/* readelf.c -- display contents of an ELF format file Copyright (C) 1998-2023 Free Software Foundation, Inc. Originally developed by Eric Youngdale Modifications by Nick Clifton This file is part of GNU Binutils. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ /* The difference between readelf and objdump: Both programs are capable of displaying the contents of ELF format files, so why does the binutils project have two file dumpers ? The reason is that objdump sees an ELF file through a BFD filter of the world; if BFD has a bug where, say, it disagrees about a machine constant in e_flags, then the odds are good that it will remain internally consistent. The linker sees it the BFD way, objdump sees it the BFD way, GAS sees it the BFD way. There was need for a tool to go find out what the file actually says. This is why the readelf program does not link against the BFD library - it exists as an independent program to help verify the correct working of BFD. There is also the case that readelf can provide more information about an ELF file than is provided by objdump. In particular it can display DWARF debugging information which (at the moment) objdump cannot. */ #include "sysdep.h" #include #include #include #ifdef HAVE_ZSTD #include #endif #include #if defined HAVE_MSGPACK #include #endif /* Define BFD64 here, even if our default architecture is 32 bit ELF as this will allow us to read in and parse 64bit and 32bit ELF files. */ #define BFD64 #include "bfd.h" #include "bucomm.h" #include "elfcomm.h" #include "demanguse.h" #include "dwarf.h" #include "ctf-api.h" #include "sframe-api.h" #include "demangle.h" #include "elf/common.h" #include "elf/external.h" #include "elf/internal.h" /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that we can obtain the H8 reloc numbers. We need these for the get_reloc_size() function. We include h8.h again after defining RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */ #include "elf/h8.h" #undef _ELF_H8_H /* Undo the effects of #including reloc-macros.h. */ #undef START_RELOC_NUMBERS #undef RELOC_NUMBER #undef FAKE_RELOC #undef EMPTY_RELOC #undef END_RELOC_NUMBERS #undef _RELOC_MACROS_H /* The following headers use the elf/reloc-macros.h file to automatically generate relocation recognition functions such as elf_mips_reloc_type() */ #define RELOC_MACROS_GEN_FUNC #include "elf/aarch64.h" #include "elf/alpha.h" #include "elf/amdgpu.h" #include "elf/arc.h" #include "elf/arm.h" #include "elf/avr.h" #include "elf/bfin.h" #include "elf/cr16.h" #include "elf/cris.h" #include "elf/crx.h" #include "elf/csky.h" #include "elf/d10v.h" #include "elf/d30v.h" #include "elf/dlx.h" #include "elf/bpf.h" #include "elf/epiphany.h" #include "elf/fr30.h" #include "elf/frv.h" #include "elf/ft32.h" #include "elf/h8.h" #include "elf/hppa.h" #include "elf/i386.h" #include "elf/i370.h" #include "elf/i860.h" #include "elf/i960.h" #include "elf/ia64.h" #include "elf/ip2k.h" #include "elf/kvx.h" #include "elf/lm32.h" #include "elf/iq2000.h" #include "elf/m32c.h" #include "elf/m32r.h" #include "elf/m68k.h" #include "elf/m68hc11.h" #include "elf/s12z.h" #include "elf/mcore.h" #include "elf/mep.h" #include "elf/metag.h" #include "elf/microblaze.h" #include "elf/mips.h" #include "elf/mmix.h" #include "elf/mn10200.h" #include "elf/mn10300.h" #include "elf/moxie.h" #include "elf/mt.h" #include "elf/msp430.h" #include "elf/nds32.h" #include "elf/nfp.h" #include "elf/nios2.h" #include "elf/or1k.h" #include "elf/pj.h" #include "elf/ppc.h" #include "elf/ppc64.h" #include "elf/pru.h" #include "elf/riscv.h" #include "elf/rl78.h" #include "elf/rx.h" #include "elf/s390.h" #include "elf/score.h" #include "elf/sh.h" #include "elf/sparc.h" #include "elf/spu.h" #include "elf/tic6x.h" #include "elf/tilegx.h" #include "elf/tilepro.h" #include "elf/v850.h" #include "elf/vax.h" #include "elf/visium.h" #include "elf/wasm32.h" #include "elf/x86-64.h" #include "elf/xgate.h" #include "elf/xstormy16.h" #include "elf/xtensa.h" #include "elf/z80.h" #include "elf/loongarch.h" #include "elf/bpf.h" #include "getopt.h" #include "libiberty.h" #include "safe-ctype.h" #include "filenames.h" #ifndef offsetof #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER)) #endif typedef struct elf_section_list { Elf_Internal_Shdr * hdr; struct elf_section_list * next; } elf_section_list; /* Flag bits indicating particular types of dump. */ #define HEX_DUMP (1 << 0) /* The -x command line switch. */ #define DISASS_DUMP (1 << 1) /* The -i command line switch. */ #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */ #define STRING_DUMP (1 << 3) /* The -p command line switch. */ #define RELOC_DUMP (1 << 4) /* The -R command line switch. */ #define CTF_DUMP (1 << 5) /* The --ctf command line switch. */ #define SFRAME_DUMP (1 << 6) /* The --sframe command line switch. */ typedef unsigned char dump_type; /* A linked list of the section names for which dumps were requested. */ struct dump_list_entry { char * name; dump_type type; struct dump_list_entry * next; }; /* A dynamic array of flags indicating for which sections a dump has been requested via command line switches. */ struct dump_data { dump_type * dump_sects; unsigned int num_dump_sects; }; static struct dump_data cmdline; static struct dump_list_entry * dump_sects_byname; char * program_name = "readelf"; static bool show_name = false; static bool do_dynamic = false; static bool do_syms = false; static bool do_dyn_syms = false; static bool do_lto_syms = false; static bool do_reloc = false; static bool do_sections = false; static bool do_section_groups = false; static bool do_section_details = false; static bool do_segments = false; static bool do_unwind = false; static bool do_using_dynamic = false; static bool do_header = false; static bool do_dump = false; static bool do_version = false; static bool do_histogram = false; static bool do_debugging = false; static bool do_ctf = false; static bool do_sframe = false; static bool do_arch = false; static bool do_notes = false; static bool do_archive_index = false; static bool check_all = false; static bool is_32bit_elf = false; static bool decompress_dumps = false; static bool do_not_show_symbol_truncation = false; static bool do_demangle = false; /* Pretty print C++ symbol names. */ static bool process_links = false; static bool dump_any_debugging = false; static bool extra_sym_info = false; static int demangle_flags = DMGL_ANSI | DMGL_PARAMS; static int sym_base = 0; static char *dump_ctf_parent_name; static char *dump_ctf_symtab_name; static char *dump_ctf_strtab_name; struct group_list { struct group_list * next; unsigned int section_index; }; struct group { struct group_list * root; unsigned int group_index; }; typedef struct filedata { const char * file_name; bool is_separate; FILE * handle; uint64_t file_size; Elf_Internal_Ehdr file_header; uint64_t archive_file_offset; uint64_t archive_file_size; /* Everything below this point is cleared out by free_filedata. */ Elf_Internal_Shdr * section_headers; Elf_Internal_Phdr * program_headers; char * string_table; uint64_t string_table_length; uint64_t dynamic_addr; uint64_t dynamic_size; uint64_t dynamic_nent; Elf_Internal_Dyn * dynamic_section; Elf_Internal_Shdr * dynamic_strtab_section; char * dynamic_strings; uint64_t dynamic_strings_length; Elf_Internal_Shdr * dynamic_symtab_section; uint64_t num_dynamic_syms; Elf_Internal_Sym * dynamic_symbols; uint64_t version_info[16]; unsigned int dynamic_syminfo_nent; Elf_Internal_Syminfo * dynamic_syminfo; uint64_t dynamic_syminfo_offset; uint64_t nbuckets; uint64_t nchains; uint64_t * buckets; uint64_t * chains; uint64_t ngnubuckets; uint64_t ngnuchains; uint64_t * gnubuckets; uint64_t * gnuchains; uint64_t * mipsxlat; uint64_t gnusymidx; char * program_interpreter; uint64_t dynamic_info[DT_RELRENT + 1]; uint64_t dynamic_info_DT_GNU_HASH; uint64_t dynamic_info_DT_MIPS_XHASH; elf_section_list * symtab_shndx_list; size_t group_count; struct group * section_groups; struct group ** section_headers_groups; /* A dynamic array of flags indicating for which sections a dump of some kind has been requested. It is reset on a per-object file basis and then initialised from the cmdline_dump_sects array, the results of interpreting the -w switch, and the dump_sects_byname list. */ struct dump_data dump; } Filedata; /* How to print a vma value. */ typedef enum print_mode { HEX, HEX_5, DEC, DEC_5, UNSIGNED, UNSIGNED_5, PREFIX_HEX, PREFIX_HEX_5, FULL_HEX, LONG_HEX, OCTAL, OCTAL_5 } print_mode; typedef enum unicode_display_type { unicode_default = 0, unicode_locale, unicode_escape, unicode_hex, unicode_highlight, unicode_invalid } unicode_display_type; static unicode_display_type unicode_display = unicode_default; typedef enum { reltype_unknown, reltype_rel, reltype_rela, reltype_relr } relocation_type; /* Versioned symbol info. */ enum versioned_symbol_info { symbol_undefined, symbol_hidden, symbol_public }; static int fseek64 (FILE *stream, int64_t offset, int whence) { #if defined (HAVE_FSEEKO64) off64_t o = offset; if (o != offset) { errno = EINVAL; return -1; } return fseeko64 (stream, o, whence); #elif defined (HAVE_FSEEKO) off_t o = offset; if (o != offset) { errno = EINVAL; return -1; } return fseeko (stream, o, whence); #else long o = offset; if (o != offset) { errno = EINVAL; return -1; } return fseek (stream, o, whence); #endif } static const char * get_symbol_version_string (Filedata *, bool, const char *, size_t, unsigned, Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *); #define UNKNOWN -1 static inline const char * section_name (const Filedata *filedata, const Elf_Internal_Shdr *hdr) { return filedata->string_table + hdr->sh_name; } static inline bool section_name_valid (const Filedata *filedata, const Elf_Internal_Shdr *hdr) { return (filedata != NULL && hdr != NULL && filedata->string_table != NULL && hdr->sh_name < filedata->string_table_length); } /* Returns true if the given index is real/valid. Note: "real" here means "references a real section in the section header" and not "is a valid section index as per the ELF standard". */ static inline bool section_index_real (const Filedata *filedata, unsigned int ndx) { return (filedata != NULL && filedata->section_headers != NULL && ndx < filedata->file_header.e_shnum && ndx > 0); } #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */ static inline bool valid_symbol_name (const char *strtab, size_t strtab_size, uint64_t offset) { return strtab != NULL && offset < strtab_size; } static inline bool valid_dynamic_name (const Filedata *filedata, uint64_t offset) { return valid_symbol_name (filedata->dynamic_strings, filedata->dynamic_strings_length, offset); } /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has already been called and verified that the string exists. */ static inline const char * get_dynamic_name (const Filedata *filedata, size_t offset) { return filedata->dynamic_strings + offset; } #define REMOVE_ARCH_BITS(ADDR) \ do \ { \ if (filedata->file_header.e_machine == EM_ARM) \ (ADDR) &= ~1; \ } \ while (0) /* Get the correct GNU hash section name. */ #define GNU_HASH_SECTION_NAME(filedata) \ filedata->dynamic_info_DT_MIPS_XHASH ? ".MIPS.xhash" : ".gnu.hash" /* Retrieve NMEMB structures, each SIZE bytes long from FILEDATA starting at OFFSET + the offset of the current archive member, if we are examining an archive. Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer using malloc and fill that. In either case return the pointer to the start of the retrieved data or NULL if something went wrong. If something does go wrong and REASON is not NULL then emit an error message using REASON as part of the context. */ static void * get_data (void *var, Filedata *filedata, uint64_t offset, uint64_t size, uint64_t nmemb, const char *reason) { void * mvar; uint64_t amt = size * nmemb; if (size == 0 || nmemb == 0) return NULL; /* If size_t is smaller than uint64_t, eg because you are building on a 32-bit host, then make sure that when the sizes are cast to size_t no information is lost. */ if ((size_t) size != size || (size_t) nmemb != nmemb || (size_t) amt != amt || amt / size != nmemb || (size_t) amt + 1 == 0) { if (reason) error (_("Size overflow prevents reading %" PRIu64 " elements of size %" PRIu64 " for %s\n"), nmemb, size, reason); return NULL; } /* Be kind to memory checkers (eg valgrind, address sanitizer) by not attempting to allocate memory when the read is bound to fail. */ if (filedata->archive_file_offset > filedata->file_size || offset > filedata->file_size - filedata->archive_file_offset || amt > filedata->file_size - filedata->archive_file_offset - offset) { if (reason) error (_("Reading %" PRIu64 " bytes extends past end of file for %s\n"), amt, reason); return NULL; } if (fseek64 (filedata->handle, filedata->archive_file_offset + offset, SEEK_SET)) { if (reason) error (_("Unable to seek to %#" PRIx64 " for %s\n"), filedata->archive_file_offset + offset, reason); return NULL; } mvar = var; if (mvar == NULL) { /* + 1 so that we can '\0' terminate invalid string table sections. */ mvar = malloc ((size_t) amt + 1); if (mvar == NULL) { if (reason) error (_("Out of memory allocating %" PRIu64 " bytes for %s\n"), amt, reason); return NULL; } ((char *) mvar)[amt] = '\0'; } if (fread (mvar, (size_t) size, (size_t) nmemb, filedata->handle) != nmemb) { if (reason) error (_("Unable to read in %" PRIu64 " bytes of %s\n"), amt, reason); if (mvar != var) free (mvar); return NULL; } return mvar; } /* Print a VMA value in the MODE specified. Returns the number of characters displayed. */ static unsigned int print_vma (uint64_t vma, print_mode mode) { unsigned int nc = 0; switch (mode) { case FULL_HEX: nc = printf ("0x"); /* Fall through. */ case LONG_HEX: if (!is_32bit_elf) return nc + printf ("%16.16" PRIx64, vma); return nc + printf ("%8.8" PRIx64, vma); case DEC_5: if (vma <= 99999) return printf ("%5" PRId64, vma); /* Fall through. */ case PREFIX_HEX: nc = printf ("0x"); /* Fall through. */ case HEX: return nc + printf ("%" PRIx64, vma); case PREFIX_HEX_5: nc = printf ("0x"); /* Fall through. */ case HEX_5: return nc + printf ("%05" PRIx64, vma); case DEC: return printf ("%" PRId64, vma); case UNSIGNED: return printf ("%" PRIu64, vma); case UNSIGNED_5: return printf ("%5" PRIu64, vma); case OCTAL: return printf ("%" PRIo64, vma); case OCTAL_5: return printf ("%5" PRIo64, vma); default: /* FIXME: Report unrecognised mode ? */ return 0; } } /* Display a symbol on stdout. Handles the display of control characters and multibye characters (assuming the host environment supports them). Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide or extra_sym_info is true. If truncation will happen and do_not_show_symbol_truncation is FALSE then display abs(WIDTH) - 5 characters followed by "[...]". If WIDTH is negative then ensure that the output is at least (- WIDTH) characters, padding as necessary. Returns the number of emitted characters. */ static unsigned int print_symbol_name (signed int width, const char * symbol) { bool extra_padding = false; bool do_dots = false; signed int num_printed = 0; #ifdef HAVE_MBSTATE_T mbstate_t state; #endif unsigned int width_remaining; const void * alloced_symbol = NULL; if (width < 0) { /* Keep the width positive. This helps the code below. */ width = - width; extra_padding = true; } else if (width == 0) return 0; if (do_wide || extra_sym_info) /* Set the remaining width to a very large value. This simplifies the code below. */ width_remaining = INT_MAX; else { width_remaining = width; if (! do_not_show_symbol_truncation && (int) strlen (symbol) > width) { width_remaining -= 5; if ((int) width_remaining < 0) width_remaining = 0; do_dots = true; } } #ifdef HAVE_MBSTATE_T /* Initialise the multibyte conversion state. */ memset (& state, 0, sizeof (state)); #endif if (do_demangle && *symbol) { const char * res = cplus_demangle (symbol, demangle_flags); if (res != NULL) alloced_symbol = symbol = res; } while (width_remaining) { size_t n; const char c = *symbol++; if (c == 0) break; if (ISPRINT (c)) { putchar (c); width_remaining --; num_printed ++; } else if (ISCNTRL (c)) { /* Do not print control characters directly as they can affect terminal settings. Such characters usually appear in the names generated by the assembler for local labels. */ if (width_remaining < 2) break; printf ("^%c", c + 0x40); width_remaining -= 2; num_printed += 2; } else if (c == 0x7f) { if (width_remaining < 5) break; printf (""); width_remaining -= 5; num_printed += 5; } else if (unicode_display != unicode_locale && unicode_display != unicode_default) { /* Display unicode characters as something else. */ unsigned char bytes[4]; bool is_utf8; unsigned int nbytes; bytes[0] = c; if (bytes[0] < 0xc0) { nbytes = 1; is_utf8 = false; } else { bytes[1] = *symbol++; if ((bytes[1] & 0xc0) != 0x80) { is_utf8 = false; /* Do not consume this character. It may only be the first byte in the sequence that was corrupt. */ --symbol; nbytes = 1; } else if ((bytes[0] & 0x20) == 0) { is_utf8 = true; nbytes = 2; } else { bytes[2] = *symbol++; if ((bytes[2] & 0xc0) != 0x80) { is_utf8 = false; symbol -= 2; nbytes = 1; } else if ((bytes[0] & 0x10) == 0) { is_utf8 = true; nbytes = 3; } else { bytes[3] = *symbol++; nbytes = 4; if ((bytes[3] & 0xc0) != 0x80) { is_utf8 = false; symbol -= 3; nbytes = 1; } else is_utf8 = true; } } } if (unicode_display == unicode_invalid) is_utf8 = false; if (unicode_display == unicode_hex || ! is_utf8) { unsigned int i; if (width_remaining < (nbytes * 2) + 2) break; putchar (is_utf8 ? '<' : '{'); printf ("0x"); for (i = 0; i < nbytes; i++) printf ("%02x", bytes[i]); putchar (is_utf8 ? '>' : '}'); } else { if (unicode_display == unicode_highlight && isatty (1)) printf ("\x1B[31;47m"); /* Red. */ switch (nbytes) { case 2: if (width_remaining < 6) break; printf ("\\u%02x%02x", (bytes[0] & 0x1c) >> 2, ((bytes[0] & 0x03) << 6) | (bytes[1] & 0x3f)); break; case 3: if (width_remaining < 6) break; printf ("\\u%02x%02x", ((bytes[0] & 0x0f) << 4) | ((bytes[1] & 0x3c) >> 2), ((bytes[1] & 0x03) << 6) | (bytes[2] & 0x3f)); break; case 4: if (width_remaining < 8) break; printf ("\\u%02x%02x%02x", ((bytes[0] & 0x07) << 6) | ((bytes[1] & 0x3c) >> 2), ((bytes[1] & 0x03) << 6) | ((bytes[2] & 0x3c) >> 2), ((bytes[2] & 0x03) << 6) | (bytes[3] & 0x3f)); break; default: /* URG. */ break; } if (unicode_display == unicode_highlight && isatty (1)) printf ("\033[0m"); /* Default colour. */ } if (bytes[nbytes - 1] == 0) break; } else { #ifdef HAVE_MBSTATE_T wchar_t w; #endif /* Let printf do the hard work of displaying multibyte characters. */ printf ("%.1s", symbol - 1); width_remaining --; num_printed ++; #ifdef HAVE_MBSTATE_T /* Try to find out how many bytes made up the character that was just printed. Advance the symbol pointer past the bytes that were displayed. */ n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state); #else n = 1; #endif if (n != (size_t) -1 && n != (size_t) -2 && n > 0) symbol += (n - 1); } } if (do_dots) num_printed += printf ("[...]"); if (extra_padding && num_printed < width) { /* Fill in the remaining spaces. */ printf ("%-*s", width - num_printed, " "); num_printed = width; } free ((void *) alloced_symbol); return num_printed; } /* Returns a pointer to a static buffer containing a printable version of the given section's name. Like print_symbol, except that it does not try to print multibyte characters, it just interprets them as hex values. */ static const char * printable_section_name (Filedata * filedata, const Elf_Internal_Shdr * sec) { #define NUM_SEC_NAME_BUFS 5 #define MAX_PRINT_SEC_NAME_LEN 256 static int sec_name_buf_index = 0; /* We use a rotating array of static buffers, so that multiple successive calls to printable_section_name() will still work. eg when used in a printf. */ static char sec_name_buf [NUM_SEC_NAME_BUFS][MAX_PRINT_SEC_NAME_LEN + 1]; const char * name; char * buf; char * buf_start; char c; unsigned int remaining = MAX_PRINT_SEC_NAME_LEN; /* Validate the input parameters. */ if (filedata == NULL) return _(""); if (sec == NULL) return _(""); if (filedata->string_table == NULL) return _(""); if (sec->sh_name >= filedata->string_table_length) return _(""); /* Select a buffer to use. */ buf_start = buf = sec_name_buf[sec_name_buf_index]; if (++sec_name_buf_index >= NUM_SEC_NAME_BUFS) sec_name_buf_index = 0; name = section_name (filedata, sec); while ((c = * name ++) != 0) { if (ISCNTRL (c)) { if (remaining < 2) break; * buf ++ = '^'; * buf ++ = c + 0x40; remaining -= 2; } else if (ISPRINT (c)) { * buf ++ = c; remaining -= 1; } else { static char hex[17] = "0123456789ABCDEF"; if (remaining < 4) break; * buf ++ = '<'; * buf ++ = hex[(c & 0xf0) >> 4]; * buf ++ = hex[c & 0x0f]; * buf ++ = '>'; remaining -= 4; } if (remaining == 0) break; } * buf = 0; return buf_start; } /* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI. This OS has so many departures from the ELF standard that we test it at many places. */ static inline bool is_ia64_vms (Filedata * filedata) { return filedata->file_header.e_machine == EM_IA_64 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS; } static const char * printable_section_name_from_index (Filedata * filedata, size_t ndx, bool * is_special) { if (is_special != NULL) * is_special = true; switch (ndx) { case SHN_UNDEF: return "UND"; case SHN_ABS: return "ABS"; case SHN_COMMON: return "COM"; break; } if (filedata != NULL) { switch (filedata->file_header.e_machine) { case EM_MIPS: if (ndx == SHN_MIPS_SCOMMON) return "SCOMMON"; if (ndx == SHN_MIPS_SUNDEFINED) return "SUNDEF"; break; case EM_TI_C6000: if (ndx == SHN_TIC6X_SCOMMON) return "SCOM"; break; case EM_X86_64: case EM_L1OM: case EM_K1OM: if (ndx == SHN_X86_64_LCOMMON) return "LARGE_COM"; break; case EM_IA_64: if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_HPUX && ndx == SHN_IA_64_ANSI_COMMON) return "ANSI_COM"; if (is_ia64_vms (filedata) && ndx == SHN_IA_64_VMS_SYMVEC) return "VMS_SYMVEC"; break; default: break; } if (filedata->section_headers != NULL && ndx < filedata->file_header.e_shnum) { const char * res; res = printable_section_name (filedata, filedata->section_headers + ndx); if (is_special != NULL) * is_special = (res[0] == '<'); return res; } } static char name_buf[40]; unsigned int short_ndx = (unsigned int) (ndx & 0xffff); if (ndx >= SHN_LOPROC && ndx <= SHN_HIPROC) sprintf (name_buf, "PRC[0x%04x]", short_ndx); else if (ndx >= SHN_LOOS && ndx <= SHN_HIOS) sprintf (name_buf, "OS [0x%04x]", short_ndx); else if (ndx >= SHN_LORESERVE) sprintf (name_buf, "RSV[0x%04x]", short_ndx); else if (filedata->file_header.e_shnum != 0 && ndx >= filedata->file_header.e_shnum) sprintf (name_buf, _("BAD[0x%lx]"), (long) ndx); else sprintf (name_buf, "
", (long) ndx); return name_buf; } /* Return a pointer to section NAME, or NULL if no such section exists. */ static Elf_Internal_Shdr * find_section (Filedata * filedata, const char * name) { unsigned int i; if (filedata->section_headers == NULL) return NULL; for (i = 0; i < filedata->file_header.e_shnum; i++) if (section_name_valid (filedata, filedata->section_headers + i) && streq (section_name (filedata, filedata->section_headers + i), name)) return filedata->section_headers + i; return NULL; } /* Return a pointer to a section containing ADDR, or NULL if no such section exists. */ static Elf_Internal_Shdr * find_section_by_address (Filedata * filedata, uint64_t addr) { unsigned int i; if (filedata->section_headers == NULL) return NULL; for (i = 0; i < filedata->file_header.e_shnum; i++) { Elf_Internal_Shdr *sec = filedata->section_headers + i; if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size) return sec; } return NULL; } static Elf_Internal_Shdr * find_section_by_type (Filedata * filedata, unsigned int type) { unsigned int i; if (filedata->section_headers == NULL) return NULL; for (i = 0; i < filedata->file_header.e_shnum; i++) { Elf_Internal_Shdr *sec = filedata->section_headers + i; if (sec->sh_type == type) return sec; } return NULL; } /* Return a pointer to section NAME, or NULL if no such section exists, restricted to the list of sections given in SET. */ static Elf_Internal_Shdr * find_section_in_set (Filedata * filedata, const char * name, unsigned int * set) { unsigned int i; if (filedata->section_headers == NULL) return NULL; if (set != NULL) { while ((i = *set++) > 0) { /* See PR 21156 for a reproducer. */ if (i >= filedata->file_header.e_shnum) continue; /* FIXME: Should we issue an error message ? */ if (section_name_valid (filedata, filedata->section_headers + i) && streq (section_name (filedata, filedata->section_headers + i), name)) return filedata->section_headers + i; } } return find_section (filedata, name); } /* Guess the relocation size commonly used by the specific machines. */ static bool guess_is_rela (unsigned int e_machine) { switch (e_machine) { /* Targets that use REL relocations. */ case EM_386: case EM_IAMCU: case EM_960: case EM_ARM: case EM_D10V: case EM_CYGNUS_D10V: case EM_DLX: case EM_MIPS: case EM_MIPS_RS3_LE: case EM_CYGNUS_M32R: case EM_SCORE: case EM_XGATE: case EM_NFP: case EM_BPF: return false; /* Targets that use RELA relocations. */ case EM_68K: case EM_860: case EM_AARCH64: case EM_ADAPTEVA_EPIPHANY: case EM_ALPHA: case EM_ALTERA_NIOS2: case EM_ARC: case EM_ARC_COMPACT: case EM_ARC_COMPACT2: case EM_ARC_COMPACT3: case EM_ARC_COMPACT3_64: case EM_AVR: case EM_AVR_OLD: case EM_BLACKFIN: case EM_CR16: case EM_CRIS: case EM_CRX: case EM_CSKY: case EM_D30V: case EM_CYGNUS_D30V: case EM_FR30: case EM_FT32: case EM_CYGNUS_FR30: case EM_CYGNUS_FRV: case EM_H8S: case EM_H8_300: case EM_H8_300H: case EM_IA_64: case EM_IP2K: case EM_IP2K_OLD: case EM_IQ2000: case EM_KVX: case EM_LATTICEMICO32: case EM_M32C_OLD: case EM_M32C: case EM_M32R: case EM_MCORE: case EM_CYGNUS_MEP: case EM_METAG: case EM_MMIX: case EM_MN10200: case EM_CYGNUS_MN10200: case EM_MN10300: case EM_CYGNUS_MN10300: case EM_MOXIE: case EM_MSP430: case EM_MSP430_OLD: case EM_MT: case EM_NDS32: case EM_NIOS32: case EM_OR1K: case EM_PPC64: case EM_PPC: case EM_TI_PRU: case EM_RISCV: case EM_RL78: case EM_RX: case EM_S390: case EM_S390_OLD: case EM_SH: case EM_SPARC: case EM_SPARC32PLUS: case EM_SPARCV9: case EM_SPU: case EM_TI_C6000: case EM_TILEGX: case EM_TILEPRO: case EM_V800: case EM_V850: case EM_CYGNUS_V850: case EM_VAX: case EM_VISIUM: case EM_X86_64: case EM_L1OM: case EM_K1OM: case EM_XSTORMY16: case EM_XTENSA: case EM_XTENSA_OLD: case EM_MICROBLAZE: case EM_MICROBLAZE_OLD: case EM_WEBASSEMBLY: return true; case EM_68HC05: case EM_68HC08: case EM_68HC11: case EM_68HC16: case EM_FX66: case EM_ME16: case EM_MMA: case EM_NCPU: case EM_NDR1: case EM_PCP: case EM_ST100: case EM_ST19: case EM_ST7: case EM_ST9PLUS: case EM_STARCORE: case EM_SVX: case EM_TINYJ: default: warn (_("Don't know about relocations on this machine architecture\n")); return false; } } /* Load RELA type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes. Returns TRUE upon success, FALSE otherwise. If successful then a pointer to a malloc'ed buffer containing the relocs is placed in *RELASP, and the number of relocs loaded is placed in *NRELASP. It is the caller's responsibility to free the allocated buffer. */ static bool slurp_rela_relocs (Filedata *filedata, uint64_t rel_offset, uint64_t rel_size, Elf_Internal_Rela **relasp, uint64_t *nrelasp) { Elf_Internal_Rela * relas; uint64_t nrelas; unsigned int i; if (is_32bit_elf) { Elf32_External_Rela * erelas; erelas = (Elf32_External_Rela *) get_data (NULL, filedata, rel_offset, 1, rel_size, _("32-bit relocation data")); if (!erelas) return false; nrelas = rel_size / sizeof (Elf32_External_Rela); relas = (Elf_Internal_Rela *) cmalloc (nrelas, sizeof (Elf_Internal_Rela)); if (relas == NULL) { free (erelas); error (_("out of memory parsing relocs\n")); return false; } for (i = 0; i < nrelas; i++) { relas[i].r_offset = BYTE_GET (erelas[i].r_offset); relas[i].r_info = BYTE_GET (erelas[i].r_info); relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend); } free (erelas); } else { Elf64_External_Rela * erelas; erelas = (Elf64_External_Rela *) get_data (NULL, filedata, rel_offset, 1, rel_size, _("64-bit relocation data")); if (!erelas) return false; nrelas = rel_size / sizeof (Elf64_External_Rela); relas = (Elf_Internal_Rela *) cmalloc (nrelas, sizeof (Elf_Internal_Rela)); if (relas == NULL) { free (erelas); error (_("out of memory parsing relocs\n")); return false; } for (i = 0; i < nrelas; i++) { relas[i].r_offset = BYTE_GET (erelas[i].r_offset); relas[i].r_info = BYTE_GET (erelas[i].r_info); relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend); if (filedata->file_header.e_machine == EM_MIPS && filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB) { /* In little-endian objects, r_info isn't really a 64-bit little-endian value: it has a 32-bit little-endian symbol index followed by four individual byte fields. Reorder INFO accordingly. */ uint64_t inf = relas[i].r_info; inf = (((inf & 0xffffffff) << 32) | ((inf >> 56) & 0xff) | ((inf >> 40) & 0xff00) | ((inf >> 24) & 0xff0000) | ((inf >> 8) & 0xff000000)); relas[i].r_info = inf; } } free (erelas); } *relasp = relas; *nrelasp = nrelas; return true; } /* Load REL type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes. Returns TRUE upon success, FALSE otherwise. If successful then a pointer to a malloc'ed buffer containing the relocs is placed in *RELSP, and the number of relocs loaded is placed in *NRELSP. It is the caller's responsibility to free the allocated buffer. */ static bool slurp_rel_relocs (Filedata *filedata, uint64_t rel_offset, uint64_t rel_size, Elf_Internal_Rela **relsp, uint64_t *nrelsp) { Elf_Internal_Rela * rels; uint64_t nrels; unsigned int i; if (is_32bit_elf) { Elf32_External_Rel * erels; erels = (Elf32_External_Rel *) get_data (NULL, filedata, rel_offset, 1, rel_size, _("32-bit relocation data")); if (!erels) return false; nrels = rel_size / sizeof (Elf32_External_Rel); rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela)); if (rels == NULL) { free (erels); error (_("out of memory parsing relocs\n")); return false; } for (i = 0; i < nrels; i++) { rels[i].r_offset = BYTE_GET (erels[i].r_offset); rels[i].r_info = BYTE_GET (erels[i].r_info); rels[i].r_addend = 0; } free (erels); } else { Elf64_External_Rel * erels; erels = (Elf64_External_Rel *) get_data (NULL, filedata, rel_offset, 1, rel_size, _("64-bit relocation data")); if (!erels) return false; nrels = rel_size / sizeof (Elf64_External_Rel); rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela)); if (rels == NULL) { free (erels); error (_("out of memory parsing relocs\n")); return false; } for (i = 0; i < nrels; i++) { rels[i].r_offset = BYTE_GET (erels[i].r_offset); rels[i].r_info = BYTE_GET (erels[i].r_info); rels[i].r_addend = 0; if (filedata->file_header.e_machine == EM_MIPS && filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB) { /* In little-endian objects, r_info isn't really a 64-bit little-endian value: it has a 32-bit little-endian symbol index followed by four individual byte fields. Reorder INFO accordingly. */ uint64_t inf = rels[i].r_info; inf = (((inf & 0xffffffff) << 32) | ((inf >> 56) & 0xff) | ((inf >> 40) & 0xff00) | ((inf >> 24) & 0xff0000) | ((inf >> 8) & 0xff000000)); rels[i].r_info = inf; } } free (erels); } *relsp = rels; *nrelsp = nrels; return true; } static bool slurp_relr_relocs (Filedata *filedata, uint64_t relr_offset, uint64_t relr_size, uint64_t **relrsp, uint64_t *nrelrsp) { void *relrs; size_t size = 0, nentries, i; uint64_t base = 0, addr, entry; relrs = get_data (NULL, filedata, relr_offset, 1, relr_size, _("RELR relocation data")); if (!relrs) return false; if (is_32bit_elf) nentries = relr_size / sizeof (Elf32_External_Relr); else nentries = relr_size / sizeof (Elf64_External_Relr); for (i = 0; i < nentries; i++) { if (is_32bit_elf) entry = BYTE_GET (((Elf32_External_Relr *)relrs)[i].r_data); else entry = BYTE_GET (((Elf64_External_Relr *)relrs)[i].r_data); if ((entry & 1) == 0) size++; else while ((entry >>= 1) != 0) if ((entry & 1) == 1) size++; } *relrsp = malloc (size * sizeof (**relrsp)); if (*relrsp == NULL) { free (relrs); error (_("out of memory parsing relocs\n")); return false; } size = 0; for (i = 0; i < nentries; i++) { const uint64_t entry_bytes = is_32bit_elf ? 4 : 8; if (is_32bit_elf) entry = BYTE_GET (((Elf32_External_Relr *)relrs)[i].r_data); else entry = BYTE_GET (((Elf64_External_Relr *)relrs)[i].r_data); if ((entry & 1) == 0) { (*relrsp)[size++] = entry; base = entry + entry_bytes; } else { for (addr = base; (entry >>= 1) != 0; addr += entry_bytes) if ((entry & 1) != 0) (*relrsp)[size++] = addr; base += entry_bytes * (entry_bytes * CHAR_BIT - 1); } } *nrelrsp = size; free (relrs); return true; } /* Returns the reloc type extracted from the reloc info field. */ static unsigned int get_reloc_type (Filedata * filedata, uint64_t reloc_info) { if (is_32bit_elf) return ELF32_R_TYPE (reloc_info); switch (filedata->file_header.e_machine) { case EM_MIPS: /* Note: We assume that reloc_info has already been adjusted for us. */ return ELF64_MIPS_R_TYPE (reloc_info); case EM_SPARCV9: return ELF64_R_TYPE_ID (reloc_info); default: return ELF64_R_TYPE (reloc_info); } } /* Return the symbol index extracted from the reloc info field. */ static uint64_t get_reloc_symindex (uint64_t reloc_info) { return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info); } static inline bool uses_msp430x_relocs (Filedata * filedata) { return filedata->file_header.e_machine == EM_MSP430 /* Paranoia. */ /* GCC uses osabi == ELFOSBI_STANDALONE. */ && (((filedata->file_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X) /* TI compiler uses ELFOSABI_NONE. */ || (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_NONE)); } /* Display the contents of the relocation data found at the specified offset. */ static bool dump_relocations (Filedata *filedata, uint64_t rel_offset, uint64_t rel_size, Elf_Internal_Sym *symtab, uint64_t nsyms, char *strtab, uint64_t strtablen, relocation_type rel_type, bool is_dynsym) { size_t i; Elf_Internal_Rela * rels; bool res = true; if (rel_type == reltype_unknown) rel_type = guess_is_rela (filedata->file_header.e_machine) ? reltype_rela : reltype_rel; if (rel_type == reltype_rela) { if (!slurp_rela_relocs (filedata, rel_offset, rel_size, &rels, &rel_size)) return false; } else if (rel_type == reltype_rel) { if (!slurp_rel_relocs (filedata, rel_offset, rel_size, &rels, &rel_size)) return false; } else if (rel_type == reltype_relr) { uint64_t * relrs; const char *format = is_32bit_elf ? "%08" PRIx64 "\n" : "%016" PRIx64 "\n"; if (!slurp_relr_relocs (filedata, rel_offset, rel_size, &relrs, &rel_size)) return false; printf (ngettext (" %" PRIu64 " offset\n", " %" PRIu64 " offsets\n", rel_size), rel_size); for (i = 0; i < rel_size; i++) printf (format, relrs[i]); free (relrs); return true; } if (is_32bit_elf) { if (rel_type == reltype_rela) { if (do_wide) printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n")); else printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n")); } else { if (do_wide) printf (_(" Offset Info Type Sym. Value Symbol's Name\n")); else printf (_(" Offset Info Type Sym.Value Sym. Name\n")); } } else { if (rel_type == reltype_rela) { if (do_wide) printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n")); else printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n")); } else { if (do_wide) printf (_(" Offset Info Type Symbol's Value Symbol's Name\n")); else printf (_(" Offset Info Type Sym. Value Sym. Name\n")); } } for (i = 0; i < rel_size; i++) { const char * rtype; uint64_t offset; uint64_t inf; uint64_t symtab_index; uint64_t type; offset = rels[i].r_offset; inf = rels[i].r_info; type = get_reloc_type (filedata, inf); symtab_index = get_reloc_symindex (inf); if (is_32bit_elf) { printf ("%8.8lx %8.8lx ", (unsigned long) offset & 0xffffffff, (unsigned long) inf & 0xffffffff); } else { printf (do_wide ? "%16.16" PRIx64 " %16.16" PRIx64 " " : "%12.12" PRIx64 " %12.12" PRIx64 " ", offset, inf); } switch (filedata->file_header.e_machine) { default: rtype = NULL; break; case EM_AARCH64: rtype = elf_aarch64_reloc_type (type); break; case EM_M32R: case EM_CYGNUS_M32R: rtype = elf_m32r_reloc_type (type); break; case EM_386: case EM_IAMCU: rtype = elf_i386_reloc_type (type); break; case EM_68HC11: case EM_68HC12: rtype = elf_m68hc11_reloc_type (type); break; case EM_S12Z: rtype = elf_s12z_reloc_type (type); break; case EM_68K: rtype = elf_m68k_reloc_type (type); break; case EM_960: rtype = elf_i960_reloc_type (type); break; case EM_AVR: case EM_AVR_OLD: rtype = elf_avr_reloc_type (type); break; case EM_OLD_SPARCV9: case EM_SPARC32PLUS: case EM_SPARCV9: case EM_SPARC: rtype = elf_sparc_reloc_type (type); break; case EM_SPU: rtype = elf_spu_reloc_type (type); break; case EM_V800: rtype = v800_reloc_type (type); break; case EM_V850: case EM_CYGNUS_V850: rtype = v850_reloc_type (type); break; case EM_D10V: case EM_CYGNUS_D10V: rtype = elf_d10v_reloc_type (type); break; case EM_D30V: case EM_CYGNUS_D30V: rtype = elf_d30v_reloc_type (type); break; case EM_DLX: rtype = elf_dlx_reloc_type (type); break; case EM_SH: rtype = elf_sh_reloc_type (type); break; case EM_MN10300: case EM_CYGNUS_MN10300: rtype = elf_mn10300_reloc_type (type); break; case EM_MN10200: case EM_CYGNUS_MN10200: rtype = elf_mn10200_reloc_type (type); break; case EM_FR30: case EM_CYGNUS_FR30: rtype = elf_fr30_reloc_type (type); break; case EM_CYGNUS_FRV: rtype = elf_frv_reloc_type (type); break; case EM_CSKY: rtype = elf_csky_reloc_type (type); break; case EM_FT32: rtype = elf_ft32_reloc_type (type); break; case EM_MCORE: rtype = elf_mcore_reloc_type (type); break; case EM_MMIX: rtype = elf_mmix_reloc_type (type); break; case EM_MOXIE: rtype = elf_moxie_reloc_type (type); break; case EM_MSP430: if (uses_msp430x_relocs (filedata)) { rtype = elf_msp430x_reloc_type (type); break; } /* Fall through. */ case EM_MSP430_OLD: rtype = elf_msp430_reloc_type (type); break; case EM_NDS32: rtype = elf_nds32_reloc_type (type); break; case EM_PPC: rtype = elf_ppc_reloc_type (type); break; case EM_PPC64: rtype = elf_ppc64_reloc_type (type); break; case EM_MIPS: case EM_MIPS_RS3_LE: rtype = elf_mips_reloc_type (type); break; case EM_RISCV: rtype = elf_riscv_reloc_type (type); break; case EM_ALPHA: rtype = elf_alpha_reloc_type (type); break; case EM_ARM: rtype = elf_arm_reloc_type (type); break; case EM_ARC: case EM_ARC_COMPACT: case EM_ARC_COMPACT2: case EM_ARC_COMPACT3: case EM_ARC_COMPACT3_64: rtype = elf_arc_reloc_type (type); break; case EM_PARISC: rtype = elf_hppa_reloc_type (type); break; case EM_H8_300: case EM_H8_300H: case EM_H8S: rtype = elf_h8_reloc_type (type); break; case EM_OR1K: rtype = elf_or1k_reloc_type (type); break; case EM_PJ: case EM_PJ_OLD: rtype = elf_pj_reloc_type (type); break; case EM_IA_64: rtype = elf_ia64_reloc_type (type); break; case EM_KVX: rtype = elf_kvx_reloc_type (type); break; case EM_CRIS: rtype = elf_cris_reloc_type (type); break; case EM_860: rtype = elf_i860_reloc_type (type); break; case EM_X86_64: case EM_L1OM: case EM_K1OM: rtype = elf_x86_64_reloc_type (type); break; case EM_S370: rtype = i370_reloc_type (type); break; case EM_S390_OLD: case EM_S390: rtype = elf_s390_reloc_type (type); break; case EM_SCORE: rtype = elf_score_reloc_type (type); break; case EM_XSTORMY16: rtype = elf_xstormy16_reloc_type (type); break; case EM_CRX: rtype = elf_crx_reloc_type (type); break; case EM_VAX: rtype = elf_vax_reloc_type (type); break; case EM_VISIUM: rtype = elf_visium_reloc_type (type); break; case EM_BPF: rtype = elf_bpf_reloc_type (type); break; case EM_ADAPTEVA_EPIPHANY: rtype = elf_epiphany_reloc_type (type); break; case EM_IP2K: case EM_IP2K_OLD: rtype = elf_ip2k_reloc_type (type); break; case EM_IQ2000: rtype = elf_iq2000_reloc_type (type); break; case EM_XTENSA_OLD: case EM_XTENSA: rtype = elf_xtensa_reloc_type (type); break; case EM_LATTICEMICO32: rtype = elf_lm32_reloc_type (type); break; case EM_M32C_OLD: case EM_M32C: rtype = elf_m32c_reloc_type (type); break; case EM_MT: rtype = elf_mt_reloc_type (type); break; case EM_BLACKFIN: rtype = elf_bfin_reloc_type (type); break; case EM_CYGNUS_MEP: rtype = elf_mep_reloc_type (type); break; case EM_CR16: rtype = elf_cr16_reloc_type (type); break; case EM_MICROBLAZE: case EM_MICROBLAZE_OLD: rtype = elf_microblaze_reloc_type (type); break; case EM_RL78: rtype = elf_rl78_reloc_type (type); break; case EM_RX: rtype = elf_rx_reloc_type (type); break; case EM_METAG: rtype = elf_metag_reloc_type (type); break; case EM_TI_C6000: rtype = elf_tic6x_reloc_type (type); break; case EM_TILEGX: rtype = elf_tilegx_reloc_type (type); break; case EM_TILEPRO: rtype = elf_tilepro_reloc_type (type); break; case EM_WEBASSEMBLY: rtype = elf_wasm32_reloc_type (type); break; case EM_XGATE: rtype = elf_xgate_reloc_type (type); break; case EM_ALTERA_NIOS2: rtype = elf_nios2_reloc_type (type); break; case EM_TI_PRU: rtype = elf_pru_reloc_type (type); break; case EM_NFP: if (EF_NFP_MACH (filedata->file_header.e_flags) == E_NFP_MACH_3200) rtype = elf_nfp3200_reloc_type (type); else rtype = elf_nfp_reloc_type (type); break; case EM_Z80: rtype = elf_z80_reloc_type (type); break; case EM_LOONGARCH: rtype = elf_loongarch_reloc_type (type); break; case EM_AMDGPU: rtype = elf_amdgpu_reloc_type (type); break; } if (rtype == NULL) printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff); else printf (do_wide ? "%-22s" : "%-17.17s", rtype); if (filedata->file_header.e_machine == EM_ALPHA && rtype != NULL && streq (rtype, "R_ALPHA_LITUSE") && rel_type == reltype_rela) { switch (rels[i].r_addend) { case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break; case LITUSE_ALPHA_BASE: rtype = "BASE"; break; case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break; case LITUSE_ALPHA_JSR: rtype = "JSR"; break; case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break; case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break; case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break; default: rtype = NULL; } if (rtype) printf (" (%s)", rtype); else { putchar (' '); printf (_(""), rels[i].r_addend); res = false; } } else if (symtab_index) { if (symtab == NULL || symtab_index >= nsyms) { error (_(" bad symbol index: %08lx in reloc\n"), (unsigned long) symtab_index); res = false; } else { Elf_Internal_Sym * psym; const char * version_string; enum versioned_symbol_info sym_info; unsigned short vna_other; psym = symtab + symtab_index; version_string = get_symbol_version_string (filedata, is_dynsym, strtab, strtablen, symtab_index, psym, &sym_info, &vna_other); printf (" "); if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC) { const char * name; unsigned int len; unsigned int width = is_32bit_elf ? 8 : 14; /* Relocations against GNU_IFUNC symbols do not use the value of the symbol as the address to relocate against. Instead they invoke the function named by the symbol and use its result as the address for relocation. To indicate this to the user, do not display the value of the symbol in the "Symbols's Value" field. Instead show its name followed by () as a hint that the symbol is invoked. */ if (strtab == NULL || psym->st_name == 0 || psym->st_name >= strtablen) name = "??"; else name = strtab + psym->st_name; len = print_symbol_name (width, name); if (version_string) printf (sym_info == symbol_public ? "@@%s" : "@%s", version_string); printf ("()%-*s", len <= width ? (width + 1) - len : 1, " "); } else { print_vma (psym->st_value, LONG_HEX); printf (is_32bit_elf ? " " : " "); } if (psym->st_name == 0) { const char * sec_name = ""; if (ELF_ST_TYPE (psym->st_info) == STT_SECTION) sec_name = printable_section_name_from_index (filedata, psym->st_shndx, NULL); print_symbol_name (22, sec_name); } else if (strtab == NULL) printf (_(""), psym->st_name); else if (psym->st_name >= strtablen) { error (_("\n"), psym->st_name); res = false; } else { print_symbol_name (22, strtab + psym->st_name); if (version_string) printf (sym_info == symbol_public ? "@@%s" : "@%s", version_string); } if (rel_type == reltype_rela) { uint64_t off = rels[i].r_addend; if ((int64_t) off < 0) printf (" - %" PRIx64, -off); else printf (" + %" PRIx64, off); } } } else if (rel_type == reltype_rela) { uint64_t off = rels[i].r_addend; printf ("%*c", is_32bit_elf ? 