// elfcpp.h -- main header file for elfcpp -*- C++ -*- // Copyright (C) 2006-2020 Free Software Foundation, Inc. // Written by Ian Lance Taylor . // This file is part of elfcpp. // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU Library General Public License // as published by the Free Software Foundation; either version 2, or // (at your option) any later version. // In addition to the permissions in the GNU Library General Public // License, the Free Software Foundation gives you unlimited // permission to link the compiled version of this file into // combinations with other programs, and to distribute those // combinations without any restriction coming from the use of this // file. (The Library Public License restrictions do apply in other // respects; for example, they cover modification of the file, and // distribution when not linked into a combined executable.) // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Library General Public License for more details. // You should have received a copy of the GNU Library General Public // License along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA // 02110-1301, USA. // This is the external interface for elfcpp. #ifndef ELFCPP_H #define ELFCPP_H #include "elfcpp_swap.h" #include namespace elfcpp { // Basic ELF types. // These types are always the same size. typedef uint16_t Elf_Half; typedef uint32_t Elf_Word; typedef int32_t Elf_Sword; typedef uint64_t Elf_Xword; typedef int64_t Elf_Sxword; // These types vary in size depending on the ELF file class. The // template parameter should be 32 or 64. template struct Elf_types; template<> struct Elf_types<32> { typedef uint32_t Elf_Addr; typedef uint32_t Elf_Off; typedef uint32_t Elf_WXword; typedef int32_t Elf_Swxword; }; template<> struct Elf_types<64> { typedef uint64_t Elf_Addr; typedef uint64_t Elf_Off; typedef uint64_t Elf_WXword; typedef int64_t Elf_Swxword; }; // Offsets within the Ehdr e_ident field. const int EI_MAG0 = 0; const int EI_MAG1 = 1; const int EI_MAG2 = 2; const int EI_MAG3 = 3; const int EI_CLASS = 4; const int EI_DATA = 5; const int EI_VERSION = 6; const int EI_OSABI = 7; const int EI_ABIVERSION = 8; const int EI_PAD = 9; const int EI_NIDENT = 16; // The valid values found in Ehdr e_ident[EI_MAG0 through EI_MAG3]. const int ELFMAG0 = 0x7f; const int ELFMAG1 = 'E'; const int ELFMAG2 = 'L'; const int ELFMAG3 = 'F'; // The valid values found in Ehdr e_ident[EI_CLASS]. enum { ELFCLASSNONE = 0, ELFCLASS32 = 1, ELFCLASS64 = 2 }; // The valid values found in Ehdr e_ident[EI_DATA]. enum { ELFDATANONE = 0, ELFDATA2LSB = 1, ELFDATA2MSB = 2 }; // The valid values found in Ehdr e_ident[EI_VERSION] and e_version. enum { EV_NONE = 0, EV_CURRENT = 1 }; // The valid values found in Ehdr e_ident[EI_OSABI]. enum ELFOSABI { ELFOSABI_NONE = 0, ELFOSABI_HPUX = 1, ELFOSABI_NETBSD = 2, ELFOSABI_GNU = 3, // ELFOSABI_LINUX is an alias for ELFOSABI_GNU. ELFOSABI_LINUX = 3, ELFOSABI_SOLARIS = 6, ELFOSABI_AIX = 7, ELFOSABI_IRIX = 8, ELFOSABI_FREEBSD = 9, ELFOSABI_TRU64 = 10, ELFOSABI_MODESTO = 11, ELFOSABI_OPENBSD = 12, ELFOSABI_OPENVMS = 13, ELFOSABI_NSK = 14, ELFOSABI_AROS = 15, // A GNU extension for the ARM. ELFOSABI_ARM = 97, // A GNU extension for the MSP. ELFOSABI_STANDALONE = 255 }; // The valid values found in the Ehdr e_type field. enum ET { ET_NONE = 0, ET_REL = 1, ET_EXEC = 2, ET_DYN = 3, ET_CORE = 4, ET_LOOS = 0xfe00, ET_HIOS = 0xfeff, ET_LOPROC = 0xff00, ET_HIPROC = 0xffff }; // The valid values found in the Ehdr e_machine field. enum EM { EM_NONE = 0, EM_M32 = 1, EM_SPARC = 2, EM_386 = 3, EM_68K = 4, EM_88K = 5, EM_IAMCU = 6, EM_860 = 7, EM_MIPS = 8, EM_S370 = 9, EM_MIPS_RS3_LE = 10, // 11 was the old Sparc V9 ABI. // 12 through 14 are reserved. EM_PARISC = 15, // 16 is reserved. // Some old PowerPC object files use 17. EM_VPP500 = 17, EM_SPARC32PLUS = 18, EM_960 = 19, EM_PPC = 20, EM_PPC64 = 21, EM_S390 = 22, // 23 through 35 are served. EM_V800 = 36, EM_FR20 = 37, EM_RH32 = 38, EM_RCE = 39, EM_ARM = 40, EM_ALPHA = 41, EM_SH = 42, EM_SPARCV9 = 43, EM_TRICORE = 44, EM_ARC = 45, EM_H8_300 = 46, EM_H8_300H = 47, EM_H8S = 48, EM_H8_500 = 49, EM_IA_64 = 50, EM_MIPS_X = 51, EM_COLDFIRE = 52, EM_68HC12 = 53, EM_MMA = 54, EM_PCP = 55, EM_NCPU = 56, EM_NDR1 = 57, EM_STARCORE = 58, EM_ME16 = 59, EM_ST100 = 60, EM_TINYJ = 61, EM_X86_64 = 62, EM_PDSP = 63, EM_PDP10 = 64, EM_PDP11 = 65, EM_FX66 = 66, EM_ST9PLUS = 67, EM_ST7 = 68, EM_68HC16 = 69, EM_68HC11 = 70, EM_68HC08 = 71, EM_68HC05 = 72, EM_SVX = 73, EM_ST19 = 74, EM_VAX = 75, EM_CRIS = 76, EM_JAVELIN = 77, EM_FIREPATH = 78, EM_ZSP = 79, EM_MMIX = 80, EM_HUANY = 81, EM_PRISM = 82, EM_AVR = 83, EM_FR30 = 84, EM_D10V = 85, EM_D30V = 86, EM_V850 = 87, EM_M32R = 88, EM_MN10300 = 89, EM_MN10200 = 90, EM_PJ = 91, EM_OR1K = 92, EM_ARC_A5 = 93, EM_XTENSA = 94, EM_VIDEOCORE = 95, EM_TMM_GPP = 96, EM_NS32K = 97, EM_TPC = 98, // Some old picoJava object files use 99 (EM_PJ is correct). EM_SNP1K = 99, EM_ST200 = 100, EM_IP2K = 101, EM_MAX = 102, EM_CR = 103, EM_F2MC16 = 104, EM_MSP430 = 105, EM_BLACKFIN = 106, EM_SE_C33 = 107, EM_SEP = 108, EM_ARCA = 109, EM_UNICORE = 110, EM_ALTERA_NIOS2 = 113, EM_CRX = 114, EM_TI_PRU = 144, EM_AARCH64 = 183, EM_TILEGX = 191, // The Morph MT. EM_MT = 0x2530, // DLX. EM_DLX = 0x5aa5, // FRV. EM_FRV = 0x5441, // Infineon Technologies 16-bit microcontroller with C166-V2 core. EM_X16X = 0x4688, // Xstorym16 EM_XSTORMY16 = 0xad45, // Renesas M32C EM_M32C = 0xfeb0, // Vitesse IQ2000 EM_IQ2000 = 0xfeba, // NIOS EM_NIOS32 = 0xfebb // Old AVR objects used 0x1057 (EM_AVR is correct). // Old MSP430 objects used 0x1059 (EM_MSP430 is correct). // Old FR30 objects used 0x3330 (EM_FR30 is correct). // Old OpenRISC objects used 0x3426 and 0x8472 (EM_OR1K is correct). // Old D10V objects used 0x7650 (EM_D10V is correct). // Old D30V objects used 0x7676 (EM_D30V is correct). // Old IP2X objects used 0x8217 (EM_IP2K is correct). // Old PowerPC objects used 0x9025 (EM_PPC is correct). // Old Alpha objects used 0x9026 (EM_ALPHA is correct). // Old M32R objects used 0x9041 (EM_M32R is correct). // Old V850 objects used 0x9080 (EM_V850 is correct). // Old S/390 objects used 0xa390 (EM_S390 is correct). // Old Xtensa objects used 0xabc7 (EM_XTENSA is correct). // Old MN10300 objects used 0xbeef (EM_MN10300 is correct). // Old MN10200 objects used 0xdead (EM_MN10200 is correct). }; // A special value found in the Ehdr e_phnum field. enum { // Number of program segments stored in sh_info field of first // section headre. PN_XNUM = 0xffff }; // Special section indices. enum { SHN_UNDEF = 0, SHN_LORESERVE = 0xff00, SHN_LOPROC = 0xff00, SHN_HIPROC = 0xff1f, SHN_LOOS = 0xff20, SHN_HIOS = 0xff3f, SHN_ABS = 0xfff1, SHN_COMMON = 0xfff2, SHN_XINDEX = 0xffff, SHN_HIRESERVE = 0xffff, // Provide for initial and final section ordering in conjunction // with the SHF_LINK_ORDER and SHF_ORDERED section flags. SHN_BEFORE = 0xff00, SHN_AFTER = 0xff01, // x86_64 specific large common symbol. SHN_X86_64_LCOMMON = 0xff02 }; // The valid values found in the Shdr sh_type field. enum SHT { SHT_NULL = 0, SHT_PROGBITS = 1, SHT_SYMTAB = 2, SHT_STRTAB = 3, SHT_RELA = 4, SHT_HASH = 5, SHT_DYNAMIC = 6, SHT_NOTE = 7, SHT_NOBITS = 8, SHT_REL = 9, SHT_SHLIB = 10, SHT_DYNSYM = 11, SHT_INIT_ARRAY = 14, SHT_FINI_ARRAY = 15, SHT_PREINIT_ARRAY = 16, SHT_GROUP = 17, SHT_SYMTAB_SHNDX = 18, SHT_LOOS = 0x60000000, SHT_HIOS = 0x6fffffff, SHT_LOPROC = 0x70000000, SHT_HIPROC = 0x7fffffff, SHT_LOUSER = 0x80000000, SHT_HIUSER = 0xffffffff, // The remaining values are not in the standard. // Incremental build data. SHT_GNU_INCREMENTAL_INPUTS = 0x6fff4700, SHT_GNU_INCREMENTAL_SYMTAB = 0x6fff4701, SHT_GNU_INCREMENTAL_RELOCS = 0x6fff4702, SHT_GNU_INCREMENTAL_GOT_PLT = 0x6fff4703, // Object attributes. SHT_GNU_ATTRIBUTES = 0x6ffffff5, // GNU style dynamic hash table. SHT_GNU_HASH = 0x6ffffff6, // List of prelink dependencies. SHT_GNU_LIBLIST = 0x6ffffff7, // Versions defined by file. SHT_SUNW_verdef = 0x6ffffffd, SHT_GNU_verdef = 0x6ffffffd, // Versions needed by file. SHT_SUNW_verneed = 0x6ffffffe, SHT_GNU_verneed = 0x6ffffffe, // Symbol versions, SHT_SUNW_versym = 0x6fffffff, SHT_GNU_versym = 0x6fffffff, SHT_SPARC_GOTDATA = 0x70000000, // ARM-specific section types. // Exception Index table. SHT_ARM_EXIDX = 0x70000001, // BPABI DLL dynamic linking pre-emption map. SHT_ARM_PREEMPTMAP = 0x70000002, // Object file compatibility attributes. SHT_ARM_ATTRIBUTES = 0x70000003, // Support for debugging overlaid programs. SHT_ARM_DEBUGOVERLAY = 0x70000004, SHT_ARM_OVERLAYSECTION = 0x70000005, // x86_64 unwind information. SHT_X86_64_UNWIND = 0x70000001, // MIPS-specific section types. // Section contains register usage information. SHT_MIPS_REGINFO = 0x70000006, // Section contains miscellaneous options. SHT_MIPS_OPTIONS = 0x7000000d, // ABI related flags section. SHT_MIPS_ABIFLAGS = 0x7000002a, // AARCH64-specific section type. SHT_AARCH64_ATTRIBUTES = 0x70000003, // CSKY-specific section types. // Object file compatibility attributes. SHT_CSKY_ATTRIBUTES = 0x70000001, // Link editor is to sort the entries in this section based on the // address specified in the associated symbol table entry. SHT_ORDERED = 0x7fffffff }; // The valid bit flags found in the Shdr sh_flags field. enum SHF { SHF_WRITE = 0x1, SHF_ALLOC = 0x2, SHF_EXECINSTR = 0x4, SHF_MERGE = 0x10, SHF_STRINGS = 0x20, SHF_INFO_LINK = 0x40, SHF_LINK_ORDER = 0x80, SHF_OS_NONCONFORMING = 0x100, SHF_GROUP = 0x200, SHF_TLS = 0x400, SHF_COMPRESSED = 0x800, SHF_MASKOS = 0x0ff00000, SHF_MASKPROC = 0xf0000000, // Indicates this section requires ordering in relation to // other sections of the same type. Ordered sections are // combined within the section pointed to by the sh_link entry. // The sh_info values SHN_BEFORE and SHN_AFTER imply that the // sorted section is to precede or follow, respectively, all // other sections in the set being ordered. SHF_ORDERED = 0x40000000, // This section is excluded from input to the link-edit of an // executable or shared object. This flag is ignored if SHF_ALLOC // is also set, or if relocations exist against the section. SHF_EXCLUDE = 0x80000000, // Section with data that is GP relative addressable. SHF_MIPS_GPREL = 0x10000000, // x86_64 specific large section. SHF_X86_64_LARGE = 0x10000000 }; // Values which appear in the first Elf_WXword of the section data // of a SHF_COMPRESSED section. enum { ELFCOMPRESS_ZLIB = 1, ELFCOMPRESS_LOOS = 0x60000000, ELFCOMPRESS_HIOS = 0x6fffffff, ELFCOMPRESS_LOPROC = 0x70000000, ELFCOMPRESS_HIPROC = 0x7fffffff, }; // Bit flags which appear in the first 32-bit word of the section data // of a SHT_GROUP section. enum { GRP_COMDAT = 0x1, GRP_MASKOS = 0x0ff00000, GRP_MASKPROC = 0xf0000000 }; // The valid values found in the Phdr p_type field. enum PT { PT_NULL = 0, PT_LOAD = 1, PT_DYNAMIC = 2, PT_INTERP = 3, PT_NOTE = 4, PT_SHLIB = 5, PT_PHDR = 6, PT_TLS = 7, PT_LOOS = 0x60000000, PT_HIOS = 0x6fffffff, PT_LOPROC = 0x70000000, PT_HIPROC = 0x7fffffff, // The remaining values are not in the standard. // Frame unwind information. PT_GNU_EH_FRAME = 0x6474e550, PT_SUNW_EH_FRAME = 0x6474e550, // Stack flags. PT_GNU_STACK = 0x6474e551, // Read only after relocation. PT_GNU_RELRO = 0x6474e552, // Platform architecture compatibility information PT_ARM_ARCHEXT = 0x70000000, // Exception unwind tables PT_ARM_EXIDX = 0x70000001, // Register usage information. Identifies one .reginfo section. PT_MIPS_REGINFO =0x70000000, // Runtime procedure table. PT_MIPS_RTPROC = 0x70000001, // .MIPS.options section. PT_MIPS_OPTIONS = 0x70000002, // .MIPS.abiflags section. PT_MIPS_ABIFLAGS = 0x70000003, // Platform architecture compatibility information PT_AARCH64_ARCHEXT = 0x70000000, // Exception unwind tables PT_AARCH64_UNWIND = 0x70000001, // 4k page table size PT_S390_PGSTE = 0x70000000, }; // The valid bit flags found in the Phdr p_flags field. enum PF { PF_X = 0x1, PF_W = 0x2, PF_R = 0x4, PF_MASKOS = 0x0ff00000, PF_MASKPROC = 0xf0000000 }; // Symbol binding from Sym st_info field. enum STB { STB_LOCAL = 0, STB_GLOBAL = 1, STB_WEAK = 2, STB_LOOS = 10, STB_GNU_UNIQUE = 10, STB_HIOS = 12, STB_LOPROC = 13, STB_HIPROC = 15 }; // Symbol types from Sym st_info field. enum STT { STT_NOTYPE = 0, STT_OBJECT = 1, STT_FUNC = 2, STT_SECTION = 3, STT_FILE = 4, STT_COMMON = 5, STT_TLS = 6, // GNU extension: symbol value points to a function which is called // at runtime to determine the final value of the symbol. STT_GNU_IFUNC = 10, STT_LOOS = 10, STT_HIOS = 12, STT_LOPROC = 13, STT_HIPROC = 15, // The section type that must be used for register symbols on // Sparc. These symbols initialize a global register. STT_SPARC_REGISTER = 13, // ARM: a THUMB function. This is not defined in ARM ELF Specification but // used by the GNU tool-chain. STT_ARM_TFUNC = 13 }; inline STB elf_st_bind(unsigned char info) { return static_cast(info >> 4); } inline STT elf_st_type(unsigned char info) { return static_cast(info & 0xf); } inline unsigned char elf_st_info(STB bind, STT type) { return ((static_cast(bind) << 4) + (static_cast(type) & 0xf)); } // Symbol visibility from Sym st_other field. enum STV { STV_DEFAULT = 0, STV_INTERNAL = 1, STV_HIDDEN = 2, STV_PROTECTED = 3 }; inline STV elf_st_visibility(unsigned char other) { return static_cast(other & 0x3); } inline unsigned char elf_st_nonvis(unsigned char other) { return static_cast(other >> 2); } inline unsigned char elf_st_other(STV vis, unsigned char nonvis) { return ((nonvis << 2) + (static_cast(vis) & 3)); } // Reloc information from Rel/Rela r_info field. template unsigned int elf_r_sym(typename Elf_types::Elf_WXword); template<> inline unsigned int elf_r_sym<32>(Elf_Word v) { return v >> 8; } template<> inline unsigned int elf_r_sym<64>(Elf_Xword v) { return v >> 32; } template unsigned int elf_r_type(typename Elf_types::Elf_WXword); template<> inline unsigned int elf_r_type<32>(Elf_Word v) { return v & 0xff; } template<> inline unsigned int elf_r_type<64>(Elf_Xword v) { return v & 0xffffffff; } template typename Elf_types::Elf_WXword elf_r_info(unsigned int s, unsigned int t); template<> inline Elf_Word elf_r_info<32>(unsigned int s, unsigned int t) { return (s << 8) + (t & 0xff); } template<> inline Elf_Xword elf_r_info<64>(unsigned int s, unsigned int t) { return (static_cast(s) << 32) + (t & 0xffffffff); } // Dynamic tags found in the PT_DYNAMIC segment. enum DT { DT_NULL = 0, DT_NEEDED = 1, DT_PLTRELSZ = 2, DT_PLTGOT = 3, DT_HASH = 4, DT_STRTAB = 5, DT_SYMTAB = 6, DT_RELA = 7, DT_RELASZ = 8, DT_RELAENT = 9, DT_STRSZ = 10, DT_SYMENT = 11, DT_INIT = 12, DT_FINI = 13, DT_SONAME = 14, DT_RPATH = 15, DT_SYMBOLIC = 16, DT_REL = 17, DT_RELSZ = 18, DT_RELENT = 19, DT_PLTREL = 20, DT_DEBUG = 21, DT_TEXTREL = 22, DT_JMPREL = 23, DT_BIND_NOW = 24, DT_INIT_ARRAY = 25, DT_FINI_ARRAY = 26, DT_INIT_ARRAYSZ = 27, DT_FINI_ARRAYSZ = 28, DT_RUNPATH = 29, DT_FLAGS = 30, // This is used to mark a range of dynamic tags. It is not really // a tag value. DT_ENCODING = 32, DT_PREINIT_ARRAY = 32, DT_PREINIT_ARRAYSZ = 33, DT_LOOS = 0x6000000d, DT_HIOS = 0x6ffff000, DT_LOPROC = 0x70000000, DT_HIPROC = 0x7fffffff, // The remaining values are extensions used by GNU or Solaris. DT_VALRNGLO = 0x6ffffd00, DT_GNU_PRELINKED = 0x6ffffdf5, DT_GNU_CONFLICTSZ = 0x6ffffdf6, DT_GNU_LIBLISTSZ = 0x6ffffdf7, DT_CHECKSUM = 0x6ffffdf8, DT_PLTPADSZ = 0x6ffffdf9, DT_MOVEENT = 0x6ffffdfa, DT_MOVESZ = 0x6ffffdfb, DT_FEATURE = 0x6ffffdfc, DT_POSFLAG_1 = 0x6ffffdfd, DT_SYMINSZ = 0x6ffffdfe, DT_SYMINENT = 0x6ffffdff, DT_VALRNGHI = 0x6ffffdff, DT_ADDRRNGLO = 0x6ffffe00, DT_GNU_HASH = 0x6ffffef5, DT_TLSDESC_PLT = 0x6ffffef6, DT_TLSDESC_GOT = 0x6ffffef7, DT_GNU_CONFLICT = 0x6ffffef8, DT_GNU_LIBLIST = 0x6ffffef9, DT_CONFIG = 0x6ffffefa, DT_DEPAUDIT = 0x6ffffefb, DT_AUDIT = 0x6ffffefc, DT_PLTPAD = 0x6ffffefd, DT_MOVETAB = 0x6ffffefe, DT_SYMINFO = 0x6ffffeff, DT_ADDRRNGHI = 0x6ffffeff, DT_RELACOUNT = 0x6ffffff9, DT_RELCOUNT = 0x6ffffffa, DT_FLAGS_1 = 0x6ffffffb, DT_VERDEF = 0x6ffffffc, DT_VERDEFNUM = 0x6ffffffd, DT_VERNEED = 0x6ffffffe, DT_VERNEEDNUM = 0x6fffffff, DT_VERSYM = 0x6ffffff0, // Specify the value of _GLOBAL_OFFSET_TABLE_. DT_PPC_GOT = 0x70000000, // Specify whether various optimisations are possible. DT_PPC_OPT = 0x70000001, // Specify the start of the .glink section. DT_PPC64_GLINK = 0x70000000, // Specify the start and size of the .opd section. DT_PPC64_OPD = 0x70000001, DT_PPC64_OPDSZ = 0x70000002, // Specify whether various optimisations are possible. DT_PPC64_OPT = 0x70000003, // The index of an STT_SPARC_REGISTER symbol within the DT_SYMTAB // symbol table. One dynamic entry exists for every STT_SPARC_REGISTER // symbol in the symbol table. DT_SPARC_REGISTER = 0x70000001, // MIPS specific dynamic array tags. // 32 bit version number for runtime linker interface. DT_MIPS_RLD_VERSION = 0x70000001, // Time stamp. DT_MIPS_TIME_STAMP = 0x70000002, // Checksum of external strings and common sizes. DT_MIPS_ICHECKSUM = 0x70000003, // Index of version string in string table. DT_MIPS_IVERSION = 0x70000004, // 32 bits of flags. DT_MIPS_FLAGS = 0x70000005, // Base address of the segment. DT_MIPS_BASE_ADDRESS = 0x70000006, // ??? DT_MIPS_MSYM = 0x70000007, // Address of .conflict section. DT_MIPS_CONFLICT = 0x70000008, // Address of .liblist section. DT_MIPS_LIBLIST = 0x70000009, // Number of local global offset table entries. DT_MIPS_LOCAL_GOTNO = 0x7000000a, // Number of entries in the .conflict section. DT_MIPS_CONFLICTNO = 0x7000000b, // Number of entries in the .liblist section. DT_MIPS_LIBLISTNO = 0x70000010, // Number of entries in the .dynsym section. DT_MIPS_SYMTABNO = 0x70000011, // Index of first external dynamic symbol not referenced locally. DT_MIPS_UNREFEXTNO = 0x70000012, // Index of first dynamic symbol in global offset table. DT_MIPS_GOTSYM = 0x70000013, // Number of page table entries in global offset table. DT_MIPS_HIPAGENO = 0x70000014, // Address of run time loader map, used for debugging. DT_MIPS_RLD_MAP = 0x70000016, // Delta C++ class definition. DT_MIPS_DELTA_CLASS = 0x70000017, // Number of entries in DT_MIPS_DELTA_CLASS. DT_MIPS_DELTA_CLASS_NO = 0x70000018, // Delta C++ class instances. DT_MIPS_DELTA_INSTANCE = 0x70000019, // Number of entries in DT_MIPS_DELTA_INSTANCE. DT_MIPS_DELTA_INSTANCE_NO = 0x7000001a, // Delta relocations. DT_MIPS_DELTA_RELOC = 