/* tc-alpha.c - Processor-specific code for the DEC Alpha CPU. Copyright (C) 1989, 1993, 1994 Free Software Foundation, Inc. Contributed by Carnegie Mellon University, 1993. Written by Alessandro Forin, based on earlier gas-1.38 target CPU files. Modified by Ken Raeburn for gas-2.x and ECOFF support. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * Mach Operating System * Copyright (c) 1993 Carnegie Mellon University * All Rights Reserved. * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * HISTORY * 5-Oct-93 Alessandro Forin (af) at Carnegie-Mellon University * First Checkin * * Author: Alessandro Forin, Carnegie Mellon University * Date: Jan 1993 */ #include #include "as.h" #include "alpha-opcode.h" #include "subsegs.h" /* @@ Will a simple 0x8000 work here? If not, why not? */ #define GP_ADJUSTMENT (0x8000 - 0x10) /* Which machine type is this? Currently stores an integer for the model, one of: 21064, 21066, 21164. */ static unsigned long machine; /* These are exported to relaxing code, even though we don't do any relaxing on this processor currently. */ const relax_typeS md_relax_table[1]; int md_short_jump_size = 4; int md_long_jump_size = 4; /* handle of the OPCODE hash table */ static struct hash_control *op_hash; /* Sections and symbols we'll want to keep track of. */ static segT lita_sec, rdata, sdata, lit8_sec, lit4_sec; static symbolS *lit8_sym, *lit4_sym; /* Setting for ".set [no]{at,macro}". */ static int at_ok = 1, macro_ok = 1; /* Keep track of global pointer. */ valueT alpha_gp_value; static symbolS *gp; /* We'll probably be using this relocation frequently, and we will want to compare for it. */ static const reloc_howto_type *gpdisp_hi16_howto; /* These are exported to ECOFF code. */ unsigned long alpha_gprmask, alpha_fprmask; /* Used for LITUSE relocations. */ static expressionS lituse_basereg, lituse_byteoff, lituse_jsr; /* Address size: In OSF/1 1.3, an undocumented "-32addr" option will cause all addresses to be treated as 32-bit values in memory. (The in-register versions are all sign-extended to 64 bits, of course.) Some other systems may want this option too. */ static int addr32; /* Imported functions -- they should be defined in header files somewhere. */ extern segT subseg_get (); extern PTR bfd_alloc_by_size_t (); extern void s_globl (), s_long (), s_short (), s_space (), cons (), s_text (), s_data (), float_cons (); /* Static functions, needing forward declarations. */ static void s_base (), s_proc (), s_alpha_set (); static void s_gprel32 (), s_rdata (), s_sdata (), s_alpha_comm (); static int alpha_ip (); static void emit_unaligned_io PARAMS ((char *, int, valueT, int)); static void emit_load_unal PARAMS ((int, valueT, int)); static void emit_store_unal PARAMS ((int, valueT, int)); static void emit_byte_manip_r PARAMS ((char *, int, int, int, int, int)); static void emit_extract_r PARAMS ((int, int, int, int, int)); static void emit_insert_r PARAMS ((int, int, int, int, int)); static void emit_mask_r PARAMS ((int, int, int, int, int)); static void emit_sign_extend PARAMS ((int, int)); static void emit_bis_r PARAMS ((int, int, int)); static int build_mem PARAMS ((int, int, int, bfd_signed_vma)); static int build_operate_n PARAMS ((int, int, int, int, int)); static void emit_sll_n PARAMS ((int, int, int)); static void emit_ldah_num PARAMS ((int, bfd_vma, int)); static void emit_addq_r PARAMS ((int, int, int)); static void emit_lda_n PARAMS ((int, bfd_vma, int)); static void emit_add64 PARAMS ((int, int, bfd_vma)); static int in_range PARAMS ((bfd_vma, int, int)); const pseudo_typeS md_pseudo_table[] = { {"common", s_comm, 0}, /* is this used? */ {"comm", s_alpha_comm, 0}, /* osf1 compiler does this */ {"rdata", s_rdata, 0}, {"sdata", s_sdata, 0}, {"gprel32", s_gprel32, 0}, {"t_floating", float_cons, 'd'}, {"s_floating", float_cons, 'f'}, {"f_floating", float_cons, 'F'}, {"g_floating", float_cons, 'G'}, {"d_floating", float_cons, 'D'}, {"proc", s_proc, 0}, {"aproc", s_proc, 1}, {"set", s_alpha_set, 0}, {"reguse", s_ignore, 0}, {"livereg", s_ignore, 0}, {"extern", s_ignore, 0}, /*??*/ {"base", s_base, 0}, /*??*/ {"option", s_ignore, 0}, {"prologue", s_ignore, 0}, {"aent", s_ignore, 0}, {"ugen", s_ignore, 0}, /* We don't do any optimizing, so we can safely ignore these. */ {"noalias", s_ignore, 0}, {"alias", s_ignore, 0}, {NULL, 0, 0}, }; #define SA 21 /* shift for register Ra */ #define SB 16 /* shift for register Rb */ #define SC 0 /* shift for register Rc */ #define SN 13 /* shift for 8 bit immediate # */ #define T9 23 #define T10 24 #define T11 25 #define T12 26 #define RA 26 /* note: same as T12 */ #define PV 27 #define AT 28 #define GP 29 #define SP 30 #define ZERO 31 #define OPCODE(X) (((X) >> 26) & 0x3f) #define OP_FCN(X) (((X) >> 5) & 0x7f) #ifndef FIRST_32BIT_QUADRANT #define FIRST_32BIT_QUADRANT 0 #endif int first_32bit_quadrant = FIRST_32BIT_QUADRANT; int base_register = FIRST_32BIT_QUADRANT ? ZERO : GP; int no_mixed_code = 0; int nofloats = 0; /* This array holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful */ const char comment_chars[] = "#"; /* This array holds the chars that only start a comment at the beginning of a line. If the line seems to have the form '# 123 filename' .line and .file directives will appear in the pre-processed output */ /* Note that input_file.c hand checks for '#' at the beginning of the first line of the input file. This is because the compiler outputs #NO_APP at the beginning of its output. */ /* Also note that C style comments are always recognized. */ const char line_comment_chars[] = "#!"; /* Chars that can be used to separate mant from exp in floating point nums */ const char EXP_CHARS[] = "eE"; const char line_separator_chars[1]; /* Chars that mean this number is a floating point constant, as in "0f12.456" or "0d1.2345e12". */ /* @@ Do all of these really get used on the alpha?? */ char FLT_CHARS[] = "rRsSfFdDxXpP"; /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be changed in read.c. Ideally it shouldn't have to know about it at all, but nothing is ideal around here. */ struct reloc_data { expressionS exp; int pcrel; bfd_reloc_code_real_type code; }; /* Occasionally, two relocations will be desired for one address. Mainly only in cases like "jsr $r,foo" where we want both a LITUSE and a HINT reloc. */ #define MAX_RELOCS 2 struct alpha_it { unsigned long opcode; /* need at least 32 bits */ struct reloc_data reloc[MAX_RELOCS]; }; static void getExpression (char *str, struct alpha_it *insn); static char *expr_end; #define note_gpreg(R) (alpha_gprmask |= (1 << (R))) #define note_fpreg(R) (alpha_fprmask |= (1 << (R))) int tc_get_register (frame) int frame; { int framereg = SP; SKIP_WHITESPACE (); if (*input_line_pointer == '$') { input_line_pointer++; if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p') { input_line_pointer += 2; framereg = SP; } else framereg = get_absolute_expression (); framereg &= 31; /* ? */ } else as_warn ("frame reg expected, using $%d.", framereg); note_gpreg (framereg); return framereg; } static void s_rdata (ignore) int ignore; { int temp; temp = get_absolute_expression (); #if 0 if (!rdata) rdata = subseg_get (".rdata", 0); subseg_set (rdata, (subsegT) temp); #else rdata = subseg_new (".rdata", 0); #endif demand_empty_rest_of_line (); } static void s_sdata (ignore) int ignore; { int temp; temp = get_absolute_expression (); #if 0 if (!sdata) sdata = subseg_get (".sdata", 0); subseg_set (sdata, (subsegT) temp); #else sdata = subseg_new (".sdata", 0); #endif demand_empty_rest_of_line (); } static void s_alpha_comm (ignore) int ignore; { register char *name; register char c; register char *p; offsetT temp; register symbolS *symbolP; name = input_line_pointer; c = get_symbol_end (); /* just after name is now '\0' */ p = input_line_pointer; *p = c; SKIP_WHITESPACE (); /* Alpha OSF/1 compiler doesn't provide the comma, gcc does. */ if (*input_line_pointer == ',') { input_line_pointer++; SKIP_WHITESPACE (); } if ((temp = get_absolute_expression ()) < 0) { as_warn (".COMMon length (%ld.) <0! Ignored.", (long) temp); ignore_rest_of_line (); return; } *p = 0; symbolP = symbol_find_or_make (name); *p = c; if (S_IS_DEFINED (symbolP)) { as_bad ("Ignoring attempt to re-define symbol"); ignore_rest_of_line (); return; } if (S_GET_VALUE (symbolP)) { if (S_GET_VALUE (symbolP) != (valueT) temp) as_bad ("Length of .comm \"%s\" is already %ld. Not changed to %ld.", S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), (long) temp); } else { S_SET_VALUE (symbolP, (valueT) temp); S_SET_EXTERNAL (symbolP); } know (symbolP->sy_frag == &zero_address_frag); demand_empty_rest_of_line (); } arelent * tc_gen_reloc (sec, fixp) asection *sec; fixS *fixp; { arelent *reloc; reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent)); reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym; reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; if (fixp->fx_r_type > BFD_RELOC_UNUSED) abort (); if (fixp->fx_r_type == BFD_RELOC_ALPHA_GPDISP_HI16) { if (!gpdisp_hi16_howto) gpdisp_hi16_howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); reloc->howto = gpdisp_hi16_howto; } else reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); assert (reloc->howto != 0); if (!fixp->fx_pcrel != !reloc->howto->pc_relative) { as_fatal ("internal error? cannot generate `%s' relocation", bfd_get_reloc_code_name (fixp->fx_r_type)); } assert (!fixp->fx_pcrel == !reloc->howto->pc_relative); if (fixp->fx_r_type == BFD_RELOC_ALPHA_LITERAL) { /* fake out bfd_perform_relocation. sigh */ reloc->addend = -alpha_gp_value; } else if (reloc->howto->pc_relative && reloc->howto->pcrel_offset) { reloc->addend = fixp->fx_offset - reloc->address; } else reloc->addend = fixp->fx_offset; return reloc; } static void s_base () { if (first_32bit_quadrant) { /* not fatal, but it might not work in the end */ as_warn ("File overrides no-base-register option."); first_32bit_quadrant = 0; } SKIP_WHITESPACE (); if (*input_line_pointer == '$') { /* $rNN form */ input_line_pointer++; if (*input_line_pointer == 'r') input_line_pointer++; } base_register = get_absolute_expression (); if (base_register < 0 || base_register > 31) { base_register = GP; as_warn ("Bad base register, using $%d.", base_register); } demand_empty_rest_of_line (); } static int in_range (val, nbits, unsignedness) bfd_vma val; int nbits, unsignedness; { /* Look at top bit of value that would be stored, figure out how it would be extended by the hardware, and see if that matches the original supplied value. */ bfd_vma mask; bfd_vma one = 1; bfd_vma top_bit, stored_value, missing_bits; mask = (one << nbits) - 1; stored_value = val & mask; top_bit = stored_value & (one << nbits - 1); missing_bits = val & ~mask; if (unsignedness) { return missing_bits == 0; } else { /* will sign-extend */ if (top_bit) { /* all remaining bits beyond mask should be one */ missing_bits |= mask; return missing_bits + 1 == 0; } else { /* all other bits should be zero */ return missing_bits == 0; } } } static void s_gprel32 () { expressionS e; char *p; SKIP_WHITESPACE (); expression (&e); switch (e.X_op) { case O_constant: e.X_add_symbol = section_symbol (absolute_section); /* fall through */ case O_symbol: e.X_op = O_subtract; e.X_op_symbol = gp; break; default: abort (); } p = frag_more (4); memset (p, 0, 4); fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &e, 0, BFD_RELOC_GPREL32); } static void create_literal_section (secp, name) segT *secp; const char *name; { segT current_section = now_seg; int current_subsec = now_subseg; segT new_sec; *secp = new_sec = subseg_new (name, 0); subseg_set (current_section, current_subsec); bfd_set_section_alignment (stdoutput, new_sec, 3); bfd_set_section_flags (stdoutput, new_sec, SEC_RELOC | SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA); } #define create_lita_section() create_literal_section (&lita_sec, ".lita") static valueT get_lit8_offset (val) bfd_vma val; { valueT retval; if (lit8_sec == 0) { create_literal_section (&lit8_sec, ".lit8"); lit8_sym = section_symbol (lit8_sec); } retval = add_to_literal_pool ((symbolS *) 0, val, lit8_sec, 8); if (retval >= 0xfff0) as_fatal ("overflow in fp literal (.lit8) table"); return retval; } static valueT get_lit4_offset (val) bfd_vma val; { valueT retval; if (lit4_sec == 0) { create_literal_section (&lit4_sec, ".lit4"); lit4_sym = section_symbol (lit4_sec); } retval = add_to_literal_pool ((symbolS *) 0, val, lit4_sec, 4); if (retval >= 0xfff0) as_fatal ("overflow in fp literal (.lit4) table"); return retval; } #define load_insn(NAME, OP) (hash_insert (op_hash, (NAME), (PTR) (OP))) static void load_insn_table (ops, size) struct alpha_opcode *ops; int size; { struct alpha_opcode *end = ops + size; struct alpha_opcode *op; const char *name; for (op = ops; op < end; ) { const char *retval; name = op->name; retval = load_insn (op->name, op); if (retval) as_fatal ("internal error: can't hash opcode `%s': %s", op->name, retval); do op++; while (op < end && (op->name == name || !strcmp (op->name, name))); } /* Some opcodes