12 : 20, ' '); if ((int64_t) off < 0) printf ("-%" PRIx64, -off); else printf ("%" PRIx64, off); } if (filedata->file_header.e_machine == EM_SPARCV9 && rtype != NULL && streq (rtype, "R_SPARC_OLO10")) printf (" + %" PRIx64, ELF64_R_TYPE_DATA (inf)); putchar ('\n'); if (! is_32bit_elf && filedata->file_header.e_machine == EM_MIPS) { uint64_t type2 = ELF64_MIPS_R_TYPE2 (inf); uint64_t type3 = ELF64_MIPS_R_TYPE3 (inf); const char * rtype2 = elf_mips_reloc_type (type2); const char * rtype3 = elf_mips_reloc_type (type3); printf (" Type2: "); if (rtype2 == NULL) printf (_("unrecognized: %-7lx"), (unsigned long) type2 & 0xffffffff); else printf ("%-17.17s", rtype2); printf ("\n Type3: "); if (rtype3 == NULL) printf (_("unrecognized: %-7lx"), (unsigned long) type3 & 0xffffffff); else printf ("%-17.17s", rtype3); putchar ('\n'); } } free (rels); return res; } static const char * get_aarch64_dynamic_type (unsigned long type) { switch (type) { case DT_AARCH64_BTI_PLT: return "AARCH64_BTI_PLT"; case DT_AARCH64_PAC_PLT: return "AARCH64_PAC_PLT"; case DT_AARCH64_VARIANT_PCS: return "AARCH64_VARIANT_PCS"; default: return NULL; } } static const char * get_mips_dynamic_type (unsigned long type) { switch (type) { case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION"; case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP"; case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM"; case DT_MIPS_IVERSION: return "MIPS_IVERSION"; case DT_MIPS_FLAGS: return "MIPS_FLAGS"; case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS"; case DT_MIPS_MSYM: return "MIPS_MSYM"; case DT_MIPS_CONFLICT: return "MIPS_CONFLICT"; case DT_MIPS_LIBLIST: return "MIPS_LIBLIST"; case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO"; case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO"; case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO"; case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO"; case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO"; case DT_MIPS_GOTSYM: return "MIPS_GOTSYM"; case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO"; case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP"; case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL"; case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS"; case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO"; case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE"; case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO"; case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC"; case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO"; case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM"; case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO"; case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM"; case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO"; case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS"; case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT"; case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX"; case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX"; case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX"; case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX"; case DT_MIPS_OPTIONS: return "MIPS_OPTIONS"; case DT_MIPS_INTERFACE: return "MIPS_INTERFACE"; case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN"; case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE"; case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR"; case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX"; case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE"; case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE"; case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC"; case DT_MIPS_PLTGOT: return "MIPS_PLTGOT"; case DT_MIPS_RWPLT: return "MIPS_RWPLT"; case DT_MIPS_XHASH: return "MIPS_XHASH"; default: return NULL; } } static const char * get_sparc64_dynamic_type (unsigned long type) { switch (type) { case DT_SPARC_REGISTER: return "SPARC_REGISTER"; default: return NULL; } } static const char * get_ppc_dynamic_type (unsigned long type) { switch (type) { case DT_PPC_GOT: return "PPC_GOT"; case DT_PPC_OPT: return "PPC_OPT"; default: return NULL; } } static const char * get_ppc64_dynamic_type (unsigned long type) { switch (type) { case DT_PPC64_GLINK: return "PPC64_GLINK"; case DT_PPC64_OPD: return "PPC64_OPD"; case DT_PPC64_OPDSZ: return "PPC64_OPDSZ"; case DT_PPC64_OPT: return "PPC64_OPT"; default: return NULL; } } static const char * get_parisc_dynamic_type (unsigned long type) { switch (type) { case DT_HP_LOAD_MAP: return "HP_LOAD_MAP"; case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS"; case DT_HP_DLD_HOOK: return "HP_DLD_HOOK"; case DT_HP_UX10_INIT: return "HP_UX10_INIT"; case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ"; case DT_HP_PREINIT: return "HP_PREINIT"; case DT_HP_PREINITSZ: return "HP_PREINITSZ"; case DT_HP_NEEDED: return "HP_NEEDED"; case DT_HP_TIME_STAMP: return "HP_TIME_STAMP"; case DT_HP_CHECKSUM: return "HP_CHECKSUM"; case DT_HP_GST_SIZE: return "HP_GST_SIZE"; case DT_HP_GST_VERSION: return "HP_GST_VERSION"; case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL"; case DT_HP_EPLTREL: return "HP_GST_EPLTREL"; case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ"; case DT_HP_FILTERED: return "HP_FILTERED"; case DT_HP_FILTER_TLS: return "HP_FILTER_TLS"; case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED"; case DT_HP_LAZYLOAD: return "HP_LAZYLOAD"; case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT"; case DT_PLT: return "PLT"; case DT_PLT_SIZE: return "PLT_SIZE"; case DT_DLT: return "DLT"; case DT_DLT_SIZE: return "DLT_SIZE"; default: return NULL; } } static const char * get_ia64_dynamic_type (unsigned long type) { switch (type) { case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE"; case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE"; case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT"; case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS"; case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ"; case DT_IA_64_VMS_IDENT: return "VMS_IDENT"; case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT"; case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT"; case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT"; case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT"; case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED"; case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT"; case DT_IA_64_VMS_XLATED: return "VMS_XLATED"; case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE"; case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ"; case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG"; case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG"; case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME"; case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO"; case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET"; case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG"; case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET"; case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG"; case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET"; case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET"; case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF"; case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF"; case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF"; case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET"; case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG"; case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE"; default: return NULL; } } static const char * get_solaris_section_type (unsigned long type) { switch (type) { case 0x6fffffee: return "SUNW_ancillary"; case 0x6fffffef: return "SUNW_capchain"; case 0x6ffffff0: return "SUNW_capinfo"; case 0x6ffffff1: return "SUNW_symsort"; case 0x6ffffff2: return "SUNW_tlssort"; case 0x6ffffff3: return "SUNW_LDYNSYM"; case 0x6ffffff4: return "SUNW_dof"; case 0x6ffffff5: return "SUNW_cap"; case 0x6ffffff6: return "SUNW_SIGNATURE"; case 0x6ffffff7: return "SUNW_ANNOTATE"; case 0x6ffffff8: return "SUNW_DEBUGSTR"; case 0x6ffffff9: return "SUNW_DEBUG"; case 0x6ffffffa: return "SUNW_move"; case 0x6ffffffb: return "SUNW_COMDAT"; case 0x6ffffffc: return "SUNW_syminfo"; case 0x6ffffffd: return "SUNW_verdef"; case 0x6ffffffe: return "SUNW_verneed"; case 0x6fffffff: return "SUNW_versym"; case 0x70000000: return "SPARC_GOTDATA"; default: return NULL; } } static const char * get_alpha_dynamic_type (unsigned long type) { switch (type) { case DT_ALPHA_PLTRO: return "ALPHA_PLTRO"; default: return NULL; } } static const char * get_score_dynamic_type (unsigned long type) { switch (type) { case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS"; case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO"; case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO"; case DT_SCORE_GOTSYM: return "SCORE_GOTSYM"; case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO"; case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO"; default: return NULL; } } static const char * get_tic6x_dynamic_type (unsigned long type) { switch (type) { case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET"; case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET"; case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE"; case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE"; case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP"; case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX"; default: return NULL; } } static const char * get_nios2_dynamic_type (unsigned long type) { switch (type) { case DT_NIOS2_GP: return "NIOS2_GP"; default: return NULL; } } static const char * get_solaris_dynamic_type (unsigned long type) { switch (type) { case 0x6000000d: return "SUNW_AUXILIARY"; case 0x6000000e: return "SUNW_RTLDINF"; case 0x6000000f: return "SUNW_FILTER"; case 0x60000010: return "SUNW_CAP"; case 0x60000011: return "SUNW_SYMTAB"; case 0x60000012: return "SUNW_SYMSZ"; case 0x60000013: return "SUNW_SORTENT"; case 0x60000014: return "SUNW_SYMSORT"; case 0x60000015: return "SUNW_SYMSORTSZ"; case 0x60000016: return "SUNW_TLSSORT"; case 0x60000017: return "SUNW_TLSSORTSZ"; case 0x60000018: return "SUNW_CAPINFO"; case 0x60000019: return "SUNW_STRPAD"; case 0x6000001a: return "SUNW_CAPCHAIN"; case 0x6000001b: return "SUNW_LDMACH"; case 0x6000001d: return "SUNW_CAPCHAINENT"; case 0x6000001f: return "SUNW_CAPCHAINSZ"; case 0x60000021: return "SUNW_PARENT"; case 0x60000023: return "SUNW_ASLR"; case 0x60000025: return "SUNW_RELAX"; case 0x60000029: return "SUNW_NXHEAP"; case 0x6000002b: return "SUNW_NXSTACK"; case 0x70000001: return "SPARC_REGISTER"; case 0x7ffffffd: return "AUXILIARY"; case 0x7ffffffe: return "USED"; case 0x7fffffff: return "FILTER"; default: return NULL; } } static const char * get_riscv_dynamic_type (unsigned long type) { switch (type) { case DT_RISCV_VARIANT_CC: return "RISCV_VARIANT_CC"; default: return NULL; } } static const char * get_dynamic_type (Filedata * filedata, unsigned long type) { static char buff[64]; switch (type) { case DT_NULL: return "NULL"; case DT_NEEDED: return "NEEDED"; case DT_PLTRELSZ: return "PLTRELSZ"; case DT_PLTGOT: return "PLTGOT"; case DT_HASH: return "HASH"; case DT_STRTAB: return "STRTAB"; case DT_SYMTAB: return "SYMTAB"; case DT_RELA: return "RELA"; case DT_RELASZ: return "RELASZ"; case DT_RELAENT: return "RELAENT"; case DT_STRSZ: return "STRSZ"; case DT_SYMENT: return "SYMENT"; case DT_INIT: return "INIT"; case DT_FINI: return "FINI"; case DT_SONAME: return "SONAME"; case DT_RPATH: return "RPATH"; case DT_SYMBOLIC: return "SYMBOLIC"; case DT_REL: return "REL"; case DT_RELSZ: return "RELSZ"; case DT_RELENT: return "RELENT"; case DT_RELR: return "RELR"; case DT_RELRSZ: return "RELRSZ"; case DT_RELRENT: return "RELRENT"; case DT_PLTREL: return "PLTREL"; case DT_DEBUG: return "DEBUG"; case DT_TEXTREL: return "TEXTREL"; case DT_JMPREL: return "JMPREL"; case DT_BIND_NOW: return "BIND_NOW"; case DT_INIT_ARRAY: return "INIT_ARRAY"; case DT_FINI_ARRAY: return "FINI_ARRAY"; case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; case DT_RUNPATH: return "RUNPATH"; case DT_FLAGS: return "FLAGS"; case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; case DT_CHECKSUM: return "CHECKSUM"; case DT_PLTPADSZ: return "PLTPADSZ"; case DT_MOVEENT: return "MOVEENT"; case DT_MOVESZ: return "MOVESZ"; case DT_FEATURE: return "FEATURE"; case DT_POSFLAG_1: return "POSFLAG_1"; case DT_SYMINSZ: return "SYMINSZ"; case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */ case DT_ADDRRNGLO: return "ADDRRNGLO"; case DT_CONFIG: return "CONFIG"; case DT_DEPAUDIT: return "DEPAUDIT"; case DT_AUDIT: return "AUDIT"; case DT_PLTPAD: return "PLTPAD"; case DT_MOVETAB: return "MOVETAB"; case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */ case DT_VERSYM: return "VERSYM"; case DT_TLSDESC_GOT: return "TLSDESC_GOT"; case DT_TLSDESC_PLT: return "TLSDESC_PLT"; case DT_RELACOUNT: return "RELACOUNT"; case DT_RELCOUNT: return "RELCOUNT"; case DT_FLAGS_1: return "FLAGS_1"; case DT_VERDEF: return "VERDEF"; case DT_VERDEFNUM: return "VERDEFNUM"; case DT_VERNEED: return "VERNEED"; case DT_VERNEEDNUM: return "VERNEEDNUM"; case DT_AUXILIARY: return "AUXILIARY"; case DT_USED: return "USED"; case DT_FILTER: return "FILTER"; case DT_GNU_PRELINKED: return "GNU_PRELINKED"; case DT_GNU_CONFLICT: return "GNU_CONFLICT"; case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; case DT_GNU_LIBLIST: return "GNU_LIBLIST"; case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; case DT_GNU_HASH: return "GNU_HASH"; case DT_GNU_FLAGS_1: return "GNU_FLAGS_1"; default: if ((type >= DT_LOPROC) && (type <= DT_HIPROC)) { const char * result; switch (filedata->file_header.e_machine) { case EM_AARCH64: result = get_aarch64_dynamic_type (type); break; case EM_MIPS: case EM_MIPS_RS3_LE: result = get_mips_dynamic_type (type); break; case EM_SPARCV9: result = get_sparc64_dynamic_type (type); break; case EM_PPC: result = get_ppc_dynamic_type (type); break; case EM_PPC64: result = get_ppc64_dynamic_type (type); break; case EM_IA_64: result = get_ia64_dynamic_type (type); break; case EM_ALPHA: result = get_alpha_dynamic_type (type); break; case EM_SCORE: result = get_score_dynamic_type (type); break; case EM_TI_C6000: result = get_tic6x_dynamic_type (type); break; case EM_ALTERA_NIOS2: result = get_nios2_dynamic_type (type); break; case EM_RISCV: result = get_riscv_dynamic_type (type); break; default: if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS) result = get_solaris_dynamic_type (type); else result = NULL; break; } if (result != NULL) return result; snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type); } else if (((type >= DT_LOOS) && (type <= DT_HIOS)) || (filedata->file_header.e_machine == EM_PARISC && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS))) { const char * result; switch (filedata->file_header.e_machine) { case EM_PARISC: result = get_parisc_dynamic_type (type); break; case EM_IA_64: result = get_ia64_dynamic_type (type); break; default: if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS) result = get_solaris_dynamic_type (type); else result = NULL; break; } if (result != NULL) return result; snprintf (buff, sizeof (buff), _("Operating System specific: %lx"), type); } else snprintf (buff, sizeof (buff), _(": %lx"), type); return buff; } } static bool get_program_headers (Filedata *); static bool get_dynamic_section (Filedata *); static void locate_dynamic_section (Filedata *filedata) { uint64_t dynamic_addr = 0; uint64_t dynamic_size = 0; if (filedata->file_header.e_phnum != 0 && get_program_headers (filedata)) { Elf_Internal_Phdr *segment; unsigned int i; for (i = 0, segment = filedata->program_headers; i < filedata->file_header.e_phnum; i++, segment++) { if (segment->p_type == PT_DYNAMIC) { dynamic_addr = segment->p_offset; dynamic_size = segment->p_filesz; if (filedata->section_headers != NULL) { Elf_Internal_Shdr *sec; sec = find_section (filedata, ".dynamic"); if (sec != NULL) { if (sec->sh_size == 0 || sec->sh_type == SHT_NOBITS) { dynamic_addr = 0; dynamic_size = 0; } else { dynamic_addr = sec->sh_offset; dynamic_size = sec->sh_size; } } } if (dynamic_addr > filedata->file_size || (dynamic_size > filedata->file_size - dynamic_addr)) { dynamic_addr = 0; dynamic_size = 0; } break; } } } filedata->dynamic_addr = dynamic_addr; filedata->dynamic_size = dynamic_size ? dynamic_size : 1; } static bool is_pie (Filedata *filedata) { Elf_Internal_Dyn *entry; if (filedata->dynamic_size == 0) locate_dynamic_section (filedata); if (filedata->dynamic_size <= 1) return false; if (!get_dynamic_section (filedata)) return false; for (entry = filedata->dynamic_section; entry < filedata->dynamic_section + filedata->dynamic_nent; entry++) { if (entry->d_tag == DT_FLAGS_1) { if ((entry->d_un.d_val & DF_1_PIE) != 0) return true; break; } } return false; } static char * get_file_type (Filedata *filedata) { unsigned e_type = filedata->file_header.e_type; static char buff[64]; switch (e_type) { case ET_NONE: return _("NONE (None)"); case ET_REL: return _("REL (Relocatable file)"); case ET_EXEC: return _("EXEC (Executable file)"); case ET_DYN: if (is_pie (filedata)) return _("DYN (Position-Independent Executable file)"); else return _("DYN (Shared object file)"); case ET_CORE: return _("CORE (Core file)"); default: if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC)) snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type); else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS)) snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type); else snprintf (buff, sizeof (buff), _(": %x"), e_type); return buff; } } static char * get_machine_name (unsigned e_machine) { static char buff[64]; /* XXX */ switch (e_machine) { /* Please keep this switch table sorted by increasing EM_ value. */ /* 0 */ case EM_NONE: return _("None"); case EM_M32: return "WE32100"; case EM_SPARC: return "Sparc"; case EM_386: return "Intel 80386"; case EM_68K: return "MC68000"; case EM_88K: return "MC88000"; case EM_IAMCU: return "Intel MCU"; case EM_860: return "Intel 80860"; case EM_MIPS: return "MIPS R3000"; case EM_S370: return "IBM System/370"; /* 10 */ case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian"; case EM_OLD_SPARCV9: return "Sparc v9 (old)"; case EM_PARISC: return "HPPA"; case EM_VPP550: return "Fujitsu VPP500"; case EM_SPARC32PLUS: return "Sparc v8+" ; case EM_960: return "Intel 80960"; case EM_PPC: return "PowerPC"; /* 20 */ case EM_PPC64: return "PowerPC64"; case EM_S390_OLD: case EM_S390: return "IBM S/390"; case EM_SPU: return "SPU"; /* 30 */ case EM_V800: return "Renesas V850 (using RH850 ABI)"; case EM_FR20: return "Fujitsu FR20"; case EM_RH32: return "TRW RH32"; case EM_MCORE: return "MCORE"; /* 40 */ case EM_ARM: return "ARM"; case EM_OLD_ALPHA: return "Digital Alpha (old)"; case EM_SH: return "Renesas / SuperH SH"; case EM_SPARCV9: return "Sparc v9"; case EM_TRICORE: return "Siemens Tricore"; case EM_ARC: return "ARC"; case EM_H8_300: return "Renesas H8/300"; case EM_H8_300H: return "Renesas H8/300H"; case EM_H8S: return "Renesas H8S"; case EM_H8_500: return "Renesas H8/500"; /* 50 */ case EM_IA_64: return "Intel IA-64"; case EM_MIPS_X: return "Stanford MIPS-X"; case EM_COLDFIRE: return "Motorola Coldfire"; case EM_68HC12: return "Motorola MC68HC12 Microcontroller"; case EM_MMA: return "Fujitsu Multimedia Accelerator"; case EM_PCP: return "Siemens PCP"; case EM_NCPU: return "Sony nCPU embedded RISC processor"; case EM_NDR1: return "Denso NDR1 microprocessor"; case EM_STARCORE: return "Motorola Star*Core processor"; case EM_ME16: return "Toyota ME16 processor"; /* 60 */ case EM_ST100: return "STMicroelectronics ST100 processor"; case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor"; case EM_X86_64: return "Advanced Micro Devices X86-64"; case EM_PDSP: return "Sony DSP processor"; case EM_PDP10: return "Digital Equipment Corp. PDP-10"; case EM_PDP11: return "Digital Equipment Corp. PDP-11"; case EM_FX66: return "Siemens FX66 microcontroller"; case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller"; case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller"; case EM_68HC16: return "Motorola MC68HC16 Microcontroller"; /* 70 */ case EM_68HC11: return "Motorola MC68HC11 Microcontroller"; case EM_68HC08: return "Motorola MC68HC08 Microcontroller"; case EM_68HC05: return "Motorola MC68HC05 Microcontroller"; case EM_SVX: return "Silicon Graphics SVx"; case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller"; case EM_VAX: return "Digital VAX"; case EM_CRIS: return "Axis Communications 32-bit embedded processor"; case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu"; case EM_FIREPATH: return "Element 14 64-bit DSP processor"; case EM_ZSP: return "LSI Logic's 16-bit DSP processor"; /* 80 */ case EM_MMIX: return "Donald Knuth's educational 64-bit processor"; case EM_HUANY: return "Harvard Universitys's machine-independent object format"; case EM_PRISM: return "Vitesse Prism"; case EM_AVR_OLD: case EM_AVR: return "Atmel AVR 8-bit microcontroller"; case EM_CYGNUS_FR30: case EM_FR30: return "Fujitsu FR30"; case EM_CYGNUS_D10V: case EM_D10V: return "d10v"; case EM_CYGNUS_D30V: case EM_D30V: return "d30v"; case EM_CYGNUS_V850: case EM_V850: return "Renesas V850"; case EM_CYGNUS_M32R: case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)"; case EM_CYGNUS_MN10300: case EM_MN10300: return "mn10300"; /* 90 */ case EM_CYGNUS_MN10200: case EM_MN10200: return "mn10200"; case EM_PJ: return "picoJava"; case EM_OR1K: return "OpenRISC 1000"; case EM_ARC_COMPACT: return "ARCompact"; case EM_XTENSA_OLD: case EM_XTENSA: return "Tensilica Xtensa Processor"; case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; case EM_NS32K: return "National Semiconductor 32000 series"; case EM_TPC: return "Tenor Network TPC processor"; case EM_SNP1K: return "Trebia SNP 1000 processor"; /* 100 */ case EM_ST200: return "STMicroelectronics ST200 microcontroller"; case EM_IP2K_OLD: case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers"; case EM_MAX: return "MAX Processor"; case EM_CR: return "National Semiconductor CompactRISC"; case EM_F2MC16: return "Fujitsu F2MC16"; case EM_MSP430: return "Texas Instruments msp430 microcontroller"; case EM_BLACKFIN: return "Analog Devices Blackfin"; case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; case EM_SEP: return "Sharp embedded microprocessor"; case EM_ARCA: return "Arca RISC microprocessor"; /* 110 */ case EM_UNICORE: return "Unicore"; case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU"; case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor"; case EM_ALTERA_NIOS2: return "Altera Nios II"; case EM_CRX: return "National Semiconductor CRX microprocessor"; case EM_XGATE: return "Motorola XGATE embedded processor"; case EM_C166: case EM_XC16X: return "Infineon Technologies xc16x"; case EM_M16C: return "Renesas M16C series microprocessors"; case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller"; case EM_CE: return "Freescale Communication Engine RISC core"; /* 120 */ case EM_M32C: return "Renesas M32c"; /* 130 */ case EM_TSK3000: return "Altium TSK3000 core"; case EM_RS08: return "Freescale RS08 embedded processor"; case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor"; case EM_SCORE: return "SUNPLUS S+Core"; case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor"; case EM_VIDEOCORE3: return "Broadcom VideoCore III processor"; case EM_LATTICEMICO32: return "Lattice Mico32"; case EM_SE_C17: return "Seiko Epson C17 family"; /* 140 */ case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family"; case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family"; case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family"; case EM_TI_PRU: return "TI PRU I/O processor"; /* 160 */ case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor"; case EM_CYPRESS_M8C: return "Cypress M8C microprocessor"; case EM_R32C: return "Renesas R32C series microprocessors"; case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family"; case EM_QDSP6: return "QUALCOMM DSP6 Processor"; case EM_8051: return "Intel 8051 and variants"; case EM_STXP7X: return "STMicroelectronics STxP7x family"; case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family"; case EM_ECOG1X: return "Cyan Technology eCOG1X family"; case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers"; /* 170 */ case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor"; case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor"; case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture"; case EM_RX: return "Renesas RX"; case EM_METAG: return "Imagination Technologies Meta processor architecture"; case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture"; case EM_ECOG16: return "Cyan Technology eCOG16 family"; case EM_CR16: case EM_MICROBLAZE: case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze"; case EM_ETPU: return "Freescale Extended Time Processing Unit"; case EM_SLE9X: return "Infineon Technologies SLE9X core"; /* 180 */ case EM_L1OM: return "Intel L1OM"; case EM_K1OM: return "Intel K1OM"; case EM_INTEL182: return "Intel (reserved)"; case EM_AARCH64: return "AArch64"; case EM_ARM184: return "ARM (reserved)"; case EM_AVR32: return "Atmel Corporation 32-bit microprocessor"; case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller"; case EM_TILE64: return "Tilera TILE64 multicore architecture family"; case EM_TILEPRO: return "Tilera TILEPro multicore architecture family"; /* 190 */ case EM_CUDA: return "NVIDIA CUDA architecture"; case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family"; case EM_CLOUDSHIELD: return "CloudShield architecture family"; case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family"; case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family"; case EM_ARC_COMPACT2: return "ARCv2"; case EM_OPEN8: return "Open8 8-bit RISC soft processor core"; case EM_RL78: return "Renesas RL78"; case EM_VIDEOCORE5: return "Broadcom VideoCore V processor"; case EM_78K0R: return "Renesas 78K0R"; /* 200 */ case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)"; case EM_BA1: return "Beyond BA1 CPU architecture"; case EM_BA2: return "Beyond BA2 CPU architecture"; case EM_XCORE: return "XMOS xCORE processor family"; case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family"; case EM_INTELGT: return "Intel Graphics Technology"; /* 210 */ case EM_KM32: return "KM211 KM32 32-bit processor"; case EM_KMX32: return "KM211 KMX32 32-bit processor"; case EM_KMX16: return "KM211 KMX16 16-bit processor"; case EM_KMX8: return "KM211 KMX8 8-bit processor"; case EM_KVARC: return "KM211 KVARC processor"; case EM_CDP: return "Paneve CDP architecture family"; case EM_COGE: return "Cognitive Smart Memory Processor"; case EM_COOL: return "Bluechip Systems CoolEngine"; case EM_NORC: return "Nanoradio Optimized RISC"; case EM_CSR_KALIMBA: return "CSR Kalimba architecture family"; /* 220 */ case EM_Z80: return "Zilog Z80"; case EM_VISIUM: return "CDS VISIUMcore processor"; case EM_FT32: return "FTDI Chip FT32"; case EM_MOXIE: return "Moxie"; case EM_AMDGPU: return "AMD GPU"; /* 230 (all reserved) */ /* 240 */ case EM_RISCV: return "RISC-V"; case EM_LANAI: return "Lanai 32-bit processor"; case EM_CEVA: return "CEVA Processor Architecture Family"; case EM_CEVA_X2: return "CEVA X2 Processor Family"; case EM_BPF: return "Linux BPF"; case EM_GRAPHCORE_IPU: return "Graphcore Intelligent Processing Unit"; case EM_IMG1: return "Imagination Technologies"; /* 250 */ case EM_NFP: return "Netronome Flow Processor"; case EM_VE: return "NEC Vector Engine"; case EM_CSKY: return "C-SKY"; case EM_ARC_COMPACT3_64: return "Synopsys ARCv3 64-bit processor"; case EM_MCS6502: return "MOS Technology MCS 6502 processor"; case EM_ARC_COMPACT3: return "Synopsys ARCv3 32-bit processor"; case EM_KVX: return "Kalray VLIW core of the MPPA processor family"; case EM_65816: return "WDC 65816/65C816"; case EM_LOONGARCH: return "LoongArch"; case EM_KF32: return "ChipON KungFu32"; /* Large numbers... */ case EM_MT: return "Morpho Techologies MT processor"; case EM_ALPHA: return "Alpha"; case EM_WEBASSEMBLY: return "Web Assembly"; case EM_DLX: return "OpenDLX"; case EM_XSTORMY16: return "Sanyo XStormy16 CPU core"; case EM_IQ2000: return "Vitesse IQ2000"; case EM_M32C_OLD: case EM_NIOS32: return "Altera Nios"; case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine"; case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY"; case EM_CYGNUS_FRV: return "Fujitsu FR-V"; case EM_S12Z: return "Freescale S12Z"; default: snprintf (buff, sizeof (buff), _(": 0x%x"), e_machine); return buff; } } static char * decode_ARC_machine_flags (char *out, unsigned e_flags, unsigned e_machine) { /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some other compilers don't specify an architecture type in the e_flags, and instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS architectures. Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2, but also sets a specific architecture type in the e_flags field. However, when decoding the flags we don't worry if we see an unexpected pairing, for example EM_ARC_COMPACT machine type, with ARCEM architecture type. */ switch (e_flags & EF_ARC_MACH_MSK) { /* We only expect these to occur for EM_ARC_COMPACT2. */ case EF_ARC_CPU_ARCV2EM: out = stpcpy (out, ", ARC EM"); break; case EF_ARC_CPU_ARCV2HS: out = stpcpy (out, ", ARC HS"); break; /* We only expect these to occur for EM_ARC_COMPACT. */ case E_ARC_MACH_ARC600: out = stpcpy (out, ", ARC600"); break; case E_ARC_MACH_ARC601: out = stpcpy (out, ", ARC601"); break; case E_ARC_MACH_ARC700: out = stpcpy (out, ", ARC700"); break; /* The only times we should end up here are (a) A corrupt ELF, (b) A new ELF with new architecture being read by an old version of readelf, or (c) An ELF built with non-GNU compiler that does not set the architecture in the e_flags. */ default: if (e_machine == EM_ARC_COMPACT) out = stpcpy (out, ", Unknown ARCompact"); else out = stpcpy (out, ", Unknown ARC"); break; } switch (e_flags & EF_ARC_OSABI_MSK) { case E_ARC_OSABI_ORIG: out = stpcpy (out, ", (ABI:legacy)"); break; case E_ARC_OSABI_V2: out = stpcpy (out, ", (ABI:v2)"); break; /* Only upstream 3.9+ kernels will support ARCv2 ISA. */ case E_ARC_OSABI_V3: out = stpcpy (out, ", v3 no-legacy-syscalls ABI"); break; case E_ARC_OSABI_V4: out = stpcpy (out, ", v4 ABI"); break; default: out = stpcpy (out, ", unrecognised ARC OSABI flag"); break; } return out; } static char * decode_ARM_machine_flags (char *out, unsigned e_flags) { unsigned eabi; bool unknown = false; eabi = EF_ARM_EABI_VERSION (e_flags); e_flags &= ~ EF_ARM_EABIMASK; /* Handle "generic" ARM flags. */ if (e_flags & EF_ARM_RELEXEC) { out = stpcpy (out, ", relocatable executable"); e_flags &= ~ EF_ARM_RELEXEC; } if (e_flags & EF_ARM_PIC) { out = stpcpy (out, ", position independent"); e_flags &= ~ EF_ARM_PIC; } /* Now handle EABI specific flags. */ switch (eabi) { default: out = stpcpy (out, ", "); if (e_flags) unknown = true; break; case EF_ARM_EABI_VER1: out = stpcpy (out, ", Version1 EABI"); while (e_flags) { unsigned flag; /* Process flags one bit at a time. */ flag = e_flags & - e_flags; e_flags &= ~ flag; switch (flag) { case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */ out = stpcpy (out, ", sorted symbol tables"); break; default: unknown = true; break; } } break; case EF_ARM_EABI_VER2: out = stpcpy (out, ", Version2 EABI"); while (e_flags) { unsigned flag; /* Process flags one bit at a time. */ flag = e_flags & - e_flags; e_flags &= ~ flag; switch (flag) { case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */ out = stpcpy (out, ", sorted symbol tables"); break; case EF_ARM_DYNSYMSUSESEGIDX: out = stpcpy (out, ", dynamic symbols use segment index"); break; case EF_ARM_MAPSYMSFIRST: out = stpcpy (out, ", mapping symbols precede others"); break; default: unknown = true; break; } } break; case EF_ARM_EABI_VER3: out = stpcpy (out, ", Version3 EABI"); break; case EF_ARM_EABI_VER4: out = stpcpy (out, ", Version4 EABI"); while (e_flags) { unsigned flag; /* Process flags one bit at a time. */ flag = e_flags & - e_flags; e_flags &= ~ flag; switch (flag) { case EF_ARM_BE8: out = stpcpy (out, ", BE8"); break; case EF_ARM_LE8: out = stpcpy (out, ", LE8"); break; default: unknown = true; break; } } break; case EF_ARM_EABI_VER5: out = stpcpy (out, ", Version5 EABI"); while (e_flags) { unsigned flag; /* Process flags one bit at a time. */ flag = e_flags & - e_flags; e_flags &= ~ flag; switch (flag) { case EF_ARM_BE8: out = stpcpy (out, ", BE8"); break; case EF_ARM_LE8: out = stpcpy (out, ", LE8"); break; case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */ out = stpcpy (out, ", soft-float ABI"); break; case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */ out = stpcpy (out, ", hard-float ABI"); break; default: unknown = true; break; } } break; case EF_ARM_EABI_UNKNOWN: out = stpcpy (out, ", GNU EABI"); while (e_flags) { unsigned flag; /* Process flags one bit at a time. */ flag = e_flags & - e_flags; e_flags &= ~ flag; switch (flag) { case EF_ARM_INTERWORK: out = stpcpy (out, ", interworking enabled"); break; case EF_ARM_APCS_26: out = stpcpy (out, ", uses APCS/26"); break; case EF_ARM_APCS_FLOAT: out = stpcpy (out, ", uses APCS/float"); break; case EF_ARM_PIC: out = stpcpy (out, ", position independent"); break; case EF_ARM_ALIGN8: out = stpcpy (out, ", 8 bit structure alignment"); break; case EF_ARM_NEW_ABI: out = stpcpy (out, ", uses new ABI"); break; case EF_ARM_OLD_ABI: out = stpcpy (out, ", uses old ABI"); break; case EF_ARM_SOFT_FLOAT: out = stpcpy (out, ", software FP"); break; case EF_ARM_VFP_FLOAT: out = stpcpy (out, ", VFP"); break; case EF_ARM_MAVERICK_FLOAT: out = stpcpy (out, ", Maverick FP"); break; default: unknown = true; break; } } } if (unknown) out = stpcpy (out,_(", ")); return out; } static char * decode_AVR_machine_flags (char *out, unsigned e_flags) { switch (e_flags & EF_AVR_MACH) { case E_AVR_MACH_AVR1: out = stpcpy (out, ", avr:1"); break; case E_AVR_MACH_AVR2: out = stpcpy (out, ", avr:2"); break; case E_AVR_MACH_AVR25: out = stpcpy (out, ", avr:25"); break; case E_AVR_MACH_AVR3: out = stpcpy (out, ", avr:3"); break; case E_AVR_MACH_AVR31: out = stpcpy (out, ", avr:31"); break; case E_AVR_MACH_AVR35: out = stpcpy (out, ", avr:35"); break; case E_AVR_MACH_AVR4: out = stpcpy (out, ", avr:4"); break; case E_AVR_MACH_AVR5: out = stpcpy (out, ", avr:5"); break; case E_AVR_MACH_AVR51: out = stpcpy (out, ", avr:51"); break; case E_AVR_MACH_AVR6: out = stpcpy (out, ", avr:6"); break; case E_AVR_MACH_AVRTINY: out = stpcpy (out, ", avr:100"); break; case E_AVR_MACH_XMEGA1: out = stpcpy (out, ", avr:101"); break; case E_AVR_MACH_XMEGA2: out = stpcpy (out, ", avr:102"); break; case E_AVR_MACH_XMEGA3: out = stpcpy (out, ", avr:103"); break; case E_AVR_MACH_XMEGA4: out = stpcpy (out, ", avr:104"); break; case E_AVR_MACH_XMEGA5: out = stpcpy (out, ", avr:105"); break; case E_AVR_MACH_XMEGA6: out = stpcpy (out, ", avr:106"); break; case E_AVR_MACH_XMEGA7: out = stpcpy (out, ", avr:107"); break; default: out = stpcpy (out, ", avr:"); break; } if (e_flags & EF_AVR_LINKRELAX_PREPARED) out = stpcpy (out, ", link-relax"); return out; } static char * decode_BLACKFIN_machine_flags (char *out, unsigned e_flags) { if (e_flags & EF_BFIN_PIC) out = stpcpy (out, ", PIC"); if (e_flags & EF_BFIN_FDPIC) out = stpcpy (out, ", FDPIC"); if (e_flags & EF_BFIN_CODE_IN_L1) out = stpcpy (out, ", code in L1"); if (e_flags & EF_BFIN_DATA_IN_L1) out = stpcpy (out, ", data in L1"); return out; } static char * decode_FRV_machine_flags (char *out, unsigned e_flags) { switch (e_flags & EF_FRV_CPU_MASK) { case EF_FRV_CPU_GENERIC: break; default: out = stpcpy (out, ", fr???"); break; case EF_FRV_CPU_FR300: out = stpcpy (out, ", fr300"); break; case EF_FRV_CPU_FR400: out = stpcpy (out, ", fr400"); break; case EF_FRV_CPU_FR405: out = stpcpy (out, ", fr405"); break; case EF_FRV_CPU_FR450: out = stpcpy (out, ", fr450"); break; case EF_FRV_CPU_FR500: out = stpcpy (out, ", fr500"); break; case EF_FRV_CPU_FR550: out = stpcpy (out, ", fr550"); break; case EF_FRV_CPU_SIMPLE: out = stpcpy (out, ", simple"); break; case EF_FRV_CPU_TOMCAT: out = stpcpy (out, ", tomcat"); break; } return out; } static char * decode_IA64_machine_flags (char *out, unsigned e_flags, Filedata *filedata) { if ((e_flags & EF_IA_64_ABI64)) out = stpcpy (out, ", 64-bit"); else out = stpcpy (out, ", 32-bit"); if ((e_flags & EF_IA_64_REDUCEDFP)) out = stpcpy (out, ", reduced fp model"); if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP)) out = stpcpy (out, ", no function descriptors, constant gp"); else if ((e_flags & EF_IA_64_CONS_GP)) out = stpcpy (out, ", constant gp"); if ((e_flags & EF_IA_64_ABSOLUTE)) out = stpcpy (out, ", absolute"); if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS) { if ((e_flags & EF_IA_64_VMS_LINKAGES)) out = stpcpy (out, ", vms_linkages"); switch ((e_flags & EF_IA_64_VMS_COMCOD)) { case EF_IA_64_VMS_COMCOD_SUCCESS: break; case EF_IA_64_VMS_COMCOD_WARNING: out = stpcpy (out, ", warning"); break; case EF_IA_64_VMS_COMCOD_ERROR: out = stpcpy (out, ", error"); break; case EF_IA_64_VMS_COMCOD_ABORT: out = stpcpy (out, ", abort"); break; default: warn (_("Unrecognised IA64 VMS Command Code: %x\n"), e_flags & EF_IA_64_VMS_COMCOD); out = stpcpy (out, ", "); } } return out; } static char * decode_LOONGARCH_machine_flags (char *out, unsigned int e_flags) { if (EF_LOONGARCH_IS_SOFT_FLOAT (e_flags)) out = stpcpy (out, ", SOFT-FLOAT"); else if (EF_LOONGARCH_IS_SINGLE_FLOAT (e_flags)) out = stpcpy (out, ", SINGLE-FLOAT"); else if (EF_LOONGARCH_IS_DOUBLE_FLOAT (e_flags)) out = stpcpy (out, ", DOUBLE-FLOAT"); if (EF_LOONGARCH_IS_OBJ_V0 (e_flags)) out = stpcpy (out, ", OBJ-v0"); else if (EF_LOONGARCH_IS_OBJ_V1 (e_flags)) out = stpcpy (out, ", OBJ-v1"); return out; } static char * decode_M68K_machine_flags (char *out, unsigned int e_flags) { if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) out = stpcpy (out, ", m68000"); else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) out = stpcpy (out, ", cpu32"); else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) out = stpcpy (out, ", fido_a"); else { char const *isa = _("unknown"); char const *mac = _("unknown mac"); char const *additional = NULL; switch (e_flags & EF_M68K_CF_ISA_MASK) { case EF_M68K_CF_ISA_A_NODIV: isa = "A"; additional = ", nodiv"; break; case EF_M68K_CF_ISA_A: isa = "A"; break; case EF_M68K_CF_ISA_A_PLUS: isa = "A+"; break; case EF_M68K_CF_ISA_B_NOUSP: isa = "B"; additional = ", nousp"; break; case EF_M68K_CF_ISA_B: isa = "B"; break; case EF_M68K_CF_ISA_C: isa = "C"; break; case EF_M68K_CF_ISA_C_NODIV: isa = "C"; additional = ", nodiv"; break; } out = stpcpy (out, ", cf, isa "); out = stpcpy (out, isa); if (additional) out = stpcpy (out, additional); if (e_flags & EF_M68K_CF_FLOAT) out = stpcpy (out, ", float"); switch (e_flags & EF_M68K_CF_MAC_MASK) { case 0: mac = NULL; break; case EF_M68K_CF_MAC: mac = "mac"; break; case EF_M68K_CF_EMAC: mac = "emac"; break; case EF_M68K_CF_EMAC_B: mac = "emac_b"; break; } if (mac) { out = stpcpy (out, ", "); out = stpcpy (out, mac); } } return out; } static char * decode_MeP_machine_flags (char *out, unsigned int e_flags) { switch (e_flags & EF_MEP_CPU_MASK) { case EF_MEP_CPU_MEP: out = stpcpy (out, ", generic MeP"); break; case EF_MEP_CPU_C2: out = stpcpy (out, ", MeP C2"); break; case EF_MEP_CPU_C3: out = stpcpy (out, ", MeP C3"); break; case EF_MEP_CPU_C4: out = stpcpy (out, ", MeP C4"); break; case EF_MEP_CPU_C5: out = stpcpy (out, ", MeP C5"); break; case EF_MEP_CPU_H1: out = stpcpy (out, ", MeP H1"); break; default: out = stpcpy (out, _(", ")); break; } switch (e_flags & EF_MEP_COP_MASK) { case EF_MEP_COP_NONE: break; case EF_MEP_COP_AVC: out = stpcpy (out, ", AVC coprocessor"); break; case EF_MEP_COP_AVC2: out = stpcpy (out, ", AVC2 coprocessor"); break; case EF_MEP_COP_FMAX: out = stpcpy (out, ", FMAX coprocessor"); break; case EF_MEP_COP_IVC2: out = stpcpy (out, ", IVC2 coprocessor"); break; default: out = stpcpy (out, _("")); break; } if (e_flags & EF_MEP_LIBRARY) out = stpcpy (out, ", Built for Library"); if (e_flags & EF_MEP_INDEX_MASK) out += sprintf (out, ", Configuration Index: %#x", e_flags & EF_MEP_INDEX_MASK); if (e_flags & ~ EF_MEP_ALL_FLAGS) out += sprintf (out, _(", unknown flags bits: %#x"), e_flags & ~ EF_MEP_ALL_FLAGS); return out; } static char * decode_MIPS_machine_flags (char *out, unsigned int e_flags) { if (e_flags & EF_MIPS_NOREORDER) out = stpcpy (out, ", noreorder"); if (e_flags & EF_MIPS_PIC) out = stpcpy (out, ", pic"); if (e_flags & EF_MIPS_CPIC) out = stpcpy (out, ", cpic"); if (e_flags & EF_MIPS_UCODE) out = stpcpy (out, ", ugen_reserved"); if (e_flags & EF_MIPS_ABI2) out = stpcpy (out, ", abi2"); if (e_flags & EF_MIPS_OPTIONS_FIRST) out = stpcpy (out, ", odk first"); if (e_flags & EF_MIPS_32BITMODE) out = stpcpy (out, ", 32bitmode"); if (e_flags & EF_MIPS_NAN2008) out = stpcpy (out, ", nan2008"); if (e_flags & EF_MIPS_FP64) out = stpcpy (out, ", fp64"); switch ((e_flags & EF_MIPS_MACH)) { case E_MIPS_MACH_3900: out = stpcpy (out, ", 3900"); break; case E_MIPS_MACH_4010: out = stpcpy (out, ", 4010"); break; case E_MIPS_MACH_4100: out = stpcpy (out, ", 4100"); break; case E_MIPS_MACH_4111: out = stpcpy (out, ", 4111"); break; case E_MIPS_MACH_4120: out = stpcpy (out, ", 4120"); break; case E_MIPS_MACH_4650: out = stpcpy (out, ", 4650"); break; case E_MIPS_MACH_5400: out = stpcpy (out, ", 5400"); break; case E_MIPS_MACH_5500: out = stpcpy (out, ", 5500"); break; case E_MIPS_MACH_5900: out = stpcpy (out, ", 5900"); break; case E_MIPS_MACH_SB1: out = stpcpy (out, ", sb1"); break; case E_MIPS_MACH_9000: out = stpcpy (out, ", 9000"); break; case E_MIPS_MACH_LS2E: out = stpcpy (out, ", loongson-2e"); break; case E_MIPS_MACH_LS2F: out = stpcpy (out, ", loongson-2f"); break; case E_MIPS_MACH_GS464: out = stpcpy (out, ", gs464"); break; case E_MIPS_MACH_GS464E: out = stpcpy (out, ", gs464e"); break; case E_MIPS_MACH_GS264E: out = stpcpy (out, ", gs264e"); break; case E_MIPS_MACH_OCTEON: out = stpcpy (out, ", octeon"); break; case E_MIPS_MACH_OCTEON2: out = stpcpy (out, ", octeon2"); break; case E_MIPS_MACH_OCTEON3: out = stpcpy (out, ", octeon3"); break; case E_MIPS_MACH_XLR: out = stpcpy (out, ", xlr"); break; case E_MIPS_MACH_IAMR2: out = stpcpy (out, ", interaptiv-mr2"); break; case E_MIPS_MACH_ALLEGREX: out = stpcpy (out, ", allegrex"); break; case 0: /* We simply ignore the field in this case to avoid confusion: MIPS ELF does not specify EF_MIPS_MACH, it is a GNU extension. */ break; default: out = stpcpy (out, _(", unknown CPU")); break; } switch ((e_flags & EF_MIPS_ABI)) { case E_MIPS_ABI_O32: out = stpcpy (out, ", o32"); break; case E_MIPS_ABI_O64: out = stpcpy (out, ", o64"); break; case E_MIPS_ABI_EABI32: out = stpcpy (out, ", eabi32"); break; case E_MIPS_ABI_EABI64: out = stpcpy (out, ", eabi64"); break; case 0: /* We simply ignore the field in this case to avoid confusion: MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension. This means it is likely to be an o32 file, but not for sure. */ break; default: out = stpcpy (out, _(", unknown ABI")); break; } if (e_flags & EF_MIPS_ARCH_ASE_MDMX) out = stpcpy (out, ", mdmx"); if (e_flags & EF_MIPS_ARCH_ASE_M16) out = stpcpy (out, ", mips16"); if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) out = stpcpy (out, ", micromips"); switch ((e_flags & EF_MIPS_ARCH)) { case E_MIPS_ARCH_1: out = stpcpy (out, ", mips1"); break; case E_MIPS_ARCH_2: out = stpcpy (out, ", mips2"); break; case E_MIPS_ARCH_3: out = stpcpy (out, ", mips3"); break; case E_MIPS_ARCH_4: out = stpcpy (out, ", mips4"); break; case E_MIPS_ARCH_5: out = stpcpy (out, ", mips5"); break; case E_MIPS_ARCH_32: out = stpcpy (out, ", mips32"); break; case E_MIPS_ARCH_32R2: out = stpcpy (out, ", mips32r2"); break; case E_MIPS_ARCH_32R6: out = stpcpy (out, ", mips32r6"); break; case E_MIPS_ARCH_64: out = stpcpy (out, ", mips64"); break; case E_MIPS_ARCH_64R2: out = stpcpy (out, ", mips64r2"); break; case E_MIPS_ARCH_64R6: out = stpcpy (out, ", mips64r6"); break; default: out = stpcpy (out, _(", unknown ISA")); break; } return out; } static char * decode_MSP430_machine_flags (char *out, unsigned e_flags) { out = stpcpy (out, _(": architecture variant: ")); switch (e_flags & EF_MSP430_MACH) { case E_MSP430_MACH_MSP430x11: out = stpcpy (out, "MSP430x11"); break; case E_MSP430_MACH_MSP430x11x1: out = stpcpy (out, "MSP430x11x1 "); break; case E_MSP430_MACH_MSP430x12: out = stpcpy (out, "MSP430x12"); break; case E_MSP430_MACH_MSP430x13: out = stpcpy (out, "MSP430x13"); break; case E_MSP430_MACH_MSP430x14: out = stpcpy (out, "MSP430x14"); break; case E_MSP430_MACH_MSP430x15: out = stpcpy (out, "MSP430x15"); break; case E_MSP430_MACH_MSP430x16: out = stpcpy (out, "MSP430x16"); break; case E_MSP430_MACH_MSP430x31: out = stpcpy (out, "MSP430x31"); break; case E_MSP430_MACH_MSP430x32: out = stpcpy (out, "MSP430x32"); break; case E_MSP430_MACH_MSP430x33: out = stpcpy (out, "MSP430x33"); break; case E_MSP430_MACH_MSP430x41: out = stpcpy (out, "MSP430x41"); break; case E_MSP430_MACH_MSP430x42: out = stpcpy (out, "MSP430x42"); break; case E_MSP430_MACH_MSP430x43: out = stpcpy (out, "MSP430x43"); break; case E_MSP430_MACH_MSP430x44: out = stpcpy (out, "MSP430x44"); break; case E_MSP430_MACH_MSP430X : out = stpcpy (out, "MSP430X"); break; default: out = stpcpy (out, _(": unknown")); break; } if (e_flags & ~ EF_MSP430_MACH) out = stpcpy (out, _(": unknown extra flag bits also present")); return out; } static char * decode_NDS32_machine_flags (char *out, unsigned e_flags) { unsigned abi; unsigned arch; unsigned config; unsigned version; bool has_fpu = false; static const char *ABI_STRINGS[] = { "ABI v0", /* use r5 as return register; only used in N1213HC */ "ABI v1", /* use r0 as return register */ "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */ "ABI v2fp", /* for FPU */ "AABI", "ABI2 FP+" }; static const char *VER_STRINGS[] = { "Andes ELF V1.3 or older", "Andes ELF V1.3.1", "Andes ELF V1.4" }; static const char *ARCH_STRINGS[] = { "", "Andes Star v1.0", "Andes Star v2.0", "Andes Star v3.0", "Andes Star v3.0m" }; abi = EF_NDS_ABI & e_flags; arch = EF_NDS_ARCH & e_flags; config = EF_NDS_INST & e_flags; version = EF_NDS32_ELF_VERSION & e_flags; switch (abi) { case E_NDS_ABI_V0: case E_NDS_ABI_V1: case E_NDS_ABI_V2: case E_NDS_ABI_V2FP: case E_NDS_ABI_AABI: case E_NDS_ABI_V2FP_PLUS: /* In case there are holes in the array. */ out += sprintf (out, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]); break; default: out = stpcpy (out, ", "); break; } switch (version) { case E_NDS32_ELF_VER_1_2: case E_NDS32_ELF_VER_1_3: case E_NDS32_ELF_VER_1_4: out += sprintf (out, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]); break; default: out = stpcpy (out, ", "); break; } if (E_NDS_ABI_V0 == abi) { /* OLD ABI; only used in N1213HC, has performance extension 1. */ out = stpcpy (out, ", Andes Star v1.0, N1213HC, MAC, PERF1"); if (arch == E_NDS_ARCH_STAR_V1_0) out = stpcpy (out, ", 16b"); /* has 16-bit instructions */ return out; } switch (arch) { case E_NDS_ARCH_STAR_V1_0: case E_NDS_ARCH_STAR_V2_0: case E_NDS_ARCH_STAR_V3_0: case E_NDS_ARCH_STAR_V3_M: out += sprintf (out, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]); break; default: out = stpcpy (out, ", "); /* ARCH version determines how the e_flags are interpreted. If it is unknown, we cannot proceed. */ return out; } /* Newer ABI; Now handle architecture specific flags. */ if (arch == E_NDS_ARCH_STAR_V1_0) { if (config & E_NDS32_HAS_MFUSR_PC_INST) out = stpcpy (out, ", MFUSR_PC"); if (!