0x7000001b, // Number of entries in DT_MIPS_DELTA_RELOC. DT_MIPS_DELTA_RELOC_NO = 0x7000001c, // Delta symbols that Delta relocations refer to. DT_MIPS_DELTA_SYM = 0x7000001d, // Number of entries in DT_MIPS_DELTA_SYM. DT_MIPS_DELTA_SYM_NO = 0x7000001e, // Delta symbols that hold class declarations. DT_MIPS_DELTA_CLASSSYM = 0x70000020, // Number of entries in DT_MIPS_DELTA_CLASSSYM. DT_MIPS_DELTA_CLASSSYM_NO = 0x70000021, // Flags indicating information about C++ flavor. DT_MIPS_CXX_FLAGS = 0x70000022, // Pixie information (???). DT_MIPS_PIXIE_INIT = 0x70000023, // Address of .MIPS.symlib DT_MIPS_SYMBOL_LIB = 0x70000024, // The GOT index of the first PTE for a segment DT_MIPS_LOCALPAGE_GOTIDX = 0x70000025, // The GOT index of the first PTE for a local symbol DT_MIPS_LOCAL_GOTIDX = 0x70000026, // The GOT index of the first PTE for a hidden symbol DT_MIPS_HIDDEN_GOTIDX = 0x70000027, // The GOT index of the first PTE for a protected symbol DT_MIPS_PROTECTED_GOTIDX = 0x70000028, // Address of `.MIPS.options'. DT_MIPS_OPTIONS = 0x70000029, // Address of `.interface'. DT_MIPS_INTERFACE = 0x7000002a, // ??? DT_MIPS_DYNSTR_ALIGN = 0x7000002b, // Size of the .interface section. DT_MIPS_INTERFACE_SIZE = 0x7000002c, // Size of rld_text_resolve function stored in the GOT. DT_MIPS_RLD_TEXT_RESOLVE_ADDR = 0x7000002d, // Default suffix of DSO to be added by rld on dlopen() calls. DT_MIPS_PERF_SUFFIX = 0x7000002e, // Size of compact relocation section (O32). DT_MIPS_COMPACT_SIZE = 0x7000002f, // GP value for auxiliary GOTs. DT_MIPS_GP_VALUE = 0x70000030, // Address of auxiliary .dynamic. DT_MIPS_AUX_DYNAMIC = 0x70000031, // Address of the base of the PLTGOT. DT_MIPS_PLTGOT = 0x70000032, // Points to the base of a writable PLT. DT_MIPS_RWPLT = 0x70000034, // Relative offset of run time loader map, used for debugging. DT_MIPS_RLD_MAP_REL = 0x70000035, DT_AUXILIARY = 0x7ffffffd, DT_USED = 0x7ffffffe, DT_FILTER = 0x7fffffff }; // Flags found in the DT_FLAGS dynamic element. enum DF { DF_ORIGIN = 0x1, DF_SYMBOLIC = 0x2, DF_TEXTREL = 0x4, DF_BIND_NOW = 0x8, DF_STATIC_TLS = 0x10 }; // Flags found in the DT_FLAGS_1 dynamic element. enum DF_1 { DF_1_NOW = 0x1, DF_1_GLOBAL = 0x2, DF_1_GROUP = 0x4, DF_1_NODELETE = 0x8, DF_1_LOADFLTR = 0x10, DF_1_INITFIRST = 0x20, DF_1_NOOPEN = 0x40, DF_1_ORIGIN = 0x80, DF_1_DIRECT = 0x100, DF_1_TRANS = 0x200, DF_1_INTERPOSE = 0x400, DF_1_NODEFLIB = 0x800, DF_1_NODUMP = 0x1000, DF_1_CONLFAT = 0x2000, DF_1_PIE = 0x08000000 }; // Version numbers which appear in the vd_version field of a Verdef // structure. const int VER_DEF_NONE = 0; const int VER_DEF_CURRENT = 1; // Version numbers which appear in the vn_version field of a Verneed // structure. const int VER_NEED_NONE = 0; const int VER_NEED_CURRENT = 1; // Bit flags which appear in vd_flags of Verdef and vna_flags of // Vernaux. const int VER_FLG_BASE = 0x1; const int VER_FLG_WEAK = 0x2; const int VER_FLG_INFO = 0x4; // Special constants found in the SHT_GNU_versym entries. const int VER_NDX_LOCAL = 0; const int VER_NDX_GLOBAL = 1; // A SHT_GNU_versym section holds 16-bit words. This bit is set if // the symbol is hidden and can only be seen when referenced using an // explicit version number. This is a GNU extension. const int VERSYM_HIDDEN = 0x8000; // This is the mask for the rest of the data in a word read from a // SHT_GNU_versym section. const int VERSYM_VERSION = 0x7fff; // Note descriptor type codes for notes in a non-core file with an // empty name. enum { // A version string. NT_VERSION = 1, // An architecture string. NT_ARCH = 2 }; // Note descriptor type codes for notes in a non-core file with the // name "GNU". enum { // The minimum ABI level. This is used by the dynamic linker to // describe the minimal kernel version on which a shared library may // be used. Th value should be four words. Word 0 is an OS // descriptor (see below). Word 1 is the major version of the ABI. // Word 2 is the minor version. Word 3 is the subminor version. NT_GNU_ABI_TAG = 1, // Hardware capabilities information. Word 0 is the number of // entries. Word 1 is a bitmask of enabled entries. The rest of // the descriptor is a series of entries, where each entry is a // single byte followed by a nul terminated string. The byte gives // the bit number to test if enabled in the bitmask. NT_GNU_HWCAP = 2, // The build ID as set by the linker's --build-id option. The // format of the descriptor depends on the build ID style. NT_GNU_BUILD_ID = 3, // The version of gold used to link. Th descriptor is just a // string. NT_GNU_GOLD_VERSION = 4, // Program property note, as described in "Linux Extensions to the gABI". NT_GNU_PROPERTY_TYPE_0 = 5 }; // The OS values which may appear in word 0 of a NT_GNU_ABI_TAG note. enum { ELF_NOTE_OS_LINUX = 0, ELF_NOTE_OS_GNU = 1, ELF_NOTE_OS_SOLARIS2 = 2, ELF_NOTE_OS_FREEBSD = 3, ELF_NOTE_OS_NETBSD = 4, ELF_NOTE_OS_SYLLABLE = 5 }; // Program property types for NT_GNU_PROPERTY_TYPE_0. enum { GNU_PROPERTY_STACK_SIZE = 1, GNU_PROPERTY_NO_COPY_ON_PROTECTED = 2, GNU_PROPERTY_LOPROC = 0xc0000000, GNU_PROPERTY_X86_COMPAT_ISA_1_USED = 0xc0000000, GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED = 0xc0000001, GNU_PROPERTY_X86_UINT32_AND_LO = 0xc0000002, GNU_PROPERTY_X86_UINT32_AND_HI = 0xc0007fff, GNU_PROPERTY_X86_UINT32_OR_LO = 0xc0008000, GNU_PROPERTY_X86_UINT32_OR_HI = 0xc000ffff, GNU_PROPERTY_X86_UINT32_OR_AND_LO = 0xc0010000, GNU_PROPERTY_X86_UINT32_OR_AND_HI = 0xc0017fff, GNU_PROPERTY_X86_COMPAT_2_ISA_1_NEEDED = GNU_PROPERTY_X86_UINT32_OR_LO + 0, GNU_PROPERTY_X86_COMPAT_2_ISA_1_USED = GNU_PROPERTY_X86_UINT32_OR_AND_LO + 0, GNU_PROPERTY_X86_FEATURE_1_AND = GNU_PROPERTY_X86_UINT32_AND_LO + 0, GNU_PROPERTY_X86_ISA_1_NEEDED = GNU_PROPERTY_X86_UINT32_OR_LO + 2, GNU_PROPERTY_X86_FEATURE_2_NEEDED = GNU_PROPERTY_X86_UINT32_OR_LO + 1, GNU_PROPERTY_X86_ISA_1_USED = GNU_PROPERTY_X86_UINT32_OR_AND_LO + 2, GNU_PROPERTY_X86_FEATURE_2_USED = GNU_PROPERTY_X86_UINT32_OR_AND_LO + 1, GNU_PROPERTY_HIPROC = 0xdfffffff, GNU_PROPERTY_LOUSER = 0xe0000000, GNU_PROPERTY_HIUSER = 0xffffffff }; } // End namespace elfcpp. // Include internal