include modifiers of various sorts with a "/mod" syntax, like the architecture documentation suggests. However, for use with gcc at least, we also need to access those same opcodes without the "/". */ for (op = ops; op < end; ) { name = op->name; if (strchr (name, '/')) { char *name2, *p; const char *q; name2 = xmalloc (strlen (name)); p = name2; q = name; while (*q) if (*q == '/') q++; else *p++ = *q++; *p = 0; /* Ignore failures -- the opcode table does duplicate some variants in different forms, like "hw_stq" and "hw_st/q". Maybe the variants can be eliminated, and this error checking restored. */ load_insn (name2, op); } do op++; while (op < end && (op->name == name || !strcmp (op->name, name))); } } static struct alpha_it clear_insn; /* This function is called once, at assembler startup time. It should set up all the tables, etc. that the MD part of the assembler will need, that can be determined before arguments are parsed. */ void md_begin () { int i; op_hash = hash_new (); load_insn_table (alpha_opcodes, NUMOPCODES); /* Default to 21064 PAL instructions. */ if (machine == 0) machine = 21064; switch (machine) { case 21064: case 21066: load_insn_table (alpha_pal21064_opcodes, NUM21064OPCODES); break; case 21164: load_insn_table (alpha_pal21164_opcodes, NUM21164OPCODES); break; default: as_fatal ("palcode set unknown (internal error)"); } lituse_basereg.X_op = O_constant; lituse_basereg.X_add_number = 1; lituse_byteoff.X_op = O_constant; lituse_byteoff.X_add_number = 2; lituse_jsr.X_op = O_constant; lituse_jsr.X_add_number = 3; /* So .sbss will get used for tiny objects. */ bfd_set_gp_size (stdoutput, 8); create_lita_section (); /* For handling the GP, create a symbol that won't be output in the symbol table. We'll edit it out of relocs later. */ gp = symbol_create ("", lita_sec, 0x8000, &zero_address_frag); memset (&clear_insn, 0, sizeof (clear_insn)); for (i = 0; i < MAX_RELOCS; i++) clear_insn.reloc[i].code = BFD_RELOC_NONE; } int optnum = 1; static void emit_insn (insn) struct alpha_it *insn; { char *toP; int j; toP = frag_more (4); /* put out the opcode */ md_number_to_chars (toP, insn->opcode, 4); /* put out the symbol-dependent stuff */ for (j = 0; j < MAX_RELOCS; j++) { struct reloc_data *r = &insn->reloc[j]; fixS *f; if (r->code != BFD_RELOC_NONE) { if (r->exp.X_op == O_constant) { r->exp.X_add_symbol = section_symbol (absolute_section); r->exp.X_op = O_symbol; } f = fix_new_exp (frag_now, (toP - frag_now->fr_literal), 4, &r->exp, r->pcrel, r->code); } if (r->code == BFD_RELOC_ALPHA_GPDISP_LO16) { static bit_fixS cookie; /* @@ This'll make the range checking in write.c shut up. */ f->fx_bit_fixP = &cookie; } } } void md_assemble (str) char *str; { int i, count; #define MAX_INSNS 5 struct alpha_it insns[MAX_INSNS]; count = alpha_ip (str, insns); if (count <= 0) return; for (i = 0; i < count; i++) emit_insn (&insns[i]); } static inline void maybe_set_gp (sec) asection *sec; { bfd_vma vma; if (!sec) return; vma = bfd_get_section_vma (foo, sec); if (vma && vma < alpha_gp_value) alpha_gp_value = vma; } static void select_gp_value () { if (alpha_gp_value != 0) abort (); /* Get minus-one in whatever width... */ alpha_gp_value = 0; alpha_gp_value--; /* Select the smallest VMA of these existing sections. */ maybe_set_gp (lita_sec); /* maybe_set_gp (sdata); Was disabled before -- should we use it? */ #if 0 maybe_set_gp (lit8_sec); maybe_set_gp (lit4_sec); #endif alpha_gp_value += GP_ADJUSTMENT; S_SET_VALUE (gp, alpha_gp_value); #ifdef DEBUG1 printf ("Chose GP value of %lx\n", alpha_gp_value); #endif } int alpha_force_relocation (f) fixS *f; { switch (f->fx_r_type) { case BFD_RELOC_ALPHA_GPDISP_HI16: case BFD_RELOC_ALPHA_GPDISP_LO16: case BFD_RELOC_ALPHA_LITERAL: case BFD_RELOC_ALPHA_LITUSE: case BFD_RELOC_GPREL32: return 1; case BFD_RELOC_ALPHA_HINT: case BFD_RELOC_64: case BFD_RELOC_32: case BFD_RELOC_16: case BFD_RELOC_8: case BFD_RELOC_23_PCREL_S2: case BFD_RELOC_14: case BFD_RELOC_26: return 0; default: abort (); return 0; } } int alpha_fix_adjustable (f) fixS *f; { /* Are there any relocation types for which we must generate a reloc but we can adjust the values contained within it? */ switch (f->fx_r_type) { case BFD_RELOC_ALPHA_GPDISP_HI16: case BFD_RELOC_ALPHA_GPDISP_LO16: return 0; case BFD_RELOC_GPREL32: return 1; default: return !alpha_force_relocation (f); } /*NOTREACHED*/ } valueT md_section_align (seg, size) segT seg; valueT size; { #ifdef OBJ_ECOFF /* This should probably be handled within BFD, or by pulling the number from BFD at least. */ #define MIN 15 size += MIN; size &= ~MIN; #endif return size; } /* Add this thing to the .lita section and produce a LITERAL reloc referring to it. */ /* Are we currently eligible to emit a LITUSE reloc for the literal references just generated? */ static int lituse_pending; static void load_symbol_address (reg, insn) int reg; struct alpha_it *insn; { static symbolS *lita_sym; int x; valueT retval; if (!lita_sym) { lita_sym = section_symbol (lita_sec); S_CLEAR_EXTERNAL (lita_sym); } retval = add_to_literal_pool (insn->reloc[0].exp.X_add_symbol, insn->reloc[0].exp.X_add_number, lita_sec, 8); /* Now emit a LITERAL relocation for the original section. */ insn->reloc[0].exp.X_op = O_symbol; insn->reloc[0].exp.X_add_symbol = lita_sym; insn->reloc[0].exp.X_add_number = retval; insn->reloc[0].code = BFD_RELOC_ALPHA_LITERAL; lituse_pending = 1; if (retval == 0x8000) /* Overflow? */ as_fatal ("overflow in literal (.lita) table"); x = retval; if (addr32) insn->opcode = (0xa0000000 /* ldl */ | (reg << SA) | (base_register << SB) | (x & 0xffff)); else insn->opcode = (0xa4000000 /* ldq */ | (reg << SA) | (base_register << SB) | (x & 0xffff)); note_gpreg (base_register); } /* To load an address with a single instruction, emit a LITERAL reloc in this section, and a REFQUAD for the .lita section, so that we'll be able to access it via $gp: lda REG, xx -> ldq REG, -32752(gp) lda REG, xx+4 -> ldq REG, -32752(gp) lda REG, 4(REG) The offsets need to start near -0x8000, and the generated LITERAL relocations should negate the offset. I don't completely grok the scheme yet. */ static int load_expression (reg, insn) int reg; struct alpha_it *insn; { valueT addend, addendhi, addendlo; int num_insns = 1; if (insn->reloc[0].exp.X_add_symbol->bsym->flags & BSF_SECTION_SYM) { addend = 0; } else { addend = insn->reloc[0].exp.X_add_number; insn->reloc[0].exp.X_add_number = 0; } load_symbol_address (reg, insn); if (addend) { if ((addend & ~0x7fffffff) != 0 && (addend & ~0x7fffffff) + 0x80000000 != 0) { as_bad ("assembler not prepared to handle constants >32 bits yet"); addend = 0; } addendlo = addend & 0xffff; addend -= addendlo; addendhi = addend >> 16; if (addendlo & 0x8000) addendhi++; /* It appears that the BASEREG LITUSE reloc should not be used on an LDAH instruction. */ if (addendlo) { insn[1].opcode = (0x20000000 /* lda */ | (reg << SA) | (reg << SB) | (addendlo & 0xffff)); insn[1].reloc[0].code = BFD_RELOC_ALPHA_LITUSE; insn[1].reloc[0].exp = lituse_basereg; num_insns++; } if (addendhi) { insn[num_insns].opcode = (0x24000000 | (reg << SA) | (reg << SB) | (addendhi & 0xffff)); num_insns++; } if (num_insns == 1) abort (); lituse_pending = 0; } return num_insns; } static inline void getExpression (str, this_insn) char *str; struct alpha_it *this_insn; { char *save_in; segT seg; #if 0 /* Not converted to bfd yet, and I don't think we need them for ECOFF. Re-adding a.out support will probably require them though. */ static const struct am { char *name; bfd_reloc_code_real_type reloc; } macro[] = { { "hi", RELOC_48_63 }, { "lo", RELOC_0_15 }, { "ml", RELOC_16_31 }, { "mh", RELOC_32_47 }, { "uhi", RELOC_U_48_63 }, { "uml", RELOC_U_16_31 }, { "umh", RELOC_U_32_47 }, { 0, } }; /* Handle macros: "%macroname(expr)" */ if (*str == '%') { struct am *m; char *p, *q; str++; m = ¯o[0]; while (q = m->name) { p = str; while (*q && *p == *q) p++, q++; if (*q == 0) break; m++; } if (q) { str = p; /* keep the '(' */ this_insn->reloc = m->reloc; } } #endif save_in = input_line_pointer; input_line_pointer = str; seg = expression (&this_insn->reloc[0].exp); /* XXX validate seg and exp, make sure they're reasonable */ expr_end = input_line_pointer; input_line_pointer = save_in; } static void emit_unaligned_io (dir, addr_reg, addr_offset, reg) char *dir; int addr_reg, reg; valueT addr_offset; { char buf[90]; sprintf (buf, "%sq_u $%d,%ld($%d)", dir, reg, (long) addr_offset, addr_reg); md_assemble (buf); } static void emit_load_unal (addr_reg, addr_offset, reg) int addr_reg, reg; valueT addr_offset; { emit_unaligned_io ("ld", addr_reg, addr_offset, reg); } static void emit_store_unal (addr_reg, addr_offset, reg) int addr_reg, reg; valueT addr_offset; { emit_unaligned_io ("st", addr_reg, addr_offset, reg); } static void emit_byte_manip_r (op, in, mask, out, mode, which) char *op; int in, mask, out, mode, which; { char buf[90]; sprintf (buf, "%s%c%c $%d,$%d,$%d", op, mode, which, in, mask, out); md_assemble (buf); } static void emit_extract_r (in, mask, out, mode, which) int in, mask, out, mode, which; { emit_byte_manip_r ("ext", in, mask, out, mode, which); } static void emit_insert_r (in, mask, out, mode, which) int in, mask, out, mode, which; { emit_byte_manip_r ("ins", in, mask, out, mode, which); } static void emit_mask_r (in, mask, out, mode, which) int in, mask, out, mode, which; { emit_byte_manip_r ("msk", in, mask, out, mode, which); } static void emit_sign_extend (reg, size) int reg, size; { char buf[90]; sprintf (buf, "sll $%d,0x%x,$%d", reg, 64 - size, reg); md_assemble (buf); sprintf (buf, "sra $%d,0x%x,$%d", reg, 64 - size, reg); md_assemble (buf); } static void emit_bis_r (in1, in2, out) int in1, in2, out; { char buf[90]; sprintf (buf, "bis $%d,$%d,$%d", in1, in2, out); md_assemble (buf); } static int build_mem (opc, ra, rb, disp) int opc, ra, rb; bfd_signed_vma disp; { if ((disp >> 15) != 0 && (disp >> 15) + 1 != 0) abort (); return ((opc << 26) | (ra << SA) | (rb << SB) | (disp & 0xffff)); } static int build_operate_n (opc, fn, ra, lit, rc) int opc, fn, ra, rc; int lit; { if (lit & ~0xff) abort (); return ((opc << 26) | (fn << 5) | (ra << SA) | (lit << SN) | (1 << 12) | (rc << SC)); } static void emit_sll_n (dest, disp, src) int dest, disp, src; { struct alpha_it insn = clear_insn; insn.opcode = build_operate_n (0x12, 0x39, src, disp, dest); emit_insn (&insn); } static void emit_ldah_num (dest, addend, src) int dest, src; bfd_vma addend; { struct alpha_it insn = clear_insn; insn.opcode = build_mem (0x09, dest, src, addend); emit_insn (&insn); } static void emit_addq_r (in1, in2, out) int in1, in2, out; { struct alpha_it insn = clear_insn; insn.opcode = 0x40000400 | (in1 << SA) | (in2 << SB) | (out << SC); emit_insn (&insn); } static void emit_lda_n (dest, addend, src) int dest, src; bfd_vma addend; { struct alpha_it insn = clear_insn; insn.opcode = build_mem (0x08, dest, src, addend); emit_insn (&insn); } static void emit_add64 (in, out, num) int in, out; bfd_vma num; { bfd_signed_vma snum = num; if (in_range (num, 16, 0)) { emit_lda_n (out, num, in); return; } if ((num & 0xffff) == 0 && in == ZERO && in_range (snum >> 16, 16, 0)) { emit_ldah_num (out, snum >> 16, in); return; } /* I'm not sure this one is getting invoked when it could. */ if ((num & 1) == 0 && in == ZERO) { if (in_range (snum >> 1, 16, 0)) { emit_lda_n (out, snum >> 1, in); emit_addq_r (out, out, out); return; } else if (num & 0x1fffe == 0 && in_range (snum >> 17, 16, 0)) { emit_ldah_num (out, snum >> 17, in); emit_addq_r (out, out, out); return; } } if (in_range (num, 32, 0)) { bfd_vma lo = num & 0xffff; if (lo & 0x8000) lo -= 0x10000; num -= lo; emit_ldah_num (out, snum >> 16, in); if (lo) emit_lda_n (out, lo, out); return; } if (in != ZERO && in != AT && out != AT && at_ok) { emit_add64 (ZERO, AT, num); emit_addq_r (AT, in, out); return; } if (in != ZERO) as_bad ("load expression too complex to expand"); /* Could check also for loading 16- or 32-bit value and shifting by arbitrary displacement. */ { bfd_vma lo = snum & 0xffffffff; if (lo & 0x80000000) lo -= ((bfd_vma)0x10000000 << 4); snum -= lo; emit_add64 (ZERO, out, snum >> 32); emit_sll_n (out, 32, out); if (lo != 0) emit_add64 (out, out, lo); } } /* Note that for now, this function is called recursively (by way of calling md_assemble again). Some of the macros defined as part of the assembly language are currently rewritten as sequences of strings to be assembled. See, for example, the handling of "divq". For efficiency, this should be fixed someday. */ static int alpha_ip (str, insns) char *str; struct alpha_it insns[]; { char *s; const char *args; char c; unsigned long i; struct alpha_opcode *pattern; char *argsStart; unsigned int opcode; unsigned int mask; int match = 0, num_gen = 1; int comma = 0; for (s = str; islower (*s) || *s == '_' || *s == '/' || *s == '4' || *s == '8'; ++s) ; switch (*s) { case '\0': break; case ',': comma = 1; /*FALLTHROUGH*/ case ' ': *s++ = '\0'; break; default: as_fatal ("Unknown opcode: `%s'", str); } if ((pattern = (struct alpha_opcode *) hash_find (op_hash, str)) == NULL) { as_warn ("Unknown opcode: `%s'", str); return -1; } if (comma) *--s = ','; argsStart = s; for (;;) { opcode = pattern->match; num_gen = 1; for (i = 0; i < MAX_INSNS; i++) insns[i] = clear_insn; /* Build the opcode, checking as we go to make sure that the operands match. */ for (args = pattern->args;; ++args) { switch (*args) { case '\0': /* end of args */ if (*s == '\0') { match = 1; } break; case '+': if (*s == '+') { ++s; continue; } if (*s == '-') { continue; } break; case '(': /* these must match exactly */ case ')': case ',': case ' ': case '0': if (*s++ == *args) continue; break; case '1': /* next operand must be a register */ case '2': case '3': case 'r': case 'R': if (*s++ == '$') { switch (c = *s++) { case 'a': /* $at: as temporary */ if (*s++ != 't') goto error; mask = AT; break; case 'g': /* $gp: base register */ if (*s++ != 'p') goto error; mask = base_register; break; case 's': /* $sp: stack pointer */ if (*s++ != 'p') goto error; mask = SP; break; case 'r': /* any register */ if (!isdigit (c = *s++)) { goto error; } /* FALLTHROUGH */ case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': if (isdigit (*s)) { if ((c = 10 * (c - '0') + (*s++ - '0')) >= 32) { goto error; } } else { c -= '0'; } if ((c == GP) && first_32bit_quadrant) c = ZERO; mask = c; break; default: goto error; } note_gpreg (mask); /* Got the register, now figure out where it goes in the opcode. */ doregister: switch (*args) { case '1': case 'e': opcode |= mask << SA; continue; case '2': case 'f': opcode |= mask << SB; continue; case '3': case 'g': opcode |= mask; continue; case 'r': opcode |= (mask << SA) | mask; continue; case 'R': /* ra and rb are the same */ opcode |= (mask << SA) | (mask << SB); continue; case 'E': opcode |= (mask << SA) | (mask << SB) | (mask); continue; } } break; case 'e': /* next operand is a floating point register */ case 'f': case 'g': case 'E': if (*s++ == '$' && *s++ == 'f' && isdigit (*s)) { mask = *s++; if (isdigit (*s)) { mask = 10 * (mask - '0') + (*s++ - '0'); if (mask >= 32) { break; } } else { mask -= '0'; } note_fpreg (mask); /* same encoding as gp registers */ goto doregister; } break; #if 0 case 'h': /* bits 16..31 */ insns[0].reloc = RELOC_16_31; goto immediate; #endif case 'l': /* bits 0..15 */ insns[0].reloc[0].code = BFD_RELOC_16; goto immediate; case 'L': /* 21 bit PC relative immediate */ insns[0].reloc[0].code = BFD_RELOC_23_PCREL_S2; insns[0].reloc[0].pcrel = 1; goto immediate; case 'i': /* 14 bit immediate */ if (OPCODE (opcode) != 0x1a) /* Not a jmp variant?? */ abort (); else if (opcode & 0x8000) /* ret or jsr_coroutine */ { insns[0].reloc[0].code = BFD_RELOC_14; insns[0].reloc[0].pcrel = 0; } else /* jmp or jsr */ { insns[0].reloc[0].code = BFD_RELOC_ALPHA_HINT; insns[0].reloc[0].pcrel = 1; } goto immediate; case 'b': /* 8 bit immediate */ insns[0].reloc[0].code = BFD_RELOC_8; goto immediate; case 'I': /* 26 bit immediate, for PALcode */ insns[0].reloc[0].code = BFD_RELOC_26; goto immediate; #if 0 case 't': /* 12 bit 0...11 */ insns[0].reloc = RELOC_0_12; goto immediate; case '8': /* 8 bit 0...7 */ insns[0].reloc = RELOC_0_8; goto immediate; case 'I': /* 26 bit immediate */ insns[0].reloc = RELOC_0_25; #else case 't': case '8': abort (); #endif /*FALLTHROUGH*/ immediate: if (*s == ' ') s++; getExpression (s, &insns[0]); s = expr_end; /* Handle overflow in certain instructions by converting to other instructions. */ if (insns[0].reloc[0].code == BFD_RELOC_8 && insns[0].reloc[0].exp.X_op == O_constant && (insns[0].reloc[0].exp.X_add_number < 0 || insns[0].reloc[0].exp.X_add_number > 0xff)) { if (OPCODE (opcode) == 0x10 && (OP_FCN (opcode) == 0x00 /* addl */ || OP_FCN (opcode) == 0x40 /* addl/v */ || OP_FCN (opcode) == 0x20 /* addq */ || OP_FCN (opcode) == 0x60 /* addq/v */ || OP_FCN (opcode) == 0x09 /* subl */ || OP_FCN (opcode) == 0x49 /* subl/v */ || OP_FCN (opcode) == 0x29 /* subq */ || OP_FCN (opcode) == 0x69 /* subq/v */ || OP_FCN (opcode) == 0x02 /* s4addl */ || OP_FCN (opcode) == 0x22 /* s4addq */ || OP_FCN (opcode) == 0x0b /* s4subl */ || OP_FCN (opcode) == 0x2b /* s4subq */ || OP_FCN (opcode) == 0x12 /* s8addl */ || OP_FCN (opcode) == 0x32 /* s8addq */ || OP_FCN (opcode) == 0x1b /* s8subl */ || OP_FCN (opcode) == 0x3b /* s8subq */ ) /* Can we make it fit by negating? */ && -insns[0].reloc[0].exp.X_add_number < 0xff && -insns[0].reloc[0].exp.X_add_number > 0) { opcode ^= 0x120; /* convert add<=>sub */ insns[0].reloc[0].exp.X_add_number *= -1; } else if (at_ok && macro_ok) { /* Constant value supplied, but it's too large. */ emit_add64 (ZERO, AT, insns[0].reloc[0].exp.X_add_number); opcode &= ~ 0x1000; opcode |= (AT << SB); insns[0].reloc[0].code = BFD_RELOC_NONE; } else as_bad ("overflow in 8-bit literal field in `operate' format insn"); } else if (insns[0].reloc[0].code == BFD_RELOC_16 && insns[0].reloc[0].exp.X_op == O_constant && !in_range (insns[0].reloc[0].exp.X_add_number, 16, 0)) { bfd_vma val = insns[0].reloc[0].exp.X_add_number; if (OPCODE (opcode) == 0x08) { emit_add64 (ZERO, AT, val); opcode &= ~0x1000; opcode |= (AT << SB); insns[0].reloc[0].code = BFD_RELOC_NONE; } else if (OPCODE (opcode) == 0x09 && in_range (val >> 16, 16, 0)) { /* ldah with high operand - convert to low */ insns[0].reloc[0].exp.X_add_number >>= 16; } else as_bad ("I don't know how to handle 32+ bit constants here yet, sorry."); } else if (insns[0].reloc[0].code == BFD_RELOC_32 && insns[0].reloc[0].exp.X_op == O_constant) { bfd_vma val = insns[0].reloc[0].exp.X_add_number; bfd_signed_vma sval = val; if (val >> 32 != 0 && sval >> 32 != 0 && sval >> 32 != -1) as_bad ("I don't know how to handle 64 bit constants here yet, sorry."); } continue; case 'F': { int format, length, mode, i; char temp[20 /*MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT*/]; char *err; static const char formats[4] = "FGfd"; bfd_vma bits, offset; char *old_input_line_pointer = input_line_pointer; input_line_pointer = s; SKIP_WHITESPACE (); memset (temp, 0, sizeof (temp)); mode = (opcode >> 26) & 3; format = formats[mode]; err = md_atof (format, temp, &length); if (err) { as_bad ("Bad floating literal: %s", err); bits = 0; } else { /* Generate little-endian number from byte sequence. */ bits = 0; for (i = length - 1; i >= 0; i--) bits += ((bfd_vma)(temp[i] & 0xff)) << (i * 8); } switch (length) { case 8: offset = get_lit8_offset (bits) - 0x8000; insns[0].reloc[0].exp.X_add_symbol = lit8_sym; insns[0].reloc[0].exp.X_add_number = 0x8000; break; case 4: offset = get_lit4_offset (bits) - 0x8000; insns[0].reloc[0].exp.X_add_symbol = lit4_sym; insns[0].reloc[0].exp.X_add_number = 0x8000; break; default: abort (); } insns[0].reloc[0].exp.X_op = O_symbol; offset &= 0xffff; num_gen = load_expression (AT, &insns[0]); if (lituse_pending) { insns[num_gen].reloc[0].code = BFD_RELOC_ALPHA_LITUSE; insns[num_gen].reloc[0].exp = lituse_basereg; lituse_pending = 0; } insns[num_gen++].opcode = opcode | (AT << SB) | offset; opcode = insns[0].opcode; s = input_line_pointer; input_line_pointer = old_input_line_pointer; } continue; /* The following two.. take advantage of the fact that opcode already contains most of what we need to know. We just prepend to the instr an "ldah $r,%ml(expr)($base)" and turn this one (done later after we return) into something like "stq $r,%lo(expr)(at)" or "ldq $r,%lo(expr)($r)". NOTE: This can fail later on at link time if the offset from $base actually turns out to be more than 2**31 or 2**47 if use_large_offsets is set. */ case 'P': /* Addressing macros: PUT */ mask = AT; /* register 'at' */ /* fall through */ case 'G': /* Addressing macros: GET */ /* All it is missing is the expression, which is what we will get now */ if (*s == ' ') s++; getExpression (s, &insns[0]); s = expr_end; /* Must check for "lda ..,number" too */ if (insns[0].reloc[0].exp.X_op == O_big) { as_warn ("Sorry, not yet. Put bignums in .data section yourself."); return -1; } if (insns[0].reloc[0].exp.X_op == O_constant) { bfd_vma val = insns[0].reloc[0].exp.X_add_number; bfd_vma top, low; insns[0].reloc[0].code = BFD_RELOC_NONE; insns[1].reloc[0].code = BFD_RELOC_NONE; low = val & 0xffff; if (low & 0x8000) low -= 0x10000; top = val - low; if (top) { emit_add64 (ZERO, AT, top); opcode |= AT << SB; } else opcode |= ZERO << SB; opcode &= ~0x1000; opcode |= low & 0xffff; } else if (insns[0].reloc[0].exp.X_op == O_symbol) { unsigned long old_opcode = opcode; int tmp_reg; if (!macro_ok) as_bad ("insn requires expansion but `nomacro' specified"); else if (*args == 'G') tmp_reg = mask; else if (!at_ok) as_bad ("insn expansion requires AT use, but `noat' specified"); else tmp_reg = AT; num_gen = load_expression (tmp_reg, insns); opcode = insns[0].opcode; /* lda is opcode 8, 0x20000000, and the macros that use this code have an opcode field of 0. The latter require further processing, and we don't have the true opcode here. */ if (OPCODE (old_opcode) != 0 && OPCODE (old_opcode) != 0x08) { struct alpha_it *i; i = &insns[num_gen++]; i->opcode = old_opcode | (tmp_reg << SB); if (lituse_pending) { i->reloc[0].code = BFD_RELOC_ALPHA_LITUSE; i->reloc[0].exp = lituse_basereg; lituse_pending = 0; } } } else { /* Not a number */ num_gen = 2; insns[1].reloc[0].exp = insns[0].reloc[0].exp; /* Generate: ldah REG,x1(GP); OP ?,x0(REG) */ abort (); /* relocs need fixing */ #if 0 insns[1].reloc = RELOC_0_15; insns[1].opcode = opcode | mask << SB; insns[0].reloc = RELOC_16_31; opcode = 0x24000000 /*ldah*/ | mask << SA | (base_register << SB); #endif } continue; /* Same failure modes as above, actually most of the same code shared. */ case 'B': /* Builtins */ args++; switch (*args) { case 'a': /* ldgp */ if (first_32bit_quadrant || no_mixed_code) return -1; switch (OUTPUT_FLAVOR) { case bfd_target_aout_flavour: /* this is cmu's a.out version */ insns[0].reloc[0].code = BFD_RELOC_NONE; /* generate "zap %r,0xf,%r" to take high 32 bits */ opcode |= 0x48001600 /* zap ?,#,?*/ | (0xf << SN); break; case bfd_target_ecoff_flavour: /* Given "ldgp R1,N(R2)", turn it into something like "ldah R1,###(R2) ; lda R1,###(R1)" with appropriate constants and relocations. */ { unsigned long r1, r2; unsigned long addend = 0; num_gen = 2; r2 = mask; r1 = opcode & 0x3f; insns[0].reloc[0].code = BFD_RELOC_ALPHA_GPDISP_HI16; insns[0].reloc[0].pcrel = 1; insns[0].reloc[0].exp.X_op = O_symbol; insns[0].reloc[0].exp.X_add_symbol = gp; insns[0].reloc[0].exp.X_add_number = 0; insns[0].opcode = (0x24000000 /* ldah */ | (r1 << SA) | (r2 << SB)); insns[1].reloc[0].code = BFD_RELOC_ALPHA_GPDISP_LO16; insns[1].reloc[0].exp.X_op = O_symbol; insns[1].reloc[0].exp.X_add_symbol = gp; insns[1].reloc[0].exp.X_add_number = 4; insns[1].reloc[0].pcrel = 1; insns[1].opcode = 0x20000000 | (r1 << SA) | (r1 << SB); opcode = insns[0].opcode; /* merge in addend */ insns[1].opcode |= addend & 0xffff; insns[0].opcode |= ((addend >> 16) + (addend & 0x8000 ? 1 : 0)); if (r2 == PV) ecoff_set_gp_prolog_size (0); } break; default: abort (); } continue; case 'b': /* setgp */ switch (OUTPUT_FLAVOR) { case bfd_target_aout_flavour: /* generate "zap %r,0xf,$gp" to take high 32 bits */ opcode |= 0x48001600 /* zap ?,#,?*/ | (0xf << SN) | (base_register); break; default: abort (); } continue; case 'c': /* jsr $r,foo becomes lda $27,foo jsr $r,($27),foo Register 27, t12, is used by convention here. */ { struct alpha_it *jsr; expressionS etmp; struct reloc_data *r; /* We still have to parse the function name */ if (*s == ' ') s++; getExpression (s, &insns[0]); etmp = insns[0].reloc[0].exp; s = expr_end; num_gen = load_expression (PV, &insns[0]); note_gpreg (PV); jsr = &insns[num_gen++]; jsr->opcode = (0x68004000 /* jsr */ | (mask << SA) | (PV << SB) | 0); if (lituse_pending) { /* LITUSE wasn't emitted yet */ jsr->reloc[0].code = BFD_RELOC_ALPHA_LITUSE; jsr->reloc[0].exp = lituse_jsr; r = &jsr->reloc[1]; lituse_pending = 0; } else r = &jsr->reloc[0]; r->exp = etmp; r->code = BFD_RELOC_ALPHA_HINT; r->pcrel = 1; opcode = insns[0].opcode; } continue; case 'd': /* Sub-word loads and stores. We load the address into $at, which might involve using the `P' parameter processing too, then emit a sequence to get the job done, using unaligned memory accesses and byte manipulation, with t9 and t10 as temporaries. */ { /* Characteristics of access. */ int is_load, is_unsigned = 0, is_unaligned = 0; int mode_size, mode; /* Register operand. */ int reg; /* Addend for loads and stores. */ valueT addend; /* Which register do we use for the address? */ int addr; { /* Pick apart name and set flags. */ const char *s = pattern->name; if (*s == 'u') { is_unaligned = 1; s++; } if (s[0] == 'l' && s[1] == 'd') is_load = 1; else if (s[0] == 's' && s[1] == 't') is_load = 0; else as_fatal ("unrecognized sub-word access insn `%s'", str); s += 2; mode = *s++; if (mode == 'b') mode_size = 1; else if (mode == 'w') mode_size = 2; else if (mode == 'l') mode_size = 4; else if (mode == 'q') mode_size = 8; else abort (); if (*s == 'u') { is_unsigned = 1; s++; } assert (*s == 0); /* Longwords are always kept sign-extended. */ if (mode == 'l' && is_unsigned) abort (); /* There's no special unaligned byte handling. */ if (mode == 'b' && is_unaligned) abort (); /* Stores don't care about signedness. */ if (!is_load && is_unsigned) abort (); } if (args[-2] == 'P') { addr = AT; addend = 0; } else { /* foo r1,num(r2) r2 -> mask r1 -> (opcode >> SA) & 31 num -> insns->reloc[0].