(config & E_NDS32_HAS_NO_MAC_INST)) out = stpcpy (out, ", MAC"); if (config & E_NDS32_HAS_DIV_INST) out = stpcpy (out, ", DIV"); if (config & E_NDS32_HAS_16BIT_INST) out = stpcpy (out, ", 16b"); } else { if (config & E_NDS32_HAS_MFUSR_PC_INST) { if (version <= E_NDS32_ELF_VER_1_3) out = stpcpy (out, ", [B8]"); else out = stpcpy (out, ", EX9"); } if (config & E_NDS32_HAS_MAC_DX_INST) out = stpcpy (out, ", MAC_DX"); if (config & E_NDS32_HAS_DIV_DX_INST) out = stpcpy (out, ", DIV_DX"); if (config & E_NDS32_HAS_16BIT_INST) { if (version <= E_NDS32_ELF_VER_1_3) out = stpcpy (out, ", 16b"); else out = stpcpy (out, ", IFC"); } } if (config & E_NDS32_HAS_EXT_INST) out = stpcpy (out, ", PERF1"); if (config & E_NDS32_HAS_EXT2_INST) out = stpcpy (out, ", PERF2"); if (config & E_NDS32_HAS_FPU_INST) { has_fpu = true; out = stpcpy (out, ", FPU_SP"); } if (config & E_NDS32_HAS_FPU_DP_INST) { has_fpu = true; out = stpcpy (out, ", FPU_DP"); } if (config & E_NDS32_HAS_FPU_MAC_INST) { has_fpu = true; out = stpcpy (out, ", FPU_MAC"); } if (has_fpu) { switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT) { case E_NDS32_FPU_REG_8SP_4DP: out = stpcpy (out, ", FPU_REG:8/4"); break; case E_NDS32_FPU_REG_16SP_8DP: out = stpcpy (out, ", FPU_REG:16/8"); break; case E_NDS32_FPU_REG_32SP_16DP: out = stpcpy (out, ", FPU_REG:32/16"); break; case E_NDS32_FPU_REG_32SP_32DP: out = stpcpy (out, ", FPU_REG:32/32"); break; } } if (config & E_NDS32_HAS_AUDIO_INST) out = stpcpy (out, ", AUDIO"); if (config & E_NDS32_HAS_STRING_INST) out = stpcpy (out, ", STR"); if (config & E_NDS32_HAS_REDUCED_REGS) out = stpcpy (out, ", 16REG"); if (config & E_NDS32_HAS_VIDEO_INST) { if (version <= E_NDS32_ELF_VER_1_3) out = stpcpy (out, ", VIDEO"); else out = stpcpy (out, ", SATURATION"); } if (config & E_NDS32_HAS_ENCRIPT_INST) out = stpcpy (out, ", ENCRP"); if (config & E_NDS32_HAS_L2C_INST) out = stpcpy (out, ", L2C"); return out; } static char * decode_PARISC_machine_flags (char *out, unsigned e_flags) { switch (e_flags & EF_PARISC_ARCH) { case EFA_PARISC_1_0: out = stpcpy (out, ", PA-RISC 1.0"); break; case EFA_PARISC_1_1: out = stpcpy (out, ", PA-RISC 1.1"); break; case EFA_PARISC_2_0: out = stpcpy (out, ", PA-RISC 2.0"); break; default: break; } if (e_flags & EF_PARISC_TRAPNIL) out = stpcpy (out, ", trapnil"); if (e_flags & EF_PARISC_EXT) out = stpcpy (out, ", ext"); if (e_flags & EF_PARISC_LSB) out = stpcpy (out, ", lsb"); if (e_flags & EF_PARISC_WIDE) out = stpcpy (out, ", wide"); if (e_flags & EF_PARISC_NO_KABP) out = stpcpy (out, ", no kabp"); if (e_flags & EF_PARISC_LAZYSWAP) out = stpcpy (out, ", lazyswap"); return out; } static char * decode_RISCV_machine_flags (char *out, unsigned e_flags) { if (e_flags & EF_RISCV_RVC) out = stpcpy (out, ", RVC"); if (e_flags & EF_RISCV_RVE) out = stpcpy (out, ", RVE"); if (e_flags & EF_RISCV_TSO) out = stpcpy (out, ", TSO"); switch (e_flags & EF_RISCV_FLOAT_ABI) { case EF_RISCV_FLOAT_ABI_SOFT: out = stpcpy (out, ", soft-float ABI"); break; case EF_RISCV_FLOAT_ABI_SINGLE: out = stpcpy (out, ", single-float ABI"); break; case EF_RISCV_FLOAT_ABI_DOUBLE: out = stpcpy (out, ", double-float ABI"); break; case EF_RISCV_FLOAT_ABI_QUAD: out = stpcpy (out, ", quad-float ABI"); break; } return out; } static char * decode_RL78_machine_flags (char *out, unsigned e_flags) { switch (e_flags & E_FLAG_RL78_CPU_MASK) { case E_FLAG_RL78_ANY_CPU: break; case E_FLAG_RL78_G10: out = stpcpy (out, ", G10"); break; case E_FLAG_RL78_G13: out = stpcpy (out, ", G13"); break; case E_FLAG_RL78_G14: out = stpcpy (out, ", G14"); break; } if (e_flags & E_FLAG_RL78_64BIT_DOUBLES) out = stpcpy (out, ", 64-bit doubles"); return out; } static char * decode_RX_machine_flags (char *out, unsigned e_flags) { if (e_flags & E_FLAG_RX_64BIT_DOUBLES) out = stpcpy (out, ", 64-bit doubles"); if (e_flags & E_FLAG_RX_DSP) out = stpcpy (out, ", dsp"); if (e_flags & E_FLAG_RX_PID) out = stpcpy (out, ", pid"); if (e_flags & E_FLAG_RX_ABI) out = stpcpy (out, ", RX ABI"); if (e_flags & E_FLAG_RX_SINSNS_SET) out = stpcpy (out, (e_flags & E_FLAG_RX_SINSNS_YES ? ", uses String instructions" : ", bans String instructions")); if (e_flags & E_FLAG_RX_V2) out = stpcpy (out, ", V2"); if (e_flags & E_FLAG_RX_V3) out = stpcpy (out, ", V3"); return out; } static char * decode_SH_machine_flags (char *out, unsigned e_flags) { switch ((e_flags & EF_SH_MACH_MASK)) { case EF_SH1: out = stpcpy (out, ", sh1"); break; case EF_SH2: out = stpcpy (out, ", sh2"); break; case EF_SH3: out = stpcpy (out, ", sh3"); break; case EF_SH_DSP: out = stpcpy (out, ", sh-dsp"); break; case EF_SH3_DSP: out = stpcpy (out, ", sh3-dsp"); break; case EF_SH4AL_DSP: out = stpcpy (out, ", sh4al-dsp"); break; case EF_SH3E: out = stpcpy (out, ", sh3e"); break; case EF_SH4: out = stpcpy (out, ", sh4"); break; case EF_SH5: out = stpcpy (out, ", sh5"); break; case EF_SH2E: out = stpcpy (out, ", sh2e"); break; case EF_SH4A: out = stpcpy (out, ", sh4a"); break; case EF_SH2A: out = stpcpy (out, ", sh2a"); break; case EF_SH4_NOFPU: out = stpcpy (out, ", sh4-nofpu"); break; case EF_SH4A_NOFPU: out = stpcpy (out, ", sh4a-nofpu"); break; case EF_SH2A_NOFPU: out = stpcpy (out, ", sh2a-nofpu"); break; case EF_SH3_NOMMU: out = stpcpy (out, ", sh3-nommu"); break; case EF_SH4_NOMMU_NOFPU: out = stpcpy (out, ", sh4-nommu-nofpu"); break; case EF_SH2A_SH4_NOFPU: out = stpcpy (out, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break; case EF_SH2A_SH3_NOFPU: out = stpcpy (out, ", sh2a-nofpu-or-sh3-nommu"); break; case EF_SH2A_SH4: out = stpcpy (out, ", sh2a-or-sh4"); break; case EF_SH2A_SH3E: out = stpcpy (out, ", sh2a-or-sh3e"); break; default: out = stpcpy (out, _(", unknown ISA")); break; } if (e_flags & EF_SH_PIC) out = stpcpy (out, ", pic"); if (e_flags & EF_SH_FDPIC) out = stpcpy (out, ", fdpic"); return out; } static char * decode_SPARC_machine_flags (char *out, unsigned e_flags) { if (e_flags & EF_SPARC_32PLUS) out = stpcpy (out, ", v8+"); if (e_flags & EF_SPARC_SUN_US1) out = stpcpy (out, ", ultrasparcI"); if (e_flags & EF_SPARC_SUN_US3) out = stpcpy (out, ", ultrasparcIII"); if (e_flags & EF_SPARC_HAL_R1) out = stpcpy (out, ", halr1"); if (e_flags & EF_SPARC_LEDATA) out = stpcpy (out, ", ledata"); if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO) out = stpcpy (out, ", tso"); if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO) out = stpcpy (out, ", pso"); if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO) out = stpcpy (out, ", rmo"); return out; } static char * decode_V800_machine_flags (char *out, unsigned int e_flags) { if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI) out = stpcpy (out, ", RH850 ABI"); if (e_flags & EF_V800_850E3) out = stpcpy (out, ", V3 architecture"); if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0) out = stpcpy (out, ", FPU not used"); if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0) out = stpcpy (out, ", regmode: COMMON"); if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0) out = stpcpy (out, ", r4 not used"); if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0) out = stpcpy (out, ", r30 not used"); if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0) out = stpcpy (out, ", r5 not used"); if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0) out = stpcpy (out, ", r2 not used"); for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags)) { switch (e_flags & - e_flags) { case EF_RH850_FPU_DOUBLE: out = stpcpy (out, ", double precision FPU"); break; case EF_RH850_FPU_SINGLE: out = stpcpy (out, ", single precision FPU"); break; case EF_RH850_REGMODE22: out = stpcpy (out, ", regmode:22"); break; case EF_RH850_REGMODE32: out = stpcpy (out, ", regmode:23"); break; case EF_RH850_GP_FIX: out = stpcpy (out, ", r4 fixed"); break; case EF_RH850_GP_NOFIX: out = stpcpy (out, ", r4 free"); break; case EF_RH850_EP_FIX: out = stpcpy (out, ", r30 fixed"); break; case EF_RH850_EP_NOFIX: out = stpcpy (out, ", r30 free"); break; case EF_RH850_TP_FIX: out = stpcpy (out, ", r5 fixed"); break; case EF_RH850_TP_NOFIX: out = stpcpy (out, ", r5 free"); break; case EF_RH850_REG2_RESERVE: out = stpcpy (out, ", r2 fixed"); break; case EF_RH850_REG2_NORESERVE: out = stpcpy (out, ", r2 free"); break; default: break; } } return out; } static char * decode_V850_machine_flags (char *out, unsigned int e_flags) { switch (e_flags & EF_V850_ARCH) { case E_V850E3V5_ARCH: out = stpcpy (out, ", v850e3v5"); break; case E_V850E2V3_ARCH: out = stpcpy (out, ", v850e2v3"); break; case E_V850E2_ARCH: out = stpcpy (out, ", v850e2"); break; case E_V850E1_ARCH: out = stpcpy (out, ", v850e1"); break; case E_V850E_ARCH: out = stpcpy (out, ", v850e"); break; case E_V850_ARCH: out = stpcpy (out, ", v850"); break; default: out = stpcpy (out, _(", unknown v850 architecture variant")); break; } return out; } static char * decode_Z80_machine_flags (char *out, unsigned int e_flags) { switch (e_flags & EF_Z80_MACH_MSK) { case EF_Z80_MACH_Z80: out = stpcpy (out, ", Z80"); break; case EF_Z80_MACH_Z180: out = stpcpy (out, ", Z180"); break; case EF_Z80_MACH_R800: out = stpcpy (out, ", R800"); break; case EF_Z80_MACH_EZ80_Z80: out = stpcpy (out, ", EZ80"); break; case EF_Z80_MACH_EZ80_ADL: out = stpcpy (out, ", EZ80, ADL"); break; case EF_Z80_MACH_GBZ80: out = stpcpy (out, ", GBZ80"); break; case EF_Z80_MACH_Z80N: out = stpcpy (out, ", Z80N"); break; default: out = stpcpy (out, _(", unknown")); break; } return out; } static char * decode_AMDGPU_machine_flags (char *out, unsigned int e_flags, Filedata *filedata) { unsigned char *e_ident = filedata->file_header.e_ident; unsigned char osabi = e_ident[EI_OSABI]; unsigned char abiversion = e_ident[EI_ABIVERSION]; unsigned int mach; /* HSA OS ABI v2 used a different encoding, but we don't need to support it, it has been deprecated for a while. The PAL, MESA3D and NONE OS ABIs are not properly versioned, at the time of writing, they use the same flags as HSA v3, so the code below uses that assumption. */ if (osabi == ELFOSABI_AMDGPU_HSA && abiversion < ELFABIVERSION_AMDGPU_HSA_V3) return out; mach = e_flags & EF_AMDGPU_MACH; switch (mach) { #define AMDGPU_CASE(code, string) \ case code: out = stpcpy (out, ", " string); break; AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX600, "gfx600") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX601, "gfx601") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX700, "gfx700") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX701, "gfx701") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX702, "gfx702") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX703, "gfx703") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX704, "gfx704") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX801, "gfx801") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX802, "gfx802") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX803, "gfx803") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX810, "gfx810") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX900, "gfx900") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX902, "gfx902") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX904, "gfx904") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX906, "gfx906") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX908, "gfx908") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX909, "gfx909") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX90C, "gfx90c") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX1010, "gfx1010") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX1011, "gfx1011") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX1012, "gfx1012") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX1030, "gfx1030") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX1031, "gfx1031") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX1032, "gfx1032") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX1033, "gfx1033") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX602, "gfx602") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX705, "gfx705") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX805, "gfx805") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX1035, "gfx1035") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX1034, "gfx1034") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX90A, "gfx90a") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX940, "gfx940") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX1013, "gfx1013") AMDGPU_CASE (EF_AMDGPU_MACH_AMDGCN_GFX1036, "gfx1036") default: out += sprintf (out, _(", "), mach); break; #undef AMDGPU_CASE } e_flags &= ~EF_AMDGPU_MACH; if ((osabi == ELFOSABI_AMDGPU_HSA && abiversion == ELFABIVERSION_AMDGPU_HSA_V3) || osabi != ELFOSABI_AMDGPU_HSA) { /* For HSA v3 and other OS ABIs. */ if (e_flags & EF_AMDGPU_FEATURE_XNACK_V3) { out = stpcpy (out, ", xnack on"); e_flags &= ~EF_AMDGPU_FEATURE_XNACK_V3; } if (e_flags & EF_AMDGPU_FEATURE_SRAMECC_V3) { out = stpcpy (out, ", sramecc on"); e_flags &= ~EF_AMDGPU_FEATURE_SRAMECC_V3; } } else { /* For HSA v4+. */ int xnack, sramecc; xnack = e_flags & EF_AMDGPU_FEATURE_XNACK_V4; switch (xnack) { case EF_AMDGPU_FEATURE_XNACK_UNSUPPORTED_V4: break; case EF_AMDGPU_FEATURE_XNACK_ANY_V4: out = stpcpy (out, ", xnack any"); break; case EF_AMDGPU_FEATURE_XNACK_OFF_V4: out = stpcpy (out, ", xnack off"); break; case EF_AMDGPU_FEATURE_XNACK_ON_V4: out = stpcpy (out, ", xnack on"); break; default: out += sprintf (out, _(", "), xnack); break; } e_flags &= ~EF_AMDGPU_FEATURE_XNACK_V4; sramecc = e_flags & EF_AMDGPU_FEATURE_SRAMECC_V4; switch (sramecc) { case EF_AMDGPU_FEATURE_SRAMECC_UNSUPPORTED_V4: break; case EF_AMDGPU_FEATURE_SRAMECC_ANY_V4: out = stpcpy (out, ", sramecc any"); break; case EF_AMDGPU_FEATURE_SRAMECC_OFF_V4: out = stpcpy (out, ", sramecc off"); break; case EF_AMDGPU_FEATURE_SRAMECC_ON_V4: out = stpcpy (out, ", sramecc on"); break; default: out += sprintf (out, _(", "), sramecc); break; } e_flags &= ~EF_AMDGPU_FEATURE_SRAMECC_V4; } if (e_flags != 0) out += sprintf (out, _(", unknown flags bits: %#x"), e_flags); return out; } static char * get_machine_flags (Filedata * filedata, unsigned e_flags, unsigned e_machine) { static char buf[1024]; char *out = buf; buf[0] = '\0'; if (e_flags) { switch (e_machine) { default: break; case EM_ARC_COMPACT3: out = stpcpy (out, ", HS5x"); break; case EM_ARC_COMPACT3_64: out = stpcpy (out, ", HS6x"); break; case EM_ARC_COMPACT2: case EM_ARC_COMPACT: out = decode_ARC_machine_flags (out, e_flags, e_machine); break; case EM_ARM: out = decode_ARM_machine_flags (out, e_flags); break; case EM_AVR: out = decode_AVR_machine_flags (out, e_flags); break; case EM_BLACKFIN: out = decode_BLACKFIN_machine_flags (out, e_flags); break; case EM_CYGNUS_FRV: out = decode_FRV_machine_flags (out, e_flags); break; case EM_68K: out = decode_M68K_machine_flags (out, e_flags); break; case EM_AMDGPU: out = decode_AMDGPU_machine_flags (out, e_flags, filedata); break; case EM_CYGNUS_MEP: out = decode_MeP_machine_flags (out, e_flags); break; case EM_PPC: if (e_flags & EF_PPC_EMB) out = stpcpy (out, ", emb"); if (e_flags & EF_PPC_RELOCATABLE) out = stpcpy (out, _(", relocatable")); if (e_flags & EF_PPC_RELOCATABLE_LIB) out = stpcpy (out, _(", relocatable-lib")); break; case EM_PPC64: if (e_flags & EF_PPC64_ABI) out += sprintf (out, ", abiv%d", e_flags & EF_PPC64_ABI); break; case EM_V800: out = decode_V800_machine_flags (out, e_flags); break; case EM_V850: case EM_CYGNUS_V850: out = decode_V850_machine_flags (out, e_flags); break; case EM_M32R: case EM_CYGNUS_M32R: if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH) out = stpcpy (out, ", m32r"); break; case EM_MIPS: case EM_MIPS_RS3_LE: out = decode_MIPS_machine_flags (out, e_flags); break; case EM_NDS32: out = decode_NDS32_machine_flags (out, e_flags); break; case EM_NFP: switch (EF_NFP_MACH (e_flags)) { case E_NFP_MACH_3200: out = stpcpy (out, ", NFP-32xx"); break; case E_NFP_MACH_6000: out = stpcpy (out, ", NFP-6xxx"); break; } break; case EM_RISCV: out = decode_RISCV_machine_flags (out, e_flags); break; case EM_SH: out = decode_SH_machine_flags (out, e_flags); break; case EM_OR1K: if (e_flags & EF_OR1K_NODELAY) out = stpcpy (out, ", no delay"); break; case EM_BPF: out += sprintf (out, ", CPU Version: %u", e_flags & EF_BPF_CPUVER); break; case EM_SPARCV9: out = decode_SPARC_machine_flags (out, e_flags); break; case EM_PARISC: out = decode_PARISC_machine_flags (out, e_flags); break; case EM_PJ: case EM_PJ_OLD: if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS) out = stpcpy (out, ", new calling convention"); if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS) out = stpcpy (out, ", gnu calling convention"); break; case EM_IA_64: out = decode_IA64_machine_flags (out, e_flags, filedata); break; case EM_VAX: if ((e_flags & EF_VAX_NONPIC)) out = stpcpy (out, ", non-PIC"); if ((e_flags & EF_VAX_DFLOAT)) out = stpcpy (out, ", D-Float"); if ((e_flags & EF_VAX_GFLOAT)) out = stpcpy (out, ", G-Float"); break; case EM_VISIUM: if (e_flags & EF_VISIUM_ARCH_MCM) out = stpcpy (out, ", mcm"); else if (e_flags & EF_VISIUM_ARCH_MCM24) out = stpcpy (out, ", mcm24"); if (e_flags & EF_VISIUM_ARCH_GR6) out = stpcpy (out, ", gr6"); break; case EM_RL78: out = decode_RL78_machine_flags (out, e_flags); break; case EM_RX: out = decode_RX_machine_flags (out, e_flags); break; case EM_S390: if (e_flags & EF_S390_HIGH_GPRS) out = stpcpy (out, ", highgprs"); break; case EM_TI_C6000: if ((e_flags & EF_C6000_REL)) out = stpcpy (out, ", relocatable module"); break; case EM_KVX: if ((e_flags & (ELF_KVX_CORE_MAJOR_MASK | ELF_KVX_CORE_MINOR_MASK)) == ELF_KVX_CORE_KV3_1) strcat (buf, ", Kalray VLIW kv3-1"); else if ((e_flags & (ELF_KVX_CORE_MAJOR_MASK | ELF_KVX_CORE_MINOR_MASK)) == ELF_KVX_CORE_KV3_2) strcat (buf, ", Kalray VLIW kv3-2"); else if ((e_flags & (ELF_KVX_CORE_MAJOR_MASK | ELF_KVX_CORE_MINOR_MASK)) == ELF_KVX_CORE_KV4_1) strcat (buf, ", Kalray VLIW kv4-1"); else strcat (buf, ", unknown KVX MPPA"); break; case EM_MSP430: out = decode_MSP430_machine_flags (out, e_flags); break; case EM_Z80: out = decode_Z80_machine_flags (out, e_flags); break; case EM_LOONGARCH: out = decode_LOONGARCH_machine_flags (out, e_flags); break; } } return buf; } static const char * get_osabi_name (Filedata * filedata, unsigned int osabi) { static char buff[32]; switch (osabi) { case ELFOSABI_NONE: return "UNIX - System V"; case ELFOSABI_HPUX: return "UNIX - HP-UX"; case ELFOSABI_NETBSD: return "UNIX - NetBSD"; case ELFOSABI_GNU: return "UNIX - GNU"; case ELFOSABI_SOLARIS: return "UNIX - Solaris"; case ELFOSABI_AIX: return "UNIX - AIX"; case ELFOSABI_IRIX: return "UNIX - IRIX"; case ELFOSABI_FREEBSD: return "UNIX - FreeBSD"; case ELFOSABI_TRU64: return "UNIX - TRU64"; case ELFOSABI_MODESTO: return "Novell - Modesto"; case ELFOSABI_OPENBSD: return "UNIX - OpenBSD"; case ELFOSABI_OPENVMS: return "VMS - OpenVMS"; case ELFOSABI_NSK: return "HP - Non-Stop Kernel"; case ELFOSABI_AROS: return "AROS"; case ELFOSABI_FENIXOS: return "FenixOS"; case ELFOSABI_CLOUDABI: return "Nuxi CloudABI"; case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS"; default: if (osabi >= 64) switch (filedata->file_header.e_machine) { case EM_AMDGPU: switch (osabi) { case ELFOSABI_AMDGPU_HSA: return "AMD HSA"; case ELFOSABI_AMDGPU_PAL: return "AMD PAL"; case ELFOSABI_AMDGPU_MESA3D: return "AMD Mesa3D"; default: break; } break; case EM_ARM: switch (osabi) { case ELFOSABI_ARM: return "ARM"; case ELFOSABI_ARM_FDPIC: return "ARM FDPIC"; default: break; } break; case EM_MSP430: case EM_MSP430_OLD: case EM_VISIUM: switch (osabi) { case ELFOSABI_STANDALONE: return _("Standalone App"); default: break; } break; case EM_TI_C6000: switch (osabi) { case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000"); case ELFOSABI_C6000_LINUX: return "Linux C6000"; default: break; } break; default: break; } snprintf (buff, sizeof (buff), _(""), osabi); return buff; } } static const char * get_aarch64_segment_type (unsigned long type) { switch (type) { case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT"; case PT_AARCH64_MEMTAG_MTE: return "AARCH64_MEMTAG_MTE"; default: return NULL; } } static const char * get_arm_segment_type (unsigned long type) { switch (type) { case PT_ARM_EXIDX: return "EXIDX"; default: return NULL; } } static const char * get_s390_segment_type (unsigned long type) { switch (type) { case PT_S390_PGSTE: return "S390_PGSTE"; default: return NULL; } } static const char * get_mips_segment_type (unsigned long type) { switch (type) { case PT_MIPS_REGINFO: return "REGINFO"; case PT_MIPS_RTPROC: return "RTPROC"; case PT_MIPS_OPTIONS: return "OPTIONS"; case PT_MIPS_ABIFLAGS: return "ABIFLAGS"; default: return NULL; } } static const char * get_parisc_segment_type (unsigned long type) { switch (type) { case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT"; case PT_PARISC_UNWIND: return "PARISC_UNWIND"; case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER"; default: return NULL; } } static const char * get_ia64_segment_type (unsigned long type) { switch (type) { case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT"; case PT_IA_64_UNWIND: return "IA_64_UNWIND"; default: return NULL; } } static const char * get_tic6x_segment_type (unsigned long type) { switch (type) { case PT_C6000_PHATTR: return "C6000_PHATTR"; default: return NULL; } } static const char * get_riscv_segment_type (unsigned long type) { switch (type) { case PT_RISCV_ATTRIBUTES: return "RISCV_ATTRIBUTES"; default: return NULL; } } static const char * get_hpux_segment_type (unsigned long type, unsigned e_machine) { if (e_machine == EM_PARISC) switch (type) { case PT_HP_TLS: return "HP_TLS"; case PT_HP_CORE_NONE: return "HP_CORE_NONE"; case PT_HP_CORE_VERSION: return "HP_CORE_VERSION"; case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL"; case PT_HP_CORE_COMM: return "HP_CORE_COMM"; case PT_HP_CORE_PROC: return "HP_CORE_PROC"; case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE"; case PT_HP_CORE_STACK: return "HP_CORE_STACK"; case PT_HP_CORE_SHM: return "HP_CORE_SHM"; case PT_HP_CORE_MMF: return "HP_CORE_MMF"; case PT_HP_PARALLEL: return "HP_PARALLEL"; case PT_HP_FASTBIND: return "HP_FASTBIND"; case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT"; case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT"; case PT_HP_STACK: return "HP_STACK"; case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME"; default: return NULL; } if (e_machine == EM_IA_64) switch (type) { case PT_HP_TLS: return "HP_TLS"; case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT"; case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT"; case PT_IA_64_HP_STACK: return "HP_STACK"; default: return NULL; } return NULL; } static const char * get_solaris_segment_type (unsigned long type) { switch (type) { case 0x6464e550: return "PT_SUNW_UNWIND"; case 0x6474e550: return "PT_SUNW_EH_FRAME"; case 0x6ffffff7: return "PT_LOSUNW"; case 0x6ffffffa: return "PT_SUNWBSS"; case 0x6ffffffb: return "PT_SUNWSTACK"; case 0x6ffffffc: return "PT_SUNWDTRACE"; case 0x6ffffffd: return "PT_SUNWCAP"; case 0x6fffffff: return "PT_HISUNW"; default: return NULL; } } static const char * get_segment_type (Filedata * filedata, unsigned long p_type) { static char buff[32]; switch (p_type) { case PT_NULL: return "NULL"; case PT_LOAD: return "LOAD"; case PT_DYNAMIC: return "DYNAMIC"; case PT_INTERP: return "INTERP"; case PT_NOTE: return "NOTE"; case PT_SHLIB: return "SHLIB"; case PT_PHDR: return "PHDR"; case PT_TLS: return "TLS"; case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; case PT_GNU_STACK: return "GNU_STACK"; case PT_GNU_RELRO: return "GNU_RELRO"; case PT_GNU_PROPERTY: return "GNU_PROPERTY"; case PT_GNU_SFRAME: return "GNU_SFRAME"; case PT_OPENBSD_MUTABLE: return "OPENBSD_MUTABLE"; case PT_OPENBSD_RANDOMIZE: return "OPENBSD_RANDOMIZE"; case PT_OPENBSD_WXNEEDED: return "OPENBSD_WXNEEDED"; case PT_OPENBSD_BOOTDATA: return "OPENBSD_BOOTDATA"; default: if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC)) { const char * result; switch (filedata->file_header.e_machine) { case EM_AARCH64: result = get_aarch64_segment_type (p_type); break; case EM_ARM: result = get_arm_segment_type (p_type); break; case EM_MIPS: case EM_MIPS_RS3_LE: result = get_mips_segment_type (p_type); break; case EM_PARISC: result = get_parisc_segment_type (p_type); break; case EM_IA_64: result = get_ia64_segment_type (p_type); break; case EM_TI_C6000: result = get_tic6x_segment_type (p_type); break; case EM_S390: case EM_S390_OLD: result = get_s390_segment_type (p_type); break; case EM_RISCV: result = get_riscv_segment_type (p_type); break; default: result = NULL; break; } if (result != NULL) return result; sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC); } else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS)) { const char * result = NULL; switch (filedata->file_header.e_ident[EI_OSABI]) { case ELFOSABI_GNU: case ELFOSABI_FREEBSD: if (p_type >= PT_GNU_MBIND_LO && p_type <= PT_GNU_MBIND_HI) { sprintf (buff, "GNU_MBIND+%#lx", p_type - PT_GNU_MBIND_LO); result = buff; } break; case ELFOSABI_HPUX: result = get_hpux_segment_type (p_type, filedata->file_header.e_machine); break; case ELFOSABI_SOLARIS: result = get_solaris_segment_type (p_type); break; default: break; } if (result != NULL) return result; sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS); } else snprintf (buff, sizeof (buff), _(": %lx"), p_type); return buff; } } static const char * get_arc_section_type_name (unsigned int sh_type) { switch (sh_type) { case SHT_ARC_ATTRIBUTES: return "ARC_ATTRIBUTES"; default: break; } return NULL; } static const char * get_mips_section_type_name (unsigned int sh_type) { switch (sh_type) { case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; case SHT_MIPS_MSYM: return "MIPS_MSYM"; case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; case SHT_MIPS_UCODE: return "MIPS_UCODE"; case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; case SHT_MIPS_RELD: return "MIPS_RELD"; case SHT_MIPS_IFACE: return "MIPS_IFACE"; case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; case SHT_MIPS_SHDR: return "MIPS_SHDR"; case SHT_MIPS_FDESC: return "MIPS_FDESC"; case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM"; case SHT_MIPS_DENSE: return "MIPS_DENSE"; case SHT_MIPS_PDESC: return "MIPS_PDESC"; case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM"; case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM"; case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM"; case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR"; case SHT_MIPS_LINE: return "MIPS_LINE"; case SHT_MIPS_RFDESC: return "MIPS_RFDESC"; case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; case SHT_MIPS_DWARF: return "MIPS_DWARF"; case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; case SHT_MIPS_XLATE: return "MIPS_XLATE"; case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS"; case SHT_MIPS_XHASH: return "MIPS_XHASH"; default: break; } return NULL; } static const char * get_parisc_section_type_name (unsigned int sh_type) { switch (sh_type) { case SHT_PARISC_EXT: return "PARISC_EXT"; case SHT_PARISC_UNWIND: return "PARISC_UNWIND"; case SHT_PARISC_DOC: return "PARISC_DOC"; case SHT_PARISC_ANNOT: return "PARISC_ANNOT"; case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN"; case SHT_PARISC_STUBS: return "PARISC_STUBS"; case SHT_PARISC_DLKM: return "PARISC_DLKM"; default: return NULL; } } static const char * get_ia64_section_type_name (Filedata * filedata, unsigned int sh_type) { /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */ if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG) return get_osabi_name (filedata, (sh_type & 0x00FF0000) >> 16); switch (sh_type) { case SHT_IA_64_EXT: return "IA_64_EXT"; case SHT_IA_64_UNWIND: return "IA_64_UNWIND"; case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT"; case SHT_IA_64_VMS_TRACE: return "VMS_TRACE"; case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES"; case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG"; case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR"; case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES"; case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR"; case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP"; default: break; } return NULL; } static const char * get_x86_64_section_type_name (unsigned int sh_type) { switch (sh_type) { case SHT_X86_64_UNWIND: return "X86_64_UNWIND"; default: return NULL; } } static const char * get_aarch64_section_type_name (unsigned int sh_type) { switch (sh_type) { case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES"; default: return NULL; } } static const char * get_arm_section_type_name (unsigned int sh_type) { switch (sh_type) { case SHT_ARM_EXIDX: return "ARM_EXIDX"; case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP"; case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES"; case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY"; case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION"; default: return NULL; } } static const char * get_tic6x_section_type_name (unsigned int sh_type) { switch (sh_type) { case SHT_C6000_UNWIND: return "C6000_UNWIND"; case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP"; case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES"; case SHT_TI_ICODE: return "TI_ICODE"; case SHT_TI_XREF: return "TI_XREF"; case SHT_TI_HANDLER: return "TI_HANDLER"; case SHT_TI_INITINFO: return "TI_INITINFO"; case SHT_TI_PHATTRS: return "TI_PHATTRS"; default: return NULL; } } static const char * get_msp430_section_type_name (unsigned int sh_type) { switch (sh_type) { case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS"; case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES"; case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES"; default: return NULL; } } static const char * get_nfp_section_type_name (unsigned int sh_type) { switch (sh_type) { case SHT_NFP_MECONFIG: return "NFP_MECONFIG"; case SHT_NFP_INITREG: return "NFP_INITREG"; case SHT_NFP_UDEBUG: return "NFP_UDEBUG"; default: return NULL; } } static const char * get_v850_section_type_name (unsigned int sh_type) { switch (sh_type) { case SHT_V850_SCOMMON: return "V850 Small Common"; case SHT_V850_TCOMMON: return "V850 Tiny Common"; case SHT_V850_ZCOMMON: return "V850 Zero Common"; case SHT_RENESAS_IOP: return "RENESAS IOP"; case SHT_RENESAS_INFO: return "RENESAS INFO"; default: return NULL; } } static const char * get_riscv_section_type_name (unsigned int sh_type) { switch (sh_type) { case SHT_RISCV_ATTRIBUTES: return "RISCV_ATTRIBUTES"; default: return NULL; } } static const char * get_csky_section_type_name (unsigned int sh_type) { switch (sh_type) { case SHT_CSKY_ATTRIBUTES: return "CSKY_ATTRIBUTES"; default: return NULL; } } static const char * get_section_type_name (Filedata * filedata, unsigned int sh_type) { static char buff[32]; const char * result; switch (sh_type) { case SHT_NULL: return "NULL"; case SHT_PROGBITS: return "PROGBITS"; case SHT_SYMTAB: return "SYMTAB"; case SHT_STRTAB: return "STRTAB"; case SHT_RELA: return "RELA"; case SHT_RELR: return "RELR"; case SHT_HASH: return "HASH"; case SHT_DYNAMIC: return "DYNAMIC"; case SHT_NOTE: return "NOTE"; case SHT_NOBITS: return "NOBITS"; case SHT_REL: return "REL"; case SHT_SHLIB: return "SHLIB"; case SHT_DYNSYM: return "DYNSYM"; case SHT_INIT_ARRAY: return "INIT_ARRAY"; case SHT_FINI_ARRAY: return "FINI_ARRAY"; case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; case SHT_GNU_HASH: return "GNU_HASH"; case SHT_GROUP: return "GROUP"; case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICES"; case SHT_GNU_verdef: return "VERDEF"; case SHT_GNU_verneed: return "VERNEED"; case SHT_GNU_versym: return "VERSYM"; case 0x6ffffff0: return "VERSYM"; case 0x6ffffffc: return "VERDEF"; case 0x7ffffffd: return "AUXILIARY"; case 0x7fffffff: return "FILTER"; case SHT_GNU_LIBLIST: return "GNU_LIBLIST"; default: if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC)) { switch (filedata->file_header.e_machine) { case EM_ARC: case EM_ARC_COMPACT: case EM_ARC_COMPACT2: case EM_ARC_COMPACT3: case EM_ARC_COMPACT3_64: result = get_arc_section_type_name (sh_type); break; case EM_MIPS: case EM_MIPS_RS3_LE: result = get_mips_section_type_name (sh_type); break; case EM_PARISC: result = get_parisc_section_type_name (sh_type); break; case EM_IA_64: result = get_ia64_section_type_name (filedata, sh_type); break; case EM_X86_64: case EM_L1OM: case EM_K1OM: result = get_x86_64_section_type_name (sh_type); break; case EM_AARCH64: result = get_aarch64_section_type_name (sh_type); break; case EM_ARM: result = get_arm_section_type_name (sh_type); break; case EM_TI_C6000: result = get_tic6x_section_type_name (sh_type); break; case EM_MSP430: result = get_msp430_section_type_name (sh_type); break; case EM_NFP: result = get_nfp_section_type_name (sh_type); break; case EM_V800: case EM_V850: case EM_CYGNUS_V850: result = get_v850_section_type_name (sh_type); break; case EM_RISCV: result = get_riscv_section_type_name (sh_type); break; case EM_CSKY: result = get_csky_section_type_name (sh_type); break; default: result = NULL; break; } if (result != NULL) return result; sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC); } else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS)) { switch (filedata->file_header.e_machine) { case EM_IA_64: result = get_ia64_section_type_name (filedata, sh_type); break; default: if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS) result = get_solaris_section_type (sh_type); else { switch (sh_type) { case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break; case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break; case SHT_GNU_HASH: result = "GNU_HASH"; break; case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break; default: result = NULL; break; } } break; } if (result != NULL) return result; sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS); } else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER)) { switch (filedata->file_header.e_machine) { case EM_V800: case EM_V850: case EM_CYGNUS_V850: result = get_v850_section_type_name (sh_type); break; default: result = NULL; break; } if (result != NULL) return result; sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER); } else /* This message is probably going to be displayed in a 15 character wide field, so put the hex value first. */ snprintf (buff, sizeof (buff), _("%08x: "), sh_type); return buff; } } enum long_option_values { OPTION_DEBUG_DUMP = 512, OPTION_DYN_SYMS, OPTION_LTO_SYMS, OPTION_DWARF_DEPTH, OPTION_DWARF_START, OPTION_DWARF_CHECK, OPTION_CTF_DUMP, OPTION_CTF_PARENT, OPTION_CTF_SYMBOLS, OPTION_CTF_STRINGS, OPTION_SFRAME_DUMP, OPTION_WITH_SYMBOL_VERSIONS, OPTION_RECURSE_LIMIT, OPTION_NO_RECURSE_LIMIT, OPTION_NO_DEMANGLING, OPTION_NO_EXTRA_SYM_INFO, OPTION_SYM_BASE }; static struct option options[] = { /* Note - This table is alpha-sorted on the 'val' field in order to make adding new options easier. */ {"arch-specific", no_argument, 0, 'A'}, {"all", no_argument, 0, 'a'}, {"demangle", optional_argument, 0, 'C'}, {"archive-index", no_argument, 0, 'c'}, {"use-dynamic", no_argument, 0, 'D'}, {"dynamic", no_argument, 0, 'd'}, {"headers", no_argument, 0, 'e'}, {"section-groups", no_argument, 0, 'g'}, {"help", no_argument, 0, 'H'}, {"file-header", no_argument, 0, 'h'}, {"histogram", no_argument, 0, 'I'}, {"lint", no_argument, 0, 'L'}, {"enable-checks", no_argument, 0, 'L'}, {"program-headers", no_argument, 0, 'l'}, {"segments", no_argument, 0, 'l'}, {"full-section-name",no_argument, 0, 'N'}, {"notes", no_argument, 0, 'n'}, {"process-links", no_argument, 0, 'P'}, {"string-dump", required_argument, 0, 'p'}, {"relocated-dump", required_argument, 0, 'R'}, {"relocs", no_argument, 0, 'r'}, {"section-headers", no_argument, 0, 'S'}, {"sections", no_argument, 0, 'S'}, {"symbols", no_argument, 0, 's'}, {"syms", no_argument, 0, 's'}, {"silent-truncation",no_argument, 0, 'T'}, {"section-details", no_argument, 0, 't'}, {"unicode", required_argument, NULL, 'U'}, {"unwind", no_argument, 0, 'u'}, {"version-info", no_argument, 0, 'V'}, {"version", no_argument, 0, 'v'}, {"wide", no_argument, 0, 'W'}, {"extra-sym-info", no_argument, 0, 'X'}, {"hex-dump", required_argument, 0, 'x'}, {"decompress", no_argument, 0, 'z'}, {"no-demangle", no_argument, 0, OPTION_NO_DEMANGLING}, {"no-extra-sym-info",no_argument, 0, OPTION_NO_EXTRA_SYM_INFO}, {"recurse-limit", no_argument, NULL, OPTION_RECURSE_LIMIT}, {"no-recurse-limit", no_argument, NULL, OPTION_NO_RECURSE_LIMIT}, {"no-recursion-limit", no_argument, NULL, OPTION_NO_RECURSE_LIMIT}, {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS}, {"lto-syms", no_argument, 0, OPTION_LTO_SYMS}, {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP}, {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH}, {"dwarf-start", required_argument, 0, OPTION_DWARF_START}, {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK}, #ifdef ENABLE_LIBCTF {"ctf", required_argument, 0, OPTION_CTF_DUMP}, {"ctf-symbols", required_argument, 0, OPTION_CTF_SYMBOLS}, {"ctf-strings", required_argument, 0, OPTION_CTF_STRINGS}, {"ctf-parent", required_argument, 0, OPTION_CTF_PARENT}, #endif {"sframe", optional_argument, 0, OPTION_SFRAME_DUMP}, {"sym-base", optional_argument, 0, OPTION_SYM_BASE}, {0, no_argument, 0, 0} }; static void usage (FILE * stream) { fprintf (stream, _("Usage: readelf elf-file(s)\n")); fprintf (stream, _(" Display information about the contents of ELF format files\n")); fprintf (stream, _(" Options are:\n")); fprintf (stream, _("\ -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n")); fprintf (stream, _("\ -h --file-header Display the ELF file header\n")); fprintf (stream, _("\ -l --program-headers Display the program headers\n")); fprintf (stream, _("\ --segments An alias for --program-headers\n")); fprintf (stream, _("\ -S --section-headers Display the sections' header\n")); fprintf (stream, _("\ --sections An alias for --section-headers\n")); fprintf (stream, _("\ -g --section-groups Display the section groups\n")); fprintf (stream, _("\ -t --section-details Display the section details\n")); fprintf (stream, _("\ -e --headers Equivalent to: -h -l -S\n")); fprintf (stream, _("\ -s --syms Display the symbol table\n")); fprintf (stream, _("\ --symbols An alias for --syms\n")); fprintf (stream, _("\ --dyn-syms Display the dynamic symbol table\n")); fprintf (stream, _("\ --lto-syms Display LTO symbol tables\n")); fprintf (stream, _("\ --sym-base=[0|8|10|16] \n\ Force base for symbol sizes. The options are \n\ mixed (the default), octal, decimal, hexadecimal.\n")); fprintf (stream, _("\ -C --demangle[=STYLE] Decode mangled/processed symbol names\n")); display_demangler_styles (stream, _("\ STYLE can be ")); fprintf (stream, _("\ --no-demangle Do not demangle low-level symbol names. (default)\n")); fprintf (stream, _("\ --recurse-limit Enable a demangling recursion limit. (default)\n")); fprintf (stream, _("\ --no-recurse-limit Disable a demangling recursion limit\n")); fprintf (stream, _("\ -U[dlexhi] --unicode=[default|locale|escape|hex|highlight|invalid]\n\ Display unicode characters as determined by the current locale\n\ (default), escape sequences, \"\", highlighted\n\ escape sequences, or treat them as invalid and display as\n\ \"{hex sequences}\"\n")); fprintf (stream, _("\ -X --extra-sym-info Display extra information when showing symbols\n")); fprintf (stream, _("\ --no-extra-sym-info Do not display extra information when showing symbols (default)\n")); fprintf (stream, _("\ -n --notes Display the contents of note sections (if present)\n")); fprintf (stream, _("\ -r --relocs Display the relocations (if present)\n")); fprintf (stream, _("\ -u --unwind Display the unwind info (if present)\n")); fprintf (stream, _("\ -d --dynamic Display the dynamic section (if present)\n")); fprintf (stream, _("\ -V --version-info Display the version sections (if present)\n")); fprintf (stream, _("\ -A --arch-specific Display architecture specific information (if any)\n")); fprintf (stream, _("\ -c --archive-index Display the symbol/file index in an archive\n")); fprintf (stream, _("\ -D --use-dynamic Use the dynamic section info when displaying symbols\n")); fprintf (stream, _("\ -L --lint|--enable-checks\n\ Display warning messages for possible problems\n")); fprintf (stream, _("\ -x --hex-dump=\n\ Dump the contents of section as bytes\n")); fprintf (stream, _("\ -p --string-dump=\n\ Dump the contents of section as strings\n")); fprintf (stream, _("\ -R --relocated-dump=\n\ Dump the relocated contents of section \n")); fprintf (stream, _("\ -z --decompress Decompress section before dumping it\n")); fprintf (stream, _("\ -w --debug-dump[a/=abbrev, A/=addr, r/=aranges, c/=cu_index, L/=decodedline,\n\ f/=frames, F/=frames-interp, g/=gdb_index, i/=info, o/=loc,\n\ m/=macro, p/=pubnames, t/=pubtypes, R/=Ranges, l/=rawline,\n\ s/=str, O/=str-offsets, u/=trace_abbrev, T/=trace_aranges,\n\ U/=trace_info]\n\ Display the contents of DWARF debug sections\n")); fprintf (stream, _("\ -wk --debug-dump=links Display the contents of sections that link to separate\n\ debuginfo files\n")); fprintf (stream, _("\ -P --process-links Display the contents of non-debug sections in separate\n\ debuginfo files. (Implies -wK)\n")); #if DEFAULT_FOR_FOLLOW_LINKS fprintf (stream, _("\ -wK --debug-dump=follow-links\n\ Follow links to separate debug info files (default)\n")); fprintf (stream, _("\ -wN --debug-dump=no-follow-links\n\ Do not follow links to separate debug info files\n")); #else fprintf (stream, _("\ -wK --debug-dump=follow-links\n\ Follow links to separate debug info files\n")); fprintf (stream, _("\ -wN --debug-dump=no-follow-links\n\ Do not follow links to separate debug info files\n\ (default)\n")); #endif #if HAVE_LIBDEBUGINFOD fprintf (stream, _("\ -wD --debug-dump=use-debuginfod\n\ When following links, also query debuginfod servers (default)\n")); fprintf (stream, _("\ -wE --debug-dump=do-not-use-debuginfod\n\ When following links, do not query debuginfod servers\n")); #endif fprintf (stream, _("\ --dwarf-depth=N Do not display DIEs at depth N or greater\n")); fprintf (stream, _("\ --dwarf-start=N Display DIEs starting at offset N\n")); #ifdef ENABLE_LIBCTF fprintf (stream, _("\ --ctf= Display CTF info from section \n")); fprintf (stream, _("\ --ctf-parent= Use CTF archive member as the CTF parent\n")); fprintf (stream, _("\ --ctf-symbols=\n\ Use section as the CTF external symtab\n")); fprintf (stream, _("\ --ctf-strings=\n\ Use section as the CTF external strtab\n")); #endif fprintf (stream, _("\ --sframe[=NAME] Display SFrame info from section NAME, (default '.sframe')\n")); #ifdef SUPPORT_DISASSEMBLY fprintf (stream, _("\ -i --instruction-dump=\n\ Disassemble the contents of section \n")); #endif fprintf (stream, _("\ -I --histogram Display histogram of bucket list lengths\n")); fprintf (stream, _("\ -W --wide Allow output width to exceed 80 characters\n")); fprintf (stream, _("\ -T --silent-truncation If a symbol name is truncated, do not add [...] suffix\n")); fprintf (stream, _("\ @ Read options from \n")); fprintf (stream, _("\ -H --help Display this information\n")); fprintf (stream, _("\ -v --version Display the version number of readelf\n")); if (REPORT_BUGS_TO[0] && stream == stdout) fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO); exit (stream == stdout ? 0 : 1); } /* Record the fact that the user wants the contents of section number SECTION to be displayed using the method(s) encoded as flags bits in TYPE. Note, TYPE can be zero if we are creating the array for the first time. */ static void request_dump_bynumber (struct dump_data *dumpdata, unsigned int section, dump_type type) { if (section >= dumpdata->num_dump_sects) { dump_type * new_dump_sects; new_dump_sects = (dump_type *) calloc (section + 1, sizeof (* new_dump_sects)); if (new_dump_sects == NULL) error (_("Out of memory allocating dump request table.\n")); else { if (dumpdata->dump_sects) { /* Copy current flag settings. */ memcpy (new_dump_sects, dumpdata->dump_sects, dumpdata->num_dump_sects * sizeof (* new_dump_sects)); free (dumpdata->dump_sects); } dumpdata->dump_sects = new_dump_sects; dumpdata->num_dump_sects = section + 1; } } if (dumpdata->dump_sects) dumpdata->dump_sects[section] |= type; } /* Request a dump by section name. */ static void request_dump_byname (const char * section, dump_type type) { struct dump_list_entry * new_request; new_request = (struct dump_list_entry *) malloc (sizeof (struct dump_list_entry)); if (!new_request) error (_("Out of memory allocating dump request table.\n")); new_request->name = strdup (section); if (!new_request->name) error (_("Out of memory allocating dump request table.