details after defining the types. #include "elfcpp_internal.h" namespace elfcpp { // The offset of the ELF file header in the ELF file. const int file_header_offset = 0; // ELF structure sizes. template struct Elf_sizes { // Size of ELF file header. static const int ehdr_size = sizeof(internal::Ehdr_data); // Size of ELF segment header. static const int phdr_size = sizeof(internal::Phdr_data); // Size of ELF section header. static const int shdr_size = sizeof(internal::Shdr_data); // Size of ELF compression header. static const int chdr_size = sizeof(internal::Chdr_data); // Size of ELF symbol table entry. static const int sym_size = sizeof(internal::Sym_data); // Sizes of ELF reloc entries. static const int rel_size = sizeof(internal::Rel_data); static const int rela_size = sizeof(internal::Rela_data); // Size of ELF dynamic entry. static const int dyn_size = sizeof(internal::Dyn_data); // Size of ELF version structures. static const int verdef_size = sizeof(internal::Verdef_data); static const int verdaux_size = sizeof(internal::Verdaux_data); static const int verneed_size = sizeof(internal::Verneed_data); static const int vernaux_size = sizeof(internal::Vernaux_data); }; // Accessor class for the ELF file header. template class Ehdr { public: Ehdr(const unsigned char* p) : p_(reinterpret_cast*>(p)) { } template Ehdr(File* file, typename File::Location loc) : p_(reinterpret_cast*>( file->view(loc.file_offset, loc.data_size).data())) { } const unsigned char* get_e_ident() const { return this->p_->e_ident; } Elf_Half get_e_type() const { return Convert<16, big_endian>::convert_host(this->p_->e_type); } Elf_Half get_e_machine() const { return Convert<16, big_endian>::convert_host(this->p_->e_machine); } Elf_Word get_e_version() const { return Convert<32, big_endian>::convert_host(this->p_->e_version); } typename Elf_types::Elf_Addr get_e_entry() const { return Convert::convert_host(this->p_->e_entry); } typename Elf_types::Elf_Off get_e_phoff() const { return Convert::convert_host(this->p_->e_phoff); } typename Elf_types::Elf_Off get_e_shoff() const { return Convert::convert_host(this->p_->e_shoff); } Elf_Word get_e_flags() const { return Convert<32, big_endian>::convert_host(this->p_->e_flags); } Elf_Half get_e_ehsize() const { return Convert<16, big_endian>::convert_host(this->p_->e_ehsize); } Elf_Half get_e_phentsize() const { return Convert<16, big_endian>::convert_host(this->p_->e_phentsize); } Elf_Half get_e_phnum() const { return Convert<16, big_endian>::convert_host(this->p_->e_phnum); } Elf_Half get_e_shentsize() const { return Convert<16, big_endian>::convert_host(this->p_->e_shentsize); } Elf_Half get_e_shnum() const { return Convert<16, big_endian>::convert_host(this->p_->e_shnum); } Elf_Half get_e_shstrndx() const { return Convert<16, big_endian>::convert_host(this->p_->e_shstrndx); } private: const internal::Ehdr_data* p_; }; // Write class for the ELF file header. template class Ehdr_write { public: Ehdr_write(unsigned char* p) : p_(reinterpret_cast*>(p)) { } void put_e_ident(const unsigned char v[EI_NIDENT]) const { memcpy(this->p_->e_ident, v, EI_NIDENT); } void put_e_type(Elf_Half v) { this->p_->e_type = Convert<16, big_endian>::convert_host(v); } void put_e_machine(Elf_Half v) { this->p_->e_machine = Convert<16, big_endian>::convert_host(v); } void put_e_version(Elf_Word v) { this->p_->e_version = Convert<32, big_endian>::convert_host(v); } void put_e_entry(typename Elf_types::Elf_Addr v) { this->p_->e_entry = Convert::convert_host(v); } void put_e_phoff(typename Elf_types::Elf_Off v) { this->p_->e_phoff = Convert::convert_host(v); } void put_e_shoff(typename Elf_types::Elf_Off v) { this->p_->e_shoff = Convert::convert_host(v); } void put_e_flags(Elf_Word v) { this->p_->e_flags = Convert<32, big_endian>::convert_host(v); } void put_e_ehsize(Elf_Half v) { this->p_->e_ehsize = Convert<16, big_endian>::convert_host(v); } void put_e_phentsize(Elf_Half v) { this->p_->e_phentsize = Convert<16, big_endian>::convert_host(v); } void put_e_phnum(Elf_Half v) { this->p_->e_phnum = Convert<16, big_endian>::convert_host(v); } void put_e_shentsize(Elf_Half v) { this->p_->e_shentsize = Convert<16, big_endian>::convert_host(v); } void put_e_shnum(Elf_Half v) { this->p_->e_shnum = Convert<16, big_endian>::convert_host(v); } void put_e_shstrndx(Elf_Half v) { this->p_->e_shstrndx = Convert<16, big_endian>::convert_host(v); } private: internal::Ehdr_data* p_; }; // Accessor class for an ELF section header. template class Shdr { public: Shdr(const unsigned char* p) : p_(reinterpret_cast*>(p)) { } template Shdr(File* file, typename File::Location loc) : p_(reinterpret_cast*>( file->view(loc.file_offset, loc.data_size).data())) { } Elf_Word get_sh_name() const { return Convert<32, big_endian>::convert_host(this->p_->sh_name); } Elf_Word get_sh_type() const { return Convert<32, big_endian>::convert_host(this->p_->sh_type); } typename Elf_types::Elf_WXword get_sh_flags() const { return Convert::convert_host(this->p_->sh_flags); } typename Elf_types::Elf_Addr get_sh_addr() const { return Convert::convert_host(this->p_->sh_addr); } typename Elf_types::Elf_Off get_sh_offset() const { return Convert::convert_host(this->p_->sh_offset); } typename Elf_types::Elf_WXword get_sh_size() const { return Convert::convert_host(this->p_->sh_size); } Elf_Word get_sh_link() const { return Convert<32, big_endian>::convert_host(this->p_->sh_link); } Elf_Word get_sh_info() const { return Convert<32, big_endian>::convert_host(this->p_->sh_info); } typename Elf_types::Elf_WXword get_sh_addralign() const { return Convert::convert_host(this->p_->sh_addralign); } typename Elf_types::Elf_WXword get_sh_entsize() const { return Convert::convert_host(this->p_->sh_entsize); } private: const internal::Shdr_data* p_; }; // Write class for an ELF section header. template class Shdr_write { public: Shdr_write(unsigned char* p) : p_(reinterpret_cast*>(p)) { } void put_sh_name(Elf_Word v) { this->p_->sh_name = Convert<32, big_endian>::convert_host(v); } void put_sh_type(Elf_Word v) { this->p_->sh_type = Convert<32, big_endian>::convert_host(v); } void put_sh_flags(typename Elf_types::Elf_WXword v) { this->p_->sh_flags = Convert::convert_host(v); } void put_sh_addr(typename Elf_types::Elf_Addr v) { this->p_->sh_addr = Convert::convert_host(v); } void put_sh_offset(typename Elf_types::Elf_Off v) { this->p_->sh_offset = Convert::convert_host(v); } void put_sh_size(typename Elf_types::Elf_WXword v) { this->p_->sh_size = Convert::convert_host(v); } void put_sh_link(Elf_Word v) { this->p_->sh_link = Convert<32, big_endian>::convert_host(v); } void put_sh_info(Elf_Word v) { this->p_->sh_info = Convert<32, big_endian>::convert_host(v); } void put_sh_addralign(typename Elf_types::Elf_WXword v) { this->p_->sh_addralign = Convert::convert_host(v); } void put_sh_entsize(typename Elf_types::Elf_WXword v) { this->p_->sh_entsize = Convert::convert_host(v); } private: internal::Shdr_data* p_; }; // Accessor class for an ELF compression header. template class Chdr { public: Chdr(const unsigned char* p) : p_(reinterpret_cast*>(p)) { } template Chdr(File* file, typename File::Location loc) : p_(reinterpret_cast*>( file->view(loc.file_offset, loc.data_size).data())) { } Elf_Word get_ch_type() const { return Convert::convert_host(this->p_->ch_type); } typename Elf_types::Elf_WXword get_ch_size() const { return Convert::convert_host(this->p_->ch_size); } typename Elf_types::Elf_WXword get_ch_addralign() const { return Convert::convert_host(this->p_->ch_addralign); } private: const internal::Chdr_data* p_; }; // Write class for an ELF compression header. template class Chdr_write { public: Chdr_write(unsigned char* p) : p_(reinterpret_cast*>(p)) { } void put_ch_type(typename Elf_types::Elf_WXword v) { this->p_->ch_type = Convert::convert_host(v); } void put_ch_size(typename Elf_types::Elf_WXword v) { this->p_->ch_size = Convert::convert_host(v); } void put_ch_addralign(typename Elf_types::Elf_WXword v) { this->p_->ch_addralign = Convert::convert_host(v); } void put_ch_reserved(Elf_Word); private: internal::Chdr_data* p_; }; template<> inline void elfcpp::Chdr_write<64, true>::put_ch_reserved(Elf_Word v) { this->p_->ch_reserved = v; } template<> inline void elfcpp::Chdr_write<64, false>::put_ch_reserved(Elf_Word v) { this->p_->ch_reserved = v; } // Accessor class for an ELF segment header. template class Phdr { public: Phdr(const unsigned char* p) : p_(reinterpret_cast*>(p)) { } template Phdr(File* file, typename File::Location loc) : p_(reinterpret_cast*>( file->view(loc.file_offset, loc.data_size).data())) { } Elf_Word get_p_type() const { return Convert<32, big_endian>::convert_host(this->p_->p_type); } typename Elf_types::Elf_Off get_p_offset() const { return Convert::convert_host(this->p_->p_offset); } typename Elf_types::Elf_Addr get_p_vaddr() const { return Convert::convert_host(this->p_->p_vaddr); } typename Elf_types::Elf_Addr get_p_paddr() const { return Convert::convert_host(this->p_->p_paddr); } typename Elf_types::Elf_WXword get_p_filesz() const { return Convert::convert_host(this->p_->p_filesz); } typename Elf_types::Elf_WXword get_p_memsz() const { return Convert::convert_host(this->p_->p_memsz); } Elf_Word get_p_flags() const { return Convert<32, big_endian>::convert_host(this->p_->p_flags); } typename Elf_types::Elf_WXword get_p_align() const { return Convert::convert_host(this->p_->p_align); } private: const internal::Phdr_data* p_; }; // Write class for an ELF segment header. template class Phdr_write { public: Phdr_write(unsigned char* p) : p_(reinterpret_cast*>(p)) { } void put_p_type(Elf_Word v) { this->p_->p_type = Convert<32, big_endian>::convert_host(v); } void put_p_offset(typename Elf_types::Elf_Off v) { this->p_->p_offset = Convert::convert_host(v); } void put_p_vaddr(typename Elf_types::Elf_Addr v) { this->p_->p_vaddr = Convert::convert_host(v); } void put_p_paddr(typename Elf_types::Elf_Addr v) { this->p_->p_paddr = Convert::convert_host(v); } void put_p_filesz(typename Elf_types::Elf_WXword v) { this->p_->p_filesz = Convert::convert_host(v); } void put_p_memsz(typename Elf_types::Elf_WXword v) { this->p_->p_memsz = Convert::convert_host(v); } void put_p_flags(Elf_Word v) { this->p_->p_flags = Convert<32, big_endian>::convert_host(v); } void put_p_align(typename Elf_types::Elf_WXword v) { this->p_->p_align = Convert::convert_host(v); } private: internal::Phdr_data* p_; }; // Accessor class for an ELF symbol table entry. template class Sym { public: Sym(const unsigned char* p) : p_(reinterpret_cast*>(p)) { } template Sym(File* file, typename File::Location loc) : p_(reinterpret_cast*>( file->view(loc.file_offset, loc.data_size).data())) { } Elf_Word get_st_name() const { return Convert<32, big_endian>::convert_host(this->p_->st_name); } typename Elf_types::Elf_Addr get_st_value() const { return Convert::convert_host(this->p_->st_value); } typename Elf_types::Elf_WXword get_st_size() const { return Convert::convert_host(this->p_->st_size); } unsigned char get_st_info() const { return this->p_->st_info; } STB get_st_bind() const { return elf_st_bind(this->get_st_info()); } STT get_st_type() const { return elf_st_type(this->get_st_info()); } unsigned char get_st_other() const { return this->p_->st_other; } STV get_st_visibility() const { return elf_st_visibility(this->get_st_other()); } unsigned char get_st_nonvis() const { return elf_st_nonvis(this->get_st_other()); } Elf_Half get_st_shndx() const { return Convert<16, big_endian>::convert_host(this->p_->st_shndx); } private: const internal::Sym_data* p_; }; // Writer class for an ELF symbol table entry. template class Sym_write { public: Sym_write(unsigned char* p) : p_(reinterpret_cast*>(p)) { } void put_st_name(Elf_Word v) { this->p_->st_name = Convert<32, big_endian>::convert_host(v); } void put_st_value(typename Elf_types::Elf_Addr v) { this->p_->st_value = Convert::convert_host(v); } void put_st_size(typename Elf_types::Elf_WXword v) { this->p_->st_size = Convert::convert_host(v); } void put_st_info(unsigned char v) { this->p_->st_info = v; } void put_st_info(STB bind, STT type) { this->p_->st_info = elf_st_info(bind, type); } void put_st_other(unsigned char v) { this->p_->st_other = v; } void put_st_other(STV vis, unsigned char nonvis) { this->p_->st_other = elf_st_other(vis, nonvis); } void put_st_shndx(Elf_Half v) { this->p_->st_shndx = Convert<16, big_endian>::convert_host(v); } Sym sym() { return Sym(reinterpret_cast(this->p_)); } private: internal::Sym_data* p_; }; // Accessor classes for an ELF REL relocation entry. template class Rel { public: Rel(const unsigned char* p) : p_(reinterpret_cast*>(p)) { } template Rel(File* file, typename File::Location loc) : p_(reinterpret_cast*>( file->view(loc.file_offset, loc.data_size).data())) { } typename Elf_types::Elf_Addr get_r_offset() const { return Convert::convert_host(this->p_->r_offset); } typename Elf_types::Elf_WXword get_r_info() const { return Convert::convert_host(this->p_->r_info); } private: const internal::Rel_data* p_; }; // Writer class for an ELF Rel relocation. template class Rel_write { public: Rel_write(unsigned char* p) : p_(reinterpret_cast*>(p)) { } void put_r_offset(typename Elf_types::Elf_Addr v) { this->p_->r_offset = Convert::convert_host(v); } void put_r_info(typename Elf_types::Elf_WXword v) { this->p_->r_info = Convert::convert_host(v); } private: internal::Rel_data* p_; }; // Accessor class for an ELF Rela relocation. template class Rela { public: Rela(const unsigned char* p) : p_(reinterpret_cast*>(p)) { } template Rela(File* file, typename File::Location loc) : p_(reinterpret_cast*>( file->view(loc.file_offset, loc.data_size).data())) { } typename Elf_types::Elf_Addr get_r_offset() const { return Convert::convert_host(this->p_->r_offset); } typename Elf_types::Elf_WXword get_r_info() const { return Convert::convert_host(this->p_->r_info); } typename Elf_types::Elf_Swxword get_r_addend() const { return Convert::convert_host(this->p_->r_addend); } private: const internal::Rela_data* p_; }; // Writer class for an ELF Rela relocation. template class Rela_write { public: Rela_write(unsigned char* p) : p_(reinterpret_cast*>(p)) { } void put_r_offset(typename Elf_types::Elf_Addr v) { this->p_->r_offset = Convert::convert_host(v); } void put_r_info(typename Elf_types::Elf_WXword v) { this->p_->r_info = Convert::convert_host(v); } void put_r_addend(typename Elf_types::Elf_Swxword v) { this->p_->r_addend = Convert::convert_host(v); } private: internal::Rela_data* p_; }; // MIPS-64 has a non-standard relocation layout. template class Mips64_rel { public: Mips64_rel(const unsigned char* p) : p_(reinterpret_cast(p)) { } template Mips64_rel(File* file, typename File::Location loc) : p_(reinterpret_cast( file->view(loc.file_offset, loc.data_size).data())) { } typename Elf_types<64>::Elf_Addr get_r_offset() const { return Convert<64, big_endian>::convert_host(this->p_->r_offset); } Elf_Word get_r_sym() const { return Convert<32, big_endian>::convert_host(this->p_->r_sym); } unsigned char get_r_ssym() const { return this->p_->r_ssym; } unsigned char get_r_type() const { return this->p_->r_type; } unsigned char get_r_type2() const { return this->p_->r_type2; } unsigned char get_r_type3() const { return this->p_->r_type3; } private: const internal::Mips64_rel_data* p_; }; template class Mips64_rel_write { public: Mips64_rel_write(unsigned char* p) : p_(reinterpret_cast(p)) { } void put_r_offset(typename Elf_types<64>::Elf_Addr v) { this->p_->r_offset = Convert<64, big_endian>::convert_host(v); } void put_r_sym(Elf_Word v) { this->p_->r_sym = Convert<32, big_endian>::convert_host(v); } void put_r_ssym(unsigned char v) { this->p_->r_ssym = v; } void put_r_type(unsigned char v) { this->p_->r_type = v; } void put_r_type2(unsigned char v) { this->p_->r_type2 = v; } void put_r_type3(unsigned char v) { this->p_->r_type3 = v; } private: internal::Mips64_rel_data* p_; }; template class Mips64_rela { public: Mips64_rela(const unsigned char* p) : p_(reinterpret_cast(p)) { } template Mips64_rela(File* file, typename File::Location loc) : p_(reinterpret_cast( file->view(loc.file_offset, loc.data_size).data())) { } typename Elf_types<64>::Elf_Addr get_r_offset() const { return Convert<64, big_endian>::convert_host(this->p_->r_offset); } Elf_Word get_r_sym() const { return Convert<32, big_endian>::convert_host(this->p_->r_sym); } unsigned char get_r_ssym() const { return this->p_->r_ssym; } unsigned char get_r_type() const { return this->p_->r_type; } unsigned char get_r_type2() const { return this->p_->r_type2; } unsigned char get_r_type3() const { return this->p_->r_type3; } typename Elf_types<64>::Elf_Swxword get_r_addend() const { return Convert<64, big_endian>::convert_host(this->p_->r_addend); } private: const internal::Mips64_rela_data* p_; }; template class Mips64_rela_write { public: Mips64_rela_write(unsigned char* p) : p_(reinterpret_cast(p)) { } void put_r_offset(typename Elf_types<64>::Elf_Addr v) { this->p_->r_offset = Convert<64, big_endian>::convert_host(v); } void put_r_sym(Elf_Word v) { this->p_->r_sym = Convert<32, big_endian>::convert_host(v); } void put_r_ssym(unsigned char v) { this->p_->r_ssym = v; } void put_r_type(unsigned char v) { this->p_->r_type = v; } void put_r_type2(unsigned char v) { this->p_->r_type2 = v; } void put_r_type3(unsigned char v) { this->p_->r_type3 = v; } void put_r_addend(typename Elf_types<64>::Elf_Swxword v) { this->p_->r_addend = Convert<64, big_endian>::convert_host(v); } private: internal::Mips64_rela_data* p_; }; // Accessor classes for entries in the ELF SHT_DYNAMIC section aka // PT_DYNAMIC segment. template class Dyn { public: Dyn(const unsigned char* p) : p_(reinterpret_cast*>(p)) { } template Dyn(File* file, typename File::Location loc) : p_(reinterpret_cast*>( file->view(loc.file_offset, loc.data_size).data())) { } typename Elf_types::Elf_Swxword get_d_tag() const { return Convert::convert_host(this->p_->d_tag); } typename Elf_types::Elf_WXword get_d_val() const { return Convert::convert_host(this->p_->d_val); } typename Elf_types::Elf_Addr get_d_ptr() const { return Convert::convert_host(this->p_->d_val); } private: const internal::Dyn_data* p_; }; // Write class for an entry in the SHT_DYNAMIC section. template class Dyn_write { public: Dyn_write(unsigned