* We want to emit "lda at,num(r2)", since these operations require the use of a single register with the starting address of the memory operand we want to access. We could probably get away without doing this (and use r2 below, with the addend for the actual reads and writes) in cases where the addend is known to be a multiple of 8. */ int r2 = mask; int r1 = (opcode >> SA) & 31; if (insns[0].reloc[0].code == BFD_RELOC_NONE) addend = 0; else if (insns[0].reloc[0].code == BFD_RELOC_16) { if (insns[0].reloc[0].exp.X_op != O_constant) abort (); addend = insns[0].reloc[0].exp.X_add_number; } else abort (); if (addend + mode_size - 1 < 0x7fff && (addend % 8) == 0 && (r2 < T9 || r2 > T12)) { addr = r2; num_gen = 0; } else { /* Let later relocation processing deal with the addend field. */ insns[num_gen-1].opcode = (0x20000000 /* lda */ | (AT << SA) | (r2 << SB)); addr = AT; addend = 0; } reg = r1; } /* Because the emit_* routines append directly to the current frag, we now need to flush any pending insns. */ { int i; for (i = 0; i < num_gen; i++) emit_insn (&insns[i]); num_gen = 0; } if (is_load) { int reg2, reg3; if (is_unaligned) reg2 = T9, reg3 = T10; else reg2 = reg; emit_load_unal (addr, addend, T9); if (is_unaligned) emit_load_unal (addr, addend + mode_size - 1, T10); emit_extract_r (T9, addr, reg2, mode, 'l'); if (is_unaligned) { emit_extract_r (T10, addr, reg3, mode, 'h'); emit_bis_r (T9, T10, reg); } if (!is_unsigned) emit_sign_extend (reg, mode_size * 8); } else { /* The second word gets processed first because if the address does turn out to be aligned, the processing for the second word will be pushing around all-zeros, and the entire value will be handled as the `first' word. So we want to store the `first' word last. */ /* Pair these up so that the memory loads get separated from each other, as well as being well in advance of the uses of the values loaded. */ if (is_unaligned) { emit_load_unal (addr, addend + mode_size - 1, T11); emit_insert_r (reg, addr, T12, mode, 'h'); } emit_load_unal (addr, addend, T9); emit_insert_r (reg, addr, T10, mode, 'l'); if (is_unaligned) emit_mask_r (T12, addr, T12, mode, 'h'); emit_mask_r (T10, addr, T10, mode, 'l'); if (is_unaligned) emit_bis_r (T11, T12, T11); emit_bis_r (T9, T10, T9); if (is_unaligned) emit_store_unal (addr, addend + mode_size - 1, T11); emit_store_unal (addr, addend, T9); } } return 0; /* DIVISION and MODULUS. Yech. Convert OP x,y,result to mov x,t10 mov y,t11 jsr t9, __OP mov t12,result with appropriate optimizations if t10,t11,t12 are the registers specified by the compiler. We are missing an obvious optimization opportunity here; if the ldq generated by the jsr assembly requires a cycle or two to make the value available, initiating it before one or two of the mov instructions would result in faster execution. */ case '0': /* reml */ case '1': /* divl */ case '2': /* remq */ case '3': /* divq */ case '4': /* remlu */ case '5': /* divlu */ case '6': /* remqu */ case '7': /* divqu */ { static char func[8][6] = { "reml", "divl", "remq", "divq", "remlu", "divlu", "remqu", "divqu" }; char expansion[64]; int reg; /* All regs parsed, in opcode */ /* Do the expansions, one instr at a time */ reg = (opcode >> SA) & 31; if (reg != T10) { /* x->t10 */ sprintf (expansion, "mov $%d,$%d", reg, T10); md_assemble (expansion); } reg = (opcode >> SB) & 31; if (reg == T10) /* we already overwrote it! */ abort (); else if (reg != T11) { /* y->t11 */ sprintf (expansion, "mov $%d,$%d", reg, T11); md_assemble (expansion); } sprintf (expansion, "lda $%d,__%s", PV, func[*args - '0']); md_assemble (expansion); sprintf (expansion, "jsr $%d,($%d),__%s", T9, PV, func[*args - '0']); md_assemble (expansion); #if 0 /* huh? */ if (!first_32bit_quadrant) { sprintf (expansion, "zap $%d,0xf,$%d", T9, base_register); md_assemble (expansion); } #endif sprintf (expansion, "ldgp $%d,0($%d)", base_register, T9); md_assemble (expansion); /* Use insns[0] to get at the result */ if ((reg = (opcode & 31)) != PV) opcode = (0x47e00400 /* or zero,zero,zero */ | (PV << SB) | reg /* Rc */ ); /* pv->z */ else num_gen = 0; } continue; } /* fall through */ default: abort (); } break; } error: if (match == 0) { /* Args don't match. */ if (&pattern[1] - alpha_opcodes < NUMOPCODES && !strcmp (pattern->name, pattern[1].name)) { ++pattern; s = argsStart; continue; } else { as_warn ("Illegal operands"); return -1; } } else { /* Args match, see if a float instructions and -nofloats */ if (nofloats && pattern->isa_float) return -1; } break; } insns[0].opcode = opcode; return num_gen; } /* Turn a string in input_line_pointer into a floating point constant of type type, and store the appropriate bytes in *litP. The number of LITTLENUMS emitted is stored in *sizeP. An error message is returned, or NULL on OK. */ /* Equal to MAX_PRECISION in atof-ieee.c */ #define MAX_LITTLENUMS 6 char * md_atof (type, litP, sizeP) char type; char *litP; int *sizeP; { int prec; LITTLENUM_TYPE words[MAX_LITTLENUMS]; LITTLENUM_TYPE *wordP; char *t; char *atof_ieee (), *vax_md_atof (); switch (type) { /* VAX floats */ case 'G': /* VAX md_atof doesn't like "G" for some reason. */ type = 'g'; case 'F': case 'D': return vax_md_atof (type, litP, sizeP); /* IEEE floats */ case 'f': prec = 2; break; case 'd': prec = 4; break; case 'x': case 'X': prec = 6; break; case 'p': case 'P': prec = 6; break; default: *sizeP = 0; return "Bad call to MD_ATOF()"; } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizeP = prec * sizeof (LITTLENUM_TYPE); for (wordP = words + prec - 1; prec--;) { md_number_to_chars (litP, (long) (*wordP--), sizeof (LITTLENUM_TYPE)); litP += sizeof (LITTLENUM_TYPE); } return 0; } void md_bignum_to_chars (buf, bignum, nchars) char *buf; LITTLENUM_TYPE *bignum; int nchars; { while (nchars) { LITTLENUM_TYPE work = *bignum++; int nb = CHARS_PER_LITTLENUM; do { *buf++ = work & ((1 << BITS_PER_CHAR) - 1); if (--nchars == 0) return; work >>= BITS_PER_CHAR; } while (--nb); } } CONST char *md_shortopts = "Fm:"; struct option md_longopts[] = { #define OPTION_32ADDR (OPTION_MD_BASE) {"32addr", no_argument, NULL, OPTION_32ADDR}, {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof(md_longopts); int md_parse_option (c, arg) int c; char *arg; { switch (c) { case 'F': nofloats = 1; break; case OPTION_32ADDR: addr32 = 1; break; case 'm': { unsigned long mach; if (!strcmp (arg, "21064")) mach = 21064; else if (!strcmp (arg, "21066")) mach = 21066; else if (!strcmp (arg, "21164")) mach = 21164; else { as_bad ("invalid architecture %s", arg); return 0; } if (machine != 0 && machine != mach) { as_warn ("machine type %lu already chosen, overriding with %lu", machine, mach); } machine = mach; } break; default: return 0; } return 1; } void md_show_usage (stream) FILE *stream; { fprintf(stream, "\ Alpha options:\n\ -32addr treat addresses as 32-bit values\n\ -F lack floating point instructions support\n\ -m21064 | -m21066 | -m21164\n\ specify variant of Alpha architecture\n"); } static void s_proc (is_static) int is_static; { /* XXXX Align to cache linesize XXXXX */ char *name; char c; char *p; symbolS *symbolP; int temp; /* Takes ".proc name,nargs" */ name = input_line_pointer; c = get_symbol_end (); p = input_line_pointer; symbolP = symbol_find_or_make (name); *p = c; SKIP_WHITESPACE (); if (*input_line_pointer != ',') { *p = 0; as_warn ("Expected comma after name \"%s\"", name); *p = c; temp = 0; ignore_rest_of_line (); } else { input_line_pointer++; temp = get_absolute_expression (); } /* symbolP->sy_other = (signed char) temp; */ as_warn ("unhandled: .proc %s,%d", name, temp); demand_empty_rest_of_line (); } static void s_alpha_set (x) int x; { char *name = input_line_pointer, ch, *s; int yesno = 1; while (!is_end_of_line[(unsigned char) *input_line_pointer]) input_line_pointer++; ch = *input_line_pointer; *input_line_pointer = '\0'; s = name; if (s[0] == 'n' && s[1] == 'o') { yesno = 0; s += 2; } if (!strcmp ("reorder", s)) /* ignore */ ; else if (!strcmp ("at", s)) at_ok = yesno; else if (!strcmp ("macro", s)) macro_ok = yesno; else if (!strcmp ("move", s)) /* ignore */ ; else if (!strcmp ("volatile", s)) /* ignore */ ; else as_warn ("Tried to set unrecognized symbol: %s", name); *input_line_pointer = ch; demand_empty_rest_of_line (); } /* @@ Is this right?? */ long md_pcrel_from (fixP) fixS *fixP; { valueT addr = fixP->fx_where + fixP->fx_frag->fr_address; switch (fixP->fx_r_type) { case BFD_RELOC_ALPHA_GPDISP_HI16: case BFD_RELOC_ALPHA_GPDISP_LO16: return addr; default: return fixP->fx_size + addr; } } int alpha_do_align (n, fill) int n; const char *fill; { if (!fill && (now_seg == text_section || !strcmp (now_seg->name, ".init") || !strcmp (now_seg->name, ".fini"))) { static const unsigned char nop_pattern[] = { 0x1f, 0x04, 0xff, 0x47 }; frag_align_pattern (n, nop_pattern, sizeof (nop_pattern)); return 1; } return 0; } int md_apply_fix (fixP, valueP) fixS *fixP; valueT *valueP; { valueT value; int size; valueT addend; char *p = fixP->fx_frag->fr_literal + fixP->fx_where; value = *valueP; switch (fixP->fx_r_type) { /* The GPDISP relocations are processed internally with a symbol referring to the current function; we need to drop in a value which, when added to the address of the start of the function, gives the desired GP. */ case BFD_RELOC_ALPHA_GPDISP_HI16: case BFD_RELOC_ALPHA_GPDISP_LO16: addend = value; if (fixP->fx_r_type == BFD_RELOC_ALPHA_GPDISP_HI16) { assert (fixP->fx_next->fx_r_type == BFD_RELOC_ALPHA_GPDISP_LO16); #ifdef DEBUG1 printf ("hi16: "); fprintf_vma (stdout, addend); printf ("\n"); #endif if (addend & 0x8000) addend += 0x10000; addend >>= 16; fixP->fx_offset = 4; /* @@ Compute this using fx_next. */ } else { #ifdef DEBUG1 printf ("lo16: "); fprintf_vma (stdout, addend); printf ("\n"); #endif addend &= 0xffff; fixP->fx_offset = 0; } md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, addend, 2); fixP->fx_addsy = section_symbol (absolute_section); fixP->fx_offset += fixP->fx_frag->fr_address + fixP->fx_where; break; case BFD_RELOC_8: /* Write 8 bits, shifted left 13 bit positions. */ value &= 0xff; p++; *p &= 0x1f; *p |= (value << 5) & 0xe0; value >>= 3; p++; *p &= 0xe0; *p |= value; value >>= 5; fixP->fx_done = 1; if (value != 0) as_bad_where (fixP->fx_file, fixP->fx_line, "overflow in type-%d reloc", (int) fixP->fx_r_type); return 3; case BFD_RELOC_32: size = 4; goto do_it; case BFD_RELOC_64: size = 8; goto do_it; case BFD_RELOC_16: /* Don't want overflow checking. */ size = 2; do_it: if (fixP->fx_pcrel == 0 && fixP->fx_addsy == 0) { md_number_to_chars (p, value, size); /* @@ Overflow checks?? */ goto done; } break; case BFD_RELOC_26: if (fixP->fx_addsy != 0 && fixP->fx_addsy->bsym->section != absolute_section) as_bad_where (fixP->fx_file, fixP->fx_line, "PALcode instructions require immediate constant function code"); else if (value >> 26 != 0) as_bad_where (fixP->fx_file, fixP->fx_line, "overflow in 26-bit PALcode function field"); *p++ = value & 0xff; value >>= 8; *p++ = value & 0xff; value >>= 8; *p++ = value & 0xff; value >>= 8; { char x = *p; x &= ~3; x |= (value & 3); *p++ = x; } goto done; case BFD_RELOC_14: if (fixP->fx_addsy != 0 && fixP->fx_addsy->bsym->section != absolute_section) as_bad_where (fixP->fx_file, fixP->fx_line, "ret/jsr_coroutine requires constant in displacement field"); else if (value >> 14 != 0) as_bad_where (fixP->fx_file, fixP->fx_line, "overflow in 14-bit operand field of ret or jsr_coroutine"); *p++ = value & 0xff; value >>= 8; *p = (*p & 0xc0) | (value & 0x3f); goto done; case BFD_RELOC_23_PCREL_S2: /* Write 21 bits only. */ value >>= 2; *p++ = value & 0xff; value >>= 8; *p++ = value & 0xff; value >>= 8; *p &= 0xe0; *p |= (value & 0x1f); goto done; case BFD_RELOC_ALPHA_LITERAL: case BFD_RELOC_ALPHA_LITUSE: return 2; case BFD_RELOC_GPREL32: assert (fixP->fx_subsy == gp); value = - alpha_gp_value; /* huh? this works... */ fixP->fx_subsy = 0; md_number_to_chars (p, value, 4); break; case BFD_RELOC_ALPHA_HINT: if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0) { size = 2; goto do_it; } return 2; default: as_fatal ("unknown relocation type %d?", fixP->fx_r_type); return 9; } if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0) { printf ("type %d reloc done?\n", fixP->fx_r_type); done: fixP->fx_done = 1; return 42; } return 0x12345678; } void alpha_frob_ecoff_data () { select_gp_value (); /* $zero and $f31 are read-only */ alpha_gprmask &= ~1; alpha_fprmask &= ~1; } /* The Alpha has support for some VAX floating point types, as well as for IEEE floating point. We consider IEEE to be the primary floating point format, and sneak in the VAX floating point support here. */ #define md_atof vax_md_atof #include "config/atof-vax.c"