; valueT op; if (*input_line_pointer == '{') input_line_pointer++; do { reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR); if (reg == FAIL) { as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR])); goto error; } if (mask >> reg) as_tsktsk (_("register list not in ascending order")); mask |= 1 << reg; if (*input_line_pointer == '-') { input_line_pointer++; hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR); if (hi_reg == FAIL) { as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR])); goto error; } else if (reg >= hi_reg) { as_bad (_("bad register range")); goto error; } for (; reg < hi_reg; reg++) mask |= 1 << reg; } } while (skip_past_comma (&input_line_pointer) != FAIL); if (*input_line_pointer == '}') input_line_pointer++; demand_empty_rest_of_line (); /* Generate any deferred opcodes becuuse we're going to be looking at the list. */ flush_pending_unwind (); for (i = 0; i < 16; i++) { if (mask & (1 << i)) unwind.frame_size += 8; } /* Attempt to combine with a previous opcode. We do this because gcc likes to output separate unwind directives for a single block of registers. */ if (unwind.opcode_count > 0) { i = unwind.opcodes[unwind.opcode_count - 1]; if ((i & 0xf8) == 0xc0) { i &= 7; /* Only merge if the blocks are contiguous. */ if (i < 6) { if ((mask & 0xfe00) == (1 << 9)) { mask |= ((1 << (i + 11)) - 1) & 0xfc00; unwind.opcode_count--; } } else if (i == 6 && unwind.opcode_count >= 2) { i = unwind.opcodes[unwind.opcode_count - 2]; reg = i >> 4; i &= 0xf; op = 0xffff << (reg - 1); if (reg > 0 || ((mask & op) == (1u << (reg - 1)))) { op = (1 << (reg + i + 1)) - 1; op &= ~((1 << reg) - 1); mask |= op; unwind.opcode_count -= 2; } } } } hi_reg = 15; /* We want to generate opcodes in the order the registers have been saved, ie. descending order. */ for (reg = 15; reg >= -1; reg--) { /* Save registers in blocks. */ if (reg < 0 || !(mask & (1 << reg))) { /* We found an unsaved reg. Generate opcodes to save the preceeding block. */ if (reg != hi_reg) { if (reg == 9) { /* Short form. */ op = 0xc0 | (hi_reg - 10); add_unwind_opcode (op, 1); } else { /* Long form. */ op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1); add_unwind_opcode (op, 2); } } hi_reg = reg - 1; } } return; error: ignore_rest_of_line (); } static void s_arm_unwind_save_mmxwcg (void) { int reg; int hi_reg; unsigned mask = 0; valueT op; if (*input_line_pointer == '{') input_line_pointer++; do { reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG); if (reg == FAIL) { as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG])); goto error; } reg -= 8; if (mask >> reg) as_tsktsk (_("register list not in ascending order")); mask |= 1 << reg; if (*input_line_pointer == '-') { input_line_pointer++; hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG); if (hi_reg == FAIL) { as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG])); goto error; } else if (reg >= hi_reg) { as_bad (_("bad register range")); goto error; } for (; reg < hi_reg; reg++) mask |= 1 << reg; } } while (skip_past_comma (&input_line_pointer) != FAIL); if (*input_line_pointer == '}') input_line_pointer++; demand_empty_rest_of_line (); /* Generate any deferred opcodes becuuse we're going to be looking at the list. */ flush_pending_unwind (); for (reg = 0; reg < 16; reg++) { if (mask & (1 << reg)) unwind.frame_size += 4; } op = 0xc700 | mask; add_unwind_opcode (op, 2); return; error: ignore_rest_of_line (); } /* Parse an unwind_save directive. */ static void s_arm_unwind_save (int ignored ATTRIBUTE_UNUSED) { char *peek; struct reg_entry *reg; bfd_boolean had_brace = FALSE; /* Figure out what sort of save we have. */ peek = input_line_pointer; if (*peek == '{') { had_brace = TRUE; peek++; } reg = arm_reg_parse_multi (&peek); if (!reg) { as_bad (_("register expected")); ignore_rest_of_line (); return; } switch (reg->type) { case REG_TYPE_FN: if (had_brace) { as_bad (_("FPA .unwind_save does not take a register list")); ignore_rest_of_line (); return; } s_arm_unwind_save_fpa (reg->number); return; case REG_TYPE_RN: s_arm_unwind_save_core (); return; case REG_TYPE_VFD: s_arm_unwind_save_vfp (); return; case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return; case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return; default: as_bad (_(".unwind_save does not support this kind of register")); ignore_rest_of_line (); } } /* Parse an unwind_movsp directive. */ static void s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED) { int reg; valueT op; reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN); if (reg == FAIL) { as_bad (_(reg_expected_msgs[REG_TYPE_RN])); ignore_rest_of_line (); return; } demand_empty_rest_of_line (); if (reg == REG_SP || reg == REG_PC) { as_bad (_("SP and PC not permitted in .unwind_movsp directive")); return; } if (unwind.fp_reg != REG_SP) as_bad (_("unexpected .unwind_movsp directive")); /* Generate opcode to restore the value. */ op = 0x90 | reg; add_unwind_opcode (op, 1); /* Record the information for later. */ unwind.fp_reg = reg; unwind.fp_offset = unwind.frame_size; unwind.sp_restored = 1; } /* Parse an unwind_pad directive. */ static void s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED) { int offset; if (immediate_for_directive (&offset) == FAIL) return; if (offset & 3) { as_bad (_("stack increment must be multiple of 4")); ignore_rest_of_line (); return; } /* Don't generate any opcodes, just record the details for later. */ unwind.frame_size += offset; unwind.pending_offset += offset; demand_empty_rest_of_line (); } /* Parse an unwind_setfp directive. */ static void s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED) { int sp_reg; int fp_reg; int offset; fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN); if (skip_past_comma (&input_line_pointer) == FAIL) sp_reg = FAIL; else sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN); if (fp_reg == FAIL || sp_reg == FAIL) { as_bad (_("expected , ")); ignore_rest_of_line (); return; } /* Optional constant. */ if (skip_past_comma (&input_line_pointer) != FAIL) { if (immediate_for_directive (&offset) == FAIL) return; } else offset = 0; demand_empty_rest_of_line (); if (sp_reg != 13 && sp_reg != unwind.fp_reg) { as_bad (_("register must be either sp or set by a previous" "unwind_movsp directive")); return; } /* Don't generate any opcodes, just record the information for later. */ unwind.fp_reg = fp_reg; unwind.fp_used = 1; if (sp_reg == 13) unwind.fp_offset = unwind.frame_size - offset; else unwind.fp_offset -= offset; } /* Parse an unwind_raw directive. */ static void s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED) { expressionS exp; /* This is an arbitary limit. */ unsigned char op[16]; int count; expression (&exp); if (exp.X_op == O_constant && skip_past_comma (&input_line_pointer) != FAIL) { unwind.frame_size += exp.X_add_number; expression (&exp); } else exp.X_op = O_illegal; if (exp.X_op != O_constant) { as_bad (_("expected , ")); ignore_rest_of_line (); return; } count = 0; /* Parse the opcode. */ for (;;) { if (count >= 16) { as_bad (_("unwind opcode too long")); ignore_rest_of_line (); } if (exp.X_op != O_constant || exp.X_add_number & ~0xff) { as_bad (_("invalid unwind opcode")); ignore_rest_of_line (); return; } op[count++] = exp.X_add_number; /* Parse the next byte. */ if (skip_past_comma (&input_line_pointer) == FAIL) break; expression (&exp); } /* Add the opcode bytes in reverse order. */ while (count--) add_unwind_opcode (op[count], 1); demand_empty_rest_of_line (); } #endif /* OBJ_ELF */ /* This table describes all the machine specific pseudo-ops the assembler has to support. The fields are: pseudo-op name without dot function to call to execute this pseudo-op Integer arg to pass to the function. */ const pseudo_typeS md_pseudo_table[] = { /* Never called because '.req' does not start a line. */ { "req", s_req, 0 }, { "unreq", s_unreq, 0 }, { "bss", s_bss, 0 }, { "align", s_align, 0 }, { "arm", s_arm, 0 }, { "thumb", s_thumb, 0 }, { "code", s_code, 0 }, { "force_thumb", s_force_thumb, 0 }, { "thumb_func", s_thumb_func, 0 }, { "thumb_set", s_thumb_set, 0 }, { "even", s_even, 0 }, { "ltorg", s_ltorg, 0 }, { "pool", s_ltorg, 0 }, { "syntax", s_syntax, 0 }, #ifdef OBJ_ELF { "word", s_arm_elf_cons, 4 }, { "long", s_arm_elf_cons, 4 }, { "rel31", s_arm_rel31, 0 }, { "fnstart", s_arm_unwind_fnstart, 0 }, { "fnend", s_arm_unwind_fnend, 0 }, { "cantunwind", s_arm_unwind_cantunwind, 0 }, { "personality", s_arm_unwind_personality, 0 }, { "personalityindex", s_arm_unwind_personalityindex, 0 }, { "handlerdata", s_arm_unwind_handlerdata, 0 }, { "save", s_arm_unwind_save, 0 }, { "movsp", s_arm_unwind_movsp, 0 }, { "pad", s_arm_unwind_pad, 0 }, { "setfp", s_arm_unwind_setfp, 0 }, { "unwind_raw", s_arm_unwind_raw, 0 }, #else { "word", cons, 4}, #endif { "extend", float_cons, 'x' }, { "ldouble", float_cons, 'x' }, { "packed", float_cons, 'p' }, { 0, 0, 0 } }; /* Parser functions used exclusively in instruction operands. */ /* Generic immediate-value read function for use in insn parsing. STR points to the beginning of the immediate (the leading #); VAL receives the value; if the value is outside [MIN, MAX] issue an error. PREFIX_OPT is true if the immediate prefix is optional. */ static int parse_immediate (char **str, int *val, int min, int max, bfd_boolean prefix_opt) { expressionS exp; my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX); if (exp.X_op != O_constant) { inst.error = _("constant expression required"); return FAIL; } if (exp.X_add_number < min || exp.X_add_number > max) { inst.error = _("immediate value out of range"); return FAIL; } *val = exp.X_add_number; return SUCCESS; } /* Returns the pseudo-register number of an FPA immediate constant, or FAIL if there isn't a valid constant here. */ static int parse_fpa_immediate (char ** str) { LITTLENUM_TYPE words[MAX_LITTLENUMS]; char * save_in; expressionS exp; int i; int j; /* First try and match exact strings, this is to guarantee that some formats will work even for cross assembly. */ for (i = 0; fp_const[i]; i++) { if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0) { char *start = *str; *str += strlen (fp_const[i]); if (is_end_of_line[(unsigned char) **str]) return i + 8; *str = start; } } /* Just because we didn't get a match doesn't mean that the constant isn't valid, just that it is in a format that we don't automatically recognize. Try parsing it with the standard expression routines. */ memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE)); /* Look for a raw floating point number. */ if ((save_in = atof_ieee (*str, 'x', words)) != NULL && is_end_of_line[(unsigned char) *save_in]) { for (i = 0; i < NUM_FLOAT_VALS; i++) { for (j = 0; j < MAX_LITTLENUMS; j++) { if (words[j] != fp_values[i][j]) break; } if (j == MAX_LITTLENUMS) { *str = save_in; return i + 8; } } } /* Try and parse a more complex expression, this will probably fail unless the code uses a floating point prefix (eg "0f"). */ save_in = input_line_pointer; input_line_pointer = *str; if (expression (&exp) == absolute_section && exp.X_op == O_big && exp.X_add_number < 0) { /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it. Ditto for 15. */ if (gen_to_words (words, 5, (long) 15) == 0) { for (i = 0; i < NUM_FLOAT_VALS; i++) { for (j = 0; j < MAX_LITTLENUMS; j++) { if (words[j] != fp_values[i][j]) break; } if (j == MAX_LITTLENUMS) { *str = input_line_pointer; input_line_pointer = save_in; return i + 8; } } } } *str = input_line_pointer; input_line_pointer = save_in; inst.error = _("invalid FPA immediate expression"); return FAIL; } /* Shift operands. */ enum shift_kind { SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX }; struct asm_shift_name { const char *name; enum shift_kind kind; }; /* Third argument to parse_shift. */ enum parse_shift_mode { NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */ SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */ SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */ SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */ SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */ }; /* Parse a specifier on an ARM data processing instruction. This has three forms: (LSL|LSR|ASL|ASR|ROR) Rs (LSL|LSR|ASL|ASR|ROR) #imm RRX Note that ASL is assimilated to LSL in the instruction encoding, and RRX to ROR #0 (which cannot be written as such). */ static int parse_shift (char **str, int i, enum parse_shift_mode mode) { const struct asm_shift_name *shift_name; enum shift_kind shift; char *s = *str; char *p = s; int reg; for (p = *str; ISALPHA (*p); p++) ; if (p == *str) { inst.error = _("shift expression expected"); return FAIL; } shift_name = hash_find_n (arm_shift_hsh, *str, p - *str); if (shift_name == NULL) { inst.error = _("shift expression expected"); return FAIL; } shift = shift_name->kind; switch (mode) { case NO_SHIFT_RESTRICT: case SHIFT_IMMEDIATE: break; case SHIFT_LSL_OR_ASR_IMMEDIATE: if (shift != SHIFT_LSL && shift != SHIFT_ASR) { inst.error = _("'LSL' or 'ASR' required"); return FAIL; } break; case SHIFT_LSL_IMMEDIATE: if (shift != SHIFT_LSL) { inst.error = _("'LSL' required"); return FAIL; } break; case SHIFT_ASR_IMMEDIATE: if (shift != SHIFT_ASR) { inst.error = _("'ASR' required"); return FAIL; } break; default: abort (); } if (shift != SHIFT_RRX) { /* Whitespace can appear here if the next thing is a bare digit. */ skip_whitespace (p); if (mode == NO_SHIFT_RESTRICT && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL) { inst.operands[i].imm = reg; inst.operands[i].immisreg = 1; } else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX)) return FAIL; } inst.operands[i].shift_kind = shift; inst.operands[i].shifted = 1; *str = p; return SUCCESS; } /* Parse a for an ARM data processing instruction: # #, , where is defined by parse_shift above, and is a multiple of 2 between 0 and 30. Validation of immediate operands is deferred to md_apply_fix3. */ static int parse_shifter_operand (char **str, int i) { int value; expressionS expr; if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL) { inst.operands[i].reg = value; inst.operands[i].isreg = 1; /* parse_shift will override this if appropriate */ inst.reloc.exp.X_op = O_constant; inst.reloc.exp.X_add_number = 0; if (skip_past_comma (str) == FAIL) return SUCCESS; /* Shift operation on register. */ return parse_shift (str, i, NO_SHIFT_RESTRICT); } if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX)) return FAIL; if (skip_past_comma (str) == SUCCESS) { /* #x, y -- ie explicit rotation by Y. */ if (my_get_expression (&expr, str, GE_NO_PREFIX)) return FAIL; if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant) { inst.error = _("constant expression expected"); return FAIL; } value = expr.X_add_number; if (value < 0 || value > 30 || value % 2 != 0) { inst.error = _("invalid rotation"); return FAIL; } if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255) { inst.error = _("invalid constant"); return FAIL; } /* Convert to decoded value. md_apply_fix3 will put it back. */ inst.reloc.exp.X_add_number = (((inst.reloc.exp.X_add_number << (32 - value)) | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff); } inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE; inst.reloc.pc_rel = 0; return SUCCESS; } /* Parse all forms of an ARM address expression. Information is written to inst.operands[i] and/or inst.reloc. Preindexed addressing (.preind=1): [Rn, #offset] .reg=Rn .reloc.exp=offset [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1 .shift_kind=shift .reloc.exp=shift_imm These three may have a trailing ! which causes .writeback to be set also. Postindexed addressing (.postind=1, .writeback=1): [Rn], #offset .reg=Rn .reloc.exp=offset [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1 .shift_kind=shift .reloc.exp=shift_imm Unindexed addressing (.preind=0, .postind=0): [Rn], {option} .reg=Rn .imm=option .immisreg=0 Other: [Rn]{!} shorthand for [Rn,#0]{!} =immediate .isreg=0 .reloc.exp=immediate label .reg=PC .reloc.pc_rel=1 .reloc.exp=label It is the caller's responsibility to check for addressing modes not supported by the instruction, and to set inst.reloc.type. */ static int parse_address (char **str, int i) { char *p = *str; int reg; if (skip_past_char (&p, '[') == FAIL) { if (skip_past_char (&p, '=') == FAIL) { /* bare address - translate to PC-relative offset */ inst.reloc.pc_rel = 1; inst.operands[i].reg = REG_PC; inst.operands[i].isreg = 1; inst.operands[i].preind = 1; } /* else a load-constant pseudo op, no special treatment needed here */ if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX)) return FAIL; *str = p; return SUCCESS; } if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL) { inst.error = _(reg_expected_msgs[REG_TYPE_RN]); return FAIL; } inst.operands[i].reg = reg; inst.operands[i].isreg = 1; if (skip_past_comma (&p) == SUCCESS) { inst.operands[i].preind = 1; if (*p == '+') p++; else if (*p == '-') p++, inst.operands[i].negative = 1; if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL) { inst.operands[i].imm = reg; inst.operands[i].immisreg = 1; if (skip_past_comma (&p) == SUCCESS) if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL) return FAIL; } else { if (inst.operands[i].negative) { inst.operands[i].negative = 0; p--; } if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX)) return FAIL; } } if (skip_past_char (&p, ']') == FAIL) { inst.error = _("']' expected"); return FAIL; } if (skip_past_char (&p, '!') == SUCCESS) inst.operands[i].writeback = 1; else if (skip_past_comma (&p) == SUCCESS) { if (skip_past_char (&p, '{') == SUCCESS) { /* [Rn], {expr} - unindexed, with option */ if (parse_immediate (&p, &inst.operands[i].imm, 0, 255, TRUE) == FAIL) return FAIL; if (skip_past_char (&p, '}') == FAIL) { inst.error = _("'}' expected at end of 'option' field"); return FAIL; } if (inst.operands[i].preind) { inst.error = _("cannot combine index with option"); return FAIL; } *str = p; return SUCCESS; } else { inst.operands[i].postind = 1; inst.operands[i].writeback = 1; if (inst.operands[i].preind) { inst.error = _("cannot combine pre- and post-indexing"); return FAIL; } if (*p == '+') p++; else if (*p == '-') p++, inst.operands[i].negative = 1; if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL) { inst.operands[i].imm = reg; inst.operands[i].immisreg = 1; if (skip_past_comma (&p) == SUCCESS) if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL) return FAIL; } else { if (inst.operands[i].negative) { inst.operands[i].negative = 0; p--; } if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX)) return FAIL; } } } /* If at this point neither .preind nor .postind is set, we have a bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */ if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0) { inst.operands[i].preind = 1; inst.reloc.exp.X_op = O_constant; inst.reloc.exp.X_add_number = 0; } *str = p; return SUCCESS; } /* Miscellaneous. */ /* Parse a PSR flag operand. The value returned is FAIL on syntax error, or a bitmask suitable to be or-ed into the ARM msr instruction. */ static int parse_psr (char **str) { char *p; unsigned long psr_field; /* CPSR's and SPSR's can now be lowercase. This is just a convenience feature for ease of use and backwards compatibility. */ p = *str; if (*p == 's' || *p == 'S') psr_field = SPSR_BIT; else if (*p == 'c' || *p == 'C') psr_field = 0; else goto error; p++; if (strncasecmp (p, "PSR", 3) != 0) goto error; p += 3; if (*p == '_') { /* A suffix follows. */ const struct asm_psr *psr; char *start; p++; start = p; do p++; while (ISALNUM (*p) || *p == '_'); psr = hash_find_n (arm_psr_hsh, start, p - start); if (!psr) goto error; psr_field |= psr->field; } else { if (ISALNUM (*p)) goto error; /* Garbage after "[CS]PSR". */ psr_field |= (PSR_c | PSR_f); } *str = p; return psr_field; error: inst.error = _("flag for {c}psr instruction expected"); return FAIL; } /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a value suitable for splatting into the AIF field of the instruction. */ static int parse_cps_flags (char **str) { int val = 0; int saw_a_flag = 0; char *s = *str; for (;;) switch (*s++) { case '\0': case ',': goto done; case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break; case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break; case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break; default: inst.error = _("unrecognized CPS flag"); return FAIL; } done: if (saw_a_flag == 0) { inst.error = _("missing CPS flags"); return FAIL; } *str = s - 1; return val; } /* Parse an endian specifier ("BE" or "LE", case insensitive); returns 0 for big-endian, 1 for little-endian, FAIL for an error. */ static int parse_endian_specifier (char **str) { int little_endian; char *s = *str; if (strncasecmp (s, "BE", 2)) little_endian = 0; else if (strncasecmp (s, "LE", 2)) little_endian = 1; else { inst.error = _("valid endian specifiers are be or le"); return FAIL; } if (ISALNUM (s[2]) || s[2] == '_') { inst.error = _("valid endian specifiers are be or le"); return FAIL; } *str = s + 2; return little_endian; } /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a value suitable for poking into the rotate field of an sxt or sxta instruction, or FAIL on error. */ static int parse_ror (char **str) { int rot; char *s = *str; if (strncasecmp (s, "ROR", 3) == 0) s += 3; else { inst.error = _("missing rotation field after comma"); return FAIL; } if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL) return FAIL; switch (rot) { case 0: *str = s; return 0x0; case 8: *str = s; return 0x1; case 16: *str = s; return 0x2; case 24: *str = s; return 0x3; default: inst.error = _("rotation can only be 0, 8, 16, or 24"); return FAIL; } } /* Parse a conditional code (from conds[] below). The value returned is in the range 0 .. 14, or FAIL. */ static int parse_cond (char **str) { char *p, *q; const struct asm_cond *c; p = q = *str; while (ISALPHA (*q)) q++; c = hash_find_n (arm_cond_hsh, p, q - p); if (!c) { inst.error = _("condition required"); return FAIL; } *str = q; return c->value; } /* Matcher codes for parse_operands. */ enum operand_parse_code { OP_stop, /* end of line */ OP_RR, /* ARM register */ OP_RRnpc, /* ARM register, not r15 */ OP_RRnpcb, /* ARM register, not r15, in square brackets */ OP_RRw, /* ARM register, not r15, optional trailing ! */ OP_RCP, /* Coprocessor number */ OP_RCN, /* Coprocessor register */ OP_RF, /* FPA register */ OP_RVS, /* VFP single precision register */ OP_RVD, /* VFP double precision register */ OP_RVC, /* VFP control register */ OP_RMF, /* Maverick F register */ OP_RMD, /* Maverick D register */ OP_RMFX, /* Maverick FX register */ OP_RMDX, /* Maverick DX register */ OP_RMAX, /* Maverick AX register */ OP_RMDS, /* Maverick DSPSC register */ OP_RIWR, /* iWMMXt wR register */ OP_RIWC, /* iWMMXt wC register */ OP_RIWG, /* iWMMXt wCG register */ OP_RXA, /* XScale accumulator register */ OP_REGLST, /* ARM register list */ OP_VRSLST, /* VFP single-precision register list */ OP_VRDLST, /* VFP double-precision register list */ OP_I7, /* immediate value 0 .. 7 */ OP_I15, /* 0 .. 15 */ OP_I16, /* 1 .. 16 */ OP_I31, /* 0 .. 31 */ OP_I31w, /* 0 .. 31, optional trailing ! */ OP_I32, /* 1 .. 32 */ OP_I63s, /* -64 .. 63 */ OP_I255, /* 0 .. 255 */ OP_Iffff, /* 0 .. 65535 */ OP_I4b, /* immediate, prefix optional, 1 .. 4 */ OP_I7b, /* 0 .. 7 */ OP_I15b, /* 0 .. 15 */ OP_I31b, /* 0 .. 31 */ OP_SH, /* shifter operand */ OP_ADDR, /* Memory address expression (any mode) */ OP_EXP, /* arbitrary expression */ OP_EXPi, /* same, with optional immediate prefix */ OP_EXPr, /* same, with optional relocation suffix */ OP_CPSF, /* CPS flags */ OP_ENDI, /* Endianness specifier */ OP_PSR, /* CPSR/SPSR mask for msr */ OP_COND, /* conditional code */ OP_RRnpc_I0, /* ARM register or literal 0 */ OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */ OP_RR_EXi, /* ARM register or expression with imm prefix */ OP_RF_IF, /* FPA register or immediate */ OP_RIWR_RIWC, /* iWMMXt R or C reg */ /* Optional operands. */ OP_oI7b, /* immediate, prefix optional, 0 .. 7 */ OP_oI31b, /* 0 .. 31 */ OP_oIffffb, /* 0 .. 65535 */ OP_oI255c, /* curly-brace enclosed, 0 .. 255 */ OP_oRR, /* ARM register */ OP_oRRnpc, /* ARM register, not the PC */ OP_oSHll, /* LSL immediate */ OP_oSHar, /* ASR immediate */ OP_oSHllar, /* LSL or ASR immediate */ OP_oROR, /* ROR 0/8/16/24 */ OP_FIRST_OPTIONAL = OP_oI7b }; /* Generic instruction operand parser. This does no encoding and no semantic validation; it merely squirrels values away in the inst structure. Returns SUCCESS or FAIL depending on whether the specified grammar matched. */ static int parse_operands (char *str, const char *pattern) { unsigned const char *upat = pattern; char *backtrack_pos = 0; const char *backtrack_error = 0; int i, val, backtrack_index = 0; #define po_char_or_fail(chr) do { \ if (skip_past_char (&str, chr) == FAIL) \ goto bad_args; \ } while (0) #define po_reg_or_fail(regtype) do { \ val = arm_reg_parse (&str, regtype); \ if (val == FAIL) \ { \ inst.error = _(reg_expected_msgs[regtype]); \ goto failure; \ } \ inst.operands[i].reg = val; \ inst.operands[i].isreg = 1; \ } while (0) #define po_reg_or_goto(regtype, label) do { \ val = arm_reg_parse (&str, regtype); \ if (val == FAIL) \ goto label; \ \ inst.operands[i].reg = val; \ inst.operands[i].isreg = 1; \ } while (0) #define po_imm_or_fail(min, max, popt) do { \ if (parse_immediate (&str, &val, min, max, popt) == FAIL) \ goto failure; \ inst.operands[i].imm = val; \ } while (0) #define po_misc_or_fail(expr) do { \ if (expr) \ goto failure; \ } while (0) skip_whitespace (str); for (i = 0; upat[i] != OP_stop; i++) { if (upat[i] >= OP_FIRST_OPTIONAL) { /* Remember where we are in case we need to backtrack. */ assert (!backtrack_pos); backtrack_pos = str; backtrack_error = inst.error; backtrack_index = i; } if (i > 0) po_char_or_fail (','); switch (upat[i]) { /* Registers */ case OP_oRRnpc: case OP_RRnpc: case OP_oRR: case OP_RR: po_reg_or_fail (REG_TYPE_RN); break; case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break; case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break; case OP_RF: po_reg_or_fail (REG_TYPE_FN); break; case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break; case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break; case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break; case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break; case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break; case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break; case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break; case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break; case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break; case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break; case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break; case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break; case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break; case OP_RRnpcb: po_char_or_fail ('['); po_reg_or_fail (REG_TYPE_RN); po_char_or_fail (']'); break; case OP_RRw: po_reg_or_fail (REG_TYPE_RN); if (skip_past_char (&str, '!') == SUCCESS) inst.operands[i].writeback = 1; break; /* Immediates */ case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break; case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break; case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break; case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break; case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break; case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break; case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break; case OP_Iffff: po_imm_or_fail ( 0, 0xffff, FALSE); break; case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break; case OP_oI7b: case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break; case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break; case OP_oI31b: case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break; case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break; /* Immediate variants */ case OP_oI255c: po_char_or_fail ('{'); po_imm_or_fail (0, 255, TRUE); po_char_or_fail ('}'); break; case OP_I31w: /* The expression parser chokes on a trailing !, so we have to find it first and zap it. */ { char *s = str; while (*s && *s != ',') s++; if (s[-1] == '!') { s[-1] = '\0'; inst.operands[i].writeback = 1; } po_imm_or_fail (0, 31, TRUE); if (str == s - 1) str = s; } break; /* Expressions */ case OP_EXPi: EXPi: po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str, GE_OPT_PREFIX)); break; case OP_EXP: po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str, GE_NO_PREFIX)); break; case OP_EXPr: EXPr: po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str, GE_NO_PREFIX)); if (inst.reloc.exp.X_op == O_symbol) { val = parse_reloc (&str); if (val == -1) { inst.error = _("unrecognized relocation suffix"); goto failure; } else if (val != BFD_RELOC_UNUSED) { inst.operands[i].imm = val; inst.operands[i].hasreloc = 1; } } break; /* Register or expression */ case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break; case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break; /* Register or immediate */ case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break; I0: po_imm_or_fail (0, 0, FALSE); break; case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break; IF: if (!is_immediate_prefix (*str)) goto bad_args; str++; val = parse_fpa_immediate (&str); if (val == FAIL) goto failure; /* FPA immediates are encoded as registers 8-15. parse_fpa_immediate has already applied the offset. */ inst.operands[i].reg = val; inst.operands[i].isreg = 1; break; /* Two kinds of register */ case OP_RIWR_RIWC: { struct reg_entry *rege = arm_reg_parse_multi (&str); if (rege->type != REG_TYPE_MMXWR && rege->type != REG_TYPE_MMXWC && rege->type != REG_TYPE_MMXWCG) { inst.error = _("iWMMXt data or control register expected"); goto failure; } inst.operands[i].reg = rege->number; inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR); } break; /* Misc */ case OP_CPSF: val = parse_cps_flags (&str); break; case OP_ENDI: val = parse_endian_specifier (&str); break; case OP_oROR: val = parse_ror (&str); break; case OP_PSR: val = parse_psr (&str); break; case OP_COND: val = parse_cond (&str); break; /* Register lists */ case OP_REGLST: val = parse_reg_list (&str); if (*str == '^') { inst.operands[1].writeback = 1; str++; } break; case OP_VRSLST: val = parse_vfp_reg_list (&str, &inst.operands[i].reg, 0); break; case OP_VRDLST: val = parse_vfp_reg_list (&str, &inst.operands[i].reg, 1); break; /* Addressing modes */ case OP_ADDR: po_misc_or_fail (parse_address (&str, i)); break; case OP_SH: po_misc_or_fail (parse_shifter_operand (&str, i)); break; case OP_oSHll: po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE)); break; case OP_oSHar: po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE)); break; case OP_oSHllar: po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE)); break; default: as_fatal ("unhandled operand code %d", upat[i]); } /* Various value-based sanity checks and shared operations. We do not signal immediate failures for the register constraints; this allows a syntax error to take precedence. */ switch (upat[i]) { case OP_oRRnpc: case OP_RRnpc: case OP_RRnpcb: case OP_RRw: case OP_RRnpc_I0: if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC) inst.error = BAD_PC; break; case OP_CPSF: case