\n")); new_request->type = type; new_request->next = dump_sects_byname; dump_sects_byname = new_request; } static inline void request_dump (struct dump_data *dumpdata, dump_type type) { int section; char * cp; do_dump = true; section = strtoul (optarg, & cp, 0); if (! *cp && section >= 0) request_dump_bynumber (dumpdata, section, type); else request_dump_byname (optarg, type); } static void parse_args (struct dump_data *dumpdata, int argc, char ** argv) { int c; if (argc < 2) usage (stderr); while ((c = getopt_long (argc, argv, "ACDHILNPR:STU:VWXacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF) { switch (c) { case 0: /* Long options. */ break; case 'H': usage (stdout); break; case 'a': do_syms = true; do_reloc = true; do_unwind = true; do_dynamic = true; do_header = true; do_sections = true; do_section_groups = true; do_segments = true; do_version = true; do_histogram = true; do_arch = true; do_notes = true; break; case 'g': do_section_groups = true; break; case 't': case 'N': do_sections = true; do_section_details = true; break; case 'e': do_header = true; do_sections = true; do_segments = true; break; case 'A': do_arch = true; break; case 'D': do_using_dynamic = true; break; case 'r': do_reloc = true; break; case 'u': do_unwind = true; break; case 'h': do_header = true; break; case 'l': do_segments = true; break; case 's': do_syms = true; break; case 'S': do_sections = true; break; case 'd': do_dynamic = true; break; case 'I': do_histogram = true; break; case 'n': do_notes = true; break; case 'c': do_archive_index = true; break; case 'L': do_checks = true; break; case 'P': process_links = true; do_follow_links = true; dump_any_debugging = true; break; case 'x': request_dump (dumpdata, HEX_DUMP); break; case 'p': request_dump (dumpdata, STRING_DUMP); break; case 'R': request_dump (dumpdata, RELOC_DUMP); break; case 'z': decompress_dumps = true; break; case 'w': if (optarg == NULL) { do_debugging = true; do_dump = true; dump_any_debugging = true; dwarf_select_sections_all (); } else { do_debugging = false; if (dwarf_select_sections_by_letters (optarg)) { do_dump = true; dump_any_debugging = true; } } break; case OPTION_DEBUG_DUMP: if (optarg == NULL) { do_dump = true; do_debugging = true; dump_any_debugging = true; dwarf_select_sections_all (); } else { do_debugging = false; if (dwarf_select_sections_by_names (optarg)) { do_dump = true; dump_any_debugging = true; } } break; case OPTION_DWARF_DEPTH: { char *cp; dwarf_cutoff_level = strtoul (optarg, & cp, 0); } break; case OPTION_DWARF_START: { char *cp; dwarf_start_die = strtoul (optarg, & cp, 0); } break; case OPTION_DWARF_CHECK: dwarf_check = true; break; case OPTION_CTF_DUMP: do_ctf = true; request_dump (dumpdata, CTF_DUMP); break; case OPTION_CTF_SYMBOLS: free (dump_ctf_symtab_name); dump_ctf_symtab_name = strdup (optarg); break; case OPTION_CTF_STRINGS: free (dump_ctf_strtab_name); dump_ctf_strtab_name = strdup (optarg); break; case OPTION_CTF_PARENT: free (dump_ctf_parent_name); dump_ctf_parent_name = strdup (optarg); break; case OPTION_SFRAME_DUMP: do_sframe = true; /* Providing section name is optional. request_dump (), however, thrives on non NULL optarg. Handle it explicitly here. */ if (optarg != NULL) request_dump (dumpdata, SFRAME_DUMP); else { do_dump = true; const char *sframe_sec_name = strdup (".sframe"); request_dump_byname (sframe_sec_name, SFRAME_DUMP); } break; case OPTION_DYN_SYMS: do_dyn_syms = true; break; case OPTION_LTO_SYMS: do_lto_syms = true; break; case 'X': extra_sym_info = true; break; case OPTION_NO_EXTRA_SYM_INFO: extra_sym_info = false; break; #ifdef SUPPORT_DISASSEMBLY case 'i': request_dump (dumpdata, DISASS_DUMP); break; #endif case 'v': print_version (program_name); break; case 'V': do_version = true; break; case 'W': do_wide = true; break; case 'T': do_not_show_symbol_truncation = true; break; case 'C': do_demangle = true; if (optarg != NULL) { enum demangling_styles style; style = cplus_demangle_name_to_style (optarg); if (style == unknown_demangling) error (_("unknown demangling style `%s'"), optarg); cplus_demangle_set_style (style); } break; case OPTION_NO_DEMANGLING: do_demangle = false; break; case OPTION_RECURSE_LIMIT: demangle_flags &= ~ DMGL_NO_RECURSE_LIMIT; break; case OPTION_NO_RECURSE_LIMIT: demangle_flags |= DMGL_NO_RECURSE_LIMIT; break; case OPTION_WITH_SYMBOL_VERSIONS: /* Ignored for backward compatibility. */ break; case 'U': if (optarg == NULL) error (_("Missing arg to -U/--unicode")); /* Can this happen ? */ else if (streq (optarg, "default") || streq (optarg, "d")) unicode_display = unicode_default; else if (streq (optarg, "locale") || streq (optarg, "l")) unicode_display = unicode_locale; else if (streq (optarg, "escape") || streq (optarg, "e")) unicode_display = unicode_escape; else if (streq (optarg, "invalid") || streq (optarg, "i")) unicode_display = unicode_invalid; else if (streq (optarg, "hex") || streq (optarg, "x")) unicode_display = unicode_hex; else if (streq (optarg, "highlight") || streq (optarg, "h")) unicode_display = unicode_highlight; else error (_("invalid argument to -U/--unicode: %s"), optarg); break; case OPTION_SYM_BASE: sym_base = 0; if (optarg != NULL) { sym_base = strtoul (optarg, NULL, 0); switch (sym_base) { case 0: case 8: case 10: case 16: break; default: sym_base = 0; break; } } break; default: /* xgettext:c-format */ error (_("Invalid option '-%c'\n"), c); /* Fall through. */ case '?': usage (stderr); } } if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections && !do_segments && !do_header && !do_dump && !do_version && !do_histogram && !do_debugging && !do_arch && !do_notes && !do_section_groups && !do_archive_index && !do_dyn_syms && !do_lto_syms) { if (do_checks) { check_all = true; do_dynamic = do_syms = do_reloc = do_unwind = do_sections = true; do_segments = do_header = do_dump = do_version = true; do_histogram = do_debugging = do_arch = do_notes = true; do_section_groups = do_archive_index = do_dyn_syms = true; do_lto_syms = true; } else usage (stderr); } } static const char * get_elf_class (unsigned int elf_class) { static char buff[32]; switch (elf_class) { case ELFCLASSNONE: return _("none"); case ELFCLASS32: return "ELF32"; case ELFCLASS64: return "ELF64"; default: snprintf (buff, sizeof (buff), _(""), elf_class); return buff; } } static const char * get_data_encoding (unsigned int encoding) { static char buff[32]; switch (encoding) { case ELFDATANONE: return _("none"); case ELFDATA2LSB: return _("2's complement, little endian"); case ELFDATA2MSB: return _("2's complement, big endian"); default: snprintf (buff, sizeof (buff), _(""), encoding); return buff; } } static bool check_magic_number (Filedata * filedata, Elf_Internal_Ehdr * header) { if (header->e_ident[EI_MAG0] == ELFMAG0 && header->e_ident[EI_MAG1] == ELFMAG1 && header->e_ident[EI_MAG2] == ELFMAG2 && header->e_ident[EI_MAG3] == ELFMAG3) return true; /* Some compilers produce object files that are not in the ELF file format. As an aid to users of readelf, try to identify these cases and suggest alternative tools. FIXME: It is not clear if all four bytes are used as constant magic valus by all compilers. It may be necessary to recode this function if different tools use different length sequences. */ static struct { unsigned char magic[4]; const char * obj_message; const char * ar_message; } known_magic[] = { { { 'B', 'C', 0xc0, 0xde }, N_("This is a LLVM bitcode file - try using llvm-bcanalyzer\n"), N_("This is a LLVM bitcode file - try extracting and then using llvm-bcanalyzer\n") }, { { 'g', 'o', ' ', 'o' }, N_("This is a GO binary file - try using 'go tool objdump' or 'go tool nm'\n"), NULL } }; int i; for (i = ARRAY_SIZE (known_magic); i--;) { if (header->e_ident[EI_MAG0] == known_magic[i].magic[0] && header->e_ident[EI_MAG1] == known_magic[i].magic[1] && header->e_ident[EI_MAG2] == known_magic[i].magic[2] && header->e_ident[EI_MAG3] == known_magic[i].magic[3]) { /* Some compiler's analyzer tools do not handle archives, so we provide two different kinds of error message. */ if (filedata->archive_file_size > 0 && known_magic[i].ar_message != NULL) error ("%s", known_magic[i].ar_message); else error ("%s", known_magic[i].obj_message); return false; } } error (_("Not an ELF file - it has the wrong magic bytes at the start\n")); return false; } /* Decode the data held in 'filedata->file_header'. */ static bool process_file_header (Filedata * filedata) { Elf_Internal_Ehdr * header = & filedata->file_header; if (! check_magic_number (filedata, header)) return false; if (! filedata->is_separate) init_dwarf_regnames_by_elf_machine_code (header->e_machine); if (do_header) { unsigned i; if (filedata->is_separate) printf (_("ELF Header in linked file '%s':\n"), filedata->file_name); else printf (_("ELF Header:\n")); printf (_(" Magic: ")); for (i = 0; i < EI_NIDENT; i++) printf ("%2.2x ", header->e_ident[i]); printf ("\n"); printf (_(" Class: %s\n"), get_elf_class (header->e_ident[EI_CLASS])); printf (_(" Data: %s\n"), get_data_encoding (header->e_ident[EI_DATA])); printf (_(" Version: %d%s\n"), header->e_ident[EI_VERSION], (header->e_ident[EI_VERSION] == EV_CURRENT ? _(" (current)") : (header->e_ident[EI_VERSION] != EV_NONE ? _(" ") : ""))); printf (_(" OS/ABI: %s\n"), get_osabi_name (filedata, header->e_ident[EI_OSABI])); printf (_(" ABI Version: %d\n"), header->e_ident[EI_ABIVERSION]); printf (_(" Type: %s\n"), get_file_type (filedata)); printf (_(" Machine: %s\n"), get_machine_name (header->e_machine)); printf (_(" Version: 0x%lx\n"), header->e_version); printf (_(" Entry point address: ")); print_vma (header->e_entry, PREFIX_HEX); printf (_("\n Start of program headers: ")); print_vma (header->e_phoff, DEC); printf (_(" (bytes into file)\n Start of section headers: ")); print_vma (header->e_shoff, DEC); printf (_(" (bytes into file)\n")); printf (_(" Flags: 0x%lx%s\n"), header->e_flags, get_machine_flags (filedata, header->e_flags, header->e_machine)); printf (_(" Size of this header: %u (bytes)\n"), header->e_ehsize); printf (_(" Size of program headers: %u (bytes)\n"), header->e_phentsize); printf (_(" Number of program headers: %u"), header->e_phnum); if (filedata->section_headers != NULL && header->e_phnum == PN_XNUM && filedata->section_headers[0].sh_info != 0) printf (" (%u)", filedata->section_headers[0].sh_info); putc ('\n', stdout); printf (_(" Size of section headers: %u (bytes)\n"), header->e_shentsize); printf (_(" Number of section headers: %u"), header->e_shnum); if (filedata->section_headers != NULL && header->e_shnum == SHN_UNDEF) { header->e_shnum = filedata->section_headers[0].sh_size; printf (" (%u)", header->e_shnum); } putc ('\n', stdout); printf (_(" Section header string table index: %u"), header->e_shstrndx); if (filedata->section_headers != NULL && header->e_shstrndx == (SHN_XINDEX & 0xffff)) { header->e_shstrndx = filedata->section_headers[0].sh_link; printf (" (%u)", header->e_shstrndx); } if (header->e_shstrndx != SHN_UNDEF && header->e_shstrndx >= header->e_shnum) { header->e_shstrndx = SHN_UNDEF; printf (_(" ")); } putc ('\n', stdout); } if (filedata->section_headers != NULL) { if (header->e_phnum == PN_XNUM && filedata->section_headers[0].sh_info != 0) { /* Throw away any cached read of PN_XNUM headers. */ free (filedata->program_headers); filedata->program_headers = NULL; header->e_phnum = filedata->section_headers[0].sh_info; } if (header->e_shnum == SHN_UNDEF) header->e_shnum = filedata->section_headers[0].sh_size; if (header->e_shstrndx == (SHN_XINDEX & 0xffff)) header->e_shstrndx = filedata->section_headers[0].sh_link; if (header->e_shstrndx >= header->e_shnum) header->e_shstrndx = SHN_UNDEF; } return true; } /* Read in the program headers from FILEDATA and store them in PHEADERS. Returns TRUE upon success, FALSE otherwise. Loads 32-bit headers. */ static bool get_32bit_program_headers (Filedata * filedata, Elf_Internal_Phdr * pheaders) { Elf32_External_Phdr * phdrs; Elf32_External_Phdr * external; Elf_Internal_Phdr * internal; unsigned int i; unsigned int size = filedata->file_header.e_phentsize; unsigned int num = filedata->file_header.e_phnum; /* PR binutils/17531: Cope with unexpected section header sizes. */ if (size == 0 || num == 0) return false; if (size < sizeof * phdrs) { error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n")); return false; } if (size > sizeof * phdrs) warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n")); phdrs = (Elf32_External_Phdr *) get_data (NULL, filedata, filedata->file_header.e_phoff, size, num, _("program headers")); if (phdrs == NULL) return false; for (i = 0, internal = pheaders, external = phdrs; i < filedata->file_header.e_phnum; i++, internal++, external++) { internal->p_type = BYTE_GET (external->p_type); internal->p_offset = BYTE_GET (external->p_offset); internal->p_vaddr = BYTE_GET (external->p_vaddr); internal->p_paddr = BYTE_GET (external->p_paddr); internal->p_filesz = BYTE_GET (external->p_filesz); internal->p_memsz = BYTE_GET (external->p_memsz); internal->p_flags = BYTE_GET (external->p_flags); internal->p_align = BYTE_GET (external->p_align); } free (phdrs); return true; } /* Read in the program headers from FILEDATA and store them in PHEADERS. Returns TRUE upon success, FALSE otherwise. Loads 64-bit headers. */ static bool get_64bit_program_headers (Filedata * filedata, Elf_Internal_Phdr * pheaders) { Elf64_External_Phdr * phdrs; Elf64_External_Phdr * external; Elf_Internal_Phdr * internal; unsigned int i; unsigned int size = filedata->file_header.e_phentsize; unsigned int num = filedata->file_header.e_phnum; /* PR binutils/17531: Cope with unexpected section header sizes. */ if (size == 0 || num == 0) return false; if (size < sizeof * phdrs) { error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n")); return false; } if (size > sizeof * phdrs) warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n")); phdrs = (Elf64_External_Phdr *) get_data (NULL, filedata, filedata->file_header.e_phoff, size, num, _("program headers")); if (!phdrs) return false; for (i = 0, internal = pheaders, external = phdrs; i < filedata->file_header.e_phnum; i++, internal++, external++) { internal->p_type = BYTE_GET (external->p_type); internal->p_flags = BYTE_GET (external->p_flags); internal->p_offset = BYTE_GET (external->p_offset); internal->p_vaddr = BYTE_GET (external->p_vaddr); internal->p_paddr = BYTE_GET (external->p_paddr); internal->p_filesz = BYTE_GET (external->p_filesz); internal->p_memsz = BYTE_GET (external->p_memsz); internal->p_align = BYTE_GET (external->p_align); } free (phdrs); return true; } /* Returns TRUE if the program headers were read into `program_headers'. */ static bool get_program_headers (Filedata * filedata) { Elf_Internal_Phdr * phdrs; /* Check cache of prior read. */ if (filedata->program_headers != NULL) return true; /* Be kind to memory checkers by looking for e_phnum values which we know must be invalid. */ if (filedata->file_header.e_phnum * (is_32bit_elf ? sizeof (Elf32_External_Phdr) : sizeof (Elf64_External_Phdr)) >= filedata->file_size) { error (_("Too many program headers - %#x - the file is not that big\n"), filedata->file_header.e_phnum); return false; } phdrs = (Elf_Internal_Phdr *) cmalloc (filedata->file_header.e_phnum, sizeof (Elf_Internal_Phdr)); if (phdrs == NULL) { error (_("Out of memory reading %u program headers\n"), filedata->file_header.e_phnum); return false; } if (is_32bit_elf ? get_32bit_program_headers (filedata, phdrs) : get_64bit_program_headers (filedata, phdrs)) { filedata->program_headers = phdrs; return true; } free (phdrs); return false; } /* Print program header info and locate dynamic section. */ static void process_program_headers (Filedata * filedata) { Elf_Internal_Phdr * segment; unsigned int i; Elf_Internal_Phdr * previous_load = NULL; if (filedata->file_header.e_phnum == 0) { /* PR binutils/12467. */ if (filedata->file_header.e_phoff != 0) warn (_("possibly corrupt ELF header - it has a non-zero program" " header offset, but no program headers\n")); else if (do_segments) { if (filedata->is_separate) printf (_("\nThere are no program headers in linked file '%s'.\n"), filedata->file_name); else printf (_("\nThere are no program headers in this file.\n")); } goto no_headers; } if (do_segments && !do_header) { if (filedata->is_separate) printf ("\nIn linked file '%s' the ELF file type is %s\n", filedata->file_name, get_file_type (filedata)); else printf (_("\nElf file type is %s\n"), get_file_type (filedata)); printf (_("Entry point 0x%" PRIx64 "\n"), filedata->file_header.e_entry); printf (ngettext ("There is %d program header," " starting at offset %" PRIu64 "\n", "There are %d program headers," " starting at offset %" PRIu64 "\n", filedata->file_header.e_phnum), filedata->file_header.e_phnum, filedata->file_header.e_phoff); } if (! get_program_headers (filedata)) goto no_headers; if (do_segments) { if (filedata->file_header.e_phnum > 1) printf (_("\nProgram Headers:\n")); else printf (_("\nProgram Headers:\n")); if (is_32bit_elf) printf (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n")); else if (do_wide) printf (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n")); else { printf (_(" Type Offset VirtAddr PhysAddr\n")); printf (_(" FileSiz MemSiz Flags Align\n")); } } uint64_t dynamic_addr = 0; uint64_t dynamic_size = 0; for (i = 0, segment = filedata->program_headers; i < filedata->file_header.e_phnum; i++, segment++) { if (do_segments) { printf (" %-14.14s ", get_segment_type (filedata, segment->p_type)); if (is_32bit_elf) { printf ("0x%6.6lx ", (unsigned long) segment->p_offset); printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr); printf ("0x%8.8lx ", (unsigned long) segment->p_paddr); printf ("0x%5.5lx ", (unsigned long) segment->p_filesz); printf ("0x%5.5lx ", (unsigned long) segment->p_memsz); printf ("%c%c%c ", (segment->p_flags & PF_R ? 'R' : ' '), (segment->p_flags & PF_W ? 'W' : ' '), (segment->p_flags & PF_X ? 'E' : ' ')); printf ("%#lx", (unsigned long) segment->p_align); } else if (do_wide) { if ((unsigned long) segment->p_offset == segment->p_offset) printf ("0x%6.6lx ", (unsigned long) segment->p_offset); else { print_vma (segment->p_offset, FULL_HEX); putchar (' '); } print_vma (segment->p_vaddr, FULL_HEX); putchar (' '); print_vma (segment->p_paddr, FULL_HEX); putchar (' '); if ((unsigned long) segment->p_filesz == segment->p_filesz) printf ("0x%6.6lx ", (unsigned long) segment->p_filesz); else { print_vma (segment->p_filesz, FULL_HEX); putchar (' '); } if ((unsigned long) segment->p_memsz == segment->p_memsz) printf ("0x%6.6lx", (unsigned long) segment->p_memsz); else { print_vma (segment->p_memsz, FULL_HEX); } printf (" %c%c%c ", (segment->p_flags & PF_R ? 'R' : ' '), (segment->p_flags & PF_W ? 'W' : ' '), (segment->p_flags & PF_X ? 'E' : ' ')); if ((unsigned long) segment->p_align == segment->p_align) printf ("%#lx", (unsigned long) segment->p_align); else { print_vma (segment->p_align, PREFIX_HEX); } } else { print_vma (segment->p_offset, FULL_HEX); putchar (' '); print_vma (segment->p_vaddr, FULL_HEX); putchar (' '); print_vma (segment->p_paddr, FULL_HEX); printf ("\n "); print_vma (segment->p_filesz, FULL_HEX); putchar (' '); print_vma (segment->p_memsz, FULL_HEX); printf (" %c%c%c ", (segment->p_flags & PF_R ? 'R' : ' '), (segment->p_flags & PF_W ? 'W' : ' '), (segment->p_flags & PF_X ? 'E' : ' ')); print_vma (segment->p_align, PREFIX_HEX); } putc ('\n', stdout); } switch (segment->p_type) { case PT_LOAD: #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially required by the ELF standard, several programs, including the Linux kernel, make use of non-ordered segments. */ if (previous_load && previous_load->p_vaddr > segment->p_vaddr) error (_("LOAD segments must be sorted in order of increasing VirtAddr\n")); #endif if (segment->p_memsz < segment->p_filesz) error (_("the segment's file size is larger than its memory size\n")); previous_load = segment; break; case PT_PHDR: /* PR 20815 - Verify that the program header is loaded into memory. */ if (i > 0 && previous_load != NULL) error (_("the PHDR segment must occur before any LOAD segment\n")); if (filedata->file_header.e_machine != EM_PARISC) { unsigned int j; for (j = 1; j < filedata->file_header.e_phnum; j++) { Elf_Internal_Phdr *load = filedata->program_headers + j; if (load->p_type == PT_LOAD && load->p_offset <= segment->p_offset && (load->p_offset + load->p_filesz >= segment->p_offset + segment->p_filesz) && load->p_vaddr <= segment->p_vaddr && (load->p_vaddr + load->p_filesz >= segment->p_vaddr + segment->p_filesz)) break; } if (j == filedata->file_header.e_phnum) error (_("the PHDR segment is not covered by a LOAD segment\n")); } break; case PT_DYNAMIC: if (dynamic_addr) error (_("more than one dynamic segment\n")); /* By default, assume that the .dynamic section is the first section in the DYNAMIC segment. */ dynamic_addr = segment->p_offset; dynamic_size = segment->p_filesz; /* Try to locate the .dynamic section. If there is a section header table, we can easily locate it. */ if (filedata->section_headers != NULL) { Elf_Internal_Shdr * sec; sec = find_section (filedata, ".dynamic"); if (sec == NULL || sec->sh_size == 0) { /* A corresponding .dynamic section is expected, but on IA-64/OpenVMS it is OK for it to be missing. */ if (!is_ia64_vms (filedata)) error (_("no .dynamic section in the dynamic segment\n")); break; } if (sec->sh_type == SHT_NOBITS) { dynamic_addr = 0; dynamic_size = 0; break; } dynamic_addr = sec->sh_offset; dynamic_size = sec->sh_size; /* The PT_DYNAMIC segment, which is used by the run-time loader, should exactly match the .dynamic section. */ if (do_checks && (dynamic_addr != segment->p_offset || dynamic_size != segment->p_filesz)) warn (_("\ the .dynamic section is not the same as the dynamic segment\n")); } /* PR binutils/17512: Avoid corrupt dynamic section info in the segment. Check this after matching against the section headers so we don't warn on debuginfo file (which have NOBITS .dynamic sections). */ if (dynamic_addr > filedata->file_size || (dynamic_size > filedata->file_size - dynamic_addr)) { error (_("the dynamic segment offset + size exceeds the size of the file\n")); dynamic_addr = 0; dynamic_size = 0; } break; case PT_INTERP: if (segment->p_offset >= filedata->file_size || segment->p_filesz > filedata->file_size - segment->p_offset || segment->p_filesz - 1 >= (size_t) -2 || fseek64 (filedata->handle, filedata->archive_file_offset + segment->p_offset, SEEK_SET)) error (_("Unable to find program interpreter name\n")); else { size_t len = segment->p_filesz; free (filedata->program_interpreter); filedata->program_interpreter = xmalloc (len + 1); len = fread (filedata->program_interpreter, 1, len, filedata->handle); filedata->program_interpreter[len] = 0; if (do_segments) printf (_(" [Requesting program interpreter: %s]\n"), filedata->program_interpreter); } break; } } if (do_segments && filedata->section_headers != NULL && filedata->string_table != NULL) { printf (_("\n Section to Segment mapping:\n")); printf (_(" Segment Sections...\n")); for (i = 0; i < filedata->file_header.e_phnum; i++) { unsigned int j; Elf_Internal_Shdr * section; segment = filedata->program_headers + i; section = filedata->section_headers + 1; printf (" %2.2d ", i); for (j = 1; j < filedata->file_header.e_shnum; j++, section++) { if (!ELF_TBSS_SPECIAL (section, segment) && ELF_SECTION_IN_SEGMENT_STRICT (section, segment)) printf ("%s ", printable_section_name (filedata, section)); } putc ('\n',stdout); } } filedata->dynamic_addr = dynamic_addr; filedata->dynamic_size = dynamic_size ? dynamic_size : 1; return; no_headers: filedata->dynamic_addr = 0; filedata->dynamic_size = 1; } /* Find the file offset corresponding to VMA by using the program headers. */ static int64_t offset_from_vma (Filedata * filedata, uint64_t vma, uint64_t size) { Elf_Internal_Phdr * seg; if (! get_program_headers (filedata)) { warn (_("Cannot interpret virtual addresses without program headers.\n")); return (long) vma; } for (seg = filedata->program_headers; seg < filedata->program_headers + filedata->file_header.e_phnum; ++seg) { if (seg->p_type != PT_LOAD) continue; if (vma >= (seg->p_vaddr & -seg->p_align) && vma + size <= seg->p_vaddr + seg->p_filesz) return vma - seg->p_vaddr + seg->p_offset; } warn (_("Virtual address %#" PRIx64 " not located in any PT_LOAD segment.\n"), vma); return vma; } /* Allocate memory and load the sections headers into FILEDATA->filedata->section_headers. If PROBE is true, this is just a probe and we do not generate any error messages if the load fails. */ static bool get_32bit_section_headers (Filedata * filedata, bool probe) { Elf32_External_Shdr * shdrs; Elf_Internal_Shdr * internal; unsigned int i; unsigned int size = filedata->file_header.e_shentsize; unsigned int num = probe ? 1 : filedata->file_header.e_shnum; /* PR binutils/17531: Cope with unexpected section header sizes. */ if (size == 0 || num == 0) return false; /* The section header cannot be at the start of the file - that is where the ELF file header is located. A file with absolutely no sections in it will use a shoff of 0. */ if (filedata->file_header.e_shoff == 0) return false; if (size < sizeof * shdrs) { if (! probe) error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n")); return false; } if (!probe && size > sizeof * shdrs) warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n")); shdrs = (Elf32_External_Shdr *) get_data (NULL, filedata, filedata->file_header.e_shoff, size, num, probe ? NULL : _("section headers")); if (shdrs == NULL) return false; filedata->section_headers = (Elf_Internal_Shdr *) cmalloc (num, sizeof (Elf_Internal_Shdr)); if (filedata->section_headers == NULL) { if (!probe) error (_("Out of memory reading %u section headers\n"), num); free (shdrs); return false; } for (i = 0, internal = filedata->section_headers; i < num; i++, internal++) { internal->sh_name = BYTE_GET (shdrs[i].sh_name); internal->sh_type = BYTE_GET (shdrs[i].sh_type); internal->sh_flags = BYTE_GET (shdrs[i].sh_flags); internal->sh_addr = BYTE_GET (shdrs[i].sh_addr); internal->sh_offset = BYTE_GET (shdrs[i].sh_offset); internal->sh_size = BYTE_GET (shdrs[i].sh_size); internal->sh_link = BYTE_GET (shdrs[i].sh_link); internal->sh_info = BYTE_GET (shdrs[i].sh_info); internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign); internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize); if (!probe && internal->sh_link > num) warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link); if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num) warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info); } free (shdrs); return true; } /* Like get_32bit_section_headers, except that it fetches 64-bit headers. */ static bool get_64bit_section_headers (Filedata * filedata, bool probe) { Elf64_External_Shdr * shdrs; Elf_Internal_Shdr * internal; unsigned int i; unsigned int size = filedata->file_header.e_shentsize; unsigned int num = probe ? 1 : filedata->file_header.e_shnum; /* PR binutils/17531: Cope with unexpected section header sizes. */ if (size == 0 || num == 0) return false; /* The section header cannot be at the start of the file - that is where the ELF file header is located. A file with absolutely no sections in it will use a shoff of 0. */ if (filedata->file_header.e_shoff == 0) return false; if (size < sizeof * shdrs) { if (! probe) error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n")); return false; } if (! probe && size > sizeof * shdrs) warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n")); shdrs = (Elf64_External_Shdr *) get_data (NULL, filedata, filedata->file_header.e_shoff, size, num, probe ? NULL : _("section headers")); if (shdrs == NULL) return false; filedata->section_headers = (Elf_Internal_Shdr *) cmalloc (num, sizeof (Elf_Internal_Shdr)); if (filedata->section_headers == NULL) { if (! probe) error (_("Out of memory reading %u section headers\n"), num); free (shdrs); return false; } for (i = 0, internal = filedata->section_headers; i < num; i++, internal++) { internal->sh_name = BYTE_GET (shdrs[i].sh_name); internal->sh_type = BYTE_GET (shdrs[i].sh_type); internal->sh_flags = BYTE_GET (shdrs[i].sh_flags); internal->sh_addr = BYTE_GET (shdrs[i].sh_addr); internal->sh_size = BYTE_GET (shdrs[i].sh_size); internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize); internal->sh_link = BYTE_GET (shdrs[i].sh_link); internal->sh_info = BYTE_GET (shdrs[i].sh_info); internal->sh_offset = BYTE_GET (shdrs[i].sh_offset); internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign); if (!probe && internal->sh_link > num) warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link); if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num) warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info); } free (shdrs); return true; } static bool get_section_headers (Filedata *filedata, bool probe) { if (filedata->section_headers != NULL) return true; if (is_32bit_elf) return get_32bit_section_headers (filedata, probe); else return get_64bit_section_headers (filedata, probe); } static Elf_Internal_Sym * get_32bit_elf_symbols (Filedata *filedata, Elf_Internal_Shdr *section, uint64_t *num_syms_return) { uint64_t number = 0; Elf32_External_Sym * esyms = NULL; Elf_External_Sym_Shndx * shndx = NULL; Elf_Internal_Sym * isyms = NULL; Elf_Internal_Sym * psym; unsigned int j; elf_section_list * entry; if (section->sh_size == 0) { if (num_syms_return != NULL) * num_syms_return = 0; return NULL; } /* Run some sanity checks first. */ if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size) { error (_("Section %s has an invalid sh_entsize of %#" PRIx64 "\n"), printable_section_name (filedata, section), section->sh_entsize); goto exit_point; } if (section->sh_size > filedata->file_size) { error (_("Section %s has an invalid sh_size of %#" PRIx64 "\n"), printable_section_name (filedata, section), section->sh_size); goto exit_point; } number = section->sh_size / section->sh_entsize; if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1) { error (_("Size (%#" PRIx64 ") of section %s " "is not a multiple of its sh_entsize (%#" PRIx64 ")\n"), section->sh_size, printable_section_name (filedata, section), section->sh_entsize); goto exit_point; } esyms = (Elf32_External_Sym *) get_data (NULL, filedata, section->sh_offset, 1, section->sh_size, _("symbols")); if (esyms == NULL) goto exit_point; shndx = NULL; for (entry = filedata->symtab_shndx_list; entry != NULL; entry = entry->next) { if (entry->hdr->sh_link != (size_t) (section - filedata->section_headers)) continue; if (shndx != NULL) { error (_("Multiple symbol table index sections associated with the same symbol section\n")); free (shndx); } shndx = (Elf_External_Sym_Shndx *) get_data (NULL, filedata, entry->hdr->sh_offset, 1, entry->hdr->sh_size, _("symbol table section indices")); if (shndx == NULL) goto exit_point; /* PR17531: file: heap-buffer-overflow */ if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number) { error (_("Index section %s has an sh_size of %#" PRIx64 " - expected %#" PRIx64 "\n"), printable_section_name (filedata, entry->hdr), entry->hdr->sh_size, section->sh_size); goto exit_point; } } isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym)); if (isyms == NULL) { error (_("Out of memory reading %" PRIu64 " symbols\n"), number); goto exit_point; } for (j = 0, psym = isyms; j < number; j++, psym++) { psym->st_name = BYTE_GET (esyms[j].st_name); psym->st_value = BYTE_GET (esyms[j].st_value); psym->st_size = BYTE_GET (esyms[j].st_size); psym->st_shndx = BYTE_GET (esyms[j].st_shndx); if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL) psym->st_shndx = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j])); else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff)) psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff); psym->st_info = BYTE_GET (esyms[j].st_info); psym->st_other = BYTE_GET (esyms[j].st_other); } exit_point: free (shndx); free (esyms); if (num_syms_return != NULL) * num_syms_return = isyms == NULL ? 0 : number; return isyms; } static Elf_Internal_Sym * get_64bit_elf_symbols (Filedata *filedata, Elf_Internal_Shdr *section, uint64_t *num_syms_return) { uint64_t number = 0; Elf64_External_Sym * esyms = NULL; Elf_External_Sym_Shndx * shndx = NULL; Elf_Internal_Sym * isyms = NULL; Elf_Internal_Sym * psym; unsigned int j; elf_section_list * entry; if (section->sh_size == 0) { if (num_syms_return != NULL) * num_syms_return = 0; return NULL; } /* Run some sanity checks first. */ if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size) { error (_("Section %s has an invalid sh_entsize of %#" PRIx64 "\n"), printable_section_name (filedata, section), section->sh_entsize); goto exit_point; } if (section->sh_size > filedata->file_size) { error (_("Section %s has an invalid sh_size of %#" PRIx64 "\n"), printable_section_name (filedata, section), section->sh_size); goto exit_point; } number = section->sh_size / section->sh_entsize; if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1) { error (_("Size (%#" PRIx64 ") of section %s " "is not a multiple of its sh_entsize (%#" PRIx64 ")\n"), section->sh_size, printable_section_name (filedata, section), section->sh_entsize); goto exit_point; } esyms = (Elf64_External_Sym *) get_data (NULL, filedata, section->sh_offset, 1, section->sh_size, _("symbols")); if (!esyms) goto exit_point; shndx = NULL; for (entry = filedata->symtab_shndx_list; entry != NULL; entry = entry->next) { if (entry->hdr->sh_link != (size_t) (section - filedata->section_headers)) continue; if (shndx != NULL) { error (_("Multiple symbol table index sections associated with the same symbol section\n")); free (shndx); } shndx = (Elf_External_Sym_Shndx *) get_data (NULL, filedata, entry->hdr->sh_offset, 1, entry->hdr->sh_size, _("symbol table section indices")); if (shndx == NULL) goto exit_point; /* PR17531: file: heap-buffer-overflow */ if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number) { error (_("Index section %s has an sh_size of %#" PRIx64 " - expected %#" PRIx64 "\n"), printable_section_name (filedata, entry->hdr), entry->hdr->sh_size, section->sh_size); goto exit_point; } } isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym)); if (isyms == NULL) { error (_("Out of memory reading %" PRIu64 " symbols\n"), number); goto exit_point; } for (j = 0, psym = isyms; j < number; j++, psym++) { psym->st_name = BYTE_GET (esyms[j].st_name); psym->st_info = BYTE_GET (esyms[j].st_info); psym->st_other = BYTE_GET (esyms[j].st_other); psym->st_shndx = BYTE_GET (esyms[j].st_shndx); if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL) psym->st_shndx = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j])); else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff)) psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff); psym->st_value = BYTE_GET (esyms[j].st_value); psym->st_size = BYTE_GET (esyms[j].st_size); } exit_point: free (shndx); free (esyms); if (num_syms_return != NULL) * num_syms_return = isyms == NULL ? 0 : number; return isyms; } static Elf_Internal_Sym * get_elf_symbols (Filedata *filedata, Elf_Internal_Shdr *section, uint64_t *num_syms_return) { if (is_32bit_elf) return get_32bit_elf_symbols (filedata, section, num_syms_return); else return get_64bit_elf_symbols (filedata, section, num_syms_return); } static const char * get_elf_section_flags (Filedata * filedata, uint64_t sh_flags) { static char buff[1024]; char * p = buff; unsigned int field_size = is_32bit_elf ? 8 : 16; signed int sindex; unsigned int size = sizeof (buff) - (field_size + 4 + 1); uint64_t os_flags = 0; uint64_t proc_flags = 0; uint64_t unknown_flags = 0; static const struct { const char * str; unsigned int len; } flags [] = { /* 0 */ { STRING_COMMA_LEN ("WRITE") }, /* 1 */ { STRING_COMMA_LEN ("ALLOC") }, /* 2 */ { STRING_COMMA_LEN ("EXEC") }, /* 3 */ { STRING_COMMA_LEN ("MERGE") }, /* 4 */ { STRING_COMMA_LEN ("STRINGS") }, /* 5 */ { STRING_COMMA_LEN ("INFO LINK") }, /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") }, /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") }, /* 8 */ { STRING_COMMA_LEN ("GROUP") }, /* 9 */ { STRING_COMMA_LEN ("TLS") }, /* IA-64 specific. */ /* 10 */ { STRING_COMMA_LEN ("SHORT") }, /* 11 */ { STRING_COMMA_LEN ("NORECOV") }, /* IA-64 OpenVMS specific. */ /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") }, /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") }, /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") }, /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") }, /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") }, /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") }, /* Generic. */ /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") }, /* SPARC specific. */ /* 19 */ { STRING_COMMA_LEN ("ORDERED") }, /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") }, /* ARM specific. */ /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") }, /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") }, /* 23 */ { STRING_COMMA_LEN ("COMDEF") }, /* GNU specific. */ /* 24 */ { STRING_COMMA_LEN ("GNU_MBIND") }, /* VLE specific. */ /* 25 */ { STRING_COMMA_LEN ("VLE") }, /* GNU specific. */ /* 26 */ { STRING_COMMA_LEN ("GNU_RETAIN") }, }; if (do_section_details) p += sprintf (p, "[%*.*lx]: ", field_size, field_size, (unsigned long) sh_flags); while (sh_flags) { uint64_t flag; flag = sh_flags & - sh_flags; sh_flags &= ~ flag; if (do_section_details) { switch (flag) { case SHF_WRITE: sindex = 0; break; case SHF_ALLOC: sindex = 1; break; case SHF_EXECINSTR: sindex = 2; break; case SHF_MERGE: sindex = 3; break; case SHF_STRINGS: sindex = 4; break; case SHF_INFO_LINK: sindex = 5; break; case SHF_LINK_ORDER: sindex = 6; break; case SHF_OS_NONCONFORMING: sindex = 7; break; case SHF_GROUP: sindex = 8; break; case SHF_TLS: sindex = 9; break; case SHF_EXCLUDE: sindex = 18; break; case SHF_COMPRESSED: sindex = 20; break; default: sindex = -1; switch (filedata->file_header.e_machine) { case EM_IA_64: if (flag == SHF_IA_64_SHORT) sindex = 10; else if (flag == SHF_IA_64_NORECOV) sindex = 11; else if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS) switch (flag) { case SHF_IA_64_VMS_GLOBAL: sindex = 12; break; case SHF_IA_64_VMS_OVERLAID: sindex = 13; break; case SHF_IA_64_VMS_SHARED: sindex = 14; break; case SHF_IA_64_VMS_VECTOR: sindex = 15; break; case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break; case SHF_IA_64_VMS_PROTECTED: sindex = 17; break; default: break; } break; case EM_386: case EM_IAMCU: case EM_X86_64: case EM_L1OM: case EM_K1OM: case EM_OLD_SPARCV9: case EM_SPARC32PLUS: case EM_SPARCV9: case EM_SPARC: if (flag == SHF_ORDERED) sindex = 19; break; case EM_ARM: switch (flag) { case SHF_ENTRYSECT: sindex = 21; break; case SHF_ARM_PURECODE: sindex = 22; break; case SHF_COMDEF: sindex = 23; break; default: break; } break; case EM_PPC: if (flag == SHF_PPC_VLE) sindex = 25; break; default: break; } switch (filedata->file_header.e_ident[EI_OSABI]) { case ELFOSABI_GNU: case ELFOSABI_FREEBSD: if (flag == SHF_GNU_RETAIN) sindex = 26; /* Fall through */ case ELFOSABI_NONE: if (flag == SHF_GNU_MBIND) /* We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE, but binutils as of 2019-07-23 did not set the EI_OSABI header byte. */ sindex = 24; break; default: break; } break; } if (sindex != -1) { if (p != buff + field_size + 4) { if (size < (10 + 2)) { warn (_("Internal error: not enough buffer room for section flag info")); return _(""); } size -= 2; *p++ = ','; *p++ = ' '; } size -= flags [sindex].len; p = stpcpy (p, flags [sindex].str); } else if (flag & SHF_MASKOS) os_flags |= flag; else if (flag & SHF_MASKPROC) proc_flags |= flag; else unknown_flags |= flag; } else { switch (flag) { case SHF_WRITE: *p = 'W'; break; case SHF_ALLOC: *p = 'A'; break; case SHF_EXECINSTR: *p = 'X'; break; case SHF_MERGE: *p = 'M'; break; case SHF_STRINGS: *p = 'S'; break; case SHF_INFO_LINK: *p = 'I'; break; case SHF_LINK_ORDER: *p = 'L'; break; case SHF_OS_NONCONFORMING: *p = 'O'; break; case SHF_GROUP: *p = 'G'; break; case SHF_TLS: *p = 'T'; break; case SHF_EXCLUDE: *p = 'E'; break; case SHF_COMPRESSED: *p = 'C'; break; default: if ((filedata->file_header.e_machine == EM_X86_64 || filedata->file_header.e_machine == EM_L1OM || filedata->file_header.e_machine == EM_K1OM) && flag == SHF_X86_64_LARGE) *p = 'l'; else if (filedata->file_header.e_machine == EM_ARM && flag == SHF_ARM_PURECODE) *p = 'y'; else if (filedata->file_header.e_machine == EM_PPC && flag == SHF_PPC_VLE) *p = 'v'; else if (flag & SHF_MASKOS) { switch (filedata->file_header.e_ident[EI_OSABI]) { case ELFOSABI_GNU: case ELFOSABI_FREEBSD: if (flag == SHF_GNU_RETAIN) { *p = 'R'; break; } /* Fall through */ case ELFOSABI_NONE: if (flag == SHF_GNU_MBIND) { /* We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE, but binutils as of 2019-07-23 did not set the EI_OSABI header byte. */ *p = 'D'; break; } /* Fall through */ default: *p = 'o'; sh_flags &= ~SHF_MASKOS; break; } } else if (flag & SHF_MASKPROC) { *p = 'p'; sh_flags &= ~ SHF_MASKPROC; } else *p = 'x'; break; } p++; } } if (do_section_details) { if (os_flags) { if (p != buff + field_size + 4) { if (size < 2 + 5 + field_size + 1) { warn (_("Internal error: not enough buffer room for section flag info")); return _(""); } size -= 2; *p++ = ','; *p++ = ' '; } size -= 5 + field_size; p += sprintf (p, "OS (%*.*lx)", field_size, field_size, (unsigned long) os_flags); } if (proc_flags) { if (p != buff + field_size + 4) { if (size < 2 + 7 + field_size + 1) { warn (_("Internal error: not enough buffer room for section flag info")); return _(""); } size -= 2; *p++ = ','; *p++ = ' '; } size -= 7 + field_size; p += sprintf (p, "PROC (%*.*lx)", field_size, field_size, (unsigned long) proc_flags); } if (unknown_flags) { if (p != buff + field_size + 4) { if (size < 2 + 10 + field_size + 1) { warn (_("Internal error: not enough buffer room for section flag info")); return _(""); } size -= 2; *p++ = ','; *p++ = ' '; } size -= 10 + field_size; p += sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size, (unsigned long) unknown_flags); } } *p = '\0'; return buff; } static unsigned int ATTRIBUTE_WARN_UNUSED_RESULT get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, uint64_t size) { if (is_32bit_elf) { Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf; if (size < sizeof (* echdr)) { error (_("Compressed section is too small even for a compression header\n")); return 0; } chdr->ch_type = BYTE_GET (echdr->ch_type); chdr->ch_size = BYTE_GET (echdr->ch_size); chdr->ch_addralign = BYTE_GET (echdr->ch_addralign); return sizeof (*echdr); } else { Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf; if (size < sizeof (* echdr)) { error (_("Compressed section is too small even for a compression header\n")); return 0; } chdr->ch_type = BYTE_GET (echdr->ch_type); chdr->ch_size = BYTE_GET (echdr->ch_size); chdr->ch_addralign = BYTE_GET (echdr->ch_addralign); return sizeof (*echdr); } } static bool process_section_headers (Filedata * filedata) { Elf_Internal_Shdr * section; unsigned int i; if (filedata->file_header.e_shnum == 0) { /* PR binutils/12467. */ if (filedata->file_header.e_shoff != 0) { warn (_("possibly corrupt ELF file header - it has a non-zero" " section header offset, but no section headers\n")); return false; } else if (do_sections) printf (_("\nThere are no sections in this file.\n")); return true; } if (do_sections && !do_header) { if (filedata->is_separate && process_links) printf (_("In linked file '%s': "), filedata->file_name); if (! filedata->is_separate || process_links) printf (ngettext ("There is %d section header, " "starting at offset %#" PRIx64 ":\n", "There are %d section headers, " "starting at offset %#" PRIx64 ":\n", filedata->file_header.e_shnum), filedata->file_header.e_shnum, filedata->file_header.e_shoff); } if (!get_section_headers (filedata, false)) return false; /* Read in the string table, so that we have names to display. */ if (filedata->file_header.e_shstrndx != SHN_UNDEF && filedata->file_header.e_shstrndx < filedata->file_header.e_shnum) { section = filedata->section_headers + filedata->file_header.e_shstrndx; if (section->sh_size != 0) { filedata->string_table = (char *) get_data (NULL, filedata, section->sh_offset, 1, section->sh_size, _("string table")); filedata->string_table_length = filedata->string_table != NULL ? section->sh_size : 0; } } /* Scan the sections for the dynamic symbol table and dynamic string table and debug sections. */ eh_addr_size = is_32bit_elf ? 4 : 8; switch (filedata->file_header.e_machine) { case EM_MIPS: case EM_MIPS_RS3_LE: /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit FDE addresses. However, the ABI also has a semi-official ILP32 variant for which the normal FDE address size rules apply. GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX section, where XX is the size of longs in bits. Unfortunately, earlier compilers provided no way of distinguishing ILP32 objects from LP64 objects, so if there's any doubt, we should assume that the official LP64 form is being used. */ if ((filedata->file_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64 && find_section (filedata, ".gcc_compiled_long32") == NULL) eh_addr_size = 8; break; case EM_H8_300: case EM_H8_300H: switch (filedata->file_header.e_flags & EF_H8_MACH) { case E_H8_MACH_H8300: case E_H8_MACH_H8300HN: case E_H8_MACH_H8300SN: case E_H8_MACH_H8300SXN: eh_addr_size = 2; break; case E_H8_MACH_H8300H: case E_H8_MACH_H8300S: case E_H8_MACH_H8300SX: eh_addr_size = 4; break; } break; case EM_M32C_OLD: case EM_M32C: switch (filedata->file_header.e_flags & EF_M32C_CPU_MASK) { case EF_M32C_CPU_M16C: eh_addr_size = 2; break; } break; } #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \ do \ { \ uint64_t expected_entsize = is_32bit_elf ? size32 : size64; \ if (section->sh_entsize != expected_entsize) \ { \ error (_("Section %d has invalid sh_entsize of %" PRIx64 "\n"), \ i, section->sh_entsize); \ error (_("(Using the expected size of %" PRIx64 " for the rest of this dump)\n"), \ expected_entsize); \ section->sh_entsize = expected_entsize; \ } \ } \ while (0) #define CHECK_ENTSIZE(section, i, type) \ CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \ sizeof (Elf64_External_##type)) for (i = 0, section = filedata->section_headers; i < filedata->file_header.e_shnum; i++, section++) { const char *name = printable_section_name (filedata, section); /* Run some sanity checks on the headers and possibly fill in some file data as well. */ switch (section->sh_type) { case SHT_DYNSYM: if (filedata->dynamic_symbols != NULL) { error (_("File contains multiple dynamic symbol tables\n")); continue; } CHECK_ENTSIZE (section, i, Sym); filedata->dynamic_symbols = get_elf_symbols (filedata, section, &filedata->num_dynamic_syms); filedata->dynamic_symtab_section = section; break; case SHT_STRTAB: if (streq (name, ".dynstr")) { if (filedata->dynamic_strings != NULL) { error (_("File contains multiple dynamic string tables\n")); continue; } filedata->dynamic_strings = (char *) get_data (NULL, filedata, section->sh_offset, 1, section->sh_size, _("dynamic strings")); filedata->dynamic_strings_length = filedata->dynamic_strings == NULL ? 0 : section->sh_size; filedata->dynamic_strtab_section = section; } break; case SHT_SYMTAB_SHNDX: { elf_section_list * entry = xmalloc (sizeof * entry); entry->hdr = section; entry->next = filedata->symtab_shndx_list; filedata->symtab_shndx_list = entry; } break; case SHT_SYMTAB: CHECK_ENTSIZE (section, i, Sym); break; case SHT_GROUP: CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE); break; case SHT_REL: CHECK_ENTSIZE (section, i, Rel); if (do_checks && section->sh_size == 0) warn (_("Section '%s': zero-sized relocation section\n"), name); break; case SHT_RELA: CHECK_ENTSIZE (section, i, Rela); if (do_checks && section->sh_size == 0) warn (_("Section '%s': zero-sized relocation section\n"), name); break; case SHT_RELR: CHECK_ENTSIZE (section, i, Relr); break; case SHT_NOTE: case SHT_PROGBITS: /* Having a zero sized section is not illegal according to the ELF standard, but it might be an indication that something is wrong. So issue a warning if we are running in lint mode. */ if (do_checks && section->sh_size == 0) warn (_("Section '%s': has a size of zero - is this intended ?\n"), name); break; default: break; } if ((do_debugging || do_debug_info || do_debug_abbrevs || do_debug_lines || do_debug_pubnames || do_debug_pubtypes || do_debug_aranges || do_debug_frames || do_debug_macinfo || do_debug_str || do_debug_str_offsets || do_debug_loc || do_debug_ranges || do_debug_addr || do_debug_cu_index || do_debug_links) && (startswith (name, ".debug_") || startswith (name, ".zdebug_"))) { if (name[1] == 'z') name += sizeof (".zdebug_") - 1; else name += sizeof (".debug_") - 1; if (do_debugging || (do_debug_info && startswith (name, "info")) || (do_debug_info && startswith (name, "types")) || (do_debug_abbrevs && startswith (name, "abbrev")) || (do_debug_lines && strcmp (name, "line") == 0) || (do_debug_lines && startswith (name, "line.")) || (do_debug_pubnames && startswith (name, "pubnames")) || (do_debug_pubtypes && startswith (name, "pubtypes")) || (do_debug_pubnames && startswith (name, "gnu_pubnames")) || (do_debug_pubtypes && startswith (name, "gnu_pubtypes")) || (do_debug_aranges && startswith (name, "aranges")) || (do_debug_ranges && startswith (name, "ranges")) || (do_debug_ranges && startswith (name, "rnglists")) || (do_debug_frames && startswith (name, "frame")) || (do_debug_macinfo && startswith (name, "macinfo")) || (do_debug_macinfo && startswith (name, "macro")) || (do_debug_str && startswith (name, "str")) || (do_debug_links && startswith (name, "sup")) || (do_debug_str_offsets && startswith (name, "str_offsets")) || (do_debug_loc && startswith (name, "loc")) || (do_debug_loc && startswith (name, "loclists")) || (do_debug_addr && startswith (name, "addr")) || (do_debug_cu_index && startswith (name, "cu_index")) || (do_debug_cu_index && startswith (name, "tu_index")) ) request_dump_bynumber (&filedata->dump, i, DEBUG_DUMP); } /* Linkonce section to be combined with .debug_info at link time. */ else if ((do_debugging || do_debug_info) && startswith (name, ".gnu.linkonce.wi.")) request_dump_bynumber (&filedata->dump, i, DEBUG_DUMP); else if (do_debug_frames && streq (name, ".eh_frame")) request_dump_bynumber (&filedata->dump, i, DEBUG_DUMP); else if (do_gdb_index && (streq (name, ".gdb_index") || streq (name, ".debug_names"))) request_dump_bynumber (&filedata->dump, i, DEBUG_DUMP); /* Trace sections for Itanium VMS. */ else if ((do_debugging || do_trace_info || do_trace_abbrevs || do_trace_aranges) && startswith (name, ".trace_")) { name += sizeof (".trace_") - 1; if (do_debugging || (do_trace_info && streq (name, "info")) || (do_trace_abbrevs && streq (name, "abbrev")) || (do_trace_aranges && streq (name, "aranges")) ) request_dump_bynumber (&filedata->dump, i, DEBUG_DUMP); } else if ((do_debugging || do_debug_links) && (startswith (name, ".gnu_debuglink") || startswith (name, ".gnu_debugaltlink"))) request_dump_bynumber (&filedata->dump, i, DEBUG_DUMP); } if (! do_sections) return true; if (filedata->is_separate && ! process_links) return true; if (filedata->is_separate) printf (_("\nSection Headers in linked file '%s':\n"), filedata->file_name); else if (filedata->file_header.e_shnum > 1) printf (_("\nSection Headers:\n")); else printf (_("\nSection Header:\n")); if (is_32bit_elf) { if (do_section_details) { printf (_(" [Nr] Name\n")); printf (_(" Type Addr Off Size ES Lk Inf Al\n")); } else printf (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n")); } else if (do_wide) { if (do_section_details) { printf (_(" [Nr] Name\n")); printf (_(" Type Address Off Size ES Lk Inf Al\n")); } else printf (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n")); } else { if (do_section_details) { printf (_(" [Nr] Name\n")); printf (_(" Type Address Offset Link\n")); printf (_(" Size EntSize Info Align\n")); } else { printf (_(" [Nr] Name Type Address Offset\n")); printf (_(" Size EntSize Flags Link Info Align\n")); } } if (do_section_details) printf (_(" Flags\n")); for (i = 0, section = filedata->section_headers; i < filedata->file_header.e_shnum; i++, section++) { /* Run some sanity checks on the section header. */ /* Check the sh_link field. */ switch (section->sh_type) { case SHT_REL: case SHT_RELA: if (section->sh_link == 0 && (filedata->file_header.e_type == ET_EXEC || filedata->file_header.e_type == ET_DYN)) /* A dynamic relocation section where all entries use a zero symbol index need not specify a symtab section. */ break; /* Fall through. */ case SHT_SYMTAB_SHNDX: case SHT_GROUP: case SHT_HASH: case SHT_GNU_HASH: case SHT_GNU_versym: if (section->sh_link == 0 || section->sh_link >= filedata->file_header.e_shnum || (filedata->section_headers[section->sh_link].sh_type != SHT_SYMTAB && filedata->section_headers[section->sh_link].sh_type != SHT_DYNSYM)) warn (_("[%2u]: Link field (%u) should index a symtab section.\n"), i, section->sh_link); break; case SHT_DYNAMIC: case SHT_SYMTAB: case SHT_DYNSYM: case SHT_GNU_verneed: case SHT_GNU_verdef: case SHT_GNU_LIBLIST: if (section->sh_link == 0 || section->sh_link >= filedata->file_header.e_shnum || filedata->section_headers[section->sh_link].sh_type != SHT_STRTAB) warn (_("[%2u]: Link field (%u) should index a string section.\n"), i, section->sh_link); break; case SHT_INIT_ARRAY: case SHT_FINI_ARRAY: case SHT_PREINIT_ARRAY: if (section->sh_type < SHT_LOOS && section->sh_link != 0) warn (_("[%2u]: Unexpected value (%u) in link field.\n"), i, section->sh_link); break; default: /* FIXME: Add support for target specific section types. */ #if 0 /* Currently we do not check other section types as there are too many special cases. Stab sections for example have a type of SHT_PROGBITS but an sh_link field that links to the .stabstr section. */ if (section->sh_type < SHT_LOOS && section->sh_link != 0) warn (_("[%2u]: Unexpected value (%u) in link field.\n"), i, section->sh_link); #endif break; } /* Check the sh_info field. */ switch (section->sh_type) { case SHT_REL: case SHT_RELA: if (section->sh_info == 0 && (filedata->file_header.e_type == ET_EXEC || filedata->file_header.e_type == ET_DYN)) /* Dynamic relocations apply to segments, so they do not need to specify the section they relocate. */ break; if (section->sh_info == 0 || section->sh_info >= filedata->file_header.e_shnum || (filedata->section_headers[section->sh_info].sh_type != SHT_PROGBITS && filedata->section_headers[section->sh_info].sh_type != SHT_NOBITS && filedata->section_headers[section->sh_info].sh_type != SHT_NOTE && filedata->section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY && filedata->section_headers[section->sh_info].sh_type != SHT_FINI_ARRAY && filedata->section_headers[section->sh_info].sh_type != SHT_PREINIT_ARRAY /* FIXME: Are other section types valid ? */ && filedata->section_headers[section->sh_info].sh_type < SHT_LOOS)) warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"), i, section->sh_info); break; case SHT_DYNAMIC: case SHT_HASH: case SHT_SYMTAB_SHNDX: case SHT_INIT_ARRAY: case SHT_FINI_ARRAY: case SHT_PREINIT_ARRAY: if (section->sh_info != 0) warn (_("[%2u]: Unexpected value (%u) in info field.\n"), i, section->sh_info); break; case SHT_GROUP: case SHT_SYMTAB: case SHT_DYNSYM: /* A symbol index - we assume that it is valid. */ break; default: /* FIXME: Add support for target specific section types. */ if (section->sh_type == SHT_NOBITS) /* NOBITS section headers with non-zero sh_info fields can be created when a binary is stripped of everything but its debug information. The stripped sections have their headers preserved but their types set to SHT_NOBITS. So do not check this type of section. */ ; else if (section->sh_flags & SHF_INFO_LINK) { if (section->sh_info < 1 || section->sh_info >= filedata->file_header.e_shnum) warn (_("[%2u]: Expected link to another section in info field"), i); } else if (section->sh_type < SHT_LOOS && (section->sh_flags & SHF_GNU_MBIND) == 0 && section->sh_info != 0) warn (_("[%2u]: Unexpected value (%u) in info field.\n"), i, section->sh_info); break; } /* Check the sh_size field. */ if (section->sh_size > filedata->file_size && section->sh_type != SHT_NOBITS && section->sh_type != SHT_NULL && section->sh_type < SHT_LOOS) warn (_("Size of section %u is larger than the entire file!\n"), i); printf (" [%2u] ", i); if (do_section_details) printf ("%s\n ", printable_section_name (filedata, section)); else print_symbol_name (-17, printable_section_name (filedata, section)); printf (do_wide ? " %-15s " : " %-15.15s ", get_section_type_name (filedata, section->sh_type)); if (is_32bit_elf) { const char * link_too_big = NULL; print_vma (section->sh_addr, LONG_HEX); printf ( " %6.6lx %6.6lx %2.2lx", (unsigned long) section->sh_offset, (unsigned long) section->sh_size, (unsigned long) section->sh_entsize); if (do_section_details) fputs (" ", stdout); else printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags)); if (section->sh_link >= filedata->file_header.e_shnum) { link_too_big = ""; /* The sh_link value is out of range. Normally this indicates an error but it can have special values in Solaris binaries. */ switch (filedata->file_header.e_machine) { case EM_386: case EM_IAMCU: case EM_X86_64: case EM_L1OM: case EM_K1OM: case EM_OLD_SPARCV9: case EM_SPARC32PLUS: case EM_SPARCV9: case EM_SPARC: if (section->sh_link == (SHN_BEFORE & 0xffff)) link_too_big = "BEFORE"; else if (section->sh_link == (SHN_AFTER & 0xffff)) link_too_big = "AFTER"; break; default: break; } } if (do_section_details) { if (link_too_big != NULL && * link_too_big) printf ("<%s> ", link_too_big); else printf ("%2u ", section->sh_link); printf ("%3u %2lu\n", section->sh_info, (unsigned long) section->sh_addralign); } else printf ("%2u %3u %2lu\n", section->sh_link, section->sh_info, (unsigned long) section->sh_addralign); if (link_too_big && ! * link_too_big) warn (_("section %u: sh_link value of %u is larger than the number of sections\n"), i, section->sh_link); } else if (do_wide) { print_vma (section->sh_addr, LONG_HEX); if ((long) section->sh_offset == section->sh_offset) printf (" %6.6lx", (unsigned long) section->sh_offset); else { putchar (' '); print_vma (section->sh_offset, LONG_HEX); } if ((unsigned long) section->sh_size == section->sh_size) printf (" %6.6lx", (unsigned long) section->sh_size); else { putchar (' '); print_vma (section->sh_size, LONG_HEX); } if ((unsigned long) section->sh_entsize == section->sh_entsize) printf (" %2.2lx", (unsigned long) section->sh_entsize); else { putchar (' '); print_vma (section->sh_entsize, LONG_HEX); } if (do_section_details) fputs (" ", stdout); else printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags)); printf ("%2u %3u ", section->sh_link, section->sh_info); if ((unsigned long) section->sh_addralign == section->sh_addralign) printf ("%2lu\n", (unsigned long) section->sh_addralign); else { print_vma (section->sh_addralign, DEC); putchar ('\n'); } } else if (do_section_details) { putchar (' '); print_vma (section->sh_addr, LONG_HEX); if ((long) section->sh_offset == section->sh_offset) printf (" %16.16lx", (unsigned long) section->sh_offset); else { printf (" "); print_vma (section->sh_offset, LONG_HEX); } printf (" %u\n ", section->sh_link); print_vma (section->sh_size, LONG_HEX); putchar (' '); print_vma (section->sh_entsize, LONG_HEX); printf (" %-16u %lu\n", section->sh_info, (unsigned long) section->sh_addralign); } else { putchar (' '); print_vma (section->sh_addr, LONG_HEX); if ((long) section->sh_offset == section->sh_offset) printf (" %8.8lx", (unsigned long) section->sh_offset); else { printf (" "); print_vma (section->sh_offset, LONG_HEX); } printf ("\n "); print_vma (section->sh_size, LONG_HEX); printf (" "); print_vma (section->sh_entsize, LONG_HEX); printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags)); printf (" %2u %3u %lu\n", section->sh_link, section->sh_info, (unsigned long) section->sh_addralign); } if (do_section_details) { printf (" %s\n", get_elf_section_flags (filedata, section->sh_flags)); if ((section->sh_flags & SHF_COMPRESSED) != 0) { /* Minimum section size is 12 bytes for 32-bit compression header + 12 bytes for compressed data header. */ unsigned char buf[24]; assert (sizeof (buf) >= sizeof (Elf64_External_Chdr)); if (get_data (&buf, filedata, section->sh_offset, 1, sizeof (buf), _("compression header"))) { Elf_Internal_Chdr chdr; if (get_compression_header (&chdr, buf, sizeof (buf)) == 0) printf (_(" []\n")); else { if (chdr.ch_type == ch_compress_zlib) printf (" ZLIB, "); else if (chdr.ch_type == ch_compress_zstd) printf (" ZSTD, "); else printf (_(" [: 0x%x], "), chdr.ch_type); print_vma (chdr.ch_size, LONG_HEX); printf (", %lu\n", (unsigned long) chdr.ch_addralign); } } } } } if (!do_section_details) { /* The ordering of the letters shown here matches the ordering of the corresponding SHF_xxx values, and hence the order in which these letters will be displayed to the user. */ printf (_("Key to Flags:\n\ W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\ L (link order), O (extra OS processing required), G (group), T (TLS),\n\ C (compressed), x (unknown), o (OS specific), E (exclude),\n ")); switch (filedata->file_header.e_ident[EI_OSABI]) { case ELFOSABI_GNU: case ELFOSABI_FREEBSD: printf (_("R (retain), ")); /* Fall through */ case ELFOSABI_NONE: printf (_("D (mbind), ")); break; default: break; } if (filedata->file_header.e_machine == EM_X86_64 || filedata->file_header.e_machine == EM_L1OM || filedata->file_header.e_machine == EM_K1OM) printf (_("l (large), ")); else if (filedata->file_header.e_machine == EM_ARM) printf (_("y (purecode), ")); else if (filedata->file_header.e_machine == EM_PPC) printf (_("v (VLE), ")); printf ("p (processor specific)\n"); } return true; } static bool get_symtab (Filedata *filedata, Elf_Internal_Shdr *symsec, Elf_Internal_Sym **symtab, uint64_t *nsyms, char **strtab, uint64_t *strtablen) { *strtab = NULL; *strtablen = 0; *symtab = get_elf_symbols (filedata, symsec, nsyms); if (*symtab == NULL) return false; if (symsec->sh_link != 0) { Elf_Internal_Shdr *strsec; if (symsec->sh_link >= filedata->file_header.e_shnum) { error (_("Bad sh_link in symbol table section\n")); free (*symtab); *symtab = NULL; *nsyms = 0; return false; } strsec = filedata->section_headers + symsec->sh_link; *strtab = (char *) get_data (NULL, filedata, strsec->sh_offset, 1, strsec->sh_size, _("string table")); if (*strtab == NULL) { free (*symtab); *symtab = NULL; *nsyms = 0; return false; } *strtablen = strsec->sh_size; } return true; } static const char * get_group_flags (unsigned int flags) { static char buff[128]; if (flags == 0) return ""; else if (flags == GRP_COMDAT) return "COMDAT "; snprintf (buff, sizeof buff, "[0x%x: %s%s%s]", flags, flags & GRP_MASKOS ? _("") : "", flags & GRP_MASKPROC ? _("") : "", (flags & ~(GRP_COMDAT | GRP_MASKOS | GRP_MASKPROC) ? _("") : "")); return buff; } static bool process_section_groups (Filedata * filedata) { Elf_Internal_Shdr * section; unsigned int i; struct group * group; Elf_Internal_Shdr * symtab_sec; Elf_Internal_Shdr * strtab_sec; Elf_Internal_Sym * symtab; uint64_t num_syms; char * strtab; size_t strtab_size; /* Don't process section groups unless needed. */ if (!do_unwind && !do_section_groups) return true; if (filedata->file_header.e_shnum == 0) { if (do_section_groups) { if (filedata->is_separate) printf (_("\nThere are no sections group in linked file '%s'.\n"), filedata->file_name); else printf (_("\nThere are no section groups in this file.\n")); } return true; } if (filedata->section_headers == NULL) { error (_("Section headers are not available!\n")); /* PR 13622: This can happen with a corrupt ELF header. */ return false; } filedata->section_headers_groups = (struct group **) calloc (filedata->file_header.e_shnum, sizeof (struct group *)); if (filedata->section_headers_groups == NULL) { error (_("Out of memory reading %u section group headers\n"), filedata->file_header.e_shnum); return false; } /* Scan the sections for the group section. */ filedata->group_count = 0; for (i = 0, section = filedata->section_headers; i < filedata->file_header.e_shnum; i++, section++) if (section->sh_type == SHT_GROUP) filedata->group_count++; if (filedata->group_count == 0) { if (do_section_groups) { if (filedata->is_separate) printf (_("\nThere are no section groups in linked file '%s'.\n"), filedata->file_name); else printf (_("\nThere are no section groups in this file.\n")); } return true; } filedata->section_groups = (struct group *) calloc (filedata->group_count, sizeof (struct group)); if (filedata->section_groups == NULL) { error (_("Out of memory reading %zu groups\n"), filedata->group_count); return false; } symtab_sec = NULL; strtab_sec = NULL; symtab = NULL; num_syms = 0; strtab = NULL; strtab_size = 0; if (filedata->is_separate) printf (_("Section groups in linked file '%s'\n"), filedata->file_name); for (i = 0, section = filedata->section_headers, group = filedata->section_groups; i < filedata->file_header.e_shnum; i++, section++) { if (section->sh_type == SHT_GROUP) { const char * name = printable_section_name (filedata, section); const char * group_name; unsigned char * start; unsigned char * indices; unsigned int entry, j, size; Elf_Internal_Shdr * sec; Elf_Internal_Sym * sym; /* Get the symbol table. */ if (section->sh_link >= filedata->file_header.e_shnum || ((sec = filedata->section_headers + section->sh_link)->sh_type != SHT_SYMTAB)) { error (_("Bad sh_link in group section `%s'\n"), name); continue; } if (symtab_sec != sec) { symtab_sec = sec; free (symtab); symtab = get_elf_symbols (filedata, symtab_sec, & num_syms); } if (symtab == NULL) { error (_("Corrupt header in group section `%s'\n"), name); continue; } if (section->sh_info >= num_syms) { error (_("Bad sh_info in group section `%s'\n"), name); continue; } sym = symtab + section->sh_info; if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) { if (sym->st_shndx == 0 || sym->st_shndx >= filedata->file_header.e_shnum) { error (_("Bad sh_info in group section `%s'\n"), name); continue; } group_name = printable_section_name (filedata, filedata->section_headers + sym->st_shndx); strtab_sec = NULL; free (strtab); strtab = NULL; strtab_size = 0; } else { /* Get the string table. */ if (symtab_sec->sh_link >= filedata->file_header.e_shnum) { strtab_sec = NULL; free (strtab); strtab = NULL; strtab_size = 0; } else if (strtab_sec != (sec = filedata->section_headers + symtab_sec->sh_link)) { strtab_sec = sec; free (strtab); strtab = (char *) get_data (NULL, filedata, strtab_sec->sh_offset, 1, strtab_sec->sh_size, _("string table")); strtab_size = strtab != NULL ? strtab_sec->sh_size : 0; } group_name = sym->st_name < strtab_size ? strtab + sym->st_name : _(""); } /* PR 17531: file: loop. */ if (section->sh_entsize > section->sh_size) { error (_("Section %s has sh_entsize (%#" PRIx64 ")" " which is larger than its size (%#" PRIx64 ")\n"), printable_section_name (filedata, section), section->sh_entsize, section->sh_size); continue; } start = (unsigned char *) get_data (NULL, filedata, section->sh_offset, 1, section->sh_size, _("section data")); if (start == NULL) continue; indices = start; size = (section->sh_size / section->sh_entsize) - 1; entry = byte_get (indices, 4); indices += 4; if (do_section_groups) { printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"), get_group_flags (entry), i, name, group_name, size); printf (_(" [Index] Name\n")); } group->group_index = i; for (j = 0; j < size; j++) { struct group_list * g; entry = byte_get (indices, 4); indices += 4; if (entry >= filedata->file_header.e_shnum) { static unsigned num_group_errors = 0; if (num_group_errors ++ < 10) { error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"), entry, i, filedata->file_header.e_shnum - 1); if (num_group_errors == 10) warn (_("Further error messages about overlarge group section indices suppressed\n")); } continue; } if (filedata->section_headers_groups [entry] != NULL) { if (entry) { static unsigned num_errs = 0; if (num_errs ++ < 10) { error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"), entry, i, filedata->section_headers_groups [entry]->group_index); if (num_errs == 10) warn (_("Further error messages about already contained group sections suppressed\n")); } continue; } else { /* Intel C/C++ compiler may put section 0 in a section group. We just warn it the first time and ignore it afterwards. */ static bool warned = false; if (!warned) { error (_("section 0 in group section [%5u]\n"), filedata->section_headers_groups [entry]->group_index); warned = true; } } } filedata->section_headers_groups [entry] = group; if (do_section_groups) { sec = filedata->section_headers + entry; printf (" [%5u] %s\n", entry, printable_section_name (filedata, sec)); } g = (struct group_list *) xmalloc (sizeof (struct group_list)); g->section_index = entry; g->next = group->root; group->root = g; } free (start); group++; } } free (symtab); free (strtab); return true; } /* Data used to display dynamic fixups. */ struct ia64_vms_dynfixup { uint64_t needed_ident; /* Library ident number. */ uint64_t needed; /* Index in the dstrtab of the library name. */ uint64_t fixup_needed; /* Index of the library. */ uint64_t fixup_rela_cnt; /* Number of fixups. */ uint64_t fixup_rela_off; /* Fixups offset in the dynamic segment. */ }; /* Data used to display dynamic relocations. */ struct ia64_vms_dynimgrela { uint64_t img_rela_cnt; /* Number of relocations. */ uint64_t img_rela_off; /* Reloc offset in the dynamic segment. */ }; /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared library). */ static bool dump_ia64_vms_dynamic_fixups (Filedata * filedata, struct ia64_vms_dynfixup * fixup, const char * strtab, unsigned int strtab_sz) { Elf64_External_VMS_IMAGE_FIXUP * imfs; size_t i; const char * lib_name; imfs = get_data (NULL, filedata, filedata->dynamic_addr + fixup->fixup_rela_off, sizeof (*imfs), fixup->fixup_rela_cnt, _("dynamic section image fixups")); if (!imfs) return false; if (fixup->needed < strtab_sz) lib_name = strtab + fixup->needed; else { warn (_("corrupt library name index of %#" PRIx64 " found in dynamic entry"), fixup->needed); lib_name = "???"; } printf (_("\nImage fixups for needed library #%" PRId64 ": %s - ident: %" PRIx64 "\n"), fixup->fixup_needed, lib_name, fixup->needed_ident); printf (_("Seg Offset Type SymVec DataType\n")); for (i = 0; i < (size_t) fixup->fixup_rela_cnt; i++) { unsigned int type; const char *rtype; printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg)); printf ("%016" PRIx64 " ", BYTE_GET (imfs [i].fixup_offset)); type = BYTE_GET (imfs [i].type); rtype = elf_ia64_reloc_type (type); if (rtype == NULL) printf ("0x%08x ", type); else printf ("%-32s ", rtype); printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index)); printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type)); } free (imfs); return true; } /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */ static bool dump_ia64_vms_dynamic_relocs (Filedata * filedata, struct ia64_vms_dynimgrela *imgrela) { Elf64_External_VMS_IMAGE_RELA *imrs; size_t i; imrs = get_data (NULL, filedata, filedata->dynamic_addr + imgrela->img_rela_off, sizeof (*imrs), imgrela->img_rela_cnt, _("dynamic section image relocations")); if (!imrs) return false; printf (_("\nImage relocs\n")); printf (_("Seg Offset Type Addend Seg Sym Off\n")); for (i = 0; i < (size_t) imgrela->img_rela_cnt; i++) { unsigned int type; const char *rtype; printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg)); printf ("%08" PRIx64 " ", BYTE_GET (imrs [i].rela_offset)); type = BYTE_GET (imrs [i].type); rtype = elf_ia64_reloc_type (type); if (rtype == NULL) printf ("0x%08x ", type); else printf ("%-31s ", rtype); print_vma (BYTE_GET (imrs [i].addend), FULL_HEX); printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg)); printf ("%08" PRIx64 "\n", BYTE_GET (imrs [i].sym_offset)); } free (imrs); return true; } /* Display IA-64 OpenVMS dynamic relocations and fixups. */ static bool process_ia64_vms_dynamic_relocs (Filedata * filedata) { struct ia64_vms_dynfixup fixup; struct ia64_vms_dynimgrela imgrela; Elf_Internal_Dyn *entry; uint64_t strtab_off = 0; uint64_t strtab_sz = 0; char *strtab = NULL; bool res = true; memset (&fixup, 0, sizeof (fixup)); memset (&imgrela, 0, sizeof (imgrela)); /* Note: the order of the entries is specified by the OpenVMS specs. */ for (entry = filedata->dynamic_section; entry < filedata->dynamic_section + filedata->dynamic_nent; entry++) { switch (entry->d_tag) { case DT_IA_64_VMS_STRTAB_OFFSET: strtab_off = entry->d_un.d_val; break; case DT_STRSZ: strtab_sz = entry->d_un.d_val; if (strtab == NULL) strtab = get_data (NULL, filedata, filedata->dynamic_addr + strtab_off, 1, strtab_sz, _("dynamic string section")); if (strtab == NULL) strtab_sz = 0; break; case DT_IA_64_VMS_NEEDED_IDENT: fixup.needed_ident = entry->d_un.d_val; break; case DT_NEEDED: fixup.needed = entry->d_un.d_val; break; case DT_IA_64_VMS_FIXUP_NEEDED: fixup.fixup_needed = entry->d_un.d_val; break; case DT_IA_64_VMS_FIXUP_RELA_CNT: fixup.fixup_rela_cnt = entry->d_un.d_val; break; case DT_IA_64_VMS_FIXUP_RELA_OFF: fixup.fixup_rela_off = entry->d_un.d_val; if (! dump_ia64_vms_dynamic_fixups (filedata, &fixup, strtab, strtab_sz)) res = false; break; case DT_IA_64_VMS_IMG_RELA_CNT: imgrela.img_rela_cnt = entry->d_un.d_val; break; case DT_IA_64_VMS_IMG_RELA_OFF: imgrela.img_rela_off = entry->d_un.d_val; if (! dump_ia64_vms_dynamic_relocs (filedata, &imgrela)) res = false; break; default: break; } } free (strtab); return res; } static struct { const char * name; int reloc; int size; relocation_type rel_type; } dynamic_relocations [] = { { "REL", DT_REL, DT_RELSZ, reltype_rel }, { "RELA", DT_RELA, DT_RELASZ, reltype_rela }, { "RELR", DT_RELR, DT_RELRSZ, reltype_relr }, { "PLT", DT_JMPREL, DT_PLTRELSZ, reltype_unknown } }; /* Process the reloc section. */ static bool process_relocs (Filedata * filedata) { uint64_t rel_size; uint64_t rel_offset; if (!do_reloc) return true; if (do_using_dynamic) { relocation_type rel_type; const char * name; bool has_dynamic_reloc; unsigned int i; has_dynamic_reloc = false; for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++) { rel_type = dynamic_relocations [i].rel_type; name = dynamic_relocations [i].name; rel_size = filedata->dynamic_info[dynamic_relocations [i].size]; rel_offset = filedata->dynamic_info[dynamic_relocations [i].reloc]; if (rel_size) has_dynamic_reloc = true; if (rel_type == reltype_unknown) { if (dynamic_relocations [i].reloc == DT_JMPREL) switch (filedata->dynamic_info[DT_PLTREL]) { case DT_REL: rel_type = reltype_rel; break; case DT_RELA: rel_type = reltype_rela; break; } } if (rel_size) { if (filedata->is_separate) printf (_("\nIn linked file '%s' section '%s' at offset %#" PRIx64 " contains %" PRId64 " bytes:\n"), filedata->file_name, name, rel_offset, rel_size); else printf (_("\n'%s' relocation section at offset %#" PRIx64 " contains %" PRId64 " bytes:\n"), name, rel_offset, rel_size); dump_relocations (filedata, offset_from_vma (filedata, rel_offset, rel_size), rel_size, filedata->dynamic_symbols, filedata->num_dynamic_syms, filedata->dynamic_strings, filedata->dynamic_strings_length, rel_type, true /* is_dynamic */); } } if (is_ia64_vms (filedata)) if (process_ia64_vms_dynamic_relocs (filedata)) has_dynamic_reloc = true; if (! has_dynamic_reloc) { if (filedata->is_separate) printf (_("\nThere are no dynamic relocations in linked file '%s'.\n"), filedata->file_name); else printf (_("\nThere are no dynamic relocations in this file.\n")); } } else { Elf_Internal_Shdr * section; size_t i; bool found = false; for (i = 0, section = filedata->section_headers; i < filedata->file_header.e_shnum; i++, section++) { if ( section->sh_type != SHT_RELA && section->sh_type != SHT_REL && section->sh_type != SHT_RELR) continue; rel_offset = section->sh_offset; rel_size = section->sh_size; if (rel_size) { relocation_type rel_type; uint64_t num_rela; if (filedata->is_separate) printf (_("\nIn linked file '%s' relocation section "), filedata->file_name); else printf (_("\nRelocation section ")); if (filedata->string_table == NULL) printf ("%d", section->sh_name); else printf ("'%s'", printable_section_name (filedata, section)); num_rela = rel_size / section->sh_entsize; printf (ngettext (" at offset %#" PRIx64 " contains %" PRIu64 " entry:\n", " at offset %#" PRIx64 " contains %" PRId64 " entries:\n", num_rela), rel_offset, num_rela); rel_type = section->sh_type == SHT_RELA ? reltype_rela : section->sh_type == SHT_REL ? reltype_rel : reltype_relr; if (section->sh_link != 0 && section->sh_link < filedata->file_header.e_shnum) { Elf_Internal_Shdr *symsec; Elf_Internal_Sym *symtab; uint64_t nsyms; uint64_t strtablen = 0; char *strtab = NULL; symsec = filedata->section_headers + section->sh_link; if (symsec->sh_type != SHT_SYMTAB && symsec->sh_type != SHT_DYNSYM) continue; if (!get_symtab (filedata, symsec, &symtab, &nsyms, &strtab, &strtablen)) continue; dump_relocations (filedata, rel_offset, rel_size, symtab, nsyms, strtab, strtablen, rel_type, symsec->sh_type == SHT_DYNSYM); free (strtab); free (symtab); } else dump_relocations (filedata, rel_offset, rel_size, NULL, 0, NULL, 0, rel_type, false /* is_dynamic */); found = true; } } if (! found) { /* Users sometimes forget the -D option, so try to be helpful. */ for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++) { if (filedata->dynamic_info[dynamic_relocations [i].size]) { if (filedata->is_separate) printf (_("\nThere are no static relocations in linked file '%s'."), filedata->file_name); else printf (_("\nThere are no static relocations in this file.")); printf (_("\nTo see the dynamic relocations add --use-dynamic to the command line.\n")); break; } } if (i == ARRAY_SIZE (dynamic_relocations)) { if (filedata->is_separate) printf (_("\nThere are no relocations in linked file '%s'.\n"), filedata->file_name); else printf (_("\nThere are no relocations in this file.\n")); } } } return true; } /* An absolute address consists of a section and an offset. If the section is NULL, the offset itself is the address, otherwise, the address equals to LOAD_ADDRESS(section) + offset. */ struct absaddr { unsigned short section; uint64_t offset; }; /* Find the nearest symbol at or below ADDR. Returns the symbol name, if found, and the offset from the symbol to ADDR. */ static void find_symbol_for_address (Filedata *filedata, Elf_Internal_Sym *symtab, uint64_t nsyms, const char *strtab, uint64_t strtab_size, struct absaddr addr, const char **symname, uint64_t *offset) { uint64_t dist = 0x100000; Elf_Internal_Sym * sym; Elf_Internal_Sym * beg; Elf_Internal_Sym * end; Elf_Internal_Sym * best = NULL; REMOVE_ARCH_BITS (addr.offset); beg = symtab; end = symtab + nsyms; while (beg < end) { uint64_t value; sym = beg + (end - beg) / 2; value = sym->st_value; REMOVE_ARCH_BITS (value); if (sym->st_name != 0 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx) && addr.offset >= value && addr.offset - value < dist) { best = sym; dist = addr.offset - value; if (!dist) break; } if (addr.offset < value) end = sym; else beg = sym + 1; } if (best) { *symname = (best->st_name >= strtab_size ? _("") : strtab + best->st_name); *offset = dist; return; } *symname = NULL; *offset = addr.offset; } static /* signed */ int symcmp (const void *p, const void *q) { Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p; Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q; return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0); } /* Process the unwind section. */ #include "unwind-ia64.h" struct ia64_unw_table_entry { struct absaddr start; struct absaddr end; struct absaddr info; }; struct ia64_unw_aux_info { struct ia64_unw_table_entry * table; /* Unwind table. */ uint64_t table_len; /* Length of unwind table. */ unsigned char * info; /* Unwind info. */ uint64_t info_size; /* Size of unwind info. */ uint64_t info_addr; /* Starting address of unwind info. */ uint64_t seg_base; /* Starting address of segment. */ Elf_Internal_Sym * symtab; /* The symbol table. */ uint64_t nsyms; /* Number of symbols. */ Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */ uint64_t nfuns; /* Number of entries in funtab. */ char * strtab; /* The string table. */ uint64_t strtab_size; /* Size of string table. */ }; static bool dump_ia64_unwind (Filedata * filedata, struct ia64_unw_aux_info * aux) { struct ia64_unw_table_entry * tp; size_t j, nfuns; int in_body; bool res = true; aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym)); for (nfuns = 0, j = 0; j < aux->nsyms; j++) if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC) aux->funtab[nfuns++] = aux->symtab[j]; aux->nfuns = nfuns; qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp); for (tp = aux->table; tp < aux->table + aux->table_len; ++tp) { uint64_t stamp; uint64_t offset; const unsigned char * dp; const unsigned char * head; const unsigned char * end; const char * procname; find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab, aux->strtab_size, tp->start, &procname, &offset); fputs ("\n<", stdout); if (procname) { fputs (procname, stdout); if (offset) printf ("+%" PRIx64, offset); } fputs (">: [", stdout); print_vma (tp->start.offset, PREFIX_HEX); fputc ('-', stdout); print_vma (tp->end.offset, PREFIX_HEX); printf ("], info at +0x%" PRIx64 "\n", tp->info.offset - aux->seg_base); /* PR 17531: file: 86232b32. */ if (aux->info == NULL) continue; offset = tp->info.offset; if (tp->info.section) { if (tp->info.section >= filedata->file_header.e_shnum) { warn (_("Invalid section %u in table entry %td\n"), tp->info.section, tp - aux->table); res = false; continue; } offset += filedata->section_headers[tp->info.section].sh_addr; } offset -= aux->info_addr; /* PR 17531: file: 0997b4d1. */ if (offset >= aux->info_size || aux->info_size - offset < 8) { warn (_("Invalid offset %" PRIx64 " in table entry %td\n"), tp->info.offset, tp - aux->table); res = false; continue; } head = aux->info + offset; stamp = byte_get ((unsigned char *) head, sizeof (stamp)); printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n", (unsigned) UNW_VER (stamp), (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32), UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "", UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "", (unsigned long) (eh_addr_size * UNW_LENGTH (stamp))); if (UNW_VER (stamp) != 1) { printf (_("\tUnknown version.\n")); continue; } in_body = 0; end = head + 8 + eh_addr_size * UNW_LENGTH (stamp); /* PR 17531: file: 16ceda89. */ if (end > aux->info + aux->info_size) end = aux->info + aux->info_size; for (dp = head + 8; dp < end;) dp = unw_decode (dp, in_body, & in_body, end); } free (aux->funtab); return res; } static bool slurp_ia64_unwind_table (Filedata * filedata, struct ia64_unw_aux_info * aux, Elf_Internal_Shdr * sec) { uint64_t size, nrelas, i; Elf_Internal_Phdr * seg; struct ia64_unw_table_entry * tep; Elf_Internal_Shdr * relsec; Elf_Internal_Rela * rela; Elf_Internal_Rela * rp; unsigned char * table; unsigned char * tp; Elf_Internal_Sym * sym; const char * relname; aux->table_len = 0; /* First, find the starting address of the segment that includes this section: */ if (filedata->file_header.e_phnum) { if (! get_program_headers (filedata)) return false; for (seg = filedata->program_headers; seg < filedata->program_headers + filedata->file_header.e_phnum; ++seg) { if (seg->p_type != PT_LOAD) continue; if (sec->sh_addr >= seg->p_vaddr && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz)) { aux->seg_base = seg->p_vaddr; break; } } } /* Second, build the unwind table from the contents of the unwind section: */ size = sec->sh_size; table = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, size, _("unwind table")); if (!table) return false; aux->table_len = size / (3 * eh_addr_size); aux->table = (struct ia64_unw_table_entry *) xcmalloc (aux->table_len, sizeof (aux->table[0])); tep = aux->table; for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep) { tep->start.section = SHN_UNDEF; tep->end.section = SHN_UNDEF; tep->info.section = SHN_UNDEF; tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size; tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size; tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size; tep->start.offset += aux->seg_base; tep->end.offset += aux->seg_base; tep->info.offset += aux->seg_base; } free (table); /* Third, apply any relocations to the unwind table: */ for (relsec = filedata->section_headers; relsec < filedata->section_headers + filedata->file_header.e_shnum; ++relsec) { if (relsec->sh_type != SHT_RELA || relsec->sh_info >= filedata->file_header.e_shnum || filedata->section_headers + relsec->sh_info != sec) continue; if (!slurp_rela_relocs (filedata, relsec->sh_offset, relsec->sh_size, & rela, & nrelas)) { free (aux->table); aux->table = NULL; aux->table_len = 0; return false; } for (rp = rela; rp < rela + nrelas; ++rp) { unsigned int sym_ndx; unsigned int r_type = get_reloc_type (filedata, rp->r_info); relname = elf_ia64_reloc_type (r_type); /* PR 17531: file: 9fa67536. */ if (relname == NULL) { warn (_("Skipping unknown relocation type: %u\n"), r_type); continue; } if (! startswith (relname, "R_IA64_SEGREL")) { warn (_("Skipping unexpected relocation type: %s\n"), relname); continue; } i = rp->r_offset / (3 * eh_addr_size); /* PR 17531: file: 5bc8d9bf. */ if (i >= aux->table_len) { warn (_("Skipping reloc with overlarge offset: %#" PRIx64 "\n"), i); continue; } sym_ndx = get_reloc_symindex (rp->r_info); if (sym_ndx >= aux->nsyms) { warn (_("Skipping reloc with invalid symbol index: %u\n"), sym_ndx); continue; } sym = aux->symtab + sym_ndx; switch (rp->r_offset / eh_addr_size % 3) { case 0: aux->table[i].start.section = sym->st_shndx; aux->table[i].start.offset = rp->r_addend + sym->st_value; break; case 1: aux->table[i].end.section = sym->st_shndx; aux->table[i].end.offset = rp->r_addend + sym->st_value; break; case 2: aux->table[i].info.section = sym->st_shndx; aux->table[i].info.offset = rp->r_addend + sym->st_value; break; default: break; } } free (rela); } return true; } static bool ia64_process_unwind (Filedata * filedata) { Elf_Internal_Shdr * sec; Elf_Internal_Shdr * unwsec = NULL; uint64_t i, unwcount = 0, unwstart = 0; struct ia64_unw_aux_info aux; bool res = true; memset (& aux, 0, sizeof (aux)); for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec) { if (sec->sh_type == SHT_SYMTAB) { if (aux.symtab) { error (_("Multiple symbol tables encountered\n")); free (aux.symtab); aux.symtab = NULL; free (aux.strtab); aux.strtab = NULL; } if (!get_symtab (filedata, sec, &aux.symtab, &aux.nsyms, &aux.strtab, &aux.strtab_size)) return false; } else if (sec->sh_type == SHT_IA_64_UNWIND) unwcount++; } if (!unwcount) printf (_("\nThere are no unwind sections in this file.\n")); while (unwcount-- > 0) { const char *suffix; size_t len, len2; for (i = unwstart, sec = filedata->section_headers + unwstart, unwsec = NULL; i < filedata->file_header.e_shnum; ++i, ++sec) if (sec->sh_type == SHT_IA_64_UNWIND) { unwsec = sec; break; } /* We have already counted the number of SHT_IA64_UNWIND sections so the loop above should never fail. */ assert (unwsec != NULL); unwstart = i + 1; len = sizeof (ELF_STRING_ia64_unwind_once) - 1; if ((unwsec->sh_flags & SHF_GROUP) != 0) { /* We need to find which section group it is in. */ struct group_list * g; if (filedata->section_headers_groups == NULL || filedata->section_headers_groups[i] == NULL) i = filedata->file_header.e_shnum; else { g = filedata->section_headers_groups[i]->root; for (; g != NULL; g = g->next) { sec = filedata->section_headers + g->section_index; if (section_name_valid (filedata, sec) && streq (section_name (filedata, sec), ELF_STRING_ia64_unwind_info)) break; } if (g == NULL) i = filedata->file_header.e_shnum; } } else if (section_name_valid (filedata, unwsec) && startswith (section_name (filedata, unwsec), ELF_STRING_ia64_unwind_once)) { /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */ len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1; suffix = section_name (filedata, unwsec) + len; for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec) if (section_name_valid (filedata, sec) && startswith (section_name (filedata, sec), ELF_STRING_ia64_unwind_info_once) && streq (section_name (filedata, sec) + len2, suffix)) break; } else { /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO .IA_64.unwind or BAR -> .IA_64.unwind_info. */ len = sizeof (ELF_STRING_ia64_unwind) - 1; len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1; suffix = ""; if (section_name_valid (filedata, unwsec) && startswith (section_name (filedata, unwsec), ELF_STRING_ia64_unwind)) suffix = section_name (filedata, unwsec) + len; for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec) if (section_name_valid (filedata, sec) && startswith (section_name (filedata, sec), ELF_STRING_ia64_unwind_info) && streq (section_name (filedata, sec) + len2, suffix)) break; } if (i == filedata->file_header.e_shnum) { printf (_("\nCould not find unwind info section for ")); if (filedata->string_table == NULL) printf ("%d", unwsec->sh_name); else printf ("'%s'", printable_section_name (filedata, unwsec)); } else { aux.info_addr = sec->sh_addr; aux.info = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, sec->sh_size, _("unwind info")); aux.info_size = aux.info == NULL ? 0 : sec->sh_size; printf (_("\nUnwind section ")); if (filedata->string_table == NULL) printf ("%d", unwsec->sh_name); else printf ("'%s'", printable_section_name (filedata, unwsec)); printf (_(" at offset %#" PRIx64 " contains %" PRIu64 " entries:\n"), unwsec->sh_offset, unwsec->sh_size / (3 * eh_addr_size)); if (slurp_ia64_unwind_table (filedata, & aux, unwsec) && aux.table_len > 0) dump_ia64_unwind (filedata, & aux); free ((char *) aux.table); free ((char *) aux.info); aux.table = NULL; aux.info = NULL; } } free (aux.symtab); free ((char *) aux.strtab); return res; } struct hppa_unw_table_entry { struct absaddr start; struct absaddr end; unsigned int Cannot_unwind:1; /* 0 */ unsigned int Millicode:1; /* 1 */ unsigned int Millicode_save_sr0:1; /* 2 */ unsigned int Region_description:2; /* 3..4 */ unsigned int reserved1:1; /* 5 */ unsigned int Entry_SR:1; /* 6 */ unsigned int Entry_FR:4; /* Number saved 7..10 */ unsigned int Entry_GR:5; /* Number saved 11..15 */ unsigned int Args_stored:1; /* 16 */ unsigned int Variable_Frame:1; /* 17 */ unsigned int Separate_Package_Body:1; /* 18 */ unsigned int Frame_Extension_Millicode:1; /* 19 */ unsigned int Stack_Overflow_Check:1; /* 20 */ unsigned int Two_Instruction_SP_Increment:1; /* 21 */ unsigned int Ada_Region:1; /* 22 */ unsigned int cxx_info:1; /* 23 */ unsigned int cxx_try_catch:1; /* 24 */ unsigned int sched_entry_seq:1; /* 25 */ unsigned int reserved2:1; /* 26 */ unsigned int Save_SP:1; /* 27 */ unsigned int Save_RP:1; /* 28 */ unsigned int Save_MRP_in_frame:1; /* 29 */ unsigned int extn_ptr_defined:1; /* 30 */ unsigned int Cleanup_defined:1; /* 31 */ unsigned int MPE_XL_interrupt_marker:1; /* 0 */ unsigned int HP_UX_interrupt_marker:1; /* 1 */ unsigned int Large_frame:1; /* 2 */ unsigned int Pseudo_SP_Set:1; /* 3 */ unsigned int reserved4:1; /* 4 */ unsigned int Total_frame_size:27; /* 5..31 */ }; struct hppa_unw_aux_info { struct hppa_unw_table_entry * table; /* Unwind table. */ uint64_t table_len; /* Length of unwind table. */ uint64_t seg_base; /* Starting address of segment. */ Elf_Internal_Sym * symtab; /* The symbol table. */ uint64_t nsyms; /* Number of symbols. */ Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */ uint64_t nfuns; /* Number of entries in funtab. */ char * strtab; /* The string table. */ uint64_t strtab_size; /* Size of string table. */ }; static bool dump_hppa_unwind (Filedata * filedata, struct hppa_unw_aux_info * aux) { struct hppa_unw_table_entry * tp; uint64_t j, nfuns; bool res = true; aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym)); for (nfuns = 0, j = 0; j < aux->nsyms; j++) if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC) aux->funtab[nfuns++] = aux->symtab[j]; aux->nfuns = nfuns; qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp); for (tp = aux->table; tp < aux->table + aux->table_len; ++tp) { uint64_t offset; const char * procname; find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab, aux->strtab_size, tp->start, &procname, &offset); fputs ("\n<", stdout); if (procname) { fputs (procname, stdout); if (offset) printf ("+%" PRIx64, offset); } fputs (">: [", stdout); print_vma (tp->start.offset, PREFIX_HEX); fputc ('-', stdout); print_vma (tp->end.offset, PREFIX_HEX); printf ("]\n\t"); #define PF(_m) if (tp->_m) printf (#_m " "); #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m); PF(Cannot_unwind); PF(Millicode); PF(Millicode_save_sr0); /* PV(Region_description); */ PF(Entry_SR); PV(Entry_FR); PV(Entry_GR); PF(Args_stored); PF(Variable_Frame); PF(Separate_Package_Body); PF(Frame_Extension_Millicode); PF(Stack_Overflow_Check); PF(Two_Instruction_SP_Increment); PF(Ada_Region); PF(cxx_info); PF(cxx_try_catch); PF(sched_entry_seq); PF(Save_SP); PF(Save_RP); PF(Save_MRP_in_frame); PF(extn_ptr_defined); PF(Cleanup_defined); PF(MPE_XL_interrupt_marker); PF(HP_UX_interrupt_marker); PF(Large_frame); PF(Pseudo_SP_Set); PV(Total_frame_size); #undef PF #undef PV } printf ("\n"); free (aux->funtab); return res; } static bool slurp_hppa_unwind_table (Filedata * filedata, struct hppa_unw_aux_info * aux, Elf_Internal_Shdr * sec) { uint64_t size, unw_ent_size, nentries, nrelas, i; Elf_Internal_Phdr * seg; struct hppa_unw_table_entry * tep; Elf_Internal_Shdr * relsec; Elf_Internal_Rela * rela; Elf_Internal_Rela * rp; unsigned char * table; unsigned char * tp; Elf_Internal_Sym * sym; const char * relname; /* First, find the starting address of the segment that includes this section. */ if (filedata->file_header.e_phnum) { if (! get_program_headers (filedata)) return false; for (seg = filedata->program_headers; seg < filedata->program_headers + filedata->file_header.e_phnum; ++seg) { if (seg->p_type != PT_LOAD) continue; if (sec->sh_addr >= seg->p_vaddr && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz)) { aux->seg_base = seg->p_vaddr; break; } } } /* Second, build the unwind table from the contents of the unwind section. */ size = sec->sh_size; table = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, size, _("unwind table")); if (!table) return false; unw_ent_size = 16; nentries = size / unw_ent_size; size = unw_ent_size * nentries; aux->table_len = nentries; tep = aux->table = (struct hppa_unw_table_entry *) xcmalloc (nentries, sizeof (aux->table[0])); for (tp = table; tp < table + size; tp += unw_ent_size, ++tep) { unsigned int tmp1, tmp2; tep->start.section = SHN_UNDEF; tep->end.section = SHN_UNDEF; tep->start.offset = byte_get ((unsigned char *) tp + 0, 4); tep->end.offset = byte_get ((unsigned char *) tp + 4, 4); tmp1 = byte_get ((unsigned char *) tp + 8, 4); tmp2 = byte_get ((unsigned char *) tp + 12, 4); tep->start.offset += aux->seg_base; tep->end.offset += aux->seg_base; tep->Cannot_unwind = (tmp1 >> 31) & 0x1; tep->Millicode = (tmp1 >> 30) & 0x1; tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1; tep->Region_description = (tmp1 >> 27) & 0x3; tep->reserved1 = (tmp1 >> 26) & 0x1; tep->Entry_SR = (tmp1 >> 25) & 0x1; tep->Entry_FR = (tmp1 >> 21) & 0xf; tep->Entry_GR = (tmp1 >> 16) & 0x1f; tep->Args_stored = (tmp1 >> 15) & 0x1; tep->Variable_Frame = (tmp1 >> 14) & 0x1; tep->Separate_Package_Body = (tmp1 >> 13) & 0x1; tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1; tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1; tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1; tep->Ada_Region = (tmp1 >> 9) & 0x1; tep->cxx_info = (tmp1 >> 8) & 0x1; tep->cxx_try_catch = (tmp1 >> 7) & 0x1; tep->sched_entry_seq = (tmp1 >> 6) & 0x1; tep->reserved2 = (tmp1 >> 5) & 0x1; tep->Save_SP = (tmp1 >> 4) & 0x1; tep->Save_RP = (tmp1 >> 3) & 0x1; tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1; tep->extn_ptr_defined = (tmp1 >> 1) & 0x1; tep->Cleanup_defined = tmp1 & 0x1; tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1; tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1; tep->Large_frame = (tmp2 >> 29) & 0x1; tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1; tep->reserved4 = (tmp2 >> 27) & 0x1; tep->Total_frame_size = tmp2 & 0x7ffffff; } free (table); /* Third, apply any relocations to the unwind table. */ for (relsec = filedata->section_headers; relsec < filedata->section_headers + filedata->file_header.e_shnum; ++relsec) { if (relsec->sh_type != SHT_RELA || relsec->sh_info >= filedata->file_header.e_shnum || filedata->section_headers + relsec->sh_info != sec) continue; if (!slurp_rela_relocs (filedata, relsec->sh_offset, relsec->sh_size, & rela, & nrelas)) return false; for (rp = rela; rp < rela + nrelas; ++rp) { unsigned int sym_ndx; unsigned int r_type = get_reloc_type (filedata, rp->r_info); relname = elf_hppa_reloc_type (r_type); if (relname == NULL) { warn (_("Skipping unknown relocation type: %u\n"), r_type); continue; } /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */ if (! startswith (relname, "R_PARISC_SEGREL")) { warn (_("Skipping unexpected relocation type: %s\n"), relname); continue; } i = rp->r_offset / unw_ent_size; if (i >= aux->table_len) { warn (_("Skipping reloc with overlarge offset: %#" PRIx64 "\n"), i); continue; } sym_ndx = get_reloc_symindex (rp->r_info); if (sym_ndx >= aux->nsyms) { warn (_("Skipping reloc with invalid symbol index: %u\n"), sym_ndx); continue; } sym = aux->symtab + sym_ndx; switch ((rp->r_offset % unw_ent_size) / 4) { case 0: aux->table[i].start.section = sym->st_shndx; aux->table[i].start.offset = sym->st_value + rp->r_addend; break; case 1: aux->table[i].end.section = sym->st_shndx; aux->table[i].end.offset = sym->st_value + rp->r_addend; break; default: break; } } free (rela); } return true; } static bool hppa_process_unwind (Filedata * filedata) { struct hppa_unw_aux_info aux; Elf_Internal_Shdr * unwsec = NULL; Elf_Internal_Shdr * sec; size_t i; bool res = true; if (filedata->string_table == NULL) return false; memset (& aux, 0, sizeof (aux)); for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec) { if (sec->sh_type == SHT_SYMTAB) { if (aux.symtab) { error (_("Multiple symbol tables encountered\n")); free (aux.symtab); aux.symtab = NULL; free (aux.strtab); aux.strtab = NULL; } if (!get_symtab (filedata, sec, &aux.symtab, &aux.nsyms, &aux.strtab, &aux.strtab_size)) return false; } else if (section_name_valid (filedata, sec) && streq (section_name (filedata, sec), ".PARISC.unwind")) unwsec = sec; } if (!unwsec) printf (_("\nThere are no unwind sections in this file.\n")); for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec) { if (section_name_valid (filedata, sec) && streq (section_name (filedata, sec), ".PARISC.unwind")) { uint64_t num_unwind = sec->sh_size / 16; printf (ngettext ("\nUnwind section '%s' at offset %#" PRIx64 " " "contains %" PRIu64 " entry:\n", "\nUnwind section '%s' at offset %#" PRIx64 " " "contains %" PRIu64 " entries:\n", num_unwind), printable_section_name (filedata, sec), sec->sh_offset, num_unwind); if (! slurp_hppa_unwind_table (filedata, &aux, sec)) res = false; if (res && aux.table_len > 0) { if (! dump_hppa_unwind (filedata, &aux)) res = false; } free ((char *) aux.table); aux.table = NULL; } } free (aux.symtab); free ((char *) aux.strtab); return res; } struct arm_section { unsigned char * data; /* The unwind data. */ Elf_Internal_Shdr * sec; /* The cached unwind section header. */ Elf_Internal_Rela * rela; /* The cached relocations for this section. */ uint64_t nrelas; /* The number of relocations. */ unsigned int rel_type; /* REL or RELA ? */ Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */ }; struct arm_unw_aux_info { Filedata * filedata; /* The file containing the unwind sections. */ Elf_Internal_Sym * symtab; /* The file's symbol table. */ uint64_t nsyms; /* Number of symbols. */ Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */ uint64_t nfuns; /* Number of these symbols. */ char * strtab; /* The file's string table. */ uint64_t strtab_size; /* Size of string table. */ }; static const char * arm_print_vma_and_name (Filedata * filedata, struct arm_unw_aux_info * aux, uint64_t fn, struct absaddr addr) { const char *procname; uint64_t sym_offset; if (addr.section == SHN_UNDEF) addr.offset = fn; find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab, aux->strtab_size, addr, &procname, &sym_offset); print_vma (fn, PREFIX_HEX); if (procname) { fputs (" <", stdout); fputs (procname, stdout); if (sym_offset) printf ("+0x%" PRIx64, sym_offset); fputc ('>', stdout); } return procname; } static void arm_free_section (struct arm_section *arm_sec) { free (arm_sec->data); free (arm_sec->rela); } /* 1) If SEC does not match the one cached in ARM_SEC, then free the current cached section and install SEC instead. 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC and return its valued in * WORDP, relocating if necessary. 3) Update the NEXT_RELA field in ARM_SEC and store the section index and relocation's offset in ADDR. 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset into the string table of the symbol associated with the reloc. If no reloc was applied store -1 there. 5) Return TRUE upon success, FALSE otherwise. */ static bool get_unwind_section_word (Filedata * filedata, struct arm_unw_aux_info * aux, struct arm_section * arm_sec, Elf_Internal_Shdr * sec, uint64_t word_offset, unsigned int * wordp, struct absaddr * addr, uint64_t * sym_name) { Elf_Internal_Rela *rp; Elf_Internal_Sym *sym; const char * relname; unsigned int word; bool wrapped; if (sec == NULL || arm_sec == NULL) return false; addr->section = SHN_UNDEF; addr->offset = 0; if (sym_name != NULL) *sym_name = (uint64_t) -1; /* If necessary, update the section cache. */ if (sec != arm_sec->sec) { Elf_Internal_Shdr *relsec; arm_free_section (arm_sec); arm_sec->sec = sec; arm_sec->data = get_data (NULL, aux->filedata, sec->sh_offset, 1, sec->sh_size, _("unwind data")); arm_sec->rela = NULL; arm_sec->nrelas = 0; for (relsec = filedata->section_headers; relsec < filedata->section_headers + filedata->file_header.e_shnum; ++relsec) { if (relsec->sh_info >= filedata->file_header.e_shnum || filedata->section_headers + relsec->sh_info != sec /* PR 15745: Check the section type as well. */ || (relsec->sh_type != SHT_REL && relsec->sh_type != SHT_RELA)) continue; arm_sec->rel_type = relsec->sh_type; if (relsec->sh_type == SHT_REL) { if (!slurp_rel_relocs (aux->filedata, relsec->sh_offset, relsec->sh_size, & arm_sec->rela, & arm_sec->nrelas)) return false; } else /* relsec->sh_type == SHT_RELA */ { if (!slurp_rela_relocs (aux->filedata, relsec->sh_offset, relsec->sh_size, & arm_sec->rela, & arm_sec->nrelas)) return false; } break; } arm_sec->next_rela = arm_sec->rela; } /* If there is no unwind data we can do nothing. */ if (arm_sec->data == NULL) return false; /* If the offset is invalid then fail. */ if (/* PR 21343 *//* PR 18879 */ sec->sh_size < 4 || word_offset > sec->sh_size - 4) return false; /* Get the word at the required offset. */ word = byte_get (arm_sec->data + word_offset, 4); /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */ if (arm_sec->rela == NULL) { * wordp = word; return true; } /* Look through the relocs to find the one that applies to the provided offset. */ wrapped = false; for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++) { uint64_t prelval, offset; if (rp->r_offset > word_offset && !wrapped) { rp = arm_sec->rela; wrapped = true; } if (rp->r_offset > word_offset) break; if (rp->r_offset & 3) { warn (_("Skipping unexpected relocation at offset %#" PRIx64 "\n"), rp->r_offset); continue; } if (rp->r_offset < word_offset) continue; /* PR 17531: file: 027-161405-0.004 */ if (aux->symtab == NULL) continue; if (arm_sec->rel_type == SHT_REL) { offset = word & 0x7fffffff; if (offset & 0x40000000) offset |= ~ (uint64_t) 0x7fffffff; } else if (arm_sec->rel_type == SHT_RELA) offset = rp->r_addend; else { error (_("Unknown section relocation type %d encountered\n"), arm_sec->rel_type); break; } /* PR 17531 file: 027-1241568-0.004. */ if (ELF32_R_SYM (rp->r_info) >= aux->nsyms) { error (_("Bad symbol index in unwind relocation " "(%" PRIu64 " > %" PRIu64 ")\n"), ELF32_R_SYM (rp->r_info), aux->nsyms); break; } sym = aux->symtab + ELF32_R_SYM (rp->r_info); offset += sym->st_value; prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset); /* Check that we are processing the expected reloc type. */ if (filedata->file_header.e_machine == EM_ARM) { relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info)); if (relname == NULL) { warn (_("Skipping unknown ARM relocation type: %d\n"), (int) ELF32_R_TYPE (rp->r_info)); continue; } if (streq (relname, "R_ARM_NONE")) continue; if (! streq (relname, "R_ARM_PREL31")) { warn (_("Skipping unexpected ARM relocation type %s\n"), relname); continue; } } else if (filedata->file_header.e_machine == EM_TI_C6000) { relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info)); if (relname == NULL) { warn (_("Skipping unknown C6000 relocation type: %d\n"), (int) ELF32_R_TYPE (rp->r_info)); continue; } if (streq (relname, "R_C6000_NONE")) continue; if (! streq (relname, "R_C6000_PREL31")) { warn (_("Skipping unexpected C6000 relocation type %s\n"), relname); continue; } prelval >>= 1; } else { /* This function currently only supports ARM and TI unwinders. */ warn (_("Only TI and ARM unwinders are currently supported\n")); break; } word = (word & ~ (uint64_t) 0x7fffffff) | (prelval & 0x7fffffff); addr->section = sym->st_shndx; addr->offset = offset; if (sym_name) * sym_name = sym->st_name; break; } *wordp = word; arm_sec->next_rela = rp; return true; } static const char *tic6x_unwind_regnames[16] = { "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3", "A14", "A13", "A12", "A11", "A10", "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]" }; static void decode_tic6x_unwind_regmask (unsigned int mask) { int i; for (i = 12; mask; mask >>= 1, i--) { if (mask & 1) { fputs (tic6x_unwind_regnames[i], stdout); if (mask > 1) fputs (", ", stdout); } } } #define ADVANCE \ if (remaining == 0 && more_words) \ { \ data_offset += 4; \ if (! get_unwind_section_word (filedata, aux, data_arm_sec, data_sec, \ data_offset, & word, & addr, NULL)) \ return false; \ remaining = 4; \ more_words--; \ } \ #define GET_OP(OP) \ ADVANCE; \ if (remaining) \ { \ remaining--; \ (OP) = word >> 24; \ word <<= 8; \ } \ else \ { \ printf (_("[Truncated opcode]\n")); \ return false; \ } \ printf ("0x%02x ", OP) static bool decode_arm_unwind_bytecode (Filedata * filedata, struct arm_unw_aux_info * aux, unsigned int word, unsigned int remaining, unsigned int more_words, uint64_t data_offset, Elf_Internal_Shdr * data_sec, struct arm_section * data_arm_sec) { struct absaddr addr; bool res = true; /* Decode the unwinding instructions. */ while (1) { unsigned int op, op2; ADVANCE; if (remaining == 0) break; remaining--; op = word >> 24; word <<= 8; printf (" 0x%02x ", op); if ((op & 0xc0) == 0x00) { int offset = ((op & 0x3f) << 2) + 4; printf (" vsp = vsp + %d", offset); } else if ((op & 0xc0) == 0x40) { int offset = ((op & 0x3f) << 2) + 4; printf (" vsp = vsp - %d", offset); } else if ((op & 0xf0) == 0x80) { GET_OP (op2); if (op == 0x80 && op2 == 0) printf (_("Refuse to unwind")); else { unsigned int mask = ((op & 0x0f) << 8) | op2; bool first = true; int i; printf ("pop {"); for (i = 0; i < 12; i++) if (mask & (1 << i)) { if (first) first = false; else printf (", "); printf ("r%d", 4 + i); } printf ("}"); } } else if ((op & 0xf0) == 0x90) { if (op == 0x9d || op == 0x9f) printf (_(" [Reserved]")); else printf (" vsp = r%d", op & 0x0f); } else if ((op & 0xf0) == 0xa0) { int end = 4 + (op & 0x07); bool first = true; int i; printf (" pop {"); for (i = 4; i <= end; i++) { if (first) first = false; else printf (", "); printf ("r%d", i); } if (op & 0x08) { if (!first) printf (", "); printf ("r14"); } printf ("}"); } else if (op == 0xb0) printf (_(" finish")); else if (op == 0xb1) { GET_OP (op2); if (op2 == 0 || (op2 & 0xf0) != 0) printf (_("[Spare]")); else { unsigned int mask = op2 & 0x0f; bool first = true; int i; printf ("pop {"); for (i = 0; i < 12; i++) if (mask & (1 << i)) { if (first) first = false; else printf (", "); printf ("r%d", i); } printf ("}"); } } else if (op == 0xb2) { unsigned char buf[9]; unsigned int i, len; uint64_t offset; for (i = 0; i < sizeof (buf); i++) { GET_OP (buf[i]); if ((buf[i] & 0x80) == 0) break; } if (i == sizeof (buf)) { error (_("corrupt change to vsp\n")); res = false; } else { offset = read_leb128 (buf, buf + i + 1, false, &len, NULL); assert (len == i + 1); offset = offset * 4 + 0x204; printf ("vsp = vsp + %" PRId64, offset); } } else if (op == 0xb3 || op == 0xc8 || op == 0xc9) { unsigned int first, last; GET_OP (op2); first = op2 >> 4; last = op2 & 0x0f; if (op == 0xc8) first = first + 16; printf ("pop {D%d", first); if (last) printf ("-D%d", first + last); printf ("}"); } else if (op == 0xb4) printf (_(" pop {ra_auth_code}")); else if (op == 0xb5) printf (_(" vsp as modifier for PAC validation")); else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0) { unsigned int count = op & 0x07; printf ("pop {D8"); if (count) printf ("-D%d", 8 + count); printf ("}"); } else if (op >= 0xc0 && op <= 0xc5) { unsigned int count = op & 0x07; printf (" pop {wR10"); if (count) printf ("-wR%d", 10 + count); printf ("}"); } else if (op == 0xc6) { unsigned int first, last; GET_OP (op2); first = op2 >> 4; last = op2 & 0x0f; printf ("pop {wR%d", first); if (last) printf ("-wR%d", first + last); printf ("}"); } else if (op == 0xc7) { GET_OP (op2); if (op2 == 0 || (op2 & 0xf0) != 0) printf (_("[Spare]")); else { unsigned int mask = op2 & 0x0f; bool first = true; int i; printf ("pop {"); for (i = 0; i < 4; i++) if (mask & (1 << i)) { if (first) first = false; else printf (", "); printf ("wCGR%d", i); } printf ("}"); } } else { printf (_(" [unsupported opcode]")); res = false; } printf ("\n"); } return res; } static bool decode_tic6x_unwind_bytecode (Filedata * filedata, struct arm_unw_aux_info * aux, unsigned int word, unsigned int remaining, unsigned int more_words, uint64_t data_offset, Elf_Internal_Shdr * data_sec, struct arm_section * data_arm_sec) { struct absaddr addr; /* Decode the unwinding instructions. */ while (1) { unsigned int op, op2; ADVANCE; if (remaining == 0) break; remaining--; op = word >> 24; word <<= 8; printf (" 0x%02x ", op); if ((op & 0xc0) == 0x00) { int offset = ((op & 0x3f) << 3) + 8; printf (" sp = sp + %d", offset); } else if ((op & 0xc0) == 0x80) { GET_OP (op2); if (op == 0x80 && op2 == 0) printf (_("Refuse to unwind")); else { unsigned int mask = ((op & 0x1f) << 8) | op2; if (op & 0x20) printf ("pop compact {"); else printf ("pop {"); decode_tic6x_unwind_regmask (mask); printf("}"); } } else if ((op & 0xf0) == 0xc0) { unsigned int reg; unsigned int nregs; unsigned int i; const char *name; struct { unsigned int offset; unsigned int reg; } regpos[16]; /* Scan entire instruction first so that GET_OP output is not interleaved with disassembly. */ nregs = 0; for (i = 0; nregs < (op & 0xf); i++) { GET_OP (op2); reg = op2 >> 4; if (reg != 0xf) { regpos[nregs].offset = i * 2; regpos[nregs].reg = reg; nregs++; } reg = op2 & 0xf; if (reg != 0xf) { regpos[nregs].offset = i * 2 + 1; regpos[nregs].reg = reg; nregs++; } } printf (_("pop frame {")); if (nregs == 0) { printf (_("*corrupt* - no registers specified")); } else { reg = nregs - 1; for (i = i * 2; i > 0; i--) { if (regpos[reg].offset == i - 1) { name = tic6x_unwind_regnames[regpos[reg].reg]; if (reg > 0) reg--; } else name = _("[pad]"); fputs (name, stdout); if (i > 1) printf (", "); } } printf ("}"); } else if (op == 0xd0) printf (" MOV FP, SP"); else if (op == 0xd1) printf (" __c6xabi_pop_rts"); else if (op == 0xd2) { unsigned char buf[9]; unsigned int i, len; uint64_t offset; for (i = 0; i < sizeof (buf); i++) { GET_OP (buf[i]); if ((buf[i] & 0x80) == 0) break; } /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */ if (i == sizeof (buf)) { warn (_("Corrupt stack pointer adjustment detected\n")); return false; } offset = read_leb128 (buf, buf + i + 1, false, &len, NULL); assert (len == i + 1); offset = offset * 8 + 0x408; printf (_("sp = sp + %" PRId64), offset); } else if ((op & 0xf0) == 0xe0) { if ((op & 0x0f) == 7) printf (" RETURN"); else printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]); } else { printf (_(" [unsupported opcode]")); } putchar ('\n'); } return true; } static uint64_t arm_expand_prel31 (Filedata * filedata, uint64_t word, uint64_t where) { uint64_t offset; offset = word & 0x7fffffff; if (offset & 0x40000000) offset |= ~ (uint64_t) 0x7fffffff; if (filedata->file_header.e_machine == EM_TI_C6000) offset <<= 1; return offset + where; } static bool decode_arm_unwind (Filedata * filedata, struct arm_unw_aux_info * aux, unsigned int word, unsigned int remaining, uint64_t data_offset, Elf_Internal_Shdr * data_sec, struct arm_section * data_arm_sec) { int per_index; unsigned int more_words = 0; struct absaddr addr; uint64_t sym_name = (uint64_t) -1; bool res = true; if (remaining == 0) { /* Fetch the first word. Note - when decoding an object file the address extracted here will always be 0. So we also pass in the sym_name parameter so that we can find the symbol associated with the personality routine. */ if (! get_unwind_section_word (filedata, aux, data_arm_sec, data_sec, data_offset, & word, & addr, & sym_name)) return false; remaining = 4; } else { addr.section = SHN_UNDEF; addr.offset = 0; } if ((word & 0x80000000) == 0) { /* Expand prel31 for personality routine. */ uint64_t fn; const char *procname; fn = arm_expand_prel31 (filedata, word, data_sec->sh_addr + data_offset); printf (_(" Personality routine: ")); if (fn == 0 && addr.section == SHN_UNDEF && addr.offset == 0 && sym_name != (uint64_t) -1 && sym_name < aux->strtab_size) { procname = aux->strtab + sym_name; print_vma (fn, PREFIX_HEX); if (procname) { fputs (" <", stdout); fputs (procname, stdout); fputc ('>', stdout); } } else procname = arm_print_vma_and_name (filedata, aux, fn, addr); fputc ('\n', stdout); /* The GCC personality routines use the standard compact encoding, starting with one byte giving the number of words. */ if (procname != NULL && (startswith (procname, "__gcc_personality_v0") || startswith (procname, "__gxx_personality_v0") || startswith (procname, "__gcj_personality_v0") || startswith (procname, "__gnu_objc_personality_v0"))) { remaining = 0; more_words = 1; ADVANCE; if (!remaining) { printf (_(" [Truncated data]\n")); return false; } more_words = word >> 24; word <<= 8; remaining--; per_index = -1; } else return true; } else { /* ARM EHABI Section 6.3: An exception-handling table entry for the compact model looks like: 31 30-28 27-24 23-0 -- ----- ----- ---- 1 0 index Data for personalityRoutine[index] */ if (filedata->file_header.e_machine == EM_ARM && (word & 0x70000000)) { warn (_("Corrupt ARM compact model table entry: %x \n"), word); res = false; } per_index = (word >> 24) & 0x7f; printf (_(" Compact model index: %d\n"), per_index); if (per_index == 0) { more_words = 0; word <<= 8; remaining--; } else if (per_index < 3) { more_words = (word >> 16) & 0xff; word <<= 16; remaining -= 2; } } switch (filedata->file_header.e_machine) { case EM_ARM: if (per_index < 3) { if (! decode_arm_unwind_bytecode (filedata, aux, word, remaining, more_words, data_offset, data_sec, data_arm_sec)) res = false; } else { warn (_("Unknown ARM compact model index encountered\n")); printf (_(" [reserved]\n")); res = false; } break; case EM_TI_C6000: if (per_index < 3) { if (! decode_tic6x_unwind_bytecode (filedata, aux, word, remaining, more_words, data_offset, data_sec, data_arm_sec)) res = false; } else if (per_index < 5) { if (((word >> 17) & 0x7f) == 0x7f) printf (_(" Restore stack from frame pointer\n")); else printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc); printf (_(" Registers restored: ")); if (per_index == 4) printf (" (compact) "); decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff); putchar ('\n'); printf (_(" Return register: %s\n"), tic6x_unwind_regnames[word & 0xf]); } else printf (_(" [reserved (%d)]\n"), per_index); break; default: error (_("Unsupported architecture type %d encountered when decoding unwind table\n"), filedata->file_header.e_machine); res = false; } /* Decode the descriptors. Not implemented. */ return res; } static bool dump_arm_unwind (Filedata * filedata, struct arm_unw_aux_info * aux, Elf_Internal_Shdr * exidx_sec) { struct arm_section exidx_arm_sec, extab_arm_sec; unsigned int i, exidx_len; uint64_t j, nfuns; bool res = true; memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec)); memset (&extab_arm_sec, 0, sizeof (extab_arm_sec)); exidx_len = exidx_sec->sh_size / 8; aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym)); for (nfuns = 0, j = 0; j < aux->nsyms; j++) if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC) aux->funtab[nfuns++] = aux->symtab[j]; aux->nfuns = nfuns; qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp); for (i = 0; i < exidx_len; i++) { unsigned int exidx_fn, exidx_entry; struct absaddr fn_addr, entry_addr; uint64_t fn; fputc ('\n', stdout); if (! get_unwind_section_word (filedata, aux, & exidx_arm_sec, exidx_sec, 8 * i, & exidx_fn, & fn_addr, NULL) || ! get_unwind_section_word (filedata, aux, & exidx_arm_sec, exidx_sec, 8 * i + 4, & exidx_entry, & entry_addr, NULL)) { free (aux->funtab); arm_free_section (& exidx_arm_sec); arm_free_section (& extab_arm_sec); return false; } /* ARM EHABI, Section 5: An index table entry consists of 2 words. The first word contains a prel31 offset to the start of a function, with bit 31 clear. */ if (exidx_fn & 0x80000000) { warn (_("corrupt index table entry: %x\n"), exidx_fn); res = false; } fn = arm_expand_prel31 (filedata, exidx_fn, exidx_sec->sh_addr + 8 * i); arm_print_vma_and_name (filedata, aux, fn, fn_addr); fputs (": ", stdout); if (exidx_entry == 1) { print_vma (exidx_entry, PREFIX_HEX); fputs (" [cantunwind]\n", stdout); } else if (exidx_entry & 0x80000000) { print_vma (exidx_entry, PREFIX_HEX); fputc ('\n', stdout); decode_arm_unwind (filedata, aux, exidx_entry, 4, 0, NULL, NULL); } else { uint64_t table, table_offset = 0; Elf_Internal_Shdr *table_sec; fputs ("@", stdout); table = arm_expand_prel31 (filedata, exidx_entry, exidx_sec->sh_addr + 8 * i + 4); print_vma (table, PREFIX_HEX); printf ("\n"); /* Locate the matching .ARM.extab. */ if (entry_addr.section != SHN_UNDEF && entry_addr.section < filedata->file_header.e_shnum) { table_sec = filedata->section_headers + entry_addr.section; table_offset = entry_addr.offset; /* PR 18879 */ if (table_offset > table_sec->sh_size) { warn (_("Unwind entry contains corrupt offset (%#" PRIx64 ") into section %s\n"), table_offset, printable_section_name (filedata, table_sec)); res = false; continue; } } else { table_sec = find_section_by_address (filedata, table); if (table_sec != NULL) table_offset = table - table_sec->sh_addr; } if (table_sec == NULL) { warn (_("Could not locate .ARM.extab section containing %#" PRIx64 ".\n"), table); res = false; continue; } if (! decode_arm_unwind (filedata, aux, 0, 0, table_offset, table_sec, &extab_arm_sec)) res = false; } } printf ("\n"); free (aux->funtab); arm_free_section (&exidx_arm_sec); arm_free_section (&extab_arm_sec); return res; } /* Used for both ARM and C6X unwinding tables. */ static bool arm_process_unwind (Filedata * filedata) { struct arm_unw_aux_info aux; Elf_Internal_Shdr *unwsec = NULL; Elf_Internal_Shdr *sec; size_t i; unsigned int sec_type; bool res = true; switch (filedata->file_header.e_machine) { case EM_ARM: sec_type = SHT_ARM_EXIDX; break; case EM_TI_C6000: sec_type = SHT_C6000_UNWIND; break; default: error (_("Unsupported architecture type %d encountered when processing unwind table\n"), filedata->file_header.e_machine); return false; } if (filedata->string_table == NULL) return false; memset (& aux, 0, sizeof (aux)); aux.filedata = filedata; for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec) { if (sec->sh_type == SHT_SYMTAB) { if (aux.symtab) { error (_("Multiple symbol tables encountered\n")); free (aux.symtab); aux.symtab = NULL; free (aux.strtab); aux.strtab = NULL; } if (!get_symtab (filedata, sec, &aux.symtab, &aux.nsyms, &aux.strtab, &aux.strtab_size)) return false; } else if (sec->sh_type == sec_type) unwsec = sec; } if (unwsec == NULL) printf (_("\nThere are no unwind sections in this file.\n")); else for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec) { if (sec->sh_type == sec_type) { uint64_t num_unwind = sec->sh_size / (2 * eh_addr_size); printf (ngettext ("\nUnwind section '%s' at offset %#" PRIx64 " " "contains %" PRIu64 " entry:\n", "\nUnwind section '%s' at offset %#" PRIx64 " " "contains %" PRIu64 " entries:\n", num_unwind), printable_section_name (filedata, sec), sec->sh_offset, num_unwind); if (! dump_arm_unwind (filedata, &aux, sec)) res = false; } } free (aux.symtab); free ((char *) aux.strtab); return res; } static bool no_processor_specific_unwind (Filedata * filedata ATTRIBUTE_UNUSED) { printf (_("No processor specific unwind information to decode\n")); return true; } static bool process_unwind (Filedata * filedata) { struct unwind_handler { unsigned int machtype; bool (* handler)(Filedata *); } handlers[] = { { EM_ARM, arm_process_unwind }, { EM_IA_64, ia64_process_unwind }, { EM_PARISC, hppa_process_unwind }, { EM_TI_C6000, arm_process_unwind }, { EM_386, no_processor_specific_unwind }, { EM_X86_64, no_processor_specific_unwind }, { 0, NULL } }; int i; if (!do_unwind) return true; for (i = 0; handlers[i].handler != NULL; i++) if (filedata->file_header.e_machine == handlers[i].machtype) return handlers[i].handler (filedata); printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"), get_machine_name (filedata->file_header.e_machine)); return true; } static void dynamic_section_aarch64_val (Elf_Internal_Dyn * entry) { switch (entry->d_tag) { case DT_AARCH64_BTI_PLT: case DT_AARCH64_PAC_PLT: break; default: print_vma (entry->d_un.d_ptr, PREFIX_HEX); break; } putchar ('\n'); } static void dynamic_section_mips_val (Filedata * filedata, Elf_Internal_Dyn * entry) { switch (entry->d_tag) { case DT_MIPS_FLAGS: if (entry->d_un.d_val == 0) printf (_("NONE")); else { static const char * opts[] = { "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT", "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS", "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD", "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF", "RLD_ORDER_SAFE" }; unsigned int cnt; bool first = true; for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt) if (entry->d_un.d_val & (1 << cnt)) { printf ("%s%s", first ? "" : " ", opts[cnt]); first = false; } } break; case DT_MIPS_IVERSION: if (valid_dynamic_name (filedata, entry->d_un.d_val)) printf (_("Interface Version: %s"), get_dynamic_name (filedata, entry->d_un.d_val)); else printf (_("Interface Version: "), entry->d_un.d_ptr); break; case DT_MIPS_TIME_STAMP: { char timebuf[128]; struct tm * tmp; time_t atime = entry->d_un.d_val; tmp = gmtime (&atime); /* PR 17531: file: 6accc532. */ if (tmp == NULL) snprintf (timebuf, sizeof (timebuf), _("")); else snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u", tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday, tmp->tm_hour, tmp->tm_min, tmp->tm_sec); printf (_("Time Stamp: %s"), timebuf); } break; case DT_MIPS_RLD_VERSION: case DT_MIPS_LOCAL_GOTNO: case DT_MIPS_CONFLICTNO: case DT_MIPS_LIBLISTNO: case DT_MIPS_SYMTABNO: case DT_MIPS_UNREFEXTNO: case DT_MIPS_HIPAGENO: case DT_MIPS_DELTA_CLASS_NO: case DT_MIPS_DELTA_INSTANCE_NO: case DT_MIPS_DELTA_RELOC_NO: case DT_MIPS_DELTA_SYM_NO: case DT_MIPS_DELTA_CLASSSYM_NO: case DT_MIPS_COMPACT_SIZE: print_vma (entry->d_un.d_val, DEC); break; case DT_MIPS_XHASH: filedata->dynamic_info_DT_MIPS_XHASH = entry->d_un.d_val; filedata->dynamic_info_DT_GNU_HASH = entry->d_un.d_val; /* Falls through. */ default: print_vma (entry->d_un.d_ptr, PREFIX_HEX); } putchar ('\n'); } static void dynamic_section_parisc_val (Elf_Internal_Dyn * entry) { switch (entry->d_tag) { case DT_HP_DLD_FLAGS: { static struct { unsigned int bit; const char * str; } flags[] = { { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" }, { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" }, { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" }, { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" }, { DT_HP_BIND_NOW, "HP_BIND_NOW" }, { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" }, { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" }, { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" }, { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" }, { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" }, { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" }, { DT_HP_GST, "HP_GST" }, { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" }, { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" }, { DT_HP_NODELETE, "HP_NODELETE" }, { DT_HP_GROUP, "HP_GROUP" }, { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" } }; bool first = true; size_t cnt; uint64_t val = entry->d_un.d_val; for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt) if (val & flags[cnt].bit) { if (! first) putchar (' '); fputs (flags[cnt].str, stdout); first = false; val ^= flags[cnt].bit; } if (val != 0 || first) { if (! first) putchar (' '); print_vma (val, HEX); } } break; default: print_vma (entry->d_un.d_ptr, PREFIX_HEX); break; } putchar ('\n'); } /* VMS vs Unix time offset and factor. */ #define VMS_EPOCH_OFFSET 35067168000000000LL #define VMS_GRANULARITY_FACTOR 10000000 #ifndef INT64_MIN #define INT64_MIN (-9223372036854775807LL - 1) #endif /* Display a VMS time in a human readable format. */ static void print_vms_time (int64_t vmstime) { struct tm *tm = NULL; time_t unxtime; if (vmstime >= INT64_MIN + VMS_EPOCH_OFFSET) { vmstime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR; unxtime = vmstime; if (unxtime == vmstime) tm = gmtime (&unxtime); } if (tm != NULL) printf ("%04u-%02u-%02uT%02u:%02u:%02u", tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); } static void dynamic_section_ia64_val (Elf_Internal_Dyn * entry) { switch (entry->d_tag) { case DT_IA_64_PLT_RESERVE: /* First 3 slots reserved. */ print_vma (entry->d_un.d_ptr, PREFIX_HEX); printf (" -- "); print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX); break; case DT_IA_64_VMS_LINKTIME: print_vms_time (entry->d_un.d_val); break; case DT_IA_64_VMS_LNKFLAGS: print_vma (entry->d_un.d_ptr, PREFIX_HEX); if (entry->d_un.d_val & VMS_LF_CALL_DEBUG) printf (" CALL_DEBUG"); if (entry->d_un.d_val & VMS_LF_NOP0BUFS) printf (" NOP0BUFS"); if (entry->d_un.d_val & VMS_LF_P0IMAGE) printf (" P0IMAGE"); if (entry->d_un.d_val & VMS_LF_MKTHREADS) printf (" MKTHREADS"); if (entry->d_un.d_val & VMS_LF_UPCALLS) printf (" UPCALLS"); if (entry->d_un.d_val & VMS_LF_IMGSTA) printf (" IMGSTA"); if (entry->d_un.d_val & VMS_LF_INITIALIZE) printf (" INITIALIZE"); if (entry->d_un.d_val & VMS_LF_MAIN) printf (" MAIN"); if (entry->d_un.d_val & VMS_LF_EXE_INIT) printf (" EXE_INIT"); if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG) printf (" TBK_IN_IMG"); if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG) printf (" DBG_IN_IMG"); if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF) printf (" TBK_IN_DSF"); if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF) printf (" DBG_IN_DSF"); if (entry->d_un.d_val & VMS_LF_SIGNATURES) printf (" SIGNATURES"); if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF) printf (" REL_SEG_OFF"); break; default: print_vma (entry->d_un.d_ptr, PREFIX_HEX); break; } putchar ('\n'); } static bool get_32bit_dynamic_section (Filedata * filedata) { Elf32_External_Dyn * edyn; Elf32_External_Dyn * ext; Elf_Internal_Dyn * entry; edyn = (Elf32_External_Dyn *) get_data (NULL, filedata, filedata->dynamic_addr, 1, filedata->dynamic_size, _("dynamic section")); if (!edyn) return false; /* SGI's ELF has more than one section in the DYNAMIC segment, and we might not have the luxury of section headers. Look for the DT_NULL terminator to determine the number of entries. */ for (ext = edyn, filedata->dynamic_nent = 0; (char *) (ext + 1) <= (char *) edyn + filedata->dynamic_size; ext++) { filedata->dynamic_nent++; if (BYTE_GET (ext->d_tag) == DT_NULL) break; } filedata->dynamic_section = (Elf_Internal_Dyn *) cmalloc (filedata->dynamic_nent, sizeof (* entry)); if (filedata->dynamic_section == NULL) { error (_("Out of memory allocating space for %" PRIu64 " dynamic entries\n"), filedata->dynamic_nent); free (edyn); return false; } for (ext = edyn, entry = filedata->dynamic_section; entry < filedata->dynamic_section + filedata->dynamic_nent; ext++, entry++) { entry->d_tag = BYTE_GET (ext->d_tag); entry->d_un.d_val = BYTE_GET (ext->d_un.d_val); } free (edyn); return true; } static bool get_64bit_dynamic_section (Filedata * filedata) { Elf64_External_Dyn * edyn; Elf64_External_Dyn * ext; Elf_Internal_Dyn * entry; /* Read in the data. */ edyn = (Elf64_External_Dyn *) get_data (NULL, filedata, filedata->dynamic_addr, 1, filedata->dynamic_size, _("dynamic section")); if (!edyn) return false; /* SGI's ELF has more than one section in the DYNAMIC segment, and we might not have the luxury of section headers. Look for the DT_NULL terminator to determine the number of entries. */ for (ext = edyn, filedata->dynamic_nent = 0; /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */ (char *) (ext + 1) <= (char *) edyn + filedata->dynamic_size; ext++) { filedata->dynamic_nent++; if (BYTE_GET (ext->d_tag) == DT_NULL) break; } filedata->dynamic_section = (Elf_Internal_Dyn *) cmalloc (filedata->dynamic_nent, sizeof (* entry)); if (filedata->dynamic_section == NULL) { error (_("Out of memory allocating space for %" PRIu64 " dynamic entries\n"), filedata->dynamic_nent); free (edyn); return false; } /* Convert from external to internal formats. */ for (ext = edyn, entry = filedata->dynamic_section; entry < filedata->dynamic_section + filedata->dynamic_nent; ext++, entry++) { entry->d_tag = BYTE_GET (ext->d_tag); entry->d_un.d_val = BYTE_GET (ext->d_un.d_val); } free (edyn); return true; } static bool get_dynamic_section (Filedata *filedata) { if (filedata->dynamic_section) return true; if (is_32bit_elf) return get_32bit_dynamic_section (filedata); else return get_64bit_dynamic_section (filedata); } static void print_dynamic_flags (uint64_t flags) { bool first = true; while (flags) { uint64_t flag; flag = flags & - flags; flags &= ~ flag; if (first) first = false; else putc (' ', stdout); switch (flag) { case DF_ORIGIN: fputs ("ORIGIN", stdout); break; case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break; case DF_TEXTREL: fputs ("TEXTREL", stdout); break; case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break; case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break; default: fputs (_("unknown"), stdout); break; } } puts (""); } static uint64_t * get_dynamic_data (Filedata * filedata, uint64_t number, unsigned int ent_size) { unsigned char * e_data; uint64_t * i_data; /* If size_t is smaller than uint64_t, eg because you are building on a 32-bit host, then make sure that when number is cast to size_t no information is lost. */ if ((size_t) number != number || ent_size * number / ent_size != number) { error (_("Size overflow prevents reading %" PRIu64 " elements of size %u\n"), number, ent_size); return NULL; } /* Be kind to memory checkers (eg valgrind, address sanitizer) by not attempting to allocate memory when the read is bound to fail. */ if (ent_size * number > filedata->file_size) { error (_("Invalid number of dynamic entries: %" PRIu64 "\n"), number); return NULL; } e_data = (unsigned char *) cmalloc ((size_t) number, ent_size); if (e_data == NULL) { error (_("Out of memory reading %" PRIu64 " dynamic entries\n"), number); return NULL; } if (fread (e_data, ent_size, (size_t) number, filedata->handle) != number) { error (_("Unable to read in %" PRIu64 " bytes of dynamic data\n"), number * ent_size); free (e_data); return NULL; } i_data = (uint64_t *) cmalloc ((size_t) number, sizeof (*i_data)); if (i_data == NULL) { error (_("Out of memory allocating space for %" PRIu64 " dynamic entries\n"), number); free (e_data); return NULL; } while (number--) i_data[number] = byte_get (e_data + number * ent_size, ent_size); free (e_data); return i_data; } static uint64_t get_num_dynamic_syms (Filedata * filedata) { uint64_t num_of_syms = 0; if (!do_histogram && (!do_using_dynamic || do_dyn_syms)) return num_of_syms; if (filedata->dynamic_info[DT_HASH]) { unsigned char nb[8]; unsigned char nc[8]; unsigned int hash_ent_size = 4; if ((filedata->file_header.e_machine == EM_ALPHA || filedata->file_header.e_machine == EM_S390 || filedata->file_header.e_machine == EM_S390_OLD) && filedata->file_header.e_ident[EI_CLASS] == ELFCLASS64) hash_ent_size = 8; if (fseek64 (filedata->handle, (filedata->archive_file_offset + offset_from_vma (filedata, filedata->dynamic_info[DT_HASH], sizeof nb + sizeof nc)), SEEK_SET)) { error (_("Unable to seek to start of dynamic information\n")); goto no_hash; } if (fread (nb, hash_ent_size, 1, filedata->handle) != 1) { error (_("Failed to read in number of buckets\n")); goto no_hash; } if (fread (nc, hash_ent_size, 1, filedata->handle) != 1) { error (_("Failed to read in number of chains\n")); goto no_hash; } filedata->nbuckets = byte_get (nb, hash_ent_size); filedata->nchains = byte_get (nc, hash_ent_size); if (filedata->nbuckets != 0 && filedata->nchains != 0) { filedata->buckets = get_dynamic_data (filedata, filedata->nbuckets, hash_ent_size); filedata->chains = get_dynamic_data (filedata, filedata->nchains, hash_ent_size); if (filedata->buckets != NULL && filedata->chains != NULL) num_of_syms = filedata->nchains; } no_hash: if (num_of_syms == 0) { free (filedata->buckets); filedata->buckets = NULL; free (filedata->chains); filedata->chains = NULL; filedata->nbuckets = 0; } } if (filedata->dynamic_info_DT_GNU_HASH) { unsigned char nb[16]; uint64_t i, maxchain = 0xffffffff, bitmaskwords; uint64_t buckets_vma; uint64_t hn; if (fseek64 (filedata->handle, (filedata->archive_file_offset + offset_from_vma (filedata, filedata->dynamic_info_DT_GNU_HASH, sizeof nb)), SEEK_SET)) { error (_("Unable to seek to start of dynamic information\n")); goto no_gnu_hash; } if (fread (nb, 16, 1, filedata->handle) != 1) { error (_("Failed to read in number of buckets\n")); goto no_gnu_hash; } filedata->ngnubuckets = byte_get (nb, 4); filedata->gnusymidx = byte_get (nb + 4, 4); bitmaskwords = byte_get (nb + 8, 4); buckets_vma = filedata->dynamic_info_DT_GNU_HASH + 16; if (is_32bit_elf) buckets_vma += bitmaskwords * 4; else buckets_vma += bitmaskwords * 8; if (fseek64 (filedata->handle, (filedata->archive_file_offset + offset_from_vma (filedata, buckets_vma, 4)), SEEK_SET)) { error (_("Unable to seek to start of dynamic information\n")); goto no_gnu_hash; } filedata->gnubuckets = get_dynamic_data (filedata, filedata->ngnubuckets, 4); if (filedata->gnubuckets == NULL) goto no_gnu_hash; for (i = 0; i < filedata->ngnubuckets; i++) if (filedata->gnubuckets[i] != 0) { if (filedata->gnubuckets[i] < filedata->gnusymidx) goto no_gnu_hash; if (maxchain == 0xffffffff || filedata->gnubuckets[i] > maxchain) maxchain = filedata->gnubuckets[i]; } if (maxchain == 0xffffffff) goto no_gnu_hash; maxchain -= filedata->gnusymidx; if (fseek64 (filedata->handle, (filedata->archive_file_offset + offset_from_vma (filedata, buckets_vma + 4 * (filedata->ngnubuckets + maxchain), 4)), SEEK_SET)) { error (_("Unable to seek to start of dynamic information\n")); goto no_gnu_hash; } do { if (fread (nb, 4, 1, filedata->handle) != 1) { error (_("Failed to determine last chain length\n")); goto no_gnu_hash; } if (maxchain + 1 == 0) goto no_gnu_hash; ++maxchain; } while ((byte_get (nb, 4) & 1) == 0); if (fseek64 (filedata->handle, (filedata->archive_file_offset + offset_from_vma (filedata, (buckets_vma + 4 * filedata->ngnubuckets), 4)), SEEK_SET)) { error (_("Unable to seek to start of dynamic information\n")); goto no_gnu_hash; } filedata->gnuchains = get_dynamic_data (filedata, maxchain, 4); filedata->ngnuchains = maxchain; if (filedata->gnuchains == NULL) goto no_gnu_hash; if (filedata->dynamic_info_DT_MIPS_XHASH) { if (fseek64 (filedata->handle, (filedata->archive_file_offset + offset_from_vma (filedata, (buckets_vma + 4 * (filedata->ngnubuckets + maxchain)), 4)), SEEK_SET)) { error (_("Unable to seek to start of dynamic information\n")); goto no_gnu_hash; } filedata->mipsxlat = get_dynamic_data (filedata, maxchain, 4); if (filedata->mipsxlat == NULL) goto no_gnu_hash; } for (hn = 0; hn < filedata->ngnubuckets; ++hn) if (filedata->gnubuckets[hn] != 0) { uint64_t si = filedata->gnubuckets[hn]; uint64_t off = si - filedata->gnusymidx; do { if (filedata->dynamic_info_DT_MIPS_XHASH) { if (off < filedata->ngnuchains && filedata->mipsxlat[off] >= num_of_syms) num_of_syms = filedata->mipsxlat[off] + 1; } else { if (si >= num_of_syms) num_of_syms = si + 1; } si++; } while (off < filedata->ngnuchains && (filedata->gnuchains[off++] & 1) == 0); } if (num_of_syms == 0) { no_gnu_hash: free (filedata->mipsxlat); filedata->mipsxlat = NULL; free (filedata->gnuchains); filedata->gnuchains = NULL; free (filedata->gnubuckets); filedata->gnubuckets = NULL; filedata->ngnubuckets = 0; filedata->ngnuchains = 0; } } return num_of_syms; } /* Parse and display the contents of the dynamic section. */ static bool process_dynamic_section (Filedata * filedata) { Elf_Internal_Dyn * entry; if (filedata->dynamic_size <= 1) { if (do_dynamic) { if (filedata->is_separate) printf (_("\nThere is no dynamic section in linked file '%s'.\n"), filedata->file_name); else printf (_("\nThere is no dynamic section in this file.\n")); } return true; } if (!get_dynamic_section (filedata)) return false; /* Find the appropriate symbol table. */ if (filedata->dynamic_symbols == NULL || do_histogram) { uint64_t num_of_syms; for (entry = filedata->dynamic_section; entry < filedata->dynamic_section + filedata->dynamic_nent; ++entry) if (entry->d_tag == DT_SYMTAB) filedata->dynamic_info[DT_SYMTAB] = entry->d_un.d_val; else if (entry->d_tag == DT_SYMENT) filedata->dynamic_info[DT_SYMENT] = entry->d_un.d_val; else if (entry->d_tag == DT_HASH) filedata->dynamic_info[DT_HASH] = entry->d_un.d_val; else if (entry->d_tag == DT_GNU_HASH) filedata->dynamic_info_DT_GNU_HASH = entry->d_un.d_val; else if ((filedata->file_header.e_machine == EM_MIPS || filedata->file_header.e_machine == EM_MIPS_RS3_LE) && entry->d_tag == DT_MIPS_XHASH) { filedata->dynamic_info_DT_MIPS_XHASH = entry->d_un.d_val; filedata->dynamic_info_DT_GNU_HASH = entry->d_un.d_val; } num_of_syms = get_num_dynamic_syms (filedata); if (num_of_syms != 0 && filedata->dynamic_symbols == NULL && filedata->dynamic_info[DT_SYMTAB] && filedata->dynamic_info[DT_SYMENT]) { Elf_Internal_Phdr *seg; uint64_t vma = filedata->dynamic_info[DT_SYMTAB]; if (! get_program_headers (filedata)) { error (_("Cannot interpret virtual addresses " "without program headers.\n")); return false; } for (seg = filedata->program_headers; seg < filedata->program_headers + filedata->file_header.e_phnum; ++seg) { if (seg->p_type != PT_LOAD) continue; if (seg->p_offset + seg->p_filesz > filedata->file_size) { /* See PR 21379 for a reproducer. */ error (_("Invalid PT_LOAD entry\n")); return false; } if (vma >= (seg->p_vaddr & -seg->p_align) && vma < seg->p_vaddr + seg->p_filesz) { /* Since we do not know how big the symbol table is, we default to reading in up to the end of PT_LOAD segment and processing that. This is overkill, I know, but it should work. */ Elf_Internal_Shdr section; section.sh_offset = (vma - seg->p_vaddr + seg->p_offset); section.sh_size = (num_of_syms * filedata->dynamic_info[DT_SYMENT]); section.sh_entsize = filedata->dynamic_info[DT_SYMENT]; if (do_checks && filedata->dynamic_symtab_section != NULL && ((filedata->dynamic_symtab_section->sh_offset != section.sh_offset) || (filedata->dynamic_symtab_section->sh_size != section.sh_size) || (filedata->dynamic_symtab_section->sh_entsize != section.sh_entsize))) warn (_("\ the .dynsym section doesn't match the DT_SYMTAB and DT_SYMENT tags\n")); section.sh_name = filedata->string_table_length; filedata->dynamic_symbols = get_elf_symbols (filedata, §ion, &filedata->num_dynamic_syms); if (filedata->dynamic_symbols == NULL || filedata->num_dynamic_syms != num_of_syms) { error (_("Corrupt DT_SYMTAB dynamic entry\n")); return false; } break; } } } } /* Similarly find a string table. */ if (filedata->dynamic_strings == NULL) for (entry = filedata->dynamic_section; entry < filedata->dynamic_section + filedata->dynamic_nent; ++entry) { if (entry->d_tag == DT_STRTAB) filedata->dynamic_info[DT_STRTAB] = entry->d_un.d_val; if (entry->d_tag == DT_STRSZ) filedata->dynamic_info[DT_STRSZ] = entry->d_un.d_val; if (filedata->dynamic_info[DT_STRTAB] && filedata->dynamic_info[DT_STRSZ]) { uint64_t offset; uint64_t str_tab_len = filedata->dynamic_info[DT_STRSZ]; offset = offset_from_vma (filedata, filedata->dynamic_info[DT_STRTAB], str_tab_len); if (do_checks && filedata->dynamic_strtab_section && ((filedata->dynamic_strtab_section->sh_offset != (file_ptr) offset) || (filedata->dynamic_strtab_section->sh_size != str_tab_len))) warn (_("\ the .dynstr section doesn't match the DT_STRTAB and DT_STRSZ tags\n")); filedata->dynamic_strings = (char *) get_data (NULL, filedata, offset, 1, str_tab_len, _("dynamic string table")); if (filedata->dynamic_strings == NULL) { error (_("Corrupt DT_STRTAB dynamic entry\n")); break; } filedata->dynamic_strings_length = str_tab_len; break; } } /* And find the syminfo section if available. */ if (filedata->dynamic_syminfo == NULL) { uint64_t syminsz = 0; for (entry = filedata->dynamic_section; entry < filedata->dynamic_section + filedata->dynamic_nent; ++entry) { if (entry->d_tag == DT_SYMINENT) { /* Note: these braces are necessary to avoid a syntax error from the SunOS4 C compiler. */ /* PR binutils/17531: A corrupt file can trigger this test. So do not use an assert, instead generate an error message. */ if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val) error (_("Bad value (%d) for SYMINENT entry\n"), (int) entry->d_un.d_val); } else if (entry->d_tag == DT_SYMINSZ) syminsz = entry->d_un.d_val; else if (entry->d_tag == DT_SYMINFO) filedata->dynamic_syminfo_offset = offset_from_vma (filedata, entry->d_un.d_val, syminsz); } if (filedata->dynamic_syminfo_offset != 0 && syminsz != 0) { Elf_External_Syminfo * extsyminfo; Elf_External_Syminfo * extsym; Elf_Internal_Syminfo * syminfo; /* There is a syminfo section. Read the data. */ extsyminfo = (Elf_External_Syminfo *) get_data (NULL, filedata, filedata->dynamic_syminfo_offset, 1, syminsz, _("symbol information")); if (!extsyminfo) return false; if (filedata->dynamic_syminfo != NULL) { error (_("Multiple dynamic symbol information sections found\n")); free (filedata->dynamic_syminfo); } filedata->dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz); if (filedata->dynamic_syminfo == NULL) { error (_("Out of memory allocating %" PRIu64 " bytes for dynamic symbol info\n"), syminsz); return false; } filedata->dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo); for (syminfo = filedata->dynamic_syminfo, extsym = extsyminfo; syminfo < (filedata->dynamic_syminfo + filedata->dynamic_syminfo_nent); ++syminfo, ++extsym) { syminfo->si_boundto = BYTE_GET (extsym->si_boundto); syminfo->si_flags = BYTE_GET (extsym->si_flags); } free (extsyminfo); } } if (do_dynamic && filedata->dynamic_addr) { if (filedata->is_separate) printf (ngettext ("\nIn linked file '%s' the dynamic section at offset %#" PRIx64 " contains %" PRIu64 " entry:\n", "\nIn linked file '%s' the dynamic section at offset %#" PRIx64 " contains %" PRIu64 " entries:\n", filedata->dynamic_nent), filedata->file_name, filedata->dynamic_addr, filedata->dynamic_nent); else printf (ngettext ("\nDynamic section at offset %#" PRIx64 " contains %" PRIu64 " entry:\n", "\nDynamic section at offset %#" PRIx64 " contains %" PRIu64 " entries:\n", filedata->dynamic_nent), filedata->dynamic_addr, filedata->dynamic_nent); } if (do_dynamic) printf (_(" Tag Type Name/Value\n")); for (entry = filedata->dynamic_section; entry < filedata->dynamic_section + filedata->dynamic_nent; entry++) { if (do_dynamic) { const char * dtype; putchar (' '); print_vma (entry->d_tag, FULL_HEX); dtype = get_dynamic_type (filedata, entry->d_tag); printf (" (%s)%*s", dtype, ((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " "); } switch (entry->d_tag) { case DT_FLAGS: if (do_dynamic) print_dynamic_flags (entry->d_un.d_val); break; case DT_AUXILIARY: case DT_FILTER: case DT_CONFIG: case DT_DEPAUDIT: case DT_AUDIT: if (do_dynamic) { switch (entry->d_tag) { case DT_AUXILIARY: printf (_("Auxiliary library")); break; case DT_FILTER: printf (_("Filter library")); break; case DT_CONFIG: printf (_("Configuration file")); break; case DT_DEPAUDIT: printf (_("Dependency audit library")); break; case DT_AUDIT: printf (_("Audit library")); break; } if (valid_dynamic_name (filedata, entry->d_un.d_val)) printf (": [%s]\n", get_dynamic_name (filedata, entry->d_un.d_val)); else { printf (": "); print_vma (entry->d_un.d_val, PREFIX_HEX); putchar ('\n'); } } break; case DT_FEATURE: if (do_dynamic) { printf (_("Flags:")); if (entry->d_un.d_val == 0) printf (_(" None\n")); else { uint64_t val = entry->d_un.d_val; if (val & DTF_1_PARINIT) { printf (" PARINIT"); val ^= DTF_1_PARINIT; } if (val & DTF_1_CONFEXP) { printf (" CONFEXP"); val ^= DTF_1_CONFEXP; } if (val != 0) printf (" %" PRIx64, val); puts (""); } } break; case DT_POSFLAG_1: if (do_dynamic) { printf (_("Flags:")); if (entry->d_un.d_val == 0) printf (_(" None\n")); else { uint64_t val = entry->d_un.d_val; if (val & DF_P1_LAZYLOAD) { printf (" LAZYLOAD"); val ^= DF_P1_LAZYLOAD; } if (val & DF_P1_GROUPPERM) { printf (" GROUPPERM"); val ^= DF_P1_GROUPPERM; } if (val != 0) printf (" %" PRIx64, val); puts (""); } } break; case DT_FLAGS_1: if (do_dynamic) { printf (_("Flags:")); if (entry->d_un.d_val == 0) printf (_(" None\n")); else { uint64_t val = entry->d_un.d_val; if (val & DF_1_NOW) { printf (" NOW"); val ^= DF_1_NOW; } if (val & DF_1_GLOBAL) { printf (" GLOBAL"); val ^= DF_1_GLOBAL; } if (val & DF_1_GROUP) { printf (" GROUP"); val ^= DF_1_GROUP; } if (val & DF_1_NODELETE) { printf (" NODELETE"); val ^= DF_1_NODELETE; } if (val & DF_1_LOADFLTR) { printf (" LOADFLTR"); val ^= DF_1_LOADFLTR; } if (val & DF_1_INITFIRST) { printf (" INITFIRST"); val ^= DF_1_INITFIRST; } if (val & DF_1_NOOPEN) { printf (" NOOPEN"); val ^= DF_1_NOOPEN; } if (val & DF_1_ORIGIN) { printf (" ORIGIN"); val ^= DF_1_ORIGIN; } if (val & DF_1_DIRECT) { printf (" DIRECT"); val ^= DF_1_DIRECT; } if (val & DF_1_TRANS) { printf (" TRANS"); val ^= DF_1_TRANS; } if (val & DF_1_INTERPOSE) { printf (" INTERPOSE"); val ^= DF_1_INTERPOSE; } if (val & DF_1_NODEFLIB) { printf (" NODEFLIB"); val ^= DF_1_NODEFLIB; } if (val & DF_1_NODUMP) { printf (" NODUMP"); val ^= DF_1_NODUMP; } if (val & DF_1_CONFALT) { printf (" CONFALT"); val ^= DF_1_CONFALT; } if (val & DF_1_ENDFILTEE) { printf (" ENDFILTEE"); val ^= DF_1_ENDFILTEE; } if (val & DF_1_DISPRELDNE) { printf (" DISPRELDNE"); val ^= DF_1_DISPRELDNE; } if (val & DF_1_DISPRELPND) { printf (" DISPRELPND"); val ^= DF_1_DISPRELPND; } if (val & DF_1_NODIRECT) { printf (" NODIRECT"); val ^= DF_1_NODIRECT; } if (val & DF_1_IGNMULDEF) { printf (" IGNMULDEF"); val ^= DF_1_IGNMULDEF; } if (val & DF_1_NOKSYMS) { printf (" NOKSYMS"); val ^= DF_1_NOKSYMS; } if (val & DF_1_NOHDR) { printf (" NOHDR"); val ^= DF_1_NOHDR; } if (val & DF_1_EDITED) { printf (" EDITED"); val ^= DF_1_EDITED; } if (val & DF_1_NORELOC) { printf (" NORELOC"); val ^= DF_1_NORELOC; } if (val & DF_1_SYMINTPOSE) { printf (" SYMINTPOSE"); val ^= DF_1_SYMINTPOSE; } if (val & DF_1_GLOBAUDIT) { printf (" GLOBAUDIT"); val ^= DF_1_GLOBAUDIT; } if (val & DF_1_SINGLETON) { printf (" SINGLETON"); val ^= DF_1_SINGLETON; } if (val & DF_1_STUB) { printf (" STUB"); val ^= DF_1_STUB; } if (val & DF_1_PIE) { printf (" PIE"); val ^= DF_1_PIE; } if (val & DF_1_KMOD) { printf (" KMOD"); val ^= DF_1_KMOD; } if (val & DF_1_WEAKFILTER) { printf (" WEAKFILTER"); val ^= DF_1_WEAKFILTER; } if (val & DF_1_NOCOMMON) { printf (" NOCOMMON"); val ^= DF_1_NOCOMMON; } if (val != 0) printf (" %" PRIx64, val); puts (""); } } break; case DT_PLTREL: filedata->dynamic_info[entry->d_tag] = entry->d_un.d_val; if (do_dynamic) puts (get_dynamic_type (filedata, entry->d_un.d_val)); break; case DT_NULL : case DT_NEEDED : case DT_PLTGOT : case DT_HASH : case DT_STRTAB : case DT_SYMTAB : case DT_RELA : case DT_INIT : case DT_FINI : case DT_SONAME : case DT_RPATH : case DT_SYMBOLIC: case DT_REL : case DT_RELR : case DT_DEBUG : case DT_TEXTREL : case DT_JMPREL : case DT_RUNPATH : filedata->dynamic_info[entry->d_tag] = entry->d_un.d_val; if (do_dynamic) { const char *name; if (valid_dynamic_name (filedata, entry->d_un.d_val)) name = get_dynamic_name (filedata, entry->d_un.d_val); else name = NULL; if (name) { switch (entry->d_tag) { case DT_NEEDED: printf (_("Shared library: [%s]"), name); if (filedata->program_interpreter && streq (name, filedata->program_interpreter)) printf (_(" program interpreter")); break; case DT_SONAME: printf (_("Library soname: [%s]"), name); break; case DT_RPATH: printf (_("Library rpath: [%s]"), name); break; case DT_RUNPATH: printf (_("Library runpath: [%s]"), name); break; default: print_vma (entry->d_un.d_val, PREFIX_HEX); break; } } else print_vma (entry->d_un.d_val, PREFIX_HEX); putchar ('\n'); } break; case DT_PLTRELSZ: case DT_RELASZ : case DT_STRSZ : case DT_RELSZ : case DT_RELAENT : case DT_RELRENT : case DT_RELRSZ : case DT_SYMENT : case DT_RELENT : filedata->dynamic_info[entry->d_tag] = entry->d_un.d_val; /* Fall through. */ case DT_PLTPADSZ: case DT_MOVEENT : case DT_MOVESZ : case DT_PREINIT_ARRAYSZ: case DT_INIT_ARRAYSZ: case DT_FINI_ARRAYSZ: case DT_GNU_CONFLICTSZ: case DT_GNU_LIBLISTSZ: if (do_dynamic) { print_vma (entry->d_un.d_val, UNSIGNED); printf (_(" (bytes)\n")); } break; case DT_VERDEFNUM: case DT_VERNEEDNUM: case DT_RELACOUNT: case DT_RELCOUNT: if (do_dynamic) { print_vma (entry->d_un.d_val, UNSIGNED); putchar ('\n'); } break; case DT_SYMINSZ: case DT_SYMINENT: case DT_SYMINFO: case DT_USED: case DT_INIT_ARRAY: case DT_FINI_ARRAY: if (do_dynamic) { if (entry->d_tag == DT_USED && valid_dynamic_name (filedata, entry->d_un.d_val)) { const char *name = get_dynamic_name (filedata, entry->d_un.d_val); if (*name) { printf (_("Not needed object: [%s]\n"), name); break; } } print_vma (entry->d_un.d_val, PREFIX_HEX); putchar ('\n'); } break; case DT_BIND_NOW: /* The value of this entry is ignored. */ if (do_dynamic) putchar ('\n'); break; case DT_GNU_PRELINKED: if (do_dynamic) { struct tm * tmp; time_t atime = entry->d_un.d_val; tmp = gmtime (&atime); /* PR 17533 file: 041-1244816-0.004. */ if (tmp == NULL) printf (_("tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday, tmp->tm_hour, tmp->tm_min, tmp->tm_sec); } break; case DT_GNU_HASH: filedata->dynamic_info_DT_GNU_HASH = entry->d_un.d_val; if (do_dynamic) { print_vma (entry->d_un.d_val, PREFIX_HEX); putchar ('\n'); } break; case DT_GNU_FLAGS_1: if (do_dynamic) { printf (_("Flags:")); if (entry->d_un.d_val == 0) printf (_(" None\n")); else { uint64_t val = entry->d_un.d_val; if (val & DF_GNU_1_UNIQUE) { printf (" UNIQUE"); val ^= DF_GNU_1_UNIQUE; } if (val != 0) printf (" %" PRIx64, val); puts (""); } } break; default: if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM)) filedata->version_info[DT_VERSIONTAGIDX (entry->d_tag)] = entry->d_un.d_val; if (do_dynamic) { switch (filedata->file_header.e_machine) { case EM_AARCH64: dynamic_section_aarch64_val (entry); break; case EM_MIPS: case EM_MIPS_RS3_LE: dynamic_section_mips_val (filedata, entry); break; case EM_PARISC: dynamic_section_parisc_val (entry); break; case EM_IA_64: dynamic_section_ia64_val (entry); break; default: print_vma (entry->d_un.d_val, PREFIX_HEX); putchar ('\n'); } } break; } } return true; } static char * get_ver_flags (unsigned int flags) { static char buff[128]; buff[0] = 0; if (flags == 0) return _("none"); if (flags & VER_FLG_BASE) strcat (buff, "BASE"); if (flags & VER_FLG_WEAK) { if (flags & VER_FLG_BASE) strcat (buff, " | "); strcat (buff, "WEAK"); } if (flags & VER_FLG_INFO) { if (flags & (VER_FLG_BASE|VER_FLG_WEAK)) strcat (buff, " | "); strcat (buff, "INFO"); } if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO)) { if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO)) strcat (buff, " | "); strcat (buff, _("")); } return buff; } /* Display the contents of the version sections. */ static bool process_version_sections (Filedata * filedata) { Elf_Internal_Shdr * section; unsigned i; bool found = false; if (! do_version) return true; for (i = 0, section = filedata->section_headers; i < filedata->file_header.e_shnum; i++, section++) { switch (section->sh_type) { case SHT_GNU_verdef: { Elf_External_Verdef * edefs; size_t idx; size_t cnt; char * endbuf; found = true; if (filedata->is_separate) printf (ngettext ("\nIn linked file '%s' the version definition section '%s' contains %u entry:\n", "\nIn linked file '%s' the version definition section '%s' contains %u entries:\n", section->sh_info), filedata->file_name, printable_section_name (filedata, section), section->sh_info); else printf (ngettext ("\nVersion definition section '%s' " "contains %u entry:\n", "\nVersion definition section '%s' " "contains %u entries:\n", section->sh_info), printable_section_name (filedata, section), section->sh_info); printf (_(" Addr: 0x%016" PRIx64), section->sh_addr); printf (_(" Offset: 0x%08" PRIx64 " Link: %u (%s)\n"), section->sh_offset, section->sh_link, printable_section_name_from_index (filedata, section->sh_link, NULL)); edefs = (Elf_External_Verdef *) get_data (NULL, filedata, section->sh_offset, 1,section->sh_size, _("version definition section")); if (!edefs) break; endbuf = (char *) edefs + section->sh_size; for (idx = cnt = 0; cnt < section->sh_info; ++cnt) { char * vstart; Elf_External_Verdef * edef; Elf_Internal_Verdef ent; Elf_External_Verdaux * eaux; Elf_Internal_Verdaux aux; size_t isum; int j; vstart = ((char *) edefs) + idx; if (vstart + sizeof (*edef) > endbuf) break; edef = (Elf_External_Verdef *) vstart; ent.vd_version = BYTE_GET (edef->vd_version); ent.vd_flags = BYTE_GET (edef->vd_flags); ent.vd_ndx = BYTE_GET (edef->vd_ndx); ent.vd_cnt = BYTE_GET (edef->vd_cnt); ent.vd_hash = BYTE_GET (edef->vd_hash); ent.vd_aux = BYTE_GET (edef->vd_aux); ent.vd_next = BYTE_GET (edef->vd_next); printf (_(" %#06zx: Rev: %d Flags: %s"), idx, ent.vd_version, get_ver_flags (ent.vd_flags)); printf (_(" Index: %d Cnt: %d "), ent.vd_ndx, ent.vd_cnt); /* Check for overflow. */ if (ent.vd_aux > (size_t) (endbuf - vstart)) break; vstart += ent.vd_aux; if (vstart + sizeof (*eaux) > endbuf) break; eaux = (Elf_External_Verdaux *) vstart; aux.vda_name = BYTE_GET (eaux->vda_name); aux.vda_next = BYTE_GET (eaux->vda_next); if (valid_dynamic_name (filedata, aux.vda_name)) printf (_("Name: %s\n"), get_dynamic_name (filedata, aux.vda_name)); else printf (_("Name index: %ld\n"), aux.vda_name); isum = idx + ent.vd_aux; for (j = 1; j < ent.vd_cnt; j++) { if (aux.vda_next < sizeof (*eaux) && !(j == ent.vd_cnt - 1 && aux.vda_next == 0)) { warn (_("Invalid vda_next field of %lx\n"), aux.vda_next); j = ent.vd_cnt; break; } /* Check for overflow. */ if (aux.vda_next > (size_t) (endbuf - vstart)) break; isum += aux.vda_next; vstart += aux.vda_next; if (vstart + sizeof (*eaux) > endbuf) break; eaux = (Elf_External_Verdaux *) vstart; aux.vda_name = BYTE_GET (eaux->vda_name); aux.vda_next = BYTE_GET (eaux->vda_next); if (valid_dynamic_name (filedata, aux.vda_name)) printf (_(" %#06zx: Parent %d: %s\n"), isum, j, get_dynamic_name (filedata, aux.vda_name)); else printf (_(" %#06zx: Parent %d, name index: %ld\n"), isum, j, aux.vda_name); } if (j < ent.vd_cnt) printf (_(" Version def aux past end of section\n")); /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */ if (ent.vd_next < sizeof (*edef) && !(cnt == section->sh_info - 1 && ent.vd_next == 0)) { warn (_("Invalid vd_next field of %lx\n"), ent.vd_next); cnt = section->sh_info; break; } if (ent.vd_next > (size_t) (endbuf - ((char *) edefs + idx))) break; idx += ent.vd_next; } if (cnt < section->sh_info) printf (_(" Version definition past end of section\n")); free (edefs); } break; case SHT_GNU_verneed: { Elf_External_Verneed * eneed; size_t idx; size_t cnt; char * endbuf; found = true; if (filedata->is_separate) printf (ngettext ("\nIn linked file '%s' the version needs section '%s' contains %u entry:\n", "\nIn linked file '%s' the version needs section '%s' contains %u entries:\n", section->sh_info), filedata->file_name, printable_section_name (filedata, section), section->sh_info); else printf (ngettext ("\nVersion needs section '%s' " "contains %u entry:\n", "\nVersion needs section '%s' " "contains %u entries:\n", section->sh_info), printable_section_name (filedata, section), section->sh_info); printf (_(" Addr: 0x%016" PRIx64), section->sh_addr); printf (_(" Offset: 0x%08" PRIx64 " Link: %u (%s)\n"), section->sh_offset, section->sh_link, printable_section_name_from_index (filedata, section->sh_link, NULL)); eneed = (Elf_External_Verneed *) get_data (NULL, filedata, section->sh_offset, 1, section->sh_size, _("Version Needs section")); if (!eneed) break; endbuf = (char *) eneed + section->sh_size; for (idx = cnt = 0; cnt < section->sh_info; ++cnt) { Elf_External_Verneed * entry; Elf_Internal_Verneed ent; size_t isum; int j; char * vstart; vstart = ((char *) eneed) + idx; if (vstart + sizeof (*entry) > endbuf) break; entry = (Elf_External_Verneed *) vstart; ent.vn_version = BYTE_GET (entry->vn_version); ent.vn_cnt = BYTE_GET (entry->vn_cnt); ent.vn_file = BYTE_GET (entry->vn_file); ent.vn_aux = BYTE_GET (entry->vn_aux); ent.vn_next = BYTE_GET (entry->vn_next); printf (_(" %#06zx: Version: %d"), idx, ent.vn_version); if (valid_dynamic_name (filedata, ent.vn_file)) printf (_(" File: %s"), get_dynamic_name (filedata, ent.vn_file)); else printf (_(" File: %lx"), ent.vn_file); printf (_(" Cnt: %d\n"), ent.vn_cnt); /* Check for overflow. */ if (ent.vn_aux > (size_t) (endbuf - vstart)) break; vstart += ent.vn_aux; for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j) { Elf_External_Vernaux * eaux; Elf_Internal_Vernaux aux; if (vstart + sizeof (*eaux) > endbuf) break; eaux = (Elf_External_Vernaux *) vstart; aux.vna_hash = BYTE_GET (eaux->vna_hash); aux.vna_flags = BYTE_GET (eaux->vna_flags); aux.vna_other = BYTE_GET (eaux->vna_other); aux.vna_name = BYTE_GET (eaux->vna_name); aux.vna_next = BYTE_GET (eaux->vna_next); if (valid_dynamic_name (filedata, aux.vna_name)) printf (_(" %#06zx: Name: %s"), isum, get_dynamic_name (filedata, aux.vna_name)); else printf (_(" %#06zx: Name index: %lx"), isum, aux.vna_name); printf (_(" Flags: %s Version: %d\n"), get_ver_flags (aux.vna_flags), aux.vna_other); if (aux.vna_next < sizeof (*eaux) && !(j == ent.vn_cnt - 1 && aux.vna_next == 0)) { warn (_("Invalid vna_next field of %lx\n"), aux.vna_next); j = ent.vn_cnt; break; } /* Check for overflow. */ if (aux.vna_next > (size_t) (endbuf - vstart)) break; isum += aux.vna_next; vstart += aux.vna_next; } if (j < ent.vn_cnt) warn (_("Missing Version Needs auxiliary information\n")); if (ent.vn_next < sizeof (*entry) && !(cnt == section->sh_info - 1 && ent.vn_next == 0)) { warn (_("Invalid vn_next field of %lx\n"), ent.vn_next); cnt = section->sh_info; break; } if (ent.vn_next > (size_t) (endbuf - ((char *) eneed + idx))) break; idx += ent.vn_next; } if (cnt < section->sh_info) warn (_("Missing Version Needs information\n")); free (eneed); } break; case SHT_GNU_versym: { Elf_Internal_Shdr * link_section; uint64_t total; unsigned int cnt; unsigned char * edata; unsigned short * data; char * strtab; Elf_Internal_Sym * symbols; Elf_Internal_Shdr * string_sec; uint64_t num_syms; uint64_t off; if (section->sh_link >= filedata->file_header.e_shnum) break; link_section = filedata->section_headers + section->sh_link; total = section->sh_size / sizeof (Elf_External_Versym); if (link_section->sh_link >= filedata->file_header.e_shnum) break; found = true; symbols = get_elf_symbols (filedata, link_section, & num_syms); if (symbols == NULL) break; string_sec = filedata->section_headers + link_section->sh_link; strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset, 1, string_sec->sh_size, _("version string table")); if (!strtab) { free (symbols); break; } if (filedata->is_separate) printf (ngettext ("\nIn linked file '%s' the version symbols section '%s' contains %" PRIu64 " entry:\n", "\nIn linked file '%s' the version symbols section '%s' contains %" PRIu64 " entries:\n", total), filedata->file_name, printable_section_name (filedata, section), total); else printf (ngettext ("\nVersion symbols section '%s' " "contains %" PRIu64 " entry:\n", "\nVersion symbols section '%s' " "contains %" PRIu64 " entries:\n", total), printable_section_name (filedata, section), total); printf (_(" Addr: 0x%016" PRIx64), section->sh_addr); printf (_(" Offset: 0x%08" PRIx64 " Link: %u (%s)\n"), section->sh_offset, section->sh_link, printable_section_name (filedata, link_section)); off = offset_from_vma (filedata, filedata->version_info[DT_VERSIONTAGIDX (DT_VERSYM)], total * sizeof (short)); edata = (unsigned char *) get_data (NULL, filedata, off, sizeof (short), total, _("version symbol data")); if (!edata) { free (strtab); free (symbols); break; } data = (short unsigned int *) cmalloc (total, sizeof (short)); for (cnt = total; cnt --;) data[cnt] = byte_get (edata + cnt * sizeof (short), sizeof (short)); free (edata); for (cnt = 0; cnt < total; cnt += 4) { int j, nn; char *name; char *invalid = _("*invalid*"); printf (" %03x:", cnt); for (j = 0; (j < 4) && (cnt + j) < total; ++j) switch (data[cnt + j]) { case 0: fputs (_(" 0 (*local*) "), stdout); break; case 1: fputs (_(" 1 (*global*) "), stdout); break; default: nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION, data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' '); /* If this index value is greater than the size of the symbols array, break to avoid an out-of-bounds read. */ if (cnt + j >= num_syms) { warn (_("invalid index into symbol array\n")); break; } name = NULL; if (filedata->version_info[DT_VERSIONTAGIDX (DT_VERNEED)]) { Elf_Internal_Verneed ivn; uint64_t offset; offset = offset_from_vma (filedata, filedata->version_info[DT_VERSIONTAGIDX (DT_VERNEED)], sizeof (Elf_External_Verneed)); do { Elf_Internal_Vernaux ivna; Elf_External_Verneed evn; Elf_External_Vernaux evna; uint64_t a_off; if (get_data (&evn, filedata, offset, sizeof (evn), 1, _("version need")) == NULL) break; ivn.vn_aux = BYTE_GET (evn.vn_aux); ivn.vn_next = BYTE_GET (evn.vn_next); a_off = offset + ivn.vn_aux; do { if (get_data (&evna, filedata, a_off, sizeof (evna), 1, _("version need aux (2)")) == NULL) { ivna.vna_next = 0; ivna.vna_other = 0; } else { ivna.vna_next = BYTE_GET (evna.vna_next); ivna.vna_other = BYTE_GET (evna.vna_other); } a_off += ivna.vna_next; } while (ivna.vna_other != data[cnt + j] && ivna.vna_next != 0); if (ivna.vna_other == data[cnt + j]) { ivna.vna_name = BYTE_GET (evna.vna_name); if (ivna.vna_name >= string_sec->sh_size) name = invalid; else name = strtab + ivna.vna_name; break; } offset += ivn.vn_next; } while (ivn.vn_next); } if (data[cnt + j] != 0x8001 && filedata->version_info[DT_VERSIONTAGIDX (DT_VERDEF)]) { Elf_Internal_Verdef ivd; Elf_External_Verdef evd; uint64_t offset; offset = offset_from_vma (filedata, filedata->version_info[DT_VERSIONTAGIDX (DT_VERDEF)], sizeof evd); do { if (get_data (&evd, filedata, offset, sizeof (evd), 1, _("version def")) == NULL) { ivd.vd_next = 0; /* PR 17531: file: 046-1082287-0.004. */ ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1; break; } else { ivd.vd_next = BYTE_GET (evd.vd_next); ivd.vd_ndx = BYTE_GET (evd.vd_ndx); } offset += ivd.vd_next; } while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION) && ivd.vd_next != 0); if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION)) { Elf_External_Verdaux evda; Elf_Internal_Verdaux ivda; ivd.vd_aux = BYTE_GET (evd.vd_aux); if (get_data (&evda, filedata, offset - ivd.vd_next + ivd.vd_aux, sizeof (evda), 1, _("version def aux")) == NULL) break; ivda.vda_name = BYTE_GET (evda.vda_name); if (ivda.vda_name >= string_sec->sh_size) name = invalid; else if (name != NULL && name != invalid) name = _("*both*"); else name = strtab + ivda.vda_name; } } if (name != NULL) nn += printf ("(%s%-*s", name, 12 - (int) strlen (name), ")"); if (nn < 18) printf ("%*c", 18 - nn, ' '); } putchar ('\n'); } free (data); free (strtab); free (symbols); } break; default: break; } } if (! found) { if (filedata->is_separate) printf (_("\nNo version information found in linked file '%s'.\n"), filedata->file_name); else printf (_("\nNo version information found in this file.\n")); } return true; } static const char * get_symbol_binding (Filedata * filedata, unsigned int binding) { static char buff[64]; switch (binding) { case STB_LOCAL: return "LOCAL"; case STB_GLOBAL: return "GLOBAL"; case STB_WEAK: return "WEAK"; default: if (binding >= STB_LOPROC && binding <= STB_HIPROC) snprintf (buff, sizeof (buff), _(": %d"), binding); else if (binding >= STB_LOOS && binding <= STB_HIOS) { if (binding == STB_GNU_UNIQUE && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_GNU) return "UNIQUE"; snprintf (buff, sizeof (buff), _(": %d"), binding); } else snprintf (buff, sizeof (buff), _(": %d"), binding); return buff; } } static const char * get_symbol_type (Filedata * filedata, unsigned int type) { static char buff[64]; switch (type) { case STT_NOTYPE: return "NOTYPE"; case STT_OBJECT: return "OBJECT"; case STT_FUNC: return "FUNC"; case STT_SECTION: return "SECTION"; case STT_FILE: return "FILE"; case STT_COMMON: return "COMMON"; case STT_TLS: return "TLS"; case STT_RELC: return "RELC"; case STT_SRELC: return "SRELC"; default: if (type >= STT_LOPROC && type <= STT_HIPROC) { if (filedata->file_header.e_machine == EM_ARM && type == STT_ARM_TFUNC) return "THUMB_FUNC"; if (filedata->file_header.e_machine == EM_SPARCV9 && type == STT_REGISTER) return "REGISTER"; if (filedata->file_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI) return "PARISC_MILLI"; snprintf (buff, sizeof (buff), _(": %d"), type); } else if (type >= STT_LOOS && type <= STT_HIOS) { if (filedata->file_header.e_machine == EM_PARISC) { if (type == STT_HP_OPAQUE) return "HP_OPAQUE"; if (type == STT_HP_STUB) return "HP_STUB"; } if (type == STT_GNU_IFUNC && (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_GNU || filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD)) return "IFUNC"; snprintf (buff, sizeof (buff), _(": %d"), type); } else snprintf (buff, sizeof (buff), _(": %d"), type); return buff; } } static const char * get_symbol_visibility (unsigned int visibility) { switch (visibility) { case STV_DEFAULT: return "DEFAULT"; case STV_INTERNAL: return "INTERNAL"; case STV_HIDDEN: return "HIDDEN"; case STV_PROTECTED: return "PROTECTED"; default: error (_("Unrecognized visibility value: %u\n"), visibility); return _(""); } } static const char * get_alpha_symbol_other (unsigned int other) { switch (other) { case STO_ALPHA_NOPV: return "NOPV"; case STO_ALPHA_STD_GPLOAD: return "STD GPLOAD"; default: error (_("Unrecognized alpha specific other value: %u\n"), other); return _(""); } } static const char * get_solaris_symbol_visibility (unsigned int visibility) { switch (visibility) { case 4: return "EXPORTED"; case 5: return "SINGLETON"; case 6: return "ELIMINATE"; default: return get_symbol_visibility (visibility); } } static const char * get_aarch64_symbol_other (unsigned int other) { static char buf[32]; if (other & STO_AARCH64_VARIANT_PCS) { other &= ~STO_AARCH64_VARIANT_PCS; if (other == 0) return "VARIANT_PCS"; snprintf (buf, sizeof buf, "VARIANT_PCS | %x", other); return buf; } return NULL; } static const char * get_mips_symbol_other (unsigned int other) { switch (other) { case STO_OPTIONAL: return "OPTIONAL"; case STO_MIPS_PLT: return "MIPS PLT"; case STO_MIPS_PIC: return "MIPS PIC"; case STO_MICROMIPS: return "MICROMIPS"; case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC"; case STO_MIPS16: return "MIPS16"; default: return NULL; } } static const char * get_ia64_symbol_other (Filedata * filedata, unsigned int other) { if (is_ia64_vms (filedata)) { static char res[32]; res[0] = 0; /* Function types is for images and .STB files only. */ switch (filedata->file_header.e_type) { case ET_DYN: case ET_EXEC: switch (VMS_ST_FUNC_TYPE (other)) { case VMS_SFT_CODE_ADDR: strcat (res, " CA"); break; case VMS_SFT_SYMV_IDX: strcat (res, " VEC"); break; case VMS_SFT_FD: strcat (res, " FD"); break; case VMS_SFT_RESERVE: strcat (res, " RSV"); break; default: warn (_("Unrecognized IA64 VMS ST Function type: %d\n"), VMS_ST_FUNC_TYPE (other)); strcat (res, " "); break; } break; default: break; } switch (VMS_ST_LINKAGE (other)) { case VMS_STL_IGNORE: strcat (res, " IGN"); break; case VMS_STL_RESERVE: strcat (res, " RSV"); break; case VMS_STL_STD: strcat (res, " STD"); break; case VMS_STL_LNK: strcat (res, " LNK"); break; default: warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"), VMS_ST_LINKAGE (other)); strcat (res, " "); break; } if (res[0] != 0) return res + 1; else return res; } return NULL; } static const char * get_ppc64_symbol_other (unsigned int other) { if ((other & ~STO_PPC64_LOCAL_MASK) != 0) return NULL; other >>= STO_PPC64_LOCAL_BIT; if (other <= 6) { static char buf[64]; if (other >= 2) other = ppc64_decode_local_entry (other); snprintf (buf, sizeof buf, _(": %d"), other); return buf; } return NULL; } static const char * get_riscv_symbol_other (unsigned int other) { static char buf[32]; buf[0] = 0; if (other & STO_RISCV_VARIANT_CC) { strcat (buf, _(" VARIANT_CC")); other &= ~STO_RISCV_VARIANT_CC; } if (other != 0) snprintf (buf, sizeof buf, " %x", other); if (buf[0] != 0) return buf + 1; else return buf; } static const char * get_symbol_other (Filedata * filedata, unsigned int other) { const char * result = NULL; static char buff [64]; if (other == 0) return ""; switch (filedata->file_header.e_machine) { case EM_ALPHA: result = get_alpha_symbol_other (other); break; case EM_AARCH64: result = get_aarch64_symbol_other (other); break; case EM_MIPS: result = get_mips_symbol_other (other); break; case EM_IA_64: result = get_ia64_symbol_other (filedata, other); break; case EM_PPC64: result = get_ppc64_symbol_other (other); break; case EM_RISCV: result = get_riscv_symbol_other (other); break; default: result = NULL; break; } if (result) return result; snprintf (buff, sizeof buff, _(": %x"), other); return buff; } static const char * get_symbol_version_string (Filedata *filedata, bool is_dynsym, const char *strtab, size_t strtab_size, unsigned int si, Elf_Internal_Sym *psym, enum versioned_symbol_info *sym_info, unsigned short *vna_other) { unsigned char data[2]; unsigned short vers_data; uint64_t offset; unsigned short max_vd_ndx; if (!is_dynsym || filedata->version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0) return NULL; offset = offset_from_vma (filedata, filedata->version_info[DT_VERSIONTAGIDX (DT_VERSYM)], sizeof data + si * sizeof (vers_data)); if (get_data (&data, filedata, offset + si * sizeof (vers_data), sizeof (data), 1, _("version data")) == NULL) return NULL; vers_data = byte_get (data, 2); if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data == 0) return NULL; *sym_info = (vers_data & VERSYM_HIDDEN) != 0 ? symbol_hidden : symbol_public; max_vd_ndx = 0; /* Usually we'd only see verdef for defined symbols, and verneed for undefined symbols. However, symbols defined by the linker in .dynbss for variables copied from a shared library in order to avoid text relocations are defined yet have verneed. We could use a heuristic to detect the special case, for example, check for verneed first on symbols defined in SHT_NOBITS sections, but it is simpler and more reliable to just look for both verdef and verneed. .dynbss might not be mapped to a SHT_NOBITS section. */ if (psym->st_shndx != SHN_UNDEF && vers_data != 0x8001 && filedata->version_info[DT_VERSIONTAGIDX (DT_VERDEF)]) { Elf_Internal_Verdef ivd; Elf_Internal_Verdaux ivda; Elf_External_Verdaux evda; uint64_t off; off = offset_from_vma (filedata, filedata->version_info[DT_VERSIONTAGIDX (DT_VERDEF)], sizeof (Elf_External_Verdef)); do { Elf_External_Verdef evd; if (get_data (&evd, filedata, off, sizeof (evd), 1, _("version def")) == NULL) { ivd.vd_ndx = 0; ivd.vd_aux = 0; ivd.vd_next = 0; ivd.vd_flags = 0; } else { ivd.vd_ndx = BYTE_GET (evd.vd_ndx); ivd.vd_aux = BYTE_GET (evd.vd_aux); ivd.vd_next = BYTE_GET (evd.vd_next); ivd.vd_flags = BYTE_GET (evd.vd_flags); } if ((ivd.vd_ndx & VERSYM_VERSION) > max_vd_ndx) max_vd_ndx = ivd.vd_ndx & VERSYM_VERSION; off += ivd.vd_next; } while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0); if (ivd.vd_ndx == (vers_data & VERSYM_VERSION)) { if (ivd.vd_ndx == 1 && ivd.vd_flags == VER_FLG_BASE) return NULL; off -= ivd.vd_next; off += ivd.vd_aux; if (get_data (&evda, filedata, off, sizeof (evda), 1, _("version def aux")) != NULL) { ivda.vda_name = BYTE_GET (evda.vda_name); if (psym->st_name != ivda.vda_name) return (ivda.vda_name < strtab_size ? strtab + ivda.vda_name : _("")); } } } if (filedata->version_info[DT_VERSIONTAGIDX (DT_VERNEED)]) { Elf_External_Verneed evn; Elf_Internal_Verneed ivn; Elf_Internal_Vernaux ivna; offset = offset_from_vma (filedata, filedata->version_info[DT_VERSIONTAGIDX (DT_VERNEED)], sizeof evn); do { uint64_t vna_off; if (get_data (&evn, filedata, offset, sizeof (evn), 1, _("version need")) == NULL) { ivna.vna_next = 0; ivna.vna_other = 0; ivna.vna_name = 0; break; } ivn.vn_aux = BYTE_GET (evn.vn_aux); ivn.vn_next = BYTE_GET (evn.vn_next); vna_off = offset + ivn.vn_aux; do { Elf_External_Vernaux evna; if (get_data (&evna, filedata, vna_off, sizeof (evna), 1, _("version need aux (3)")) == NULL) { ivna.vna_next = 0; ivna.vna_other = 0; ivna.vna_name = 0; } else { ivna.vna_other = BYTE_GET (evna.vna_other); ivna.vna_next = BYTE_GET (evna.vna_next); ivna.vna_name = BYTE_GET (evna.vna_name); } vna_off += ivna.vna_next; } while (ivna.vna_other != vers_data && ivna.vna_next != 0); if (ivna.vna_other == vers_data) break; offset += ivn.vn_next; } while (ivn.vn_next != 0); if (ivna.vna_other == vers_data) { *sym_info = symbol_undefined; *vna_other = ivna.vna_other; return (ivna.vna_name < strtab_size ? strtab + ivna.vna_name : _("")); } else if ((max_vd_ndx || (vers_data & VERSYM_VERSION) != 1) && (vers_data & VERSYM_VERSION) > max_vd_ndx) return _(""); } return NULL; } /* Display a symbol size on stdout. Format is based on --sym-base setting. */ static unsigned int print_symbol_size (uint64_t vma, int base) { switch (base) { case 8: return print_vma (vma, OCTAL_5); case 10: return print_vma (vma, UNSIGNED_5); case 16: return print_vma (vma, PREFIX_HEX_5); case 0: default: return print_vma (vma, DEC_5); } } /* Print information on a single symbol. */ static void print_symbol (Filedata * filedata, uint64_t symbol_index, Elf_Internal_Sym * symtab, Elf_Internal_Shdr * section, char * strtab, size_t strtab_size) { const char *version_string; enum versioned_symbol_info sym_info; unsigned short vna_other; const char * sstr; Elf_Internal_Sym *psym = symtab + symbol_index; /* FIXME: We should have a table of field widths, rather than using hard coded constants. */ printf ("%6" PRId64 ": ", symbol_index); print_vma (psym->st_value, LONG_HEX); putchar (' '); print_symbol_size (psym->st_size, sym_base); printf (" %-7s", get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info))); printf (" %-6s", get_symbol_binding (filedata, ELF_ST_BIND (psym->st_info))); if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS) printf (" %-7s", get_solaris_symbol_visibility (psym->st_other)); else { unsigned int vis = ELF_ST_VISIBILITY (psym->st_other); printf (" %-7s", get_symbol_visibility (vis)); /* Check to see if any other bits in the st_other field are set. FIXME: Displaying this information here disrupts the layout of the table being generated. */ if (psym->st_other ^ vis) printf (" [%s] ", get_symbol_other (filedata, psym->st_other ^ vis)); } bool is_special; sstr = printable_section_name_from_index (filedata, psym->st_shndx, & is_special); /* Print the symbol's section index. If the index is special then print the index's name rather than its number. */ if (is_special) { int printed; /* Special case: If there are no section headers, and the printable name is "
file_header.e_shnum == 0 && startswith (sstr, "st_shndx); else printed = printf (" %4s ", sstr); if (extra_sym_info && printed < 16) printf ("%*s", 16 - printed, ""); } else { printf (" %4u ", psym->st_shndx); if (extra_sym_info) { /* Display the section name referenced by the section index. */ int printed = printf ("(%s) ", sstr); if (printed < 10) printf ("%*s", 10 - printed, ""); } } /* Get the symbol's name. For section symbols without a specific name use the (already computed) section name. */ if (ELF_ST_TYPE (psym->st_info) == STT_SECTION && section_index_real (filedata, psym->st_shndx) && psym->st_name == 0) { ; } else { bool is_valid; is_valid = valid_symbol_name (strtab, strtab_size, psym->st_name); sstr = is_valid ? strtab + psym->st_name : _(""); } version_string = get_symbol_version_string (filedata, (section == NULL || section->sh_type == SHT_DYNSYM), strtab, strtab_size, symbol_index, psym, &sym_info, &vna_other); int len_avail = 21; if (! do_wide && version_string != NULL) { char buffer[16]; len_avail -= 1 + strlen (version_string); if (sym_info == symbol_undefined) len_avail -= sprintf (buffer," (%d)", vna_other); else if (sym_info != symbol_hidden) len_avail -= 1; } print_symbol_name (len_avail, sstr); if (version_string) { if (sym_info == symbol_undefined) printf ("@%s (%d)", version_string, vna_other); else printf (sym_info == symbol_hidden ? "@%s" : "@@%s", version_string); } putchar ('\n'); if (ELF_ST_BIND (psym->st_info) == STB_LOCAL && section != NULL && symbol_index >= section->sh_info /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */ && filedata->file_header.e_machine != EM_MIPS /* Solaris binaries have been found to violate this requirement as well. Not sure if this is a bug or an ABI requirement. */ && filedata->file_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS) warn (_("local symbol %" PRIu64 " found at index >= %s's sh_info value of %u\n"), symbol_index, printable_section_name (filedata, section), section->sh_info); } static const char * get_lto_kind (unsigned int kind) { switch (kind) { case 0: return "DEF"; case 1: return "WEAKDEF"; case 2: return "UNDEF"; case 3: return "WEAKUNDEF"; case 4: return "COMMON"; default: break; } static char buffer[30]; error (_("Unknown LTO symbol definition encountered: %u\n"), kind); sprintf (buffer, "", kind); return buffer; } static const char * get_lto_visibility (unsigned int visibility) { switch (visibility) { case 0: return "DEFAULT"; case 1: return "PROTECTED"; case 2: return "INTERNAL"; case 3: return "HIDDEN"; default: break; } static char buffer[30]; error (_("Unknown LTO symbol visibility encountered: %u\n"), visibility); sprintf (buffer, "", visibility); return buffer; } static const char * get_lto_sym_type (unsigned int sym_type) { switch (sym_type) { case 0: return "UNKNOWN"; case 1: return "FUNCTION"; case 2: return "VARIABLE"; default: break; } static char buffer[30]; error (_("Unknown LTO symbol type encountered: %u\n"), sym_type); sprintf (buffer, "", sym_type); return buffer; } /* Display an LTO format symbol table. FIXME: The format of LTO symbol tables is not formalized. So this code could need changing in the future. */ static bool display_lto_symtab (Filedata * filedata, Elf_Internal_Shdr * section) { if (section->sh_size == 0) { if (filedata->is_separate) printf (_("\nThe LTO Symbol table section '%s' in linked file '%s' is empty!\n"), printable_section_name (filedata, section), filedata->file_name); else printf (_("\nLTO Symbol table '%s' is empty!\n"), printable_section_name (filedata, section)); return true; } if (section->sh_size > filedata->file_size) { error (_("Section %s has an invalid sh_size of %#" PRIx64 "\n"), printable_section_name (filedata, section), section->sh_size); return false; } void * alloced_data = get_data (NULL, filedata, section->sh_offset, section->sh_size, 1, _("LTO symbols")); if (alloced_data == NULL) return false; /* Look for extended data for the symbol table. */ Elf_Internal_Shdr * ext = NULL; void * ext_data_orig = NULL; char * ext_data = NULL; char * ext_data_end = NULL; char * ext_name = NULL; if (asprintf (& ext_name, ".gnu.lto_.ext_symtab.%s", (section_name (filedata, section) + sizeof (".gnu.lto_.symtab.") - 1)) > 0 && ext_name != NULL /* Paranoia. */ && (ext = find_section (filedata, ext_name)) != NULL) { if (ext->sh_size < 3) error (_("LTO Symbol extension table '%s' is empty!\n"), printable_section_name (filedata, ext)); else { ext_data_orig = ext_data = get_data (NULL, filedata, ext->sh_offset, ext->sh_size, 1, _("LTO ext symbol data")); if (ext_data != NULL) { ext_data_end = ext_data + ext->sh_size; if (* ext_data++ != 1) error (_("Unexpected version number in symbol extension table\n")); } } } const unsigned char * data = (const unsigned char *) alloced_data; const unsigned char * end = data + section->sh_size; if (filedata->is_separate) printf (_("\nIn linked file '%s': "), filedata->file_name); else printf ("\n"); if (ext_data_orig != NULL) { if (do_wide) printf (_("LTO Symbol table '%s' and extension table '%s' contain:\n"), printable_section_name (filedata, section), printable_section_name (filedata, ext)); else { printf (_("LTO Symbol table '%s'\n"), printable_section_name (filedata, section)); printf (_(" and extension table '%s' contain:\n"), printable_section_name (filedata, ext)); } } else printf (_("LTO Symbol table '%s' contains:\n"), printable_section_name (filedata, section)); /* FIXME: Add a wide version. */ if (ext_data_orig != NULL) printf (_(" Comdat_Key Kind Visibility Size Slot Type Section Name\n")); else printf (_(" Comdat_Key Kind Visibility Size Slot Name\n")); /* FIXME: We do not handle style prefixes. */ while (data < end) { const unsigned char * sym_name = data; data += strnlen ((const char *) sym_name, end - data) + 1; if (data >= end) goto fail; const unsigned char * comdat_key = data; data += strnlen ((const char *) comdat_key, end - data) + 1; if (data >= end) goto fail; if (data + 2 + 8 + 4 > end) goto fail; unsigned int kind = *data++; unsigned int visibility = *data++; uint64_t size = byte_get (data, 8); data += 8; uint64_t slot = byte_get (data, 4); data += 4; if (ext_data != NULL) { if (ext_data < (ext_data_end - 1)) { unsigned int sym_type = * ext_data ++; unsigned int sec_kind = * ext_data ++; printf (" %10s %10s %11s %08" PRIx64 " %08" PRIx64 " %9s %08x _", * comdat_key == 0 ? "-" : (char *) comdat_key, get_lto_kind (kind), get_lto_visibility (visibility), size, slot, get_lto_sym_type (sym_type), sec_kind); print_symbol_name (6, (const char *) sym_name); } else { error (_("Ran out of LTO symbol extension data\n")); ext_data = NULL; /* FIXME: return FAIL result ? */ } } else { printf (" %10s %10s %11s %08" PRIx64 " %08" PRIx64 " _", * comdat_key == 0 ? "-" : (char *) comdat_key, get_lto_kind (kind), get_lto_visibility (visibility), size, slot); print_symbol_name (21, (const char *) sym_name); } putchar ('\n'); } if (ext_data != NULL && ext_data < ext_data_end) { error (_("Data remains in the LTO symbol extension table\n")); goto fail; } free (alloced_data); free (ext_data_orig); free (ext_name); return true; fail: error (_("Buffer overrun encountered whilst decoding LTO symbol table\n")); free (alloced_data); free (ext_data_orig); free (ext_name); return false; } /* Display LTO symbol tables. */ static bool process_lto_symbol_tables (Filedata * filedata) { Elf_Internal_Shdr * section; unsigned int i; bool res = true; if (!do_lto_syms) return true; if (filedata->section_headers == NULL) return true; for (i = 0, section = filedata->section_headers; i < filedata->file_header.e_shnum; i++, section++) if (section_name_valid (filedata, section) && startswith (section_name (filedata, section), ".gnu.lto_.symtab.")) res &= display_lto_symtab (filedata, section); return res; } static void print_symbol_table_heading (void) { /* FIXME: We should store the size of each field in the display in a table and then use the values inside print_symbol(), instead of that function using hard coded constants. */ if (is_32bit_elf) { if (extra_sym_info) { printf (_(" Num: Value Size Type Bind Vis+Other Ndx(SecName) Name [+ Version Info]\n")); /* |--6-|: |--8---| |-5-| |--7--| |-6--| |--7--| |---8--| |----13.....| |........... */ /* eg: 5: 00000000 14 FUNC LOCAL DEFAULT 1 (.text) get_sections */ } else if (do_wide) { printf (_(" Num: Value Size Type Bind Vis Ndx Name\n")); /* |--6-|: |--8---| |-5-| |--7--| |-6--| |--7--| |-4| |........... */ /* eg: 5: 00000000 14 FUNC LOCAL DEFAULT 1 get_sections */ } else { printf (_(" Num: Value Size Type Bind Vis Ndx Name\n")); /* |--6-|: |--8---| |-5-| |--7--| |-6--| |--7--| |-4| |------------29-------------| */ /* eg: 5: 00000000 14 FUNC LOCAL DEFAULT 1 get_sections */ } } else { if (extra_sym_info) { printf (_(" Num: Value Size Type Bind Vis+Other Ndx(SecName) Name [+ Version Info]\n")); /* |--6-|: |------16------| |-5-| |--7--| |-6--| |--7--| |-------14---| |..... */ /* eg: 2: 0000000000000000 0 FUNC LOCAL DEFAULT 1 (.text) .very_long_function_name */ } else if (do_wide) { printf (_(" Num: Value Size Type Bind Vis Ndx Name\n")); /* |--6-|: |------16------| |-5-| |--7--| |-6--| |--7--| |-4| |........... */ /* eg: 5: 0000000000000000 14 FUNC LOCAL DEFAULT 1 very_long_function_name */ } else { printf (_(" Num: Value Size Type Bind Vis Ndx Name\n")); /* |--6-|: |------16------| |-5-| |--7--| |-6--| |--7--| |-4| |--------21---------| */ /* eg: 5: 0000000000000000 14 FUNC LOCAL DEFAULT 1 very_long_functi[...] */ } } } /* Dump the symbol table. */ static bool process_symbol_table (Filedata * filedata) { Elf_Internal_Shdr * section; if (!do_syms && !do_dyn_syms && !do_histogram) return true; if ((filedata->dynamic_info[DT_HASH] || filedata->dynamic_info_DT_GNU_HASH) && do_syms && do_using_dynamic && filedata->dynamic_strings != NULL && filedata->dynamic_symbols != NULL) { uint64_t si; if (filedata->is_separate) { printf (ngettext ("\nIn linked file '%s' the dynamic symbol table" " contains %" PRIu64 " entry:\n", "\nIn linked file '%s' the dynamic symbol table" " contains %" PRIu64 " entries:\n", filedata->num_dynamic_syms), filedata->file_name, filedata->num_dynamic_syms); } else { printf (ngettext ("\nSymbol table for image contains %" PRIu64 " entry:\n", "\nSymbol table for image contains %" PRIu64 " entries:\n", filedata->num_dynamic_syms), filedata->num_dynamic_syms); } print_symbol_table_heading (); for (si = 0; si < filedata->num_dynamic_syms; si++) print_symbol (filedata, si, filedata->dynamic_symbols, NULL, filedata->dynamic_strings, filedata->dynamic_strings_length); } else if ((do_dyn_syms || (do_syms && !do_using_dynamic)) && filedata->section_headers != NULL) { unsigned int i; for (i = 0, section = filedata->section_headers; i < filedata->file_header.e_shnum; i++, section++) { char * strtab = NULL; uint64_t strtab_size = 0; Elf_Internal_Sym * symtab; uint64_t si, num_syms; if ((section->sh_type != SHT_SYMTAB && section->sh_type != SHT_DYNSYM) || (!do_syms && section->sh_type == SHT_SYMTAB)) continue; if (section->sh_entsize == 0) { printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"), printable_section_name (filedata, section)); continue; } num_syms = section->sh_size / section->sh_entsize; if (filedata->is_separate) printf (ngettext ("\nIn linked file '%s' symbol section '%s'" " contains %" PRIu64 " entry:\n", "\nIn linked file '%s' symbol section '%s'" " contains %" PRIu64 " entries:\n", num_syms), filedata->file_name, printable_section_name (filedata, section), num_syms); else printf (ngettext ("\nSymbol table '%s' contains %" PRIu64 " entry:\n", "\nSymbol table '%s' contains %" PRIu64 " entries:\n", num_syms), printable_section_name (filedata, section), num_syms); print_symbol_table_heading (); symtab = get_elf_symbols (filedata, section, & num_syms); if (symtab == NULL) continue; if (section->sh_link == filedata->file_header.e_shstrndx) { strtab = filedata->string_table; strtab_size = filedata->string_table_length; } else if (section->sh_link < filedata->file_header.e_shnum) { Elf_Internal_Shdr * string_sec; string_sec = filedata->section_headers + section->sh_link; strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset, 1, string_sec->sh_size, _("string table")); strtab_size = strtab != NULL ? string_sec->sh_size : 0; } for (si = 0; si < num_syms; si++) print_symbol (filedata, si, symtab, section, strtab, strtab_size); free (symtab); if (strtab != filedata->string_table) free (strtab); } } else if (do_syms) printf (_("\nDynamic symbol information is not available for displaying symbols.\n")); if (do_histogram && filedata->buckets != NULL) { uint64_t *lengths; uint64_t *counts; uint64_t hn; uint64_t si; uint64_t maxlength = 0; uint64_t nzero_counts = 0; uint64_t nsyms = 0; char *visited; printf (ngettext ("\nHistogram for bucket list length " "(total of %" PRIu64 " bucket):\n", "\nHistogram for bucket list length " "(total of %" PRIu64 " buckets):\n", filedata->nbuckets), filedata->nbuckets); lengths = calloc (filedata->nbuckets, sizeof (*lengths)); if (lengths == NULL) { error (_("Out of memory allocating space for histogram buckets\n")); goto err_out; } visited = xcmalloc (filedata->nchains, 1); memset (visited, 0, filedata->nchains); printf (_(" Length Number %% of total Coverage\n")); for (hn = 0; hn < filedata->nbuckets; ++hn) { for (si = filedata->buckets[hn]; si > 0; si = filedata->chains[si]) { ++nsyms; if (maxlength < ++lengths[hn]) ++maxlength; if (si >= filedata->nchains || visited[si]) { error (_("histogram chain is corrupt\n")); break; } visited[si] = 1; } } free (visited); counts = calloc (maxlength + 1, sizeof (*counts)); if (counts == NULL) { free (lengths); error (_("Out of memory allocating space for histogram counts\n")); goto err_out; } for (hn = 0; hn < filedata->nbuckets; ++hn) ++counts[lengths[hn]]; if (filedata->nbuckets > 0) { uint64_t i; printf (" 0 %-10" PRIu64 " (%5.1f%%)\n", counts[0], (counts[0] * 100.0) / filedata->nbuckets); for (i = 1; i <= maxlength; ++i) { nzero_counts += counts[i] * i; printf ("%7" PRIu64 " %-10" PRIu64 " (%5.1f%%) %5.1f%%\n", i, counts[i], (counts[i] * 100.0) / filedata->nbuckets, (nzero_counts * 100.0) / nsyms); } } free (counts); free (lengths); } free (filedata->buckets); filedata->buckets = NULL; filedata->nbuckets = 0; free (filedata->chains); filedata->chains = NULL; if (do_histogram && filedata->gnubuckets != NULL) { uint64_t *lengths; uint64_t *counts; uint64_t hn; uint64_t maxlength = 0; uint64_t nzero_counts = 0; uint64_t nsyms = 0; printf (ngettext ("\nHistogram for `%s' bucket list length " "(total of %" PRIu64 " bucket):\n", "\nHistogram for `%s' bucket list length " "(total of %" PRIu64 " buckets):\n", filedata->ngnubuckets), GNU_HASH_SECTION_NAME (filedata), filedata->ngnubuckets); lengths = calloc (filedata->ngnubuckets, sizeof (*lengths)); if (lengths == NULL) { error (_("Out of memory allocating space for gnu histogram buckets\n")); goto err_out; } printf (_(" Length Number %% of total Coverage\n")); for (hn = 0; hn < filedata->ngnubuckets; ++hn) if (filedata->gnubuckets[hn] != 0) { uint64_t off, length = 1; for (off = filedata->gnubuckets[hn] - filedata->gnusymidx; /* PR 17531 file: 010-77222-0.004. */ off < filedata->ngnuchains && (filedata->gnuchains[off] & 1) == 0; ++off) ++length; lengths[hn] = length; if (length > maxlength) maxlength = length; nsyms += length; } counts = calloc (maxlength + 1, sizeof (*counts)); if (counts == NULL) { free (lengths); error (_("Out of memory allocating space for gnu histogram counts\n")); goto err_out; } for (hn = 0; hn < filedata->ngnubuckets; ++hn) ++counts[lengths[hn]]; if (filedata->ngnubuckets > 0) { uint64_t j; printf (" 0 %-10" PRIu64 " (%5.1f%%)\n", counts[0], (counts[0] * 100.0) / filedata->ngnubuckets); for (j = 1; j <= maxlength; ++j) { nzero_counts += counts[j] * j; printf ("%7" PRIu64 " %-10" PRIu64 " (%5.1f%%) %5.1f%%\n", j, counts[j], (counts[j] * 100.0) / filedata->ngnubuckets, (nzero_counts * 100.0) / nsyms); } } free (counts); free (lengths); } free (filedata->gnubuckets); filedata->gnubuckets = NULL; filedata->ngnubuckets = 0; free (filedata->gnuchains); filedata->gnuchains = NULL; filedata->ngnuchains = 0; free (filedata->mipsxlat); filedata->mipsxlat = NULL; return true; err_out: free (filedata->gnubuckets); filedata->gnubuckets = NULL; filedata->ngnubuckets = 0; free (filedata->gnuchains); filedata->gnuchains = NULL; filedata->ngnuchains = 0; free (filedata->mipsxlat); filedata->mipsxlat = NULL; free (filedata->buckets); filedata->buckets = NULL; filedata->nbuckets = 0; free (filedata->chains); filedata->chains = NULL; return false; } static bool process_syminfo (Filedata * filedata) { unsigned int i; if (filedata->dynamic_syminfo == NULL || !do_dynamic) /* No syminfo, this is ok. */ return true; /* There better should be a dynamic symbol section. */ if (filedata->dynamic_symbols == NULL || filedata->dynamic_strings == NULL) return false; if (filedata->is_separate) printf (ngettext ("\nIn linked file '%s: the dynamic info segment at offset %#" PRIx64 " contains %d entry:\n", "\nIn linked file '%s: the dynamic info segment at offset %#" PRIx64 " contains %d entries:\n", filedata->dynamic_syminfo_nent), filedata->file_name, filedata->dynamic_syminfo_offset, filedata->dynamic_syminfo_nent); else printf (ngettext ("\nDynamic info segment at offset %#" PRIx64 " contains %d entry:\n", "\nDynamic info segment at offset %#" PRIx64 " contains %d entries:\n", filedata->dynamic_syminfo_nent), filedata->dynamic_syminfo_offset, filedata->dynamic_syminfo_nent); printf (_(" Num: Name BoundTo Flags\n")); for (i = 0; i < filedata->dynamic_syminfo_nent; ++i) { unsigned short int flags = filedata->dynamic_syminfo[i].si_flags; printf ("%4d: ", i); if (i >= filedata->num_dynamic_syms) printf (_("")); else if (valid_dynamic_name (filedata, filedata->dynamic_symbols[i].st_name)) print_symbol_name (30, get_dynamic_name (filedata, filedata->dynamic_symbols[i].st_name)); else printf (_(""), filedata->dynamic_symbols[i].st_name); putchar (' '); switch (filedata->dynamic_syminfo[i].si_boundto) { case SYMINFO_BT_SELF: fputs ("SELF ", stdout); break; case SYMINFO_BT_PARENT: fputs ("PARENT ", stdout); break; default: if (filedata->dynamic_syminfo[i].si_boundto > 0 && filedata->dynamic_syminfo[i].si_boundto < filedata->dynamic_nent && valid_dynamic_name (filedata, filedata->dynamic_section[filedata->dynamic_syminfo[i].si_boundto].d_un.d_val)) { print_symbol_name (10, get_dynamic_name (filedata, filedata->dynamic_section[filedata->dynamic_syminfo[i].si_boundto].d_un.d_val)); putchar (' ' ); } else printf ("%-10d ", filedata->dynamic_syminfo[i].si_boundto); break; } if (flags & SYMINFO_FLG_DIRECT) printf (" DIRECT"); if (flags & SYMINFO_FLG_PASSTHRU) printf (" PASSTHRU"); if (flags & SYMINFO_FLG_COPY) printf (" COPY"); if (flags & SYMINFO_FLG_LAZYLOAD) printf (" LAZYLOAD"); puts (""); } return true; } /* A macro which evaluates to TRUE if the region ADDR .. ADDR + NELEM is contained by the region START .. END. The types of ADDR, START and END should all be the same. Note both ADDR + NELEM and END point to just beyond the end of the regions that are being tested. */ #define IN_RANGE(START,END,ADDR,NELEM) \ (((ADDR) >= (START)) && ((ADDR) < (END)) && ((ADDR) + (NELEM) <= (END))) /* Check to see if the given reloc needs to be handled in a target specific manner. If so then process the reloc and return TRUE otherwise return FALSE. If called with reloc == NULL, then this is a signal that reloc processing for the current section has finished, and any saved state should be discarded. */ static bool target_specific_reloc_handling (Filedata *filedata, Elf_Internal_Rela *reloc, unsigned char *start, unsigned char *end, Elf_Internal_Sym *symtab, uint64_t num_syms) { unsigned int reloc_type = 0; uint64_t sym_index = 0; if (reloc) { reloc_type = get_reloc_type (filedata, reloc->r_info); sym_index = get_reloc_symindex (reloc->r_info); } switch (filedata->file_header.e_machine) { case EM_LOONGARCH: { switch (reloc_type) { /* For .uleb128 .LFE1-.LFB1, loongarch write 0 to object file at assembly time. */ case 107: /* R_LARCH_ADD_ULEB128. */ case 108: /* R_LARCH_SUB_ULEB128. */ { uint64_t value = 0; unsigned int reloc_size = 0; int leb_ret = 0; if (reloc->r_offset < (size_t) (end - start)) value = read_leb128 (start + reloc->r_offset, end, false, &reloc_size, &leb_ret); if (leb_ret != 0 || reloc_size == 0 || reloc_size > 8) error (_("LoongArch ULEB128 field at 0x%lx contains invalid " "ULEB128 value\n"), (long) reloc->r_offset); else if (sym_index >= num_syms) error (_("%s reloc contains invalid symbol index " "%" PRIu64 "\n"), (reloc_type == 107 ? "R_LARCH_ADD_ULEB128" : "R_LARCH_SUB_ULEB128"), sym_index); else { if (reloc_type == 107) value += reloc->r_addend + symtab[sym_index].st_value; else value -= reloc->r_addend + symtab[sym_index].st_value; /* Write uleb128 value to p. */ bfd_byte *p = start + reloc->r_offset; do { bfd_byte c = value & 0x7f; value >>= 7; if (--reloc_size != 0) c |= 0x80; *p++ = c; } while (reloc_size); } return true; } } break; } case EM_MSP430: case EM_MSP430_OLD: { static Elf_Internal_Sym * saved_sym = NULL; if (reloc == NULL) { saved_sym = NULL; return true; } switch (reloc_type) { case 10: /* R_MSP430_SYM_DIFF */ case 12: /* R_MSP430_GNU_SUB_ULEB128 */ if (uses_msp430x_relocs (filedata)) break; /* Fall through. */ case 21: /* R_MSP430X_SYM_DIFF */ case 23: /* R_MSP430X_GNU_SUB_ULEB128 */ /* PR 21139. */ if (sym_index >= num_syms) error (_("%s reloc contains invalid symbol index " "%" PRIu64 "\n"), "MSP430 SYM_DIFF", sym_index); else saved_sym = symtab + sym_index; return true; case 1: /* R_MSP430_32 or R_MSP430_ABS32 */ case 3: /* R_MSP430_16 or R_MSP430_ABS8 */ goto handle_sym_diff; case 5: /* R_MSP430_16_BYTE */ case 9: /* R_MSP430_8 */ case 11: /* R_MSP430_GNU_SET_ULEB128 */ if (uses_msp430x_relocs (filedata)) break; goto handle_sym_diff; case 2: /* R_MSP430_ABS16 */ case 15: /* R_MSP430X_ABS16 */ case 22: /* R_MSP430X_GNU_SET_ULEB128 */ if (! uses_msp430x_relocs (filedata)) break; goto handle_sym_diff; handle_sym_diff: if (saved_sym != NULL) { uint64_t value; unsigned int reloc_size = 0; int leb_ret = 0; switch (reloc_type) { case 1: /* R_MSP430_32 or R_MSP430_ABS32 */ reloc_size = 4; break; case 11: /* R_MSP430_GNU_SET_ULEB128 */ case 22: /* R_MSP430X_GNU_SET_ULEB128 */ if (reloc->r_offset < (size_t) (end - start)) read_leb128 (start + reloc->r_offset, end, false, &reloc_size, &leb_ret); break; default: reloc_size = 2; break; } if (leb_ret != 0 || reloc_size == 0 || reloc_size > 8) error (_("MSP430 ULEB128 field at %#" PRIx64 " contains invalid ULEB128 value\n"), reloc->r_offset); else if (sym_index >= num_syms) error (_("%s reloc contains invalid symbol index " "%" PRIu64 "\n"), "MSP430", sym_index); else { value = reloc->r_addend + (symtab[sym_index].st_value - saved_sym->st_value); if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size)) byte_put (start + reloc->r_offset, value, reloc_size); else /* PR 21137 */ error (_("MSP430 sym diff reloc contains invalid offset: " "%#" PRIx64 "\n"), reloc->r_offset); } saved_sym = NULL; return true; } break; default: if (saved_sym != NULL) error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n")); break; } break; } case EM_MN10300: case EM_CYGNUS_MN10300: { static Elf_Internal_Sym * saved_sym = NULL; if (reloc == NULL) { saved_sym = NULL; return true; } switch (reloc_type) { case 34: /* R_MN10300_ALIGN */ return true; case 33: /* R_MN10300_SYM_DIFF */ if (sym_index >= num_syms) error (_("%s reloc contains invalid symbol index " "%" PRIu64 "\n"), "MN10300_SYM_DIFF", sym_index); else saved_sym = symtab + sym_index; return true; case 1: /* R_MN10300_32 */ case 2: /* R_MN10300_16 */ if (saved_sym != NULL) { int reloc_size = reloc_type == 1 ? 4 : 2; uint64_t value; if (sym_index >= num_syms) error (_("%s reloc contains invalid symbol index " "%" PRIu64 "\n"), "MN10300", sym_index); else { value = reloc->r_addend + (symtab[sym_index].st_value - saved_sym->st_value); if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size)) byte_put (start + reloc->r_offset, value, reloc_size); else error (_("MN10300 sym diff reloc contains invalid offset:" " %#" PRIx64 "\n"), reloc->r_offset); } saved_sym = NULL; return true; } break; default: if (saved_sym != NULL) error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n")); break; } break; } case EM_RL78: { static uint64_t saved_sym1 = 0; static uint64_t saved_sym2 = 0; static uint64_t value; if (reloc == NULL) { saved_sym1 = saved_sym2 = 0; return true; } switch (reloc_type) { case 0x80: /* R_RL78_SYM. */ saved_sym1 = saved_sym2; if (sym_index >= num_syms) error (_("%s reloc contains invalid symbol index " "%" PRIu64 "\n"), "RL78_SYM", sym_index); else { saved_sym2 = symtab[sym_index].st_value; saved_sym2 += reloc->r_addend; } return true; case 0x83: /* R_RL78_OPsub. */ value = saved_sym1 - saved_sym2; saved_sym2 = saved_sym1 = 0; return true; break; case 0x41: /* R_RL78_ABS32. */ if (IN_RANGE (start, end, start + reloc->r_offset, 4)) byte_put (start + reloc->r_offset, value, 4); else error (_("RL78 sym diff reloc contains invalid offset: " "%#" PRIx64 "\n"), reloc->r_offset); value = 0; return true; case 0x43: /* R_RL78_ABS16. */ if (IN_RANGE (start, end, start + reloc->r_offset, 2)) byte_put (start + reloc->r_offset, value, 2); else error (_("RL78 sym diff reloc contains invalid offset: " "%#" PRIx64 "\n"), reloc->r_offset); value = 0; return true; default: break; } break; } } return false; } /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in DWARF debug sections. This is a target specific test. Note - we do not go through the whole including-target-headers-multiple-times route, (as we have already done with ) because this would become very messy and even then this function would have to contain target specific information (the names of the relocs instead of their numeric values). FIXME: This is not the correct way to solve this problem. The proper way is to have target specific reloc sizing and typing functions created by the reloc-macros.h header, in the same way that it already creates the reloc naming functions. */ static bool is_32bit_abs_reloc (Filedata * filedata, unsigned int reloc_type) { /* Please keep this table alpha-sorted for ease of visual lookup. */ switch (filedata->file_header.e_machine) { case EM_386: case EM_IAMCU: return reloc_type == 1; /* R_386_32. */ case EM_68K: return reloc_type == 1; /* R_68K_32. */ case EM_860: return reloc_type == 1; /* R_860_32. */ case EM_960: return reloc_type == 2; /* R_960_32. */ case EM_AARCH64: return (reloc_type == 258 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */ case EM_BPF: return reloc_type == 11; /* R_BPF_DATA_32 */ case EM_ADAPTEVA_EPIPHANY: return reloc_type == 3; case EM_ALPHA: return reloc_type == 1; /* R_ALPHA_REFLONG. */ case EM_ARC: return reloc_type == 1; /* R_ARC_32. */ case EM_ARC_COMPACT: case EM_ARC_COMPACT2: case EM_ARC_COMPACT3: case EM_ARC_COMPACT3_64: return reloc_type == 4; /* R_ARC_32. */ case EM_ARM: return reloc_type == 2; /* R_ARM_ABS32 */ case EM_AVR_OLD: case EM_AVR: return reloc_type == 1; case EM_BLACKFIN: return reloc_type == 0x12; /* R_byte4_data. */ case EM_CRIS: return reloc_type == 3; /* R_CRIS_32. */ case EM_CR16: return reloc_type == 3; /* R_CR16_NUM32. */ case EM_CRX: return reloc_type == 15; /* R_CRX_NUM32. */ case EM_CSKY: return reloc_type == 1; /* R_CKCORE_ADDR32. */ case EM_CYGNUS_FRV: return reloc_type == 1; case EM_CYGNUS_D10V: case EM_D10V: return reloc_type == 6; /* R_D10V_32. */ case EM_CYGNUS_D30V: case EM_D30V: return reloc_type == 12; /* R_D30V_32_NORMAL. */ case EM_DLX: return reloc_type == 3; /* R_DLX_RELOC_32. */ case EM_CYGNUS_FR30: case EM_FR30: return reloc_type == 3; /* R_FR30_32. */ case EM_FT32: return reloc_type == 1; /* R_FT32_32. */ case EM_H8S: case EM_H8_300: case EM_H8_300H: return reloc_type == 1; /* R_H8_DIR32. */ case EM_IA_64: return (reloc_type == 0x64 /* R_IA64_SECREL32MSB. */ || reloc_type == 0x65 /* R_IA64_SECREL32LSB. */ || reloc_type == 0x24 /* R_IA64_DIR32MSB. */ || reloc_type == 0x25 /* R_IA64_DIR32LSB. */); case EM_IP2K_OLD: case EM_IP2K: return reloc_type == 2; /* R_IP2K_32. */ case EM_IQ2000: return reloc_type == 2; /* R_IQ2000_32. */ case EM_KVX: return reloc_type == 2; /* R_KVX_32. */ case EM_LATTICEMICO32: return reloc_type == 3; /* R_LM32_32. */ case EM_LOONGARCH: return reloc_type == 1; /* R_LARCH_32. */ case EM_M32C_OLD: case EM_M32C: return reloc_type == 3; /* R_M32C_32. */ case EM_M32R: return reloc_type == 34; /* R_M32R_32_RELA. */ case EM_68HC11: case EM_68HC12: return reloc_type == 6; /* R_M68HC11_32. */ case EM_S12Z: return reloc_type == 7 || /* R_S12Z_EXT32 */ reloc_type == 6; /* R_S12Z_CW32. */ case EM_MCORE: return reloc_type == 1; /* R_MCORE_ADDR32. */ case EM_CYGNUS_MEP: return reloc_type == 4; /* R_MEP_32. */ case EM_METAG: return reloc_type == 2; /* R_METAG_ADDR32. */ case EM_MICROBLAZE: return reloc_type == 1; /* R_MICROBLAZE_32. */ case EM_MIPS: return reloc_type == 2; /* R_MIPS_32. */ case EM_MMIX: return reloc_type == 4; /* R_MMIX_32. */ case EM_CYGNUS_MN10200: case EM_MN10200: return reloc_type == 1; /* R_MN10200_32. */ case EM_CYGNUS_MN10300: case EM_MN10300: return reloc_type == 1; /* R_MN10300_32. */ case EM_MOXIE: return reloc_type == 1; /* R_MOXIE_32. */ case EM_MSP430_OLD: case EM_MSP430: return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */ case EM_MT: return reloc_type == 2; /* R_MT_32. */ case EM_NDS32: return reloc_type == 20; /* R_NDS32_32_RELA. */ case EM_ALTERA_NIOS2: return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */ case EM_NIOS32: return reloc_type == 1; /* R_NIOS_32. */ case EM_OR1K: return reloc_type == 1; /* R_OR1K_32. */ case EM_PARISC: return (reloc_type == 1 /* R_PARISC_DIR32. */ || reloc_type == 2 /* R_PARISC_DIR21L. */ || reloc_type == 41); /* R_PARISC_SECREL32. */ case EM_PJ: case EM_PJ_OLD: return reloc_type == 1; /* R_PJ_DATA_DIR32. */ case EM_PPC64: return reloc_type == 1; /* R_PPC64_ADDR32. */ case EM_PPC: return reloc_type == 1; /* R_PPC_ADDR32. */ case EM_TI_PRU: return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */ case EM_RISCV: return reloc_type == 1; /* R_RISCV_32. */ case EM_RL78: return reloc_type == 1; /* R_RL78_DIR32. */ case EM_RX: return reloc_type == 1; /* R_RX_DIR32. */ case EM_S370: return reloc_type == 1; /* R_I370_ADDR31. */ case EM_S390_OLD: case EM_S390: return reloc_type == 4; /* R_S390_32. */ case EM_SCORE: return reloc_type == 8; /* R_SCORE_ABS32. */ case EM_SH: return reloc_type == 1; /* R_SH_DIR32. */ case EM_SPARC32PLUS: case EM_SPARCV9: case EM_SPARC: return reloc_type == 3 /* R_SPARC_32. */ || reloc_type == 23; /* R_SPARC_UA32. */ case EM_SPU: return reloc_type == 6; /* R_SPU_ADDR32 */ case EM_TI_C6000: return reloc_type == 1; /* R_C6000_ABS32. */ case EM_TILEGX: return reloc_type == 2; /* R_TILEGX_32. */ case EM_TILEPRO: return reloc_type == 1; /* R_TILEPRO_32. */ case EM_CYGNUS_V850: case EM_V850: return reloc_type == 6; /* R_V850_ABS32. */ case EM_V800: return reloc_type == 0x33; /* R_V810_WORD. */ case EM_VAX: return reloc_type == 1; /* R_VAX_32. */ case EM_VISIUM: return reloc_type == 3; /* R_VISIUM_32. */ case EM_WEBASSEMBLY: return reloc_type == 1; /* R_WASM32_32. */ case EM_X86_64: case EM_L1OM: case EM_K1OM: return reloc_type == 10; /* R_X86_64_32. */ case EM_XGATE: return reloc_type == 4; /* R_XGATE_32. */ case EM_XSTORMY16: return reloc_type == 1; /* R_XSTROMY16_32. */ case EM_XTENSA_OLD: case EM_XTENSA: return reloc_type == 1; /* R_XTENSA_32. */ case EM_Z80: return reloc_type == 6; /* R_Z80_32. */ default: { static unsigned int prev_warn = 0; /* Avoid repeating the same warning multiple times. */ if (prev_warn != filedata->file_header.e_machine) error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"), filedata->file_header.e_machine); prev_warn = filedata->file_header.e_machine; return false; } } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 32-bit pc-relative RELA relocation used in DWARF debug sections. */ static bool is_32bit_pcrel_reloc (Filedata * filedata, unsigned int reloc_type) { switch (filedata->file_header.e_machine) /* Please keep this table alpha-sorted for ease of visual lookup. */ { case EM_386: case EM_IAMCU: return reloc_type == 2; /* R_386_PC32. */ case EM_68K: return reloc_type == 4; /* R_68K_PC32. */ case EM_AARCH64: return reloc_type == 261; /* R_AARCH64_PREL32 */ case EM_ADAPTEVA_EPIPHANY: return reloc_type == 6; case EM_ALPHA: return reloc_type == 10; /* R_ALPHA_SREL32. */ case EM_ARC_COMPACT: case EM_ARC_COMPACT2: case EM_ARC_COMPACT3: case EM_ARC_COMPACT3_64: return reloc_type == 49; /* R_ARC_32_PCREL. */ case EM_ARM: return reloc_type == 3; /* R_ARM_REL32 */ case EM_AVR_OLD: case EM_AVR: return reloc_type == 36; /* R_AVR_32_PCREL. */ case EM_LOONGARCH: return reloc_type == 99; /* R_LARCH_32_PCREL. */ case EM_MICROBLAZE: return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */ case EM_OR1K: return reloc_type == 9; /* R_OR1K_32_PCREL. */ case EM_PARISC: return reloc_type == 9; /* R_PARISC_PCREL32. */ case EM_PPC: return reloc_type == 26; /* R_PPC_REL32. */ case EM_PPC64: return reloc_type == 26; /* R_PPC64_REL32. */ case EM_RISCV: return reloc_type == 57; /* R_RISCV_32_PCREL. */ case EM_S390_OLD: case EM_S390: return reloc_type == 5; /* R_390_PC32. */ case EM_SH: return reloc_type == 2; /* R_SH_REL32. */ case EM_SPARC32PLUS: case EM_SPARCV9: case EM_SPARC: return reloc_type == 6; /* R_SPARC_DISP32. */ case EM_SPU: return reloc_type == 13; /* R_SPU_REL32. */ case EM_TILEGX: return reloc_type == 6; /* R_TILEGX_32_PCREL. */ case EM_TILEPRO: return reloc_type == 4; /* R_TILEPRO_32_PCREL. */ case EM_VISIUM: return reloc_type == 6; /* R_VISIUM_32_PCREL */ case EM_X86_64: case EM_L1OM: case EM_K1OM: return reloc_type == 2; /* R_X86_64_PC32. */ case EM_VAX: return reloc_type == 4; /* R_VAX_PCREL32. */ case EM_XTENSA_OLD: case EM_XTENSA: return reloc_type == 14; /* R_XTENSA_32_PCREL. */ case EM_KVX: return reloc_type == 7; /* R_KVX_32_PCREL */ default: /* Do not abort or issue an error message here. Not all targets use pc-relative 32-bit relocs in their DWARF debug information and we have already tested for target coverage in is_32bit_abs_reloc. A more helpful warning message will be generated by apply_relocations anyway, so just return. */ return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 64-bit absolute RELA relocation used in DWARF debug sections. */ static bool is_64bit_abs_reloc (Filedata * filedata, unsigned int reloc_type) { switch (filedata->file_header.e_machine) { case EM_AARCH64: return reloc_type == 257; /* R_AARCH64_ABS64. */ case EM_ARC_COMPACT3_64: return reloc_type == 5; /* R_ARC_64. */ case EM_ALPHA: return reloc_type == 2; /* R_ALPHA_REFQUAD. */ case EM_IA_64: return (reloc_type == 0x26 /* R_IA64_DIR64MSB. */ || reloc_type == 0x27 /* R_IA64_DIR64LSB. */); case EM_LOONGARCH: return reloc_type == 2; /* R_LARCH_64 */ case EM_PARISC: return reloc_type == 80; /* R_PARISC_DIR64. */ case EM_PPC64: return reloc_type == 38; /* R_PPC64_ADDR64. */ case EM_RISCV: return reloc_type == 2; /* R_RISCV_64. */ case EM_SPARC32PLUS: case EM_SPARCV9: case EM_SPARC: return reloc_type == 32 /* R_SPARC_64. */ || reloc_type == 54; /* R_SPARC_UA64. */ case EM_X86_64: case EM_L1OM: case EM_K1OM: return reloc_type == 1; /* R_X86_64_64. */ case EM_S390_OLD: case EM_S390: return reloc_type == 22; /* R_S390_64. */ case EM_TILEGX: return reloc_type == 1; /* R_TILEGX_64. */ case EM_MIPS: return reloc_type == 18; /* R_MIPS_64. */ case EM_KVX: return reloc_type == 3; /* R_KVX_64 */ default: return false; } } /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is a 64-bit pc-relative RELA relocation used in DWARF debug sections. */ static bool is_64bit_pcrel_reloc (Filedata * filedata, unsigned int reloc_type) { switch (filedata->file_header.e_machine) { case EM_AARCH64: return reloc_type == 260; /* R_AARCH64_PREL64. */ case EM_ALPHA: return reloc_type == 11; /* R_ALPHA_SREL64. */ case EM_IA_64: return (reloc_type == 0x4e /* R_IA64_PCREL64MSB. */ || reloc_type == 0x4f /* R_IA64_PCREL64LSB. */); case EM_PARISC: return reloc_type == 72; /* R_PARISC_PCREL64. */ case EM_PPC64: return reloc_type == 44; /* R_PPC64_REL64. */ case EM_SPARC32PLUS: case EM_SPARCV9: case EM_SPARC: return reloc_type == 46; /* R_SPARC_DISP64. */ case EM_X86_64: case EM_L1OM: case EM_K1OM: return reloc_type == 24; /* R_X86_64_PC64. */ case EM_S390_OLD: case EM_S390: return reloc_type == 23; /* R_S390_PC64. */ case EM_TILEGX: return reloc_type == 5; /* R_TILEGX_64_PCREL. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 24-bit absolute RELA relocation used in DWARF debug sections. */ static bool is_24bit_abs_reloc (Filedata * filedata, unsigned int reloc_type) { switch (filedata->file_header.e_machine) { case EM_CYGNUS_MN10200: case EM_MN10200: return reloc_type == 4; /* R_MN10200_24. */ case EM_FT32: return reloc_type == 5; /* R_FT32_20. */ case EM_Z80: return reloc_type == 5; /* R_Z80_24. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 16-bit absolute RELA relocation used in DWARF debug sections. */ static bool is_16bit_abs_reloc (Filedata * filedata, unsigned int reloc_type) { /* Please keep this table alpha-sorted for ease of visual lookup. */ switch (filedata->file_header.e_machine) { case EM_ARC: case EM_ARC_COMPACT: case EM_ARC_COMPACT2: case EM_ARC_COMPACT3: case EM_ARC_COMPACT3_64: return reloc_type == 2; /* R_ARC_16. */ case EM_ADAPTEVA_EPIPHANY: return reloc_type == 5; case EM_AVR_OLD: case EM_AVR: return reloc_type == 4; /* R_AVR_16. */ case EM_CYGNUS_D10V: case EM_D10V: return reloc_type == 3; /* R_D10V_16. */ case EM_FT32: return reloc_type == 2; /* R_FT32_16. */ case EM_H8S: case EM_H8_300: case EM_H8_300H: return reloc_type == R_H8_DIR16; case EM_IP2K_OLD: case EM_IP2K: return reloc_type == 1; /* R_IP2K_16. */ case EM_M32C_OLD: case EM_M32C: return reloc_type == 1; /* R_M32C_16 */ case EM_CYGNUS_MN10200: case EM_MN10200: return reloc_type == 2; /* R_MN10200_16. */ case EM_CYGNUS_MN10300: case EM_MN10300: return reloc_type == 2; /* R_MN10300_16. */ case EM_KVX: return reloc_type == 1; /* R_KVX_16 */ case EM_MSP430: if (uses_msp430x_relocs (filedata)) return reloc_type == 2; /* R_MSP430_ABS16. */ /* Fall through. */ case EM_MSP430_OLD: return reloc_type == 5; /* R_MSP430_16_BYTE. */ case EM_NDS32: return reloc_type == 19; /* R_NDS32_16_RELA. */ case EM_ALTERA_NIOS2: return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */ case EM_NIOS32: return reloc_type == 9; /* R_NIOS_16. */ case EM_OR1K: return reloc_type == 2; /* R_OR1K_16. */ case EM_RISCV: return reloc_type == 55; /* R_RISCV_SET16. */ case EM_TI_PRU: return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */ case EM_TI_C6000: return reloc_type == 2; /* R_C6000_ABS16. */ case EM_VISIUM: return reloc_type == 2; /* R_VISIUM_16. */ case EM_XGATE: return reloc_type == 3; /* R_XGATE_16. */ case EM_Z80: return reloc_type == 4; /* R_Z80_16. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 8-bit absolute RELA relocation used in DWARF debug sections. */ static bool is_8bit_abs_reloc (Filedata * filedata, unsigned int reloc_type) { switch (filedata->file_header.e_machine) { case EM_RISCV: return reloc_type == 54; /* R_RISCV_SET8. */ case EM_Z80: return reloc_type == 1; /* R_Z80_8. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 6-bit absolute RELA relocation used in DWARF debug sections. */ static bool is_6bit_abs_reloc (Filedata * filedata, unsigned int reloc_type) { switch (filedata->file_header.e_machine) { case EM_RISCV: return reloc_type == 53; /* R_RISCV_SET6. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 32-bit inplace add RELA relocation used in DWARF debug sections. */ static bool is_32bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type) { /* Please keep this table alpha-sorted for ease of visual lookup. */ switch (filedata->file_header.e_machine) { case EM_LOONGARCH: return reloc_type == 50; /* R_LARCH_ADD32. */ case EM_RISCV: return reloc_type == 35; /* R_RISCV_ADD32. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 32-bit inplace sub RELA relocation used in DWARF debug sections. */ static bool is_32bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type) { /* Please keep this table alpha-sorted for ease of visual lookup. */ switch (filedata->file_header.e_machine) { case EM_LOONGARCH: return reloc_type == 55; /* R_LARCH_SUB32. */ case EM_RISCV: return reloc_type == 39; /* R_RISCV_SUB32. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 64-bit inplace add RELA relocation used in DWARF debug sections. */ static bool is_64bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type) { /* Please keep this table alpha-sorted for ease of visual lookup. */ switch (filedata->file_header.e_machine) { case EM_LOONGARCH: return reloc_type == 51; /* R_LARCH_ADD64. */ case EM_RISCV: return reloc_type == 36; /* R_RISCV_ADD64. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 64-bit inplace sub RELA relocation used in DWARF debug sections. */ static bool is_64bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type) { /* Please keep this table alpha-sorted for ease of visual lookup. */ switch (filedata->file_header.e_machine) { case EM_LOONGARCH: return reloc_type == 56; /* R_LARCH_SUB64. */ case EM_RISCV: return reloc_type == 40; /* R_RISCV_SUB64. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 16-bit inplace add RELA relocation used in DWARF debug sections. */ static bool is_16bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type) { /* Please keep this table alpha-sorted for ease of visual lookup. */ switch (filedata->file_header.e_machine) { case EM_LOONGARCH: return reloc_type == 48; /* R_LARCH_ADD16. */ case EM_RISCV: return reloc_type == 34; /* R_RISCV_ADD16. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 16-bit inplace sub RELA relocation used in DWARF debug sections. */ static bool is_16bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type) { /* Please keep this table alpha-sorted for ease of visual lookup. */ switch (filedata->file_header.e_machine) { case EM_LOONGARCH: return reloc_type == 53; /* R_LARCH_SUB16. */ case EM_RISCV: return reloc_type == 38; /* R_RISCV_SUB16. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 8-bit inplace add RELA relocation used in DWARF debug sections. */ static bool is_8bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type) { /* Please keep this table alpha-sorted for ease of visual lookup. */ switch (filedata->file_header.e_machine) { case EM_LOONGARCH: return reloc_type == 47; /* R_LARCH_ADD8. */ case EM_RISCV: return reloc_type == 33; /* R_RISCV_ADD8. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 8-bit inplace sub RELA relocation used in DWARF debug sections. */ static bool is_8bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type) { /* Please keep this table alpha-sorted for ease of visual lookup. */ switch (filedata->file_header.e_machine) { case EM_LOONGARCH: return reloc_type == 52; /* R_LARCH_SUB8. */ case EM_RISCV: return reloc_type == 37; /* R_RISCV_SUB8. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 6-bit inplace add RELA relocation used in DWARF debug sections. */ static bool is_6bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type) { switch (filedata->file_header.e_machine) { case EM_LOONGARCH: return reloc_type == 105; /* R_LARCH_ADD6. */ default: return false; } } /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is a 6-bit inplace sub RELA relocation used in DWARF debug sections. */ static bool is_6bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type) { switch (filedata->file_header.e_machine) { case EM_LOONGARCH: return reloc_type == 106; /* R_LARCH_SUB6. */ case EM_RISCV: return reloc_type == 52; /* R_RISCV_SUB6. */ default: return false; } } /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded relocation entries (possibly formerly used for SHT_GROUP sections). */ static bool is_none_reloc (Filedata * filedata, unsigned int reloc_type) { switch (filedata->file_header.e_machine) { case EM_386: /* R_386_NONE. */ case EM_68K: /* R_68K_NONE. */ case EM_ADAPTEVA_EPIPHANY: case EM_ALPHA: /* R_ALPHA_NONE. */ case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */ case EM_ARC: /* R_ARC_NONE. */ case EM_ARC_COMPACT2: /* R_ARC_NONE. */ case EM_ARC_COMPACT: /* R_ARC_NONE. */ case EM_ARC_COMPACT3: /* R_ARC_NONE. */ case EM_ARC_COMPACT3_64: /* R_ARC_NONE. */ case EM_ARM: /* R_ARM_NONE. */ case EM_CRIS: /* R_CRIS_NONE. */ case EM_FT32: /* R_FT32_NONE. */ case EM_IA_64: /* R_IA64_NONE. */ case EM_K1OM: /* R_X86_64_NONE. */ case EM_KVX: /* R_KVX_NONE. */ case EM_L1OM: /* R_X86_64_NONE. */ case EM_M32R: /* R_M32R_NONE. */ case EM_MIPS: /* R_MIPS_NONE. */ case EM_MN10300: /* R_MN10300_NONE. */ case EM_MOXIE: /* R_MOXIE_NONE. */ case EM_NIOS32: /* R_NIOS_NONE. */ case EM_OR1K: /* R_OR1K_NONE. */ case EM_PARISC: /* R_PARISC_NONE. */ case EM_PPC64: /* R_PPC64_NONE. */ case EM_PPC: /* R_PPC_NONE. */ case EM_RISCV: /* R_RISCV_NONE. */ case EM_S390: /* R_390_NONE. */ case EM_S390_OLD: case EM_SH: /* R_SH_NONE. */ case EM_SPARC32PLUS: case EM_SPARC: /* R_SPARC_NONE. */ case EM_SPARCV9: case EM_TILEGX: /* R_TILEGX_NONE. */ case EM_TILEPRO: /* R_TILEPRO_NONE. */ case EM_TI_C6000:/* R_C6000_NONE. */ case EM_X86_64: /* R_X86_64_NONE. */ case EM_Z80: /* R_Z80_NONE. */ case EM_WEBASSEMBLY: /* R_WASM32_NONE. */ return reloc_type == 0; case EM_AARCH64: return reloc_type == 0 || reloc_type == 256; case EM_AVR_OLD: case EM_AVR: return (reloc_type == 0 /* R_AVR_NONE. */ || reloc_type == 30 /* R_AVR_DIFF8. */ || reloc_type == 31 /* R_AVR_DIFF16. */ || reloc_type == 32 /* R_AVR_DIFF32. */); case EM_METAG: return reloc_type == 3; /* R_METAG_NONE. */ case EM_NDS32: return (reloc_type == 0 /* R_NDS32_NONE. */ || reloc_type == 205 /* R_NDS32_DIFF8. */ || reloc_type == 206 /* R_NDS32_DIFF16. */ || reloc_type == 207 /* R_NDS32_DIFF32. */ || reloc_type == 208 /* R_NDS32_DIFF_ULEB128. */); case EM_TI_PRU: return (reloc_type == 0 /* R_PRU_NONE. */ || reloc_type == 65 /* R_PRU_DIFF8. */ || reloc_type == 66 /* R_PRU_DIFF16. */ || reloc_type == 67 /* R_PRU_DIFF32. */); case EM_XTENSA_OLD: case EM_XTENSA: return (reloc_type == 0 /* R_XTENSA_NONE. */ || reloc_type == 17 /* R_XTENSA_DIFF8. */ || reloc_type == 18 /* R_XTENSA_DIFF16. */ || reloc_type == 19 /* R_XTENSA_DIFF32. */ || reloc_type == 57 /* R_XTENSA_PDIFF8. */ || reloc_type == 58 /* R_XTENSA_PDIFF16. */ || reloc_type == 59 /* R_XTENSA_PDIFF32. */ || reloc_type == 60 /* R_XTENSA_NDIFF8. */ || reloc_type == 61 /* R_XTENSA_NDIFF16. */ || reloc_type == 62 /* R_XTENSA_NDIFF32. */); } return false; } /* Returns TRUE if there is a relocation against section NAME at OFFSET bytes. */ bool reloc_at (struct dwarf_section * dsec, uint64_t offset) { Elf_Internal_Rela * relocs; Elf_Internal_Rela * rp; if (dsec == NULL || dsec->reloc_info == NULL) return false; relocs = (Elf_Internal_Rela *) dsec->reloc_info; for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp) if (rp->r_offset == offset) return true; return false; } /* Apply relocations to a section. Returns TRUE upon success, FALSE otherwise. If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs. It is then the caller's responsibility to free them. NUM_RELOCS_RETURN will be set to the number of relocs loaded. Note: So far support has been added only for those relocations which can be found in debug sections. FIXME: Add support for more relocations ? */ static bool apply_relocations (Filedata *filedata, const Elf_Internal_Shdr *section, unsigned char *start, size_t size, void **relocs_return, uint64_t *num_relocs_return) { Elf_Internal_Shdr * relsec; unsigned char * end = start + size; if (relocs_return != NULL) { * (Elf_Internal_Rela **) relocs_return = NULL; * num_relocs_return = 0; } if (filedata->file_header.e_type != ET_REL) /* No relocs to apply. */ return true; /* Find the reloc section associated with the section. */ for (relsec = filedata->section_headers; relsec < filedata->section_headers + filedata->file_header.e_shnum; ++relsec) { bool is_rela; uint64_t num_relocs; Elf_Internal_Rela * relocs; Elf_Internal_Rela * rp; Elf_Internal_Shdr * symsec; Elf_Internal_Sym * symtab; uint64_t num_syms; Elf_Internal_Sym * sym; if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL) || relsec->sh_info >= filedata->file_header.e_shnum || filedata->section_headers + relsec->sh_info != section || relsec->sh_size == 0 || relsec->sh_link >= filedata->file_header.e_shnum) continue; symsec = filedata->section_headers + relsec->sh_link; if (symsec->sh_type != SHT_SYMTAB && symsec->sh_type != SHT_DYNSYM) return false; is_rela = relsec->sh_type == SHT_RELA; if (is_rela) { if (!slurp_rela_relocs (filedata, relsec->sh_offset, relsec->sh_size, & relocs, & num_relocs)) return false; } else { if (!slurp_rel_relocs (filedata, relsec->sh_offset, relsec->sh_size, & relocs, & num_relocs)) return false; } /* SH uses RELA but uses in place value instead of the addend field. */ if (filedata->file_header.e_machine == EM_SH) is_rela = false; symtab = get_elf_symbols (filedata, symsec, & num_syms); for (rp = relocs; rp < relocs + num_relocs; ++rp) { uint64_t addend; unsigned int reloc_type; unsigned int reloc_size; bool reloc_inplace = false; bool reloc_subtract = false; unsigned char *rloc; uint64_t sym_index; reloc_type = get_reloc_type (filedata, rp->r_info); if (target_specific_reloc_handling (filedata, rp, start, end, symtab, num_syms)) continue; else if (is_none_reloc (filedata, reloc_type)) continue; else if (is_32bit_abs_reloc (filedata, reloc_type) || is_32bit_pcrel_reloc (filedata, reloc_type)) reloc_size = 4; else if (is_64bit_abs_reloc (filedata, reloc_type) || is_64bit_pcrel_reloc (filedata, reloc_type)) reloc_size = 8; else if (is_24bit_abs_reloc (filedata, reloc_type)) reloc_size = 3; else if (is_16bit_abs_reloc (filedata, reloc_type)) reloc_size = 2; else if (is_8bit_abs_reloc (filedata, reloc_type) || is_6bit_abs_reloc (filedata, reloc_type)) reloc_size = 1; else if ((reloc_subtract = is_32bit_inplace_sub_reloc (filedata, reloc_type)) || is_32bit_inplace_add_reloc (filedata, reloc_type)) { reloc_size = 4; reloc_inplace = true; } else if ((reloc_subtract = is_64bit_inplace_sub_reloc (filedata, reloc_type)) || is_64bit_inplace_add_reloc (filedata, reloc_type)) { reloc_size = 8; reloc_inplace = true; } else if ((reloc_subtract = is_16bit_inplace_sub_reloc (filedata, reloc_type)) || is_16bit_inplace_add_reloc (filedata, reloc_type)) { reloc_size = 2; reloc_inplace = true; } else if ((reloc_subtract = is_8bit_inplace_sub_reloc (filedata, reloc_type)) || is_8bit_inplace_add_reloc (filedata, reloc_type)) { reloc_size = 1; reloc_inplace = true; } else if ((reloc_subtract = is_6bit_inplace_sub_reloc (filedata, reloc_type)) || is_6bit_inplace_add_reloc (filedata, reloc_type)) { reloc_size = 1; reloc_inplace = true; } else { static unsigned int prev_reloc = 0; if (reloc_type != prev_reloc) warn (_("unable to apply unsupported reloc type %d to section %s\n"), reloc_type, printable_section_name (filedata, section)); prev_reloc = reloc_type; continue; } rloc = start + rp->r_offset; if (!IN_RANGE (start, end, rloc, reloc_size)) { warn (_("skipping invalid relocation offset %#" PRIx64 " in section %s\n"), rp->r_offset, printable_section_name (filedata, section)); continue; } sym_index = get_reloc_symindex (rp->r_info); if (sym_index >= num_syms) { warn (_("skipping invalid relocation symbol index %#" PRIx64 " in section %s\n"), sym_index, printable_section_name (filedata, section)); continue; } sym = symtab + sym_index; /* If the reloc has a symbol associated with it, make sure that it is of an appropriate type. Relocations against symbols without type can happen. Gcc -feliminate-dwarf2-dups may generate symbols without type for debug info. Icc generates relocations against function symbols instead of local labels. Relocations against object symbols can happen, eg when referencing a global array. For an example of this see the _clz.o binary in libgcc.a. */ if (sym != symtab && ELF_ST_TYPE (sym->st_info) != STT_COMMON && ELF_ST_TYPE (sym->st_info) > STT_SECTION) { warn (_("skipping unexpected symbol type %s in section %s relocation %tu\n"), get_symbol_type (filedata, ELF_ST_TYPE (sym->st_info)), printable_section_name (filedata, relsec), rp - relocs); continue; } addend = 0; if (is_rela) addend += rp->r_addend; /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are partial_inplace. */ if (!is_rela || (filedata->file_header.e_machine == EM_XTENSA && reloc_type == 1) || ((filedata->file_header.e_machine == EM_PJ || filedata->file_header.e_machine == EM_PJ_OLD) && reloc_type == 1) || ((filedata->file_header.e_machine == EM_D30V || filedata->file_header.e_machine == EM_CYGNUS_D30V) && reloc_type == 12) || reloc_inplace) { if (is_6bit_inplace_sub_reloc (filedata, reloc_type)) addend += byte_get (rloc, reloc_size) & 0x3f; else addend += byte_get (rloc, reloc_size); } if (is_32bit_pcrel_reloc (filedata, reloc_type) || is_64bit_pcrel_reloc (filedata, reloc_type)) { /* On HPPA, all pc-relative relocations are biased by 8. */ if (filedata->file_header.e_machine == EM_PARISC) addend -= 8; byte_put (rloc, (addend + sym->st_value) - rp->r_offset, reloc_size); } else if (is_6bit_abs_reloc (filedata, reloc_type) || is_6bit_inplace_sub_reloc (filedata, reloc_type) || is_6bit_inplace_add_reloc (filedata, reloc_type)) { if (reloc_subtract) addend -= sym->st_value; else addend += sym->st_value; addend = (addend & 0x3f) | (byte_get (rloc, reloc_size) & 0xc0); byte_put (rloc, addend, reloc_size); } else if (reloc_subtract) byte_put (rloc, addend - sym->st_value, reloc_size); else byte_put (rloc, addend + sym->st_value, reloc_size); } free (symtab); /* Let the target specific reloc processing code know that we have finished with these relocs. */ target_specific_reloc_handling (filedata, NULL, NULL, NULL, NULL, 0); if (relocs_return) { * (Elf_Internal_Rela **) relocs_return = relocs; * num_relocs_return = num_relocs; } else free (relocs); break; } return true; } #ifdef SUPPORT_DISASSEMBLY static bool disassemble_section (Elf_Internal_Shdr * section, Filedata * filedata) { printf (_("\nAssembly dump of section %s\n"), printable_section_name (filedata, section)); /* FIXME: XXX -- to be done --- XXX */ return true; } #endif /* Reads in the contents of SECTION from FILE, returning a pointer to a malloc'ed buffer or NULL if something went wrong. */ static char * get_section_contents (Elf_Internal_Shdr * section, Filedata * filedata) { uint64_t num_bytes = section->sh_size; if (num_bytes == 0 || section->sh_type == SHT_NOBITS) { printf (_("Section '%s' has no data to dump.\n"), printable_section_name (filedata, section)); return NULL; } return (char *) get_data (NULL, filedata, section->sh_offset, 1, num_bytes, _("section contents")); } /* Uncompresses a section that was compressed using zlib/zstd, in place. */ static bool uncompress_section_contents (bool is_zstd, unsigned char ** buffer, uint64_t uncompressed_size, uint64_t * size, uint64_t file_size) { uint64_t compressed_size = *size; unsigned char *compressed_buffer = *buffer; unsigned char *uncompressed_buffer = NULL; z_stream strm; int rc; /* