/* tc-arm.c -- Assemble for the ARM Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org) Modified by David Taylor (dtaylor@armltd.co.uk) Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com) This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #define NO_RELOC 0 #include "as.h" #include "safe-ctype.h" /* Need TARGET_CPU. */ #include "config.h" #include "subsegs.h" #include "obstack.h" #include "symbols.h" #include "listing.h" #ifdef OBJ_ELF #include "elf/arm.h" #include "dwarf2dbg.h" #endif /* The following bitmasks control CPU extensions: */ #define ARM_EXT_V1 0x00000001 /* All processors (core set). */ #define ARM_EXT_V2 0x00000002 /* Multiply instructions. */ #define ARM_EXT_V2S 0x00000004 /* SWP instructions. */ #define ARM_EXT_V3 0x00000008 /* MSR MRS. */ #define ARM_EXT_V3M 0x00000010 /* Allow long multiplies. */ #define ARM_EXT_V4 0x00000020 /* Allow half word loads. */ #define ARM_EXT_V4T 0x00000040 /* Thumb v1. */ #define ARM_EXT_V5 0x00000080 /* Allow CLZ, etc. */ #define ARM_EXT_V5T 0x00000100 /* Thumb v2. */ #define ARM_EXT_V5ExP 0x00000200 /* DSP core set. */ #define ARM_EXT_V5E 0x00000400 /* DSP Double transfers. */ /* Processor specific extensions. */ #define ARM_EXT_XSCALE 0x00000800 /* Allow MIA etc. */ #define ARM_EXT_MAVERICK 0x00001000 /* Use Cirrus/DSP coprocessor. */ /* Architectures are the sum of the base and extensions. The ARM ARM (rev E) defines the following: ARMv3, ARMv3M, ARMv4xM, ARMv4, ARMv4TxM, ARMv4T, ARMv5xM, ARMv5, ARMv5TxM, ARMv5T, ARMv5TExP, ARMv5TE. To these we add three more to cover cores prior to ARM6. Finally, there are cores which implement further extensions in the co-processor space. */ #define ARM_ARCH_V1 ARM_EXT_V1 #define ARM_ARCH_V2 (ARM_ARCH_V1 | ARM_EXT_V2) #define ARM_ARCH_V2S (ARM_ARCH_V2 | ARM_EXT_V2S) #define ARM_ARCH_V3 (ARM_ARCH_V2S | ARM_EXT_V3) #define ARM_ARCH_V3M (ARM_ARCH_V3 | ARM_EXT_V3M) #define ARM_ARCH_V4xM (ARM_ARCH_V3 | ARM_EXT_V4) #define ARM_ARCH_V4 (ARM_ARCH_V3M | ARM_EXT_V4) #define ARM_ARCH_V4TxM (ARM_ARCH_V4xM | ARM_EXT_V4T) #define ARM_ARCH_V4T (ARM_ARCH_V4 | ARM_EXT_V4T) #define ARM_ARCH_V5xM (ARM_ARCH_V4xM | ARM_EXT_V5) #define ARM_ARCH_V5 (ARM_ARCH_V4 | ARM_EXT_V5) #define ARM_ARCH_V5TxM (ARM_ARCH_V5xM | ARM_EXT_V4T | ARM_EXT_V5T) #define ARM_ARCH_V5T (ARM_ARCH_V5 | ARM_EXT_V4T | ARM_EXT_V5T) #define ARM_ARCH_V5TExP (ARM_ARCH_V5T | ARM_EXT_V5ExP) #define ARM_ARCH_V5TE (ARM_ARCH_V5TExP | ARM_EXT_V5E) /* Processors with specific extensions in the co-processor space. */ #define ARM_ARCH_XSCALE (ARM_ARCH_V5TE | ARM_EXT_XSCALE) /* Some useful combinations: */ #define ARM_ANY 0x00ffffff #define ARM_ALL ARM_ANY #define FPU_FPA_EXT_V1 0x80000000 /* Base FPA instruction set. */ #define FPU_FPA_EXT_V2 0x40000000 /* LFM/SFM. */ #define FPU_NONE 0 #define FPU_ARCH_FPE FPU_FPA_EXT_V1 #define FPU_ARCH_FPA (FPU_ARCH_FPE | FPU_FPA_EXT_V2) /* Some useful combinations. */ #define FPU_ANY 0xff000000 /* Note this is ~ARM_ANY. */ /* Types of processor to assemble for. */ #define ARM_1 ARM_ARCH_V1 #define ARM_2 ARM_ARCH_V2 #define ARM_3 ARM_ARCH_V2S #define ARM_250 ARM_ARCH_V2S #define ARM_6 ARM_ARCH_V3 #define ARM_7 ARM_ARCH_V3 #define ARM_8 ARM_ARCH_V4 #define ARM_9 ARM_ARCH_V4T #define ARM_STRONG ARM_ARCH_V4 #define ARM_CPU_MASK 0x0000000f /* XXX? */ #ifndef CPU_DEFAULT #if defined __XSCALE__ #define CPU_DEFAULT (ARM_ARCH_XSCALE) #else #if defined __thumb__ #define CPU_DEFAULT (ARM_ARCH_V5T) #else #define CPU_DEFAULT ARM_ALL #endif #endif #endif #ifndef FPU_DEFAULT #define FPU_DEFAULT FPU_ARCH_FPA #endif #define streq(a, b) (strcmp (a, b) == 0) #define skip_whitespace(str) while (*(str) == ' ') ++(str) static unsigned long cpu_variant = CPU_DEFAULT | FPU_DEFAULT; static int target_oabi = 0; #if defined OBJ_COFF || defined OBJ_ELF /* Flags stored in private area of BFD structure. */ static boolean uses_apcs_26 = false; static boolean atpcs = false; static boolean support_interwork = false; static boolean uses_apcs_float = false; static boolean pic_code = false; #endif /* This array holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful. */ const char comment_chars[] = "@"; /* This array holds the chars that only start a comment at the beginning of a line. If the line seems to have the form '# 123 filename' .line and .file directives will appear in the pre-processed output. */ /* Note that input_file.c hand checks for '#' at the beginning of the first line of the input file. This is because the compiler outputs #NO_APP at the beginning of its output. */ /* Also note that comments like this one will always work. */ const char line_comment_chars[] = "#"; const char line_separator_chars[] = ";"; /* Chars that can be used to separate mant from exp in floating point numbers. */ const char EXP_CHARS[] = "eE"; /* Chars that mean this number is a floating point constant. */ /* As in 0f12.456 */ /* or 0d1.2345e12 */ const char FLT_CHARS[] = "rRsSfFdDxXeEpP"; /* Prefix characters that indicate the start of an immediate value. */ #define is_immediate_prefix(C) ((C) == '#' || (C) == '$') #ifdef OBJ_ELF /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */ symbolS * GOT_symbol; #endif /* Size of relocation record. */ const int md_reloc_size = 8; /* 0: assemble for ARM, 1: assemble for Thumb, 2: assemble for Thumb even though target CPU does not support thumb instructions. */ static int thumb_mode = 0; typedef struct arm_fix { int thumb_mode; } arm_fix_data; struct arm_it { const char * error; unsigned long instruction; int size; struct { bfd_reloc_code_real_type type; expressionS exp; int pc_rel; } reloc; }; struct arm_it inst; enum asm_shift_index { SHIFT_LSL = 0, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX }; struct asm_shift_properties { enum asm_shift_index index; unsigned long bit_field; unsigned int allows_0 : 1; unsigned int allows_32 : 1; }; static const struct asm_shift_properties shift_properties [] = { { SHIFT_LSL, 0, 1, 0}, { SHIFT_LSR, 0x20, 0, 1}, { SHIFT_ASR, 0x40, 0, 1}, { SHIFT_ROR, 0x60, 0, 0}, { SHIFT_RRX, 0x60, 0, 0} }; struct asm_shift_name { const char * name; const struct asm_shift_properties * properties; }; static const struct asm_shift_name shift_names [] = { { "asl", shift_properties + SHIFT_LSL }, { "lsl", shift_properties + SHIFT_LSL }, { "lsr", shift_properties + SHIFT_LSR }, { "asr", shift_properties + SHIFT_ASR }, { "ror", shift_properties + SHIFT_ROR }, { "rrx", shift_properties + SHIFT_RRX }, { "ASL", shift_properties + SHIFT_LSL }, { "LSL", shift_properties + SHIFT_LSL }, { "LSR", shift_properties + SHIFT_LSR }, { "ASR", shift_properties + SHIFT_ASR }, { "ROR", shift_properties + SHIFT_ROR }, { "RRX", shift_properties + SHIFT_RRX } }; #define NO_SHIFT_RESTRICT 1 #define SHIFT_RESTRICT 0 #define NUM_FLOAT_VALS 8 const char * fp_const[] = { "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0 }; /* Number of littlenums required to hold an extended precision number. */ #define MAX_LITTLENUMS 6 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS]; #define FAIL (-1) #define SUCCESS (0) #define SUFF_S 1 #define SUFF_D 2 #define SUFF_E 3 #define SUFF_P 4 #define CP_T_X 0x00008000 #define CP_T_Y 0x00400000 #define CP_T_Pre 0x01000000 #define CP_T_UD 0x00800000 #define CP_T_WB 0x00200000 #define CONDS_BIT 0x00100000 #define LOAD_BIT 0x00100000 #define DOUBLE_LOAD_FLAG 0x00000001 struct asm_cond { const char * template; unsigned long value; }; #define COND_ALWAYS 0xe0000000 #define COND_MASK 0xf0000000 static const struct asm_cond conds[] = { {"eq", 0x00000000}, {"ne", 0x10000000}, {"cs", 0x20000000}, {"hs", 0x20000000}, {"cc", 0x30000000}, {"ul", 0x30000000}, {"lo", 0x30000000}, {"mi", 0x40000000}, {"pl", 0x50000000}, {"vs", 0x60000000}, {"vc", 0x70000000}, {"hi", 0x80000000}, {"ls", 0x90000000}, {"ge", 0xa0000000}, {"lt", 0xb0000000}, {"gt", 0xc0000000}, {"le", 0xd0000000}, {"al", 0xe0000000}, {"nv", 0xf0000000} }; struct asm_psr { const char * template; boolean cpsr; unsigned long field; }; /* The bit that distnguishes CPSR and SPSR. */ #define SPSR_BIT (1 << 22) /* How many bits to shift the PSR_xxx bits up by. */ #define PSR_SHIFT 16 #define PSR_c (1 << 0) #define PSR_x (1 << 1) #define PSR_s (1 << 2) #define PSR_f (1 << 3) static const struct asm_psr psrs[] = { {"CPSR", true, PSR_c | PSR_f}, {"CPSR_all", true, PSR_c | PSR_f}, {"SPSR", false, PSR_c | PSR_f}, {"SPSR_all", false, PSR_c | PSR_f}, {"CPSR_flg", true, PSR_f}, {"CPSR_f", true, PSR_f}, {"SPSR_flg", false, PSR_f}, {"SPSR_f", false, PSR_f}, {"CPSR_c", true, PSR_c}, {"CPSR_ctl", true, PSR_c}, {"SPSR_c", false, PSR_c}, {"SPSR_ctl", false, PSR_c}, {"CPSR_x", true, PSR_x}, {"CPSR_s", true, PSR_s}, {"SPSR_x", false, PSR_x}, {"SPSR_s", false, PSR_s}, /* Combinations of flags. */ {"CPSR_fs", true, PSR_f | PSR_s}, {"CPSR_fx", true, PSR_f | PSR_x}, {"CPSR_fc", true, PSR_f | PSR_c}, {"CPSR_sf", true, PSR_s | PSR_f}, {"CPSR_sx", true, PSR_s | PSR_x}, {"CPSR_sc", true, PSR_s | PSR_c}, {"CPSR_xf", true, PSR_x | PSR_f}, {"CPSR_xs", true, PSR_x | PSR_s}, {"CPSR_xc", true, PSR_x | PSR_c}, {"CPSR_cf", true, PSR_c | PSR_f}, {"CPSR_cs", true, PSR_c | PSR_s}, {"CPSR_cx", true, PSR_c | PSR_x}, {"CPSR_fsx", true, PSR_f | PSR_s | PSR_x}, {"CPSR_fsc", true, PSR_f | PSR_s | PSR_c}, {"CPSR_fxs", true, PSR_f | PSR_x | PSR_s}, {"CPSR_fxc", true, PSR_f | PSR_x | PSR_c}, {"CPSR_fcs", true, PSR_f | PSR_c | PSR_s}, {"CPSR_fcx", true, PSR_f | PSR_c | PSR_x}, {"CPSR_sfx", true, PSR_s | PSR_f | PSR_x}, {"CPSR_sfc", true, PSR_s | PSR_f | PSR_c}, {"CPSR_sxf", true, PSR_s | PSR_x | PSR_f}, {"CPSR_sxc", true, PSR_s | PSR_x | PSR_c}, {"CPSR_scf", true, PSR_s | PSR_c | PSR_f}, {"CPSR_scx", true, PSR_s | PSR_c | PSR_x}, {"CPSR_xfs", true, PSR_x | PSR_f | PSR_s}, {"CPSR_xfc", true, PSR_x | PSR_f | PSR_c}, {"CPSR_xsf", true, PSR_x | PSR_s | PSR_f}, {"CPSR_xsc", true, PSR_x | PSR_s | PSR_c}, {"CPSR_xcf", true, PSR_x | PSR_c | PSR_f}, {"CPSR_xcs", true, PSR_x | PSR_c | PSR_s}, {"CPSR_cfs", true, PSR_c | PSR_f | PSR_s}, {"CPSR_cfx", true, PSR_c | PSR_f | PSR_x}, {"CPSR_csf", true, PSR_c | PSR_s | PSR_f}, {"CPSR_csx", true, PSR_c | PSR_s | PSR_x}, {"CPSR_cxf", true, PSR_c | PSR_x | PSR_f}, {"CPSR_cxs", true, PSR_c | PSR_x | PSR_s}, {"CPSR_fsxc", true, PSR_f | PSR_s | PSR_x | PSR_c}, {"CPSR_fscx", true, PSR_f | PSR_s | PSR_c | PSR_x}, {"CPSR_fxsc", true, PSR_f | PSR_x | PSR_s | PSR_c}, {"CPSR_fxcs", true, PSR_f | PSR_x | PSR_c | PSR_s}, {"CPSR_fcsx", true, PSR_f | PSR_c | PSR_s | PSR_x}, {"CPSR_fcxs", true, PSR_f | PSR_c | PSR_x | PSR_s}, {"CPSR_sfxc", true, PSR_s | PSR_f | PSR_x | PSR_c}, {"CPSR_sfcx", true, PSR_s | PSR_f | PSR_c | PSR_x}, {"CPSR_sxfc", true, PSR_s | PSR_x | PSR_f | PSR_c}, {"CPSR_sxcf", true, PSR_s | PSR_x | PSR_c | PSR_f}, {"CPSR_scfx", true, PSR_s | PSR_c | PSR_f | PSR_x}, {"CPSR_scxf", true, PSR_s | PSR_c | PSR_x | PSR_f}, {"CPSR_xfsc", true, PSR_x | PSR_f | PSR_s | PSR_c}, {"CPSR_xfcs", true, PSR_x | PSR_f | PSR_c | PSR_s}, {"CPSR_xsfc", true, PSR_x | PSR_s | PSR_f | PSR_c}, {"CPSR_xscf", true, PSR_x | PSR_s | PSR_c | PSR_f}, {"CPSR_xcfs", true, PSR_x | PSR_c | PSR_f | PSR_s}, {"CPSR_xcsf", true, PSR_x | PSR_c | PSR_s | PSR_f}, {"CPSR_cfsx", true, PSR_c | PSR_f | PSR_s | PSR_x}, {"CPSR_cfxs", true, PSR_c | PSR_f | PSR_x | PSR_s}, {"CPSR_csfx", true, PSR_c | PSR_s | PSR_f | PSR_x}, {"CPSR_csxf", true, PSR_c | PSR_s | PSR_x | PSR_f}, {"CPSR_cxfs", true, PSR_c | PSR_x | PSR_f | PSR_s}, {"CPSR_cxsf", true, PSR_c | PSR_x | PSR_s | PSR_f}, {"SPSR_fs", false, PSR_f | PSR_s}, {"SPSR_fx", false, PSR_f | PSR_x}, {"SPSR_fc", false, PSR_f | PSR_c}, {"SPSR_sf", false, PSR_s | PSR_f}, {"SPSR_sx", false, PSR_s | PSR_x}, {"SPSR_sc", false, PSR_s | PSR_c}, {"SPSR_xf", false, PSR_x | PSR_f}, {"SPSR_xs", false, PSR_x | PSR_s}, {"SPSR_xc", false, PSR_x | PSR_c}, {"SPSR_cf", false, PSR_c | PSR_f}, {"SPSR_cs", false, PSR_c | PSR_s}, {"SPSR_cx", false, PSR_c | PSR_x}, {"SPSR_fsx", false, PSR_f | PSR_s | PSR_x}, {"SPSR_fsc", false, PSR_f | PSR_s | PSR_c}, {"SPSR_fxs", false, PSR_f | PSR_x | PSR_s}, {"SPSR_fxc", false, PSR_f | PSR_x | PSR_c}, {"SPSR_fcs", false, PSR_f | PSR_c | PSR_s}, {"SPSR_fcx", false, PSR_f | PSR_c | PSR_x}, {"SPSR_sfx", false, PSR_s | PSR_f | PSR_x}, {"SPSR_sfc", false, PSR_s | PSR_f | PSR_c}, {"SPSR_sxf", false, PSR_s | PSR_x | PSR_f}, {"SPSR_sxc", false, PSR_s | PSR_x | PSR_c}, {"SPSR_scf", false, PSR_s | PSR_c | PSR_f}, {"SPSR_scx", false, PSR_s | PSR_c | PSR_x}, {"SPSR_xfs", false, PSR_x | PSR_f | PSR_s}, {"SPSR_xfc", false, PSR_x | PSR_f | PSR_c}, {"SPSR_xsf", false, PSR_x | PSR_s | PSR_f}, {"SPSR_xsc", false, PSR_x | PSR_s | PSR_c}, {"SPSR_xcf", false, PSR_x | PSR_c | PSR_f}, {"SPSR_xcs", false, PSR_x | PSR_c | PSR_s}, {"SPSR_cfs", false, PSR_c | PSR_f | PSR_s}, {"SPSR_cfx", false, PSR_c | PSR_f | PSR_x}, {"SPSR_csf", false, PSR_c | PSR_s | PSR_f}, {"SPSR_csx", false, PSR_c | PSR_s | PSR_x}, {"SPSR_cxf", false, PSR_c | PSR_x | PSR_f}, {"SPSR_cxs", false, PSR_c | PSR_x | PSR_s}, {"SPSR_fsxc", false, PSR_f | PSR_s | PSR_x | PSR_c}, {"SPSR_fscx", false, PSR_f | PSR_s | PSR_c | PSR_x}, {"SPSR_fxsc", false, PSR_f | PSR_x | PSR_s | PSR_c}, {"SPSR_fxcs", false, PSR_f | PSR_x | PSR_c | PSR_s}, {"SPSR_fcsx", false, PSR_f | PSR_c | PSR_s | PSR_x}, {"SPSR_fcxs", false, PSR_f | PSR_c | PSR_x | PSR_s}, {"SPSR_sfxc", false, PSR_s | PSR_f | PSR_x | PSR_c}, {"SPSR_sfcx", false, PSR_s | PSR_f | PSR_c | PSR_x}, {"SPSR_sxfc", false, PSR_s | PSR_x | PSR_f | PSR_c}, {"SPSR_sxcf", false, PSR_s | PSR_x | PSR_c | PSR_f}, {"SPSR_scfx", false, PSR_s | PSR_c | PSR_f | PSR_x}, {"SPSR_scxf", false, PSR_s | PSR_c | PSR_x | PSR_f}, {"SPSR_xfsc", false, PSR_x | PSR_f | PSR_s | PSR_c}, {"SPSR_xfcs", false, PSR_x | PSR_f | PSR_c | PSR_s}, {"SPSR_xsfc", false, PSR_x | PSR_s | PSR_f | PSR_c}, {"SPSR_xscf", false, PSR_x | PSR_s | PSR_c | PSR_f}, {"SPSR_xcfs", false, PSR_x | PSR_c | PSR_f | PSR_s}, {"SPSR_xcsf", false, PSR_x | PSR_c | PSR_s | PSR_f}, {"SPSR_cfsx", false, PSR_c | PSR_f | PSR_s | PSR_x}, {"SPSR_cfxs", false, PSR_c | PSR_f | PSR_x | PSR_s}, {"SPSR_csfx", false, PSR_c | PSR_s | PSR_f | PSR_x}, {"SPSR_csxf", false, PSR_c | PSR_s | PSR_x | PSR_f}, {"SPSR_cxfs", false, PSR_c | PSR_x | PSR_f | PSR_s}, {"SPSR_cxsf", false, PSR_c | PSR_x | PSR_s | PSR_f}, }; enum cirrus_regtype { CIRRUS_REGTYPE_MVF = 1, CIRRUS_REGTYPE_MVFX = 2, CIRRUS_REGTYPE_MVD = 3, CIRRUS_REGTYPE_MVDX = 4, CIRRUS_REGTYPE_MVAX = 5, CIRRUS_REGTYPE_DSPSC = 6, CIRRUS_REGTYPE_ANY = 7 }; /* Functions called by parser. */ /* ARM instructions. */ static void do_arit PARAMS ((char *)); static void do_cmp PARAMS ((char *)); static void do_mov PARAMS ((char *)); static void do_ldst PARAMS ((char *)); static void do_ldstt PARAMS ((char *)); static void do_ldmstm PARAMS ((char *)); static void do_branch PARAMS ((char *)); static void do_swi PARAMS ((char *)); /* Pseudo Op codes. */ static void do_adr PARAMS ((char *)); static void do_adrl PARAMS ((char *)); static void do_empty PARAMS ((char *)); /* ARM v2. */ static void do_mul PARAMS ((char *)); static void do_mla PARAMS ((char *)); /* ARM v2S. */ static void do_swap PARAMS ((char *)); /* ARM v3. */ static void do_msr PARAMS ((char *)); static void do_mrs PARAMS ((char *)); /* ARM v3M. */ static void do_mull PARAMS ((char *)); /* ARM v4. */ static void do_ldstv4 PARAMS ((char *)); /* ARM v4T. */ static void do_bx PARAMS ((char *)); /* ARM v5. */ static void do_blx PARAMS ((char *)); static void do_bkpt PARAMS ((char *)); static void do_clz PARAMS ((char *)); static void do_lstc2 PARAMS ((char *)); static void do_cdp2 PARAMS ((char *)); static void do_co_reg2 PARAMS ((char *)); /* ARM v5ExP. */ static void do_smla PARAMS ((char *)); static void do_smlal PARAMS ((char *)); static void do_smul PARAMS ((char *)); static void do_qadd PARAMS ((char *)); /* ARM v5E. */ static void do_pld PARAMS ((char *)); static void do_ldrd PARAMS ((char *)); static void do_co_reg2c PARAMS ((char *)); /* Coprocessor Instructions. */ static void do_cdp PARAMS ((char *)); static void do_lstc PARAMS ((char *)); static void do_co_reg PARAMS ((char *)); /* FPA instructions. */ static void do_fpa_ctrl PARAMS ((char *)); static void do_fpa_ldst PARAMS ((char *)); static void do_fpa_ldmstm PARAMS ((char *)); static void do_fpa_dyadic PARAMS ((char *)); static void do_fpa_monadic PARAMS ((char *)); static void do_fpa_cmp PARAMS ((char *)); static void do_fpa_from_reg PARAMS ((char *)); static void do_fpa_to_reg PARAMS ((char *)); /* XScale. */ static void do_mia PARAMS ((char *)); static void do_mar PARAMS ((char *)); static void do_mra PARAMS ((char *)); /* Maverick. */ static void do_c_binops PARAMS ((char *, int)); static void do_c_binops_1 PARAMS ((char *)); static void do_c_binops_2 PARAMS ((char *)); static void do_c_binops_3 PARAMS ((char *)); static void do_c_triple PARAMS ((char *, int)); static void do_c_triple_4 PARAMS ((char *)); static void do_c_triple_5 PARAMS ((char *)); static void do_c_quad PARAMS ((char *, int)); static void do_c_quad_6 PARAMS ((char *)); static void do_c_dspsc PARAMS ((char *, int)); static void do_c_dspsc_1 PARAMS ((char *)); static void do_c_dspsc_2 PARAMS ((char *)); static void do_c_shift PARAMS ((char *, int)); static void do_c_shift_1 PARAMS ((char *)); static void do_c_shift_2 PARAMS ((char *)); static void do_c_ldst PARAMS ((char *, int)); static void do_c_ldst_1 PARAMS ((char *)); static void do_c_ldst_2 PARAMS ((char *)); static void do_c_ldst_3 PARAMS ((char *)); static void do_c_ldst_4 PARAMS ((char *)); static int cirrus_reg_required_here PARAMS ((char **, int, enum cirrus_regtype)); static int cirrus_valid_reg PARAMS ((int, enum cirrus_regtype)); static int cirrus_parse_offset PARAMS ((char **, int *)); static void fix_new_arm PARAMS ((fragS *, int, short, expressionS *, int, int)); static int arm_reg_parse PARAMS ((char **)); static const struct asm_psr * arm_psr_parse PARAMS ((char **)); static void symbol_locate PARAMS ((symbolS *, const char *, segT, valueT, fragS *)); static int add_to_lit_pool PARAMS ((void)); static unsigned validate_immediate PARAMS ((unsigned)); static unsigned validate_immediate_twopart PARAMS ((unsigned int, unsigned int *)); static int validate_offset_imm PARAMS ((unsigned int, int)); static void opcode_select PARAMS ((int)); static void end_of_line PARAMS ((char *)); static int reg_required_here PARAMS ((char **, int)); static int psr_required_here PARAMS ((char **)); static int co_proc_number PARAMS ((char **)); static int cp_opc_expr PARAMS ((char **, int, int)); static int cp_reg_required_here PARAMS ((char **, int)); static int fp_reg_required_here PARAMS ((char **, int)); static int cp_address_offset PARAMS ((char **)); static int cp_address_required_here PARAMS ((char **)); static int my_get_float_expression PARAMS ((char **)); static int skip_past_comma PARAMS ((char **)); static int walk_no_bignums PARAMS ((symbolS *)); static int negate_data_op PARAMS ((unsigned long *, unsigned long)); static int data_op2 PARAMS ((char **)); static int fp_op2 PARAMS ((char **)); static long reg_list PARAMS ((char **)); static void thumb_load_store PARAMS ((char *, int, int)); static int decode_shift PARAMS ((char **, int)); static int ldst_extend PARAMS ((char **)); static int ldst_extend_v4 PARAMS ((char **)); static void thumb_add_sub PARAMS ((char *, int)); static void insert_reg PARAMS ((int)); static void thumb_shift PARAMS ((char *, int)); static void thumb_mov_compare PARAMS ((char *, int)); static void build_arm_ops_hsh PARAMS ((void)); static void set_constant_flonums PARAMS ((void)); static valueT md_chars_to_number PARAMS ((char *, int)); static void insert_reg_alias PARAMS ((char *, int)); static void output_inst PARAMS ((void)); static int accum0_required_here PARAMS ((char **)); static int ld_mode_required_here PARAMS ((char **)); static void do_branch25 PARAMS ((char *)); static symbolS * find_real_start PARAMS ((symbolS *)); #ifdef OBJ_ELF static bfd_reloc_code_real_type arm_parse_reloc PARAMS ((void)); #endif /* ARM instructions take 4bytes in the object file, Thumb instructions take 2: */ #define INSN_SIZE 4 /* "INSN X,Y" where X:bit12, Y:bit16. */ #define CIRRUS_MODE1 0x100c /* "INSN X,Y" where X:bit16, Y:bit12. */ #define CIRRUS_MODE2 0x0c10 /* "INSN X,Y" where X:0, Y:bit16. */ #define CIRRUS_MODE3 0x1000 /* "INSN X,Y,Z" where X:16, Y:0, Z:12. */ #define CIRRUS_MODE4 0x0c0010 /* "INSN X,Y,Z" where X:12, Y:16, Z:0. */ #define CIRRUS_MODE5 0x00100c /* "INSN W,X,Y,Z" where W:5, X:12, Y:16, Z:0. */ #define CIRRUS_MODE6 0x00100c05 struct asm_opcode { /* Basic string to match. */ const char * template; /* Basic instruction code. */ unsigned long value; /* Offset into the template where the condition code (if any) will be. If zero, then the instruction is never conditional. */ unsigned cond_offset; /* Which architecture variant provides this instruction. */ unsigned long variant; /* Function to call to parse args. */ void (* parms) PARAMS ((char *)); }; static const struct asm_opcode insns[] = { /* Core ARM Instructions. */ {"and", 0xe0000000, 3, ARM_EXT_V1, do_arit}, {"ands", 0xe0100000, 3, ARM_EXT_V1, do_arit}, {"eor", 0xe0200000, 3, ARM_EXT_V1, do_arit}, {"eors", 0xe0300000, 3, ARM_EXT_V1, do_arit}, {"sub", 0xe0400000, 3, ARM_EXT_V1, do_arit}, {"subs", 0xe0500000, 3, ARM_EXT_V1, do_arit}, {"rsb", 0xe0600000, 3, ARM_EXT_V1, do_arit}, {"rsbs", 0xe0700000, 3, ARM_EXT_V1, do_arit}, {"add", 0xe0800000, 3, ARM_EXT_V1, do_arit}, {"adds", 0xe0900000, 3, ARM_EXT_V1, do_arit}, {"adc", 0xe0a00000, 3, ARM_EXT_V1, do_arit}, {"adcs", 0xe0b00000, 3, ARM_EXT_V1, do_arit}, {"sbc", 0xe0c00000, 3, ARM_EXT_V1, do_arit}, {"sbcs", 0xe0d00000, 3, ARM_EXT_V1, do_arit}, {"rsc", 0xe0e00000, 3, ARM_EXT_V1, do_arit}, {"rscs", 0xe0f00000, 3, ARM_EXT_V1, do_arit}, {"orr", 0xe1800000, 3, ARM_EXT_V1, do_arit}, {"orrs", 0xe1900000, 3, ARM_EXT_V1, do_arit}, {"bic", 0xe1c00000, 3, ARM_EXT_V1, do_arit}, {"bics", 0xe1d00000, 3, ARM_EXT_V1, do_arit}, {"tst", 0xe1100000, 3, ARM_EXT_V1, do_cmp}, {"tsts", 0xe1100000, 3, ARM_EXT_V1, do_cmp}, {"tstp", 0xe110f000, 3, ARM_EXT_V1, do_cmp}, {"teq", 0xe1300000, 3, ARM_EXT_V1, do_cmp}, {"teqs", 0xe1300000, 3, ARM_EXT_V1, do_cmp}, {"teqp", 0xe130f000, 3, ARM_EXT_V1, do_cmp}, {"cmp", 0xe1500000, 3, ARM_EXT_V1, do_cmp}, {"cmps", 0xe1500000, 3, ARM_EXT_V1, do_cmp}, {"cmpp", 0xe150f000, 3, ARM_EXT_V1, do_cmp}, {"cmn", 0xe1700000, 3, ARM_EXT_V1, do_cmp}, {"cmns", 0xe1700000, 3, ARM_EXT_V1, do_cmp}, {"cmnp", 0xe170f000, 3, ARM_EXT_V1, do_cmp}, {"mov", 0xe1a00000, 3, ARM_EXT_V1, do_mov}, {"movs", 0xe1b00000, 3, ARM_EXT_V1, do_mov}, {"mvn", 0xe1e00000, 3, ARM_EXT_V1, do_mov}, {"mvns", 0xe1f00000, 3, ARM_EXT_V1, do_mov}, {"ldr", 0xe4100000, 3, ARM_EXT_V1, do_ldst}, {"ldrb", 0xe4500000, 3, ARM_EXT_V1, do_ldst}, {"ldrt", 0xe4300000, 3, ARM_EXT_V1, do_ldstt}, {"ldrbt", 0xe4700000, 3, ARM_EXT_V1, do_ldstt}, {"str", 0xe4000000, 3, ARM_EXT_V1, do_ldst}, {"strb", 0xe4400000, 3, ARM_EXT_V1, do_ldst}, {"strt", 0xe4200000, 3, ARM_EXT_V1, do_ldstt}, {"strbt", 0xe4600000, 3, ARM_EXT_V1, do_ldstt}, {"stmia", 0xe8800000, 3, ARM_EXT_V1, do_ldmstm}, {"stmib", 0xe9800000, 3, ARM_EXT_V1, do_ldmstm}, {"stmda", 0xe8000000, 3, ARM_EXT_V1, do_ldmstm}, {"stmdb", 0xe9000000, 3, ARM_EXT_V1, do_ldmstm}, {"stmfd", 0xe9000000, 3, ARM_EXT_V1, do_ldmstm}, {"stmfa", 0xe9800000, 3, ARM_EXT_V1, do_ldmstm}, {"stmea", 0xe8800000, 3, ARM_EXT_V1, do_ldmstm}, {"stmed", 0xe8000000, 3, ARM_EXT_V1, do_ldmstm}, {"ldmia", 0xe8900000, 3, ARM_EXT_V1, do_ldmstm}, {"ldmib", 0xe9900000, 3, ARM_EXT_V1, do_ldmstm}, {"ldmda", 0xe8100000, 3, ARM_EXT_V1, do_ldmstm}, {"ldmdb", 0xe9100000, 3, ARM_EXT_V1, do_ldmstm}, {"ldmfd", 0xe8900000, 3, ARM_EXT_V1, do_ldmstm}, {"ldmfa", 0xe8100000, 3, ARM_EXT_V1, do_ldmstm}, {"ldmea", 0xe9100000, 3, ARM_EXT_V1, do_ldmstm}, {"ldmed", 0xe9900000, 3, ARM_EXT_V1, do_ldmstm}, {"swi", 0xef000000, 3, ARM_EXT_V1, do_swi}, #ifdef TE_WINCE /* XXX This is the wrong place to do this. Think multi-arch. */ {"bl", 0xeb000000, 2, ARM_EXT_V1, do_branch}, {"b", 0xea000000, 1, ARM_EXT_V1, do_branch}, #else {"bl", 0xebfffffe, 2, ARM_EXT_V1, do_branch}, {"b", 0xeafffffe, 1, ARM_EXT_V1, do_branch}, #endif /* Pseudo ops. */ {"adr", 0xe28f0000, 3, ARM_EXT_V1, do_adr}, {"adrl", 0xe28f0000, 3, ARM_EXT_V1, do_adrl}, {"nop", 0xe1a00000, 3, ARM_EXT_V1, do_empty}, /* ARM 2 multiplies. */ {"mul", 0xe0000090, 3, ARM_EXT_V2, do_mul}, {"muls", 0xe0100090, 3, ARM_EXT_V2, do_mul}, {"mla", 0xe0200090, 3, ARM_EXT_V2, do_mla}, {"mlas", 0xe0300090, 3, ARM_EXT_V2, do_mla}, /* Generic copressor instructions. */ {"cdp", 0xee000000, 3, ARM_EXT_V2, do_cdp}, {"ldc", 0xec100000, 3, ARM_EXT_V2, do_lstc}, {"ldcl", 0xec500000, 3, ARM_EXT_V2, do_lstc}, {"stc", 0xec000000, 3, ARM_EXT_V2, do_lstc}, {"stcl", 0xec400000, 3, ARM_EXT_V2, do_lstc}, {"mcr", 0xee000010, 3, ARM_EXT_V2, do_co_reg}, {"mrc", 0xee100010, 3, ARM_EXT_V2, do_co_reg}, /* ARM 3 - swp instructions. */ {"swp", 0xe1000090, 3, ARM_EXT_V2S, do_swap}, {"swpb", 0xe1400090, 3, ARM_EXT_V2S, do_swap}, /* ARM 6 Status register instructions. */ {"mrs", 0xe10f0000, 3, ARM_EXT_V3, do_mrs}, {"msr", 0xe120f000, 3, ARM_EXT_V3, do_msr}, /* ScottB: our code uses 0xe128f000 for msr. NickC: but this is wrong because the bits 16 through 19 are handled by the PSR_xxx defines above. */ /* ARM 7M long multiplies. */ {"smull", 0xe0c00090, 5, ARM_EXT_V3M, do_mull}, {"smulls", 0xe0d00090, 5, ARM_EXT_V3M, do_mull}, {"umull", 0xe0800090, 5, ARM_EXT_V3M, do_mull}, {"umulls", 0xe0900090, 5, ARM_EXT_V3M, do_mull}, {"smlal", 0xe0e00090, 5, ARM_EXT_V3M, do_mull}, {"smlals", 0xe0f00090, 5, ARM_EXT_V3M, do_mull}, {"umlal", 0xe0a00090, 5, ARM_EXT_V3M, do_mull}, {"umlals", 0xe0b00090, 5, ARM_EXT_V3M, do_mull}, /* ARM Architecture 4. */ {"ldrh", 0xe01000b0, 3, ARM_EXT_V4, do_ldstv4}, {"ldrsh", 0xe01000f0, 3, ARM_EXT_V4, do_ldstv4}, {"ldrsb", 0xe01000d0, 3, ARM_EXT_V4, do_ldstv4}, {"strh", 0xe00000b0, 3, ARM_EXT_V4, do_ldstv4}, /* ARM Architecture 4T. */ /* Note: bx (and blx) are required on V5, even if the processor does not support Thumb. */ {"bx", 0xe12fff10, 2, ARM_EXT_V4T | ARM_EXT_V5, do_bx}, /* ARM Architecture 5. */ /* Note: blx has 2 variants, so the .value is set dynamically. Only one of the variants has conditional execution. */ {"blx", 0xe0000000, 3, ARM_EXT_V5, do_blx}, {"clz", 0xe16f0f10, 3, ARM_EXT_V5, do_clz}, {"bkpt", 0xe1200070, 0, ARM_EXT_V5, do_bkpt}, {"ldc2", 0xfc100000, 0, ARM_EXT_V5, do_lstc2}, {"ldc2l", 0xfc500000, 0, ARM_EXT_V5, do_lstc2}, {"stc2", 0xfc000000, 0, ARM_EXT_V5, do_lstc2}, {"stc2l", 0xfc400000, 0, ARM_EXT_V5, do_lstc2}, {"cdp2", 0xfe000000, 0, ARM_EXT_V5, do_cdp2}, {"mcr2", 0xfe000010, 0, ARM_EXT_V5, do_co_reg2}, {"mrc2", 0xfe100010, 0, ARM_EXT_V5, do_co_reg2}, /* ARM Architecture 5ExP. */ {"smlabb", 0xe1000080, 6, ARM_EXT_V5ExP, do_smla}, {"smlatb", 0xe10000a0, 6, ARM_EXT_V5ExP, do_smla}, {"smlabt", 0xe10000c0, 6, ARM_EXT_V5ExP, do_smla}, {"smlatt", 0xe10000e0, 6, ARM_EXT_V5ExP, do_smla}, {"smlawb", 0xe1200080, 6, ARM_EXT_V5ExP, do_smla}, {"smlawt", 0xe12000c0, 6, ARM_EXT_V5ExP, do_smla}, {"smlalbb", 0xe1400080, 7, ARM_EXT_V5ExP, do_smlal}, {"smlaltb", 0xe14000a0, 7, ARM_EXT_V5ExP, do_smlal}, {"smlalbt", 0xe14000c0, 7, ARM_EXT_V5ExP, do_smlal}, {"smlaltt", 0xe14000e0, 7, ARM_EXT_V5ExP, do_smlal}, {"smulbb", 0xe1600080, 6, ARM_EXT_V5ExP, do_smul}, {"smultb", 0xe16000a0, 6, ARM_EXT_V5ExP, do_smul}, {"smulbt", 0xe16000c0, 6, ARM_EXT_V5ExP, do_smul}, {"smultt", 0xe16000e0, 6, ARM_EXT_V5ExP, do_smul}, {"smulwb", 0xe12000a0, 6, ARM_EXT_V5ExP, do_smul}, {"smulwt", 0xe12000e0, 6, ARM_EXT_V5ExP, do_smul}, {"qadd", 0xe1000050, 4, ARM_EXT_V5ExP, do_qadd}, {"qdadd", 0xe1400050, 5, ARM_EXT_V5ExP, do_qadd}, {"qsub", 0xe1200050, 4, ARM_EXT_V5ExP, do_qadd}, {"qdsub", 0xe1600050, 5, ARM_EXT_V5ExP, do_qadd}, /* ARM Architecture 5E. */ {"pld", 0xf450f000, 0, ARM_EXT_V5E, do_pld}, {"ldrd", 0xe00000d0, 3, ARM_EXT_V5E, do_ldrd}, {"strd", 0xe00000f0, 3, ARM_EXT_V5E, do_ldrd}, {"mcrr", 0xec400000, 4, ARM_EXT_V5E, do_co_reg2c}, {"mrrc", 0xec500000, 4, ARM_EXT_V5E, do_co_reg2c}, /* Core FPA instruction set (V1). */ {"wfs", 0xee200110, 3, FPU_FPA_EXT_V1, do_fpa_ctrl}, {"rfs", 0xee300110, 3, FPU_FPA_EXT_V1, do_fpa_ctrl}, {"wfc", 0xee400110, 3, FPU_FPA_EXT_V1, do_fpa_ctrl}, {"rfc", 0xee500110, 3, FPU_FPA_EXT_V1, do_fpa_ctrl}, {"ldfs", 0xec100100, 3, FPU_FPA_EXT_V1, do_fpa_ldst}, {"ldfd", 0xec108100, 3, FPU_FPA_EXT_V1, do_fpa_ldst}, {"ldfe", 0xec500100, 3, FPU_FPA_EXT_V1, do_fpa_ldst}, {"ldfp", 