OP_ENDI: case OP_oROR: case OP_PSR: case OP_COND: case OP_REGLST: case OP_VRSLST: case OP_VRDLST: if (val == FAIL) goto failure; inst.operands[i].imm = val; break; default: break; } /* If we get here, this operand was successfully parsed. */ inst.operands[i].present = 1; continue; bad_args: inst.error = BAD_ARGS; failure: if (!backtrack_pos) return FAIL; /* Do not backtrack over a trailing optional argument that absorbed some text. We will only fail again, with the 'garbage following instruction' error message, which is probably less helpful than the current one. */ if (backtrack_index == i && backtrack_pos != str && upat[i+1] == OP_stop) return FAIL; /* Try again, skipping the optional argument at backtrack_pos. */ str = backtrack_pos; inst.error = backtrack_error; inst.operands[backtrack_index].present = 0; i = backtrack_index; backtrack_pos = 0; } /* Check that we have parsed all the arguments. */ if (*str != '\0' && !inst.error) inst.error = _("garbage following instruction"); return inst.error ? FAIL : SUCCESS; } #undef po_char_or_fail #undef po_reg_or_fail #undef po_reg_or_goto #undef po_imm_or_fail /* Shorthand macro for instruction encoding functions issuing errors. */ #define constraint(expr, err) do { \ if (expr) \ { \ inst.error = err; \ return; \ } \ } while (0) /* Functions for operand encoding. ARM, then Thumb. */ #define rotate_left(v, n) (v << n | v >> (32 - n)) /* If VAL can be encoded in the immediate field of an ARM instruction, return the encoded form. Otherwise, return FAIL. */ static unsigned int encode_arm_immediate (unsigned int val) { unsigned int a, i; for (i = 0; i < 32; i += 2) if ((a = rotate_left (val, i)) <= 0xff) return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */ return FAIL; } /* If VAL can be encoded in the immediate field of a Thumb32 instruction, return the encoded form. Otherwise, return FAIL. */ static unsigned int encode_thumb32_immediate (unsigned int val) { unsigned int a, i; if (val <= 255) return val; for (i = 0; i < 32; i++) { a = rotate_left (val, i); if (a >= 128 && a <= 255) return (a & 0x7f) | (i << 7); } a = val & 0xff; if (val == ((a << 16) | a)) return 0x100 | a; if (val == ((a << 24) | (a << 16) | (a << 8) | a)) return 0x300 | a; a = val & 0xff00; if (val == ((a << 16) | a)) return 0x200 | (a >> 8); return FAIL; } /* Encode a VFP SP register number into inst.instruction. */ static void encode_arm_vfp_sp_reg (int reg, enum vfp_sp_reg_pos pos) { switch (pos) { case VFP_REG_Sd: inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22); break; case VFP_REG_Sn: inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7); break; case VFP_REG_Sm: inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5); break; default: abort (); } } /* Encode a in an ARM-format instruction. The immediate, if any, is handled by md_apply_fix3. */ static void encode_arm_shift (int i) { if (inst.operands[i].shift_kind == SHIFT_RRX) inst.instruction |= SHIFT_ROR << 5; else { inst.instruction |= inst.operands[i].shift_kind << 5; if (inst.operands[i].immisreg) { inst.instruction |= SHIFT_BY_REG; inst.instruction |= inst.operands[i].imm << 8; } else inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM; } } static void encode_arm_shifter_operand (int i) { if (inst.operands[i].isreg) { inst.instruction |= inst.operands[i].reg; encode_arm_shift (i); } else inst.instruction |= INST_IMMEDIATE; } /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */ static void encode_arm_addr_mode_common (int i, bfd_boolean is_t) { assert (inst.operands[i].isreg); inst.instruction |= inst.operands[i].reg << 16; if (inst.operands[i].preind) { if (is_t) { inst.error = _("instruction does not accept preindexed addressing"); return; } inst.instruction |= PRE_INDEX; if (inst.operands[i].writeback) inst.instruction |= WRITE_BACK; } else if (inst.operands[i].postind) { assert (inst.operands[i].writeback); if (is_t) inst.instruction |= WRITE_BACK; } else /* unindexed - only for coprocessor */ { inst.error = _("instruction does not accept unindexed addressing"); return; } if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX)) && (((inst.instruction & 0x000f0000) >> 16) == ((inst.instruction & 0x0000f000) >> 12))) as_warn ((inst.instruction & LOAD_BIT) ? _("destination register same as write-back base") : _("source register same as write-back base")); } /* inst.operands[i] was set up by parse_address. Encode it into an ARM-format mode 2 load or store instruction. If is_t is true, reject forms that cannot be used with a T instruction (i.e. not post-indexed). */ static void encode_arm_addr_mode_2 (int i, bfd_boolean is_t) { encode_arm_addr_mode_common (i, is_t); if (inst.operands[i].immisreg) { inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */ inst.instruction |= inst.operands[i].imm; if (!inst.operands[i].negative) inst.instruction |= INDEX_UP; if (inst.operands[i].shifted) { if (inst.operands[i].shift_kind == SHIFT_RRX) inst.instruction |= SHIFT_ROR << 5; else { inst.instruction |= inst.operands[i].shift_kind << 5; inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM; } } } else /* immediate offset in inst.reloc */ { if (inst.reloc.type == BFD_RELOC_UNUSED) inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM; if (inst.reloc.pc_rel) inst.reloc.exp.X_add_number -= 8; /* pipeline offset */ } } /* inst.operands[i] was set up by parse_address. Encode it into an ARM-format mode 3 load or store instruction. Reject forms that cannot be used with such instructions. If is_t is true, reject forms that cannot be used with a T instruction (i.e. not post-indexed). */ static void encode_arm_addr_mode_3 (int i, bfd_boolean is_t) { if (inst.operands[i].immisreg && inst.operands[i].shifted) { inst.error = _("instruction does not accept scaled register index"); return; } encode_arm_addr_mode_common (i, is_t); if (inst.operands[i].immisreg) { inst.instruction |= inst.operands[i].imm; if (!inst.operands[i].negative) inst.instruction |= INDEX_UP; } else /* immediate offset in inst.reloc */ { inst.instruction |= HWOFFSET_IMM; if (inst.reloc.type == BFD_RELOC_UNUSED) inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8; if (inst.reloc.pc_rel) inst.reloc.exp.X_add_number -= 8; /* pipeline offset */ } } /* inst.operands[i] was set up by parse_address. Encode it into an ARM-format instruction. Reject all forms which cannot be encoded into a coprocessor load/store instruction. If wb_ok is false, reject use of writeback; if unind_ok is false, reject use of unindexed addressing. If reloc_override is not 0, use it instead of BFD_ARM_CP_OFF_IMM. */ static int encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override) { inst.instruction |= inst.operands[i].reg << 16; assert (!(inst.operands[i].preind && inst.operands[i].postind)); if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */ { assert (!inst.operands[i].writeback); if (!unind_ok) { inst.error = _("instruction does not support unindexed addressing"); return FAIL; } inst.instruction |= inst.operands[i].imm; inst.instruction |= INDEX_UP; return SUCCESS; } if (inst.operands[i].preind) inst.instruction |= PRE_INDEX; if (inst.operands[i].writeback) { if (inst.operands[i].reg == REG_PC) { inst.error = _("pc may not be used with write-back"); return FAIL; } if (!wb_ok) { inst.error = _("instruction does not support writeback"); return FAIL; } inst.instruction |= WRITE_BACK; } if (reloc_override) inst.reloc.type = reloc_override; else inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM; if (inst.reloc.pc_rel) inst.reloc.exp.X_add_number -= 8; return SUCCESS; } /* inst.reloc.exp describes an "=expr" load pseudo-operation. Determine whether it can be performed with a move instruction; if it can, convert inst.instruction to that move instruction and return 1; if it can't, convert inst.instruction to a literal-pool load and return 0. If this is not a valid thing to do in the current context, set inst.error and return 1. inst.operands[i] describes the destination register. */ static int move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3) { if ((inst.instruction & (thumb_p ? THUMB_LOAD_BIT : LOAD_BIT)) == 0) { inst.error = _("invalid pseudo operation"); return 1; } if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol) { inst.error = _("constant expression expected"); return 1; } if (inst.reloc.exp.X_op == O_constant) { if (thumb_p) { if ((inst.reloc.exp.X_add_number & ~0xFF) == 0) { /* This can be done with a mov(1) instruction. */ inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8); inst.instruction |= inst.reloc.exp.X_add_number; return 1; } } else { int value = encode_arm_immediate (inst.reloc.exp.X_add_number); if (value != FAIL) { /* This can be done with a mov instruction. */ inst.instruction &= LITERAL_MASK; inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT); inst.instruction |= value & 0xfff; return 1; } value = encode_arm_immediate (~inst.reloc.exp.X_add_number); if (value != FAIL) { /* This can be done with a mvn instruction. */ inst.instruction &= LITERAL_MASK; inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT); inst.instruction |= value & 0xfff; return 1; } } } if (add_to_lit_pool () == FAIL) { inst.error = _("literal pool insertion failed"); return 1; } inst.operands[1].reg = REG_PC; inst.operands[1].isreg = 1; inst.operands[1].preind = 1; inst.reloc.pc_rel = 1; inst.reloc.type = (thumb_p ? BFD_RELOC_ARM_THUMB_OFFSET : (mode_3 ? BFD_RELOC_ARM_HWLITERAL : BFD_RELOC_ARM_LITERAL)); return 0; } /* Functions for instruction encoding, sorted by subarchitecture. First some generics; their names are taken from the conventional bit positions for register arguments in ARM format instructions. */ static void do_noargs (void) { } static void do_rd (void) { inst.instruction |= inst.operands[0].reg << 12; } static void do_rd_rm (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; } static void do_rd_rn (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; } static void do_rn_rd (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg << 12; } static void do_rd_rm_rn (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 16; } static void do_rd_rn_rm (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; } static void do_rm_rd_rn (void) { inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; } static void do_imm0 (void) { inst.instruction |= inst.operands[0].imm; } static void do_rd_cpaddr (void) { inst.instruction |= inst.operands[0].reg << 12; encode_arm_cp_address (1, TRUE, TRUE, 0); } /* ARM instructions, in alphabetical order by function name (except that wrapper functions appear immediately after the function they wrap). */ /* This is a pseudo-op of the form "adr rd, label" to be converted into a relative address of the form "add rd, pc, #label-.-8". */ static void do_adr (void) { inst.instruction |= (inst.operands[0].reg << 12); /* Rd */ /* Frag hacking will turn this into a sub instruction if the offset turns out to be negative. */ inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE; #ifndef TE_WINCE inst.reloc.exp.X_add_number -= 8; /* PC relative adjust. */ #endif inst.reloc.pc_rel = 1; } /* This is a pseudo-op of the form "adrl rd, label" to be converted into a relative address of the form: add rd, pc, #low(label-.-8)" add rd, rd, #high(label-.-8)" */ static void do_adrl (void) { inst.instruction |= (inst.operands[0].reg << 12); /* Rd */ /* Frag hacking will turn this into a sub instruction if the offset turns out to be negative. */ inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE; #ifndef TE_WINCE inst.reloc.exp.X_add_number -= 8; /* PC relative adjust */ #endif inst.reloc.pc_rel = 1; inst.size = INSN_SIZE * 2; } static void do_arit (void) { if (!inst.operands[1].present) inst.operands[1].reg = inst.operands[0].reg; inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; encode_arm_shifter_operand (2); } static void do_bfc (void) { unsigned int msb = inst.operands[1].imm + inst.operands[2].imm; constraint (msb > 32, _("bit-field extends past end of register")); /* The instruction encoding stores the LSB and MSB, not the LSB and width. */ inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].imm << 7; inst.instruction |= (msb - 1) << 16; } static void do_bfi (void) { unsigned int msb; /* #0 in second position is alternative syntax for bfc, which is the same instruction but with REG_PC in the Rm field. */ if (!inst.operands[1].isreg) inst.operands[1].reg = REG_PC; msb = inst.operands[2].imm + inst.operands[3].imm; constraint (msb > 32, _("bit-field extends past end of register")); /* The instruction encoding stores the LSB and MSB, not the LSB and width. */ inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].imm << 7; inst.instruction |= (msb - 1) << 16; } static void do_bfx (void) { constraint (inst.operands[2].imm + inst.operands[3].imm > 32, _("bit-field extends past end of register")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].imm << 7; inst.instruction |= (inst.operands[3].imm - 1) << 16; } /* ARM V5 breakpoint instruction (argument parse) BKPT <16 bit unsigned immediate> Instruction is not conditional. The bit pattern given in insns[] has the COND_ALWAYS condition, and it is an error if the caller tried to override that. */ static void do_bkpt (void) { /* Top 12 of 16 bits to bits 19:8. */ inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4; /* Bottom 4 of 16 bits to bits 3:0. */ inst.instruction |= inst.operands[0].imm & 0xf; } static void encode_branch (int default_reloc) { if (inst.operands[0].hasreloc) { constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32, _("the only suffix valid here is '(plt)'")); inst.reloc.type = BFD_RELOC_ARM_PLT32; inst.reloc.pc_rel = 0; } else { inst.reloc.type = default_reloc; inst.reloc.pc_rel = 1; } } static void do_branch (void) { encode_branch (BFD_RELOC_ARM_PCREL_BRANCH); } /* ARM V5 branch-link-exchange instruction (argument parse) BLX ie BLX(1) BLX{} ie BLX(2) Unfortunately, there are two different opcodes for this mnemonic. So, the insns[].value is not used, and the code here zaps values into inst.instruction. Also, the can be 25 bits, hence has its own reloc. */ static void do_blx (void) { if (inst.operands[0].isreg) { /* Arg is a register; the opcode provided by insns[] is correct. It is not illegal to do "blx pc", just useless. */ if (inst.operands[0].reg == REG_PC) as_tsktsk (_("use of r15 in blx in ARM mode is not really useful")); inst.instruction |= inst.operands[0].reg; } else { /* Arg is an address; this instruction cannot be executed conditionally, and the opcode must be adjusted. */ constraint (inst.cond != COND_ALWAYS, BAD_COND); inst.instruction = 0xfafffffe; encode_branch (BFD_RELOC_ARM_PCREL_BLX); } } static void do_bx (void) { if (inst.operands[0].reg == REG_PC) as_tsktsk (_("use of r15 in bx in ARM mode is not really useful")); inst.instruction |= inst.operands[0].reg; } /* ARM v5TEJ. Jump to Jazelle code. */ static void do_bxj (void) { if (inst.operands[0].reg == REG_PC) as_tsktsk (_("use of r15 in bxj is not really useful")); inst.instruction |= inst.operands[0].reg; } /* Co-processor data operation: CDP{cond} , , , , {, } CDP2 , , , , {, } */ static void do_cdp (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm << 20; inst.instruction |= inst.operands[2].reg << 12; inst.instruction |= inst.operands[3].reg << 16; inst.instruction |= inst.operands[4].reg; inst.instruction |= inst.operands[5].imm << 5; } static void do_cmp (void) { inst.instruction |= inst.operands[0].reg << 16; encode_arm_shifter_operand (1); } /* Transfer between coprocessor and ARM registers. MRC{cond} , , , , {, } MRC2 MCR{cond} MCR2 No special properties. */ static void do_co_reg (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm << 21; inst.instruction |= inst.operands[2].reg << 12; inst.instruction |= inst.operands[3].reg << 16; inst.instruction |= inst.operands[4].reg; inst.instruction |= inst.operands[5].imm << 5; } /* Transfer between coprocessor register and pair of ARM registers. MCRR{cond} , , , , . MCRR2 MRRC{cond} MRRC2 Two XScale instructions are special cases of these: MAR{cond} acc0, , == MCRR{cond} p0, #0, , , c0 MRA{cond} acc0, , == MRRC{cond} p0, #0, , , c0 Result unpredicatable if Rd or Rn is R15. */ static void do_co_reg2c (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm << 4; inst.instruction |= inst.operands[2].reg << 12; inst.instruction |= inst.operands[3].reg << 16; inst.instruction |= inst.operands[4].reg; } static void do_cpsi (void) { inst.instruction |= inst.operands[0].imm << 6; inst.instruction |= inst.operands[1].imm; } static void do_it (void) { /* There is no IT instruction in ARM mode. We process it but do not generate code for it. */ inst.size = 0; } static void do_ldmstm (void) { int base_reg = inst.operands[0].reg; int range = inst.operands[1].imm; inst.instruction |= base_reg << 16; inst.instruction |= range; if (inst.operands[1].writeback) inst.instruction |= LDM_TYPE_2_OR_3; if (inst.operands[0].writeback) { inst.instruction |= WRITE_BACK; /* Check for unpredictable uses of writeback. */ if (inst.instruction & LOAD_BIT) { /* Not allowed in LDM type 2. */ if ((inst.instruction & LDM_TYPE_2_OR_3) && ((range & (1 << REG_PC)) == 0)) as_warn (_("writeback of base register is UNPREDICTABLE")); /* Only allowed if base reg not in list for other types. */ else if (range & (1 << base_reg)) as_warn (_("writeback of base register when in register list is UNPREDICTABLE")); } else /* STM. */ { /* Not allowed for type 2. */ if (inst.instruction & LDM_TYPE_2_OR_3) as_warn (_("writeback of base register is UNPREDICTABLE")); /* Only allowed if base reg not in list, or first in list. */ else if ((range & (1 << base_reg)) && (range & ((1 << base_reg) - 1))) as_warn (_("if writeback register is in list, it must be the lowest reg in the list")); } } } /* ARMv5TE load-consecutive (argument parse) Mode is like LDRH. LDRccD R, mode STRccD R, mode. */ static void do_ldrd (void) { constraint (inst.operands[0].reg % 2 != 0, _("first destination register must be even")); constraint (inst.operands[1].present && inst.operands[1].reg != inst.operands[0].reg + 1, _("can only load two consecutive registers")); constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here")); constraint (!inst.operands[2].isreg, _("'[' expected")); if (!inst.operands[1].present) inst.operands[1].reg = inst.operands[0].reg + 1; if (inst.instruction & LOAD_BIT) { /* encode_arm_addr_mode_3 will diagnose overlap between the base register and the first register written; we have to diagnose overlap between the base and the second register written here. */ if (inst.operands[2].reg == inst.operands[1].reg && (inst.operands[2].writeback || inst.operands[2].postind)) as_warn (_("base register written back, and overlaps " "second destination register")); /* For an index-register load, the index register must not overlap the destination (even if not write-back). */ else if (inst.operands[2].immisreg && (inst.operands[2].imm == inst.operands[0].reg || inst.operands[2].imm == inst.operands[1].reg)) as_warn (_("index register overlaps destination register")); } inst.instruction |= inst.operands[0].reg << 12; encode_arm_addr_mode_3 (2, /*is_t=*/FALSE); } static void do_ldrex (void) { constraint (!inst.operands[1].isreg || !inst.operands[1].preind || inst.operands[1].postind || inst.operands[1].writeback || inst.operands[1].immisreg || inst.operands[1].shifted || inst.operands[1].negative, _("instruction does not accept this addressing mode")); constraint (inst.operands[1].reg == REG_PC, BAD_PC); constraint (inst.reloc.exp.X_op != O_constant || inst.reloc.exp.X_add_number != 0, _("offset must be zero in ARM encoding")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.reloc.type = BFD_RELOC_UNUSED; } static void do_ldrexd (void) { constraint (inst.operands[0].reg % 2 != 0, _("even register required")); constraint (inst.operands[1].present && inst.operands[1].reg != inst.operands[0].reg + 1, _("can only load two consecutive registers")); /* If op 1 were present and equal to PC, this function wouldn't have been called in the first place. */ constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[2].reg << 16; } static void do_ldst (void) { inst.instruction |= inst.operands[0].reg << 12; if (!inst.operands[1].isreg) if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE)) return; encode_arm_addr_mode_2 (1, /*is_t=*/FALSE); } static void do_ldstt (void) { /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and reject [Rn,...]. */ if (inst.operands[1].preind) { constraint (inst.reloc.exp.X_op != O_constant || inst.reloc.exp.X_add_number != 0, _("this instruction requires a post-indexed address")); inst.operands[1].preind = 0; inst.operands[1].postind = 1; inst.operands[1].writeback = 1; } inst.instruction |= inst.operands[0].reg << 12; encode_arm_addr_mode_2 (1, /*is_t=*/TRUE); } /* Halfword and signed-byte load/store operations. */ static void do_ldstv4 (void) { inst.instruction |= inst.operands[0].reg << 12; if (!inst.operands[1].isreg) if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE)) return; encode_arm_addr_mode_3 (1, /*is_t=*/FALSE); } static void do_ldsttv4 (void) { /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and reject [Rn,...]. */ if (inst.operands[1].preind) { constraint (inst.reloc.exp.X_op != O_constant || inst.reloc.exp.X_add_number != 0, _("this instruction requires a post-indexed address")); inst.operands[1].preind = 0; inst.operands[1].postind = 1; inst.operands[1].writeback = 1; } inst.instruction |= inst.operands[0].reg << 12; encode_arm_addr_mode_3 (1, /*is_t=*/TRUE); } /* Co-processor register load/store. Format: {cond}[L] CP#,CRd,
*/ static void do_lstc (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 12; encode_arm_cp_address (2, TRUE, TRUE, 0); } static void do_mlas (void) { /* This restriction does not apply to mls (nor to mla in v6, but that's hard to detect at present). */ if (inst.operands[0].reg == inst.operands[1].reg && !(inst.instruction & 0x00400000)) as_tsktsk (_("rd and rm should be different in mla")); inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 8; inst.instruction |= inst.operands[3].reg << 12; } static void do_mov (void) { inst.instruction |= inst.operands[0].reg << 12; encode_arm_shifter_operand (1); } /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #. */ static void do_mov16 (void) { inst.instruction |= inst.operands[0].reg << 12; /* The value is in two pieces: 0:11, 16:19. */ inst.instruction |= (inst.operands[1].imm & 0x00000fff); inst.instruction |= (inst.operands[1].imm & 0x0000f000) << 4; } static void do_mrs (void) { /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */ constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f)) != (PSR_c|PSR_f), _("'CPSR' or 'SPSR' expected")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= (inst.operands[1].imm & SPSR_BIT); } /* Two possible forms: "{C|S}PSR_, Rm", "{C|S}PSR_f, #expression". */ static void do_msr (void) { inst.instruction |= inst.operands[0].imm; if (inst.operands[1].isreg) inst.instruction |= inst.operands[1].reg; else { inst.instruction |= INST_IMMEDIATE; inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE; inst.reloc.pc_rel = 0; } } static void do_mul (void) { if (!inst.operands[2].present) inst.operands[2].reg = inst.operands[0].reg; inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 8; if (inst.operands[0].reg == inst.operands[1].reg) as_tsktsk (_("rd and rm should be different in mul")); } /* Long Multiply Parser UMULL RdLo, RdHi, Rm, Rs SMULL RdLo, RdHi, Rm, Rs UMLAL RdLo, RdHi, Rm, Rs SMLAL RdLo, RdHi, Rm, Rs. */ static void do_mull (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].reg << 8; /* rdhi, rdlo and rm must all be different. */ if (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[2].reg || inst.operands[1].reg == inst.operands[2].reg) as_tsktsk (_("rdhi, rdlo and rm must all be different")); } static void do_nop (void) { if (inst.operands[0].present) { /* Architectural NOP hints are CPSR sets with no bits selected. */ inst.instruction &= 0xf0000000; inst.instruction |= 0x0320f000 + inst.operands[0].imm; } } /* ARM V6 Pack Halfword Bottom Top instruction (argument parse). PKHBT {} , , {, LSL #} Condition defaults to COND_ALWAYS. Error if Rd, Rn or Rm are R15. */ static void do_pkhbt (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; if (inst.operands[3].present) encode_arm_shift (3); } /* ARM V6 PKHTB (Argument Parse). */ static void do_pkhtb (void) { if (!inst.operands[3].present) { /* If the shift specifier is omitted, turn the instruction into pkhbt rd, rm, rn. */ inst.instruction &= 0xfff00010; inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 16; } else { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; encode_arm_shift (3); } } /* ARMv5TE: Preload-Cache PLD Syntactically, like LDR with B=1, W=0, L=1. */ static void do_pld (void) { constraint (!inst.operands[0].isreg, _("'[' expected after PLD mnemonic")); constraint (inst.operands[0].postind, _("post-indexed expression used in preload instruction")); constraint (inst.operands[0].writeback, _("writeback used in preload instruction")); constraint (!inst.operands[0].preind, _("unindexed addressing used in preload instruction")); inst.instruction |= inst.operands[0].reg; encode_arm_addr_mode_2 (0, /*is_t=*/FALSE); } static void do_push_pop (void) { inst.operands[1] = inst.operands[0]; memset (&inst.operands[0], 0, sizeof inst.operands[0]); inst.operands[0].isreg = 1; inst.operands[0].writeback = 1; inst.operands[0].reg = REG_SP; do_ldmstm (); } /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the word at the specified address and the following word respectively. Unconditionally executed. Error if Rn is R15. */ static void do_rfe (void) { inst.instruction |= inst.operands[0].reg << 16; if (inst.operands[0].writeback) inst.instruction |= WRITE_BACK; } /* ARM V6 ssat (argument parse). */ static void do_ssat (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= (inst.operands[1].imm - 1) << 16; inst.instruction |= inst.operands[2].reg; if (inst.operands[3].present) encode_arm_shift (3); } /* ARM V6 usat (argument parse). */ static void do_usat (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].imm << 16; inst.instruction |= inst.operands[2].reg; if (inst.operands[3].present) encode_arm_shift (3); } /* ARM V6 ssat16 (argument parse). */ static void do_ssat16 (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= ((inst.operands[1].imm - 1) << 16); inst.instruction |= inst.operands[2].reg; } static void do_usat16 (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].imm << 16; inst.instruction |= inst.operands[2].reg; } /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while preserving the other bits. setend , where is either BE or LE. */ static void do_setend (void) { if (inst.operands[0].imm) inst.instruction |= 0x200; } static void do_shift (void) { unsigned int Rm = (inst.operands[1].present ? inst.operands[1].reg : inst.operands[0].reg); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= Rm; if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */ { constraint (inst.operands[0].reg != Rm, _("source1 and dest must be same register")); inst.instruction |= inst.operands[2].reg << 8; inst.instruction |= SHIFT_BY_REG; } else inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM; } static void do_smi (void) { inst.reloc.type = BFD_RELOC_ARM_SMI; inst.reloc.pc_rel = 0; } static void do_swi (void) { inst.reloc.type = BFD_RELOC_ARM_SWI; inst.reloc.pc_rel = 0; } /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse) SMLAxy{cond} Rd,Rm,Rs,Rn SMLAWy{cond} Rd,Rm,Rs,Rn Error if any register is R15. */ static void do_smla (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 8; inst.instruction |= inst.operands[3].reg << 12; } /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse) SMLALxy{cond} Rdlo,Rdhi,Rm,Rs Error if any register is R15. Warning if Rdlo == Rdhi. */ static void do_smlal (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].reg << 8; if (inst.operands[0].reg == inst.operands[1].reg) as_tsktsk (_("rdhi and rdlo must be different")); } /* ARM V5E (El Segundo) signed-multiply (argument parse) SMULxy{cond} Rd,Rm,Rs Error if any register is R15. */ static void do_smul (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 8; } /* ARM V6 srs (argument parse). */ static void do_srs (void) { inst.instruction |= inst.operands[0].imm; if (inst.operands[0].writeback) inst.instruction |= WRITE_BACK; } /* ARM V6 strex (argument parse). */ static void do_strex (void) { constraint (!inst.operands[2].isreg || !inst.operands[2].preind || inst.operands[2].postind || inst.operands[2].writeback || inst.operands[2].immisreg || inst.operands[2].shifted || inst.operands[2].negative, _("instruction does not accept this addressing mode")); constraint (inst.operands[2].reg == REG_PC, BAD_PC); constraint (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP); constraint (inst.reloc.exp.X_op != O_constant || inst.reloc.exp.X_add_number != 0, _("offset must be zero in ARM encoding")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 16; inst.reloc.type = BFD_RELOC_UNUSED; } static void do_strexd (void) { constraint (inst.operands[1].reg % 2 != 0, _("even register required")); constraint (inst.operands[2].present && inst.operands[2].reg != inst.operands[1].reg + 1, _("can only store two consecutive registers")); /* If op 2 were present and equal to PC, this function wouldn't have been called in the first place. */ constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here")); constraint (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[1].reg + 1 || inst.operands[0].reg == inst.operands[3].reg, BAD_OVERLAP); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[3].reg << 16; } /* ARM V6 SXTAH extracts a 16-bit value from a register, sign extends it to 32-bits, and adds the result to a value in another register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value. SXTAH{} , , {, } Condition defaults to COND_ALWAYS. Error if any register uses R15. */ static void do_sxtah (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].imm << 10; } /* ARM V6 SXTH. SXTH {} , {, } Condition defaults to COND_ALWAYS. Error if any register uses R15. */ static void do_sxth (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].imm << 10; } /* VFP instructions. In a logical order: SP variant first, monad before dyad, arithmetic then move then load/store. */ static void do_vfp_sp_monadic (void) { encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd); encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sm); } static void do_vfp_sp_dyadic (void) { encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd); encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sn); encode_arm_vfp_sp_reg (inst.operands[2].reg, VFP_REG_Sm); } static void do_vfp_sp_compare_z (void) { encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd); } static void do_vfp_dp_sp_cvt (void) { inst.instruction |= inst.operands[0].reg << 12; encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sm); } static void do_vfp_sp_dp_cvt (void) { encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd); inst.instruction |= inst.operands[1].reg; } static void do_vfp_reg_from_sp (void) { inst.instruction |= inst.operands[0].reg << 12; encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sn); } static void do_vfp_reg2_from_sp2 (void) { constraint (inst.operands[2].imm != 2, _("only two consecutive VFP SP registers allowed here")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; encode_arm_vfp_sp_reg (inst.operands[2].reg, VFP_REG_Sm); } static void do_vfp_sp_from_reg (void) { encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sn); inst.instruction |= inst.operands[1].reg << 12; } static void do_vfp_sp2_from_reg2 (void) { constraint (inst.operands[0].imm != 2, _("only two consecutive VFP SP registers allowed here")); encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sm); inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; } static void do_vfp_sp_ldst (void) { encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd); encode_arm_cp_address (1, FALSE, TRUE, 0); } static void do_vfp_dp_ldst (void) { inst.instruction |= inst.operands[0].reg << 12; encode_arm_cp_address (1, FALSE, TRUE, 0); } static void vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type) { if (inst.operands[0].writeback) inst.instruction |= WRITE_BACK; else constraint (ldstm_type != VFP_LDSTMIA, _("this addressing mode requires base-register writeback")); inst.instruction |= inst.operands[0].reg << 16; encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sd); inst.instruction |= inst.operands[1].imm; } static void vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type) { int count; if (inst.operands[0].writeback) inst.instruction |= WRITE_BACK; else constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX, _("this addressing mode requires base-register writeback")); inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg << 12; count = inst.operands[1].imm << 1; if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX) count += 1; inst.instruction |= count; } static void do_vfp_sp_ldstmia (void) { vfp_sp_ldstm (VFP_LDSTMIA); } static void do_vfp_sp_ldstmdb (void) { vfp_sp_ldstm (VFP_LDSTMDB); } static void do_vfp_dp_ldstmia (void) { vfp_dp_ldstm (VFP_LDSTMIA); } static void do_vfp_dp_ldstmdb (void) { vfp_dp_ldstm (VFP_LDSTMDB); } static void do_vfp_xp_ldstmia (void) { vfp_dp_ldstm (VFP_LDSTMIAX); } static void do_vfp_xp_ldstmdb (void) { vfp_dp_ldstm (VFP_LDSTMDBX); } /* FPA instructions. Also in a logical order. */ static void do_fpa_cmp (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; } static void do_fpa_ldmstm (void) { inst.instruction |= inst.operands[0].reg << 12; switch (inst.operands[1].imm) { case 1: inst.instruction |= CP_T_X; break; case 2: inst.instruction |= CP_T_Y; break; case 3: inst.instruction |= CP_T_Y | CP_T_X; break; case 4: break; default: abort (); } if (inst.instruction & (PRE_INDEX | INDEX_UP)) { /* The instruction specified "ea" or "fd", so we can only accept [Rn]{!}. The instruction does not really support stacking or unstacking, so we have to emulate these by setting appropriate bits and offsets. */ constraint (inst.reloc.exp.X_op != O_constant || inst.reloc.exp.X_add_number != 0, _("this instruction does not support indexing")); if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback) inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm; if (!(inst.instruction & INDEX_UP)) inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number; if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback) { inst.operands[2].preind = 0; inst.operands[2].postind = 1; } } encode_arm_cp_address (2, TRUE, TRUE, 0); } /* iWMMXt instructions: strictly in alphabetical order. */ static void do_iwmmxt_tandorc (void) { constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here")); } static void do_iwmmxt_textrc (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].imm; } static void do_iwmmxt_textrm (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].imm; } static void do_iwmmxt_tinsr (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].imm; } static void do_iwmmxt_tmia (void) { inst.instruction |= inst.operands[0].reg << 5; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 12; } static void do_iwmmxt_waligni (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].imm << 20; } static void do_iwmmxt_wmov (void) { /* WMOV rD, rN is an alias for WOR rD, rN, rN. */ inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[1].reg; } static void do_iwmmxt_wldstbh (void) { inst.instruction |= inst.operands[0].reg << 12; inst.reloc.exp.X_add_number *= 4; encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_CP_OFF_IMM_S2); } static void do_iwmmxt_wldstw (void) { /* RIWR_RIWC clears .isreg for a control register. */ if (!inst.operands[0].isreg) { constraint (inst.cond != COND_ALWAYS, BAD_COND); inst.instruction |= 0xf0000000; } inst.instruction |= inst.operands[0].reg << 12; encode_arm_cp_address (1, TRUE, TRUE, 0); } static void do_iwmmxt_wldstd (void) { inst.instruction |= inst.operands[0].reg << 12; encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_CP_OFF_IMM_S2); } static void do_iwmmxt_wshufh (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16); inst.instruction |= (inst.operands[2].imm & 0x0f); } static void do_iwmmxt_wzero (void) { /* WZERO reg is an alias for WANDN reg, reg, reg. */ inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[0].reg << 16; } /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register operations first, then control, shift, and load/store. */ /* Insns like "foo X,Y,Z". */ static void do_mav_triple (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 12; } /* Insns like "foo W,X,Y,Z". where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */ static void do_mav_quad (void) { inst.instruction |= inst.operands[0].reg << 5; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; inst.instruction |= inst.operands[3].reg; } /* cfmvsc32 DSPSC,MVDX[15:0]. */ static void do_mav_dspsc (void) { inst.instruction |= inst.operands[1].reg << 12; } /* Maverick shift immediate instructions. cfsh32 MVFX[15:0],MVFX[15:0],Shift[6:0]. cfsh64 MVDX[15:0],MVDX[15:0],Shift[6:0]. */ static void do_mav_shift (void) { int imm = inst.operands[2].imm; inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; /* Bits 0-3 of the insn should have bits 0-3 of the immediate. Bits 5-7 of the insn should have bits 4-6 of the immediate. Bit 4 should be 0. */ imm = (imm & 0xf) | ((imm & 0x70) << 1); inst.instruction |= imm; } /* XScale instructions. Also sorted arithmetic before move. */ /* Xscale multiply-accumulate (argument parse) MIAcc acc0,Rm,Rs MIAPHcc acc0,Rm,Rs MIAxycc acc0,Rm,Rs. */ static void do_xsc_mia (void) { inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 12; } /* Xscale move-accumulator-register (argument parse) MARcc acc0,RdLo,RdHi. */ static void do_xsc_mar (void) { inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; } /* Xscale move-register-accumulator (argument parse) MRAcc RdLo,RdHi,acc0. */ static void do_xsc_mra (void) { constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; } /* Encoding functions relevant only to Thumb. */ /* inst.operands[i] is a shifted-register operand; encode it into inst.instruction in the format used by Thumb32. */ static void encode_thumb32_shifted_operand (int i) { unsigned int value = inst.reloc.exp.X_add_number; unsigned int shift = inst.operands[i].shift_kind; inst.instruction |= inst.operands[i].reg; if (shift == SHIFT_RRX) inst.instruction |= SHIFT_ROR << 4; else { constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex")); constraint (value > 32 || (value == 32 && (shift == SHIFT_LSL || shift == SHIFT_ROR)), _("shift expression is too large")); if (value == 0) shift = SHIFT_LSL; else if (value == 32) value = 0; inst.instruction |= shift << 4; inst.instruction |= (value & 0x1c) << 10; inst.instruction |= (value & 0x03) << 6; } } /* inst.operands[i] was set up by parse_address. Encode it into a Thumb32 format load or store instruction. Reject forms that cannot be used with such instructions. If is_t is true, reject forms that cannot be used with a T instruction; if is_d is true, reject forms that cannot be used with a D instruction. */ static void encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d) { bfd_boolean is_pc = (inst.operands[i].reg == REG_PC); constraint (!inst.operands[i].isreg, _("Thumb does not support the ldr =N pseudo-operation")); inst.instruction |= inst.operands[i].reg << 16; if (inst.operands[i].immisreg) { constraint (is_pc, _("cannot use register index with PC-relative addressing")); constraint (is_t || is_d, _("cannot use register index with this instruction")); constraint (inst.operands[i].negative, _("Thumb does not support negative register indexing")); constraint (inst.operands[i].postind, _("Thumb does not support register post-indexing")); constraint (inst.operands[i].writeback, _("Thumb does not support register indexing with writeback")); constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL, _("Thumb supports only LSL in shifted register indexing")); inst.instruction |= inst.operands[1].imm; if (inst.operands[i].shifted) { constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex")); constraint (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 3, _("shift out of range")); inst.instruction |= inst.reloc.exp.X_op << 4; } inst.reloc.type = BFD_RELOC_UNUSED; } else if (inst.operands[i].preind) { constraint (is_pc && inst.operands[i].writeback, _("cannot use writeback with PC-relative addressing")); constraint (is_t && inst.operands[1].writeback, _("cannot use writeback with this instruction")); if (is_d) { inst.instruction |= 0x01000000; if (inst.operands[i].writeback) inst.instruction |= 0x00200000; } else { inst.instruction |= 0x00000c00; if (inst.operands[i].writeback) inst.instruction |= 0x00000100; } inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM; inst.reloc.pc_rel = is_pc; } else if (inst.operands[i].postind) { assert (inst.operands[i].writeback); constraint (is_pc, _("cannot use post-indexing with PC-relative addressing")); constraint (is_t, _("cannot use post-indexing with this instruction")); if (is_d) inst.instruction |= 0x00200000; else inst.instruction |= 0x00000900; inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM; } else /* unindexed - only for coprocessor */ inst.error = _("instruction does not accept unindexed addressing"); } /* Table of Thumb instructions which exist in both 16- and 32-bit encodings (the latter only in post-V6T2 cores). The index is the value used in the insns table below. When there is more than one possible 16-bit encoding for the instruction, this table always holds variant (1). */ #define T16_32_TAB \ X(adc, 4140, eb400000), \ X(adcs, 4140, eb500000), \ X(add, 1c00, eb000000), \ X(adds, 1c00, eb100000), \ X(and, 4000, ea000000), \ X(ands, 4000, ea100000), \ X(asr, 1000, fa40f000), \ X(asrs, 1000, fa50f000), \ X(bic, 4380, ea200000), \ X(bics, 4380, ea300000), \ X(cmn, 42c0, eb100f00), \ X(cmp, 2800, ebb00f00), \ X(cpsie, b660, f3af8400), \ X(cpsid, b670, f3af8600), \ X(cpy, 4600, ea4f0000), \ X(eor, 4040, ea800000), \ X(eors, 4040, ea900000), \ X(ldmia, c800, e8900000), \ X(ldr, 6800, f8500000), \ X(ldrb, 7800, f8100000), \ X(ldrh, 8800, f8300000), \ X(ldrsb, 5600, f9100000), \ X(ldrsh, 5e00, f9300000), \ X(lsl, 0000, fa00f000), \ X(lsls, 0000, fa10f000), \ X(lsr, 0800, fa20f000), \ X(lsrs, 0800, fa30f000), \ X(mov, 2000, ea4f0000), \ X(movs, 2000, ea5f0000), \ X(mul, 4340, fb00f000), \ X(muls, 4340, ffffffff), /* no 32b muls */ \ X(mvn, 43c0, ea6f0000), \ X(mvns, 43c0, ea7f0000), \ X(neg, 4240, f1c00000), /* rsb #0 */ \ X(negs, 4240, f1d00000), /* rsbs #0 */ \ X(orr, 4300, ea400000), \ X(orrs, 4300, ea500000), \ X(pop, bc00, e8ad0000), /* ldmia sp!,... */ \ X(push, b400, e8bd0000), /* stmia sp!,... */ \ X(rev, ba00, fa90f080), \ X(rev16, ba40, fa90f090), \ X(revsh, bac0, fa90f0b0), \ X(ror, 41c0, fa60f000), \ X(rors, 41c0, fa70f000), \ X(sbc, 4180, eb600000), \ X(sbcs, 4180, eb700000), \ X(stmia, c000, e8800000), \ X(str, 6000, f8400000), \ X(strb, 7000, f8000000), \ X(strh, 8000, f8200000), \ X(sub, 1e00, eba00000), \ X(subs, 1e00, ebb00000), \ X(sxtb, b240, fa4ff080), \ X(sxth, b200, fa0ff080), \ X(tst, 4200, ea100f00), \ X(uxtb, b2c0, fa5ff080), \ X(uxth, b280, fa1ff080), \ X(nop, bf00, f3af8000), \ X(yield, bf10, f3af8001), \ X(wfe, bf20, f3af8002), \ X(wfi, bf30, f3af8003), \ X(sev, bf40, f3af9004), /* typo, 8004? */ /* To catch errors in encoding functions, the codes are all offset by 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined as 16-bit instructions. */ #define X(a,b,c) T_MNEM_##a enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB }; #undef X #define X(a,b,c) 0x##b static const unsigned short thumb_op16[] = { T16_32_TAB }; #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)]) #undef X #define X(a,b,c) 0x##c static const unsigned int thumb_op32[] = { T16_32_TAB }; #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)]) #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000) #undef X #undef T16_32_TAB /* Thumb instruction encoders, in alphabetical order. */ /* Parse an add or subtract instruction. We get here with inst.instruction equalling any of THUMB_OPCODE_add, adds, sub, or subs. */ static void do_t_add_sub (void) { int Rd, Rs, Rn; Rd = inst.operands[0].reg; Rs = (inst.operands[1].present ? inst.operands[1].reg /* Rd, Rs, foo */ : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */ if (unified_syntax) { if (!inst.operands[2].isreg) { /* For an immediate, we always generate a 32-bit opcode; section relaxation will shrink it later if possible. */ inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE; } else { Rn = inst.operands[2].reg; /* See if we can do this with a 16-bit instruction. */ if (!inst.operands[2].shifted && inst.size_req != 4) { if (Rd <= 7 && Rn <= 7 && Rn <= 7 && (inst.instruction == T_MNEM_adds || inst.instruction == T_MNEM_subs)) { inst.instruction = (inst.instruction == T_MNEM_adds ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3); inst.instruction |= Rd | (Rs << 3) | (Rn << 6); return; } if (inst.instruction == T_MNEM_add) { if (Rd == Rs) { inst.instruction = T_OPCODE_ADD_HI; inst.instruction |= (Rd & 8) << 4; inst.instruction |= (Rd & 7); inst.instruction |= Rn << 3; return; } /* ... because addition is commutative! */ else if (Rd == Rn) { inst.instruction = T_OPCODE_ADD_HI; inst.instruction |= (Rd & 8) << 4; inst.instruction |= (Rd & 7); inst.instruction |= Rs << 3; return; } } } /* If we get here, it can't be done in 16 bits. */ constraint (inst.operands[2].shifted && inst.operands[2].immisreg, _("shift must be constant")); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; encode_thumb32_shifted_operand (2); } } else { constraint (inst.instruction == T_MNEM_adds || inst.instruction == T_MNEM_subs, BAD_THUMB32); if (!inst.operands[2].isreg) /* Rd, Rs, #imm */ { constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP)) || (Rs > 7 && Rs != REG_SP && Rs != REG_PC), BAD_HIREG); inst.instruction = (inst.instruction == T_MNEM_add ? 0x0000 : 0x8000); inst.instruction |= (Rd << 4) | Rs; inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD; return; } Rn = inst.operands[2].reg; constraint (inst.operands[2].shifted, _("unshifted register required")); /* We now have Rd, Rs, and Rn set to registers. */ if (Rd > 7 || Rs > 7 || Rn > 7) { /* Can't do this for SUB. */ constraint (inst.instruction == T_MNEM_sub, BAD_HIREG); inst.instruction = T_OPCODE_ADD_HI; inst.instruction |= (Rd & 8) << 4; inst.instruction |= (Rd & 7); if (Rs == Rd) inst.instruction |= Rn << 3; else if (Rn == Rd) inst.instruction |= Rs << 3; else constraint (1, _("dest must overlap one source register")); } else { inst.instruction = (inst.instruction == T_MNEM_add ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3); inst.instruction |= Rd | (Rs << 3) | (Rn << 6); } } } static void do_t_adr (void) { inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD; inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */ inst.reloc.pc_rel = 1; inst.instruction |= inst.operands[0].reg << 4; } /* Arithmetic instructions for which there is just one 16-bit instruction encoding, and it allows only two low registers. For maximal compatibility with ARM syntax, we allow three register operands even when Thumb-32 instructions are not available, as long as the first two are identical. For instance, both "sbc r0,r1" and "sbc r0,r0,r1" are allowed. */ static void do_t_arit3 (void) { int Rd, Rs, Rn; Rd = inst.operands[0].reg; Rs = (inst.operands[1].present ? inst.operands[1].reg /* Rd, Rs, foo */ : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */ Rn = inst.operands[2].reg; if (unified_syntax) { if (!inst.operands[2].isreg) { /* For an immediate, we always generate a 32-bit opcode; section relaxation will shrink it later if possible. */ inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE; } else { /* See if we can do this with a 16-bit instruction. */ if (THUMB_SETS_FLAGS (inst.instruction) && !inst.operands[2].shifted && inst.size_req != 4 && Rd == Rs) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rn << 3; return; } /* If we get here, it can't be done in 16 bits. */ constraint (inst.operands[2].shifted && inst.operands[2].immisreg, _("shift must be constant")); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; encode_thumb32_shifted_operand (2); } } else { /* On its face this is a lie - the instruction does set the flags. However, the only supported mnemonic in this mode says it doesn't. */ constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32); constraint (!inst.operands[2].isreg || inst.operands[2].shifted, _("unshifted register required")); constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG); constraint (Rd != Rs, _("dest and source1 must be the same register")); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rn << 3; } } /* Similarly, but for instructions where the arithmetic operation is commutative, so we can allow either of them to be different from the destination operand in a 16-bit instruction. For instance, all three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are accepted. */ static void do_t_arit3c (void) { int Rd, Rs, Rn; Rd = inst.operands[0].reg; Rs = (inst.operands[1].present ? inst.operands[1].reg /* Rd, Rs, foo */ : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */ Rn = inst.operands[2].reg; if (unified_syntax) { if (!inst.operands[2].isreg) { /* For an immediate, we always generate a 32-bit opcode; section relaxation will shrink it later if possible. */ inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE; } else { /* See if we can do this with a 16-bit instruction. */ if (THUMB_SETS_FLAGS (inst.instruction) && !inst.operands[2].shifted && inst.size_req != 4) { if (Rd == Rs) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rn << 3; return; } if (Rd == Rn) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rs << 3; return; } } /* If we get here, it can't be done in 16 bits. */ constraint (inst.operands[2].shifted && inst.operands[2].immisreg, _("shift must be constant")); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; encode_thumb32_shifted_operand (2); } } else { /* On its face this is a lie - the instruction does set the flags. However, the only supported mnemonic in this mode says it doesn't. */ constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32); constraint (!inst.operands[2].isreg || inst.operands[2].shifted, _("unshifted register required")); constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; if (Rd == Rs) inst.instruction |= Rn << 3; else if (Rd == Rn) inst.instruction |= Rs << 3; else constraint (1, _("dest must overlap one source register")); } } static void do_t_bfc (void) { unsigned int msb = inst.operands[1].imm + inst.operands[2].imm; constraint (msb > 32, _("bit-field extends past end of register")); /* The instruction encoding stores the LSB and MSB, not the LSB and width. */ inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= (inst.operands[1].imm & 0x1c) << 10; inst.instruction |= (inst.operands[1].imm & 0x03) << 6; inst.instruction |= msb - 1; } static void do_t_bfi (void) { unsigned int msb; /* #0 in second position is alternative syntax for bfc, which is the same instruction but with REG_PC in the Rm field. */ if (!inst.operands[1].isreg) inst.operands[1].reg = REG_PC; msb = inst.operands[2].imm + inst.operands[3].imm; constraint (msb > 32, _("bit-field extends past end of register")); /* The instruction encoding stores the LSB and MSB, not the LSB and width. */ inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= (inst.operands[2].imm & 0x1c) << 10; inst.instruction |= (inst.operands[2].imm & 0x03) << 6; inst.instruction |= msb - 1; } static void do_t_bfx (void) { constraint (inst.operands[2].imm + inst.operands[3].imm > 32, _("bit-field extends past end of register")); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= (inst.operands[2].imm & 0x1c) << 10; inst.instruction |= (inst.operands[2].imm & 0x03) << 6; inst.instruction |= inst.operands[3].imm - 1; } /* ARM V5 Thumb BLX (argument parse) BLX which is BLX(1) BLX which is BLX(2) Unfortunately, there are two different opcodes for this mnemonic. So, the insns[].value is not used, and the code here zaps values into inst.instruction. ??? How to take advantage of the additional two bits of displacement available in Thumb32 mode? Need new relocation? */ static void do_t_blx (void) { if (inst.operands[0].isreg) /* We have a register, so this is BLX(2). */ inst.instruction |= inst.operands[0].reg << 3; else { /* No register. This must be BLX(1). */ inst.instruction = 0xf7ffeffe; inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX; inst.reloc.pc_rel = 1; } } static void do_t_branch (void) { if (unified_syntax && inst.size_req != 2) { if (inst.cond == COND_ALWAYS) { inst.instruction = 0xf7ffbffe; inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25; } else { assert (inst.cond != 0xF); inst.instruction = (inst.cond << 22) | 0xf43faffe; inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20; } } else { if (inst.cond == COND_ALWAYS) inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12; else { inst.instruction = 0xd0fe | (inst.cond << 8); inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9; } } inst.reloc.pc_rel = 1; } static void do_t_bkpt (void) { if (inst.operands[0].present) { constraint (inst.operands[0].imm > 255, _("immediate value out of range")); inst.instruction |= inst.operands[0].imm; } } static void do_t_branch23 (void) { inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23; inst.reloc.pc_rel = 1; /* If the destination of the branch is a defined symbol which does not have the THUMB_FUNC attribute, then we must be calling a function which has the (interfacearm) attribute. We look for the Thumb entry point to that function and change the branch to refer to that function instead. */ if ( inst.reloc.exp.X_op == O_symbol && inst.reloc.exp.X_add_symbol != NULL && S_IS_DEFINED (inst.reloc.exp.X_add_symbol) && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol)) inst.reloc.exp.X_add_symbol = find_real_start (inst.reloc.exp.X_add_symbol); } static void do_t_bx (void) { inst.instruction |= inst.operands[0].reg << 3; /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc should cause the alignment to be checked once it is known. This is because BX PC only works if the instruction is word aligned. */ } static void do_t_bxj (void) { if (inst.operands[0].reg == REG_PC) as_tsktsk (_("use of r15 in bxj is not really useful")); inst.instruction |= inst.operands[0].reg << 16; } static void do_t_clz (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[1].reg; } static void do_t_cpsi (void) { if (unified_syntax && (inst.operands[1].present || inst.size_req == 4)) { unsigned int imod = (inst.instruction & 0x0030) >> 4; inst.instruction = 0xf3af8000; inst.instruction |= imod << 9; inst.instruction |= inst.operands[0].imm << 5; if (inst.operands[1].present) inst.instruction |= 0x100 | inst.operands[1].imm; } else { constraint (inst.operands[1].present, _("Thumb does not support the 2-argument " "form of this instruction")); inst.instruction |= inst.operands[0].imm; } } /* THUMB CPY instruction (argument parse). */ static void do_t_cpy (void) { if (inst.size_req == 4) { inst.instruction = THUMB_OP32 (T_MNEM_mov); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg; } else { inst.instruction |= (inst.operands[0].reg & 0x8) << 4; inst.instruction |= (inst.operands[0].reg & 0x7); inst.instruction |= inst.operands[1].reg << 3; } } static void do_t_czb (void) { constraint (inst.operands[0].reg > 7, BAD_HIREG); inst.instruction |= inst.operands[0].reg; inst.reloc.pc_rel = 1; inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7; } static void do_t_hint (void) { if (unified_syntax && inst.size_req == 4) inst.instruction = THUMB_OP32 (inst.instruction); else inst.instruction = THUMB_OP16 (inst.instruction); } static void do_t_it (void) { unsigned int cond = inst.operands[0].imm; if ((cond & 0x1) == 0x0) { unsigned int mask = inst.instruction & 0x000f; inst.instruction &= 0xfff0; if ((mask & 0x7) == 0) /* no conversion needed */; else if ((mask & 0x3) == 0) mask = (~(mask & 0x8) & 0x8) | 0x4; else if ((mask & 1) == 0) mask = (~(mask & 0xC) & 0xC) | 0x2; else mask = (~(mask & 0xE) & 0xE) | 0x1; inst.instruction |= (mask & 0xF); } inst.instruction |= cond << 4; } static void do_t_ldmstm (void) { /* This really doesn't seem worth it. */ constraint (inst.reloc.type != BFD_RELOC_UNUSED, _("expression too complex")); constraint (inst.operands[1].writeback, _("Thumb load/store multiple does not support {reglist}^")); if (unified_syntax) { /* See if we can use a 16-bit instruction. */ if (inst.instruction < 0xffff /* not ldmdb/stmdb */ && inst.size_req != 4 && inst.operands[0].reg <= 7 && !(inst.operands[1].imm & ~0xff) && (inst.instruction == T_MNEM_stmia ? inst.operands[0].writeback : (inst.operands[0].writeback == !(inst.operands[1].imm & (1 << inst.operands[0].reg))))) { if (inst.instruction == T_MNEM_stmia && (inst.operands[1].imm & (1 << inst.operands[0].reg)) && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1))) as_warn (_("value stored for r%d is UNPREDICTABLE"), inst.operands[0].reg); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm; } else { if (inst.operands[1].imm & (1 << 13)) as_warn (_("SP should not be in register list")); if (inst.instruction == T_MNEM_stmia) { if (inst.operands[1].imm & (1 << 15)) as_warn (_("PC should not be in register list")); if (inst.operands[1].imm & (1 << inst.operands[0].reg)) as_warn (_("value stored for r%d is UNPREDICTABLE"), inst.operands[0].reg); } else { if (inst.operands[1].imm & (1 << 14) && inst.operands[1].imm & (1 << 15)) as_warn (_("LR and PC should not both be in register list")); if ((inst.operands[1].imm & (1 << inst.operands[0].reg)) && inst.operands[0].writeback) as_warn (_("base register should not be in register list " "when written back")); } if (inst.instruction < 0xffff) inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].imm; if (inst.operands[0].writeback) inst.instruction |= WRITE_BACK; } } else { constraint (inst.operands[0].reg > 7 || (inst.operands[1].imm & ~0xff), BAD_HIREG); if (inst.instruction == T_MNEM_stmia) { if (!inst.operands[0].writeback) as_warn (_("this instruction will write back the base register")); if ((inst.operands[1].imm & (1 << inst.operands[0].reg)) && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1))) as_warn (_("value stored for r%d is UNPREDICTABLE"), inst.operands[0].reg); } else { if (!inst.operands[0].writeback && !(inst.operands[1].imm & (1 << inst.operands[0].reg))) as_warn (_("this instruction will write back the base register")); else if (inst.operands[0].writeback && (inst.operands[1].imm & (1 << inst.operands[0].reg))) as_warn (_("this instruction will not write back the base register")); } inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm; } } static void do_t_ldrex (void) { constraint (!inst.operands[1].isreg || !inst.operands[1].preind || inst.operands[1].postind || inst.operands[1].writeback || inst.operands[1].immisreg || inst.operands[1].shifted || inst.operands[1].negative, _("instruction does not accept this addressing mode")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8; } static void do_t_ldrexd (void) { if (!inst.operands[1].present) { constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed as first register " "when second register is omitted")); inst.operands[1].reg = inst.operands[0].reg + 1; } constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 8; inst.instruction |= inst.operands[2].reg << 16; } static void do_t_ldst (void) { if (unified_syntax) { /* Generation of 16-bit instructions for anything other than Rd, [Rn, Ri] is deferred to section relaxation time. */ if (inst.operands[1].isreg && inst.operands[1].immisreg && !inst.operands[1].shifted && !inst.operands[1].postind && !inst.operands[1].negative && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7 && inst.operands[1].imm <= 7 && inst.instruction <= 0xffff) { inst.instruction = THUMB_OP16 (inst.instruction); goto op16; } inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 12; encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE); return; } constraint (inst.operands[0].reg > 7, BAD_HIREG); if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb) { /* Only [Rn,Rm] is acceptable. */ constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG); constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg || inst.operands[1].postind || inst.operands[1].shifted || inst.operands[1].negative, _("Thumb does not support this addressing mode")); inst.instruction = THUMB_OP16 (inst.instruction); goto op16; } inst.instruction = THUMB_OP16 (inst.instruction); if (!inst.operands[1].isreg) if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE)) return; constraint (!inst.operands[1].preind || inst.operands[1].shifted || inst.operands[1].writeback, _("Thumb does not support this addressing mode")); if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP) { constraint (inst.instruction & 0x0600, _("byte or halfword not valid for base register")); constraint (inst.operands[1].reg == REG_PC && !(inst.instruction & THUMB_LOAD_BIT), _("r15 based store not allowed")); constraint (inst.operands[1].immisreg, _("invalid base register for register offset")); if (inst.operands[1].reg == REG_PC) inst.instruction = T_OPCODE_LDR_PC; else if (inst.instruction & THUMB_LOAD_BIT) inst.instruction = T_OPCODE_LDR_SP; else inst.instruction = T_OPCODE_STR_SP; inst.instruction |= inst.operands[0].reg << 8; inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET; return; } constraint (inst.operands[1].reg > 7, BAD_HIREG); if (!inst.operands[1].immisreg) { /* Immediate offset. */ inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET; return; } /* Register offset. */ constraint (inst.operands[1].imm > 7, BAD_HIREG); constraint (inst.operands[1].negative, _("Thumb does not support this addressing mode")); op16: switch (inst.instruction) { case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break; case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break; case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break; case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break; case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break; case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break; case 0x5600 /* ldrsb */: case 0x5e00 /* ldrsh */: break; default: abort (); } inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; inst.instruction |= inst.operands[1].imm << 6; } static void do_t_ldstd (void) { if (!inst.operands[1].present) { inst.operands[1].reg = inst.operands[0].reg + 1; constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here")); } inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 8; encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE); } static void do_t_ldstt (void) { inst.instruction |= inst.operands[0].reg << 12; encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE); } static void do_t_mla (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].reg << 12; } static void do_t_mlal (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 8; inst.instruction |= inst.operands[2].reg << 16; inst.instruction |= inst.operands[3].reg; } static void do_t_mov_cmp (void) { if (unified_syntax) { int r0off = (inst.instruction == T_MNEM_mov || inst.instruction == T_MNEM_movs) ? 8 : 16; if (!inst.operands[1].isreg) { /* For an immediate, we always generate a 32-bit opcode; section relaxation will shrink it later if possible. */ inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.instruction |= inst.operands[0].reg << r0off; inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE; } else if (inst.size_req == 4 || inst.operands[1].shifted || (inst.instruction == T_MNEM_movs && (inst.operands[0].reg > 7 || inst.operands[1].reg > 7))) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << r0off; encode_thumb32_shifted_operand (1); } else switch (inst.instruction) { case T_MNEM_mov: inst.instruction = T_OPCODE_MOV_HR; inst.instruction |= (inst.operands[0].reg & 0x8) << 4; inst.instruction |= (inst.operands[0].reg & 0x7); inst.instruction |= inst.operands[1].reg << 3; break; case T_MNEM_movs: /* We know we have low registers at this point. Generate ADD Rd, Rs, #0. */ inst.instruction = T_OPCODE_ADD_I3; inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; break; case T_MNEM_cmp: if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7) { inst.instruction = T_OPCODE_CMP_LR; inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } else { inst.instruction = T_OPCODE_CMP_HR; inst.instruction |= (inst.operands[0].reg & 0x8) << 4; inst.instruction |= (inst.operands[0].reg & 0x7); inst.instruction |= inst.operands[1].reg << 3; } break; } return; } inst.instruction = THUMB_OP16 (inst.instruction); if (inst.operands[1].isreg) { if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8) { /* A move of two lowregs is encoded as ADD Rd, Rs, #0 since a MOV instruction produces unpredictable results. */ if (inst.instruction == T_OPCODE_MOV_I8) inst.instruction = T_OPCODE_ADD_I3; else inst.instruction = T_OPCODE_CMP_LR; inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } else { if (inst.instruction == T_OPCODE_MOV_I8) inst.instruction = T_OPCODE_MOV_HR; else inst.instruction = T_OPCODE_CMP_HR; do_t_cpy (); } } else { constraint (inst.operands[0].reg > 7, _("only lo regs allowed with immediate")); inst.instruction |= inst.operands[0].reg << 8; inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM; } } static void do_t_mov16 (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= (inst.operands[1].imm & 0xf000) << 4; inst.instruction |= (inst.operands[1].imm & 0x0800) << 15; inst.instruction |= (inst.operands[1].imm & 0x0700) << 4; inst.instruction |= (inst.operands[1].imm & 0x00ff); } static void do_t_mvn_tst (void) { if (unified_syntax) { int r0off = (inst.instruction == T_MNEM_mvn || inst.instruction == T_MNEM_mvns) ? 8 : 16; if (!inst.operands[1].isreg) { /* For an immediate, we always generate a 32-bit opcode; section relaxation will shrink it later if possible. */ if (inst.instruction < 0xffff) inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.instruction |= inst.operands[0].reg << r0off; inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE; } else { /* See if we can do this with a 16-bit instruction. */ if (inst.instruction < 0xffff && THUMB_SETS_FLAGS (inst.instruction) && !inst.operands[1].shifted && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7 && inst.size_req != 4) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } else { constraint (inst.operands[1].shifted && inst.operands[1].immisreg, _("shift must be constant")); if (inst.instruction < 0xffff) inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << r0off; encode_thumb32_shifted_operand (1); } } } else { constraint (inst.instruction > 0xffff || inst.instruction == T_MNEM_mvns, BAD_THUMB32); constraint (!inst.operands[1].isreg || inst.operands[1].shifted, _("unshifted register required")); constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7, BAD_HIREG); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } static void do_t_mrs (void) { /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */ constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f)) != (PSR_c|PSR_f), _("'CPSR' or 'SPSR' expected")); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= (inst.operands[1].imm & SPSR_BIT) >> 2; } static void do_t_msr (void) { constraint (!inst.operands[1].isreg, _("Thumb encoding does not support an immediate here")); inst.instruction |= (inst.operands[0].imm & SPSR_BIT) >> 2; inst.instruction |= (inst.operands[0].imm & ~SPSR_BIT) >> 8; inst.instruction |= inst.operands[1].reg << 16; } static void do_t_mul (void) { if (!inst.operands[2].present) inst.operands[2].reg = inst.operands[0].reg; /* There is no 32-bit MULS and no 16-bit MUL. */ if (unified_syntax && inst.instruction == T_MNEM_mul) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg << 0; } else { constraint (!unified_syntax && inst.instruction == T_MNEM_muls, BAD_THUMB32); constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7, BAD_HIREG); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; if (inst.operands[0].reg == inst.operands[1].reg) inst.instruction |= inst.operands[2].reg << 3; else if (inst.operands[0].reg == inst.operands[2].reg) inst.instruction |= inst.operands[1].reg << 3; else constraint (1, _("dest must overlap one source register")); } } static void do_t_mull (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 8; inst.instruction |= inst.operands[2].reg << 16; inst.instruction |= inst.operands[3].reg; if (inst.operands[0].reg == inst.operands[1].reg) as_tsktsk (_("rdhi and rdlo must be different")); } static void do_t_nop (void) { if (unified_syntax) { if (inst.size_req == 4 || inst.operands[0].imm > 15) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].imm; } else { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].imm << 4; } } else { constraint (inst.operands[0].present, _("Thumb does not support NOP with hints")); inst.instruction = 0x46c0; } } static void do_t_neg (void) { if (unified_syntax) { if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7 || !THUMB_SETS_FLAGS (inst.instruction) || inst.size_req == 4) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; } else { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } else { constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7, BAD_HIREG); constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } static void do_t_pkhbt (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; if (inst.operands[3].present) { unsigned int val = inst.reloc.exp.X_add_number; constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex")); inst.instruction |= (val & 0x1c) << 10; inst.instruction |= (val & 0x03) << 6; } } static void do_t_pkhtb (void) { if (!inst.operands[3].present) inst.instruction &= ~0x00000020; do_t_pkhbt (); } static void do_t_pld (void) { encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE); } static void do_t_push_pop (void) { constraint (inst.operands[0].writeback, _("push/pop do not support {reglist}^")); constraint (inst.reloc.type != BFD_RELOC_UNUSED, _("expression too complex")); if ((inst.operands[0].imm & ~0xff) == 0) inst.instruction = THUMB_OP16 (inst.instruction); else if ((inst.instruction == T_MNEM_push && (inst.operands[0].imm & ~0xff) == 1 << REG_LR) || (inst.instruction == T_MNEM_pop && (inst.operands[0].imm & ~0xff) == 1 << REG_PC)) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= THUMB_PP_PC_LR; inst.operands[0].imm &= 0xff; } else if (unified_syntax) { if (inst.operands[1].imm & (1 << 13)) as_warn (_("SP should not be in register list")); if (inst.instruction == T_MNEM_push) { if (inst.operands[1].imm & (1 << 15)) as_warn (_("PC should not be in register list")); } else { if (inst.operands[1].imm & (1 << 14) && inst.operands[1].imm & (1 << 15)) as_warn (_("LR and PC should not both be in register list")); } inst.instruction = THUMB_OP32 (inst.instruction); } else { inst.error = _("invalid register list to push/pop instruction"); return; } inst.instruction |= inst.operands[0].imm; } static void do_t_rbit (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; } static void do_t_rev (void) { if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7 && inst.size_req != 4) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } else if (unified_syntax) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[1].reg; } else inst.error = BAD_HIREG; } static void do_t_rsb (void) { int Rd, Rs; Rd = inst.operands[0].reg; Rs = (inst.operands[1].present ? inst.operands[1].reg /* Rd, Rs, foo */ : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */ inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; if (!inst.operands[2].isreg) { inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE; } else encode_thumb32_shifted_operand (2); } static void do_t_setend (void) { if (inst.operands[0].imm) inst.instruction |= 0x8; } static void do_t_shift (void) { if (!inst.operands[1].present) inst.operands[1].reg = inst.operands[0].reg; if (unified_syntax) { if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7 || !THUMB_SETS_FLAGS (inst.instruction) || (!inst.operands[2].isreg && inst.instruction == T_MNEM_rors) || (inst.operands[2].isreg && inst.operands[1].reg != inst.operands[0].reg) || inst.size_req == 4) { if (inst.operands[2].isreg) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; } else { inst.operands[1].shifted = 1; switch (inst.instruction) { case T_MNEM_asr: case T_MNEM_asrs: inst.operands[1].shift_kind = SHIFT_ASR; break; case T_MNEM_lsl: case T_MNEM_lsls: inst.operands[1].shift_kind = SHIFT_LSL; break; case T_MNEM_lsr: case T_MNEM_lsrs: inst.operands[1].shift_kind = SHIFT_LSR; break; case T_MNEM_ror: case T_MNEM_rors: inst.operands[1].shift_kind = SHIFT_ROR; break; default: abort (); } inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction) ? T_MNEM_movs : T_MNEM_mov); inst.instruction |= inst.operands[0].reg << 8; encode_thumb32_shifted_operand (1); /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */ inst.reloc.type = BFD_RELOC_UNUSED; } } else { if (inst.operands[2].isreg) { switch (inst.instruction) { case T_MNEM_asrs: inst.instruction = T_OPCODE_ASR_R; break; case T_MNEM_lsls: inst.instruction = T_OPCODE_LSL_R; break; case T_MNEM_lsrs: inst.instruction = T_OPCODE_LSR_R; break; case T_MNEM_rors: inst.instruction = T_OPCODE_ROR_R; break; default: abort (); } inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[2].reg << 3; } else { switch (inst.instruction) { case T_MNEM_asrs: inst.instruction = T_OPCODE_ASR_I; break; case T_MNEM_lsls: inst.instruction = T_OPCODE_LSL_I; break; case T_MNEM_lsrs: inst.instruction = T_OPCODE_LSR_I; break; default: abort (); } inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT; inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } } else { constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7, BAD_HIREG); constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32); if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */ { constraint (inst.operands[2].reg > 7, BAD_HIREG); constraint (inst.operands[0].reg != inst.operands[1].reg, _("source1 and dest must be same register")); switch (inst.instruction) { case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break; case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break; case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break; case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break; default: abort (); } inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[2].reg << 3; } else { switch (inst.instruction) { case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break; case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break; case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break; case T_MNEM_ror: inst.error = _("ror #imm not supported"); return; default: abort (); } inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT; inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } } static void do_t_simd (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; } static void do_t_smi (void) { unsigned int value = inst.reloc.exp.X_add_number; constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex")); inst.reloc.type = BFD_RELOC_UNUSED; inst.instruction |= (value & 0xf000) >> 12; inst.instruction |= (value & 0x0ff0); inst.instruction |= (value & 0x000f) << 16; } static void do_t_ssat (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm - 1; inst.instruction |= inst.operands[2].reg << 16; if (inst.operands[3].present) { constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex")); if (inst.reloc.exp.X_add_number != 0) { if (inst.operands[3].shift_kind == SHIFT_ASR) inst.instruction |= 0x00200000; /* sh bit */ inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10; inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6; } inst.reloc.type = BFD_RELOC_UNUSED; } } static void do_t_ssat16 (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm - 1; inst.instruction |= inst.operands[2].reg << 16; } static void do_t_strex (void) { constraint (!inst.operands[2].isreg || !inst.operands[2].preind || inst.operands[2].postind || inst.operands[2].writeback || inst.operands[2].immisreg || inst.operands[2].shifted || inst.operands[2].negative, _("instruction does not accept this addressing mode")); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8; } static void do_t_strexd (void) { if (!inst.operands[2].present) inst.operands[2].reg = inst.operands[1].reg + 1; constraint (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[2].reg || inst.operands[0].reg == inst.operands[3].reg || inst.operands[1].reg == inst.operands[2].reg, BAD_OVERLAP); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 8; inst.instruction |= inst.operands[3].reg << 16; } static void do_t_sxtah (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].imm << 4; } static void do_t_sxth (void) { if (inst.instruction <= 0xffff && inst.size_req != 4 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7 && (!inst.operands[2].present || inst.operands[2].imm == 0)) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } else if (unified_syntax) { if (inst.instruction <= 0xffff) inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].imm << 4; } else { constraint (inst.operands[2].present && inst.operands[2].imm != 0, _("Thumb encoding does not support rotation")); constraint (1, BAD_HIREG); } } static void do_t_swi (void) { inst.reloc.type = BFD_RELOC_ARM_SWI; } static void do_t_usat (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm; inst.instruction |= inst.operands[2].reg << 16; if (inst.operands[3].present) { constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex")); if (inst.reloc.exp.X_add_number != 0) { if (inst.operands[3].shift_kind == SHIFT_ASR) inst.instruction |= 0x00200000; /* sh bit */ inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10; inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6; } inst.reloc.type = BFD_RELOC_UNUSED; } } static void do_t_usat16 (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm; inst.instruction |= inst.operands[2].reg << 16; } /* Overall per-instruction processing. */ /* We need to be able to fix up arbitrary expressions in some statements. This is so that we can handle symbols that are an arbitrary distance from the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask), which returns part of an address in a form which will be valid for a data instruction. We do this by pushing the expression into a symbol in the expr_section, and creating a fix for that. */ static void fix_new_arm (fragS * frag, int where, short int size, expressionS * exp, int pc_rel, int reloc) { fixS * new_fix; switch (exp->X_op) { case O_constant: case O_symbol: case O_add: case O_subtract: new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc); break; default: new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0, pc_rel, reloc); break; } /* Mark whether the fix is to a THUMB instruction, or an ARM instruction. */ new_fix->tc_fix_data = thumb_mode; } static void output_inst (const char * str) { char * to = NULL; if (inst.error) { as_bad ("%s -- `%s'", inst.error, str); return; } if (inst.size == 0) return; to = frag_more (inst.size); if (thumb_mode && (inst.size > THUMB_SIZE)) { assert (inst.size == (2 * THUMB_SIZE)); md_number_to_chars (to, inst.instruction >> 16, THUMB_SIZE); md_number_to_chars (to + THUMB_SIZE, inst.instruction, THUMB_SIZE); } else if (inst.size > INSN_SIZE) { assert (inst.size == (2 * INSN_SIZE)); md_number_to_chars (to, inst.instruction, INSN_SIZE); md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE); } else md_number_to_chars (to, inst.instruction, inst.size); if (inst.reloc.type != BFD_RELOC_UNUSED) fix_new_arm (frag_now, to - frag_now->fr_literal, inst.size, & inst.reloc.exp, inst.reloc.pc_rel, inst.reloc.type); #ifdef OBJ_ELF dwarf2_emit_insn (inst.size); #endif } /* Tag values used in struct asm_opcode's tag field. */ enum opcode_tag { OT_unconditional, /* Instruction cannot be conditionalized. The ARM condition field is still 0xE. */ OT_unconditionalF, /* Instruction cannot be conditionalized and carries 0xF in its ARM condition field. */ OT_csuffix, /* Instruction takes a conditional suffix. */ OT_cinfix3, /* Instruction takes a conditional infix, beginning at character index 3. (In unified mode, it becomes a suffix.) */ OT_csuf_or_in3, /* Instruction takes either a conditional suffix or an infix at character index 3. (In unified mode, a suffix only. */ OT_odd_infix_unc, /* This is the unconditional variant of an instruction that takes a conditional infix at an unusual position. In unified mode, this variant will accept a suffix. */ OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0 are the conditional variants of instructions that take conditional infixes in unusual positions. The infix appears at character index (tag - OT_odd_infix_0). These are not accepted in unified mode. */ }; /* Subroutine of md_assemble, responsible for looking up the primary opcode from the mnemonic the user wrote. STR points to the beginning of the mnemonic. This is not simply a hash table lookup, because of conditional variants. Most instructions have conditional variants, which are expressed with a _conditional affix_ to the mnemonic. If we were to encode each conditional variant as a literal string in the opcode table, it would have approximately 20,000 entries. Most mnemonics take this affix as a suffix, and in unified syntax, 'most' is upgraded to 'all'. However, in the divided syntax, some instructions take the affix as an infix, notably the s-variants of the arithmetic instructions. Of those instructions, all but six have the infix appear after the third character of the mnemonic. Accordingly, the algorithm for looking up primary opcodes given an identifier is: 1. Look up the identifier in the opcode table. If we find a match, go to step U. 2. Look up the last two characters of the identifier in the conditions table. If we find a match, look up the first N-2 characters of the identifier in the opcode table. If we find a match, go to step CE. 3. Look up the fourth and fifth characters of the identifier in the conditions table. If we find a match, extract those characters from the identifier, and look up the remaining characters in the opcode table. If we find a match, go to step CM. 4. Fail. U. Examine the tag field of the opcode structure, in case this is one of the six instructions with its conditional infix in an unusual place. If it is, the tag tells us where to find the infix; look it up in the conditions table and set inst.cond accordingly. Otherwise, this is an unconditional instruction. Again set inst.cond accordingly. Return the opcode structure. CE. Examine the tag field to make sure this is an instruction that should receive a conditional suffix. If it is not, fail. Otherwise, set inst.cond from the suffix we already looked up, and return the opcode structure. CM. Examine the tag field to make sure this is an instruction that should receive a conditional infix after the third character. If it is not, fail. Otherwise, undo the edits to the current line of input and proceed as for case CE. */ static const struct asm_opcode * opcode_lookup (char **str) { char *end, *base; char *affix; const struct asm_opcode *opcode; const struct asm_cond *cond; /* Scan up to the end of the mnemonic, which must end in white space, '.' (in unified mode only), or end of string. */ for (base = end = *str; *end != '\0'; end++) if (*end == ' ' || (unified_syntax && *end == '.')) break; if (end == base) return 0; /* Handle a possible width suffix. */ if (end[0] == '.') { if (end[1] == 'w' && (end[2] == ' ' || end[2] == '\0')) inst.size_req = 4; else if (end[1] == 'n' && (end[2] == ' ' || end[2] == '\0')) inst.size_req = 2; else return 0; *str = end + 2; } else *str = end; /* Look for unaffixed or special-case affixed mnemonic. */ opcode = hash_find_n (arm_ops_hsh, base, end - base); if (opcode) { /* step U */ if (opcode->tag < OT_odd_infix_0) { inst.cond = COND_ALWAYS; return opcode; } if (unified_syntax) as_warn (_("conditional infixes are deprecated in unified syntax")); affix = base + (opcode->tag - OT_odd_infix_0); cond = hash_find_n (arm_cond_hsh, affix, 2); assert (cond); inst.cond = cond->value; return opcode; } /* Cannot have a conditional suffix on a mnemonic of less than two characters. */ if (end - base < 3) return 0; /* Look for suffixed mnemonic. */ affix = end - 2; cond = hash_find_n (arm_cond_hsh, affix, 2); opcode = hash_find_n (arm_ops_hsh, base, affix - base); if (opcode && cond) { /* step CE */ switch (opcode->tag) { case OT_cinfix3: case OT_odd_infix_unc: if (!unified_syntax) return 0; /* else fall through */ case OT_csuffix: case OT_csuf_or_in3: inst.cond = cond->value; return opcode; case OT_unconditional: case OT_unconditionalF: /* delayed diagnostic */ inst.error = BAD_COND; inst.cond = COND_ALWAYS; return opcode; default: return 0; } } /* Cannot have a usual-position infix on a mnemonic of less than six characters (five would be a suffix). */ if (end - base < 6) return 0; /* Look for infixed mnemonic in the usual position. */ affix = base + 3; cond = hash_find_n (arm_cond_hsh, affix, 2); if (cond) { char save[2]; memcpy (save, affix, 2); memmove (affix, affix + 2, (end - affix) - 2); opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2); memmove (affix + 2, affix, (end - affix) - 2); memcpy (affix, save, 2); } if (opcode && (opcode->tag == OT_cinfix3 || opcode->tag == OT_csuf_or_in3)) { /* step CM */ if (unified_syntax) as_warn (_("conditional infixes are deprecated in unified syntax")); inst.cond = cond->value; return opcode; } return 0; } void md_assemble (char *str) { char *p = str; const struct asm_opcode * opcode; /* Align the previous label if needed. */ if (last_label_seen != NULL) { symbol_set_frag (last_label_seen, frag_now); S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ()); S_SET_SEGMENT (last_label_seen, now_seg); } memset (&inst, '\0', sizeof (inst)); inst.reloc.type = BFD_RELOC_UNUSED; opcode = opcode_lookup (&p); if (!opcode) { /* It wasn't an instruction, but it might be a register alias of the form alias .req reg. */ if (!create_register_alias (str, p)) as_bad (_("bad instruction `%s'"), str); return; } if (thumb_mode) { /* Check that this instruction is supported for this CPU. */ if (thumb_mode == 1 && (opcode->tvariant & cpu_variant) == 0) { as_bad (_("selected processor does not support `%s'"), str); return; } if (inst.cond != COND_ALWAYS && !unified_syntax && opcode->tencode != do_t_branch) { as_bad (_("Thumb does not support conditional execution")); return; } mapping_state (MAP_THUMB); inst.instruction = opcode->tvalue; if (!parse_operands (p, opcode->operands)) opcode->tencode (); if (!inst.error) { assert (inst.instruction < 0xe800 || inst.instruction > 0xffff); inst.size = (inst.instruction > 0xffff ? 4 : 2); if (inst.size_req && inst.size_req != inst.size) { as_bad (_("cannot honor width suffix -- `%s'"), str); return; } } } else { /* Check that this instruction is supported for this CPU. */ if ((opcode->avariant & cpu_variant) == 0) { as_bad (_("selected processor does not support `%s'"), str); return; } if (inst.size_req) { as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str); return; } mapping_state (MAP_ARM); inst.instruction = opcode->avalue; if (opcode->tag == OT_unconditionalF) inst.instruction |= 0xF << 28; else inst.instruction |= inst.cond << 28; inst.size = INSN_SIZE; if (!parse_operands (p, opcode->operands)) opcode->aencode (); } output_inst (str); } /* Various frobbings of labels and their addresses. */ void arm_start_line_hook (void) { last_label_seen = NULL; } void arm_frob_label (symbolS * sym) { last_label_seen = sym; ARM_SET_THUMB (sym, thumb_mode); #if defined OBJ_COFF || defined OBJ_ELF ARM_SET_INTERWORK (sym, support_interwork); #endif /* Note - do not allow local symbols (.Lxxx) to be labeled as Thumb functions. This is because these labels, whilst they exist inside Thumb code, are not the entry points for possible ARM->Thumb calls. Also, these labels can be used as part of a computed goto or switch statement. eg gcc can generate code that looks like this: ldr r2, [pc, .Laaa] lsl r3, r3, #2 ldr r2, [r3, r2] mov pc, r2 .Lbbb: .word .Lxxx .Lccc: .word .Lyyy ..etc... .Laaa: .word Lbbb The first instruction loads the address of the jump table. The second instruction converts a table index into a byte offset. The third instruction gets the jump address out of the table. The fourth instruction performs the jump. If the address stored at .Laaa is that of a symbol which has the Thumb_Func bit set, then the linker will arrange for this address to have the bottom bit set, which in turn would mean that the address computation performed by the third instruction would end up with the bottom bit set. Since the ARM is capable of unaligned word loads, the instruction would then load the incorrect address out of the jump table, and chaos would ensue. */ if (label_is_thumb_function_name && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L') && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0) { /* When the address of a Thumb function is taken the bottom bit of that address should be set. This will allow interworking between Arm and Thumb functions to work correctly. */ THUMB_SET_FUNC (sym, 1); label_is_thumb_function_name = FALSE; } } int arm_data_in_code (void) { if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5)) { *input_line_pointer = '/'; input_line_pointer += 5; *input_line_pointer = 0; return 1; } return 0; } char * arm_canonicalize_symbol_name (char * name) { int len; if (thumb_mode && (len = strlen (name)) > 5 && streq (name + len - 5, "/data")) *(name + len - 5) = 0; return name; } /* Table of all register names defined by default. The user can define additional names with .req. Note that all register names should appear in both upper and lowercase variants. Some registers also have mixed-case names. */ #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE } #define REGNUM(p,n,t) REGDEF(p##n, n, t) #define REGSET(p,t) \ REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \ REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \ REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \ REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t) static const struct reg_entry reg_names[] = { /* ARM integer registers. */ REGSET(r, RN), REGSET(R, RN), /* ATPCS synonyms. */ REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN), REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN), REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN), REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN), REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN), REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN), /* Well-known aliases. */ REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN), REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN), REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN), REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN), /* Coprocessor numbers. */ REGSET(p, CP), REGSET(P, CP), /* Coprocessor register numbers. The "cr" variants are for backward compatibility. */ REGSET(c, CN), REGSET(C, CN), REGSET(cr, CN), REGSET(CR, CN), /* FPA registers. */ REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN), REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN), REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN), REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN), /* VFP SP registers. */ REGSET(s,VFS), REGNUM(s,16,VFS), REGNUM(s,17,VFS), REGNUM(s,18,VFS), REGNUM(s,19,VFS), REGNUM(s,20,VFS), REGNUM(s,21,VFS), REGNUM(s,22,VFS), REGNUM(s,23,VFS), REGNUM(s,24,VFS), REGNUM(s,25,VFS), REGNUM(s,26,VFS), REGNUM(s,27,VFS), REGNUM(s,28,VFS), REGNUM(s,29,VFS), REGNUM(s,30,VFS), REGNUM(s,31,VFS), REGSET(S,VFS), REGNUM(S,16,VFS), REGNUM(S,17,VFS), REGNUM(S,18,VFS), REGNUM(S,19,VFS), REGNUM(S,20,VFS), REGNUM(S,21,VFS), REGNUM(S,22,VFS), REGNUM(S,23,VFS), REGNUM(S,24,VFS), REGNUM(S,25,VFS), REGNUM(S,26,VFS), REGNUM(S,27,VFS), REGNUM(S,28,VFS), REGNUM(S,29,VFS), REGNUM(S,30,VFS), REGNUM(S,31,VFS), /* VFP DP Registers. */ REGSET(d,VFD), REGSET(D,VFS), /* VFP control registers. */ REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC), REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC), /* Maverick DSP coprocessor registers. */ REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX), REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX), REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX), REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX), REGDEF(dspsc,0,DSPSC), REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX), REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX), REGDEF(DSPSC,0,DSPSC), /* iWMMXt data registers - p0, c0-15. */ REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR), /* iWMMXt control registers - p1, c0-3. */ REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC), REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC), REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC), REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC), /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */ REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG), REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG), REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG), REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG), /* XScale accumulator registers. */ REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE), }; #undef REGDEF #undef REGNUM #undef REGSET /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled within psr_required_here. */ static const struct asm_psr psrs[] = { /* Backward compatibility notation. Note that "all" is no longer truly all possible PSR bits. */ {"all", PSR_c | PSR_f}, {"flg", PSR_f}, {"ctl", PSR_c}, /* Individual flags. */ {"f", PSR_f}, {"c", PSR_c}, {"x", PSR_x}, {"s", PSR_s}, /* Combinations of flags. */ {"fs", PSR_f | PSR_s}, {"fx", PSR_f | PSR_x}, {"fc", PSR_f | PSR_c}, {"sf", PSR_s | PSR_f}, {"sx", PSR_s | PSR_x}, {"sc", PSR_s | PSR_c}, {"xf", PSR_x | PSR_f}, {"xs", PSR_x | PSR_s}, {"xc", PSR_x | PSR_c}, {"cf", PSR_c | PSR_f}, {"cs", PSR_c | PSR_s}, {"cx", PSR_c | PSR_x}, {"fsx", PSR_f | PSR_s | PSR_x}, {"fsc", PSR_f | PSR_s | PSR_c}, {"fxs", PSR_f | PSR_x | PSR_s}, {"fxc", PSR_f | PSR_x | PSR_c}, {"fcs", PSR_f | PSR_c | PSR_s}, {"fcx", PSR_f | PSR_c | PSR_x}, {"sfx", PSR_s | PSR_f | PSR_x}, {"sfc", PSR_s | PSR_f | PSR_c}, {"sxf", PSR_s | PSR_x | PSR_f}, {"sxc", PSR_s | PSR_x | PSR_c}, {"scf", PSR_s | PSR_c | PSR_f}, {"scx", PSR_s | PSR_c | PSR_x}, {"xfs", PSR_x | PSR_f | PSR_s}, {"xfc", PSR_x | PSR_f | PSR_c}, {"xsf", PSR_x | PSR_s | PSR_f}, {"xsc", PSR_x | PSR_s | PSR_c}, {"xcf", PSR_x | PSR_c | PSR_f}, {"xcs", PSR_x | PSR_c | PSR_s}, {"cfs", PSR_c | PSR_f | PSR_s}, {"cfx", PSR_c | PSR_f | PSR_x}, {"csf", PSR_c | PSR_s | PSR_f}, {"csx", PSR_c | PSR_s | PSR_x}, {"cxf", PSR_c | PSR_x | PSR_f}, {"cxs", PSR_c | PSR_x | PSR_s}, {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c}, {"fscx", PSR_f | PSR_s | PSR_c | PSR_x}, {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c}, {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s}, {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x}, {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s}, {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c}, {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x}, {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c}, {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f}, {"scfx", PSR_s | PSR_c | PSR_f | PSR_x}, {"scxf", PSR_s | PSR_c | PSR_x | PSR_f}, {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c}, {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s}, {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c}, {"xscf", PSR_x | PSR_s | PSR_c | PSR_f}, {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s}, {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f}, {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x}, {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s}, {"csfx", PSR_c | PSR_s | PSR_f | PSR_x}, {"csxf", PSR_c | PSR_s | PSR_x | PSR_f}, {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s}, {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f}, }; /* Table of all shift-in-operand names. */ static const struct asm_shift_name shift_names [] = { { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL }, { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL }, { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR }, { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR }, { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR }, { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX } }; /* Table of all explicit relocation names. */ #ifdef OBJ_ELF static struct reloc_entry reloc_names[] = { { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 }, { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF }, { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 }, { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 }, { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 }, { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 }, { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32}, { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32}, { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32}, { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32}, { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32} }; #endif /* Table of all conditional affixes. 0xF is not defined as a condition code. */ static const struct asm_cond conds[] = { {"eq", 0x0}, {"ne", 0x1}, {"cs", 0x2}, {"hs", 0x2}, {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3}, {"mi", 0x4}, {"pl", 0x5}, {"vs", 0x6}, {"vc", 0x7}, {"hi", 0x8}, {"ls", 0x9}, {"ge", 0xa}, {"lt", 0xb}, {"gt", 0xc}, {"le", 0xd}, {"al", 0xe} }; /* Table of ARM-format instructions. */ /* Macros for gluing together operand strings. N.B. In all cases other than OPS0, the trailing OP_stop comes from default zero-initialization of the unspecified elements of the array. */ #define OPS0() { OP_stop, } #define OPS1(a) { OP_##a, } #define OPS2(a,b) { OP_##a,OP_##b, } #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, } #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, } #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, } #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, } /* These macros abstract out the exact format of the mnemonic table and save some repeated characters. */ /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */ #define TxCE(mnem, op, top, nops, ops, ae, te) \ { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te } /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for a T_MNEM_xyz enumerator. */ #define TCE(mnem, aop, top, nops, ops, ae, te) \ TxCE(mnem, aop, 0x##top, nops, ops, ae, te) #define tCE(mnem, aop, top, nops, ops, ae, te) \ TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te) /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional infix after the third character. */ #define TxC3(mnem, op, top, nops, ops, ae, te) \ { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te } #define TC3(mnem, aop, top, nops, ops, ae, te) \ TxC3(mnem, aop, 0x##top, nops, ops, ae, te) #define tC3(mnem, aop, top, nops, ops, ae, te) \ TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te) /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to appear in the condition table. */ #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \ { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \ 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te } #define TxCM(m1, m2, op, top, nops, ops, ae, te) \ TxCM_(m1, , m2, op, top, nops, ops, ae, te), \ TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, al, m2, op, top, nops, ops, ae, te) #define TCM(m1,m2, aop, top, nops, ops, ae, te) \ TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te) #define tCM(m1,m2, aop, top, nops, ops, ae, te) \ TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te) /* Mnemonic that cannot be conditionalized. The ARM condition-code field is still 0xE. */ #define TUE(mnem, op, top, nops, ops, ae, te) \ { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te } /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM condition code field. */ #define TUF(mnem, op, top, nops, ops, ae, te) \ { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te } /* ARM-only variants of all the above. */ #define CE(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL } #define C3(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL } #define xCM_(m1, m2, m3, op, nops, ops, ae) \ { #m1 #m2 #m3, OPS##nops ops, \ sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \ 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL } #define CM(m1, m2, op, nops, ops, ae) \ xCM_(m1, , m2, op, nops, ops, ae), \ xCM_(m1, eq, m2, op, nops, ops, ae), \ xCM_(m1, ne, m2, op, nops, ops, ae), \ xCM_(m1, cs, m2, op, nops, ops, ae), \ xCM_(m1, hs, m2, op, nops, ops, ae), \ xCM_(m1, cc, m2, op, nops, ops, ae), \ xCM_(m1, ul, m2, op, nops, ops, ae), \ xCM_(m1, lo, m2, op, nops, ops, ae), \ xCM_(m1, mi, m2, op, nops, ops, ae), \ xCM_(m1, pl, m2, op, nops, ops, ae), \ xCM_(m1, vs, m2, op, nops, ops, ae), \ xCM_(m1, vc, m2, op, nops, ops, ae), \ xCM_(m1, hi, m2, op, nops, ops, ae), \ xCM_(m1, ls, m2, op, nops, ops, ae), \ xCM_(m1, ge, m2, op, nops, ops, ae), \ xCM_(m1, lt, m2, op, nops, ops, ae), \ xCM_(m1, gt, m2, op, nops, ops, ae), \ xCM_(m1, le, m2, op, nops, ops, ae), \ xCM_(m1, al, m2, op, nops, ops, ae) #define UE(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL } #define UF(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL } #define do_0 0 /* Thumb-only, unconditional. */ #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te) /* ARM-only, takes either a suffix or a position-3 infix (for an FPA corner case). */ #define C3E(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_csuf_or_in3, 0x##op, 0, ARM_VARIANT, 0, do_##ae, 0 } static const struct asm_opcode insns[] = { #define ARM_VARIANT ARM_EXT_V1 /* Core ARM Instructions. */ #define THUMB_VARIANT ARM_EXT_V4T tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c), tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c), tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c), tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c), tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub), tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub), tCE(add, 0800000, add, 3, (RR, oRR, SH), arit, t_add_sub), tC3(adds, 0900000, adds, 3, (RR, oRR, SH), arit, t_add_sub), tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c), tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c), tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3), tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3), tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c), tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c), tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3), tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3), /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism for setting PSR flag bits. They are obsolete in V6 and do not have Thumb equivalents. */ tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst), tC3(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst), C3(tstp, 110f000, 2, (RR, SH), cmp), tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp), tC3(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp), C3(cmpp, 150f000, 2, (RR, SH), cmp), tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst), tC3(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst), C3(cmnp, 170f000, 2, (RR, SH), cmp), tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp), tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp), tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst), tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst), tCE(ldr, 4100000, ldr, 2, (RR, ADDR), ldst, t_ldst), tC3(ldrb, 4500000, ldrb, 2, (RR, ADDR), ldst, t_ldst), tCE(str, 4000000, str, 2, (RR, ADDR), ldst, t_ldst), tC3(strb, 4400000, strb, 2, (RR, ADDR), ldst, t_ldst), tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi), #ifdef TE_WINCE /* XXX This is the wrong place to do this. Think multi-arch. */ TCE(b, a000000, e7fe, 1, (EXPr), branch, t_branch), TCE(bl, b000000, f7fffffe, 1, (EXPr), branch, t_branch23), #else TCE(b, afffffe, e7fe, 1, (EXPr), branch, t_branch), TCE(bl, bfffffe, f7fffffe, 1, (EXPr), branch, t_branch23), #endif /* Pseudo ops. */ TCE(adr, 28f0000, 000f, 2, (RR, EXP), adr, t_adr), C3(adrl, 28f0000, 2, (RR, EXP), adrl), tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop), /* Thumb-compatibility pseudo ops. */ tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift), tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift), tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift), tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift), tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift), tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift), tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift), tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift), tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg), tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg), tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop), tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop), #undef THUMB_VARIANT #define THUMB_VARIANT ARM_EXT_V6 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy), /* V1 instructions with no Thumb analogue prior to V6T2. */ #undef THUMB_VARIANT #define THUMB_VARIANT ARM_EXT_V6T2 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb), TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb), TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst), TC3(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst), C3(teqp, 130f000, 2, (RR, SH), cmp), TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt), TC3(ldrbt, 4700000, f8300e00, 2, (RR, ADDR), ldstt, t_ldstt), TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt), TC3(strbt, 4600000, f8200e00, 2, (RR, ADDR), ldstt, t_ldstt), TC3(stmdb, 9000000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm), TC3(stmfd, 9000000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm), TC3(ldmdb, 9100000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm), TC3(ldmea, 9100000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm), /* V1 instructions with no Thumb analogue at all. */ CE(rsc, 0e00000, 3, (RR, oRR, SH), arit), C3(rscs, 0f00000, 3, (RR, oRR, SH), arit), C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm), C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm), C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm), C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm), C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm), C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm), C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm), C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V2 /* ARM 2 - multiplies. */ #undef THUMB_VARIANT #define THUMB_VARIANT ARM_EXT_V4T tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul), tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul), #undef THUMB_VARIANT #define THUMB_VARIANT ARM_EXT_V6T2 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla), C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas), /* Generic coprocessor instructions. */ TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp), TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDR), lstc, lstc), TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDR), lstc, lstc), TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDR), lstc, lstc), TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDR), lstc, lstc), TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg), TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V2S /* ARM 3 - swp instructions. */ CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn), C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V3 /* ARM 6 Status register instructions. */ TCE(mrs, 10f0000, f3ef8000, 2, (RR, PSR), mrs, t_mrs), TCE(msr, 120f000, f3808000, 2, (PSR, RR_EXi), msr, t_msr), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V3M /* ARM 7M long multiplies. */ TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull), CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull), TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull), CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull), TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull), CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull), TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull), CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V4 /* ARM Architecture 4. */ #undef THUMB_VARIANT #define THUMB_VARIANT ARM_EXT_V4T tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDR), ldstv4, t_ldst), tC3(strh, 00000b0, strh, 2, (RR, ADDR), ldstv4, t_ldst), tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst), tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst), tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst), tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V4T|ARM_EXT_V5 /* ARM Architecture 4T. */ /* Note: bx (and blx) are required on V5, even if the processor does not support Thumb. */ TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V5 /* ARM Architecture 5T. */ #undef THUMB_VARIANT #define THUMB_VARIANT ARM_EXT_V5T /* Note: blx has 2 variants; the .value coded here is for BLX(2). Only this variant has conditional execution. */ TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx), TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt), #undef THUMB_VARIANT #define THUMB_VARIANT ARM_EXT_V6T2 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz), TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDR), lstc, lstc), TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDR), lstc, lstc), TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDR), lstc, lstc), TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDR), lstc, lstc), TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp), TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg), TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V5ExP /* ARM Architecture 5TExP. */ TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal), TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal), TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal), TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal), TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn), TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn), TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn), TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V5E /* ARM Architecture 5TE. */ TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld), TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd), TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd), TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c), TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V5J /* ARM Architecture 5TEJ. */ TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V6 /* ARM V6. */ #undef THUMB_VARIANT #define THUMB_VARIANT ARM_EXT_V6 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi), TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi), tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev), tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev), tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev), tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend), #undef THUMB_VARIANT #define THUMB_VARIANT ARM_EXT_V6T2 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, imm0), TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex), TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c), TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c), TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt), TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb), TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe), UF(rfeib, 9900a00, 1, (RRw), rfe), UF(rfeda, 8100a00, 1, (RRw), rfe), TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe), TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe), UF(rfefa, 9900a00, 1, (RRw), rfe), UF(rfeea, 8100a00, 1, (RRw), rfe), TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe), TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), TCE(sel, 68000b0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal), TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal), TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal), TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal), TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TUF(srsia, 8cd0500, e980c000, 1, (I31w), srs, srs), UF(srsib, 9cd0500, 1, (I31w), srs), UF(srsda, 84d0500, 1, (I31w), srs), TUF(srsdb, 94d0500, e800c000, 1, (I31w), srs, srs), TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat), TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16), TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex), TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal), TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat), TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V6K #undef THUMB_VARIANT #define THUMB_VARIANT ARM_EXT_V6K tCE(yield, 320f001, yield, 0, (), noargs, t_hint), tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint), tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint), tCE(sev, 320f004, sev, 0, (), noargs, t_hint), #undef THUMB_VARIANT #define THUMB_VARIANT ARM_EXT_V6T2 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn), TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn), TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd), TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn), TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn), TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd), TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V6Z TCE(smi, 1600070, f7f08000, 1, (EXPi), smi, t_smi), #undef ARM_VARIANT #define ARM_VARIANT ARM_EXT_V6T2 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc), TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi), TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx), TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx), TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla), TCE(movw, 3000000, f2400000, 2, (RRnpc, Iffff), mov16, t_mov16), TCE(movt, 3400000, f2c00000, 2, (RRnpc, Iffff), mov16, t_mov16), TCE(rbit, 3ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit), TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt), TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt), TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt), TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt), UT(cbnz, b900, 2, (RR, EXP), t_czb), UT(cbz, b100, 2, (RR, EXP), t_czb), /* ARM does not really have an IT instruction. */ TUE(it, 0, bf08, 1, (COND), it, t_it), TUE(itt, 0, bf0c, 1, (COND), it, t_it), TUE(ite, 0, bf04, 1, (COND), it, t_it), TUE(ittt, 0, bf0e, 1, (COND), it, t_it), TUE(itet, 0, bf06, 1, (COND), it, t_it), TUE(itte, 0, bf0a, 1, (COND), it, t_it), TUE(itee, 0, bf02, 1, (COND), it, t_it), TUE(itttt, 0, bf0f, 1, (COND), it, t_it), TUE(itett, 0, bf07, 1, (COND), it, t_it), TUE(ittet, 0, bf0b, 1, (COND), it, t_it), TUE(iteet, 0, bf03, 1, (COND), it, t_it), TUE(ittte, 0, bf0d, 1, (COND), it, t_it), TUE(itete, 0, bf05, 1, (COND), it, t_it), TUE(ittee, 0, bf09, 1, (COND), it, t_it), TUE(iteee, 0, bf01, 1, (COND), it, t_it), #undef ARM_VARIANT #define ARM_VARIANT FPU_FPA_EXT_V1 /* Core FPA instruction set (V1). */ CE(wfs, e200110, 1, (RR), rd), CE(rfs, e300110, 1, (RR), rd), CE(wfc, e400110, 1, (RR), rd), CE(rfc, e500110, 1, (RR), rd), C3(ldfs, c100100, 2, (RF, ADDR), rd_cpaddr), C3(ldfd, c108100, 2, (RF, ADDR), rd_cpaddr), C3(ldfe, c500100, 2, (RF, ADDR), rd_cpaddr), C3(ldfp, c508100, 2, (RF, ADDR), rd_cpaddr), C3(stfs, c000100, 2, (RF, ADDR), rd_cpaddr), C3(stfd, c008100, 2, (RF, ADDR), rd_cpaddr), C3(stfe, c400100, 2, (RF, ADDR), rd_cpaddr), C3(stfp, c408100, 2, (RF, ADDR), rd_cpaddr), C3(mvfs, e008100, 2, (RF, RF_IF), rd_rm), C3(mvfsp, e008120, 2, (RF, RF_IF), rd_rm), C3(mvfsm, e008140, 2, (RF, RF_IF), rd_rm), C3(mvfsz, e008160, 2, (RF, RF_IF), rd_rm), C3(mvfd, e008180, 2, (RF, RF_IF), rd_rm), C3(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm), C3(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm), C3(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm), C3(mvfe, e088100, 2, (RF, RF_IF), rd_rm), C3(mvfep, e088120, 2, (RF, RF_IF), rd_rm), C3(mvfem, e088140, 2, (RF, RF_IF), rd_rm), C3(mvfez, e088160, 2, (RF, RF_IF), rd_rm), C3(mnfs, e108100, 2, (RF, RF_IF), rd_rm), C3(mnfsp, e108120, 2, (RF, RF_IF), rd_rm), C3(mnfsm, e108140, 2, (RF, RF_IF), rd_rm), C3(mnfsz, e108160, 2, (RF, RF_IF), rd_rm), C3(mnfd, e108180, 2, (RF, RF_IF), rd_rm), C3(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm), C3(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm), C3(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm), C3(mnfe, e188100, 2, (RF, RF_IF), rd_rm), C3(mnfep, e188120, 2, (RF, RF_IF), rd_rm), C3(mnfem, e188140, 2, (RF, RF_IF), rd_rm), C3(mnfez, e188160, 2, (RF, RF_IF), rd_rm), C3(abss, e208100, 2, (RF, RF_IF), rd_rm), C3(abssp, e208120, 2, (RF, RF_IF), rd_rm), C3(abssm, e208140, 2, (RF, RF_IF), rd_rm), C3(abssz, e208160, 2, (RF, RF_IF), rd_rm), C3(absd, e208180, 2, (RF, RF_IF), rd_rm), C3(absdp, e2081a0, 2, (RF, RF_IF), rd_rm), C3(absdm, e2081c0, 2, (RF, RF_IF), rd_rm), C3(absdz, e2081e0, 2, (RF, RF_IF), rd_rm), C3(abse, e288100, 2, (RF, RF_IF), rd_rm), C3(absep, e288120, 2, (RF, RF_IF), rd_rm), C3(absem, e288140, 2, (RF, RF_IF), rd_rm), C3(absez, e288160, 2, (RF, RF_IF), rd_rm), C3(rnds, e308100, 2, (RF, RF_IF), rd_rm), C3(rndsp, e308120, 2, (RF, RF_IF), rd_rm), C3(rndsm, e308140, 2, (RF, RF_IF), rd_rm), C3(rndsz, e308160, 2, (RF, RF_IF), rd_rm), C3(rndd, e308180, 2, (RF, RF_IF), rd_rm), C3(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm), C3(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm), C3(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm), C3(rnde, e388100, 2, (RF, RF_IF), rd_rm), C3(rndep, e388120, 2, (RF, RF_IF), rd_rm), C3(rndem, e388140, 2, (RF, RF_IF), rd_rm), C3(rndez, e388160, 2, (RF, RF_IF), rd_rm), C3(sqts, e408100, 2, (RF, RF_IF), rd_rm), C3(sqtsp, e408120, 2, (RF, RF_IF), rd_rm), C3(sqtsm, e408140, 2, (RF, RF_IF), rd_rm), C3(sqtsz, e408160, 2, (RF, RF_IF), rd_rm), C3(sqtd, e408180, 2, (RF, RF_IF), rd_rm), C3(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm), C3(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm), C3(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm), C3(sqte, e488100, 2, (RF, RF_IF), rd_rm), C3(sqtep, e488120, 2, (RF, RF_IF), rd_rm), C3(sqtem, e488140, 2, (RF, RF_IF), rd_rm), C3(sqtez, e488160, 2, (RF, RF_IF), rd_rm), C3(logs, e508100, 2, (RF, RF_IF), rd_rm), C3(logsp, e508120, 2, (RF, RF_IF), rd_rm), C3(logsm, e508140, 2, (RF, RF_IF), rd_rm), C3(logsz, e508160, 2, (RF, RF_IF), rd_rm), C3(logd, e508180, 2, (RF, RF_IF), rd_rm), C3(logdp, e5081a0, 2, (RF, RF_IF), rd_rm), C3(logdm, e5081c0, 2, (RF, RF_IF), rd_rm), C3(logdz, e5081e0, 2, (RF, RF_IF), rd_rm), C3(loge, e588100, 2, (RF, RF_IF), rd_rm), C3(logep, e588120, 2, (RF, RF_IF), rd_rm), C3(logem, e588140, 2, (RF, RF_IF), rd_rm), C3(logez, e588160, 2, (RF, RF_IF), rd_rm), C3(lgns, e608100, 2, (RF, RF_IF), rd_rm), C3(lgnsp, e608120, 2, (RF, RF_IF), rd_rm), C3(lgnsm, e608140, 2, (RF, RF_IF), rd_rm), C3(lgnsz, e608160, 2, (RF, RF_IF), rd_rm), C3(lgnd, e608180, 2, (RF, RF_IF), rd_rm), C3(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm), C3(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm), C3(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm), C3(lgne, e688100, 2, (RF, RF_IF), rd_rm), C3(lgnep, e688120, 2, (RF, RF_IF), rd_rm), C3(lgnem, e688140, 2, (RF, RF_IF), rd_rm), C3(lgnez, e688160, 2, (RF, RF_IF), rd_rm), C3(exps, e708100, 2, (RF, RF_IF), rd_rm), C3(expsp, e708120, 2, (RF, RF_IF), rd_rm), C3(expsm, e708140, 2, (RF, RF_IF), rd_rm), C3(expsz, e708160, 2, (RF, RF_IF), rd_rm), C3(expd, e708180, 2, (RF, RF_IF), rd_rm), C3(expdp, e7081a0, 2, (RF, RF_IF), rd_rm), C3(expdm, e7081c0, 2, (RF, RF_IF), rd_rm), C3(expdz, e7081e0, 2, (RF, RF_IF), rd_rm), C3(expe, e788100, 2, (RF, RF_IF), rd_rm), C3(expep, e788120, 2, (RF, RF_IF), rd_rm), C3(expem, e788140, 2, (RF, RF_IF), rd_rm), C3(expdz, e788160, 2, (RF, RF_IF), rd_rm), C3(sins, e808100, 2, (RF, RF_IF), rd_rm), C3(sinsp, e808120, 2, (RF, RF_IF), rd_rm), C3(sinsm, e808140, 2, (RF, RF_IF), rd_rm), C3(sinsz, e808160, 2, (RF, RF_IF), rd_rm), C3(sind, e808180, 2, (RF, RF_IF), rd_rm), C3(sindp, e8081a0, 2, (RF, RF_IF), rd_rm), C3(sindm, e8081c0, 2, (RF, RF_IF), rd_rm), C3(sindz, e8081e0, 2, (RF, RF_IF), rd_rm), C3(sine, e888100, 2, (RF, RF_IF), rd_rm), C3(sinep, e888120, 2, (RF, RF_IF), rd_rm), C3(sinem, e888140, 2, (RF, RF_IF), rd_rm), C3(sinez, e888160, 2, (RF, RF_IF), rd_rm), C3(coss, e908100, 2, (RF, RF_IF), rd_rm), C3(cossp, e908120, 2, (RF, RF_IF), rd_rm), C3(cossm, e908140, 2, (RF, RF_IF), rd_rm), C3(cossz, e908160, 2, (RF, RF_IF), rd_rm), C3(cosd, e908180, 2, (RF, RF_IF), rd_rm), C3(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm), C3(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm), C3(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm), C3(cose, e988100, 2, (RF, RF_IF), rd_rm), C3(cosep, e988120, 2, (RF, RF_IF), rd_rm), C3(cosem, e988140, 2, (RF, RF_IF), rd_rm), C3(cosez, e988160, 2, (RF, RF_IF), rd_rm), C3(tans, ea08100, 2, (RF, RF_IF), rd_rm), C3(tansp, ea08120, 2, (RF, RF_IF), rd_rm), C3(tansm, ea08140, 2, (RF, RF_IF), rd_rm), C3(tansz, ea08160, 2, (RF, RF_IF), rd_rm), C3(tand, ea08180, 2, (RF, RF_IF), rd_rm), C3(tandp, ea081a0, 2, (RF, RF_IF), rd_rm), C3(tandm, ea081c0, 2, (RF, RF_IF), rd_rm), C3(tandz, ea081e0, 2, (RF, RF_IF), rd_rm), C3(tane, ea88100, 2, (RF, RF_IF), rd_rm), C3(tanep, ea88120, 2, (RF, RF_IF), rd_rm), C3(tanem, ea88140, 2, (RF, RF_IF), rd_rm), C3(tanez, ea88160, 2, (RF, RF_IF), rd_rm), C3(asns, eb08100, 2, (RF, RF_IF), rd_rm), C3(asnsp, eb08120, 2, (RF, RF_IF), rd_rm), C3(asnsm, eb08140, 2, (RF, RF_IF), rd_rm), C3(asnsz, eb08160, 2, (RF, RF_IF), rd_rm), C3(asnd, eb08180, 2, (RF, RF_IF), rd_rm), C3(asndp, eb081a0, 2, (RF, RF_IF), rd_rm), C3(asndm, eb081c0, 2, (RF, RF_IF), rd_rm), C3(asndz, eb081e0, 2, (RF, RF_IF), rd_rm), C3(asne, eb88100, 2, (RF, RF_IF), rd_rm), C3(asnep, eb88120, 2, (RF, RF_IF), rd_rm), C3(asnem, eb88140, 2, (RF, RF_IF), rd_rm), C3(asnez, eb88160, 2, (RF, RF_IF), rd_rm), C3(acss, ec08100, 2, (RF, RF_IF), rd_rm), C3(acssp, ec08120, 2, (RF, RF_IF), rd_rm), C3(acssm, ec08140, 2, (RF, RF_IF), rd_rm), C3(acssz, ec08160, 2, (RF, RF_IF), rd_rm), C3(acsd, ec08180, 2, (RF, RF_IF), rd_rm), C3(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm), C3(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm), C3(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm), C3(acse, ec88100, 2, (RF, RF_IF), rd_rm), C3(acsep, ec88120, 2, (RF, RF_IF), rd_rm), C3(acsem, ec88140, 2, (RF, RF_IF), rd_rm), C3(acsez, ec88160, 2, (RF, RF_IF), rd_rm), C3(atns, ed08100, 2, (RF, RF_IF), rd_rm), C3(atnsp, ed08120, 2, (RF, RF_IF), rd_rm), C3(atnsm, ed08140, 2, (RF, RF_IF), rd_rm), C3(atnsz, ed08160, 2, (RF, RF_IF), rd_rm), C3(atnd, ed08180, 2, (RF, RF_IF), rd_rm), C3(atndp, ed081a0, 2, (RF, RF_IF), rd_rm), C3(atndm, ed081c0, 2, (RF, RF_IF), rd_rm), C3(atndz, ed081e0, 2, (RF, RF_IF), rd_rm), C3(atne, ed88100, 2, (RF, RF_IF), rd_rm), C3(atnep, ed88120, 2, (RF, RF_IF), rd_rm), C3(atnem, ed88140, 2, (RF, RF_IF), rd_rm), C3(atnez, ed88160, 2, (RF, RF_IF), rd_rm), C3(urds, ee08100, 2, (RF, RF_IF), rd_rm), C3(urdsp, ee08120, 2, (RF, RF_IF), rd_rm), C3(urdsm, ee08140, 2, (RF, RF_IF), rd_rm), C3(urdsz, ee08160, 2, (RF, RF_IF), rd_rm), C3(urdd, ee08180, 2, (RF, RF_IF), rd_rm), C3(urddp, ee081a0, 2, (RF, RF_IF), rd_rm), C3(urddm, ee081c0, 2, (RF, RF_IF), rd_rm), C3(urddz, ee081e0, 2, (RF, RF_IF), rd_rm), C3(urde, ee88100, 2, (RF, RF_IF), rd_rm), C3(urdep, ee88120, 2, (RF, RF_IF), rd_rm), C3(urdem, ee88140, 2, (RF, RF_IF), rd_rm), C3(urdez, ee88160, 2, (RF, RF_IF), rd_rm), C3(nrms, ef08100, 2, (RF, RF_IF), rd_rm), C3(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm), C3(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm), C3(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm), C3(nrmd, ef08180, 2, (RF, RF_IF), rd_rm), C3(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm), C3(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm), C3(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm), C3(nrme, ef88100, 2, (RF, RF_IF), rd_rm), C3(nrmep, ef88120, 2, (RF, RF_IF), rd_rm), C3(nrmem, ef88140, 2, (RF, RF_IF), rd_rm), C3(nrmez, ef88160, 2, (RF, RF_IF), rd_rm), C3(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm), C3(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm), C3(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm), C3(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm), C3(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm), C3(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm), C3(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm), C3(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm), C3(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm), C3(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm), C3(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm), C3(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm), C3(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm), CE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp), C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp), CE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp), C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp), C3(flts, e000110, 2, (RF, RR), rn_rd), C3(fltsp, e000130, 2, (RF, RR), rn_rd), C3(fltsm, e000150, 2, (RF, RR), rn_rd), C3(fltsz, e000170, 2, (RF, RR), rn_rd), C3(fltd, e000190, 2, (RF, RR), rn_rd), C3(fltdp, e0001b0, 2, (RF, RR), rn_rd), C3(fltdm, e0001d0, 2, (RF, RR), rn_rd), C3(fltdz, e0001f0, 2, (RF, RR), rn_rd), C3(flte, e080110, 2, (RF, RR), rn_rd), C3(fltep, e080130, 2, (RF, RR), rn_rd), C3(fltem, e080150, 2, (RF, RR), rn_rd), C3(fltez, e080170, 2, (RF, RR), rn_rd), /* The implementation of the FIX instruction is broken on some assemblers, in that it accepts a precision specifier as well as a rounding specifier, despite the fact that this is meaningless. To be more compatible, we accept it as well, though of course it does not set any bits. */ CE(fix, e100110, 2, (RR, RF), rd_rm), C3(fixp, e100130, 2, (RR, RF), rd_rm), C3(fixm, e100150, 2, (RR, RF), rd_rm), C3(fixz, e100170, 2, (RR, RF), rd_rm), C3(fixsp, e100130, 2, (RR, RF), rd_rm), C3(fixsm, e100150, 2, (RR, RF), rd_rm), C3(fixsz, e100170, 2, (RR, RF), rd_rm), C3(fixdp, e100130, 2, (RR, RF), rd_rm), C3(fixdm, e100150, 2, (RR, RF), rd_rm), C3(fixdz, e100170, 2, (RR, RF), rd_rm), C3(fixep, e100130, 2, (RR, RF), rd_rm), C3(fixem, e100150, 2, (RR, RF), rd_rm), C3(fixez, e100170, 2, (RR, RF), rd_rm), /* Instructions that were new with the real FPA, call them V2. */ #undef ARM_VARIANT #define ARM_VARIANT FPU_FPA_EXT_V2 CE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm), C3(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm), C3(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm), CE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm), C3(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm), C3(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm), #undef ARM_VARIANT #define ARM_VARIANT FPU_VFP_EXT_V1xD /* VFP V1xD (single precision). */ /* Moves and type conversions. */ CE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic), CE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp), CE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg), CE(fmstat, ef1fa10, 0, (), noargs), CE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic), CE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic), CE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic), CE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic), CE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic), CE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic), CE(fmrx, ef00a10, 2, (RR, RVC), rd_rn), CE(fmxr, ee00a10, 2, (RVC, RR), rn_rd), /* Memory operations. */ CE(flds, d100a00, 2, (RVS, ADDR), vfp_sp_ldst), CE(fsts, d000a00, 2, (RVS, ADDR), vfp_sp_ldst), CE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia), CE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia), CE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb), CE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb), CE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia), CE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia), CE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb), CE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb), CE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia), CE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia), CE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb), CE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb), CE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia), CE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia), CE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb), CE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb), /* Monadic operations. */ CE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic), CE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic), CE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic), /* Dyadic operations. */ CE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), CE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic), CE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), CE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), CE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), CE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), CE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic), CE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic), CE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic), /* Comparisons. */ CE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic), CE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z), CE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic), CE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z), #undef ARM_VARIANT #define ARM_VARIANT FPU_VFP_EXT_V1 /* VFP V1 (Double precision). */ /* Moves and type conversions. */ CE(fcpyd, eb00b40, 2, (RVD, RVD), rd_rm), CE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt), CE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt), CE(fmdhr, e200b10, 2, (RVD, RR), rn_rd), CE(fmdlr, e000b10, 2, (RVD, RR), rn_rd), CE(fmrdh, e300b10, 2, (RR, RVD), rd_rn), CE(fmrdl, e100b10, 2, (RR, RVD), rd_rn), CE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt), CE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt), CE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt), CE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt), CE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt), CE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt), /* Memory operations. */ CE(fldd, d100b00, 2, (RVD, ADDR), vfp_dp_ldst), CE(fstd, d000b00, 2, (RVD, ADDR), vfp_dp_ldst), CE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia), CE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia), CE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb), CE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb), CE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia), CE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia), CE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb), CE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb), /* Monadic operations. */ CE(fabsd, eb00bc0, 2, (RVD, RVD), rd_rm), CE(fnegd, eb10b40, 2, (RVD, RVD), rd_rm), CE(fsqrtd, eb10bc0, 2, (RVD, RVD), rd_rm), /* Dyadic operations. */ CE(faddd, e300b00, 3, (RVD, RVD, RVD), rd_rn_rm), CE(fsubd, e300b40, 3, (RVD, RVD, RVD), rd_rn_rm), CE(fmuld, e200b00, 3, (RVD, RVD, RVD), rd_rn_rm), CE(fdivd, e800b00, 3, (RVD, RVD, RVD), rd_rn_rm), CE(fmacd, e000b00, 3, (RVD, RVD, RVD), rd_rn_rm), CE(fmscd, e100b00, 3, (RVD, RVD, RVD), rd_rn_rm), CE(fnmuld, e200b40, 3, (RVD, RVD, RVD), rd_rn_rm), CE(fnmacd, e000b40, 3, (RVD, RVD, RVD), rd_rn_rm), CE(fnmscd, e100b40, 3, (RVD, RVD, RVD), rd_rn_rm), /* Comparisons. */ CE(fcmpd, eb40b40, 2, (RVD, RVD), rd_rm), CE(fcmpzd, eb50b40, 1, (RVD), rd), CE(fcmped, eb40bc0, 2, (RVD, RVD), rd_rm), CE(fcmpezd, eb50bc0, 1, (RVD), rd), #undef ARM_VARIANT #define ARM_VARIANT FPU_VFP_EXT_V2 CE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2), CE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2), CE(fmdrr, c400b10, 3, (RVD, RR, RR), rm_rd_rn), CE(fmrrd, c500b10, 3, (RR, RR, RVD), rd_rn_rm), #undef ARM_VARIANT #define ARM_VARIANT ARM_CEXT_XSCALE /* Intel XScale extensions. */ CE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia), CE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia), CE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia), CE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia), CE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia), CE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia), CE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar), CE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra), #undef ARM_VARIANT #define ARM_VARIANT ARM_CEXT_IWMMXT /* Intel Wireless MMX technology. */ CE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc), CE(tandch, e53f130, 1, (RR), iwmmxt_tandorc), CE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc), CE(tbcstb, e400010, 2, (RIWR, RR), rn_rd), CE(tbcsth, e400050, 2, (RIWR, RR), rn_rd), CE(tbcstw, e400090, 2, (RIWR, RR), rn_rd), CE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc), CE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc), CE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc), CE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm), CE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm), CE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm), CE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm), CE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm), CE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm), CE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr), CE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr), CE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr), CE(tmcr, e000110, 2, (RIWC, RR), rn_rd), CE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn), CE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia), CE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia), CE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia), CE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia), CE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia), CE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia), CE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn), CE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn), CE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn), CE(tmrc, e100110, 2, (RR, RIWC), rd_rn), CE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm), CE(torcb, e13f150, 1, (RR), iwmmxt_tandorc), CE(torch, e53f150, 1, (RR), iwmmxt_tandorc), CE(torcw, e93f150, 1, (RR), iwmmxt_tandorc), CE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn), CE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn), CE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn), CE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni), CE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh), CE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh), CE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw), CE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd), CE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov), CE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wrorh, e700040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), CE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), CE(wrord, ef00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), CE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh), CE(wsllh, e500040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), CE(wsllw, e900040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), CE(wslld, ed00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), CE(wsrah, e400040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), CE(wsraw, e800040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), CE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), CE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), CE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), CE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), CE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh), CE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh), CE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw), CE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd), CE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn), CE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn), CE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn), CE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn), CE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn), CE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn), CE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn), CE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn), CE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn), CE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn), CE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn), CE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn), CE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), CE(wzero, e300000, 1, (RIWR), iwmmxt_wzero), #undef ARM_VARIANT #define ARM_VARIANT ARM_CEXT_MAVERICK /* Cirrus Maverick instructions. */ CE(cfldrs, c100400, 2, (RMF, ADDR), rd_cpaddr), CE(cfldrd, c500400, 2, (RMD, ADDR), rd_cpaddr), CE(cfldr32, c100500, 2, (RMFX, ADDR), rd_cpaddr), CE(cfldr64, c500500, 2, (RMDX, ADDR), rd_cpaddr), CE(cfstrs, c000400, 2, (RMF, ADDR), rd_cpaddr), CE(cfstrd, c400400, 2, (RMD, ADDR), rd_cpaddr), CE(cfstr32, c000500, 2, (RMFX, ADDR), rd_cpaddr), CE(cfstr64, c400500, 2, (RMDX, ADDR), rd_cpaddr), CE(cfmvsr, e000450, 2, (RMF, RR), rn_rd), CE(cfmvrs, e100450, 2, (RR, RMF), rd_rn), CE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd), CE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn), CE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd), CE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn), CE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd), CE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn), CE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd), CE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn), CE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn), CE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn), CE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn), CE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn), CE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn), CE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn), CE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn), CE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn), CE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn), CE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn), CE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc), CE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd), CE(cfcpys, e000400, 2, (RMF, RMF), rd_rn), CE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn), CE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn), CE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn), CE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn), CE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn), CE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn), CE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn), CE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn), CE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn), CE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn), CE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn), CE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple), CE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple), CE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift), CE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift), CE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm), CE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm), CE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm), CE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm), CE(cfabss, e300400, 2, (RMF, RMF), rd_rn), CE(cfabsd, e300420, 2, (RMD, RMD), rd_rn), CE(cfnegs, e300440, 2, (RMF, RMF), rd_rn), CE(cfnegd, e300460, 2, (RMD, RMD), rd_rn), CE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm), CE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm), CE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm), CE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm), CE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm), CE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm), CE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn), CE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn), CE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn), CE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn), CE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm), CE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm), CE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm), CE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm), CE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm), CE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm), CE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm), CE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm), CE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad), CE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad), CE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad), CE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad), }; #undef ARM_VARIANT #undef THUMB_VARIANT #undef TCE #undef TCM #undef TUE #undef TUF #undef TCC #undef CE #undef CM #undef UE #undef UF #undef UT #undef OPS0 #undef OPS1 #undef OPS2 #undef OPS3 #undef OPS4 #undef OPS5 #undef OPS6 #undef do_0 /* MD interface: bits in the object file. */ /* Turn an integer of n bytes (in val) into a stream of bytes appropriate for use in the a.out file, and stores them in the array pointed to by buf. This knows about the endian-ness of the target machine and does THE RIGHT THING, whatever it is. Possible values for n are 1 (byte) 2 (short) and 4 (long) Floating numbers are put out as a series of LITTLENUMS (shorts, here at least). */ void md_number_to_chars (char * buf, valueT val, int n) { if (target_big_endian) number_to_chars_bigendian (buf, val, n); else number_to_chars_littleendian (buf, val, n); } static valueT md_chars_to_number (char * buf, int n) { valueT result = 0; unsigned char * where = (unsigned char *) buf; if (target_big_endian) { while (n--) { result <<= 8; result |= (*where++ & 255); } } else { while (n--) { result <<= 8; result |= (where[n] & 255); } } return result; } /* MD interface: Sections. */ int md_estimate_size_before_relax (fragS * fragP ATTRIBUTE_UNUSED, segT segtype ATTRIBUTE_UNUSED) { as_fatal (_("md_estimate_size_before_relax\n")); return 1; } /* Round up a section size to the appropriate boundary. */ valueT md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size) { #ifdef OBJ_ELF return size; #else /* Round all sects to multiple of 4. */ return (size + 3) & ~3; #endif } /* This is called from HANDLE_ALIGN in write.c. Fill in the contents of an rs_align_code fragment. */ void arm_handle_align (fragS * fragP) { static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 }; static char const thumb_noop[2] = { 0xc0, 0x46 }; static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 }; static char const thumb_bigend_noop[2] = { 0x46, 0xc0 }; int bytes, fix, noop_size; char * p; const char * noop; if (fragP->fr_type != rs_align_code) return; bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix; p = fragP->fr_literal + fragP->fr_fix; fix = 0; if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE) bytes &= MAX_MEM_FOR_RS_ALIGN_CODE; if (fragP->tc_frag_data) { if (target_big_endian) noop = thumb_bigend_noop; else noop = thumb_noop; noop_size = sizeof (thumb_noop); } else { if (target_big_endian) noop = arm_bigend_noop; else noop = arm_noop; noop_size = sizeof (arm_noop); } if (bytes & (noop_size - 1)) { fix = bytes & (noop_size - 1); memset (p, 0, fix); p += fix; bytes -= fix; } while (bytes >= noop_size) { memcpy (p, noop, noop_size); p += noop_size; bytes -= noop_size; fix += noop_size; } fragP->fr_fix += fix; fragP->fr_var = noop_size; } /* Called from md_do_align. Used to create an alignment frag in a code section. */ void arm_frag_align_code (int n, int max) { char * p; /* We assume that there will never be a requirement to support alignments greater than 32 bytes. */ if (max > MAX_MEM_FOR_RS_ALIGN_CODE) as_fatal (_("alignments greater than 32 bytes not supported in .text sections.")); p = frag_var (rs_align_code, MAX_MEM_FOR_RS_ALIGN_CODE, 1, (relax_substateT) max, (symbolS *) NULL, (offsetT) n, (char *) NULL); *p = 0; } /* Perform target specific initialisation of a frag. */ void arm_init_frag (fragS * fragP) { /* Record whether this frag is in an ARM or a THUMB area. */ fragP->tc_frag_data = thumb_mode; } #ifdef OBJ_ELF /* When we change sections we need to issue a new mapping symbol. */ void arm_elf_change_section (void) { flagword flags; segment_info_type *seginfo; /* Link an unlinked unwind index table section to the .text section. */ if (elf_section_type (now_seg) == SHT_ARM_EXIDX && elf_linked_to_section (now_seg) == NULL) elf_linked_to_section (now_seg) = text_section; if (!SEG_NORMAL (now_seg)) return; flags = bfd_get_section_flags (stdoutput, now_seg); /* We can ignore sections that only contain debug info. */ if ((flags & SEC_ALLOC) == 0) return; seginfo = seg_info (now_seg); mapstate = seginfo->tc_segment_info_data.mapstate; marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency; } int arm_elf_section_type (const char * str, size_t len) { if (len == 5 && strncmp (str, "exidx", 5) == 0) return SHT_ARM_EXIDX; return -1; } /* Code to deal with unwinding tables. */ static void add_unwind_adjustsp (offsetT); /* Cenerate and deferred unwind frame offset. */ static void flush_pending_unwind (void) { offsetT offset; offset = unwind.pending_offset; unwind.pending_offset = 0; if (offset != 0) add_unwind_adjustsp (offset); } /* Add an opcode to this list for this function. Two-byte opcodes should be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse order. */ static void add_unwind_opcode (valueT op, int length) { /* Add any deferred stack adjustment. */ if (unwind.pending_offset) flush_pending_unwind (); unwind.sp_restored = 0; if (unwind.opcode_count + length > unwind.opcode_alloc) { unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE; if (unwind.opcodes) unwind.opcodes = xrealloc (unwind.opcodes, unwind.opcode_alloc); else unwind.opcodes = xmalloc (unwind.opcode_alloc); } while (length > 0) { length--; unwind.opcodes[unwind.opcode_count] = op & 0xff; op >>= 8; unwind.opcode_count++; } } /* Add unwind opcodes to adjust the stack pointer. */ static void add_unwind_adjustsp (offsetT offset) { valueT op; if (offset > 0x200) { /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */ char bytes[5]; int n; valueT o; /* Long form: 0xb2, uleb128. */ /* This might not fit in a word so add the individual bytes, remembering the list is built in reverse order. */ o = (valueT) ((offset - 0x204) >> 2); if (o == 0) add_unwind_opcode (0, 1); /* Calculate the uleb128 encoding of the offset. */ n = 0; while (o) { bytes[n] = o & 0x7f; o >>= 7; if (o) bytes[n] |= 0x80; n++; } /* Add the insn. */ for (; n; n--) add_unwind_opcode (bytes[n - 1], 1); add_unwind_opcode (0xb2, 1); } else if (offset > 0x100) { /* Two short opcodes. */ add_unwind_opcode (0x3f, 1); op = (offset - 0x104) >> 2; add_unwind_opcode (op, 1); } else if (offset > 0) { /* Short opcode. */ op = (offset - 4) >> 2; add_unwind_opcode (op, 1); } else if (offset < 0) { offset = -offset; while (offset > 0x100) { add_unwind_opcode (0x7f, 1); offset -= 0x100; } op = ((offset - 4) >> 2) | 0x40; add_unwind_opcode (op, 1); } } /* Finish the list of unwind opcodes for this function. */ static void finish_unwind_opcodes (void) { valueT op; if (unwind.fp_used) { /* Adjust sp as neccessary. */ unwind.pending_offset += unwind.fp_offset - unwind.frame_size; flush_pending_unwind (); /* After restoring sp from the frame pointer. */ op = 0x90 | unwind.fp_reg; add_unwind_opcode (op, 1); } else flush_pending_unwind (); } /* Start an exception table entry. If idx is nonzero this is an index table entry. */ static void start_unwind_section (const segT text_seg, int idx) { const char * text_name; const char * prefix; const char * prefix_once; const char * group_name; size_t prefix_len; size_t text_len; char * sec_name; size_t sec_name_len; int type; int flags; int linkonce; if (idx) { prefix = ELF_STRING_ARM_unwind; prefix_once = ELF_STRING_ARM_unwind_once; type = SHT_ARM_EXIDX; } else { prefix = ELF_STRING_ARM_unwind_info; prefix_once = ELF_STRING_ARM_unwind_info_once; type = SHT_PROGBITS; } text_name = segment_name (text_seg); if (streq (text_name, ".text")) text_name = ""; if (strncmp (text_name, ".gnu.linkonce.t.", strlen (".gnu.linkonce.t.")) == 0) { prefix = prefix_once; text_name += strlen (".gnu.linkonce.t."); } prefix_len = strlen (prefix); text_len = strlen (text_name); sec_name_len = prefix_len + text_len; sec_name = xmalloc (sec_name_len + 1); memcpy (sec_name, prefix, prefix_len); memcpy (sec_name + prefix_len, text_name, text_len); sec_name[prefix_len + text_len] = '\0'; flags = SHF_ALLOC; linkonce = 0; group_name = 0; /* Handle COMDAT group. */ if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0) { group_name = elf_group_name (text_seg); if (group_name == NULL) { as_bad ("Group section `%s' has no group signature", segment_name (text_seg)); ignore_rest_of_line (); return; } flags |= SHF_GROUP; linkonce = 1; } obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0); /* Set the setion link for index tables. */ if (idx) elf_linked_to_section (now_seg) = text_seg; } /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional personality routine data. Returns zero, or the index table value for and inline entry. */ static valueT create_unwind_entry (int have_data) { int size; addressT where; char *ptr; /* The current word of data. */ valueT data; /* The number of bytes left in this word. */ int n; finish_unwind_opcodes (); /* Remember the current text section. */ unwind.saved_seg = now_seg; unwind.saved_subseg = now_subseg; start_unwind_section (now_seg, 0); if (unwind.personality_routine == NULL) { if (unwind.personality_index == -2) { if (have_data) as_bad (_("handerdata in cantunwind frame")); return 1; /* EXIDX_CANTUNWIND. */ } /* Use a default personality routine if none is specified. */ if (unwind.personality_index == -1) { if (unwind.opcode_count > 3) unwind.personality_index = 1; else unwind.personality_index = 0; } /* Space for the personality routine entry. */ if (unwind.personality_index == 0) { if (unwind.opcode_count > 3) as_bad (_("too many unwind opcodes for personality routine 0")); if (!have_data) { /* All the data is inline in the index table. */ data = 0x80; n = 3; while (unwind.opcode_count > 0) { unwind.opcode_count--; data = (data << 8) | unwind.opcodes[unwind.opcode_count]; n--; } /* Pad with "finish" opcodes. */ while (n--) data = (data << 8) | 0xb0; return data; } size = 0; } else /* We get two opcodes "free" in the first word. */ size = unwind.opcode_count - 2; } else /* An extra byte is required for the opcode count. */ size = unwind.opcode_count + 1; size = (size + 3) >> 2; if (size > 0xff) as_bad (_("too many unwind opcodes")); frag_align (2, 0, 0); record_alignment (now_seg, 2); unwind.table_entry = expr_build_dot (); /* Allocate the table entry. */ ptr = frag_more ((size << 2) + 4); where = frag_now_fix () - ((size << 2) + 4); switch (unwind.personality_index) { case -1: /* ??? Should this be a PLT generating relocation? */ /* Custom personality routine. */ fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1, BFD_RELOC_ARM_PREL31); where += 4; ptr += 4; /* Set the first byte to the number of additional words. */ data = size - 1; n = 3; break; /* ABI defined personality routines. */ case 0: /* Three opcodes bytes are packed into the first word. */ data = 0x80; n = 3; break; case 1: case 2: /* The size and first two opcode bytes go in the first word. */ data = ((0x80 + unwind.personality_index) << 8) | size; n = 2; break; default: /* Should never happen. */ abort (); } /* Pack the opcodes into words (MSB first), reversing the list at the same time. */ while (unwind.opcode_count > 0) { if (n == 0) { md_number_to_chars (ptr, data, 4); ptr += 4; n = 4; data = 0; } unwind.opcode_count--; n--; data = (data << 8) | unwind.opcodes[unwind.opcode_count]; } /* Finish off the last word. */ if (n < 4) { /* Pad with "finish" opcodes. */ while (n--) data = (data << 8) | 0xb0; md_number_to_chars (ptr, data, 4); } if (!have_data) { /* Add an empty descriptor if there is no user-specified data. */ ptr = frag_more (4); md_number_to_chars (ptr, 0, 4); } return 0; } /* Convert REGNAME to a DWARF-2 register number. */ int tc_arm_regname_to_dw2regnum (const char *regname) { int reg = arm_reg_parse ((char **) ®name, REG_TYPE_RN); if (reg == FAIL) return -1; return reg; } /* Initialize the DWARF-2 unwind information for this procedure. */ void tc_arm_frame_initial_instructions (void) { cfi_add_CFA_def_cfa (REG_SP, 0); } #endif /* OBJ_ELF */ /* MD interface: Symbol and relocation handling. */ /* The knowledge of the PC's pipeline offset is built into the insns themselves. */ long md_pcrel_from (fixS * fixP) { if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) == undefined_section && fixP->fx_subsy == NULL) return 0; /* PC relative addressing on the Thumb is slightly odd as the bottom two bits of the PC are forced to zero for the calculation. This happens *after* application of the pipeline offset. However, Thumb adrl already adjusts for this, so we need not do it again. */ switch (fixP->fx_r_type) { case BFD_RELOC_ARM_THUMB_ADD: return (fixP->fx_where + fixP->fx_frag->fr_address) & ~3; case BFD_RELOC_ARM_THUMB_OFFSET: case BFD_RELOC_ARM_T32_OFFSET_IMM: return (fixP->fx_where + fixP->fx_frag->fr_address + 4) & ~3; default: break; } #ifdef TE_WINCE /* The pattern was adjusted to accommodate CE's off-by-one fixups, so we un-adjust here to compensate for the accommodation. */ return fixP->fx_where + fixP->fx_frag->fr_address + 8; #else return fixP->fx_where + fixP->fx_frag->fr_address; #endif } /* Under ELF we need to default _GLOBAL_OFFSET_TABLE. Otherwise we have no need to default values of symbols. */ symbolS * md_undefined_symbol (char * name ATTRIBUTE_UNUSED) { #ifdef OBJ_ELF if (name[0] == '_' && name[1] == 'G' && streq (name, GLOBAL_OFFSET_TABLE_NAME)) { if (!GOT_symbol) { if (symbol_find (name)) as_bad ("GOT already in the symbol table"); GOT_symbol = symbol_new (name, undefined_section, (valueT) 0, & zero_address_frag); } return GOT_symbol; } #endif return 0; } /* Subroutine of md_apply_fix3. Check to see if an immediate can be computed as two separate immediate values, added together. We already know that this value cannot be computed by just one ARM instruction. */ static unsigned int validate_immediate_twopart (unsigned int val, unsigned int * highpart) { unsigned int a; unsigned int i; for (i = 0; i < 32; i += 2) if (((a = rotate_left (val, i)) & 0xff) != 0) { if (a & 0xff00) { if (a & ~ 0xffff) continue; * highpart = (a >> 8) | ((i + 24) << 7); } else if (a & 0xff0000) { if (a & 0xff000000) continue; * highpart = (a >> 16) | ((i + 16) << 7); } else { assert (a & 0xff000000); * highpart = (a >> 24) | ((i + 8) << 7); } return (a & 0xff) | (i << 7); } return FAIL; } static int validate_offset_imm (unsigned int val, int hwse) { if ((hwse && val > 255) || val > 4095) return FAIL; return val; } /* Subroutine of md_apply_fix3. Do those data_ops which can take a negative immediate constant by altering the instruction. A bit of a hack really. MOV <-> MVN AND <-> BIC ADC <-> SBC by inverting the second operand, and ADD <-> SUB CMP <-> CMN by negating the second operand. */ static int negate_data_op (unsigned long * instruction, unsigned long value) { int op, new_inst; unsigned long negated, inverted; negated = encode_arm_immediate (-value); inverted = encode_arm_immediate (~value); op = (*instruction >> DATA_OP_SHIFT) & 0xf; switch (op) { /* First negates. */ case OPCODE_SUB: /* ADD <-> SUB */ new_inst = OPCODE_ADD; value = negated; break; case OPCODE_ADD: new_inst = OPCODE_SUB; value = negated; break; case OPCODE_CMP: /* CMP <-> CMN */ new_inst = OPCODE_CMN; value = negated; break; case OPCODE_CMN: new_inst = OPCODE_CMP; value = negated; break; /* Now Inverted ops. */ case OPCODE_MOV: /* MOV <-> MVN */ new_inst = OPCODE_MVN; value = inverted; break; case OPCODE_MVN: new_inst = OPCODE_MOV; value = inverted; break; case OPCODE_AND: /* AND <-> BIC */ new_inst = OPCODE_BIC; value = inverted; break; case OPCODE_BIC: new_inst = OPCODE_AND; value = inverted; break; case OPCODE_ADC: /* ADC <-> SBC */ new_inst = OPCODE_SBC; value = inverted; break; case OPCODE_SBC: new_inst = OPCODE_ADC; value = inverted; break; /* We cannot do anything. */ default: return FAIL; } if (value == (unsigned) FAIL) return FAIL; *instruction &= OPCODE_MASK; *instruction |= new_inst << DATA_OP_SHIFT; return value; } void md_apply_fix3 (fixS * fixP, valueT * valP, segT seg) { offsetT value = * valP; offsetT newval; unsigned int newimm; unsigned long temp; int sign; char * buf = fixP->fx_where + fixP->fx_frag->fr_literal; assert (fixP->fx_r_type <= BFD_RELOC_UNUSED); /* Note whether this will delete the relocation. */ if (fixP->fx_addsy == 0 && !fixP->fx_pcrel) fixP->fx_done = 1; /* If this symbol is in a different section then we need to leave it for the linker to deal with. Unfortunately, md_pcrel_from can't tell, so we have to undo its effects here. */ if (fixP->fx_pcrel) { if (fixP->fx_addsy != NULL && S_IS_DEFINED (fixP->fx_addsy) && S_GET_SEGMENT (fixP->fx_addsy) != seg) value += md_pcrel_from (fixP); } /* On a 64-bit host, silently truncate 'value' to 32 bits for consistency with the behavior on 32-bit hosts. Remember value for emit_reloc. */ value &= 0xffffffff; value ^= 0x80000000; value -= 0x80000000; *valP = value; fixP->fx_addnumber = value; /* Same treatment for fixP->fx_offset. */ fixP->fx_offset &= 0xffffffff; fixP->fx_offset ^= 0x80000000; fixP->fx_offset -= 0x80000000; switch (fixP->fx_r_type) { case BFD_RELOC_NONE: /* This will need to go in the object file. */ fixP->fx_done = 0; break; case BFD_RELOC_ARM_IMMEDIATE: /* We claim that this fixup has been processed here, even if in fact we generate an error because we do not have a reloc for it, so tc_gen_reloc will reject it. */ fixP->fx_done = 1; if (fixP->fx_addsy && ! S_IS_DEFINED (fixP->fx_addsy)) { as_bad_where (fixP->fx_file, fixP->fx_line, _("undefined symbol %s used as an immediate value"), S_GET_NAME (fixP->fx_addsy)); break; } newimm = encode_arm_immediate (value); temp = md_chars_to_number (buf, INSN_SIZE); /* If the instruction will fail, see if we can fix things up by changing the opcode. */ if (newimm == (unsigned int) FAIL && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL) { as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid constant (%lx) after fixup"), (unsigned long) value); break; } newimm |= (temp & 0xfffff000); md_number_to_chars (buf, (valueT) newimm, INSN_SIZE); break; case BFD_RELOC_ARM_ADRL_IMMEDIATE: { unsigned int highpart = 0; unsigned int newinsn = 0xe1a00000; /* nop. */ newimm = encode_arm_immediate (value); temp = md_chars_to_number (buf, INSN_SIZE); /* If the instruction will fail, see if we can fix things up by changing the opcode. */ if (newimm == (unsigned int) FAIL && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL) { /* No ? OK - try using two ADD instructions to generate the value. */ newimm = validate_immediate_twopart (value, & highpart); /* Yes - then make sure that the second instruction is also an add. */ if (newimm != (unsigned int) FAIL) newinsn = temp; /* Still No ? Try using a negated value. */ else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL) temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT; /* Otherwise - give up. */ else { as_bad_where (fixP->fx_file, fixP->fx_line, _("unable to compute ADRL instructions for PC offset of 0x%lx"), (long) value); break; } /* Replace the first operand in the 2nd instruction (which is the PC) with the destination register. We have already added in the PC in the first instruction and we do not want to do it again. */ newinsn &= ~ 0xf0000; newinsn |= ((newinsn & 0x0f000) << 4); } newimm |= (temp & 0xfffff000); md_number_to_chars (buf, (valueT) newimm, INSN_SIZE); highpart |= (newinsn & 0xfffff000); md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE); } break; case BFD_RELOC_ARM_OFFSET_IMM: case BFD_RELOC_ARM_LITERAL: sign = value >= 0; if (value < 0) value = - value; if (validate_offset_imm (value, 0) == FAIL) { if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid literal constant: pool needs to be closer")); else as_bad_where (fixP->fx_file, fixP->fx_line, _("bad immediate value for offset (%ld)"), (long) value); break; } newval = md_chars_to_number (buf, INSN_SIZE); newval &= 0xff7ff000; newval |= value | (sign ? INDEX_UP : 0); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_OFFSET_IMM8: case BFD_RELOC_ARM_HWLITERAL: sign = value >= 0; if (value < 0) value = - value; if (validate_offset_imm (value, 1) == FAIL) { if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid literal constant: pool needs to be closer")); else as_bad (_("bad immediate value for half-word offset (%ld)"), (long) value); break; } newval = md_chars_to_number (buf, INSN_SIZE); newval &= 0xff7ff0f0; newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_T32_OFFSET_U8: if (value < 0 || value > 1020 || value % 4 != 0) as_bad_where (fixP->fx_file, fixP->fx_line, _("bad immediate value for offset (%ld)"), (long) value); value /= 4; newval = md_chars_to_number (buf+2, THUMB_SIZE); newval &= 0xff00; newval |= value; md_number_to_chars (buf+2, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_T32_OFFSET_IMM: /* This is a complicated relocation used for all varieties of Thumb32 load/store instruction with immediate offset: 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit, *4, optional writeback(W) (doubleword load/store) 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction) 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit Uppercase letters indicate bits that are already encoded at this point. Lowercase letters are our problem. For the second block of instructions, the secondary opcode nybble (bits 8..11) is present, and bit 23 is zero, even if this is a PC-relative operation. */ newval = md_chars_to_number (buf, THUMB_SIZE); newval <<= 16; newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE); if ((newval & 0xf0000000) == 0xe0000000) { /* Doubleword load/store: 8-bit offset, scaled by 4. */ if (value >= 0) newval |= (1 << 23); else value = -value; if (value % 4 != 0) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset not a multiple of 4")); break; } value /= 4; if (value >= 0xff) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~0xff; } else if ((newval & 0x000f0000) == 0x000f0000) { /* PC-relative, 12-bit offset. */ if (value >= 0) newval |= (1 << 23); else value = -value; if (value >= 0xfff) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~0xfff; } else if ((newval & 0x00000100) == 0x00000100) { /* Writeback: 8-bit, +/- offset. */ if (value >= 0) newval |= (1 << 9); else value = -value; if (value >= 0xff) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~0xff; } else if ((newval & 0x00000f00) == 0x00000e00) { /* T-instruction: positive 8-bit offset. */ if (value < 0 || value >= 0xff) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~0xff; newval |= value; } else { /* Positive 12-bit or negative 8-bit offset. */ int limit; if (value >= 0) { newval |= (1 << 23); limit = 0xfff; } else { value = -value; limit = 0xff; } if (value > limit) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~limit; } newval |= value; md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE); break; case BFD_RELOC_ARM_SHIFT_IMM: newval = md_chars_to_number (buf, INSN_SIZE); if (((unsigned long) value) > 32 || (value == 32 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60))) { as_bad_where (fixP->fx_file, fixP->fx_line, _("shift expression is too large")); break; } if (value == 0) /* Shifts of zero must be done as lsl. */ newval &= ~0x60; else if (value == 32) value = 0; newval &= 0xfffff07f; newval |= (value & 0x1f) << 7; md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_T32_IMMEDIATE: /* We claim that this fixup has been processed here, even if in fact we generate an error because we do not have a reloc for it, so tc_gen_reloc will reject it. */ fixP->fx_done = 1; if (fixP->fx_addsy && ! S_IS_DEFINED (fixP->fx_addsy)) { as_bad_where (fixP->fx_file, fixP->fx_line, _("undefined symbol %s used as an immediate value"), S_GET_NAME (fixP->fx_addsy)); break; } newval = md_chars_to_number (buf, THUMB_SIZE); newval <<= 16; newval |= md_chars_to_number (buf+2, THUMB_SIZE); newimm = encode_thumb32_immediate (value); /* FUTURE: Implement analogue of negate_data_op for T32. */ if (newimm == (unsigned int)FAIL) { as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid constant (%lx) after fixup"), (unsigned long) value); break; } newval &= 0xfbff8f00; newval |= (newimm & 0x800) << 15; newval |= (newimm & 0x700) << 4; newval |= (newimm & 0x0ff); md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE); md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE); break; case BFD_RELOC_ARM_SMI: if (((unsigned long) value) > 0xffff) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid smi expression")); newval = md_chars_to_number (buf, INSN_SIZE) & 0xfff000f0; newval |= (value & 0xf) | ((value & 0xfff0) << 4); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_SWI: if (fixP->tc_fix_data != 0) { if (((unsigned long) value) > 0xff) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid swi expression")); newval = md_chars_to_number (buf, THUMB_SIZE) & 0xff00; newval |= value; md_number_to_chars (buf, newval, THUMB_SIZE); } else { if (((unsigned long) value) > 0x00ffffff) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid swi expression")); newval = md_chars_to_number (buf, INSN_SIZE) & 0xff000000; newval |= value; md_number_to_chars (buf, newval, INSN_SIZE); } break; case BFD_RELOC_ARM_MULTI: if (((unsigned long) value) > 0xffff) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid expression in load/store multiple")); newval = value | md_chars_to_number (buf, INSN_SIZE); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_PCREL_BRANCH: newval = md_chars_to_number (buf, INSN_SIZE); /* Sign-extend a 24-bit number. */ #define SEXT24(x) ((((x) & 0xffffff) ^ (~ 0x7fffff)) + 0x800000) #ifdef OBJ_ELF value = fixP->fx_offset; #endif /* We are going to store value (shifted right by two) in the instruction, in a 24 bit, signed field Thus we need to check that none of the top 8 bits of the shifted value (top 7 bits of the unshifted, unsigned value) are set, or that they are all set. */ if ((value & ~ ((offsetT) 0x1ffffff)) != 0 && ((value & ~ ((offsetT) 0x1ffffff)) != ~ ((offsetT) 0x1ffffff))) { #ifdef OBJ_ELF /* Normally we would be stuck at this point, since we cannot store the absolute address that is the destination of the branch in the 24 bits of the branch instruction. If however, we happen to know that the destination of the branch is in the same section as the branch instruction itself, then we can compute the relocation for ourselves and not have to bother the linker with it. FIXME: The test for OBJ_ELF is only here because I have not worked out how to do this for OBJ_COFF. */ if (fixP->fx_addsy != NULL && S_IS_DEFINED (fixP->fx_addsy) && S_GET_SEGMENT (fixP->fx_addsy) == seg) { /* Get pc relative value to go into the branch. */ value = * valP; /* Permit a backward branch provided that enough bits are set. Allow a forwards branch, provided that enough bits are clear. */ if ( (value & ~ ((offsetT) 0x1ffffff)) == ~ ((offsetT) 0x1ffffff) || (value & ~ ((offsetT) 0x1ffffff)) == 0) fixP->fx_done = 1; } if (! fixP->fx_done) #endif as_bad_where (fixP->fx_file, fixP->fx_line, _("GAS can't handle same-section branch dest >= 0x04000000")); } value >>= 2; value += SEXT24 (newval); if ( (value & ~ ((offsetT) 0xffffff)) != 0 && ((value & ~ ((offsetT) 0xffffff)) != ~ ((offsetT) 0xffffff))) as_bad_where (fixP->fx_file, fixP->fx_line, _("out of range branch")); if (seg->use_rela_p && !fixP->fx_done) { /* Must unshift the value before storing it in the addend. */ value <<= 2; #ifdef OBJ_ELF fixP->fx_offset = value; #endif fixP->fx_addnumber = value; newval = newval & 0xff000000; } else newval = (value & 0x00ffffff) | (newval & 0xff000000); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_PCREL_BLX: { offsetT hbit; newval = md_chars_to_number (buf, INSN_SIZE); #ifdef OBJ_ELF value = fixP->fx_offset; #endif hbit = (value >> 1) & 1; value = (value >> 2) & 0x00ffffff; value = (value + (newval & 0x00ffffff)) & 0x00ffffff; if (seg->use_rela_p && !fixP->fx_done) { /* Must sign-extend and unshift the value before storing it in the addend. */ value = SEXT24 (value); value = (value << 2) | hbit; #ifdef OBJ_ELF fixP->fx_offset = value; #endif fixP->fx_addnumber = value; newval = newval & 0xfe000000; } else newval = value | (newval & 0xfe000000) | (hbit << 24); md_number_to_chars (buf, newval, INSN_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CZB */ newval = md_chars_to_number (buf, THUMB_SIZE); { addressT diff = ((newval & 0x00f8) >> 2) | (newval & 0x0200) >> 3; /* This one does not have the offset encoded in the pattern. */ value = value + diff - 4; /* CZB can only branch forward. */ if (value & ~0x7e) as_bad_where (fixP->fx_file, fixP->fx_line, _("branch out of range")); newval &= 0xfd07; if (seg->use_rela_p && !fixP->fx_done) { #ifdef OBJ_ELF fixP->fx_offset = value; #endif fixP->fx_addnumber = value; } else newval |= ((value & 0x2e) << 2) | ((value & 0x40) << 3); } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */ newval = md_chars_to_number (buf, THUMB_SIZE); { addressT diff = (newval & 0xff) << 1; if (diff & 0x100) diff |= ~0xff; value += diff; if ((value & ~0xff) && ((value & ~0xff) != ~0xff)) as_bad_where (fixP->fx_file, fixP->fx_line, _("branch out of range")); if (seg->use_rela_p && !fixP->fx_done) { #ifdef OBJ_ELF fixP->fx_offset = value; #endif fixP->fx_addnumber = value; newval = newval & 0xff00; } else newval = (newval & 0xff00) | ((value & 0x1ff) >> 1); } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */ newval = md_chars_to_number (buf, THUMB_SIZE); { addressT diff = (newval & 0x7ff) << 1; if (diff & 0x800) diff |= ~0x7ff; value += diff; if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff)) as_bad_where (fixP->fx_file, fixP->fx_line, _("branch out of range")); if (seg->use_rela_p && !fixP->fx_done) { #ifdef OBJ_ELF fixP->fx_offset = value; #endif fixP->fx_addnumber = value; newval = newval & 0xf800; } else newval = (newval & 0xf800) | ((value & 0xfff) >> 1); } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_THUMB_PCREL_BRANCH20: { offsetT newval2; addressT diff, S, J1, J2, lo, hi; newval = md_chars_to_number (buf, THUMB_SIZE); newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); S = !(newval & 0x0400); /* flipped - 0=negative */ hi = (newval & 0x003f); J1 = (newval2 & 0x2000) >> 13; J2 = (newval2 & 0x0800) >> 11; lo = (newval2 & 0x07ff); diff = ((S << 20) | (J2 << 19) | (J1 << 18) | (hi << 12) | (lo << 1)); diff -= (1 << 20); /* sign extend */ value += diff; if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff)) as_bad_where (fixP->fx_file, fixP->fx_line, _("conditional branch out of range")); newval = newval & 0xfbc0; newval2 = newval2 & 0xd000; if (seg->use_rela_p && !fixP->fx_done) { #ifdef OBJ_ELF fixP->fx_offset = value; #endif fixP->fx_addnumber = value; } else { S = (value & 0x00100000) >> 20; J2 = (value & 0x00080000) >> 19; J1 = (value & 0x00040000) >> 18; hi = (value & 0x0003f000) >> 12; lo = (value & 0x00000ffe) >> 1; newval = newval | (S << 10) | hi; newval2 = newval2 | (J1 << 13) | (J2 << 11) | lo; } md_number_to_chars (buf, newval, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BLX: case BFD_RELOC_THUMB_PCREL_BRANCH23: { offsetT newval2; addressT diff; newval = md_chars_to_number (buf, THUMB_SIZE); newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); diff = ((newval & 0x7ff) << 12) | ((newval2 & 0x7ff) << 1); if (diff & 0x400000) diff |= ~0x3fffff; #ifdef OBJ_ELF value = fixP->fx_offset; #endif value += diff; if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff)) as_bad_where (fixP->fx_file, fixP->fx_line, _("branch with link out of range")); if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX) /* For a BLX instruction, make sure that the relocation is rounded up to a word boundary. This follows the semantics of the instruction which specifies that bit 1 of the target address will come from bit 1 of the base address. */ value = (value + 1) & ~ 1; if (seg->use_rela_p && !fixP->fx_done) { #ifdef OBJ_ELF fixP->fx_offset = value; #endif fixP->fx_addnumber = value; newval = newval & 0xf800; newval2 = newval2 & 0xf800; } else { newval = (newval & 0xf800) | ((value & 0x7fffff) >> 12); newval2 = (newval2 & 0xf800) | ((value & 0xfff) >> 1); } md_number_to_chars (buf, newval, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE); } break; case BFD_RELOC_8: if (seg->use_rela_p && !fixP->fx_done) break; if (fixP->fx_done || fixP->fx_pcrel) md_number_to_chars (buf, value, 1); #ifdef OBJ_ELF else { value = fixP->fx_offset; md_number_to_chars (buf, value, 1); } #endif break; case BFD_RELOC_THUMB_PCREL_BRANCH25: { offsetT newval2; addressT diff, S, I1, I2, lo, hi; newval = md_chars_to_number (buf, THUMB_SIZE); newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); S = (newval & 0x0400) >> 10; hi = (newval & 0x03ff); I1 = (newval2 & 0x2000) >> 13; I2 = (newval2 & 0x0800) >> 11; lo = (newval2 & 0x07ff); I1 = !(I1 ^ S); I2 = !(I2 ^ S); S = !S; diff = ((S << 24) | (I1 << 23) | (I2 << 22) | (hi << 12) | (lo << 1)); diff -= (1 << 24); /* sign extend */ value += diff; if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff)) as_bad_where (fixP->fx_file, fixP->fx_line, _("branch out of range")); newval = newval & 0xf800; newval2 = newval2 & 0xd000; if (seg->use_rela_p && !fixP->fx_done) { #ifdef OBJ_ELF fixP->fx_offset = value; #endif fixP->fx_addnumber = value; } else { S = (value & 0x01000000) >> 24; I1 = (value & 0x00800000) >> 23; I2 = (value & 0x00400000) >> 22; hi = (value & 0x003ff000) >> 12; lo = (value & 0x00000ffe) >> 1; I1 = !(I1 ^ S); I2 = !(I2 ^ S); newval = newval | (S << 10) | hi; newval2 = newval2 | (I1 << 13) | (I2 << 11) | lo; } md_number_to_chars (buf, newval, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE); } break; case BFD_RELOC_16: if (seg->use_rela_p && !fixP->fx_done) break; if (fixP->fx_done || fixP->fx_pcrel) md_number_to_chars (buf, value, 2); #ifdef OBJ_ELF else { value = fixP->fx_offset; md_number_to_chars (buf, value, 2); } #endif break; #ifdef OBJ_ELF case BFD_RELOC_ARM_TLS_GD32: case BFD_RELOC_ARM_TLS_LE32: case BFD_RELOC_ARM_TLS_IE32: case BFD_RELOC_ARM_TLS_LDM32: case BFD_RELOC_ARM_TLS_LDO32: S_SET_THREAD_LOCAL (fixP->fx_addsy); /* fall through */ case BFD_RELOC_ARM_GOT32: case BFD_RELOC_ARM_GOTOFF: case BFD_RELOC_ARM_TARGET2: if (seg->use_rela_p && !fixP->fx_done) break; md_number_to_chars (buf, 0, 4); break; #endif case BFD_RELOC_RVA: case BFD_RELOC_32: case BFD_RELOC_ARM_TARGET1: case BFD_RELOC_ARM_ROSEGREL32: case BFD_RELOC_ARM_SBREL32: case BFD_RELOC_32_PCREL: if (seg->use_rela_p && !fixP->fx_done) break; if (fixP->fx_done || fixP->fx_pcrel) md_number_to_chars (buf, value, 4); #ifdef OBJ_ELF else { value = fixP->fx_offset; md_number_to_chars (buf, value, 4); } #endif break; #ifdef OBJ_ELF case BFD_RELOC_ARM_PREL31: if (fixP->fx_done || fixP->fx_pcrel) { newval = md_chars_to_number (buf, 4) & 0x80000000; if ((value ^ (value >> 1)) & 0x40000000) { as_bad_where (fixP->fx_file, fixP->fx_line, _("rel31 relocation overflow")); } newval |= value & 0x7fffffff; md_number_to_chars (buf, newval, 4); } break; case BFD_RELOC_ARM_PLT32: /* It appears the instruction is fully prepared at this point. */ break; #endif case BFD_RELOC_ARM_CP_OFF_IMM: if (value < -1023 || value > 1023 || (value & 3)) as_bad_where (fixP->fx_file, fixP->fx_line, _("co-processor offset out of range")); cp_off_common: sign = value >= 0; if (value < 0) value = -value; newval = md_chars_to_number (buf, INSN_SIZE) & 0xff7fff00; newval |= (value >> 2) | (sign ? INDEX_UP : 0); if (value == 0) newval &= ~WRITE_BACK; md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_CP_OFF_IMM_S2: if (value < -255 || value > 255) as_bad_where (fixP->fx_file, fixP->fx_line, _("co-processor offset out of range")); goto cp_off_common; case BFD_RELOC_ARM_THUMB_OFFSET: newval = md_chars_to_number (buf, THUMB_SIZE); /* Exactly what ranges, and where the offset is inserted depends on the type of instruction, we can establish this from the top 4 bits. */ switch (newval >> 12) { case 4: /* PC load. */ /* Thumb PC loads are somewhat odd, bit 1 of the PC is forced to zero for these loads; md_pcrel_from has already compensated for this. */ if (value & 3) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, target not word aligned (0x%08lX)"), (((unsigned int) fixP->fx_frag->fr_address + (unsigned int) fixP->fx_where) & ~3) + value); if (value & ~0x3fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value >> 2; break; case 9: /* SP load/store. */ if (value & ~0x3fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value >> 2; break; case 6: /* Word load/store. */ if (value & ~0x7c) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value << 4; /* 6 - 2. */ break; case 7: /* Byte load/store. */ if (value & ~0x1f) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value << 6; break; case 8: /* Halfword load/store. */ if (value & ~0x3e) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value << 5; /* 6 - 1. */ break; default: as_bad_where (fixP->fx_file, fixP->fx_line, "Unable to process relocation for thumb opcode: %lx", (unsigned long) newval); break; } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_ADD: /* This is a complicated relocation, since we use it for all of the following immediate relocations: 3bit ADD/SUB 8bit ADD/SUB 9bit ADD/SUB SP word-aligned 10bit ADD PC/SP word-aligned The type of instruction being processed is encoded in the instruction field: 0x8000 SUB 0x00F0 Rd 0x000F Rs */ newval = md_chars_to_number (buf, THUMB_SIZE); { int rd = (newval >> 4) & 0xf; int rs = newval & 0xf; int subtract = !!(newval & 0x8000); /* Check for HI regs, only very restricted cases allowed: Adjusting SP, and using PC or SP to get an address. */ if ((rd > 7 && (rd != REG_SP || rs != REG_SP)) || (rs > 7 && rs != REG_SP && rs != REG_PC)) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid Hi register with immediate")); /* If value is negative, choose the opposite instruction. */ if (value < 0) { value = -value; subtract = !subtract; if (value < 0) as_bad_where (fixP->fx_file, fixP->fx_line, _("immediate value out of range")); } if (rd == REG_SP) { if (value & ~0x1fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid immediate for stack address calculation")); newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST; newval |= value >> 2; } else if (rs == REG_PC || rs == REG_SP) { if (subtract || value & ~0x3fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid immediate for address calculation (value = 0x%08lX)"), (unsigned long) value); newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP); newval |= rd << 8; newval |= value >> 2; } else if (rs == rd) { if (value & ~0xff) as_bad_where (fixP->fx_file, fixP->fx_line, _("immediate value out of range")); newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8; newval |= (rd << 8) | value; } else { if (value & ~0x7) as_bad_where (fixP->fx_file, fixP->fx_line, _("immediate value out of range")); newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3; newval |= rd | (rs << 3) | (value << 6); } } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_IMM: newval = md_chars_to_number (buf, THUMB_SIZE); if (value < 0 || value > 255) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid immediate: %ld is too large"), (long) value); newval |= value; md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_SHIFT: /* 5bit shift value (0..32). LSL cannot take 32. */ newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f; temp = newval & 0xf800; if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I)) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid shift value: %ld"), (long) value); /* Shifts of zero must be encoded as LSL. */ if (value == 0) newval = (newval & 0x003f) | T_OPCODE_LSL_I; /* Shifts of 32 are encoded as zero. */ else if (value == 32) value = 0; newval |= value << 6; md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_VTABLE_INHERIT: case BFD_RELOC_VTABLE_ENTRY: fixP->fx_done = 0; return; case BFD_RELOC_UNUSED: default: as_bad_where (fixP->fx_file, fixP->fx_line, _("bad relocation fixup type (%d)"), fixP->fx_r_type); } } /* Translate internal representation of relocation info to BFD target format. */ arelent * tc_gen_reloc (asection * section ATTRIBUTE_UNUSED, fixS * fixp) { arelent * reloc; bfd_reloc_code_real_type code; reloc = xmalloc (sizeof (arelent)); reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *)); *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; /* @@ Why fx_addnumber sometimes and fx_offset other times? */ #ifndef OBJ_ELF if (fixp->fx_pcrel == 0) reloc->addend = fixp->fx_offset; else reloc->addend = fixp->fx_offset = reloc->address; #else /* OBJ_ELF */ reloc->addend = fixp->fx_offset; #endif switch (fixp->fx_r_type) { case BFD_RELOC_8: if (fixp->fx_pcrel) { code = BFD_RELOC_8_PCREL; break; } case BFD_RELOC_16: if (fixp->fx_pcrel) { code = BFD_RELOC_16_PCREL; break; } case BFD_RELOC_32: if (fixp->fx_pcrel) { code = BFD_RELOC_32_PCREL; break; } case BFD_RELOC_NONE: case BFD_RELOC_ARM_PCREL_BRANCH: case BFD_RELOC_ARM_PCREL_BLX: case BFD_RELOC_RVA: case BFD_RELOC_THUMB_PCREL_BRANCH7: case BFD_RELOC_THUMB_PCREL_BRANCH9: case BFD_RELOC_THUMB_PCREL_BRANCH12: case BFD_RELOC_THUMB_PCREL_BRANCH20: case BFD_RELOC_THUMB_PCREL_BRANCH23: case BFD_RELOC_THUMB_PCREL_BRANCH25: case BFD_RELOC_THUMB_PCREL_BLX: case BFD_RELOC_VTABLE_ENTRY: case BFD_RELOC_VTABLE_INHERIT: code = fixp->fx_r_type; break; case BFD_RELOC_ARM_LITERAL: case BFD_RELOC_ARM_HWLITERAL: /* If this is called then the a literal has been referenced across a section boundary. */ as_bad_where (fixp->fx_file, fixp->fx_line, _("literal referenced across section boundary")); return NULL; #ifdef OBJ_ELF case BFD_RELOC_ARM_GOT32: case BFD_RELOC_ARM_GOTOFF: case BFD_RELOC_ARM_PLT32: case BFD_RELOC_ARM_TARGET1: case BFD_RELOC_ARM_ROSEGREL32: case BFD_RELOC_ARM_SBREL32: case BFD_RELOC_ARM_PREL31: case BFD_RELOC_ARM_TARGET2: case BFD_RELOC_ARM_TLS_LE32: case BFD_RELOC_ARM_TLS_LDO32: code = fixp->fx_r_type; break; case BFD_RELOC_ARM_TLS_GD32: case BFD_RELOC_ARM_TLS_IE32: case BFD_RELOC_ARM_TLS_LDM32: /* BFD will include the symbol's address in the addend. But we don't want that, so subtract it out again here. */ if (!S_IS_COMMON (fixp->fx_addsy)) reloc->addend -= (*reloc->sym_ptr_ptr)->value; code = fixp->fx_r_type; break; #endif case BFD_RELOC_ARM_IMMEDIATE: as_bad_where (fixp->fx_file, fixp->fx_line, _("internal relocation (type: IMMEDIATE) not fixed up")); return NULL; case BFD_RELOC_ARM_ADRL_IMMEDIATE: as_bad_where (fixp->fx_file, fixp->fx_line, _("ADRL used for a symbol not defined in the same file")); return NULL; case BFD_RELOC_ARM_OFFSET_IMM: if (fixp->fx_addsy != NULL && !S_IS_DEFINED (fixp->fx_addsy) && S_IS_LOCAL (fixp->fx_addsy)) { as_bad_where (fixp->fx_file, fixp->fx_line, _("undefined local label `%s'"), S_GET_NAME (fixp->fx_addsy)); return NULL; } as_bad_where (fixp->fx_file, fixp->fx_line, _("internal_relocation (type: OFFSET_IMM) not fixed up")); return NULL; default: { char * type; switch (fixp->fx_r_type) { case BFD_RELOC_NONE: type = "NONE"; break; case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break; case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break; case BFD_RELOC_ARM_SMI: type = "SMI"; break; case BFD_RELOC_ARM_SWI: type = "SWI"; break; case BFD_RELOC_ARM_MULTI: type = "MULTI"; break; case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break; case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break; case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break; case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break; case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break; default: type = _(""); break; } as_bad_where (fixp->fx_file, fixp->fx_line, _("cannot represent %s relocation in this object file format"), type); return NULL; } } #ifdef OBJ_ELF if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32) && GOT_symbol && fixp->fx_addsy == GOT_symbol) { code = BFD_RELOC_ARM_GOTPC; reloc->addend = fixp->fx_offset = reloc->address; } #endif reloc->howto = bfd_reloc_type_lookup (stdoutput, code); if (reloc->howto == NULL) { as_bad_where (fixp->fx_file, fixp->fx_line, _("cannot represent %s relocation in this object file format"), bfd_get_reloc_code_name (code)); return NULL; } /* HACK: Since arm ELF uses Rel instead of Rela, encode the vtable entry to be used in the relocation's section offset. */ if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY) reloc->address = fixp->fx_offset; return reloc; } /* This fix_new is called by cons via TC_CONS_FIX_NEW. */ void cons_fix_new_arm (fragS * frag, int where, int size, expressionS * exp) { bfd_reloc_code_real_type type; int pcrel = 0; /* Pick a reloc. FIXME: @@ Should look at CPU word size. */ switch (size) { case 1: type = BFD_RELOC_8; break; case 2: type = BFD_RELOC_16; break; case 4: default: type = BFD_RELOC_32; break; case 8: type = BFD_RELOC_64; break; } fix_new_exp (frag, where, (int) size, exp, pcrel, type); } #if defined OBJ_COFF || defined OBJ_ELF void arm_validate_fix (fixS * fixP) { /* If the destination of the branch is a defined symbol which does not have the THUMB_FUNC attribute, then we must be calling a function which has the (interfacearm) attribute. We look for the Thumb entry point to that function and change the branch to refer to that function instead. */ if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23 && fixP->fx_addsy != NULL && S_IS_DEFINED (fixP->fx_addsy) && ! THUMB_IS_FUNC (fixP->fx_addsy)) { fixP->fx_addsy = find_real_start (fixP->fx_addsy); } } #endif int arm_force_relocation (struct fix * fixp) { #if defined (OBJ_COFF) && defined (TE_PE) if (fixp->fx_r_type == BFD_RELOC_RVA) return 1; #endif #ifdef OBJ_ELF if (fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BRANCH || fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BLX || fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX || fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23) return 1; #endif /* Resolve these relocations even if the symbol is extern or weak. */ if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE) return 0; return generic_force_reloc (fixp); } #ifdef OBJ_COFF /* This is a little hack to help the gas/arm/adrl.s test. It prevents local labels from being added to the output symbol table when they are used with the ADRL pseudo op. The ADRL relocation should always be resolved before the binbary is emitted, so it is safe to say that it is adjustable. */ bfd_boolean arm_fix_adjustable (fixS * fixP) { if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE) return 1; return 0; } #endif #ifdef OBJ_ELF /* Relocations against Thumb function names must be left unadjusted, so that the linker can use this information to correctly set the bottom bit of their addresses. The MIPS version of this function also prevents relocations that are mips-16 specific, but I do not know why it does this. FIXME: There is one other problem that ought to be addressed here, but which currently is not: Taking the address of a label (rather than a function) and then later jumping to that address. Such addresses also ought to have their bottom bit set (assuming that they reside in Thumb code), but at the moment they will not. */ bfd_boolean arm_fix_adjustable (fixS * fixP) { if (fixP->fx_addsy == NULL) return 1; if (THUMB_IS_FUNC (fixP->fx_addsy) && fixP->fx_subsy == NULL) return 0; /* We need the symbol name for the VTABLE entries. */ if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY) return 0; /* Don't allow symbols to be discarded on GOT related relocs. */ if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2) return 0; return 1; } const char * elf32_arm_target_format (void) { #ifdef TE_SYMBIAN return (target_big_endian ? "elf32-bigarm-symbian" : "elf32-littlearm-symbian"); #elif defined (TE_VXWORKS) return (target_big_endian ? "elf32-bigarm-vxworks" : "elf32-littlearm-vxworks"); #else if (target_big_endian) return "elf32-bigarm"; else return "elf32-littlearm"; #endif } void armelf_frob_symbol (symbolS * symp, int * puntp) { elf_frob_symbol (symp, puntp); } #endif /* MD interface: Finalization. */ /* A good place to do this, although this was probably not intended for this kind of use. We need to dump the literal pool before references are made to a null symbol pointer. */ void arm_cleanup (void) { literal_pool * pool; for (pool = list_of_pools; pool; pool = pool->next) { /* Put it at the end of the relevent section. */ subseg_set (pool->section, pool->sub_section); #ifdef OBJ_ELF arm_elf_change_section (); #endif s_ltorg (0); } } /* Adjust the symbol table. This marks Thumb symbols as distinct from ARM ones. */ void arm_adjust_symtab (void) { #ifdef OBJ_COFF symbolS * sym; for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym)) { if (ARM_IS_THUMB (sym)) { if (THUMB_IS_FUNC (sym)) { /* Mark the symbol as a Thumb function. */ if ( S_GET_STORAGE_CLASS (sym) == C_STAT || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */ S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC); else if (S_GET_STORAGE_CLASS (sym) == C_EXT) S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC); else as_bad (_("%s: unexpected function type: %d"), S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym)); } else switch (S_GET_STORAGE_CLASS (sym)) { case C_EXT: S_SET_STORAGE_CLASS (sym, C_THUMBEXT); break; case C_STAT: S_SET_STORAGE_CLASS (sym, C_THUMBSTAT); break; case C_LABEL: S_SET_STORAGE_CLASS (sym, C_THUMBLABEL); break; default: /* Do nothing. */ break; } } if (ARM_IS_INTERWORK (sym)) coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF; } #endif #ifdef OBJ_ELF symbolS * sym; char bind; for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym)) { if (ARM_IS_THUMB (sym)) { elf_symbol_type * elf_sym; elf_sym = elf_symbol (symbol_get_bfdsym (sym)); bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info); if (! bfd_is_arm_mapping_symbol_name (elf_sym->symbol.name)) { /* If it's a .thumb_func, declare it as so, otherwise tag label as .code 16. */ if (THUMB_IS_FUNC (sym)) elf_sym->internal_elf_sym.st_info = ELF_ST_INFO (bind, STT_ARM_TFUNC); else elf_sym->internal_elf_sym.st_info = ELF_ST_INFO (bind, STT_ARM_16BIT); } } } #endif } /* MD interface: Initialization. */ static void set_constant_flonums (void) { int i; for (i = 0; i < NUM_FLOAT_VALS; i++) if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL) abort (); } void md_begin (void) { unsigned mach; unsigned int i; if ( (arm_ops_hsh = hash_new ()) == NULL || (arm_cond_hsh = hash_new ()) == NULL || (arm_shift_hsh = hash_new ()) == NULL || (arm_psr_hsh = hash_new ()) == NULL || (arm_reg_hsh = hash_new ()) == NULL || (arm_reloc_hsh = hash_new ()) == NULL) as_fatal (_("virtual memory exhausted")); for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++) hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i)); for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++) hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i)); for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++) hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i)); for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++) hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i)); for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++) hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i)); #ifdef OBJ_ELF for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++) hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i)); #endif set_constant_flonums (); /* Set the cpu variant based on the command-line options. We prefer -mcpu= over -march= if both are set (as for GCC); and we prefer -mfpu= over any other way of setting the floating point unit. Use of legacy options with new options are faulted. */ if (legacy_cpu != -1) { if (mcpu_cpu_opt != -1 || march_cpu_opt != -1) as_bad (_("use of old and new-style options to set CPU type")); mcpu_cpu_opt = legacy_cpu; } else if (mcpu_cpu_opt == -1) mcpu_cpu_opt = march_cpu_opt; if (legacy_fpu != -1) { if (mfpu_opt != -1) as_bad (_("use of old and new-style options to set FPU type")); mfpu_opt = legacy_fpu; } else if (mfpu_opt == -1) { #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS)) /* Some environments specify a default FPU. If they don't, infer it from the processor. */ if (mcpu_fpu_opt != -1) mfpu_opt = mcpu_fpu_opt; else mfpu_opt = march_fpu_opt; #else mfpu_opt = FPU_DEFAULT; #endif } if (mfpu_opt == -1) { if (mcpu_cpu_opt == -1) mfpu_opt = FPU_DEFAULT; else if (mcpu_cpu_opt & ARM_EXT_V5) mfpu_opt = FPU_ARCH_VFP_V2; else mfpu_opt = FPU_ARCH_FPA; } if (mcpu_cpu_opt == -1) mcpu_cpu_opt = CPU_DEFAULT; cpu_variant = mcpu_cpu_opt | mfpu_opt; #if defined OBJ_COFF || defined OBJ_ELF { unsigned int flags = 0; #if defined OBJ_ELF flags = meabi_flags; switch (meabi_flags) { case EF_ARM_EABI_UNKNOWN: #endif /* Set the flags in the private structure. */ if (uses_apcs_26) flags |= F_APCS26; if (support_interwork) flags |= F_INTERWORK; if (uses_apcs_float) flags |= F_APCS_FLOAT; if (pic_code) flags |= F_PIC; if ((cpu_variant & FPU_ANY) == FPU_NONE || (cpu_variant & FPU_ANY) == FPU_ARCH_VFP) /* VFP layout only. */ flags |= F_SOFT_FLOAT; switch (mfloat_abi_opt) { case ARM_FLOAT_ABI_SOFT: case ARM_FLOAT_ABI_SOFTFP: flags |= F_SOFT_FLOAT; break; case ARM_FLOAT_ABI_HARD: if (flags & F_SOFT_FLOAT) as_bad (_("hard-float conflicts with specified fpu")); break; } /* Using VFP conventions (even if soft-float). */ if (cpu_variant & FPU_VFP_EXT_NONE) flags |= F_VFP_FLOAT; #if defined OBJ_ELF if (cpu_variant & FPU_ARCH_MAVERICK) flags |= EF_ARM_MAVERICK_FLOAT; break; case EF_ARM_EABI_VER4: /* No additional flags to set. */ break; default: abort (); } #endif bfd_set_private_flags (stdoutput, flags); /* We have run out flags in the COFF header to encode the status of ATPCS support, so instead we create a dummy, empty, debug section called .arm.atpcs. */ if (atpcs) { asection * sec; sec = bfd_make_section (stdoutput, ".arm.atpcs"); if (sec != NULL) { bfd_set_section_flags (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */); bfd_set_section_size (stdoutput, sec, 0); bfd_set_section_contents (stdoutput, sec, NULL, 0, 0); } } } #endif /* Record the CPU type as well. */ switch (cpu_variant & ARM_CPU_MASK) { case ARM_2: mach = bfd_mach_arm_2; break; case ARM_3: /* Also ARM_250. */ mach = bfd_mach_arm_2a; break; case ARM_6: /* Also ARM_7. */ mach = bfd_mach_arm_3; break; default: mach = bfd_mach_arm_unknown; break; } /* Catch special cases. */ if (cpu_variant & ARM_CEXT_IWMMXT) mach = bfd_mach_arm_iWMMXt; else if (cpu_variant & ARM_CEXT_XSCALE) mach = bfd_mach_arm_XScale; else if (cpu_variant & ARM_CEXT_MAVERICK) mach = bfd_mach_arm_ep9312; else if (cpu_variant & ARM_EXT_V5E) mach = bfd_mach_arm_5TE; else if (cpu_variant & ARM_EXT_V5) { if (cpu_variant & ARM_EXT_V4T) mach = bfd_mach_arm_5T; else mach = bfd_mach_arm_5; } else if (cpu_variant & ARM_EXT_V4) { if (cpu_variant & ARM_EXT_V4T) mach = bfd_mach_arm_4T; else mach = bfd_mach_arm_4; } else if (cpu_variant & ARM_EXT_V3M) mach = bfd_mach_arm_3M; bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach); } /* Command line processing. */ /* md_parse_option Invocation line includes a switch not recognized by the base assembler. See if it's a processor-specific option. This routine is somewhat complicated by the need for backwards compatibility (since older releases of gcc can't be changed). The new options try to make the interface as compatible as possible with GCC. New options (supported) are: -mcpu= Assemble for selected processor -march= Assemble for selected architecture -mfpu= Assemble for selected FPU. -EB/-mbig-endian Big-endian -EL/-mlittle-endian Little-endian -k Generate PIC code -mthumb Start in Thumb mode -mthumb-interwork Code supports ARM/Thumb interworking For now we will also provide support for: -mapcs-32 32-bit Program counter -mapcs-26 26-bit Program counter -macps-float Floats passed in FP registers -mapcs-reentrant Reentrant code -matpcs (sometime these will probably be replaced with -mapcs= and -matpcs=) The remaining options are only supported for back-wards compatibility. Cpu variants, the arm part is optional: -m[arm]1 Currently not supported. -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor -m[arm]3 Arm 3 processor -m[arm]6[xx], Arm 6 processors -m[arm]7[xx][t][[d]m] Arm 7 processors -m[arm]8[10] Arm 8 processors -m[arm]9[20][tdmi] Arm 9 processors -mstrongarm[110[0]] StrongARM processors -mxscale XScale processors -m[arm]v[2345[t[e]]] Arm architectures -mall All (except the ARM1) FP variants: -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions -mfpe-old (No float load/store multiples) -mvfpxd VFP Single precision -mvfp All VFP -mno-fpu Disable all floating point instructions The following CPU names are recognized: arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620, arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700, arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c, arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9, arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e, arm10t arm10e, arm1020t, arm1020e, arm10200e, strongarm, strongarm110, strongarm1100, strongarm1110, xscale. */ const char * md_shortopts = "m:k"; #ifdef ARM_BI_ENDIAN #define OPTION_EB (OPTION_MD_BASE + 0) #define OPTION_EL (OPTION_MD_BASE + 1) #else #if TARGET_BYTES_BIG_ENDIAN #define OPTION_EB (OPTION_MD_BASE + 0) #else #define OPTION_EL (OPTION_MD_BASE + 1) #endif #endif struct option md_longopts[] = { #ifdef OPTION_EB {"EB", no_argument, NULL, OPTION_EB}, #endif #ifdef OPTION_EL {"EL", no_argument, NULL, OPTION_EL}, #endif {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof (md_longopts); struct arm_option_table { char *option; /* Option name to match. */ char *help; /* Help information. */ int *var; /* Variable to change. */ int value; /* What to change it to. */ char *deprecated; /* If non-null, print this message. */ }; struct arm_option_table arm_opts[] = { {"k", N_("generate PIC code"), &pic_code, 1, NULL}, {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL}, {"mthumb-interwork", N_("support ARM/Thumb interworking"), &support_interwork, 1, NULL}, {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL}, {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL}, {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float, 1, NULL}, {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL}, {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL}, {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL}, {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0, NULL}, /* These are recognized by the assembler, but have no affect on code. */ {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL}, {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL}, /* DON'T add any new processors to this list -- we want the whole list to go away... Add them to the processors table instead. */ {"marm1", NULL, &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")}, {"m1", NULL, &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")}, {"marm2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")}, {"m2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")}, {"marm250", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")}, {"m250", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")}, {"marm3", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")}, {"m3", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")}, {"marm6", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")}, {"m6", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")}, {"marm600", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")}, {"m600", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")}, {"marm610", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")}, {"m610", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")}, {"marm620", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")}, {"m620", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")}, {"marm7", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")}, {"m7", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")}, {"marm70", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")}, {"m70", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")}, {"marm700", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")}, {"m700", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")}, {"marm700i", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")}, {"m700i", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")}, {"marm710", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")}, {"m710", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")}, {"marm710c", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")}, {"m710c", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")}, {"marm720", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")}, {"m720", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")}, {"marm7d", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")}, {"m7d", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")}, {"marm7di", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")}, {"m7di", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")}, {"marm7m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")}, {"m7m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")}, {"marm7dm", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")}, {"m7dm", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")}, {"marm7dmi", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")}, {"m7dmi", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")}, {"marm7100", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")}, {"m7100", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")}, {"marm7500", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")}, {"m7500", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")}, {"marm7500fe", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")}, {"m7500fe", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")}, {"marm7t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")}, {"m7t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")}, {"marm7tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")}, {"m7tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")}, {"marm710t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")}, {"m710t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")}, {"marm720t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")}, {"m720t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")}, {"marm740t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")}, {"m740t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")}, {"marm8", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")}, {"m8", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")}, {"marm810", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")}, {"m810", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")}, {"marm9", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")}, {"m9", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")}, {"marm9tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")}, {"m9tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")}, {"marm920", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")}, {"m920", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")}, {"marm940", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")}, {"m940", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")}, {"mstrongarm", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")}, {"mstrongarm110", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm110")}, {"mstrongarm1100", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm1100")}, {"mstrongarm1110", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm1110")}, {"mxscale", NULL, &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")}, {"miwmmxt", NULL, &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")}, {"mall", NULL, &legacy_cpu, ARM_ANY, N_("use -mcpu=all")}, /* Architecture variants -- don't add any more to this list either. */ {"mv2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")}, {"marmv2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")}, {"mv2a", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")}, {"marmv2a", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")}, {"mv3", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")}, {"marmv3", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")}, {"mv3m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")}, {"marmv3m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")}, {"mv4", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")}, {"marmv4", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")}, {"mv4t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")}, {"marmv4t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")}, {"mv5", NULL, &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")}, {"marmv5", NULL, &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")}, {"mv5t", NULL, &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")}, {"marmv5t", NULL, &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")}, {"mv5e", NULL, &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")}, {"marmv5e", NULL, &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")}, /* Floating point variants -- don't add any more to this list either. */ {"mfpe-old", NULL, &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")}, {"mfpa10", NULL, &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")}, {"mfpa11", NULL, &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")}, {"mno-fpu", NULL, &legacy_fpu, 0, N_("use either -mfpu=softfpa or -mfpu=softvfp")}, {NULL, NULL, NULL, 0, NULL} }; struct arm_cpu_option_table { char *name; int value; /* For some CPUs we assume an FPU unless the user explicitly sets -mfpu=... */ int default_fpu; }; /* This list should, at a minimum, contain all the cpu names recognized by GCC. */ static struct arm_cpu_option_table arm_cpus[] = { {"all", ARM_ANY, FPU_ARCH_FPA}, {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA}, {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA}, {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA}, {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA}, {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA}, {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA}, {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA}, {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA}, {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA}, {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA}, {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA}, {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA}, {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA}, {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA}, {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA}, {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA}, {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA}, {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA}, {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA}, {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA}, {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA}, {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA}, {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA}, {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA}, {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA}, {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA}, {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA}, /* For V5 or later processors we default to using VFP; but the user should really set the FPU type explicitly. */ {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2}, {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2}, {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2}, {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2}, {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2}, {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2}, {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2}, {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2}, {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2}, {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1}, {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2}, {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2}, {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1}, {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2}, {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2}, {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2}, {"arm1136js", ARM_ARCH_V6, FPU_NONE}, {"arm1136j-s", ARM_ARCH_V6, FPU_NONE}, {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2}, {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2}, {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2}, {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE}, {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE}, {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2}, /* ??? XSCALE is really an architecture. */ {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2}, /* ??? iwmmxt is not a processor. */ {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2}, {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2}, /* Maverick */ {"ep9312", ARM_ARCH_V4T | ARM_CEXT_MAVERICK, FPU_ARCH_MAVERICK}, {NULL, 0, 0} }; struct arm_arch_option_table { char *name; int value; int default_fpu; }; /* This list should, at a minimum, contain all the architecture names recognized by GCC. */ static struct arm_arch_option_table arm_archs[] = { {"all", ARM_ANY, FPU_ARCH_FPA}, {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA}, {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA}, {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA}, {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA}, {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA}, {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA}, {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA}, {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA}, {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA}, {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA}, {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP}, {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP}, {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP}, {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP}, {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP}, {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP}, {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP}, {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP}, {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP}, {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP}, {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP}, {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP}, {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP}, {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP}, {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP}, {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP}, {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP}, {NULL, 0, 0} }; /* ISA extensions in the co-processor space. */ struct arm_option_value_table { char *name; int value; }; static struct arm_option_value_table arm_extensions[] = { {"maverick", ARM_CEXT_MAVERICK}, {"xscale", ARM_CEXT_XSCALE}, {"iwmmxt", ARM_CEXT_IWMMXT}, {NULL, 0} }; /* This list should, at a minimum, contain all the fpu names recognized by GCC. */ static struct arm_option_value_table arm_fpus[] = { {"softfpa", FPU_NONE}, {"fpe", FPU_ARCH_FPE}, {"fpe2", FPU_ARCH_FPE}, {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */ {"fpa", FPU_ARCH_FPA}, {"fpa10", FPU_ARCH_FPA}, {"fpa11", FPU_ARCH_FPA}, {"arm7500fe", FPU_ARCH_FPA}, {"softvfp", FPU_ARCH_VFP}, {"softvfp+vfp", FPU_ARCH_VFP_V2}, {"vfp", FPU_ARCH_VFP_V2}, {"vfp9", FPU_ARCH_VFP_V2}, {"vfp10", FPU_ARCH_VFP_V2}, {"vfp10-r0", FPU_ARCH_VFP_V1}, {"vfpxd", FPU_ARCH_VFP_V1xD}, {"arm1020t", FPU_ARCH_VFP_V1}, {"arm1020e", FPU_ARCH_VFP_V2}, {"arm1136jfs", FPU_ARCH_VFP_V2}, {"arm1136jf-s", FPU_ARCH_VFP_V2}, {"maverick", FPU_ARCH_MAVERICK}, {NULL, 0} }; static struct arm_option_value_table arm_float_abis[] = { {"hard", ARM_FLOAT_ABI_HARD}, {"softfp", ARM_FLOAT_ABI_SOFTFP}, {"soft", ARM_FLOAT_ABI_SOFT}, {NULL, 0} }; #ifdef OBJ_ELF /* We only know how to output GNU and ver 4 (AAELF) formats. */ static struct arm_option_value_table arm_eabis[] = { {"gnu", EF_ARM_EABI_UNKNOWN}, {"4", EF_ARM_EABI_VER4}, {NULL, 0} }; #endif struct arm_long_option_table { char * option; /* Substring to match. */ char * help; /* Help information. */ int (* func) (char * subopt); /* Function to decode sub-option. */ char * deprecated; /* If non-null, print this message. */ }; static int arm_parse_extension (char * str, int * opt_p) { while (str != NULL && *str != 0) { struct arm_option_value_table * opt; char * ext; int optlen; if (*str != '+') { as_bad (_("invalid architectural extension")); return 0; } str++; ext = strchr (str, '+'); if (ext != NULL) optlen = ext - str; else optlen = strlen (str); if (optlen == 0) { as_bad (_("missing architectural extension")); return 0; } for (opt = arm_extensions; opt->name != NULL; opt++) if (strncmp (opt->name, str, optlen) == 0) { *opt_p |= opt->value; break; } if (opt->name == NULL) { as_bad (_("unknown architectural extnsion `%s'"), str); return 0; } str = ext; }; return 1; } static int arm_parse_cpu (char * str) { struct arm_cpu_option_table * opt; char * ext = strchr (str, '+'); int optlen; if (ext != NULL) optlen = ext - str; else optlen = strlen (str); if (optlen == 0) { as_bad (_("missing cpu name `%s'"), str); return 0; } for (opt = arm_cpus; opt->name != NULL; opt++) if (strncmp (opt->name, str, optlen) == 0) { mcpu_cpu_opt = opt->value; mcpu_fpu_opt = opt->default_fpu; if (ext != NULL) return arm_parse_extension (ext, &mcpu_cpu_opt); return 1; } as_bad (_("unknown cpu `%s'"), str); return 0; } static int arm_parse_arch (char * str) { struct arm_arch_option_table *opt; char *ext = strchr (str, '+'); int optlen; if (ext != NULL) optlen = ext - str; else optlen = strlen (str); if (optlen == 0) { as_bad (_("missing architecture name `%s'"), str); return 0; } for (opt = arm_archs; opt->name != NULL; opt++) if (streq (opt->name, str)) { march_cpu_opt = opt->value; march_fpu_opt = opt->default_fpu; if (ext != NULL) return arm_parse_extension (ext, &march_cpu_opt); return 1; } as_bad (_("unknown architecture `%s'\n"), str); return 0; } static int arm_parse_fpu (char * str) { struct arm_option_value_table * opt; for (opt = arm_fpus; opt->name != NULL; opt++) if (streq (opt->name, str)) { mfpu_opt = opt->value; return 1; } as_bad (_("unknown floating point format `%s'\n"), str); return 0; } static int arm_parse_float_abi (char * str) { struct arm_option_value_table * opt; for (opt = arm_float_abis; opt->name != NULL; opt++) if (streq (opt->name, str)) { mfloat_abi_opt = opt->value; return 1; } as_bad (_("unknown floating point abi `%s'\n"), str); return 0; } #ifdef OBJ_ELF static int arm_parse_eabi (char * str) { struct arm_option_value_table *opt; for (opt = arm_eabis; opt->name != NULL; opt++) if (streq (opt->name, str)) { meabi_flags = opt->value; return 1; } as_bad (_("unknown EABI `%s'\n"), str); return 0; } #endif struct arm_long_option_table arm_long_opts[] = { {"mcpu=", N_("\t assemble for CPU "), arm_parse_cpu, NULL}, {"march=", N_("\t assemble for architecture "), arm_parse_arch, NULL}, {"mfpu=", N_("\t assemble for FPU architecture "), arm_parse_fpu, NULL}, {"mfloat-abi=", N_("\t assemble for floating point ABI "), arm_parse_float_abi, NULL}, #ifdef OBJ_ELF {"meabi=", N_("\t assemble for eabi version "), arm_parse_eabi, NULL}, #endif {NULL, NULL, 0, NULL} }; int md_parse_option (int c, char * arg) { struct arm_option_table *opt; struct arm_long_option_table *lopt; switch (c) { #ifdef OPTION_EB case OPTION_EB: target_big_endian = 1; break; #endif #ifdef OPTION_EL case OPTION_EL: target_big_endian = 0; break; #endif case 'a': /* Listing option. Just ignore these, we don't support additional ones. */ return 0; default: for (opt = arm_opts; opt->option != NULL; opt++) { if (c == opt->option[0] && ((arg == NULL && opt->option[1] == 0) || streq (arg, opt->option + 1))) { #if WARN_DEPRECATED /* If the option is deprecated, tell the user. */ if (opt->deprecated != NULL) as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg ? arg : "", _(opt->deprecated)); #endif if (opt->var != NULL) *opt->var = opt->value; return 1; } } for (lopt = arm_long_opts; lopt->option != NULL; lopt++) { /* These options are expected to have an argument. */ if (c == lopt->option[0] && arg != NULL && strncmp (arg, lopt->option + 1, strlen (lopt->option + 1)) == 0) { #if WARN_DEPRECATED /* If the option is deprecated, tell the user. */ if (lopt->deprecated != NULL) as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg, _(lopt->deprecated)); #endif /* Call the sup-option parser. */ return lopt->func (arg + strlen (lopt->option) - 1); } } return 0; } return 1; } void md_show_usage (FILE * fp) { struct arm_option_table *opt; struct arm_long_option_table *lopt; fprintf (fp, _(" ARM-specific assembler options:\n")); for (opt = arm_opts; opt->option != NULL; opt++) if (opt->help != NULL) fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help)); for (lopt = arm_long_opts; lopt->option != NULL; lopt++) if (lopt->help != NULL) fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help)); #ifdef OPTION_EB fprintf (fp, _("\ -EB assemble code for a big-endian cpu\n")); #endif #ifdef OPTION_EL fprintf (fp, _("\ -EL assemble code for a little-endian cpu\n")); #endif }