char* p) : p_(reinterpret_cast*>(p)) { } void put_d_tag(typename Elf_types::Elf_Swxword v) { this->p_->d_tag = Convert::convert_host(v); } void put_d_val(typename Elf_types::Elf_WXword v) { this->p_->d_val = Convert::convert_host(v); } void put_d_ptr(typename Elf_types::Elf_Addr v) { this->p_->d_val = Convert::convert_host(v); } private: internal::Dyn_data* p_; }; // Accessor classes for entries in the ELF SHT_GNU_verdef section. template class Verdef { public: Verdef(const unsigned char* p) : p_(reinterpret_cast(p)) { } template Verdef(File* file, typename File::Location loc) : p_(reinterpret_cast( file->view(loc.file_offset, loc.data_size).data())) { } Elf_Half get_vd_version() const { return Convert<16, big_endian>::convert_host(this->p_->vd_version); } Elf_Half get_vd_flags() const { return Convert<16, big_endian>::convert_host(this->p_->vd_flags); } Elf_Half get_vd_ndx() const { return Convert<16, big_endian>::convert_host(this->p_->vd_ndx); } Elf_Half get_vd_cnt() const { return Convert<16, big_endian>::convert_host(this->p_->vd_cnt); } Elf_Word get_vd_hash() const { return Convert<32, big_endian>::convert_host(this->p_->vd_hash); } Elf_Word get_vd_aux() const { return Convert<32, big_endian>::convert_host(this->p_->vd_aux); } Elf_Word get_vd_next() const { return Convert<32, big_endian>::convert_host(this->p_->vd_next); } private: const internal::Verdef_data* p_; }; template class Verdef_write { public: Verdef_write(unsigned char* p) : p_(reinterpret_cast(p)) { } void set_vd_version(Elf_Half v) { this->p_->vd_version = Convert<16, big_endian>::convert_host(v); } void set_vd_flags(Elf_Half v) { this->p_->vd_flags = Convert<16, big_endian>::convert_host(v); } void set_vd_ndx(Elf_Half v) { this->p_->vd_ndx = Convert<16, big_endian>::convert_host(v); } void set_vd_cnt(Elf_Half v) { this->p_->vd_cnt = Convert<16, big_endian>::convert_host(v); } void set_vd_hash(Elf_Word v) { this->p_->vd_hash = Convert<32, big_endian>::convert_host(v); } void set_vd_aux(Elf_Word v) { this->p_->vd_aux = Convert<32, big_endian>::convert_host(v); } void set_vd_next(Elf_Word v) { this->p_->vd_next = Convert<32, big_endian>::convert_host(v); } private: internal::Verdef_data* p_; }; // Accessor classes for auxiliary entries in the ELF SHT_GNU_verdef // section. template class Verdaux { public: Verdaux(const unsigned char* p) : p_(reinterpret_cast(p)) { } template Verdaux(File* file, typename File::Location loc) : p_(reinterpret_cast( file->view(loc.file_offset, loc.data_size).data())) { } Elf_Word get_vda_name() const { return Convert<32, big_endian>::convert_host(this->p_->vda_name); } Elf_Word get_vda_next() const { return Convert<32, big_endian>::convert_host(this->p_->vda_next); } private: const internal::Verdaux_data* p_; }; template class Verdaux_write { public: Verdaux_write(unsigned char* p) : p_(reinterpret_cast(p)) { } void set_vda_name(Elf_Word v) { this->p_->vda_name = Convert<32, big_endian>::convert_host(v); } void set_vda_next(Elf_Word v) { this->p_->vda_next = Convert<32, big_endian>::convert_host(v); } private: internal::Verdaux_data* p_; }; // Accessor classes for entries in the ELF SHT_GNU_verneed section. template class Verneed { public: Verneed(const unsigned char* p) : p_(reinterpret_cast(p)) { } template Verneed(File* file, typename File::Location loc) : p_(reinterpret_cast( file->view(loc.file_offset, loc.data_size).data())) { } Elf_Half get_vn_version() const { return Convert<16, big_endian>::convert_host(this->p_->vn_version); } Elf_Half get_vn_cnt() const { return Convert<16, big_endian>::convert_host(this->p_->vn_cnt); } Elf_Word get_vn_file() const { return Convert<32, big_endian>::convert_host(this->p_->vn_file); } Elf_Word get_vn_aux() const { return Convert<32, big_endian>::convert_host(this->p_->vn_aux); } Elf_Word get_vn_next() const { return Convert<32, big_endian>::convert_host(this->p_->vn_next); } private: const internal::Verneed_data* p_; }; template class Verneed_write { public: Verneed_write(unsigned char* p) : p_(reinterpret_cast(p)) { } void set_vn_version(Elf_Half v) { this->p_->vn_version = Convert<16, big_endian>::convert_host(v); } void set_vn_cnt(Elf_Half v) { this->p_->vn_cnt = Convert<16, big_endian>::convert_host(v); } void set_vn_file(Elf_Word v) { this->p_->vn_file = Convert<32, big_endian>::convert_host(v); } void set_vn_aux(Elf_Word v) { this->p_->vn_aux = Convert<32, big_endian>::convert_host(v); } void set_vn_next(Elf_Word v) { this->p_->vn_next = Convert<32, big_endian>::convert_host(v); } private: internal::Verneed_data* p_; }; // Accessor classes for auxiliary entries in the ELF SHT_GNU_verneed // section. template class Vernaux { public: Vernaux(const unsigned char* p) : p_(reinterpret_cast(p)) { } template Vernaux(File* file, typename File::Location loc) : p_(reinterpret_cast( file->view(loc.file_offset, loc.data_size).data())) { } Elf_Word get_vna_hash() const { return Convert<32, big_endian>::convert_host(this->p_->vna_hash); } Elf_Half get_vna_flags() const { return Convert<16, big_endian>::convert_host(this->p_->vna_flags); } Elf_Half get_vna_other() const { return Convert<16, big_endian>::convert_host(this->p_->vna_other); } Elf_Word get_vna_name() const { return Convert<32, big_endian>::convert_host(this->p_->vna_name); } Elf_Word get_vna_next() const { return Convert<32, big_endian>::convert_host(this->p_->vna_next); } private: const internal::Vernaux_data* p_; }; template class Vernaux_write { public: Vernaux_write(unsigned char* p) : p_(reinterpret_cast(p)) { } void set_vna_hash(Elf_Word v) { this->p_->vna_hash = Convert<32, big_endian>::convert_host(v); } void set_vna_flags(Elf_Half v) { this->p_->vna_flags = Convert<16, big_endian>::convert_host(v); } void set_vna_other(Elf_Half v) { this->p_->vna_other = Convert<16, big_endian>::convert_host(v); } void set_vna_name(Elf_Word v) { this->p_->vna_name = Convert<32, big_endian>::convert_host(v); } void set_vna_next(Elf_Word v) { this->p_->vna_next = Convert<32, big_endian>::convert_host(v); } private: internal::Vernaux_data* p_; }; } // End namespace elfcpp. #endif // !defined(ELFPCP_H)