0xec508100, 3, FPU_FPA_EXT_V1, do_fpa_ldst}, {"stfs", 0xec000100, 3, FPU_FPA_EXT_V1, do_fpa_ldst}, {"stfd", 0xec008100, 3, FPU_FPA_EXT_V1, do_fpa_ldst}, {"stfe", 0xec400100, 3, FPU_FPA_EXT_V1, do_fpa_ldst}, {"stfp", 0xec408100, 3, FPU_FPA_EXT_V1, do_fpa_ldst}, {"mvfs", 0xee008100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mvfsp", 0xee008120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mvfsm", 0xee008140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mvfsz", 0xee008160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mvfd", 0xee008180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mvfdp", 0xee0081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mvfdm", 0xee0081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mvfdz", 0xee0081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mvfe", 0xee088100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mvfep", 0xee088120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mvfem", 0xee088140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mvfez", 0xee088160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mnfs", 0xee108100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mnfsp", 0xee108120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mnfsm", 0xee108140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mnfsz", 0xee108160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mnfd", 0xee108180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mnfdp", 0xee1081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mnfdm", 0xee1081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mnfdz", 0xee1081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mnfe", 0xee188100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mnfep", 0xee188120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mnfem", 0xee188140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"mnfez", 0xee188160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"abss", 0xee208100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"abssp", 0xee208120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"abssm", 0xee208140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"abssz", 0xee208160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"absd", 0xee208180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"absdp", 0xee2081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"absdm", 0xee2081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"absdz", 0xee2081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"abse", 0xee288100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"absep", 0xee288120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"absem", 0xee288140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"absez", 0xee288160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"rnds", 0xee308100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"rndsp", 0xee308120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"rndsm", 0xee308140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"rndsz", 0xee308160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"rndd", 0xee308180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"rnddp", 0xee3081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"rnddm", 0xee3081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"rnddz", 0xee3081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"rnde", 0xee388100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"rndep", 0xee388120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"rndem", 0xee388140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"rndez", 0xee388160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sqts", 0xee408100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sqtsp", 0xee408120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sqtsm", 0xee408140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sqtsz", 0xee408160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sqtd", 0xee408180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sqtdp", 0xee4081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sqtdm", 0xee4081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sqtdz", 0xee4081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sqte", 0xee488100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sqtep", 0xee488120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sqtem", 0xee488140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sqtez", 0xee488160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"logs", 0xee508100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"logsp", 0xee508120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"logsm", 0xee508140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"logsz", 0xee508160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"logd", 0xee508180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"logdp", 0xee5081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"logdm", 0xee5081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"logdz", 0xee5081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"loge", 0xee588100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"logep", 0xee588120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"logem", 0xee588140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"logez", 0xee588160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"lgns", 0xee608100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"lgnsp", 0xee608120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"lgnsm", 0xee608140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"lgnsz", 0xee608160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"lgnd", 0xee608180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"lgndp", 0xee6081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"lgndm", 0xee6081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"lgndz", 0xee6081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"lgne", 0xee688100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"lgnep", 0xee688120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"lgnem", 0xee688140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"lgnez", 0xee688160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"exps", 0xee708100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"expsp", 0xee708120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"expsm", 0xee708140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"expsz", 0xee708160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"expd", 0xee708180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"expdp", 0xee7081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"expdm", 0xee7081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"expdz", 0xee7081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"expe", 0xee788100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"expep", 0xee788120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"expem", 0xee788140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"expdz", 0xee788160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sins", 0xee808100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sinsp", 0xee808120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sinsm", 0xee808140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sinsz", 0xee808160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sind", 0xee808180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sindp", 0xee8081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sindm", 0xee8081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sindz", 0xee8081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sine", 0xee888100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sinep", 0xee888120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sinem", 0xee888140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"sinez", 0xee888160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"coss", 0xee908100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"cossp", 0xee908120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"cossm", 0xee908140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"cossz", 0xee908160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"cosd", 0xee908180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"cosdp", 0xee9081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"cosdm", 0xee9081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"cosdz", 0xee9081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"cose", 0xee988100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"cosep", 0xee988120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"cosem", 0xee988140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"cosez", 0xee988160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"tans", 0xeea08100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"tansp", 0xeea08120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"tansm", 0xeea08140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"tansz", 0xeea08160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"tand", 0xeea08180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"tandp", 0xeea081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"tandm", 0xeea081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"tandz", 0xeea081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"tane", 0xeea88100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"tanep", 0xeea88120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"tanem", 0xeea88140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"tanez", 0xeea88160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"asns", 0xeeb08100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"asnsp", 0xeeb08120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"asnsm", 0xeeb08140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"asnsz", 0xeeb08160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"asnd", 0xeeb08180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"asndp", 0xeeb081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"asndm", 0xeeb081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"asndz", 0xeeb081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"asne", 0xeeb88100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"asnep", 0xeeb88120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"asnem", 0xeeb88140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"asnez", 0xeeb88160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"acss", 0xeec08100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"acssp", 0xeec08120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"acssm", 0xeec08140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"acssz", 0xeec08160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"acsd", 0xeec08180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"acsdp", 0xeec081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"acsdm", 0xeec081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"acsdz", 0xeec081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"acse", 0xeec88100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"acsep", 0xeec88120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"acsem", 0xeec88140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"acsez", 0xeec88160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"atns", 0xeed08100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"atnsp", 0xeed08120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"atnsm", 0xeed08140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"atnsz", 0xeed08160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"atnd", 0xeed08180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"atndp", 0xeed081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"atndm", 0xeed081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"atndz", 0xeed081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"atne", 0xeed88100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"atnep", 0xeed88120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"atnem", 0xeed88140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"atnez", 0xeed88160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"urds", 0xeee08100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"urdsp", 0xeee08120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"urdsm", 0xeee08140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"urdsz", 0xeee08160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"urdd", 0xeee08180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"urddp", 0xeee081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"urddm", 0xeee081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"urddz", 0xeee081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"urde", 0xeee88100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"urdep", 0xeee88120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"urdem", 0xeee88140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"urdez", 0xeee88160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"nrms", 0xeef08100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"nrmsp", 0xeef08120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"nrmsm", 0xeef08140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"nrmsz", 0xeef08160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"nrmd", 0xeef08180, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"nrmdp", 0xeef081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"nrmdm", 0xeef081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"nrmdz", 0xeef081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"nrme", 0xeef88100, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"nrmep", 0xeef88120, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"nrmem", 0xeef88140, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"nrmez", 0xeef88160, 3, FPU_FPA_EXT_V1, do_fpa_monadic}, {"adfs", 0xee000100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"adfsp", 0xee000120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"adfsm", 0xee000140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"adfsz", 0xee000160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"adfd", 0xee000180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"adfdp", 0xee0001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"adfdm", 0xee0001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"adfdz", 0xee0001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"adfe", 0xee080100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"adfep", 0xee080120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"adfem", 0xee080140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"adfez", 0xee080160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"sufs", 0xee200100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"sufsp", 0xee200120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"sufsm", 0xee200140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"sufsz", 0xee200160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"sufd", 0xee200180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"sufdp", 0xee2001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"sufdm", 0xee2001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"sufdz", 0xee2001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"sufe", 0xee280100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"sufep", 0xee280120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"sufem", 0xee280140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"sufez", 0xee280160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rsfs", 0xee300100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rsfsp", 0xee300120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rsfsm", 0xee300140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rsfsz", 0xee300160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rsfd", 0xee300180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rsfdp", 0xee3001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rsfdm", 0xee3001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rsfdz", 0xee3001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rsfe", 0xee380100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rsfep", 0xee380120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rsfem", 0xee380140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rsfez", 0xee380160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"mufs", 0xee100100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"mufsp", 0xee100120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"mufsm", 0xee100140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"mufsz", 0xee100160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"mufd", 0xee100180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"mufdp", 0xee1001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"mufdm", 0xee1001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"mufdz", 0xee1001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"mufe", 0xee180100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"mufep", 0xee180120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"mufem", 0xee180140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"mufez", 0xee180160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"dvfs", 0xee400100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"dvfsp", 0xee400120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"dvfsm", 0xee400140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"dvfsz", 0xee400160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"dvfd", 0xee400180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"dvfdp", 0xee4001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"dvfdm", 0xee4001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"dvfdz", 0xee4001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"dvfe", 0xee480100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"dvfep", 0xee480120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"dvfem", 0xee480140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"dvfez", 0xee480160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rdfs", 0xee500100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rdfsp", 0xee500120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rdfsm", 0xee500140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rdfsz", 0xee500160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rdfd", 0xee500180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rdfdp", 0xee5001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rdfdm", 0xee5001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rdfdz", 0xee5001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rdfe", 0xee580100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rdfep", 0xee580120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rdfem", 0xee580140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rdfez", 0xee580160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"pows", 0xee600100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"powsp", 0xee600120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"powsm", 0xee600140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"powsz", 0xee600160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"powd", 0xee600180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"powdp", 0xee6001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"powdm", 0xee6001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"powdz", 0xee6001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"powe", 0xee680100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"powep", 0xee680120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"powem", 0xee680140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"powez", 0xee680160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rpws", 0xee700100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rpwsp", 0xee700120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rpwsm", 0xee700140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rpwsz", 0xee700160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rpwd", 0xee700180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rpwdp", 0xee7001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rpwdm", 0xee7001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rpwdz", 0xee7001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rpwe", 0xee780100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rpwep", 0xee780120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rpwem", 0xee780140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rpwez", 0xee780160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rmfs", 0xee800100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rmfsp", 0xee800120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rmfsm", 0xee800140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rmfsz", 0xee800160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rmfd", 0xee800180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rmfdp", 0xee8001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rmfdm", 0xee8001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rmfdz", 0xee8001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rmfe", 0xee880100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rmfep", 0xee880120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rmfem", 0xee880140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"rmfez", 0xee880160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fmls", 0xee900100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fmlsp", 0xee900120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fmlsm", 0xee900140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fmlsz", 0xee900160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fmld", 0xee900180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fmldp", 0xee9001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fmldm", 0xee9001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fmldz", 0xee9001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fmle", 0xee980100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fmlep", 0xee980120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fmlem", 0xee980140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fmlez", 0xee980160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fdvs", 0xeea00100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fdvsp", 0xeea00120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fdvsm", 0xeea00140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fdvsz", 0xeea00160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fdvd", 0xeea00180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fdvdp", 0xeea001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fdvdm", 0xeea001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fdvdz", 0xeea001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fdve", 0xeea80100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fdvep", 0xeea80120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fdvem", 0xeea80140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"fdvez", 0xeea80160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"frds", 0xeeb00100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"frdsp", 0xeeb00120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"frdsm", 0xeeb00140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"frdsz", 0xeeb00160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"frdd", 0xeeb00180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"frddp", 0xeeb001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"frddm", 0xeeb001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"frddz", 0xeeb001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"frde", 0xeeb80100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"frdep", 0xeeb80120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"frdem", 0xeeb80140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"frdez", 0xeeb80160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"pols", 0xeec00100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"polsp", 0xeec00120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"polsm", 0xeec00140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"polsz", 0xeec00160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"pold", 0xeec00180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"poldp", 0xeec001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"poldm", 0xeec001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"poldz", 0xeec001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"pole", 0xeec80100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"polep", 0xeec80120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"polem", 0xeec80140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"polez", 0xeec80160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic}, {"cmf", 0xee90f110, 3, FPU_FPA_EXT_V1, do_fpa_cmp}, {"cmfe", 0xeed0f110, 3, FPU_FPA_EXT_V1, do_fpa_cmp}, {"cnf", 0xeeb0f110, 3, FPU_FPA_EXT_V1, do_fpa_cmp}, {"cnfe", 0xeef0f110, 3, FPU_FPA_EXT_V1, do_fpa_cmp}, /* The FPA10 data sheet suggests that the 'E' of cmfe/cnfe should not be an optional suffix, but part of the instruction. To be compatible, we accept either. */ {"cmfe", 0xeed0f110, 4, FPU_FPA_EXT_V1, do_fpa_cmp}, {"cnfe", 0xeef0f110, 4, FPU_FPA_EXT_V1, do_fpa_cmp}, {"flts", 0xee000110, 3, FPU_FPA_EXT_V1, do_fpa_from_reg}, {"fltsp", 0xee000130, 3, FPU_FPA_EXT_V1, do_fpa_from_reg}, {"fltsm", 0xee000150, 3, FPU_FPA_EXT_V1, do_fpa_from_reg}, {"fltsz", 0xee000170, 3, FPU_FPA_EXT_V1, do_fpa_from_reg}, {"fltd", 0xee000190, 3, FPU_FPA_EXT_V1, do_fpa_from_reg}, {"fltdp", 0xee0001b0, 3, FPU_FPA_EXT_V1, do_fpa_from_reg}, {"fltdm", 0xee0001d0, 3, FPU_FPA_EXT_V1, do_fpa_from_reg}, {"fltdz", 0xee0001f0, 3, FPU_FPA_EXT_V1, do_fpa_from_reg}, {"flte", 0xee080110, 3, FPU_FPA_EXT_V1, do_fpa_from_reg}, {"fltep", 0xee080130, 3, FPU_FPA_EXT_V1, do_fpa_from_reg}, {"fltem", 0xee080150, 3, FPU_FPA_EXT_V1, do_fpa_from_reg}, {"fltez", 0xee080170, 3, FPU_FPA_EXT_V1, do_fpa_from_reg}, /* The implementation of the FIX instruction is broken on some assemblers, in that it accepts a precision specifier as well as a rounding specifier, despite the fact that this is meaningless. To be more compatible, we accept it as well, though of course it does not set any bits. */ {"fix", 0xee100110, 3, FPU_FPA_EXT_V1, do_fpa_to_reg}, {"fixp", 0xee100130, 3, FPU_FPA_EXT_V1, do_fpa_to_reg}, {"fixm", 0xee100150, 3, FPU_FPA_EXT_V1, do_fpa_to_reg}, {"fixz", 0xee100170, 3, FPU_FPA_EXT_V1, do_fpa_to_reg}, {"fixsp", 0xee100130, 3, FPU_FPA_EXT_V1, do_fpa_to_reg}, {"fixsm", 0xee100150, 3, FPU_FPA_EXT_V1, do_fpa_to_reg}, {"fixsz", 0xee100170, 3, FPU_FPA_EXT_V1, do_fpa_to_reg}, {"fixdp", 0xee100130, 3, FPU_FPA_EXT_V1, do_fpa_to_reg}, {"fixdm", 0xee100150, 3, FPU_FPA_EXT_V1, do_fpa_to_reg}, {"fixdz", 0xee100170, 3, FPU_FPA_EXT_V1, do_fpa_to_reg}, {"fixep", 0xee100130, 3, FPU_FPA_EXT_V1, do_fpa_to_reg}, {"fixem", 0xee100150, 3, FPU_FPA_EXT_V1, do_fpa_to_reg}, {"fixez", 0xee100170, 3, FPU_FPA_EXT_V1, do_fpa_to_reg}, /* Instructions that were new with the real FPA, call them V2. */ {"lfm", 0xec100200, 3, FPU_FPA_EXT_V2, do_fpa_ldmstm}, {"lfmfd", 0xec900200, 3, FPU_FPA_EXT_V2, do_fpa_ldmstm}, {"lfmea", 0xed100200, 3, FPU_FPA_EXT_V2, do_fpa_ldmstm}, {"sfm", 0xec000200, 3, FPU_FPA_EXT_V2, do_fpa_ldmstm}, {"sfmfd", 0xed000200, 3, FPU_FPA_EXT_V2, do_fpa_ldmstm}, {"sfmea", 0xec800200, 3, FPU_FPA_EXT_V2, do_fpa_ldmstm}, /* Intel XScale extensions to ARM V5 ISA. (All use CP0). */ {"mia", 0xee200010, 3, ARM_EXT_XSCALE, do_mia}, {"miaph", 0xee280010, 5, ARM_EXT_XSCALE, do_mia}, {"miabb", 0xee2c0010, 5, ARM_EXT_XSCALE, do_mia}, {"miabt", 0xee2d0010, 5, ARM_EXT_XSCALE, do_mia}, {"miatb", 0xee2e0010, 5, ARM_EXT_XSCALE, do_mia}, {"miatt", 0xee2f0010, 5, ARM_EXT_XSCALE, do_mia}, {"mar", 0xec400000, 3, ARM_EXT_XSCALE, do_mar}, {"mra", 0xec500000, 3, ARM_EXT_XSCALE, do_mra}, /* Cirrus DSP instructions. */ {"cfldrs", 0xec100400, 6, ARM_EXT_MAVERICK, do_c_ldst_1}, {"cfldrd", 0xec500400, 6, ARM_EXT_MAVERICK, do_c_ldst_2}, {"cfldr32", 0xec100500, 7, ARM_EXT_MAVERICK, do_c_ldst_3}, {"cfldr64", 0xec500500, 7, ARM_EXT_MAVERICK, do_c_ldst_4}, {"cfstrs", 0xec000400, 6, ARM_EXT_MAVERICK, do_c_ldst_1}, {"cfstrd", 0xec400400, 6, ARM_EXT_MAVERICK, do_c_ldst_2}, {"cfstr32", 0xec000500, 7, ARM_EXT_MAVERICK, do_c_ldst_3}, {"cfstr64", 0xec400500, 7, ARM_EXT_MAVERICK, do_c_ldst_4}, {"cfmvsr", 0xee000450, 6, ARM_EXT_MAVERICK, do_c_binops_2}, {"cfmvrs", 0xee100450, 6, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfmvdlr", 0xee000410, 7, ARM_EXT_MAVERICK, do_c_binops_2}, {"cfmvrdl", 0xee100410, 7, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfmvdhr", 0xee000430, 7, ARM_EXT_MAVERICK, do_c_binops_2}, {"cfmvrdh", 0xee100430, 7, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfmv64lr", 0xee000510, 8, ARM_EXT_MAVERICK, do_c_binops_2}, {"cfmvr64l", 0xee100510, 8, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfmv64hr", 0xee000530, 8, ARM_EXT_MAVERICK, do_c_binops_2}, {"cfmvr64h", 0xee100530, 8, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfmval32", 0xee100610, 8, ARM_EXT_MAVERICK, do_c_binops_3}, {"cfmv32al", 0xee000610, 8, ARM_EXT_MAVERICK, do_c_binops_3}, {"cfmvam32", 0xee100630, 8, ARM_EXT_MAVERICK, do_c_binops_3}, {"cfmv32am", 0xee000630, 8, ARM_EXT_MAVERICK, do_c_binops_3}, {"cfmvah32", 0xee100650, 8, ARM_EXT_MAVERICK, do_c_binops_3}, {"cfmv32ah", 0xee000650, 8, ARM_EXT_MAVERICK, do_c_binops_3}, {"cfmv32a", 0xee000670, 7, ARM_EXT_MAVERICK, do_c_binops_3}, {"cfmva32", 0xee100670, 7, ARM_EXT_MAVERICK, do_c_binops_3}, {"cfmv64a", 0xee000690, 7, ARM_EXT_MAVERICK, do_c_binops_3}, {"cfmva64", 0xee100690, 7, ARM_EXT_MAVERICK, do_c_binops_3}, {"cfmvsc32", 0xee1006b0, 8, ARM_EXT_MAVERICK, do_c_dspsc_1}, {"cfmv32sc", 0xee0006b0, 8, ARM_EXT_MAVERICK, do_c_dspsc_2}, {"cfcpys", 0xee000400, 6, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfcpyd", 0xee000420, 6, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfcvtsd", 0xee000460, 7, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfcvtds", 0xee000440, 7, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfcvt32s", 0xee000480, 8, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfcvt32d", 0xee0004a0, 8, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfcvt64s", 0xee0004c0, 8, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfcvt64d", 0xee0004e0, 8, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfcvts32", 0xee100580, 8, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfcvtd32", 0xee1005a0, 8, ARM_EXT_MAVERICK, do_c_binops_1}, {"cftruncs32", 0xee1005c0, 10, ARM_EXT_MAVERICK, do_c_binops_1}, {"cftruncd32", 0xee1005e0, 10, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfrshl32", 0xee000550, 8, ARM_EXT_MAVERICK, do_c_triple_4}, {"cfrshl64", 0xee000570, 8, ARM_EXT_MAVERICK, do_c_triple_4}, {"cfsh32", 0xee000500, 6, ARM_EXT_MAVERICK, do_c_shift_1}, {"cfsh64", 0xee200500, 6, ARM_EXT_MAVERICK, do_c_shift_2}, {"cfcmps", 0xee100490, 6, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfcmpd", 0xee1004b0, 6, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfcmp32", 0xee100590, 7, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfcmp64", 0xee1005b0, 7, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfabss", 0xee300400, 6, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfabsd", 0xee300420, 6, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfnegs", 0xee300440, 6, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfnegd", 0xee300460, 6, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfadds", 0xee300480, 6, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfaddd", 0xee3004a0, 6, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfsubs", 0xee3004c0, 6, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfsubd", 0xee3004e0, 6, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfmuls", 0xee100400, 6, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfmuld", 0xee100420, 6, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfabs32", 0xee300500, 7, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfabs64", 0xee300520, 7, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfneg32", 0xee300540, 7, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfneg64", 0xee300560, 7, ARM_EXT_MAVERICK, do_c_binops_1}, {"cfadd32", 0xee300580, 7, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfadd64", 0xee3005a0, 7, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfsub32", 0xee3005c0, 7, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfsub64", 0xee3005e0, 7, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfmul32", 0xee100500, 7, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfmul64", 0xee100520, 7, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfmac32", 0xee100540, 7, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfmsc32", 0xee100560, 7, ARM_EXT_MAVERICK, do_c_triple_5}, {"cfmadd32", 0xee000600, 8, ARM_EXT_MAVERICK, do_c_quad_6}, {"cfmsub32", 0xee100600, 8, ARM_EXT_MAVERICK, do_c_quad_6}, {"cfmadda32", 0xee200600, 9, ARM_EXT_MAVERICK, do_c_quad_6}, {"cfmsuba32", 0xee300600, 9, ARM_EXT_MAVERICK, do_c_quad_6}, }; /* Defines for various bits that we will want to toggle. */ #define INST_IMMEDIATE 0x02000000 #define OFFSET_REG 0x02000000 #define HWOFFSET_IMM 0x00400000 #define SHIFT_BY_REG 0x00000010 #define PRE_INDEX 0x01000000 #define INDEX_UP 0x00800000 #define WRITE_BACK 0x00200000 #define LDM_TYPE_2_OR_3 0x00400000 #define LITERAL_MASK 0xf000f000 #define OPCODE_MASK 0xfe1fffff #define V4_STR_BIT 0x00000020 #define DATA_OP_SHIFT 21 /* Codes to distinguish the arithmetic instructions. */ #define OPCODE_AND 0 #define OPCODE_EOR 1 #define OPCODE_SUB 2 #define OPCODE_RSB 3 #define OPCODE_ADD 4 #define OPCODE_ADC 5 #define OPCODE_SBC 6 #define OPCODE_RSC 7 #define OPCODE_TST 8 #define OPCODE_TEQ 9 #define OPCODE_CMP 10 #define OPCODE_CMN 11 #define OPCODE_ORR 12 #define OPCODE_MOV 13 #define OPCODE_BIC 14 #define OPCODE_MVN 15 /* Thumb v1 (ARMv4T). */ static void do_t_nop PARAMS ((char *)); static void do_t_arit PARAMS ((char *)); static void do_t_add PARAMS ((char *)); static void do_t_asr PARAMS ((char *)); static void do_t_branch9 PARAMS ((char *)); static void do_t_branch12 PARAMS ((char *)); static void do_t_branch23 PARAMS ((char *)); static void do_t_bx PARAMS ((char *)); static void do_t_compare PARAMS ((char *)); static void do_t_ldmstm PARAMS ((char *)); static void do_t_ldr PARAMS ((char *)); static void do_t_ldrb PARAMS ((char *)); static void do_t_ldrh PARAMS ((char *)); static void do_t_lds PARAMS ((char *)); static void do_t_lsl PARAMS ((char *)); static void do_t_lsr PARAMS ((char *)); static void do_t_mov PARAMS ((char *)); static void do_t_push_pop PARAMS ((char *)); static void do_t_str PARAMS ((char *)); static void do_t_strb PARAMS ((char *)); static void do_t_strh PARAMS ((char *)); static void do_t_sub PARAMS ((char *)); static void do_t_swi PARAMS ((char *)); static void do_t_adr PARAMS ((char *)); /* Thumb v2 (ARMv5T). */ static void do_t_blx PARAMS ((char *)); static void do_t_bkpt PARAMS ((char *)); #define T_OPCODE_MUL 0x4340 #define T_OPCODE_TST 0x4200 #define T_OPCODE_CMN 0x42c0 #define T_OPCODE_NEG 0x4240 #define T_OPCODE_MVN 0x43c0 #define T_OPCODE_ADD_R3 0x1800 #define T_OPCODE_SUB_R3 0x1a00 #define T_OPCODE_ADD_HI 0x4400 #define T_OPCODE_ADD_ST 0xb000 #define T_OPCODE_SUB_ST 0xb080 #define T_OPCODE_ADD_SP 0xa800 #define T_OPCODE_ADD_PC 0xa000 #define T_OPCODE_ADD_I8 0x3000 #define T_OPCODE_SUB_I8 0x3800 #define T_OPCODE_ADD_I3 0x1c00 #define T_OPCODE_SUB_I3 0x1e00 #define T_OPCODE_ASR_R 0x4100 #define T_OPCODE_LSL_R 0x4080 #define T_OPCODE_LSR_R 0x40c0 #define T_OPCODE_ASR_I 0x1000 #define T_OPCODE_LSL_I 0x0000 #define T_OPCODE_LSR_I 0x0800 #define T_OPCODE_MOV_I8 0x2000 #define T_OPCODE_CMP_I8 0x2800 #define T_OPCODE_CMP_LR 0x4280 #define T_OPCODE_MOV_HR 0x4600 #define T_OPCODE_CMP_HR 0x4500 #define T_OPCODE_LDR_PC 0x4800 #define T_OPCODE_LDR_SP 0x9800 #define T_OPCODE_STR_SP 0x9000 #define T_OPCODE_LDR_IW 0x6800 #define T_OPCODE_STR_IW 0x6000 #define T_OPCODE_LDR_IH 0x8800 #define T_OPCODE_STR_IH 0x8000 #define T_OPCODE_LDR_IB 0x7800 #define T_OPCODE_STR_IB 0x7000 #define T_OPCODE_LDR_RW 0x5800 #define T_OPCODE_STR_RW 0x5000 #define T_OPCODE_LDR_RH 0x5a00 #define T_OPCODE_STR_RH 0x5200 #define T_OPCODE_LDR_RB 0x5c00 #define T_OPCODE_STR_RB 0x5400 #define T_OPCODE_PUSH 0xb400 #define T_OPCODE_POP 0xbc00 #define T_OPCODE_BRANCH 0xe7fe static int thumb_reg PARAMS ((char ** str, int hi_lo)); #define THUMB_SIZE 2 /* Size of thumb instruction. */ #define THUMB_REG_LO 0x1 #define THUMB_REG_HI 0x2 #define THUMB_REG_ANY 0x3 #define THUMB_H1 0x0080 #define THUMB_H2 0x0040 #define THUMB_ASR 0 #define THUMB_LSL 1 #define THUMB_LSR 2 #define THUMB_MOVE 0 #define THUMB_COMPARE 1 #define THUMB_LOAD 0 #define THUMB_STORE 1 #define THUMB_PP_PC_LR 0x0100 /* These three are used for immediate shifts, do not alter. */ #define THUMB_WORD 2 #define THUMB_HALFWORD 1 #define THUMB_BYTE 0 struct thumb_opcode { /* Basic string to match. */ const char * template; /* Basic instruction code. */ unsigned long value; int size; /* Which CPU variants this exists for. */ unsigned long variant; /* Function to call to parse args. */ void (* parms) PARAMS ((char *)); }; static const struct thumb_opcode tinsns[] = { /* Thumb v1 (ARMv4T). */ {"adc", 0x4140, 2, ARM_EXT_V4T, do_t_arit}, {"add", 0x0000, 2, ARM_EXT_V4T, do_t_add}, {"and", 0x4000, 2, ARM_EXT_V4T, do_t_arit}, {"asr", 0x0000, 2, ARM_EXT_V4T, do_t_asr}, {"b", T_OPCODE_BRANCH, 2, ARM_EXT_V4T, do_t_branch12}, {"beq", 0xd0fe, 2, ARM_EXT_V4T, do_t_branch9}, {"bne", 0xd1fe, 2, ARM_EXT_V4T, do_t_branch9}, {"bcs", 0xd2fe, 2, ARM_EXT_V4T, do_t_branch9}, {"bhs", 0xd2fe, 2, ARM_EXT_V4T, do_t_branch9}, {"bcc", 0xd3fe, 2, ARM_EXT_V4T, do_t_branch9}, {"bul", 0xd3fe, 2, ARM_EXT_V4T, do_t_branch9}, {"blo", 0xd3fe, 2, ARM_EXT_V4T, do_t_branch9}, {"bmi", 0xd4fe, 2, ARM_EXT_V4T, do_t_branch9}, {"bpl", 0xd5fe, 2, ARM_EXT_V4T, do_t_branch9}, {"bvs", 0xd6fe, 2, ARM_EXT_V4T, do_t_branch9}, {"bvc", 0xd7fe, 2, ARM_EXT_V4T, do_t_branch9}, {"bhi", 0xd8fe, 2, ARM_EXT_V4T, do_t_branch9}, {"bls", 0xd9fe, 2, ARM_EXT_V4T, do_t_branch9}, {"bge", 0xdafe, 2, ARM_EXT_V4T, do_t_branch9}, {"blt", 0xdbfe, 2, ARM_EXT_V4T, do_t_branch9}, {"bgt", 0xdcfe, 2, ARM_EXT_V4T, do_t_branch9}, {"ble", 0xddfe, 2, ARM_EXT_V4T, do_t_branch9}, {"bal", 0xdefe, 2, ARM_EXT_V4T, do_t_branch9}, {"bic", 0x4380, 2, ARM_EXT_V4T, do_t_arit}, {"bl", 0xf7fffffe, 4, ARM_EXT_V4T, do_t_branch23}, {"bx", 0x4700, 2, ARM_EXT_V4T, do_t_bx}, {"cmn", T_OPCODE_CMN, 2, ARM_EXT_V4T, do_t_arit}, {"cmp", 0x0000, 2, ARM_EXT_V4T, do_t_compare}, {"eor", 0x4040, 2, ARM_EXT_V4T, do_t_arit}, {"ldmia", 0xc800, 2, ARM_EXT_V4T, do_t_ldmstm}, {"ldr", 0x0000, 2, ARM_EXT_V4T, do_t_ldr}, {"ldrb", 0x0000, 2, ARM_EXT_V4T, do_t_ldrb}, {"ldrh", 0x0000, 2, ARM_EXT_V4T, do_t_ldrh}, {"ldrsb", 0x5600, 2, ARM_EXT_V4T, do_t_lds}, {"ldrsh", 0x5e00, 2, ARM_EXT_V4T, do_t_lds}, {"ldsb", 0x5600, 2, ARM_EXT_V4T, do_t_lds}, {"ldsh", 0x5e00, 2, ARM_EXT_V4T, do_t_lds}, {"lsl", 0x0000, 2, ARM_EXT_V4T, do_t_lsl}, {"lsr", 0x0000, 2, ARM_EXT_V4T, do_t_lsr}, {"mov", 0x0000, 2, ARM_EXT_V4T, do_t_mov}, {"mul", T_OPCODE_MUL, 2, ARM_EXT_V4T, do_t_arit}, {"mvn", T_OPCODE_MVN, 2, ARM_EXT_V4T, do_t_arit}, {"neg", T_OPCODE_NEG, 2, ARM_EXT_V4T, do_t_arit}, {"orr", 0x4300, 2, ARM_EXT_V4T, do_t_arit}, {"pop", 0xbc00, 2, ARM_EXT_V4T, do_t_push_pop}, {"push", 0xb400, 2, ARM_EXT_V4T, do_t_push_pop}, {"ror", 0x41c0, 2, ARM_EXT_V4T, do_t_arit}, {"sbc", 0x4180, 2, ARM_EXT_V4T, do_t_arit}, {"stmia", 0xc000, 2, ARM_EXT_V4T, do_t_ldmstm}, {"str", 0x0000, 2, ARM_EXT_V4T, do_t_str}, {"strb", 0x0000, 2, ARM_EXT_V4T, do_t_strb}, {"strh", 0x0000, 2, ARM_EXT_V4T, do_t_strh}, {"swi", 0xdf00, 2, ARM_EXT_V4T, do_t_swi}, {"sub", 0x0000, 2, ARM_EXT_V4T, do_t_sub}, {"tst", T_OPCODE_TST, 2, ARM_EXT_V4T, do_t_arit}, /* Pseudo ops: */ {"adr", 0x0000, 2, ARM_EXT_V4T, do_t_adr}, {"nop", 0x46C0, 2, ARM_EXT_V4T, do_t_nop}, /* mov r8,r8 */ /* Thumb v2 (ARMv5T). */ {"blx", 0, 0, ARM_EXT_V5T, do_t_blx}, {"bkpt", 0xbe00, 2, ARM_EXT_V5T, do_t_bkpt}, }; struct reg_entry { const char * name; int number; }; #define int_register(reg) ((reg) >= 0 && (reg) <= 15) #define cp_register(reg) ((reg) >= 32 && (reg) <= 47) #define fp_register(reg) ((reg) >= 16 && (reg) <= 23) #define ARM_EXT_MAVERICKSC_REG 134 #define cirrus_register(reg) ((reg) >= 50 && (reg) <= 134) #define cirrus_mvf_register(reg) ((reg) >= 50 && (reg) <= 65) #define cirrus_mvd_register(reg) ((reg) >= 70 && (reg) <= 85) #define cirrus_mvfx_register(reg) ((reg) >= 90 && (reg) <= 105) #define cirrus_mvdx_register(reg) ((reg) >= 110 && (reg) <= 125) #define cirrus_mvax_register(reg) ((reg) >= 130 && (reg) <= 133) #define ARM_EXT_MAVERICKsc_register(reg) ((reg) == ARM_EXT_MAVERICKSC_REG) #define REG_SP 13 #define REG_LR 14 #define REG_PC 15 /* These are the standard names. Users can add aliases with .req. */ static const struct reg_entry reg_table[] = { /* Processor Register Numbers. */ {"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, {"r12", 12}, {"r13", REG_SP},{"r14", REG_LR},{"r15", REG_PC}, /* APCS conventions. */ {"a1", 0}, {"a2", 1}, {"a3", 2}, {"a4", 3}, {"v1", 4}, {"v2", 5}, {"v3", 6}, {"v4", 7}, {"v5", 8}, {"v6", 9}, {"sb", 9}, {"v7", 10}, {"sl", 10}, {"fp", 11}, {"ip", 12}, {"sp", REG_SP},{"lr", REG_LR},{"pc", REG_PC}, /* ATPCS additions to APCS conventions. */ {"wr", 7}, {"v8", 11}, /* FP Registers. */ {"f0", 16}, {"f1", 17}, {"f2", 18}, {"f3", 19}, {"f4", 20}, {"f5", 21}, {"f6", 22}, {"f7", 23}, {"c0", 32}, {"c1", 33}, {"c2", 34}, {"c3", 35}, {"c4", 36}, {"c5", 37}, {"c6", 38}, {"c7", 39}, {"c8", 40}, {"c9", 41}, {"c10", 42}, {"c11", 43}, {"c12", 44}, {"c13", 45}, {"c14", 46}, {"c15", 47}, {"cr0", 32}, {"cr1", 33}, {"cr2", 34}, {"cr3", 35}, {"cr4", 36}, {"cr5", 37}, {"cr6", 38}, {"cr7", 39}, {"cr8", 40}, {"cr9", 41}, {"cr10", 42}, {"cr11", 43}, {"cr12", 44}, {"cr13", 45}, {"cr14", 46}, {"cr15", 47}, /* ATPCS additions to float register names. */ {"s0",16}, {"s1",17}, {"s2",18}, {"s3",19}, {"s4",20}, {"s5",21}, {"s6",22}, {"s7",23}, {"d0",16}, {"d1",17}, {"d2",18}, {"d3",19}, {"d4",20}, {"d5",21}, {"d6",22}, {"d7",23}, /* Cirrus DSP coprocessor registers. */ {"mvf0", 50}, {"mvf1", 51}, {"mvf2", 52}, {"mvf3", 53}, {"mvf4", 54}, {"mvf5", 55}, {"mvf6", 56}, {"mvf7", 57}, {"mvf8", 58}, {"mvf9", 59}, {"mvf10", 60}, {"mvf11", 61}, {"mvf12", 62},{"mvf13", 63}, {"mvf14", 64}, {"mvf15", 65}, {"mvd0", 70}, {"mvd1", 71}, {"mvd2", 72}, {"mvd3", 73}, {"mvd4", 74}, {"mvd5", 75}, {"mvd6", 76}, {"mvd7", 77}, {"mvd8", 78}, {"mvd9", 79}, {"mvd10", 80}, {"mvd11", 81}, {"mvd12", 82},{"mvd13", 83}, {"mvd14", 84}, {"mvd15", 85}, {"mvfx0", 90},{"mvfx1", 91}, {"mvfx2", 92}, {"mvfx3", 93}, {"mvfx4", 94},{"mvfx5", 95}, {"mvfx6", 96}, {"mvfx7", 97}, {"mvfx8", 98},{"mvfx9", 99}, {"mvfx10", 100},{"mvfx11", 101}, {"mvfx12", 102},{"mvfx13", 103},{"mvfx14", 104},{"mvfx15", 105}, {"mvdx0", 110}, {"mvdx1", 111}, {"mvdx2", 112}, {"mvdx3", 113}, {"mvdx4", 114}, {"mvdx5", 115}, {"mvdx6", 116}, {"mvdx7", 117}, {"mvdx8", 118}, {"mvdx9", 119}, {"mvdx10", 120},{"mvdx11", 121}, {"mvdx12", 122},{"mvdx13", 123},{"mvdx14", 124},{"mvdx15", 125}, {"mvax0", 130}, {"mvax1", 131}, {"mvax2", 132}, {"mvax3", 133}, {"dspsc", ARM_EXT_MAVERICKSC_REG}, /* FIXME: At some point we need to add VFP register names. */ /* Array terminator. */ {NULL, 0} }; #define BAD_ARGS _("Bad arguments to instruction") #define BAD_PC _("r15 not allowed here") #define BAD_COND _("Instruction is not conditional") #define ERR_NO_ACCUM _("acc0 expected") static struct hash_control * arm_ops_hsh = NULL; static struct hash_control * arm_tops_hsh = NULL; static struct hash_control * arm_cond_hsh = NULL; static struct hash_control * arm_shift_hsh = NULL; static struct hash_control * arm_reg_hsh = NULL; static struct hash_control * arm_psr_hsh = NULL; /* This table describes all the machine specific pseudo-ops the assembler has to support. The fields are: pseudo-op name without dot function to call to execute this pseudo-op Integer arg to pass to the function. */ static void s_req PARAMS ((int)); static void s_align PARAMS ((int)); static void s_bss PARAMS ((int)); static void s_even PARAMS ((int)); static void s_ltorg PARAMS ((int)); static void s_arm PARAMS ((int)); static void s_thumb PARAMS ((int)); static void s_code PARAMS ((int)); static void s_force_thumb PARAMS ((int)); static void s_thumb_func PARAMS ((int)); static void s_thumb_set PARAMS ((int)); static void arm_s_text PARAMS ((int)); static void arm_s_data PARAMS ((int)); #ifdef OBJ_ELF static void arm_s_section PARAMS ((int)); static void s_arm_elf_cons PARAMS ((int)); #endif static int my_get_expression PARAMS ((expressionS *, char **)); const pseudo_typeS md_pseudo_table[] = { /* Never called becasue '.req' does not start line. */ { "req", s_req, 0 }, { "bss", s_bss, 0 }, { "align", s_align, 0 }, { "arm", s_arm, 0 }, { "thumb", s_thumb, 0 }, { "code", s_code, 0 }, { "force_thumb", s_force_thumb, 0 }, { "thumb_func", s_thumb_func, 0 }, { "thumb_set", s_thumb_set, 0 }, { "even", s_even, 0 }, { "ltorg", s_ltorg, 0 }, { "pool", s_ltorg, 0 }, /* Allow for the effect of section changes. */ { "text", arm_s_text, 0 }, { "data", arm_s_data, 0 }, #ifdef OBJ_ELF { "section", arm_s_section, 0 }, { "section.s", arm_s_section, 0 }, { "sect", arm_s_section, 0 }, { "sect.s", arm_s_section, 0 }, { "word", s_arm_elf_cons, 4 }, { "long", s_arm_elf_cons, 4 }, { "file", dwarf2_directive_file, 0 }, { "loc", dwarf2_directive_loc, 0 }, #else { "word", cons, 4}, #endif { "extend", float_cons, 'x' }, { "ldouble", float_cons, 'x' }, { "packed", float_cons, 'p' }, { 0, 0, 0 } }; /* Stuff needed to resolve the label ambiguity As: ... label: may differ from: ... label: */ symbolS * last_label_seen; static int label_is_thumb_function_name = false; /* Literal stuff. */ #define MAX_LITERAL_POOL_SIZE 1024 typedef struct literalS { struct expressionS exp; struct arm_it * inst; } literalT; literalT literals[MAX_LITERAL_POOL_SIZE]; /* Next free entry in the pool. */ int next_literal_pool_place = 0; /* Next literal pool number. */ int lit_pool_num = 1; symbolS * current_poolP = NULL; static int add_to_lit_pool () { int lit_count = 0; if (current_poolP == NULL) current_poolP = symbol_create (FAKE_LABEL_NAME, undefined_section, (valueT) 0, &zero_address_frag); /* Check if this literal value is already in the pool: */ while (lit_count < next_literal_pool_place) { if (literals[lit_count].exp.X_op == inst.reloc.exp.X_op && inst.reloc.exp.X_op == O_constant && (literals[lit_count].exp.X_add_number == inst.reloc.exp.X_add_number) && literals[lit_count].exp.X_unsigned == inst.reloc.exp.X_unsigned) break; if (literals[lit_count].exp.X_op == inst.reloc.exp.X_op && inst.reloc.exp.X_op == O_symbol && (literals[lit_count].exp.X_add_number == inst.reloc.exp.X_add_number) && (literals[lit_count].exp.X_add_symbol == inst.reloc.exp.X_add_symbol) && (literals[lit_count].exp.X_op_symbol == inst.reloc.exp.X_op_symbol)) break; lit_count++; } if (lit_count == next_literal_pool_place) /* New entry. */ { if (next_literal_pool_place >= MAX_LITERAL_POOL_SIZE) { inst.error = _("Literal Pool Overflow"); return FAIL; } literals[next_literal_pool_place].exp = inst.reloc.exp; lit_count = next_literal_pool_place++; } inst.reloc.exp.X_op = O_symbol; inst.reloc.exp.X_add_number = (lit_count) * 4 - 8; inst.reloc.exp.X_add_symbol = current_poolP; return SUCCESS; } /* Can't use symbol_new here, so have to create a symbol and then at a later date assign it a value. Thats what these functions do. */ static void symbol_locate (symbolP, name, segment, valu, frag) symbolS * symbolP; const char * name; /* It is copied, the caller can modify. */ segT segment; /* Segment identifier (SEG_). */ valueT valu; /* Symbol value. */ fragS * frag; /* Associated fragment. */ { unsigned int name_length; char * preserved_copy_of_name; name_length = strlen (name) + 1; /* +1 for \0. */ obstack_grow (¬es, name, name_length); preserved_copy_of_name = obstack_finish (¬es); #ifdef STRIP_UNDERSCORE if (preserved_copy_of_name[0] == '_') preserved_copy_of_name++; #endif #ifdef tc_canonicalize_symbol_name preserved_copy_of_name = tc_canonicalize_symbol_name (preserved_copy_of_name); #endif S_SET_NAME (symbolP, preserved_copy_of_name); S_SET_SEGMENT (symbolP, segment); S_SET_VALUE (symbolP, valu); symbol_clear_list_pointers(symbolP); symbol_set_frag (symbolP, frag); /* Link to end of symbol chain. */ { extern int symbol_table_frozen; if (symbol_table_frozen) abort (); } symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP); obj_symbol_new_hook (symbolP); #ifdef tc_symbol_new_hook tc_symbol_new_hook (symbolP); #endif #ifdef DEBUG_SYMS verify_symbol_chain (symbol_rootP, symbol_lastP); #endif /* DEBUG_SYMS */ } /* Check that an immediate is valid. If so, convert it to the right format. */ static unsigned int validate_immediate (val) unsigned int val; { unsigned int a; unsigned int i; #define rotate_left(v, n) (v << n | v >> (32 - n)) for (i = 0; i < 32; i += 2) if ((a = rotate_left (val, i)) <= 0xff) return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */ return FAIL; } /* Check to see if an immediate can be computed as two seperate immediate values, added together. We already know that this value cannot be computed by just one ARM instruction. */ static unsigned int validate_immediate_twopart (val, highpart) unsigned int val; unsigned int * highpart; { unsigned int a; unsigned int i; for (i = 0; i < 32; i += 2) if (((a = rotate_left (val, i)) & 0xff) != 0) { if (a & 0xff00) { if (a & ~ 0xffff) continue; * highpart = (a >> 8) | ((i + 24) << 7); } else if (a & 0xff0000) { if (a & 0xff000000) continue; * highpart = (a >> 16) | ((i + 16) << 7); } else { assert (a & 0xff000000); * highpart = (a >> 24) | ((i + 8) << 7); } return (a & 0xff) | (i << 7); } return FAIL; } static int validate_offset_imm (val, hwse) unsigned int val; int hwse; { if ((hwse && val > 255) || val > 4095) return FAIL; return val; } static void s_req (a) int a ATTRIBUTE_UNUSED; { as_bad (_("Invalid syntax for .req directive.")); } static void s_bss (ignore) int ignore ATTRIBUTE_UNUSED; { /* We don't support putting frags in the BSS segment, we fake it by marking in_bss, then looking at s_skip for clues. */ subseg_set (bss_section, 0); demand_empty_rest_of_line (); } static void s_even (ignore) int ignore ATTRIBUTE_UNUSED; { /* Never make frag if expect extra pass. */ if (!need_pass_2) frag_align (1, 0, 0); record_alignment (now_seg, 1); demand_empty_rest_of_line (); } static void s_ltorg (ignored) int ignored ATTRIBUTE_UNUSED; { int lit_count = 0; char sym_name[20]; if (current_poolP == NULL) return; /* Align pool as you have word accesses. Only make a frag if we have to. */ if (!need_pass_2) frag_align (2, 0, 0); record_alignment (now_seg, 2); sprintf (sym_name, "$$lit_\002%x", lit_pool_num++); symbol_locate (current_poolP, sym_name, now_seg, (valueT) frag_now_fix (), frag_now); symbol_table_insert (current_poolP); ARM_SET_THUMB (current_poolP, thumb_mode); #if defined OBJ_COFF || defined OBJ_ELF ARM_SET_INTERWORK (current_poolP, support_interwork); #endif while (lit_count < next_literal_pool_place) /* First output the expression in the instruction to the pool. */ emit_expr (&(literals[lit_count++].exp), 4); /* .word */ next_literal_pool_place = 0; current_poolP = NULL; } /* Same as s_align_ptwo but align 0 => align 2. */ static void s_align (unused) int unused ATTRIBUTE_UNUSED; { register int temp; register long temp_fill; long max_alignment = 15; temp = get_absolute_expression (); if (temp > max_alignment) as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment); else if (temp < 0) { as_bad (_("Alignment negative. 0 assumed.")); temp = 0; } if (*input_line_pointer == ',') { input_line_pointer++; temp_fill = get_absolute_expression (); } else temp_fill = 0; if (!temp) temp = 2; /* Only make a frag if we HAVE to. */ if (temp && !need_pass_2) frag_align (temp, (int) temp_fill, 0); demand_empty_rest_of_line (); record_alignment (now_seg, temp); } static void s_force_thumb (ignore) int ignore ATTRIBUTE_UNUSED; { /* If we are not already in thumb mode go into it, EVEN if the target processor does not support thumb instructions. This is used by gcc/config/arm/lib1funcs.asm for example to compile interworking support functions even if the target processor should not support interworking. */ if (! thumb_mode) { thumb_mode = 2; record_alignment (now_seg, 1); } demand_empty_rest_of_line (); } static void s_thumb_func (ignore) int ignore ATTRIBUTE_UNUSED; { if (! thumb_mode) opcode_select (16); /* The following label is the name/address of the start of a Thumb function. We need to know this for the interworking support. */ label_is_thumb_function_name = true; demand_empty_rest_of_line (); } /* Perform a .set directive, but also mark the alias as being a thumb function. */ static void s_thumb_set (equiv) int equiv; { /* XXX the following is a duplicate of the code for s_set() in read.c We cannot just call that code as we need to get at the symbol that is created. */ register char * name; register char delim; register char * end_name; register symbolS * symbolP; /* Especial apologies for the random logic: This just grew, and could be parsed much more simply! Dean - in haste. */ name = input_line_pointer; delim = get_symbol_end (); end_name = input_line_pointer; *end_name = delim; SKIP_WHITESPACE (); if (*input_line_pointer != ',') { *end_name = 0; as_bad (_("Expected comma after name \"%s\""), name); *end_name = delim; ignore_rest_of_line (); return; } input_line_pointer++; *end_name = 0; if (name[0] == '.' && name[1] == '\0') { /* XXX - this should not happen to .thumb_set. */ abort (); } if ((symbolP = symbol_find (name)) == NULL && (symbolP = md_undefined_symbol (name)) == NULL) { #ifndef NO_LISTING /* When doing symbol listings, play games with dummy fragments living outside the normal fragment chain to record the file and line info for this symbol. */ if (listing & LISTING_SYMBOLS) { extern struct list_info_struct * listing_tail; fragS * dummy_frag = (fragS *) xmalloc (sizeof (fragS)); memset (dummy_frag, 0, sizeof (fragS)); dummy_frag->fr_type = rs_fill; dummy_frag->line = listing_tail; symbolP = symbol_new (name, undefined_section, 0, dummy_frag); dummy_frag->fr_symbol = symbolP; } else #endif symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag); #ifdef OBJ_COFF /* "set" symbols are local unless otherwise specified. */ SF_SET_LOCAL (symbolP); #endif /* OBJ_COFF */ } /* Make a new symbol. */ symbol_table_insert (symbolP); * end_name = delim; if (equiv && S_IS_DEFINED (symbolP) && S_GET_SEGMENT (symbolP) != reg_section) as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP)); pseudo_set (symbolP); demand_empty_rest_of_line (); /* XXX Now we come to the Thumb specific bit of code. */ THUMB_SET_FUNC (symbolP, 1); ARM_SET_THUMB (symbolP, 1); #if defined OBJ_ELF || defined OBJ_COFF ARM_SET_INTERWORK (symbolP, support_interwork); #endif } /* If we change section we must dump the literal pool first. */ static void arm_s_text (ignore) int ignore; { if (now_seg != text_section) s_ltorg (0); #ifdef OBJ_ELF obj_elf_text (ignore); #else s_text (ignore); #endif } static void arm_s_data (ignore) int ignore; { if (flag_readonly_data_in_text) { if (now_seg != text_section) s_ltorg (0); } else if (now_seg != data_section) s_ltorg (0); #ifdef OBJ_ELF obj_elf_data (ignore); #else s_data (ignore); #endif } #ifdef OBJ_ELF static void arm_s_section (ignore) int ignore; { s_ltorg (0); obj_elf_section (ignore); } #endif static void opcode_select (width) int width; { switch (width) { case 16: if (! thumb_mode) { if (! (cpu_variant & ARM_EXT_V4T)) as_bad (_("selected processor does not support THUMB opcodes")); thumb_mode = 1; /* No need to force the alignment, since we will have been coming from ARM mode, which is word-aligned. */ record_alignment (now_seg, 1); } break; case 32: if (thumb_mode) { if ((cpu_variant & ARM_ANY) == ARM_EXT_V4T) as_bad (_("selected processor does not support ARM opcodes")); thumb_mode = 0; if (!need_pass_2) frag_align (2, 0, 0); record_alignment (now_seg, 1); } break; default: as_bad (_("invalid instruction size selected (%d)"), width); } } static void s_arm (ignore) int ignore ATTRIBUTE_UNUSED; { opcode_select (32); demand_empty_rest_of_line (); } static void s_thumb (ignore) int ignore ATTRIBUTE_UNUSED; { opcode_select (16); demand_empty_rest_of_line (); } static void s_code (unused) int unused ATTRIBUTE_UNUSED; { register int temp; temp = get_absolute_expression (); switch (temp) { case 16: case 32: opcode_select (temp); break; default: as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp); } } static void end_of_line (str) char * str; { skip_whitespace (str); if (* str != '\0') inst.error = _("Garbage following instruction"); } static int skip_past_comma (str) char ** str; { char * p = * str, c; int comma = 0; while ((c = *p) == ' ' || c == ',') { p++; if (c == ',' && comma++) return FAIL; } if (c == '\0') return FAIL; *str = p; return comma ? SUCCESS : FAIL; } /* A standard register must be given at this point. SHIFT is the place to put it in inst.instruction. Restores input start point on error. Returns the reg#, or FAIL. */ static int reg_required_here (str, shift) char ** str; int shift; { static char buff [128]; /* XXX */ int reg; char * start = * str; if ((reg = arm_reg_parse (str)) != FAIL && int_register (reg)) { if (shift >= 0) inst.instruction |= reg << shift; return reg; } /* Restore the start point, we may have got a reg of the wrong class. */ *str = start; /* In the few cases where we might be able to accept something else this error can be overridden. */ sprintf (buff, _("Register expected, not '%.100s'"), start); inst.error = buff; return FAIL; } static const struct asm_psr * arm_psr_parse (ccp) register char ** ccp; { char * start = * ccp; char c; char * p; const struct asm_psr * psr; p = start; /* Skip to the end of the next word in the input stream. */ do { c = *p++; } while (ISALPHA (c) || c == '_'); /* Terminate the word. */ *--p = 0; /* CPSR's and SPSR's can now be lowercase. This is just a convenience feature for ease of use and backwards compatibility. */ if (!strncmp (start, "cpsr", 4)) strncpy (start, "CPSR", 4); else if (!strncmp (start, "spsr", 4)) strncpy (start, "SPSR", 4); /* Now locate the word in the psr hash table. */ psr = (const struct asm_psr *) hash_find (arm_psr_hsh, start); /* Restore the input stream. */ *p = c; /* If we found a valid match, advance the stream pointer past the end of the word. */ *ccp = p; return psr; } /* Parse the input looking for a PSR flag. */ static int psr_required_here (str) char ** str; { char * start = * str; const struct asm_psr * psr; psr = arm_psr_parse (str); if (psr) { /* If this is the SPSR that is being modified, set the R bit. */ if (! psr->cpsr) inst.instruction |= SPSR_BIT; /* Set the psr flags in the MSR instruction. */ inst.instruction |= psr->field << PSR_SHIFT; return SUCCESS; } /* In the few cases where we might be able to accept something else this error can be overridden. */ inst.error = _("flag for {c}psr instruction expected"); /* Restore the start point. */ *str = start; return FAIL; } static int co_proc_number (str) char ** str; { int processor, pchar; skip_whitespace (* str); /* The data sheet seems to imply that just a number on its own is valid here, but the RISC iX assembler seems to accept a prefix 'p'. We will accept either. */ if (**str == 'p' || **str == 'P') (*str)++; pchar = *(*str)++; if (pchar >= '0' && pchar <= '9') { processor = pchar - '0'; if (**str >= '0' && **str <= '9') { processor = processor * 10 + *(*str)++ - '0'; if (processor > 15) { inst.error = _("Illegal co-processor number"); return FAIL; } } } else { inst.error = _("Bad or missing co-processor number"); return FAIL; } inst.instruction |= processor << 8; return SUCCESS; } static int cp_opc_expr (str, where, length) char ** str; int where; int length; { expressionS expr; skip_whitespace (* str); memset (&expr, '\0', sizeof (expr)); if (my_get_expression (&expr, str)) return FAIL; if (expr.X_op != O_constant) { inst.error = _("bad or missing expression"); return FAIL; } if ((expr.X_add_number & ((1 << length) - 1)) != expr.X_add_number) { inst.error = _("immediate co-processor expression too large"); return FAIL; } inst.instruction |= expr.X_add_number << where; return SUCCESS; } static int cp_reg_required_here (str, where) char ** str; int where; { int reg; char * start = *str; if ((reg = arm_reg_parse (str)) != FAIL && cp_register (reg)) { reg &= 15; inst.instruction |= reg << where; return reg; } /* In the few cases where we might be able to accept something else this error can be overridden. */ inst.error = _("Co-processor register expected"); /* Restore the start point. */ *str = start; return FAIL; } static int fp_reg_required_here (str, where) char ** str; int where; { int reg; char * start = * str; if ((reg = arm_reg_parse (str)) != FAIL && fp_register (reg)) { reg &= 7; inst.instruction |= reg << where; return reg; } /* In the few cases where we might be able to accept something else this error can be overridden. */ inst.error = _("Floating point register expected"); /* Restore the start point. */ *str = start; return FAIL; } static int cp_address_offset (str) char ** str; { int offset; skip_whitespace (* str); if (! is_immediate_prefix (**str)) { inst.error = _("immediate expression expected"); return FAIL; } (*str)++; if (my_get_expression (& inst.reloc.exp, str)) return FAIL; if (inst.reloc.exp.X_op == O_constant) { offset = inst.reloc.exp.X_add_number; if (offset & 3) { inst.error = _("co-processor address must be word aligned"); return FAIL; } if (offset > 1023 || offset < -1023) { inst.error = _("offset too large"); return FAIL; } if (offset >= 0) inst.instruction |= INDEX_UP; else offset = -offset; inst.instruction |= offset >> 2; } else inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM; return SUCCESS; } static int cp_address_required_here (str) char ** str; { char * p = * str; int pre_inc = 0; int write_back = 0; if (*p == '[') { int reg; p++; skip_whitespace (p); if ((reg = reg_required_here (& p, 16)) == FAIL) return FAIL; skip_whitespace (p); if (*p == ']') { p++; if (skip_past_comma (& p) == SUCCESS) { /* [Rn], #expr */ write_back = WRITE_BACK; if (reg == REG_PC) { inst.error = _("pc may not be used in post-increment"); return FAIL; } if (cp_address_offset (& p) == FAIL) return FAIL; } else pre_inc = PRE_INDEX | INDEX_UP; } else { /* '['Rn, #expr']'[!] */ if (skip_past_comma (& p) == FAIL) { inst.error = _("pre-indexed expression expected"); return FAIL; } pre_inc = PRE_INDEX; if (cp_address_offset (& p) == FAIL) return FAIL; skip_whitespace (p); if (*p++ != ']') { inst.error = _("missing ]"); return FAIL; } skip_whitespace (p); if (*p == '!') { if (reg == REG_PC) { inst.error = _("pc may not be used with write-back"); return FAIL; } p++; write_back = WRITE_BACK; } } } else { if (my_get_expression (&inst.reloc.exp, &p)) return FAIL; inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM; inst.reloc.exp.X_add_number -= 8; /* PC rel adjust. */ inst.reloc.pc_rel = 1; inst.instruction |= (REG_PC << 16); pre_inc = PRE_INDEX; } inst.instruction |= write_back | pre_inc; *str = p; return SUCCESS; } static void do_empty (str) char * str; { /* Do nothing really. */ end_of_line (str); return; } static void do_mrs (str) char *str; { int skip = 0; /* Only one syntax. */ skip_whitespace (str); if (reg_required_here (&str, 12) == FAIL) { inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL) { inst.error = _("comma expected after register name"); return; } skip_whitespace (str); if ( strcmp (str, "CPSR") == 0 || strcmp (str, "SPSR") == 0 /* Lower case versions for backwards compatability. */ || strcmp (str, "cpsr") == 0 || strcmp (str, "spsr") == 0) skip = 4; /* This is for backwards compatability with older toolchains. */ else if ( strcmp (str, "cpsr_all") == 0 || strcmp (str, "spsr_all") == 0) skip = 8; else { inst.error = _("{C|S}PSR expected"); return; } if (* str == 's' || * str == 'S') inst.instruction |= SPSR_BIT; str += skip; end_of_line (str); } /* Two possible forms: "{C|S}PSR_, Rm", "{C|S}PSR_f, #expression". */ static void do_msr (str) char * str; { skip_whitespace (str); if (psr_required_here (& str) == FAIL) return; if (skip_past_comma (& str) == FAIL) { inst.error = _("comma missing after psr flags"); return; } skip_whitespace (str); if (reg_required_here (& str, 0) != FAIL) { inst.error = NULL; end_of_line (str); return; } if (! is_immediate_prefix (* str)) { inst.error = _("only a register or immediate value can follow a psr flag"); return; } str ++; inst.error = NULL; if (my_get_expression (& inst.reloc.exp, & str)) { inst.error = _("only a register or immediate value can follow a psr flag"); return; } #if 0 /* The first edition of the ARM architecture manual stated that writing anything other than the flags with an immediate operation had UNPREDICTABLE effects. This constraint was removed in the second edition of the specification. */ if ((cpu_variant & ARM_EXT_V5) != ARM_EXT_V5 && inst.instruction & ((PSR_c | PSR_x | PSR_s) << PSR_SHIFT)) { inst.error = _("immediate value cannot be used to set this field"); return; } #endif inst.instruction |= INST_IMMEDIATE; if (inst.reloc.exp.X_add_symbol) { inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE; inst.reloc.pc_rel = 0; } else { unsigned value = validate_immediate (inst.reloc.exp.X_add_number); if (value == (unsigned) FAIL) { inst.error = _("Invalid constant"); return; } inst.instruction |= value; } inst.error = NULL; end_of_line (str); } /* Long Multiply Parser UMULL RdLo, RdHi, Rm, Rs SMULL RdLo, RdHi, Rm, Rs UMLAL RdLo, RdHi, Rm, Rs SMLAL RdLo, RdHi, Rm, Rs. */ static void do_mull (str) char * str; { int rdlo, rdhi, rm, rs; /* Only one format "rdlo, rdhi, rm, rs". */ skip_whitespace (str); if ((rdlo = reg_required_here (&str, 12)) == FAIL) { inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || (rdhi = reg_required_here (&str, 16)) == FAIL) { inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || (rm = reg_required_here (&str, 0)) == FAIL) { inst.error = BAD_ARGS; return; } /* rdhi, rdlo and rm must all be different. */ if (rdlo == rdhi || rdlo == rm || rdhi == rm) as_tsktsk (_("rdhi, rdlo and rm must all be different")); if (skip_past_comma (&str) == FAIL || (rs = reg_required_here (&str, 8)) == FAIL) { inst.error = BAD_ARGS; return; } if (rdhi == REG_PC || rdhi == REG_PC || rdhi == REG_PC || rdhi == REG_PC) { inst.error = BAD_PC; return; } end_of_line (str); return; } static void do_mul (str) char * str; { int rd, rm; /* Only one format "rd, rm, rs". */ skip_whitespace (str); if ((rd = reg_required_here (&str, 16)) == FAIL) { inst.error = BAD_ARGS; return; } if (rd == REG_PC) { inst.error = BAD_PC; return; } if (skip_past_comma (&str) == FAIL || (rm = reg_required_here (&str, 0)) == FAIL) { inst.error = BAD_ARGS; return; } if (rm == REG_PC) { inst.error = BAD_PC; return; } if (rm == rd) as_tsktsk (_("rd and rm should be different in mul")); if (skip_past_comma (&str) == FAIL || (rm = reg_required_here (&str, 8)) == FAIL) { inst.error = BAD_ARGS; return; } if (rm == REG_PC) { inst.error = BAD_PC; return; } end_of_line (str); return; } static void do_mla (str) char * str; { int rd, rm; /* Only one format "rd, rm, rs, rn". */ skip_whitespace (str); if ((rd = reg_required_here (&str, 16)) == FAIL) { inst.error = BAD_ARGS; return; } if (rd == REG_PC) { inst.error = BAD_PC; return; } if (skip_past_comma (&str) == FAIL || (rm = reg_required_here (&str, 0)) == FAIL) { inst.error = BAD_ARGS; return; } if (rm == REG_PC) { inst.error = BAD_PC; return; } if (rm == rd) as_tsktsk (_("rd and rm should be different in mla")); if (skip_past_comma (&str) == FAIL || (rd = reg_required_here (&str, 8)) == FAIL || skip_past_comma (&str) == FAIL || (rm = reg_required_here (&str, 12)) == FAIL) { inst.error = BAD_ARGS; return; } if (rd == REG_PC || rm == REG_PC) { inst.error = BAD_PC; return; } end_of_line (str); return; } /* Expects *str -> the characters "acc0", possibly with leading blanks. Advances *str to the next non-alphanumeric. Returns 0, or else FAIL (in which case sets inst.error). (In a future XScale, there may be accumulators other than zero. At that time this routine and its callers can be upgraded to suit.) */ static int accum0_required_here (str) char ** str; { static char buff [128]; /* Note the address is taken. Hence, static. */ char * p = * str; char c; int result = 0; /* The accum number. */ skip_whitespace (p); *str = p; /* Advance caller's string pointer too. */ c = *p++; while (ISALNUM (c)) c = *p++; *--p = 0; /* Aap nul into input buffer at non-alnum. */ if (! ( streq (*str, "acc0") || streq (*str, "ACC0"))) { sprintf (buff, _("acc0 expected, not '%.100s'"), *str); inst.error = buff; result = FAIL; } *p = c; /* Unzap. */ *str = p; /* Caller's string pointer to after match. */ return result; } /* Expects **str -> after a comma. May be leading blanks. Advances *str, recognizing a load mode, and setting inst.instruction. Returns rn, or else FAIL (in which case may set inst.error and not advance str) Note: doesn't know Rd, so no err checks that require such knowledge. */ static int ld_mode_required_here (string) char ** string; { char * str = * string; int rn; int pre_inc = 0; skip_whitespace (str); if (* str == '[') { str++; skip_whitespace (str); if ((rn = reg_required_here (& str, 16)) == FAIL) return FAIL; skip_whitespace (str); if (* str == ']') { str ++; if (skip_past_comma (& str) == SUCCESS) { /* [Rn],... (post inc) */ if (ldst_extend_v4 (&str) == FAIL) return FAIL; } else /* [Rn] */ { skip_whitespace (str); if (* str == '!') { str ++; inst.instruction |= WRITE_BACK; } inst.instruction |= INDEX_UP | HWOFFSET_IMM; pre_inc = 1; } } else /* [Rn,...] */ { if (skip_past_comma (& str) == FAIL) { inst.error = _("pre-indexed expression expected"); return FAIL; } pre_inc = 1; if (ldst_extend_v4 (&str) == FAIL) return FAIL; skip_whitespace (str); if (* str ++ != ']') { inst.error = _("missing ]"); return FAIL; } skip_whitespace (str); if (* str == '!') { str ++; inst.instruction |= WRITE_BACK; } } } else if (* str == '=') /* ldr's "r,=label" syntax */ /* We should never reach here, because = is caught gas/read.c read_a_source_file() as a .set operation. */ return FAIL; else /* PC +- 8 bit immediate offset. */ { if (my_get_expression (& inst.reloc.exp, & str)) return FAIL; inst.instruction |= HWOFFSET_IMM; /* The I bit. */ inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8; inst.reloc.exp.X_add_number -= 8; /* PC rel adjust. */ inst.reloc.pc_rel = 1; inst.instruction |= (REG_PC << 16); rn = REG_PC; pre_inc = 1; } inst.instruction |= (pre_inc ? PRE_INDEX : 0); * string = str; return rn; } /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse) SMLAxy{cond} Rd,Rm,Rs,Rn SMLAWy{cond} Rd,Rm,Rs,Rn Error if any register is R15. */ static void do_smla (str) char * str; { int rd, rm, rs, rn; skip_whitespace (str); if ((rd = reg_required_here (& str, 16)) == FAIL || skip_past_comma (& str) == FAIL || (rm = reg_required_here (& str, 0)) == FAIL || skip_past_comma (& str) == FAIL || (rs = reg_required_here (& str, 8)) == FAIL || skip_past_comma (& str) == FAIL || (rn = reg_required_here (& str, 12)) == FAIL) inst.error = BAD_ARGS; else if (rd == REG_PC || rm == REG_PC || rs == REG_PC || rn == REG_PC) inst.error = BAD_PC; else end_of_line (str); } /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse) SMLALxy{cond} Rdlo,Rdhi,Rm,Rs Error if any register is R15. Warning if Rdlo == Rdhi. */ static void do_smlal (str) char * str; { int rdlo, rdhi, rm, rs; skip_whitespace (str); if ((rdlo = reg_required_here (& str, 12)) == FAIL || skip_past_comma (& str) == FAIL || (rdhi = reg_required_here (& str, 16)) == FAIL || skip_past_comma (& str) == FAIL || (rm = reg_required_here (& str, 0)) == FAIL || skip_past_comma (& str) == FAIL || (rs = reg_required_here (& str, 8)) == FAIL) { inst.error = BAD_ARGS; return; } if (rdlo == REG_PC || rdhi == REG_PC || rm == REG_PC || rs == REG_PC) { inst.error = BAD_PC; return; } if (rdlo == rdhi) as_tsktsk (_("rdhi and rdlo must be different")); end_of_line (str); } /* ARM V5E (El Segundo) signed-multiply (argument parse) SMULxy{cond} Rd,Rm,Rs Error if any register is R15. */ static void do_smul (str) char * str; { int rd, rm, rs; skip_whitespace (str); if ((rd = reg_required_here (& str, 16)) == FAIL || skip_past_comma (& str) == FAIL || (rm = reg_required_here (& str, 0)) == FAIL || skip_past_comma (& str) == FAIL || (rs = reg_required_here (& str, 8)) == FAIL) inst.error = BAD_ARGS; else if (rd == REG_PC || rm == REG_PC || rs == REG_PC) inst.error = BAD_PC; else end_of_line (str); } /* ARM V5E (El Segundo) saturating-add/subtract (argument parse) Q[D]{ADD,SUB}{cond} Rd,Rm,Rn Error if any register is R15. */ static void do_qadd (str) char * str; { int rd, rm, rn; skip_whitespace (str); if ((rd = reg_required_here (& str, 12)) == FAIL || skip_past_comma (& str) == FAIL || (rm = reg_required_here (& str, 0)) == FAIL || skip_past_comma (& str) == FAIL || (rn = reg_required_here (& str, 16)) == FAIL) inst.error = BAD_ARGS; else if (rd == REG_PC || rm == REG_PC || rn == REG_PC) inst.error = BAD_PC; else end_of_line (str); } /* ARM V5E (el Segundo) MCRRcc , , , , . MRRCcc , , , , . These are equivalent to the XScale instructions MAR and MRA, respectively, when coproc == 0, opcode == 0, and CRm == 0. Result unpredicatable if Rd or Rn is R15. */ static void do_co_reg2c (str) char * str; { int rd, rn; skip_whitespace (str); if (co_proc_number (& str) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL || cp_opc_expr (& str, 4, 4) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL || (rd = reg_required_here (& str, 12)) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL || (rn = reg_required_here (& str, 16)) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } /* Unpredictable result if rd or rn is R15. */ if (rd == REG_PC || rn == REG_PC) as_tsktsk (_("Warning: Instruction unpredictable when using r15")); if (skip_past_comma (& str) == FAIL || cp_reg_required_here (& str, 0) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); } /* ARM V5 count-leading-zeroes instruction (argument parse) CLZ{} , Condition defaults to COND_ALWAYS. Error if Rd or Rm are R15. */ static void do_clz (str) char * str; { int rd, rm; skip_whitespace (str); if (((rd = reg_required_here (& str, 12)) == FAIL) || (skip_past_comma (& str) == FAIL) || ((rm = reg_required_here (& str, 0)) == FAIL)) inst.error = BAD_ARGS; else if (rd == REG_PC || rm == REG_PC ) inst.error = BAD_PC; else end_of_line (str); } /* ARM V5 (argument parse) LDC2{L} , , STC2{L} , , Instruction is not conditional, and has 0xf in the codition field. Otherwise, it's the same as LDC/STC. */ static void do_lstc2 (str) char * str; { skip_whitespace (str); if (co_proc_number (& str) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; } else if (skip_past_comma (& str) == FAIL || cp_reg_required_here (& str, 12) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; } else if (skip_past_comma (& str) == FAIL || cp_address_required_here (& str) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; } else end_of_line (str); } /* ARM V5 (argument parse) CDP2 , , , , , Instruction is not conditional, and has 0xf in the condition field. Otherwise, it's the same as CDP. */ static void do_cdp2 (str) char * str; { skip_whitespace (str); if (co_proc_number (& str) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL || cp_opc_expr (& str, 20,4) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL || cp_reg_required_here (& str, 12) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL || cp_reg_required_here (& str, 16) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL || cp_reg_required_here (& str, 0) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == SUCCESS) { if (cp_opc_expr (& str, 5, 3) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } } end_of_line (str); } /* ARM V5 (argument parse) MCR2 , , , , , MRC2 , , , , , Instruction is not conditional, and has 0xf in the condition field. Otherwise, it's the same as MCR/MRC. */ static void do_co_reg2 (str) char * str; { skip_whitespace (str); if (co_proc_number (& str) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL || cp_opc_expr (& str, 21, 3) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL || reg_required_here (& str, 12) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL || cp_reg_required_here (& str, 16) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL || cp_reg_required_here (& str, 0) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == SUCCESS) { if (cp_opc_expr (& str, 5, 3) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } } end_of_line (str); } /* THUMB V5 breakpoint instruction (argument parse) BKPT . */ static void do_t_bkpt (str) char * str; { expressionS expr; unsigned long number; skip_whitespace (str); /* Allow optional leading '#'. */ if (is_immediate_prefix (*str)) str ++; memset (& expr, '\0', sizeof (expr)); if (my_get_expression (& expr, & str) || (expr.X_op != O_constant)) { inst.error = _("bad or missing expression"); return; } number = expr.X_add_number; /* Check it fits an 8 bit unsigned. */ if (number != (number & 0xff)) { inst.error = _("immediate value out of range"); return; } inst.instruction |= number; end_of_line (str); } /* ARM V5 branch-link-exchange (argument parse) for BLX(1) only. Expects inst.instruction is set for BLX(1). Note: this is cloned from do_branch, and the reloc changed to be a new one that can cope with setting one extra bit (the H bit). */ static void do_branch25 (str) char * str; { if (my_get_expression (& inst.reloc.exp, & str)) return; #ifdef OBJ_ELF { char * save_in; /* ScottB: February 5, 1998 */ /* Check to see of PLT32 reloc required for the instruction. */ /* arm_parse_reloc() works on input_line_pointer. We actually want to parse the operands to the branch instruction passed in 'str'. Save the input pointer and restore it later. */ save_in = input_line_pointer; input_line_pointer = str; if (inst.reloc.exp.X_op == O_symbol && *str == '(' && arm_parse_reloc () == BFD_RELOC_ARM_PLT32) { inst.reloc.type = BFD_RELOC_ARM_PLT32; inst.reloc.pc_rel = 0; /* Modify str to point to after parsed operands, otherwise end_of_line() will complain about the (PLT) left in str. */ str = input_line_pointer; } else { inst.reloc.type = BFD_RELOC_ARM_PCREL_BLX; inst.reloc.pc_rel = 1; } input_line_pointer = save_in; } #else inst.reloc.type = BFD_RELOC_ARM_PCREL_BLX; inst.reloc.pc_rel = 1; #endif /* OBJ_ELF */ end_of_line (str); } /* ARM V5 branch-link-exchange instruction (argument parse) BLX ie BLX(1) BLX{} ie BLX(2) Unfortunately, there are two different opcodes for this mnemonic. So, the insns[].value is not used, and the code here zaps values into inst.instruction. Also, the can be 25 bits, hence has its own reloc. */ static void do_blx (str) char * str; { char * mystr = str; int rm; skip_whitespace (mystr); rm = reg_required_here (& mystr, 0); /* The above may set inst.error. Ignore his opinion. */ inst.error = 0; if (rm != FAIL) { /* Arg is a register. Use the condition code our caller put in inst.instruction. Pass ourselves off as a BX with a funny opcode. */ inst.instruction |= 0x012fff30; do_bx (str); } else { /* This must be is BLX , no condition allowed. */ if (inst.instruction != COND_ALWAYS) { inst.error = BAD_COND; return; } inst.instruction = 0xfafffffe; /* Process like a B/BL, but with a different reloc. Note that B/BL expecte fffffe, not 0, offset in the opcode table. */ do_branch25 (str); } } /* ARM V5 Thumb BLX (argument parse) BLX which is BLX(1) BLX which is BLX(2) Unfortunately, there are two different opcodes for this mnemonic. So, the tinsns[].value is not used, and the code here zaps values into inst.instruction. */ static void do_t_blx (str) char * str; { char * mystr = str; int rm; skip_whitespace (mystr); inst.instruction = 0x4780; /* Note that this call is to the ARM register recognizer. BLX(2) uses the ARM register space, not the Thumb one, so a call to thumb_reg() would be wrong. */ rm = reg_required_here (& mystr, 3); inst.error = 0; if (rm != FAIL) { /* It's BLX(2). The .instruction was zapped with rm & is final. */ inst.size = 2; } else { /* No ARM register. This must be BLX(1). Change the .instruction. */ inst.instruction = 0xf7ffeffe; inst.size = 4; if (my_get_expression (& inst.reloc.exp, & mystr)) return; inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX; inst.reloc.pc_rel = 1; } end_of_line (mystr); } /* ARM V5 breakpoint instruction (argument parse) BKPT <16 bit unsigned immediate> Instruction is not conditional. The bit pattern given in insns[] has the COND_ALWAYS condition, and it is an error if the caller tried to override that. */ static void do_bkpt (str) char * str; { expressionS expr; unsigned long number; skip_whitespace (str); /* Allow optional leading '#'. */ if (is_immediate_prefix (* str)) str++; memset (& expr, '\0', sizeof (expr)); if (my_get_expression (& expr, & str) || (expr.X_op != O_constant)) { inst.error = _("bad or missing expression"); return; } number = expr.X_add_number; /* Check it fits a 16 bit unsigned. */ if (number != (number & 0xffff)) { inst.error = _("immediate value out of range"); return; } /* Top 12 of 16 bits to bits 19:8. */ inst.instruction |= (number & 0xfff0) << 4; /* Bottom 4 of 16 bits to bits 3:0. */ inst.instruction |= number & 0xf; end_of_line (str); } /* Xscale multiply-accumulate (argument parse) MIAcc acc0,Rm,Rs MIAPHcc acc0,Rm,Rs MIAxycc acc0,Rm,Rs. */ static void do_mia (str) char * str; { int rs; int rm; if (accum0_required_here (& str) == FAIL) inst.error = ERR_NO_ACCUM; else if (skip_past_comma (& str) == FAIL || (rm = reg_required_here (& str, 0)) == FAIL) inst.error = BAD_ARGS; else if (skip_past_comma (& str) == FAIL || (rs = reg_required_here (& str, 12)) == FAIL) inst.error = BAD_ARGS; /* inst.instruction has now been zapped with both rm and rs. */ else if (rm == REG_PC || rs == REG_PC) inst.error = BAD_PC; /* Undefined result if rm or rs is R15. */ else end_of_line (str); } /* Xscale move-accumulator-register (argument parse) MARcc acc0,RdLo,RdHi. */ static void do_mar (str) char * str; { int rdlo, rdhi; if (accum0_required_here (& str) == FAIL) inst.error = ERR_NO_ACCUM; else if (skip_past_comma (& str) == FAIL || (rdlo = reg_required_here (& str, 12)) == FAIL) inst.error = BAD_ARGS; else if (skip_past_comma (& str) == FAIL || (rdhi = reg_required_here (& str, 16)) == FAIL) inst.error = BAD_ARGS; /* inst.instruction has now been zapped with both rdlo and rdhi. */ else if (rdlo == REG_PC || rdhi == REG_PC) inst.error = BAD_PC; /* Undefined result if rdlo or rdhi is R15. */ else end_of_line (str); } /* Xscale move-register-accumulator (argument parse) MRAcc RdLo,RdHi,acc0. */ static void do_mra (str) char * str; { int rdlo; int rdhi; skip_whitespace (str); if ((rdlo = reg_required_here (& str, 12)) == FAIL) inst.error = BAD_ARGS; else if (skip_past_comma (& str) == FAIL || (rdhi = reg_required_here (& str, 16)) == FAIL) inst.error = BAD_ARGS; else if (skip_past_comma (& str) == FAIL || accum0_required_here (& str) == FAIL) inst.error = ERR_NO_ACCUM; /* inst.instruction has now been zapped with both rdlo and rdhi. */ else if (rdlo == rdhi) inst.error = BAD_ARGS; /* Undefined result if 2 writes to same reg. */ else if (rdlo == REG_PC || rdhi == REG_PC) inst.error = BAD_PC; /* Undefined result if rdlo or rdhi is R15. */ else end_of_line (str); } /* ARMv5TE: Preload-Cache PLD Syntactically, like LDR with B=1, W=0, L=1. */ static void do_pld (str) char * str; { int rd; skip_whitespace (str); if (* str != '[') { inst.error = _("'[' expected after PLD mnemonic"); return; } ++str; skip_whitespace (str); if ((rd = reg_required_here (& str, 16)) == FAIL) return; skip_whitespace (str); if (*str == ']') { /* [Rn], ... ? */ ++str; skip_whitespace (str); /* Post-indexed addressing is not allowed with PLD. */ if (skip_past_comma (&str) == SUCCESS) { inst.error = _("post-indexed expression used in preload instruction"); return; } else if (*str == '!') /* [Rn]! */ { inst.error = _("writeback used in preload instruction"); ++str; } else /* [Rn] */ inst.instruction |= INDEX_UP | PRE_INDEX; } else /* [Rn, ...] */ { if (skip_past_comma (& str) == FAIL) { inst.error = _("pre-indexed expression expected"); return; } if (ldst_extend (&str) == FAIL) return; skip_whitespace (str); if (* str != ']') { inst.error = _("missing ]"); return; } ++ str; skip_whitespace (str); if (* str == '!') /* [Rn]! */ { inst.error = _("writeback used in preload instruction"); ++ str; } inst.instruction |= PRE_INDEX; } end_of_line (str); } /* ARMv5TE load-consecutive (argument parse) Mode is like LDRH. LDRccD R, mode STRccD R, mode. */ static void do_ldrd (str) char * str; { int rd; int rn; skip_whitespace (str); if ((rd = reg_required_here (& str, 12)) == FAIL) { inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL || (rn = ld_mode_required_here (& str)) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } /* inst.instruction has now been zapped with Rd and the addressing mode. */ if (rd & 1) /* Unpredictable result if Rd is odd. */ { inst.error = _("Destination register must be even"); return; } if (rd == REG_LR) { inst.error = _("r14 not allowed here"); return; } if (((rd == rn) || (rd + 1 == rn)) && ((inst.instruction & WRITE_BACK) || (!(inst.instruction & PRE_INDEX)))) as_warn (_("pre/post-indexing used when modified address register is destination")); /* For an index-register load, the index register must not overlap the destination (even if not write-back). */ if ((inst.instruction & V4_STR_BIT) == 0 && (inst.instruction & HWOFFSET_IMM) == 0) { int rm = inst.instruction & 0x0000000f; if (rm == rd || (rm == rd + 1)) as_warn (_("ldrd destination registers must not overlap index register")); } end_of_line (str); } /* Returns the index into fp_values of a floating point number, or -1 if not in the table. */ static int my_get_float_expression (str) char ** str; { LITTLENUM_TYPE words[MAX_LITTLENUMS]; char * save_in; expressionS exp; int i; int j; memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE)); /* Look for a raw floating point number. */ if ((save_in = atof_ieee (*str, 'x', words)) != NULL && is_end_of_line[(unsigned char) *save_in]) { for (i = 0; i < NUM_FLOAT_VALS; i++) { for (j = 0; j < MAX_LITTLENUMS; j++) { if (words[j] != fp_values[i][j]) break; } if (j == MAX_LITTLENUMS) { *str = save_in; return i; } } } /* Try and parse a more complex expression, this will probably fail unless the code uses a floating point prefix (eg "0f"). */ save_in = input_line_pointer; input_line_pointer = *str; if (expression (&exp) == absolute_section && exp.X_op == O_big && exp.X_add_number < 0) { /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it. Ditto for 15. */ if (gen_to_words (words, 5, (long) 15) == 0) { for (i = 0; i < NUM_FLOAT_VALS; i++) { for (j = 0; j < MAX_LITTLENUMS; j++) { if (words[j] != fp_values[i][j]) break; } if (j == MAX_LITTLENUMS) { *str = input_line_pointer; input_line_pointer = save_in; return i; } } } } *str = input_line_pointer; input_line_pointer = save_in; return -1; } /* Return true if anything in the expression is a bignum. */ static int walk_no_bignums (sp) symbolS * sp; { if (symbol_get_value_expression (sp)->X_op == O_big) return 1; if (symbol_get_value_expression (sp)->X_add_symbol) { return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol) || (symbol_get_value_expression (sp)->X_op_symbol && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol))); } return 0; } static int my_get_expression (ep, str) expressionS * ep; char ** str; { char * save_in; segT seg; save_in = input_line_pointer; input_line_pointer = *str; seg = expression (ep); #ifdef OBJ_AOUT if (seg != absolute_section && seg != text_section && seg != data_section && seg != bss_section && seg != undefined_section) { inst.error = _("bad_segment"); *str = input_line_pointer; input_line_pointer = save_in; return 1; } #endif /* Get rid of any bignums now, so that we don't generate an error for which we can't establish a line number later on. Big numbers are never valid in instructions, which is where this routine is always called. */ if (ep->X_op == O_big || (ep->X_add_symbol && (walk_no_bignums (ep->X_add_symbol) || (ep->X_op_symbol && walk_no_bignums (ep->X_op_symbol))))) { inst.error = _("Invalid constant"); *str = input_line_pointer; input_line_pointer = save_in; return 1; } *str = input_line_pointer; input_line_pointer = save_in; return 0; } /* UNRESTRICT should be one if is permitted for this instruction. */ static int decode_shift (str, unrestrict) char ** str; int unrestrict; { const struct asm_shift_name * shift; char * p; char c; skip_whitespace (* str); for (p = * str; ISALPHA (* p); p ++) ; if (p == * str) { inst.error = _("Shift expression expected"); return FAIL; } c = * p; * p = '\0'; shift = (const struct asm_shift_name *) hash_find (arm_shift_hsh, * str); * p = c; if (shift == NULL) { inst.error = _("Shift expression expected"); return FAIL; } assert (shift->properties->index == shift_properties[shift->properties->index].index); if (shift->properties->index == SHIFT_RRX) { * str = p; inst.instruction |= shift->properties->bit_field; return SUCCESS; } skip_whitespace (p); if (unrestrict && reg_required_here (& p, 8) != FAIL) { inst.instruction |= shift->properties->bit_field | SHIFT_BY_REG; * str = p; return SUCCESS; } else if (! is_immediate_prefix (* p)) { inst.error = (unrestrict ? _("shift requires register or #expression") : _("shift requires #expression")); * str = p; return FAIL; } inst.error = NULL; p ++; if (my_get_expression (& inst.reloc.exp, & p)) return FAIL; /* Validate some simple #expressions. */ if (inst.reloc.exp.X_op == O_constant) { unsigned num = inst.reloc.exp.X_add_number; /* Reject operations greater than 32. */ if (num > 32 /* Reject a shift of 0 unless the mode allows it. */ || (num == 0 && shift->properties->allows_0 == 0) /* Reject a shift of 32 unless the mode allows it. */ || (num == 32 && shift->properties->allows_32 == 0) ) { /* As a special case we allow a shift of zero for modes that do not support it to be recoded as an logical shift left of zero (ie nothing). We warn about this though. */ if (num == 0) { as_warn (_("Shift of 0 ignored.")); shift = & shift_names[0]; assert (shift->properties->index == SHIFT_LSL); } else { inst.error = _("Invalid immediate shift"); return FAIL; } } /* Shifts of 32 are encoded as 0, for those shifts that support it. */ if (num == 32) num = 0; inst.instruction |= (num << 7) | shift->properties->bit_field; } else { inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM; inst.reloc.pc_rel = 0; inst.instruction |= shift->properties->bit_field; } * str = p; return SUCCESS; } /* Do those data_ops which can take a negative immediate constant by altering the instuction. A bit of a hack really. MOV <-> MVN AND <-> BIC ADC <-> SBC by inverting the second operand, and ADD <-> SUB CMP <-> CMN by negating the second operand. */ static int negate_data_op (instruction, value) unsigned long * instruction; unsigned long value; { int op, new_inst; unsigned long negated, inverted; negated = validate_immediate (-value); inverted = validate_immediate (~value); op = (*instruction >> DATA_OP_SHIFT) & 0xf; switch (op) { /* First negates. */ case OPCODE_SUB: /* ADD <-> SUB */ new_inst = OPCODE_ADD; value = negated; break; case OPCODE_ADD: new_inst = OPCODE_SUB; value = negated; break; case OPCODE_CMP: /* CMP <-> CMN */ new_inst = OPCODE_CMN; value = negated; break; case OPCODE_CMN: new_inst = OPCODE_CMP; value = negated; break; /* Now Inverted ops. */ case OPCODE_MOV: /* MOV <-> MVN */ new_inst = OPCODE_MVN; value = inverted; break; case OPCODE_MVN: new_inst = OPCODE_MOV; value = inverted; break; case OPCODE_AND: /* AND <-> BIC */ new_inst = OPCODE_BIC; value = inverted; break; case OPCODE_BIC: new_inst = OPCODE_AND; value = inverted; break; case OPCODE_ADC: /* ADC <-> SBC */ new_inst = OPCODE_SBC; value = inverted; break; case OPCODE_SBC: new_inst = OPCODE_ADC; value = inverted; break; /* We cannot do anything. */ default: return FAIL; } if (value == (unsigned) FAIL) return FAIL; *instruction &= OPCODE_MASK; *instruction |= new_inst << DATA_OP_SHIFT; return value; } static int data_op2 (str) char ** str; { int value; expressionS expr; skip_whitespace (* str); if (reg_required_here (str, 0) != FAIL) { if (skip_past_comma (str) == SUCCESS) /* Shift operation on register. */ return decode_shift (str, NO_SHIFT_RESTRICT); return SUCCESS; } else { /* Immediate expression. */ if (is_immediate_prefix (**str)) { (*str)++; inst.error = NULL; if (my_get_expression (&inst.reloc.exp, str)) return FAIL; if (inst.reloc.exp.X_add_symbol) { inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE; inst.reloc.pc_rel = 0; } else { if (skip_past_comma (str) == SUCCESS) { /* #x, y -- ie explicit rotation by Y. */ if (my_get_expression (&expr, str)) return FAIL; if (expr.X_op != O_constant) { inst.error = _("Constant expression expected"); return FAIL; } /* Rotate must be a multiple of 2. */ if (((unsigned) expr.X_add_number) > 30 || (expr.X_add_number & 1) != 0 || ((unsigned) inst.reloc.exp.X_add_number) > 255) { inst.error = _("Invalid constant"); return FAIL; } inst.instruction |= INST_IMMEDIATE; inst.instruction |= inst.reloc.exp.X_add_number; inst.instruction |= expr.X_add_number << 7; return SUCCESS; } /* Implicit rotation, select a suitable one. */ value = validate_immediate (inst.reloc.exp.X_add_number); if (value == FAIL) { /* Can't be done. Perhaps the code reads something like "add Rd, Rn, #-n", where "sub Rd, Rn, #n" would be OK. */ if ((value = negate_data_op (&inst.instruction, inst.reloc.exp.X_add_number)) == FAIL) { inst.error = _("Invalid constant"); return FAIL; } } inst.instruction |= value; } inst.instruction |= INST_IMMEDIATE; return SUCCESS; } (*str)++; inst.error = _("Register or shift expression expected"); return FAIL; } } static int fp_op2 (str) char ** str; { skip_whitespace (* str); if (fp_reg_required_here (str, 0) != FAIL) return SUCCESS; else { /* Immediate expression. */ if (*((*str)++) == '#') { int i; inst.error = NULL; skip_whitespace (* str); /* First try and match exact strings, this is to guarantee that some formats will work even for cross assembly. */ for (i = 0; fp_const[i]; i++) { if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0) { char *start = *str; *str += strlen (fp_const[i]); if (is_end_of_line[(unsigned char) **str]) { inst.instruction |= i + 8; return SUCCESS; } *str = start; } } /* Just because we didn't get a match doesn't mean that the constant isn't valid, just that it is in a format that we don't automatically recognize. Try parsing it with the standard expression routines. */ if ((i = my_get_float_expression (str)) >= 0) { inst.instruction |= i + 8; return SUCCESS; } inst.error = _("Invalid floating point immediate expression"); return FAIL; } inst.error = _("Floating point register or immediate expression expected"); return FAIL; } } static void do_arit (str) char * str; { skip_whitespace (str); if (reg_required_here (&str, 12) == FAIL || skip_past_comma (&str) == FAIL || reg_required_here (&str, 16) == FAIL || skip_past_comma (&str) == FAIL || data_op2 (&str) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); return; } static void do_adr (str) char * str; { /* This is a pseudo-op of the form "adr rd, label" to be converted into a relative address of the form "add rd, pc, #label-.-8". */ skip_whitespace (str); if (reg_required_here (&str, 12) == FAIL || skip_past_comma (&str) == FAIL || my_get_expression (&inst.reloc.exp, &str)) { if (!inst.error) inst.error = BAD_ARGS; return; } /* Frag hacking will turn this into a sub instruction if the offset turns out to be negative. */ inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE; inst.reloc.exp.X_add_number -= 8; /* PC relative adjust. */ inst.reloc.pc_rel = 1; end_of_line (str); } static void do_adrl (str) char * str; { /* This is a pseudo-op of the form "adrl rd, label" to be converted into a relative address of the form: add rd, pc, #low(label-.-8)" add rd, rd, #high(label-.-8)" */ skip_whitespace (str); if (reg_required_here (&str, 12) == FAIL || skip_past_comma (&str) == FAIL || my_get_expression (&inst.reloc.exp, &str)) { if (!inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); /* Frag hacking will turn this into a sub instruction if the offset turns out to be negative. */ inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE; inst.reloc.exp.X_add_number -= 8; /* PC relative adjust */ inst.reloc.pc_rel = 1; inst.size = INSN_SIZE * 2; return; } static void do_cmp (str) char * str; { skip_whitespace (str); if (reg_required_here (&str, 16) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || data_op2 (&str) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); return; } static void do_mov (str) char * str; { skip_whitespace (str); if (reg_required_here (&str, 12) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || data_op2 (&str) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); return; } static int ldst_extend (str) char ** str; { int add = INDEX_UP; switch (**str) { case '#': case '$': (*str)++; if (my_get_expression (& inst.reloc.exp, str)) return FAIL; if (inst.reloc.exp.X_op == O_constant) { int value = inst.reloc.exp.X_add_number; if (value < -4095 || value > 4095) { inst.error = _("address offset too large"); return FAIL; } if (value < 0) { value = -value; add = 0; } inst.instruction |= add | value; } else { inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM; inst.reloc.pc_rel = 0; } return SUCCESS; case '-': add = 0; /* Fall through. */ case '+': (*str)++; /* Fall through. */ default: if (reg_required_here (str, 0) == FAIL) return FAIL; inst.instruction |= add | OFFSET_REG; if (skip_past_comma (str) == SUCCESS) return decode_shift (str, SHIFT_RESTRICT); return SUCCESS; } } static void do_ldst (str) char * str; { int pre_inc = 0; int conflict_reg; int value; skip_whitespace (str); if ((conflict_reg = reg_required_here (&str, 12)) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL) { inst.error = _("Address expected"); return; } if (*str == '[') { int reg; str++; skip_whitespace (str); if ((reg = reg_required_here (&str, 16)) == FAIL) return; /* Conflicts can occur on stores as well as loads. */ conflict_reg = (conflict_reg == reg); skip_whitespace (str); if (*str == ']') { str ++; if (skip_past_comma (&str) == SUCCESS) { /* [Rn],... (post inc) */ if (ldst_extend (&str) == FAIL) return; if (conflict_reg) as_warn (_("%s register same as write-back base"), ((inst.instruction & LOAD_BIT) ? _("destination") : _("source"))); } else { /* [Rn] */ skip_whitespace (str); if (*str == '!') { if (conflict_reg) as_warn (_("%s register same as write-back base"), ((inst.instruction & LOAD_BIT) ? _("destination") : _("source"))); str++; inst.instruction |= WRITE_BACK; } inst.instruction |= INDEX_UP; pre_inc = 1; } } else { /* [Rn,...] */ if (skip_past_comma (&str) == FAIL) { inst.error = _("pre-indexed expression expected"); return; } pre_inc = 1; if (ldst_extend (&str) == FAIL) return; skip_whitespace (str); if (*str++ != ']') { inst.error = _("missing ]"); return; } skip_whitespace (str); if (*str == '!') { if (conflict_reg) as_warn (_("%s register same as write-back base"), ((inst.instruction & LOAD_BIT) ? _("destination") : _("source"))); str++; inst.instruction |= WRITE_BACK; } } } else if (*str == '=') { /* Parse an "ldr Rd, =expr" instruction; this is another pseudo op. */ str++; skip_whitespace (str); if (my_get_expression (&inst.reloc.exp, &str)) return; if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol) { inst.error = _("Constant expression expected"); return; } if (inst.reloc.exp.X_op == O_constant && (value = validate_immediate (inst.reloc.exp.X_add_number)) != FAIL) { /* This can be done with a mov instruction. */ inst.instruction &= LITERAL_MASK; inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT); inst.instruction |= (value & 0xfff); end_of_line (str); return; } else { /* Insert into literal pool. */ if (add_to_lit_pool () == FAIL) { if (!inst.error) inst.error = _("literal pool insertion failed"); return; } /* Change the instruction exp to point to the pool. */ inst.reloc.type = BFD_RELOC_ARM_LITERAL; inst.reloc.pc_rel = 1; inst.instruction |= (REG_PC << 16); pre_inc = 1; } } else { if (my_get_expression (&inst.reloc.exp, &str)) return; inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM; #ifndef TE_WINCE /* PC rel adjust. */ inst.reloc.exp.X_add_number -= 8; #endif inst.reloc.pc_rel = 1; inst.instruction |= (REG_PC << 16); pre_inc = 1; } inst.instruction |= (pre_inc ? PRE_INDEX : 0); end_of_line (str); return; } static void do_ldstt (str) char * str; { int conflict_reg; skip_whitespace (str); if ((conflict_reg = reg_required_here (& str, 12)) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL) { inst.error = _("Address expected"); return; } if (*str == '[') { int reg; str++; skip_whitespace (str); if ((reg = reg_required_here (&str, 16)) == FAIL) return; /* ldrt/strt always use post-indexed addressing, so if the base is the same as Rd, we warn. */ if (conflict_reg == reg) as_warn (_("%s register same as write-back base"), ((inst.instruction & LOAD_BIT) ? _("destination") : _("source"))); skip_whitespace (str); if (*str == ']') { str ++; if (skip_past_comma (&str) == SUCCESS) { /* [Rn],... (post inc) */ if (ldst_extend (&str) == FAIL) return; } else { /* [Rn] */ skip_whitespace (str); /* Skip a write-back '!'. */ if (*str == '!') str++; inst.instruction |= INDEX_UP; } } else { inst.error = _("post-indexed expression expected"); return; } } else { inst.error = _("post-indexed expression expected"); return; } end_of_line (str); return; } static int ldst_extend_v4 (str) char ** str; { int add = INDEX_UP; switch (**str) { case '#': case '$': (*str)++; if (my_get_expression (& inst.reloc.exp, str)) return FAIL; if (inst.reloc.exp.X_op == O_constant) { int value = inst.reloc.exp.X_add_number; if (value < -255 || value > 255) { inst.error = _("address offset too large"); return FAIL; } if (value < 0) { value = -value; add = 0; } /* Halfword and signextension instructions have the immediate value split across bits 11..8 and bits 3..0. */ inst.instruction |= (add | HWOFFSET_IMM | ((value >> 4) << 8) | (value & 0xF)); } else { inst.instruction |= HWOFFSET_IMM; inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8; inst.reloc.pc_rel = 0; } return SUCCESS; case '-': add = 0; /* Fall through. */ case '+': (*str)++; /* Fall through. */ default: if (reg_required_here (str, 0) == FAIL) return FAIL; inst.instruction |= add; return SUCCESS; } } /* Halfword and signed-byte load/store operations. */ static void do_ldstv4 (str) char * str; { int pre_inc = 0; int conflict_reg; int value; skip_whitespace (str); if ((conflict_reg = reg_required_here (& str, 12)) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (& str) == FAIL) { inst.error = _("Address expected"); return; } if (*str == '[') { int reg; str++; skip_whitespace (str); if ((reg = reg_required_here (&str, 16)) == FAIL) return; /* Conflicts can occur on stores as well as loads. */ conflict_reg = (conflict_reg == reg); skip_whitespace (str); if (*str == ']') { str ++; if (skip_past_comma (&str) == SUCCESS) { /* [Rn],... (post inc) */ if (ldst_extend_v4 (&str) == FAIL) return; if (conflict_reg) as_warn (_("%s register same as write-back base"), ((inst.instruction & LOAD_BIT) ? _("destination") : _("source"))); } else { /* [Rn] */ inst.instruction |= HWOFFSET_IMM; skip_whitespace (str); if (*str == '!') { if (conflict_reg) as_warn (_("%s register same as write-back base"), ((inst.instruction & LOAD_BIT) ? _("destination") : _("source"))); str++; inst.instruction |= WRITE_BACK; } inst.instruction |= INDEX_UP; pre_inc = 1; } } else { /* [Rn,...] */ if (skip_past_comma (&str) == FAIL) { inst.error = _("pre-indexed expression expected"); return; } pre_inc = 1; if (ldst_extend_v4 (&str) == FAIL) return; skip_whitespace (str); if (*str++ != ']') { inst.error = _("missing ]"); return; } skip_whitespace (str); if (*str == '!') { if (conflict_reg) as_warn (_("%s register same as write-back base"), ((inst.instruction & LOAD_BIT) ? _("destination") : _("source"))); str++; inst.instruction |= WRITE_BACK; } } } else if (*str == '=') { /* XXX Does this work correctly for half-word/byte ops? */ /* Parse an "ldr Rd, =expr" instruction; this is another pseudo op. */ str++; skip_whitespace (str); if (my_get_expression (&inst.reloc.exp, &str)) return; if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol) { inst.error = _("Constant expression expected"); return; } if (inst.reloc.exp.X_op == O_constant) { value = validate_immediate (inst.reloc.exp.X_add_number); if (value != FAIL) { /* This can be done with a mov instruction. */ inst.instruction &= LITERAL_MASK; inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT); inst.instruction |= value & 0xfff; end_of_line (str); return; } value = validate_immediate (~ inst.reloc.exp.X_add_number); if (value != FAIL) { /* This can be done with a mvn instruction. */ inst.instruction &= LITERAL_MASK; inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT); inst.instruction |= value & 0xfff; end_of_line (str); return; } } /* Insert into literal pool. */ if (add_to_lit_pool () == FAIL) { if (!inst.error) inst.error = _("literal pool insertion failed"); return; } /* Change the instruction exp to point to the pool. */ inst.instruction |= HWOFFSET_IMM; inst.reloc.type = BFD_RELOC_ARM_HWLITERAL; inst.reloc.pc_rel = 1; inst.instruction |= (REG_PC << 16); pre_inc = 1; } else { if (my_get_expression (&inst.reloc.exp, &str)) return; inst.instruction |= HWOFFSET_IMM; inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8; #ifndef TE_WINCE /* PC rel adjust. */ inst.reloc.exp.X_add_number -= 8; #endif inst.reloc.pc_rel = 1; inst.instruction |= (REG_PC << 16); pre_inc = 1; } inst.instruction |= (pre_inc ? PRE_INDEX : 0); end_of_line (str); return; } static long reg_list (strp) char ** strp; { char * str = * strp; long range = 0; int another_range; /* We come back here if we get ranges concatenated by '+' or '|'. */ do { another_range = 0; if (*str == '{') { int in_range = 0; int cur_reg = -1; str++; do { int reg; skip_whitespace (str); if ((reg = reg_required_here (& str, -1)) == FAIL) return FAIL; if (in_range) { int i; if (reg <= cur_reg) { inst.error = _("Bad range in register list"); return FAIL; } for (i = cur_reg + 1; i < reg; i++) { if (range & (1 << i)) as_tsktsk (_("Warning: Duplicated register (r%d) in register list"), i); else range |= 1 << i; } in_range = 0; } if (range & (1 << reg)) as_tsktsk (_("Warning: Duplicated register (r%d) in register list"), reg); else if (reg <= cur_reg) as_tsktsk (_("Warning: Register range not in ascending order")); range |= 1 << reg; cur_reg = reg; } while (skip_past_comma (&str) != FAIL || (in_range = 1, *str++ == '-')); str--; skip_whitespace (str); if (*str++ != '}') { inst.error = _("Missing `}'"); return FAIL; } } else { expressionS expr; if (my_get_expression (&expr, &str)) return FAIL; if (expr.X_op == O_constant) { if (expr.X_add_number != (expr.X_add_number & 0x0000ffff)) { inst.error = _("invalid register mask"); return FAIL; } if ((range & expr.X_add_number) != 0) { int regno = range & expr.X_add_number; regno &= -regno; regno = (1 << regno) - 1; as_tsktsk (_("Warning: Duplicated register (r%d) in register list"), regno); } range |= expr.X_add_number; } else { if (inst.reloc.type != 0) { inst.error = _("expression too complex"); return FAIL; } memcpy (&inst.reloc.exp, &expr, sizeof (expressionS)); inst.reloc.type = BFD_RELOC_ARM_MULTI; inst.reloc.pc_rel = 0; } } skip_whitespace (str); if (*str == '|' || *str == '+') { str++; another_range = 1; } } while (another_range); *strp = str; return range; } static void do_ldmstm (str) char * str; { int base_reg; long range; skip_whitespace (str); if ((base_reg = reg_required_here (&str, 16)) == FAIL) return; if (base_reg == REG_PC) { inst.error = _("r15 not allowed as base register"); return; } skip_whitespace (str); if (*str == '!') { inst.instruction |= WRITE_BACK; str++; } if (skip_past_comma (&str) == FAIL || (range = reg_list (&str)) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } if (*str == '^') { str++; inst.instruction |= LDM_TYPE_2_OR_3; } inst.instruction |= range; end_of_line (str); return; } static void do_swi (str) char * str; { skip_whitespace (str); /* Allow optional leading '#'. */ if (is_immediate_prefix (*str)) str++; if (my_get_expression (& inst.reloc.exp, & str)) return; inst.reloc.type = BFD_RELOC_ARM_SWI; inst.reloc.pc_rel = 0; end_of_line (str); return; } static void do_swap (str) char * str; { int reg; skip_whitespace (str); if ((reg = reg_required_here (&str, 12)) == FAIL) return; if (reg == REG_PC) { inst.error = _("r15 not allowed in swap"); return; } if (skip_past_comma (&str) == FAIL || (reg = reg_required_here (&str, 0)) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (reg == REG_PC) { inst.error = _("r15 not allowed in swap"); return; } if (skip_past_comma (&str) == FAIL || *str++ != '[') { inst.error = BAD_ARGS; return; } skip_whitespace (str); if ((reg = reg_required_here (&str, 16)) == FAIL) return; if (reg == REG_PC) { inst.error = BAD_PC; return; } skip_whitespace (str); if (*str++ != ']') { inst.error = _("missing ]"); return; } end_of_line (str); return; } static void do_branch (str) char * str; { if (my_get_expression (&inst.reloc.exp, &str)) return; #ifdef OBJ_ELF { char * save_in; /* ScottB: February 5, 1998 - Check to see of PLT32 reloc required for the instruction. */ /* arm_parse_reloc () works on input_line_pointer. We actually want to parse the operands to the branch instruction passed in 'str'. Save the input pointer and restore it later. */ save_in = input_line_pointer; input_line_pointer = str; if (inst.reloc.exp.X_op == O_symbol && *str == '(' && arm_parse_reloc () == BFD_RELOC_ARM_PLT32) { inst.reloc.type = BFD_RELOC_ARM_PLT32; inst.reloc.pc_rel = 0; /* Modify str to point to after parsed operands, otherwise end_of_line() will complain about the (PLT) left in str. */ str = input_line_pointer; } else { inst.reloc.type = BFD_RELOC_ARM_PCREL_BRANCH; inst.reloc.pc_rel = 1; } input_line_pointer = save_in; } #else inst.reloc.type = BFD_RELOC_ARM_PCREL_BRANCH; inst.reloc.pc_rel = 1; #endif /* OBJ_ELF */ end_of_line (str); return; } static void do_bx (str) char * str; { int reg; skip_whitespace (str); if ((reg = reg_required_here (&str, 0)) == FAIL) { inst.error = BAD_ARGS; return; } /* Note - it is not illegal to do a "bx pc". Useless, but not illegal. */ if (reg == REG_PC) as_tsktsk (_("Use of r15 in bx in ARM mode is not really useful")); end_of_line (str); } static void do_cdp (str) char * str; { /* Co-processor data operation. Format: CDP{cond} CP#,,CRd,CRn,CRm{,} */ skip_whitespace (str); if (co_proc_number (&str) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || cp_opc_expr (&str, 20,4) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || cp_reg_required_here (&str, 12) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || cp_reg_required_here (&str, 16) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || cp_reg_required_here (&str, 0) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == SUCCESS) { if (cp_opc_expr (&str, 5, 3) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } } end_of_line (str); return; } static void do_lstc (str) char * str; { /* Co-processor register load/store. Format: */ skip_whitespace (str); if (co_proc_number (&str) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || cp_reg_required_here (&str, 12) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || cp_address_required_here (&str) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); return; } static void do_co_reg (str) char * str; { /* Co-processor register transfer. Format: {cond} CP#,,Rd,CRn,CRm{,} */ skip_whitespace (str); if (co_proc_number (&str) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || cp_opc_expr (&str, 21, 3) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || reg_required_here (&str, 12) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || cp_reg_required_here (&str, 16) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || cp_reg_required_here (&str, 0) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == SUCCESS) { if (cp_opc_expr (&str, 5, 3) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } } end_of_line (str); return; } static void do_fpa_ctrl (str) char * str; { /* FP control registers. Format: {cond} Rn */ skip_whitespace (str); if (reg_required_here (&str, 12) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); return; } static void do_fpa_ldst (str) char * str; { skip_whitespace (str); if (fp_reg_required_here (&str, 12) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || cp_address_required_here (&str) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); } static void do_fpa_ldmstm (str) char * str; { int num_regs; skip_whitespace (str); if (fp_reg_required_here (&str, 12) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } /* Get Number of registers to transfer. */ if (skip_past_comma (&str) == FAIL || my_get_expression (&inst.reloc.exp, &str)) { if (! inst.error) inst.error = _("constant expression expected"); return; } if (inst.reloc.exp.X_op != O_constant) { inst.error = _("Constant value required for number of registers"); return; } num_regs = inst.reloc.exp.X_add_number; if (num_regs < 1 || num_regs > 4) { inst.error = _("number of registers must be in the range [1:4]"); return; } switch (num_regs) { case 1: inst.instruction |= CP_T_X; break; case 2: inst.instruction |= CP_T_Y; break; case 3: inst.instruction |= CP_T_Y | CP_T_X; break; case 4: break; default: abort (); } if (inst.instruction & (CP_T_Pre | CP_T_UD)) /* ed/fd format. */ { int reg; int write_back; int offset; /* The instruction specified "ea" or "fd", so we can only accept [Rn]{!}. The instruction does not really support stacking or unstacking, so we have to emulate these by setting appropriate bits and offsets. */ if (skip_past_comma (&str) == FAIL || *str != '[') { if (! inst.error) inst.error = BAD_ARGS; return; } str++; skip_whitespace (str); if ((reg = reg_required_here (&str, 16)) == FAIL) return; skip_whitespace (str); if (*str != ']') { inst.error = BAD_ARGS; return; } str++; if (*str == '!') { write_back = 1; str++; if (reg == REG_PC) { inst.error = _("R15 not allowed as base register with write-back"); return; } } else write_back = 0; if (inst.instruction & CP_T_Pre) { /* Pre-decrement. */ offset = 3 * num_regs; if (write_back) inst.instruction |= CP_T_WB; } else { /* Post-increment. */ if (write_back) { inst.instruction |= CP_T_WB; offset = 3 * num_regs; } else { /* No write-back, so convert this into a standard pre-increment instruction -- aesthetically more pleasing. */ inst.instruction |= CP_T_Pre | CP_T_UD; offset = 0; } } inst.instruction |= offset; } else if (skip_past_comma (&str) == FAIL || cp_address_required_here (&str) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); } static void do_fpa_dyadic (str) char * str; { skip_whitespace (str); if (fp_reg_required_here (&str, 12) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || fp_reg_required_here (&str, 16) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || fp_op2 (&str) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); return; } static void do_fpa_monadic (str) char * str; { skip_whitespace (str); if (fp_reg_required_here (&str, 12) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || fp_op2 (&str) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); return; } static void do_fpa_cmp (str) char * str; { skip_whitespace (str); if (fp_reg_required_here (&str, 16) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || fp_op2 (&str) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); return; } static void do_fpa_from_reg (str) char * str; { skip_whitespace (str); if (fp_reg_required_here (&str, 16) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) == FAIL || reg_required_here (&str, 12) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); return; } static void do_fpa_to_reg (str) char * str; { skip_whitespace (str); if (reg_required_here (&str, 12) == FAIL) return; if (skip_past_comma (&str) == FAIL || fp_reg_required_here (&str, 0) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } end_of_line (str); return; } /* Thumb specific routines. */ /* Parse and validate that a register is of the right form, this saves repeated checking of this information in many similar cases. Unlike the 32-bit case we do not insert the register into the opcode here, since the position is often unknown until the full instruction has been parsed. */ static int thumb_reg (strp, hi_lo) char ** strp; int hi_lo; { int reg; if ((reg = reg_required_here (strp, -1)) == FAIL) return FAIL; switch (hi_lo) { case THUMB_REG_LO: if (reg > 7) { inst.error = _("lo register required"); return FAIL; } break; case THUMB_REG_HI: if (reg < 8) { inst.error = _("hi register required"); return FAIL; } break; default: break; } return reg; } /* Parse an add or subtract instruction, SUBTRACT is non-zero if the opcode was SUB. */ static void thumb_add_sub (str, subtract) char * str; int subtract; { int Rd, Rs, Rn = FAIL; skip_whitespace (str); if ((Rd = thumb_reg (&str, THUMB_REG_ANY)) == FAIL || skip_past_comma (&str) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } if (is_immediate_prefix (*str)) { Rs = Rd; str++; if (my_get_expression (&inst.reloc.exp, &str)) return; } else { if ((Rs = thumb_reg (&str, THUMB_REG_ANY)) == FAIL) return; if (skip_past_comma (&str) == FAIL) { /* Two operand format, shuffle the registers and pretend there are 3. */ Rn = Rs; Rs = Rd; } else if (is_immediate_prefix (*str)) { str++; if (my_get_expression (&inst.reloc.exp, &str)) return; } else if ((Rn = thumb_reg (&str, THUMB_REG_ANY)) == FAIL) return; } /* We now have Rd and Rs set to registers, and Rn set to a register or FAIL; for the latter case, EXPR contains the immediate that was found. */ if (Rn != FAIL) { /* All register format. */ if (Rd > 7 || Rs > 7 || Rn > 7) { if (Rs != Rd) { inst.error = _("dest and source1 must be the same register"); return; } /* Can't do this for SUB. */ if (subtract) { inst.error = _("subtract valid only on lo regs"); return; } inst.instruction = (T_OPCODE_ADD_HI | (Rd > 7 ? THUMB_H1 : 0) | (Rn > 7 ? THUMB_H2 : 0)); inst.instruction |= (Rd & 7) | ((Rn & 7) << 3); } else { inst.instruction = subtract ? T_OPCODE_SUB_R3 : T_OPCODE_ADD_R3; inst.instruction |= Rd | (Rs << 3) | (Rn << 6); } } else { /* Immediate expression, now things start to get nasty. */ /* First deal with HI regs, only very restricted cases allowed: Adjusting SP, and using PC or SP to get an address. */ if ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP)) || (Rs > 7 && Rs != REG_SP && Rs != REG_PC)) { inst.error = _("invalid Hi register with immediate"); return; } if (inst.reloc.exp.X_op != O_constant) { /* Value isn't known yet, all we can do is store all the fragments we know about in the instruction and let the reloc hacking work it all out. */ inst.instruction = (subtract ? 0x8000 : 0) | (Rd << 4) | Rs; inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD; } else { int offset = inst.reloc.exp.X_add_number; if (subtract) offset = -offset; if (offset < 0) { offset = -offset; subtract = 1; /* Quick check, in case offset is MIN_INT. */ if (offset < 0) { inst.error = _("immediate value out of range"); return; } } else subtract = 0; if (Rd == REG_SP) { if (offset & ~0x1fc) { inst.error = _("invalid immediate value for stack adjust"); return; } inst.instruction = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST; inst.instruction |= offset >> 2; } else if (Rs == REG_PC || Rs == REG_SP) { if (subtract || (offset & ~0x3fc)) { inst.error = _("invalid immediate for address calculation"); return; } inst.instruction = (Rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP); inst.instruction |= (Rd << 8) | (offset >> 2); } else if (Rs == Rd) { if (offset & ~0xff) { inst.error = _("immediate value out of range"); return; } inst.instruction = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8; inst.instruction |= (Rd << 8) | offset; } else { if (offset & ~0x7) { inst.error = _("immediate value out of range"); return; } inst.instruction = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3; inst.instruction |= Rd | (Rs << 3) | (offset << 6); } } } end_of_line (str); } static void thumb_shift (str, shift) char * str; int shift; { int Rd, Rs, Rn = FAIL; skip_whitespace (str); if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL || skip_past_comma (&str) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } if (is_immediate_prefix (*str)) { /* Two operand immediate format, set Rs to Rd. */ Rs = Rd; str ++; if (my_get_expression (&inst.reloc.exp, &str)) return; } else { if ((Rs = thumb_reg (&str, THUMB_REG_LO)) == FAIL) return; if (skip_past_comma (&str) == FAIL) { /* Two operand format, shuffle the registers and pretend there are 3. */ Rn = Rs; Rs = Rd; } else if (is_immediate_prefix (*str)) { str++; if (my_get_expression (&inst.reloc.exp, &str)) return; } else if ((Rn = thumb_reg (&str, THUMB_REG_LO)) == FAIL) return; } /* We now have Rd and Rs set to registers, and Rn set to a register or FAIL; for the latter case, EXPR contains the immediate that was found. */ if (Rn != FAIL) { if (Rs != Rd) { inst.error = _("source1 and dest must be same register"); return; } switch (shift) { case THUMB_ASR: inst.instruction = T_OPCODE_ASR_R; break; case THUMB_LSL: inst.instruction = T_OPCODE_LSL_R; break; case THUMB_LSR: inst.instruction = T_OPCODE_LSR_R; break; } inst.instruction |= Rd | (Rn << 3); } else { switch (shift) { case THUMB_ASR: inst.instruction = T_OPCODE_ASR_I; break; case THUMB_LSL: inst.instruction = T_OPCODE_LSL_I; break; case THUMB_LSR: inst.instruction = T_OPCODE_LSR_I; break; } if (inst.reloc.exp.X_op != O_constant) { /* Value isn't known yet, create a dummy reloc and let reloc hacking fix it up. */ inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT; } else { unsigned shift_value = inst.reloc.exp.X_add_number; if (shift_value > 32 || (shift_value == 32 && shift == THUMB_LSL)) { inst.error = _("Invalid immediate for shift"); return; } /* Shifts of zero are handled by converting to LSL. */ if (shift_value == 0) inst.instruction = T_OPCODE_LSL_I; /* Shifts of 32 are encoded as a shift of zero. */ if (shift_value == 32) shift_value = 0; inst.instruction |= shift_value << 6; } inst.instruction |= Rd | (Rs << 3); } end_of_line (str); } static void thumb_mov_compare (str, move) char * str; int move; { int Rd, Rs = FAIL; skip_whitespace (str); if ((Rd = thumb_reg (&str, THUMB_REG_ANY)) == FAIL || skip_past_comma (&str) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } if (is_immediate_prefix (*str)) { str++; if (my_get_expression (&inst.reloc.exp, &str)) return; } else if ((Rs = thumb_reg (&str, THUMB_REG_ANY)) == FAIL) return; if (Rs != FAIL) { if (Rs < 8 && Rd < 8) { if (move == THUMB_MOVE) /* A move of two lowregs is encoded as ADD Rd, Rs, #0 since a MOV instruction produces unpredictable results. */ inst.instruction = T_OPCODE_ADD_I3; else inst.instruction = T_OPCODE_CMP_LR; inst.instruction |= Rd | (Rs << 3); } else { if (move == THUMB_MOVE) inst.instruction = T_OPCODE_MOV_HR; else inst.instruction = T_OPCODE_CMP_HR; if (Rd > 7) inst.instruction |= THUMB_H1; if (Rs > 7) inst.instruction |= THUMB_H2; inst.instruction |= (Rd & 7) | ((Rs & 7) << 3); } } else { if (Rd > 7) { inst.error = _("only lo regs allowed with immediate"); return; } if (move == THUMB_MOVE) inst.instruction = T_OPCODE_MOV_I8; else inst.instruction = T_OPCODE_CMP_I8; inst.instruction |= Rd << 8; if (inst.reloc.exp.X_op != O_constant) inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM; else { unsigned value = inst.reloc.exp.X_add_number; if (value > 255) { inst.error = _("invalid immediate"); return; } inst.instruction |= value; } } end_of_line (str); } static void thumb_load_store (str, load_store, size) char * str; int load_store; int size; { int Rd, Rb, Ro = FAIL; skip_whitespace (str); if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL || skip_past_comma (&str) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } if (*str == '[') { str++; if ((Rb = thumb_reg (&str, THUMB_REG_ANY)) == FAIL) return; if (skip_past_comma (&str) != FAIL) { if (is_immediate_prefix (*str)) { str++; if (my_get_expression (&inst.reloc.exp, &str)) return; } else if ((Ro = thumb_reg (&str, THUMB_REG_LO)) == FAIL) return; } else { inst.reloc.exp.X_op = O_constant; inst.reloc.exp.X_add_number = 0; } if (*str != ']') { inst.error = _("expected ']'"); return; } str++; } else if (*str == '=') { /* Parse an "ldr Rd, =expr" instruction; this is another pseudo op. */ str++; skip_whitespace (str); if (my_get_expression (& inst.reloc.exp, & str)) return; end_of_line (str); if ( inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol) { inst.error = "Constant expression expected"; return; } if (inst.reloc.exp.X_op == O_constant && ((inst.reloc.exp.X_add_number & ~0xFF) == 0)) { /* This can be done with a mov instruction. */ inst.instruction = T_OPCODE_MOV_I8 | (Rd << 8); inst.instruction |= inst.reloc.exp.X_add_number; return; } /* Insert into literal pool. */ if (add_to_lit_pool () == FAIL) { if (!inst.error) inst.error = "literal pool insertion failed"; return; } inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET; inst.reloc.pc_rel = 1; inst.instruction = T_OPCODE_LDR_PC | (Rd << 8); /* Adjust ARM pipeline offset to Thumb. */ inst.reloc.exp.X_add_number += 4; return; } else { if (my_get_expression (&inst.reloc.exp, &str)) return; inst.instruction = T_OPCODE_LDR_PC | (Rd << 8); inst.reloc.pc_rel = 1; inst.reloc.exp.X_add_number -= 4; /* Pipeline offset. */ inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET; end_of_line (str); return; } if (Rb == REG_PC || Rb == REG_SP) { if (size != THUMB_WORD) { inst.error = _("byte or halfword not valid for base register"); return; } else if (Rb == REG_PC && load_store != THUMB_LOAD) { inst.error = _("R15 based store not allowed"); return; } else if (Ro != FAIL) { inst.error = _("Invalid base register for register offset"); return; } if (Rb == REG_PC) inst.instruction = T_OPCODE_LDR_PC; else if (load_store == THUMB_LOAD) inst.instruction = T_OPCODE_LDR_SP; else inst.instruction = T_OPCODE_STR_SP; inst.instruction |= Rd << 8; if (inst.reloc.exp.X_op == O_constant) { unsigned offset = inst.reloc.exp.X_add_number; if (offset & ~0x3fc) { inst.error = _("invalid offset"); return; } inst.instruction |= offset >> 2; } else inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET; } else if (Rb > 7) { inst.error = _("invalid base register in load/store"); return; } else if (Ro == FAIL) { /* Immediate offset. */ if (size == THUMB_WORD) inst.instruction = (load_store == THUMB_LOAD ? T_OPCODE_LDR_IW : T_OPCODE_STR_IW); else if (size == THUMB_HALFWORD) inst.instruction = (load_store == THUMB_LOAD ? T_OPCODE_LDR_IH : T_OPCODE_STR_IH); else inst.instruction = (load_store == THUMB_LOAD ? T_OPCODE_LDR_IB : T_OPCODE_STR_IB); inst.instruction |= Rd | (Rb << 3); if (inst.reloc.exp.X_op == O_constant) { unsigned offset = inst.reloc.exp.X_add_number; if (offset & ~(0x1f << size)) { inst.error = _("Invalid offset"); return; } inst.instruction |= (offset >> size) << 6; } else inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET; } else { /* Register offset. */ if (size == THUMB_WORD) inst.instruction = (load_store == THUMB_LOAD ? T_OPCODE_LDR_RW : T_OPCODE_STR_RW); else if (size == THUMB_HALFWORD) inst.instruction = (load_store == THUMB_LOAD ? T_OPCODE_LDR_RH : T_OPCODE_STR_RH); else inst.instruction = (load_store == THUMB_LOAD ? T_OPCODE_LDR_RB : T_OPCODE_STR_RB); inst.instruction |= Rd | (Rb << 3) | (Ro << 6); } end_of_line (str); } /* Given a register and a register type, return 1 if the register is of the given type, else return 0. */ static int cirrus_valid_reg (reg, regtype) int reg; enum cirrus_regtype regtype; { switch (regtype) { case CIRRUS_REGTYPE_ANY: return 1; case CIRRUS_REGTYPE_MVF: return cirrus_mvf_register (reg); case CIRRUS_REGTYPE_MVFX: return cirrus_mvfx_register (reg); case CIRRUS_REGTYPE_MVD: return cirrus_mvd_register (reg); case CIRRUS_REGTYPE_MVDX: return cirrus_mvdx_register (reg); case CIRRUS_REGTYPE_MVAX: return cirrus_mvax_register (reg); case CIRRUS_REGTYPE_DSPSC: return ARM_EXT_MAVERICKsc_register (reg); } return 0; } /* A register must be given at this point. If the register is a Cirrus register, convert it's reg# appropriately. Shift is the place to put it in inst.instruction. regtype is type register type expected, and is: CIRRUS_REGTYPE_MVF CIRRUS_REGTYPE_MVFX CIRRUS_REGTYPE_MVD CIRRUS_REGTYPE_MVDX CIRRUS_REGTYPE_MVAX CIRRUS_REGTYPE_DSPSC Restores input start point on err. Returns the reg#, or FAIL. */ static int cirrus_reg_required_here (str, shift, regtype) char ** str; int shift; enum cirrus_regtype regtype; { static char buff [135]; /* XXX */ int reg; char * start = * str; if ((reg = arm_reg_parse (str)) != FAIL && (int_register (reg) || cirrus_register (reg))) { int orig_reg = reg; /* Calculate actual register # for opcode. */ if (cirrus_register (reg) && !ARM_EXT_MAVERICKsc_register (reg)) /* Leave this one as is. */ { if (reg >= 130) reg -= 130; else if (reg >= 110) reg -= 110; else if (reg >= 90) reg -= 90; else if (reg >= 70) reg -= 70; else if (reg >= 50) reg -= 50; } if (!cirrus_valid_reg (orig_reg, regtype)) { sprintf (buff, _("invalid register type at '%.100s'"), start); inst.error = buff; return FAIL; } if (shift >= 0) inst.instruction |= reg << shift; return orig_reg; } /* Restore the start point, we may have got a reg of the wrong class. */ *str = start; /* In the few cases where we might be able to accept something else this error can be overridden. */ sprintf (buff, _("Cirrus register expected, not '%.100s'"), start); inst.error = buff; return FAIL; } /* Cirrus Instructions. */ /* Wrapper functions. */ static void do_c_binops_1 (str) char * str; { do_c_binops (str, CIRRUS_MODE1); } static void do_c_binops_2 (str) char * str; { do_c_binops (str, CIRRUS_MODE2); } static void do_c_binops_3 (str) char * str; { do_c_binops (str, CIRRUS_MODE3); } static void do_c_triple_4 (str) char * str; { do_c_triple (str, CIRRUS_MODE4); } static void do_c_triple_5 (str) char * str; { do_c_triple (str, CIRRUS_MODE5); } static void do_c_quad_6 (str) char * str; { do_c_quad (str, CIRRUS_MODE6); } static void do_c_dspsc_1 (str) char * str; { do_c_dspsc (str, CIRRUS_MODE1); } static void do_c_dspsc_2 (str) char * str; { do_c_dspsc (str, CIRRUS_MODE2); } static void do_c_shift_1 (str) char * str; { do_c_shift (str, CIRRUS_MODE1); } static void do_c_shift_2 (str) char * str; { do_c_shift (str, CIRRUS_MODE2); } static void do_c_ldst_1 (str) char * str; { do_c_ldst (str, CIRRUS_MODE1); } static void do_c_ldst_2 (str) char * str; { do_c_ldst (str, CIRRUS_MODE2); } static void do_c_ldst_3 (str) char * str; { do_c_ldst (str, CIRRUS_MODE3); } static void do_c_ldst_4 (str) char * str; { do_c_ldst (str, CIRRUS_MODE4); } /* Isnsn like "foo X,Y". */ static void do_c_binops (str, mode) char * str; int mode; { int shift1, shift2; shift1 = mode & 0xff; shift2 = (mode >> 8) & 0xff; skip_whitespace (str); if (cirrus_reg_required_here (&str, shift1, CIRRUS_REGTYPE_ANY) == FAIL || skip_past_comma (&str) == FAIL || cirrus_reg_required_here (&str, shift2, CIRRUS_REGTYPE_ANY) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; } else end_of_line (str); } /* Isnsn like "foo X,Y,Z". */ static void do_c_triple (str, mode) char * str; int mode; { int shift1, shift2, shift3; shift1 = mode & 0xff; shift2 = (mode >> 8) & 0xff; shift3 = (mode >> 16) & 0xff; skip_whitespace (str); if (cirrus_reg_required_here (&str, shift1, CIRRUS_REGTYPE_ANY) == FAIL || skip_past_comma (&str) == FAIL || cirrus_reg_required_here (&str, shift2, CIRRUS_REGTYPE_ANY) == FAIL || skip_past_comma (&str) == FAIL || cirrus_reg_required_here (&str, shift3, CIRRUS_REGTYPE_ANY) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; } else end_of_line (str); } /* Isnsn like "foo W,X,Y,Z". where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */ static void do_c_quad (str, mode) char * str; int mode; { int shift1, shift2, shift3, shift4; enum cirrus_regtype rt; rt = (inst.instruction << 4 == 0xe2006000 || inst.instruction << 4 == 0xe3006000) ? CIRRUS_REGTYPE_MVAX : CIRRUS_REGTYPE_MVFX; shift1 = mode & 0xff; shift2 = (mode >> 8) & 0xff; shift3 = (mode >> 16) & 0xff; shift4 = (mode >> 24) & 0xff; skip_whitespace (str); if (cirrus_reg_required_here (&str, shift1, CIRRUS_REGTYPE_MVAX) == FAIL || skip_past_comma (&str) == FAIL || cirrus_reg_required_here (&str, shift2, rt) == FAIL || skip_past_comma (&str) == FAIL || cirrus_reg_required_here (&str, shift3, CIRRUS_REGTYPE_MVFX) == FAIL || skip_past_comma (&str) == FAIL || cirrus_reg_required_here (&str, shift4, CIRRUS_REGTYPE_MVFX) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; } else end_of_line (str); } /* cfmvsc32 DSPSC,MVFX[15:0]. cfmv32sc MVFX[15:0],DSPSC. */ static void do_c_dspsc (str, mode) char * str; int mode; { int error; skip_whitespace (str); error = 0; if (mode == CIRRUS_MODE1) { /* cfmvsc32. */ if (cirrus_reg_required_here (&str, -1, CIRRUS_REGTYPE_DSPSC) == FAIL || skip_past_comma (&str) == FAIL || cirrus_reg_required_here (&str, 16, CIRRUS_REGTYPE_MVFX) == FAIL) error = 1; } else { /* cfmv32sc. */ if (cirrus_reg_required_here (&str, 0, CIRRUS_REGTYPE_MVFX) == FAIL || skip_past_comma (&str) == FAIL || cirrus_reg_required_here (&str, -1, CIRRUS_REGTYPE_DSPSC) == FAIL) error = 1; } if (error) { if (!inst.error) inst.error = BAD_ARGS; } else { end_of_line (str); } } /* Cirrus shift immediate instructions. cfsh32 MVFX[15:0],MVFX[15:0],Shift[6:0]. cfsh64 MVDX[15:0],MVDX[15:0],Shift[6:0]. */ static void do_c_shift (str, mode) char * str; int mode; { int error; int imm, neg = 0; skip_whitespace (str); error = 0; if (cirrus_reg_required_here (&str, 12, (mode == CIRRUS_MODE1) ? CIRRUS_REGTYPE_MVFX : CIRRUS_REGTYPE_MVDX) == FAIL || skip_past_comma (&str) == FAIL || cirrus_reg_required_here (&str, 16, (mode == CIRRUS_MODE1) ? CIRRUS_REGTYPE_MVFX : CIRRUS_REGTYPE_MVDX) == FAIL || skip_past_comma (&str) == FAIL) { if (!inst.error) inst.error = BAD_ARGS; return; } /* Calculate the immediate operand. The operand is a 7bit signed number. */ skip_whitespace (str); if (*str == '#') ++str; if (!ISDIGIT (*str) && *str != '-') { inst.error = _("expecting immediate, 7bit operand"); return; } if (*str == '-') { neg = 1; ++str; } for (imm = 0; *str && ISDIGIT (*str); ++str) imm = imm * 10 + *str - '0'; if (imm > 64) { inst.error = _("immediate out of range"); return; } /* Make negative imm's into 7bit signed numbers. */ if (neg) { imm = -imm; imm &= 0x0000007f; } /* Bits 0-3 of the insn should have bits 0-3 of the immediate. Bits 5-7 of the insn should have bits 4-6 of the immediate. Bit 4 should be 0. */ imm = (imm & 0xf) | ((imm & 0x70) << 1); inst.instruction |= imm; end_of_line (str); } static int cirrus_parse_offset (str, negative) char ** str; int *negative; { char * p = *str; int offset; *negative = 0; skip_whitespace (p); if (*p == '#') ++p; if (*p == '-') { *negative = 1; ++p; } if (!ISDIGIT (*p)) { inst.error = _("offset expected"); return 0; } for (offset = 0; *p && ISDIGIT (*p); ++p) offset = offset * 10 + *p - '0'; if (offset > 0xff) { inst.error = _("offset out of range"); return 0; } *str = p; return *negative ? -offset : offset; } /* Cirrus load/store instructions. CRd,[Rn,]{!}. CRd,[Rn],. */ static void do_c_ldst (str, mode) char * str; int mode; { int offset, negative; enum cirrus_regtype rt; rt = mode == CIRRUS_MODE1 ? CIRRUS_REGTYPE_MVF : mode == CIRRUS_MODE2 ? CIRRUS_REGTYPE_MVD : mode == CIRRUS_MODE3 ? CIRRUS_REGTYPE_MVFX : mode == CIRRUS_MODE4 ? CIRRUS_REGTYPE_MVDX : CIRRUS_REGTYPE_MVF; skip_whitespace (str); if (cirrus_reg_required_here (& str, 12, rt) == FAIL || skip_past_comma (& str) == FAIL || *str++ != '[' || reg_required_here (& str, 16) == FAIL) goto fail_ldst; if (skip_past_comma (& str) == SUCCESS) { /* You are here: "]{!}". */ inst.instruction |= PRE_INDEX; offset = cirrus_parse_offset (&str, &negative); if (inst.error) return; if (*str++ != ']') { inst.error = _("missing ]"); return; } if (*str == '!') { inst.instruction |= WRITE_BACK; ++str; } } else { /* You are here: "], ". */ if (*str++ != ']') { inst.error = _("missing ]"); return; } if (skip_past_comma (&str) == FAIL || (offset = cirrus_parse_offset (&str, &negative), inst.error)) goto fail_ldst; inst.instruction |= CP_T_WB; /* Post indexed, set bit W. */ } if (negative) offset = -offset; else inst.instruction |= CP_T_UD; /* Postive, so set bit U. */ inst.instruction |= offset >> 2; end_of_line (str); return; fail_ldst: if (!inst.error) inst.error = BAD_ARGS; return; } static void do_t_nop (str) char * str; { /* Do nothing. */ end_of_line (str); return; } /* Handle the Format 4 instructions that do not have equivalents in other formats. That is, ADC, AND, EOR, SBC, ROR, TST, NEG, CMN, ORR, MUL, BIC and MVN. */ static void do_t_arit (str) char * str; { int Rd, Rs, Rn; skip_whitespace (str); if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL || skip_past_comma (&str) == FAIL || (Rs = thumb_reg (&str, THUMB_REG_LO)) == FAIL) { inst.error = BAD_ARGS; return; } if (skip_past_comma (&str) != FAIL) { /* Three operand format not allowed for TST, CMN, NEG and MVN. (It isn't allowed for CMP either, but that isn't handled by this function.) */ if (inst.instruction == T_OPCODE_TST || inst.instruction == T_OPCODE_CMN || inst.instruction == T_OPCODE_NEG || inst.instruction == T_OPCODE_MVN) { inst.error = BAD_ARGS; return; } if ((Rn = thumb_reg (&str, THUMB_REG_LO)) == FAIL) return; if (Rs != Rd) { inst.error = _("dest and source1 must be the same register"); return; } Rs = Rn; } if (inst.instruction == T_OPCODE_MUL && Rs == Rd) as_tsktsk (_("Rs and Rd must be different in MUL")); inst.instruction |= Rd | (Rs << 3); end_of_line (str); } static void do_t_add (str) char * str; { thumb_add_sub (str, 0); } static void do_t_asr (str) char * str; { thumb_shift (str, THUMB_ASR); } static void do_t_branch9 (str) char * str; { if (my_get_expression (&inst.reloc.exp, &str)) return; inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9; inst.reloc.pc_rel = 1; end_of_line (str); } static void do_t_branch12 (str) char * str; { if (my_get_expression (&inst.reloc.exp, &str)) return; inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12; inst.reloc.pc_rel = 1; end_of_line (str); } /* Find the real, Thumb encoded start of a Thumb function. */ static symbolS * find_real_start (symbolP) symbolS * symbolP; { char * real_start; const char * name = S_GET_NAME (symbolP); symbolS * new_target; /* This definiton must agree with the one in gcc/config/arm/thumb.c. */ #define STUB_NAME ".real_start_of" if (name == NULL) abort (); /* Names that start with '.' are local labels, not function entry points. The compiler may generate BL instructions to these labels because it needs to perform a branch to a far away location. */ if (name[0] == '.') return symbolP; real_start = malloc (strlen (name) + strlen (STUB_NAME) + 1); sprintf (real_start, "%s%s", STUB_NAME, name); new_target = symbol_find (real_start); if (new_target == NULL) { as_warn ("Failed to find real start of function: %s\n", name); new_target = symbolP; } free (real_start); return new_target; } static void do_t_branch23 (str) char * str; { if (my_get_expression (& inst.reloc.exp, & str)) return; inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23; inst.reloc.pc_rel = 1; end_of_line (str); /* If the destination of the branch is a defined symbol which does not have the THUMB_FUNC attribute, then we must be calling a function which has the (interfacearm) attribute. We look for the Thumb entry point to that function and change the branch to refer to that function instead. */ if ( inst.reloc.exp.X_op == O_symbol && inst.reloc.exp.X_add_symbol != NULL && S_IS_DEFINED (inst.reloc.exp.X_add_symbol) && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol)) inst.reloc.exp.X_add_symbol = find_real_start (inst.reloc.exp.X_add_symbol); } static void do_t_bx (str) char * str; { int reg; skip_whitespace (str); if ((reg = thumb_reg (&str, THUMB_REG_ANY)) == FAIL) return; /* This sets THUMB_H2 from the top bit of reg. */ inst.instruction |= reg << 3; /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc should cause the alignment to be checked once it is known. This is because BX PC only works if the instruction is word aligned. */ end_of_line (str); } static void do_t_compare (str) char * str; { thumb_mov_compare (str, THUMB_COMPARE); } static void do_t_ldmstm (str) char * str; { int Rb; long range; skip_whitespace (str); if ((Rb = thumb_reg (&str, THUMB_REG_LO)) == FAIL) return; if (*str != '!') as_warn (_("Inserted missing '!': load/store multiple always writes back base register")); else str++; if (skip_past_comma (&str) == FAIL || (range = reg_list (&str)) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } if (inst.reloc.type != BFD_RELOC_NONE) { /* This really doesn't seem worth it. */ inst.reloc.type = BFD_RELOC_NONE; inst.error = _("Expression too complex"); return; } if (range & ~0xff) { inst.error = _("only lo-regs valid in load/store multiple"); return; } inst.instruction |= (Rb << 8) | range; end_of_line (str); } static void do_t_ldr (str) char * str; { thumb_load_store (str, THUMB_LOAD, THUMB_WORD); } static void do_t_ldrb (str) char * str; { thumb_load_store (str, THUMB_LOAD, THUMB_BYTE); } static void do_t_ldrh (str) char * str; { thumb_load_store (str, THUMB_LOAD, THUMB_HALFWORD); } static void do_t_lds (str) char * str; { int Rd, Rb, Ro; skip_whitespace (str); if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL || skip_past_comma (&str) == FAIL || *str++ != '[' || (Rb = thumb_reg (&str, THUMB_REG_LO)) == FAIL || skip_past_comma (&str) == FAIL || (Ro = thumb_reg (&str, THUMB_REG_LO)) == FAIL || *str++ != ']') { if (! inst.error) inst.error = _("Syntax: ldrs[b] Rd, [Rb, Ro]"); return; } inst.instruction |= Rd | (Rb << 3) | (Ro << 6); end_of_line (str); } static void do_t_lsl (str) char * str; { thumb_shift (str, THUMB_LSL); } static void do_t_lsr (str) char * str; { thumb_shift (str, THUMB_LSR); } static void do_t_mov (str) char * str; { thumb_mov_compare (str, THUMB_MOVE); } static void do_t_push_pop (str) char * str; { long range; skip_whitespace (str); if ((range = reg_list (&str)) == FAIL) { if (! inst.error) inst.error = BAD_ARGS; return; } if (inst.reloc.type != BFD_RELOC_NONE) { /* This really doesn't seem worth it. */ inst.reloc.type = BFD_RELOC_NONE; inst.error = _("Expression too complex"); return; } if (range & ~0xff) { if ((inst.instruction == T_OPCODE_PUSH && (range & ~0xff) == 1 << REG_LR) || (inst.instruction == T_OPCODE_POP && (range & ~0xff) == 1 << REG_PC)) { inst.instruction |= THUMB_PP_PC_LR; range &= 0xff; } else { inst.error = _("invalid register list to push/pop instruction"); return; } } inst.instruction |= range; end_of_line (str); } static void do_t_str (str) char * str; { thumb_load_store (str, THUMB_STORE, THUMB_WORD); } static void do_t_strb (str) char * str; { thumb_load_store (str, THUMB_STORE, THUMB_BYTE); } static void do_t_strh (str) char * str; { thumb_load_store (str, THUMB_STORE, THUMB_HALFWORD); } static void do_t_sub (str) char * str; { thumb_add_sub (str, 1); } static void do_t_swi (str) char * str; { skip_whitespace (str); if (my_get_expression (&inst.reloc.exp, &str)) return; inst.reloc.type = BFD_RELOC_ARM_SWI; end_of_line (str); return; } static void do_t_adr (str) char * str; { int reg; /* This is a pseudo-op of the form "adr rd, label" to be converted into a relative address of the form "add rd, pc, #label-.-4". */ skip_whitespace (str); /* Store Rd in temporary location inside instruction. */ if ((reg = reg_required_here (&str, 4)) == FAIL || (reg > 7) /* For Thumb reg must be r0..r7. */ || skip_past_comma (&str) == FAIL || my_get_expression (&inst.reloc.exp, &str)) { if (!inst.error) inst.error = BAD_ARGS; return; } inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD; inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */ inst.reloc.pc_rel = 1; inst.instruction |= REG_PC; /* Rd is already placed into the instruction. */ end_of_line (str); } static void insert_reg (entry) int entry; { int len = strlen (reg_table[entry].name) + 2; char * buf = (char *) xmalloc (len); char * buf2 = (char *) xmalloc (len); int i = 0; #ifdef REGISTER_PREFIX buf[i++] = REGISTER_PREFIX; #endif strcpy (buf + i, reg_table[entry].name); for (i = 0; buf[i]; i++) buf2[i] = TOUPPER (buf[i]); buf2[i] = '\0'; hash_insert (arm_reg_hsh, buf, (PTR) & reg_table[entry]); hash_insert (arm_reg_hsh, buf2, (PTR) & reg_table[entry]); } static void insert_reg_alias (str, regnum) char *str; int regnum; { struct reg_entry *new = (struct reg_entry *) xmalloc (sizeof (struct reg_entry)); char *name = xmalloc (strlen (str) + 1); strcpy (name, str); new->name = name; new->number = regnum; hash_insert (arm_reg_hsh, name, (PTR) new); } static void set_constant_flonums () { int i; for (i = 0; i < NUM_FLOAT_VALS; i++) if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL) abort (); } /* Iterate over the base tables to create the instruction patterns. */ static void build_arm_ops_hsh () { unsigned int i; unsigned int j; static struct obstack insn_obstack; obstack_begin (&insn_obstack, 4000); for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++) { CONST struct asm_opcode *insn = insns + i; if (insn->cond_offset != 0) { /* Insn supports conditional execution. Build the varaints and insert them in the hash table. */ for (j = 0; j < sizeof (conds) / sizeof (struct asm_cond); j++) { unsigned len = strlen (insn->template); struct asm_opcode *new; char *template; new = obstack_alloc (&insn_obstack, sizeof (struct asm_opcode)); /* All condition codes are two characters. */ template = obstack_alloc (&insn_obstack, len + 3); strncpy (template, insn->template, insn->cond_offset); strcpy (template + insn->cond_offset, conds[j].template); if (len > insn->cond_offset) strcpy (template + insn->cond_offset + 2, insn->template + insn->cond_offset); new->template = template; new->cond_offset = 0; new->variant = insn->variant; new->parms = insn->parms; new->value = (insn->value & ~COND_MASK) | conds[j].value; hash_insert (arm_ops_hsh, new->template, (PTR) new); } } /* Finally, insert the unconditional insn in the table directly; no need to build a copy. */ hash_insert (arm_ops_hsh, insn->template, (PTR) insn); } } void md_begin () { unsigned mach; unsigned int i; if ( (arm_ops_hsh = hash_new ()) == NULL || (arm_tops_hsh = hash_new ()) == NULL || (arm_cond_hsh = hash_new ()) == NULL || (arm_shift_hsh = hash_new ()) == NULL || (arm_reg_hsh = hash_new ()) == NULL || (arm_psr_hsh = hash_new ()) == NULL) as_fatal (_("Virtual memory exhausted")); build_arm_ops_hsh (); for (i = 0; i < sizeof (tinsns) / sizeof (struct thumb_opcode); i++) hash_insert (arm_tops_hsh, tinsns[i].template, (PTR) (tinsns + i)); for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++) hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i)); for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++) hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i)); for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++) hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i)); for (i = 0; reg_table[i].name; i++) insert_reg (i); set_constant_flonums (); #if defined OBJ_COFF || defined OBJ_ELF { unsigned int flags = 0; /* Set the flags in the private structure. */ if (uses_apcs_26) flags |= F_APCS26; if (support_interwork) flags |= F_INTERWORK; if (uses_apcs_float) flags |= F_APCS_FLOAT; if (pic_code) flags |= F_PIC; if ((cpu_variant & FPU_ANY) == FPU_NONE) flags |= F_SOFT_FLOAT; bfd_set_private_flags (stdoutput, flags); /* We have run out flags in the COFF header to encode the status of ATPCS support, so instead we create a dummy, empty, debug section called .arm.atpcs. */ if (atpcs) { asection * sec; sec = bfd_make_section (stdoutput, ".arm.atpcs"); if (sec != NULL) { bfd_set_section_flags (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */); bfd_set_section_size (stdoutput, sec, 0); bfd_set_section_contents (stdoutput, sec, NULL, 0, 0); } } } #endif /* Record the CPU type as well. */ switch (cpu_variant & ARM_CPU_MASK) { case ARM_2: mach = bfd_mach_arm_2; break; case ARM_3: /* Also ARM_250. */ mach = bfd_mach_arm_2a; break; case ARM_6: /* Also ARM_7. */ mach = bfd_mach_arm_3; break; default: mach = bfd_mach_arm_4; break; } /* Catch special cases. */ if (cpu_variant & ARM_EXT_XSCALE) mach = bfd_mach_arm_XScale; else if (cpu_variant & ARM_EXT_V5E) mach = bfd_mach_arm_5TE; else if (cpu_variant & ARM_EXT_V5) { if (cpu_variant & ARM_EXT_V4T) mach = bfd_mach_arm_5T; else mach = bfd_mach_arm_5; } else if (cpu_variant & ARM_EXT_V4) { if (cpu_variant & ARM_EXT_V4T) mach = bfd_mach_arm_4T; else mach = bfd_mach_arm_4; } else if (cpu_variant & ARM_EXT_V3M) mach = bfd_mach_arm_3M; bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach); } /* Turn an integer of n bytes (in val) into a stream of bytes appropriate for use in the a.out file, and stores them in the array pointed to by buf. This knows about the endian-ness of the target machine and does THE RIGHT THING, whatever it is. Possible values for n are 1 (byte) 2 (short) and 4 (long) Floating numbers are put out as a series of LITTLENUMS (shorts, here at least). */ void md_number_to_chars (buf, val, n) char * buf; valueT val; int n; { if (target_big_endian) number_to_chars_bigendian (buf, val, n); else number_to_chars_littleendian (buf, val, n); } static valueT md_chars_to_number (buf, n) char * buf; int n; { valueT result = 0; unsigned char * where = (unsigned char *) buf; if (target_big_endian) { while (n--) { result <<= 8; result |= (*where++ & 255); } } else { while (n--) { result <<= 8; result |= (where[n] & 255); } } return result; } /* Turn a string in input_line_pointer into a floating point constant of type TYPE, and store the appropriate bytes in *LITP. The number of LITTLENUMS emitted is stored in *SIZEP. An error message is returned, or NULL on OK. Note that fp constants aren't represent in the normal way on the ARM. In big endian mode, things are as expected. However, in little endian mode fp constants are big-endian word-wise, and little-endian byte-wise within the words. For example, (double) 1.1 in big endian mode is the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is the byte sequence 99 99 f1 3f 9a 99 99 99. ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */ char * md_atof (type, litP, sizeP) char type; char * litP; int * sizeP; { int prec; LITTLENUM_TYPE words[MAX_LITTLENUMS]; char *t; int i; switch (type) { case 'f': case 'F': case 's': case 'S': prec = 2; break; case 'd': case 'D': case 'r': case 'R': prec = 4; break; case 'x': case 'X': prec = 6; break; case 'p': case 'P': prec = 6; break; default: *sizeP = 0; return _("Bad call to MD_ATOF()"); } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizeP = prec * 2; if (target_big_endian) { for (i = 0; i < prec; i++) { md_number_to_chars (litP, (valueT) words[i], 2); litP += 2; } } else { /* For a 4 byte float the order of elements in `words' is 1 0. For an 8 byte float the order is 1 0 3 2. */ for (i = 0; i < prec; i += 2) { md_number_to_chars (litP, (valueT) words[i + 1], 2); md_number_to_chars (litP + 2, (valueT) words[i], 2); litP += 4; } } return 0; } /* The knowledge of the PC's pipeline offset is built into the insns themselves. */ long md_pcrel_from (fixP) fixS * fixP; { if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) == undefined_section && fixP->fx_subsy == NULL) return 0; if (fixP->fx_pcrel && (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_ADD)) { /* PC relative addressing on the Thumb is slightly odd as the bottom two bits of the PC are forced to zero for the calculation. */ return (fixP->fx_where + fixP->fx_frag->fr_address) & ~3; } #ifdef TE_WINCE /* The pattern was adjusted to accomodate CE's off-by-one fixups, so we un-adjust here to compensate for the accomodation. */ return fixP->fx_where + fixP->fx_frag->fr_address + 8; #else return fixP->fx_where + fixP->fx_frag->fr_address; #endif } /* Round up a section size to the appropriate boundary. */ valueT md_section_align (segment, size) segT segment ATTRIBUTE_UNUSED; valueT size; { #ifdef OBJ_ELF return size; #else /* Round all sects to multiple of 4. */ return (size + 3) & ~3; #endif } /* Under ELF we need to default _GLOBAL_OFFSET_TABLE. Otherwise we have no need to default values of symbols. */ symbolS * md_undefined_symbol (name) char * name ATTRIBUTE_UNUSED; { #ifdef OBJ_ELF if (name[0] == '_' && name[1] == 'G' && streq (name, GLOBAL_OFFSET_TABLE_NAME)) { if (!GOT_symbol) { if (symbol_find (name)) as_bad ("GOT already in the symbol table"); GOT_symbol = symbol_new (name, undefined_section, (valueT) 0, & zero_address_frag); } return GOT_symbol; } #endif return 0; } /* arm_reg_parse () := if it looks like a register, return its token and advance the pointer. */ static int arm_reg_parse (ccp) register char ** ccp; { char * start = * ccp; char c; char * p; struct reg_entry * reg; #ifdef REGISTER_PREFIX if (*start != REGISTER_PREFIX) return FAIL; p = start + 1; #else p = start; #ifdef OPTIONAL_REGISTER_PREFIX if (*p == OPTIONAL_REGISTER_PREFIX) p++, start++; #endif #endif if (!ISALPHA (*p) || !is_name_beginner (*p)) return FAIL; c = *p++; while (ISALPHA (c) || ISDIGIT (c) || c == '_') c = *p++; *--p = 0; reg = (struct reg_entry *) hash_find (arm_reg_hsh, start); *p = c; if (reg) { *ccp = p; return reg->number; } return FAIL; } void md_apply_fix3 (fixP, valP, seg) fixS * fixP; valueT * valP; segT seg; { offsetT value = * valP; offsetT newval; unsigned int newimm; unsigned long temp; int sign; char * buf = fixP->fx_where + fixP->fx_frag->fr_literal; arm_fix_data * arm_data = (arm_fix_data *) fixP->tc_fix_data; assert (fixP->fx_r_type < BFD_RELOC_UNUSED); /* Note whether this will delete the relocation. */ #if 0 /* Patch from REarnshaw to JDavis (disabled for the moment, since it doesn't work fully.) */ if ((fixP->fx_addsy == 0 || symbol_constant_p (fixP->fx_addsy)) && !fixP->fx_pcrel) #else if (fixP->fx_addsy == 0 && !fixP->fx_pcrel) #endif fixP->fx_done = 1; /* If this symbol is in a different section then we need to leave it for the linker to deal with. Unfortunately, md_pcrel_from can't tell, so we have to undo it's effects here. */ if (fixP->fx_pcrel) { if (fixP->fx_addsy != NULL && S_IS_DEFINED (fixP->fx_addsy) && S_GET_SEGMENT (fixP->fx_addsy) != seg) { if (target_oabi && (fixP->fx_r_type == BFD_RELOC_ARM_PCREL_BRANCH || fixP->fx_r_type == BFD_RELOC_ARM_PCREL_BLX )) value = 0; else value += md_pcrel_from (fixP); } } /* Remember value for emit_reloc. */ fixP->fx_addnumber = value; switch (fixP->fx_r_type) { case BFD_RELOC_ARM_IMMEDIATE: newimm = validate_immediate (value); temp = md_chars_to_number (buf, INSN_SIZE); /* If the instruction will fail, see if we can fix things up by changing the opcode. */ if (newimm == (unsigned int) FAIL && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL) { as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid constant (%lx) after fixup"), (unsigned long) value); break; } newimm |= (temp & 0xfffff000); md_number_to_chars (buf, (valueT) newimm, INSN_SIZE); break; case BFD_RELOC_ARM_ADRL_IMMEDIATE: { unsigned int highpart = 0; unsigned int newinsn = 0xe1a00000; /* nop. */ newimm = validate_immediate (value); temp = md_chars_to_number (buf, INSN_SIZE); /* If the instruction will fail, see if we can fix things up by changing the opcode. */ if (newimm == (unsigned int) FAIL && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL) { /* No ? OK - try using two ADD instructions to generate the value. */ newimm = validate_immediate_twopart (value, & highpart); /* Yes - then make sure that the second instruction is also an add. */ if (newimm != (unsigned int) FAIL) newinsn = temp; /* Still No ? Try using a negated value. */ else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL) temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT; /* Otherwise - give up. */ else { as_bad_where (fixP->fx_file, fixP->fx_line, _("Unable to compute ADRL instructions for PC offset of 0x%lx"), value); break; } /* Replace the first operand in the 2nd instruction (which is the PC) with the destination register. We have already added in the PC in the first instruction and we do not want to do it again. */ newinsn &= ~ 0xf0000; newinsn |= ((newinsn & 0x0f000) << 4); } newimm |= (temp & 0xfffff000); md_number_to_chars (buf, (valueT) newimm, INSN_SIZE); highpart |= (newinsn & 0xfffff000); md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE); } break; case BFD_RELOC_ARM_OFFSET_IMM: sign = value >= 0; if (value < 0) value = - value; if (validate_offset_imm (value, 0) == FAIL) { as_bad_where (fixP->fx_file, fixP->fx_line, _("bad immediate value for offset (%ld)"), (long) value); break; } newval = md_chars_to_number (buf, INSN_SIZE); newval &= 0xff7ff000; newval |= value | (sign ? INDEX_UP : 0); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_OFFSET_IMM8: case BFD_RELOC_ARM_HWLITERAL: sign = value >= 0; if (value < 0) value = - value; if (validate_offset_imm (value, 1) == FAIL) { if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid literal constant: pool needs to be closer")); else as_bad (_("bad immediate value for half-word offset (%ld)"), (long) value); break; } newval = md_chars_to_number (buf, INSN_SIZE); newval &= 0xff7ff0f0; newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_LITERAL: sign = value >= 0; if (value < 0) value = - value; if (validate_offset_imm (value, 0) == FAIL) { as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid literal constant: pool needs to be closer")); break; } newval = md_chars_to_number (buf, INSN_SIZE); newval &= 0xff7ff000; newval |= value | (sign ? INDEX_UP : 0); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_SHIFT_IMM: newval = md_chars_to_number (buf, INSN_SIZE); if (((unsigned long) value) > 32 || (value == 32 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60))) { as_bad_where (fixP->fx_file, fixP->fx_line, _("shift expression is too large")); break; } if (value == 0) /* Shifts of zero must be done as lsl. */ newval &= ~0x60; else if (value == 32) value = 0; newval &= 0xfffff07f; newval |= (value & 0x1f) << 7; md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_SWI: if (arm_data->thumb_mode) { if (((unsigned long) value) > 0xff) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid swi expression")); newval = md_chars_to_number (buf, THUMB_SIZE) & 0xff00; newval |= value; md_number_to_chars (buf, newval, THUMB_SIZE); } else { if (((unsigned long) value) > 0x00ffffff) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid swi expression")); newval = md_chars_to_number (buf, INSN_SIZE) & 0xff000000; newval |= value; md_number_to_chars (buf, newval, INSN_SIZE); } break; case BFD_RELOC_ARM_MULTI: if (((unsigned long) value) > 0xffff) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid expression in load/store multiple")); newval = value | md_chars_to_number (buf, INSN_SIZE); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_PCREL_BRANCH: newval = md_chars_to_number (buf, INSN_SIZE); /* Sign-extend a 24-bit number. */ #define SEXT24(x) ((((x) & 0xffffff) ^ (~ 0x7fffff)) + 0x800000) #ifdef OBJ_ELF if (! target_oabi) value = fixP->fx_offset; #endif /* We are going to store value (shifted right by two) in the instruction, in a 24 bit, signed field. Thus we need to check that none of the top 8 bits of the shifted value (top 7 bits of the unshifted, unsigned value) are set, or that they are all set. */ if ((value & ~ ((offsetT) 0x1ffffff)) != 0 && ((value & ~ ((offsetT) 0x1ffffff)) != ~ ((offsetT) 0x1ffffff))) { #ifdef OBJ_ELF /* Normally we would be stuck at this point, since we cannot store the absolute address that is the destination of the branch in the 24 bits of the branch instruction. If however, we happen to know that the destination of the branch is in the same section as the branch instruciton itself, then we can compute the relocation for ourselves and not have to bother the linker with it. FIXME: The tests for OBJ_ELF and ! target_oabi are only here because I have not worked out how to do this for OBJ_COFF or target_oabi. */ if (! target_oabi && fixP->fx_addsy != NULL && S_IS_DEFINED (fixP->fx_addsy) && S_GET_SEGMENT (fixP->fx_addsy) == seg) { /* Get pc relative value to go into the branch. */ value = * valP; /* Permit a backward branch provided that enough bits are set. Allow a forwards branch, provided that enough bits are clear. */ if ( (value & ~ ((offsetT) 0x1ffffff)) == ~ ((offsetT) 0x1ffffff) || (value & ~ ((offsetT) 0x1ffffff)) == 0) fixP->fx_done = 1; } if (! fixP->fx_done) #endif as_bad_where (fixP->fx_file, fixP->fx_line, _("gas can't handle same-section branch dest >= 0x04000000")); } value >>= 2; value += SEXT24 (newval); if ( (value & ~ ((offsetT) 0xffffff)) != 0 && ((value & ~ ((offsetT) 0xffffff)) != ~ ((offsetT) 0xffffff))) as_bad_where (fixP->fx_file, fixP->fx_line, _("out of range branch")); newval = (value & 0x00ffffff) | (newval & 0xff000000); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_PCREL_BLX: { offsetT hbit; newval = md_chars_to_number (buf, INSN_SIZE); #ifdef OBJ_ELF if (! target_oabi) value = fixP->fx_offset; #endif hbit = (value >> 1) & 1; value = (value >> 2) & 0x00ffffff; value = (value + (newval & 0x00ffffff)) & 0x00ffffff; newval = value | (newval & 0xfe000000) | (hbit << 24); md_number_to_chars (buf, newval, INSN_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */ newval = md_chars_to_number (buf, THUMB_SIZE); { addressT diff = (newval & 0xff) << 1; if (diff & 0x100) diff |= ~0xff; value += diff; if ((value & ~0xff) && ((value & ~0xff) != ~0xff)) as_bad_where (fixP->fx_file, fixP->fx_line, _("Branch out of range")); newval = (newval & 0xff00) | ((value & 0x1ff) >> 1); } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */ newval = md_chars_to_number (buf, THUMB_SIZE); { addressT diff = (newval & 0x7ff) << 1; if (diff & 0x800) diff |= ~0x7ff; value += diff; if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff)) as_bad_where (fixP->fx_file, fixP->fx_line, _("Branch out of range")); newval = (newval & 0xf800) | ((value & 0xfff) >> 1); } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_THUMB_PCREL_BLX: case BFD_RELOC_THUMB_PCREL_BRANCH23: { offsetT newval2; addressT diff; newval = md_chars_to_number (buf, THUMB_SIZE); newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); diff = ((newval & 0x7ff) << 12) | ((newval2 & 0x7ff) << 1); if (diff & 0x400000) diff |= ~0x3fffff; #ifdef OBJ_ELF value = fixP->fx_offset; #endif value += diff; if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff)) as_bad_where (fixP->fx_file, fixP->fx_line, _("Branch with link out of range")); newval = (newval & 0xf800) | ((value & 0x7fffff) >> 12); newval2 = (newval2 & 0xf800) | ((value & 0xfff) >> 1); if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX) /* Remove bit zero of the adjusted offset. Bit zero can only be set if the upper insn is at a half-word boundary, since the destination address, an ARM instruction, must always be on a word boundary. The semantics of the BLX (1) instruction, however, are that bit zero in the offset must always be zero, and the corresponding bit one in the target address will be set from bit one of the source address. */ newval2 &= ~1; md_number_to_chars (buf, newval, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE); } break; case BFD_RELOC_8: if (fixP->fx_done || fixP->fx_pcrel) md_number_to_chars (buf, value, 1); #ifdef OBJ_ELF else if (!target_oabi) { value = fixP->fx_offset; md_number_to_chars (buf, value, 1); } #endif break; case BFD_RELOC_16: if (fixP->fx_done || fixP->fx_pcrel) md_number_to_chars (buf, value, 2); #ifdef OBJ_ELF else if (!target_oabi) { value = fixP->fx_offset; md_number_to_chars (buf, value, 2); } #endif break; #ifdef OBJ_ELF case BFD_RELOC_ARM_GOT32: case BFD_RELOC_ARM_GOTOFF: md_number_to_chars (buf, 0, 4); break; #endif case BFD_RELOC_RVA: case BFD_RELOC_32: if (fixP->fx_done || fixP->fx_pcrel) md_number_to_chars (buf, value, 4); #ifdef OBJ_ELF else if (!target_oabi) { value = fixP->fx_offset; md_number_to_chars (buf, value, 4); } #endif break; #ifdef OBJ_ELF case BFD_RELOC_ARM_PLT32: /* It appears the instruction is fully prepared at this point. */ break; #endif case BFD_RELOC_ARM_GOTPC: md_number_to_chars (buf, value, 4); break; case BFD_RELOC_ARM_CP_OFF_IMM: sign = value >= 0; if (value < -1023 || value > 1023 || (value & 3)) as_bad_where (fixP->fx_file, fixP->fx_line, _("Illegal value for co-processor offset")); if (value < 0) value = -value; newval = md_chars_to_number (buf, INSN_SIZE) & 0xff7fff00; newval |= (value >> 2) | (sign ? INDEX_UP : 0); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_THUMB_OFFSET: newval = md_chars_to_number (buf, THUMB_SIZE); /* Exactly what ranges, and where the offset is inserted depends on the type of instruction, we can establish this from the top 4 bits. */ switch (newval >> 12) { case 4: /* PC load. */ /* Thumb PC loads are somewhat odd, bit 1 of the PC is forced to zero for these loads, so we will need to round up the offset if the instruction address is not word aligned (since the final address produced must be, and we can only describe word-aligned immediate offsets). */ if ((fixP->fx_frag->fr_address + fixP->fx_where + value) & 3) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid offset, target not word aligned (0x%08X)"), (unsigned int) (fixP->fx_frag->fr_address + fixP->fx_where + value)); if ((value + 2) & ~0x3fe) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid offset, value too big (0x%08lX)"), value); /* Round up, since pc will be rounded down. */ newval |= (value + 2) >> 2; break; case 9: /* SP load/store. */ if (value & ~0x3fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid offset, value too big (0x%08lX)"), value); newval |= value >> 2; break; case 6: /* Word load/store. */ if (value & ~0x7c) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid offset, value too big (0x%08lX)"), value); newval |= value << 4; /* 6 - 2. */ break; case 7: /* Byte load/store. */ if (value & ~0x1f) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid offset, value too big (0x%08lX)"), value); newval |= value << 6; break; case 8: /* Halfword load/store. */ if (value & ~0x3e) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid offset, value too big (0x%08lX)"), value); newval |= value << 5; /* 6 - 1. */ break; default: as_bad_where (fixP->fx_file, fixP->fx_line, "Unable to process relocation for thumb opcode: %lx", (unsigned long) newval); break; } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_ADD: /* This is a complicated relocation, since we use it for all of the following immediate relocations: 3bit ADD/SUB 8bit ADD/SUB 9bit ADD/SUB SP word-aligned 10bit ADD PC/SP word-aligned The type of instruction being processed is encoded in the instruction field: 0x8000 SUB 0x00F0 Rd 0x000F Rs */ newval = md_chars_to_number (buf, THUMB_SIZE); { int rd = (newval >> 4) & 0xf; int rs = newval & 0xf; int subtract = newval & 0x8000; if (rd == REG_SP) { if (value & ~0x1fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid immediate for stack address calculation")); newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST; newval |= value >> 2; } else if (rs == REG_PC || rs == REG_SP) { if (subtract || value & ~0x3fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid immediate for address calculation (value = 0x%08lX)"), (unsigned long) value); newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP); newval |= rd << 8; newval |= value >> 2; } else if (rs == rd) { if (value & ~0xff) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid 8bit immediate")); newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8; newval |= (rd << 8) | value; } else { if (value & ~0x7) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid 3bit immediate")); newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3; newval |= rd | (rs << 3) | (value << 6); } } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_IMM: newval = md_chars_to_number (buf, THUMB_SIZE); switch (newval >> 11) { case 0x04: /* 8bit immediate MOV. */ case 0x05: /* 8bit immediate CMP. */ if (value < 0 || value > 255) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid immediate: %ld is too large"), (long) value); newval |= value; break; default: abort (); } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_SHIFT: /* 5bit shift value (0..31). */ if (value < 0 || value > 31) as_bad_where (fixP->fx_file, fixP->fx_line, _("Illegal Thumb shift value: %ld"), (long) value); newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf03f; newval |= value << 6; md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_VTABLE_INHERIT: case BFD_RELOC_VTABLE_ENTRY: fixP->fx_done = 0; return; case BFD_RELOC_NONE: default: as_bad_where (fixP->fx_file, fixP->fx_line, _("Bad relocation fixup type (%d)"), fixP->fx_r_type); } } /* Translate internal representation of relocation info to BFD target format. */ arelent * tc_gen_reloc (section, fixp) asection * section ATTRIBUTE_UNUSED; fixS * fixp; { arelent * reloc; bfd_reloc_code_real_type code; reloc = (arelent *) xmalloc (sizeof (arelent)); reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; /* @@ Why fx_addnumber sometimes and fx_offset other times? */ #ifndef OBJ_ELF if (fixp->fx_pcrel == 0) reloc->addend = fixp->fx_offset; else reloc->addend = fixp->fx_offset = reloc->address; #else /* OBJ_ELF */ reloc->addend = fixp->fx_offset; #endif switch (fixp->fx_r_type) { case BFD_RELOC_8: if (fixp->fx_pcrel) { code = BFD_RELOC_8_PCREL; break; } case BFD_RELOC_16: if (fixp->fx_pcrel) { code = BFD_RELOC_16_PCREL; break; } case BFD_RELOC_32: if (fixp->fx_pcrel) { code = BFD_RELOC_32_PCREL; break; } case BFD_RELOC_ARM_PCREL_BRANCH: case BFD_RELOC_ARM_PCREL_BLX: case BFD_RELOC_RVA: case BFD_RELOC_THUMB_PCREL_BRANCH9: case BFD_RELOC_THUMB_PCREL_BRANCH12: case BFD_RELOC_THUMB_PCREL_BRANCH23: case BFD_RELOC_THUMB_PCREL_BLX: case BFD_RELOC_VTABLE_ENTRY: case BFD_RELOC_VTABLE_INHERIT: code = fixp->fx_r_type; break; case BFD_RELOC_ARM_LITERAL: case BFD_RELOC_ARM_HWLITERAL: /* If this is called then the a literal has been referenced across a section boundary - possibly due to an implicit dump. */ as_bad_where (fixp->fx_file, fixp->fx_line, _("Literal referenced across section boundary (Implicit dump?)")); return NULL; #ifdef OBJ_ELF case BFD_RELOC_ARM_GOT32: case BFD_RELOC_ARM_GOTOFF: case BFD_RELOC_ARM_PLT32: code = fixp->fx_r_type; break; #endif case BFD_RELOC_ARM_IMMEDIATE: as_bad_where (fixp->fx_file, fixp->fx_line, _("Internal_relocation (type %d) not fixed up (IMMEDIATE)"), fixp->fx_r_type); return NULL; case BFD_RELOC_ARM_ADRL_IMMEDIATE: as_bad_where (fixp->fx_file, fixp->fx_line, _("ADRL used for a symbol not defined in the same file")); return NULL; case BFD_RELOC_ARM_OFFSET_IMM: as_bad_where (fixp->fx_file, fixp->fx_line, _("Internal_relocation (type %d) not fixed up (OFFSET_IMM)"), fixp->fx_r_type); return NULL; default: { char * type; switch (fixp->fx_r_type) { case BFD_RELOC_ARM_IMMEDIATE: type = "IMMEDIATE"; break; case BFD_RELOC_ARM_OFFSET_IMM: type = "OFFSET_IMM"; break; case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break; case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break; case BFD_RELOC_ARM_SWI: type = "SWI"; break; case BFD_RELOC_ARM_MULTI: type = "MULTI"; break; case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break; case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break; case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break; case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break; case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break; default: type = _(""); break; } as_bad_where (fixp->fx_file, fixp->fx_line, _("Cannot represent %s relocation in this object file format"), type); return NULL; } } #ifdef OBJ_ELF if (code == BFD_RELOC_32_PCREL && GOT_symbol && fixp->fx_addsy == GOT_symbol) { code = BFD_RELOC_ARM_GOTPC; reloc->addend = fixp->fx_offset = reloc->address; } #endif reloc->howto = bfd_reloc_type_lookup (stdoutput, code); if (reloc->howto == NULL) { as_bad_where (fixp->fx_file, fixp->fx_line, _("Can not represent %s relocation in this object file format"), bfd_get_reloc_code_name (code)); return NULL; } /* HACK: Since arm ELF uses Rel instead of Rela, encode the vtable entry to be used in the relocation's section offset. */ if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY) reloc->address = fixp->fx_offset; return reloc; } int md_estimate_size_before_relax (fragP, segtype) fragS * fragP ATTRIBUTE_UNUSED; segT segtype ATTRIBUTE_UNUSED; { as_fatal (_("md_estimate_size_before_relax\n")); return 1; } static void output_inst PARAMS ((void)) { char * to = NULL; if (inst.error) { as_bad (inst.error); return; } to = frag_more (inst.size); if (thumb_mode && (inst.size > THUMB_SIZE)) { assert (inst.size == (2 * THUMB_SIZE)); md_number_to_chars (to, inst.instruction >> 16, THUMB_SIZE); md_number_to_chars (to + THUMB_SIZE, inst.instruction, THUMB_SIZE); } else if (inst.size > INSN_SIZE) { assert (inst.size == (2 * INSN_SIZE)); md_number_to_chars (to, inst.instruction, INSN_SIZE); md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE); } else md_number_to_chars (to, inst.instruction, inst.size); if (inst.reloc.type != BFD_RELOC_NONE) fix_new_arm (frag_now, to - frag_now->fr_literal, inst.size, & inst.reloc.exp, inst.reloc.pc_rel, inst.reloc.type); #ifdef OBJ_ELF dwarf2_emit_insn (inst.size); #endif } void md_assemble (str) char * str; { char c; char * p; char * q; char * start; /* Align the instruction. This may not be the right thing to do but ... */ #if 0 arm_align (2, 0); #endif listing_prev_line (); /* Defined in listing.h. */ /* Align the previous label if needed. */ if (last_label_seen != NULL) { symbol_set_frag (last_label_seen, frag_now); S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ()); S_SET_SEGMENT (last_label_seen, now_seg); } memset (&inst, '\0', sizeof (inst)); inst.reloc.type = BFD_RELOC_NONE; skip_whitespace (str); /* Scan up to the end of the op-code, which must end in white space or end of string. */ for (start = p = str; *p != '\0'; p++) if (*p == ' ') break; if (p == str) { as_bad (_("No operator -- statement `%s'\n"), str); return; } if (thumb_mode) { const struct thumb_opcode * opcode; c = *p; *p = '\0'; opcode = (const struct thumb_opcode *) hash_find (arm_tops_hsh, str); *p = c; if (opcode) { /* Check that this instruction is supported for this CPU. */ if (thumb_mode == 1 && (opcode->variant & cpu_variant) == 0) { as_bad (_("selected processor does not support this opcode")); return; } inst.instruction = opcode->value; inst.size = opcode->size; (*opcode->parms) (p); output_inst (); return; } } else { const struct asm_opcode * opcode; c = *p; *p = '\0'; opcode = (CONST struct asm_opcode *) hash_find (arm_ops_hsh, str); *p = c; if (opcode) { /* Check that this instruction is supported for this CPU. */ if ((opcode->variant & cpu_variant) == 0) { as_bad (_("selected processor does not support this opcode")); return; } inst.instruction = opcode->value; inst.size = INSN_SIZE; (*opcode->parms) (p); output_inst (); return; } } /* It wasn't an instruction, but it might be a register alias of the form alias .req reg. */ q = p; skip_whitespace (q); c = *p; *p = '\0'; if (*q && !strncmp (q, ".req ", 4)) { int reg; char * copy_of_str; char * r; #ifdef IGNORE_OPCODE_CASE str = original_case_string; #endif copy_of_str = str; q += 4; skip_whitespace (q); for (r = q; *r != '\0'; r++) if (*r == ' ') break; if (r != q) { int regnum; char d = *r; *r = '\0'; regnum = arm_reg_parse (& q); *r = d; reg = arm_reg_parse (& str); if (reg == FAIL) { if (regnum != FAIL) insert_reg_alias (str, regnum); else as_warn (_("register '%s' does not exist\n"), q); } else if (regnum != FAIL) { if (reg != regnum) as_warn (_("ignoring redefinition of register alias '%s'"), copy_of_str); /* Do not warn about redefinitions to the same alias. */ } else as_warn (_("ignoring redefinition of register alias '%s' to non-existant register '%s'"), copy_of_str, q); } else as_warn (_("ignoring incomplete .req pseuso op")); *p = c; return; } *p = c; as_bad (_("bad instruction `%s'"), start); } /* md_parse_option Invocation line includes a switch not recognized by the base assembler. See if it's a processor-specific option. These are: Cpu variants, the arm part is optional: -m[arm]1 Currently not supported. -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor -m[arm]3 Arm 3 processor -m[arm]6[xx], Arm 6 processors -m[arm]7[xx][t][[d]m] Arm 7 processors -m[arm]8[10] Arm 8 processors -m[arm]9[20][tdmi] Arm 9 processors -marm9e Allow Cirrus/DSP instructions -mstrongarm[110[0]] StrongARM processors -mxscale XScale processors -m[arm]v[2345[t[e]]] Arm architectures -mall All (except the ARM1) FP variants: -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions -mfpe-old (No float load/store multiples) -mno-fpu Disable all floating point instructions Run-time endian selection: -EB big endian cpu -EL little endian cpu ARM Procedure Calling Standard: -mapcs-32 32 bit APCS -mapcs-26 26 bit APCS -mapcs-float Pass floats in float regs -mapcs-reentrant Position independent code -mthumb-interwork Code supports Arm/Thumb interworking -matpcs ARM/Thumb Procedure Call Standard -moabi Old ELF ABI */ const char * md_shortopts = "m:k"; struct option md_longopts[] = { #ifdef ARM_BI_ENDIAN #define OPTION_EB (OPTION_MD_BASE + 0) {"EB", no_argument, NULL, OPTION_EB}, #define OPTION_EL (OPTION_MD_BASE + 1) {"EL", no_argument, NULL, OPTION_EL}, #ifdef OBJ_ELF #define OPTION_OABI (OPTION_MD_BASE +2) {"oabi", no_argument, NULL, OPTION_OABI}, #endif #endif {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof (md_longopts); int md_parse_option (c, arg) int c; char * arg; { char * str = arg; switch (c) { #ifdef ARM_BI_ENDIAN case OPTION_EB: target_big_endian = 1; break; case OPTION_EL: target_big_endian = 0; break; #endif case 'm': switch (*str) { case 'f': if (streq (str, "fpa10") || streq (str, "fpa11")) cpu_variant = (cpu_variant & ~FPU_ANY) | FPU_ARCH_FPA; else if (streq (str, "fpe-old")) cpu_variant = (cpu_variant & ~FPU_ANY) | FPU_ARCH_FPE; else goto bad; break; case 'n': if (streq (str, "no-fpu")) cpu_variant &= ~FPU_ANY; break; #ifdef OBJ_ELF case 'o': if (streq (str, "oabi")) target_oabi = true; break; #endif case 't': /* Limit assembler to generating only Thumb instructions: */ if (streq (str, "thumb")) { cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_EXT_V4T; cpu_variant = (cpu_variant & ~FPU_ANY) | FPU_NONE; thumb_mode = 1; } else if (streq (str, "thumb-interwork")) { if ((cpu_variant & ARM_EXT_V4T) == 0) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_ARCH_V4T; #if defined OBJ_COFF || defined OBJ_ELF support_interwork = true; #endif } else goto bad; break; default: if (streq (str, "all")) { cpu_variant = ARM_ALL | FPU_DEFAULT; return 1; } #if defined OBJ_COFF || defined OBJ_ELF if (! strncmp (str, "apcs-", 5)) { /* GCC passes on all command line options starting "-mapcs-..." to us, so we must parse them here. */ str += 5; if (streq (str, "32")) { uses_apcs_26 = false; return 1; } else if (streq (str, "26")) { uses_apcs_26 = true; return 1; } else if (streq (str, "frame")) { /* Stack frames are being generated - does not affect linkage of code. */ return 1; } else if (streq (str, "stack-check")) { /* Stack checking is being performed - does not affect linkage, but does require that the functions __rt_stkovf_split_small and __rt_stkovf_split_big be present in the final link. */ return 1; } else if (streq (str, "float")) { /* Floating point arguments are being passed in the floating point registers. This does affect linking, since this version of the APCS is incompatible with the version that passes floating points in the integer registers. */ uses_apcs_float = true; return 1; } else if (streq (str, "reentrant")) { /* Reentrant code has been generated. This does affect linking, since there is no point in linking reentrant/ position independent code with absolute position code. */ pic_code = true; return 1; } as_bad (_("Unrecognised APCS switch -m%s"), arg); return 0; } if (! strcmp (str, "atpcs")) { atpcs = true; return 1; } #endif /* Strip off optional "arm". */ if (! strncmp (str, "arm", 3)) str += 3; switch (*str) { case '1': if (streq (str, "1")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_1; else goto bad; break; case '2': if (streq (str, "2")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_2; else if (streq (str, "250")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_250; else goto bad; break; case '3': if (streq (str, "3")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_3; else goto bad; break; case '6': switch (strtol (str, NULL, 10)) { case 6: case 60: case 600: case 610: case 620: cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_6; break; default: goto bad; } break; case '7': /* Eat the processor name. */ switch (strtol (str, & str, 10)) { case 7: case 70: case 700: case 710: case 720: case 7100: case 7500: break; default: goto bad; } cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_7; for (; *str; str++) { switch (*str) { case 't': cpu_variant |= ARM_ARCH_V4T; break; case 'm': cpu_variant |= ARM_EXT_V3M; break; case 'f': /* fe => fp enabled cpu. */ if (str[1] == 'e') ++ str; else goto bad; case 'c': /* Left over from 710c processor name. */ case 'd': /* Debug. */ case 'i': /* Embedded ICE. */ /* Included for completeness in ARM processor naming. */ break; default: goto bad; } } break; case '8': if (streq (str, "8") || streq (str, "810")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_8 | ARM_ARCH_V4; else goto bad; break; case '9': if (streq (str, "9")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_9 | ARM_ARCH_V4T; else if (streq (str, "920")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_9 | ARM_ARCH_V4; else if (streq (str, "920t")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_9 | ARM_ARCH_V4T; else if (streq (str, "9tdmi")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_9 | ARM_ARCH_V4T; else if (streq (str, "9e")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_9 | ARM_ARCH_V4T | ARM_EXT_MAVERICK; else goto bad; break; case 's': if (streq (str, "strongarm") || streq (str, "strongarm110") || streq (str, "strongarm1100")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_8 | ARM_ARCH_V4; else goto bad; break; case 'x': if (streq (str, "xscale")) cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_9 | ARM_ARCH_XSCALE; else goto bad; break; case 'v': /* Select variant based on architecture rather than processor. */ switch (*++str) { case '2': switch (*++str) { case 'a': cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_3; break; case 0: cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_2; break; default: as_bad (_("Invalid architecture variant -m%s"), arg); break; } break; case '3': cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_7; switch (*++str) { case 'm': cpu_variant |= ARM_EXT_V3M; break; case 0: break; default: as_bad (_("Invalid architecture variant -m%s"), arg); break; } break; case '4': cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_7 | ARM_ARCH_V4; switch (*++str) { case 't': cpu_variant |= ARM_EXT_V4T; break; case 0: break; default: as_bad (_("Invalid architecture variant -m%s"), arg); break; } break; case '5': cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_9 | ARM_ARCH_V5; switch (*++str) { case 't': cpu_variant |= ARM_EXT_V4T; break; case 'e': cpu_variant |= ARM_EXT_V5E; break; case 0: break; default: as_bad (_("Invalid architecture variant -m%s"), arg); break; } break; default: as_bad (_("Invalid architecture variant -m%s"), arg); break; } break; default: bad: as_bad (_("Invalid processor variant -m%s"), arg); return 0; } } break; #if defined OBJ_ELF || defined OBJ_COFF case 'k': pic_code = 1; break; #endif default: return 0; } return 1; } void md_show_usage (fp) FILE * fp; { fprintf (fp, _("\ ARM Specific Assembler Options:\n\ -m[arm][] select processor variant\n\ -m[arm]v[2|2a|3|3m|4|4t|5[t][e]] select architecture variant\n\ -marm9e allow Cirrus/DSP instructions\n\ -mthumb only allow Thumb instructions\n\ -mthumb-interwork mark the assembled code as supporting interworking\n\ -mall allow any instruction\n\ -mfpa10, -mfpa11 select floating point architecture\n\ -mfpe-old don't allow floating-point multiple instructions\n\ -mno-fpu don't allow any floating-point instructions.\n\ -k generate PIC code.\n")); #if defined OBJ_COFF || defined OBJ_ELF fprintf (fp, _("\ -mapcs-32, -mapcs-26 specify which ARM Procedure Calling Standard to use\n\ -matpcs use ARM/Thumb Procedure Calling Standard\n\ -mapcs-float floating point args are passed in FP regs\n\ -mapcs-reentrant the code is position independent/reentrant\n")); #endif #ifdef OBJ_ELF fprintf (fp, _("\ -moabi support the old ELF ABI\n")); #endif #ifdef ARM_BI_ENDIAN fprintf (fp, _("\ -EB assemble code for a big endian cpu\n\ -EL assemble code for a little endian cpu\n")); #endif } /* We need to be able to fix up arbitrary expressions in some statements. This is so that we can handle symbols that are an arbitrary distance from the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask), which returns part of an address in a form which will be valid for a data instruction. We do this by pushing the expression into a symbol in the expr_section, and creating a fix for that. */ static void fix_new_arm (frag, where, size, exp, pc_rel, reloc) fragS * frag; int where; short int size; expressionS * exp; int pc_rel; int reloc; { fixS * new_fix; arm_fix_data * arm_data; switch (exp->X_op) { case O_constant: case O_symbol: case O_add: case O_subtract: new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc); break; default: new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0, pc_rel, reloc); break; } /* Mark whether the fix is to a THUMB instruction, or an ARM instruction. */ arm_data = (arm_fix_data *) obstack_alloc (& notes, sizeof (arm_fix_data)); new_fix->tc_fix_data = (PTR) arm_data; arm_data->thumb_mode = thumb_mode; return; } /* This fix_new is called by cons via TC_CONS_FIX_NEW. */ void cons_fix_new_arm (frag, where, size, exp) fragS * frag; int where; int size; expressionS * exp; { bfd_reloc_code_real_type type; int pcrel = 0; /* Pick a reloc. FIXME: @@ Should look at CPU word size. */ switch (size) { case 1: type = BFD_RELOC_8; break; case 2: type = BFD_RELOC_16; break; case 4: default: type = BFD_RELOC_32; break; case 8: type = BFD_RELOC_64; break; } fix_new_exp (frag, where, (int) size, exp, pcrel, type); } /* A good place to do this, although this was probably not intended for this kind of use. We need to dump the literal pool before references are made to a null symbol pointer. */ void arm_cleanup () { if (current_poolP == NULL) return; /* Put it at the end of text section. */ subseg_set (text_section, 0); s_ltorg (0); listing_prev_line (); } void arm_start_line_hook () { last_label_seen = NULL; } void arm_frob_label (sym) symbolS * sym; { last_label_seen = sym; ARM_SET_THUMB (sym, thumb_mode); #if defined OBJ_COFF || defined OBJ_ELF ARM_SET_INTERWORK (sym, support_interwork); #endif /* Note - do not allow local symbols (.Lxxx) to be labeled as Thumb functions. This is because these labels, whilst they exist inside Thumb code, are not the entry points for possible ARM->Thumb calls. Also, these labels can be used as part of a computed goto or switch statement. eg gcc can generate code that looks like this: ldr r2, [pc, .Laaa] lsl r3, r3, #2 ldr r2, [r3, r2] mov pc, r2 .Lbbb: .word .Lxxx .Lccc: .word .Lyyy ..etc... .Laaa: .word Lbbb The first instruction loads the address of the jump table. The second instruction converts a table index into a byte offset. The third instruction gets the jump address out of the table. The fourth instruction performs the jump. If the address stored at .Laaa is that of a symbol which has the Thumb_Func bit set, then the linker will arrange for this address to have the bottom bit set, which in turn would mean that the address computation performed by the third instruction would end up with the bottom bit set. Since the ARM is capable of unaligned word loads, the instruction would then load the incorrect address out of the jump table, and chaos would ensue. */ if (label_is_thumb_function_name && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L') && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0) { /* When the address of a Thumb function is taken the bottom bit of that address should be set. This will allow interworking between Arm and Thumb functions to work correctly. */ THUMB_SET_FUNC (sym, 1); label_is_thumb_function_name = false; } } /* Adjust the symbol table. This marks Thumb symbols as distinct from ARM ones. */ void arm_adjust_symtab () { #ifdef OBJ_COFF symbolS * sym; for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym)) { if (ARM_IS_THUMB (sym)) { if (THUMB_IS_FUNC (sym)) { /* Mark the symbol as a Thumb function. */ if ( S_GET_STORAGE_CLASS (sym) == C_STAT || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */ S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC); else if (S_GET_STORAGE_CLASS (sym) == C_EXT) S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC); else as_bad (_("%s: unexpected function type: %d"), S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym)); } else switch (S_GET_STORAGE_CLASS (sym)) { case C_EXT: S_SET_STORAGE_CLASS (sym, C_THUMBEXT); break; case C_STAT: S_SET_STORAGE_CLASS (sym, C_THUMBSTAT); break; case C_LABEL: S_SET_STORAGE_CLASS (sym, C_THUMBLABEL); break; default: /* Do nothing. */ break; } } if (ARM_IS_INTERWORK (sym)) coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF; } #endif #ifdef OBJ_ELF symbolS * sym; char bind; for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym)) { if (ARM_IS_THUMB (sym)) { elf_symbol_type * elf_sym; elf_sym = elf_symbol (symbol_get_bfdsym (sym)); bind = ELF_ST_BIND (elf_sym); /* If it's a .thumb_func, declare it as so, otherwise tag label as .code 16. */ if (THUMB_IS_FUNC (sym)) elf_sym->internal_elf_sym.st_info = ELF_ST_INFO (bind, STT_ARM_TFUNC); else elf_sym->internal_elf_sym.st_info = ELF_ST_INFO (bind, STT_ARM_16BIT); } } #endif } int arm_data_in_code () { if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5)) { *input_line_pointer = '/'; input_line_pointer += 5; *input_line_pointer = 0; return 1; } return 0; } char * arm_canonicalize_symbol_name (name) char * name; { int len; if (thumb_mode && (len = strlen (name)) > 5 && streq (name + len - 5, "/data")) *(name + len - 5) = 0; return name; } boolean arm_validate_fix (fixP) fixS * fixP; { /* If the destination of the branch is a defined symbol which does not have the THUMB_FUNC attribute, then we must be calling a function which has the (interfacearm) attribute. We look for the Thumb entry point to that function and change the branch to refer to that function instead. */ if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23 && fixP->fx_addsy != NULL && S_IS_DEFINED (fixP->fx_addsy) && ! THUMB_IS_FUNC (fixP->fx_addsy)) { fixP->fx_addsy = find_real_start (fixP->fx_addsy); return true; } return false; } #ifdef OBJ_COFF /* This is a little hack to help the gas/arm/adrl.s test. It prevents local labels from being added to the output symbol table when they are used with the ADRL pseudo op. The ADRL relocation should always be resolved before the binbary is emitted, so it is safe to say that it is adjustable. */ boolean arm_fix_adjustable (fixP) fixS * fixP; { if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE) return 1; return 0; } #endif #ifdef OBJ_ELF /* Relocations against Thumb function names must be left unadjusted, so that the linker can use this information to correctly set the bottom bit of their addresses. The MIPS version of this function also prevents relocations that are mips-16 specific, but I do not know why it does this. FIXME: There is one other problem that ought to be addressed here, but which currently is not: Taking the address of a label (rather than a function) and then later jumping to that address. Such addresses also ought to have their bottom bit set (assuming that they reside in Thumb code), but at the moment they will not. */ boolean arm_fix_adjustable (fixP) fixS * fixP; { if (fixP->fx_addsy == NULL) return 1; /* Prevent all adjustments to global symbols. */ if (S_IS_EXTERN (fixP->fx_addsy)) return 0; if (S_IS_WEAK (fixP->fx_addsy)) return 0; if (THUMB_IS_FUNC (fixP->fx_addsy) && fixP->fx_subsy == NULL) return 0; /* We need the symbol name for the VTABLE entries. */ if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY) return 0; return 1; } const char * elf32_arm_target_format () { if (target_big_endian) { if (target_oabi) return "elf32-bigarm-oabi"; else return "elf32-bigarm"; } else { if (target_oabi) return "elf32-littlearm-oabi"; else return "elf32-littlearm"; } } void armelf_frob_symbol (symp, puntp) symbolS * symp; int * puntp; { elf_frob_symbol (symp, puntp); } int arm_force_relocation (fixp) struct fix * fixp; { if ( fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY || fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BRANCH || fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BLX || fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX || fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23) return 1; return 0; } static bfd_reloc_code_real_type arm_parse_reloc () { char id [16]; char * ip; unsigned int i; static struct { char * str; int len; bfd_reloc_code_real_type reloc; } reloc_map[] = { #define MAP(str,reloc) { str, sizeof (str) - 1, reloc } MAP ("(got)", BFD_RELOC_ARM_GOT32), MAP ("(gotoff)", BFD_RELOC_ARM_GOTOFF), /* ScottB: Jan 30, 1998 - Added support for parsing "var(PLT)" branch instructions generated by GCC for PLT relocs. */ MAP ("(plt)", BFD_RELOC_ARM_PLT32), { NULL, 0, BFD_RELOC_UNUSED } #undef MAP }; for (i = 0, ip = input_line_pointer; i < sizeof (id) && (ISALNUM (*ip) || ISPUNCT (*ip)); i++, ip++) id[i] = TOLOWER (*ip); for (i = 0; reloc_map[i].str; i++) if (strncmp (id, reloc_map[i].str, reloc_map[i].len) == 0) break; input_line_pointer += reloc_map[i].len; return reloc_map[i].reloc; } static void s_arm_elf_cons (nbytes) int nbytes; { expressionS exp; #ifdef md_flush_pending_output md_flush_pending_output (); #endif if (is_it_end_of_statement ()) { demand_empty_rest_of_line (); return; } #ifdef md_cons_align md_cons_align (nbytes); #endif do { bfd_reloc_code_real_type reloc; expression (& exp); if (exp.X_op == O_symbol && * input_line_pointer == '(' && (reloc = arm_parse_reloc ()) != BFD_RELOC_UNUSED) { reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc); int size = bfd_get_reloc_size (howto); if (size > nbytes) as_bad ("%s relocations do not fit in %d bytes", howto->name, nbytes); else { register char *p = frag_more ((int) nbytes); int offset = nbytes - size; fix_new_exp (frag_now, p - frag_now->fr_literal + offset, size, &exp, 0, reloc); } } else emit_expr (&exp, (unsigned int) nbytes); } while (*input_line_pointer++ == ','); /* Put terminator back into stream. */ input_line_pointer --; demand_empty_rest_of_line (); } #endif /* OBJ_ELF */ /* This is called from HANDLE_ALIGN in write.c. Fill in the contents of an rs_align_code fragment. */ void arm_handle_align (fragP) fragS *fragP; { static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 }; static char const thumb_noop[2] = { 0xc0, 0x46 }; static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 }; static char const thumb_bigend_noop[2] = { 0x46, 0xc0 }; int bytes, fix, noop_size; char * p; const char * noop; if (fragP->fr_type != rs_align_code) return; bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix; p = fragP->fr_literal + fragP->fr_fix; fix = 0; if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE) bytes &= MAX_MEM_FOR_RS_ALIGN_CODE; if (fragP->tc_frag_data) { if (target_big_endian) noop = thumb_bigend_noop; else noop = thumb_noop; noop_size = sizeof (thumb_noop); } else { if (target_big_endian) noop = arm_bigend_noop; else noop = arm_noop; noop_size = sizeof (arm_noop); } if (bytes & (noop_size - 1)) { fix = bytes & (noop_size - 1); memset (p, 0, fix); p += fix; bytes -= fix; } while (bytes >= noop_size) { memcpy (p, noop, noop_size); p += noop_size; bytes -= noop_size; fix += noop_size; } fragP->fr_fix += fix; fragP->fr_var = noop_size; } /* Called from md_do_align. Used to create an alignment frag in a code section. */ void arm_frag_align_code (n, max) int n; int max; { char * p; /* We assume that there will never be a requirment to support alignments greater than 32 bytes. */ if (max > MAX_MEM_FOR_RS_ALIGN_CODE) as_fatal (_("alignments greater than 32 bytes not supported in .text sections.")); p = frag_var (rs_align_code, MAX_MEM_FOR_RS_ALIGN_CODE, 1, (relax_substateT) max, (symbolS *) NULL, (offsetT) n, (char *) NULL); *p = 0; } /* Perform target specific initialisation of a frag. */ void arm_init_frag (fragP) fragS *fragP; { /* Record whether this frag is in an ARM or a THUMB area. */ fragP->tc_frag_data = thumb_mode; }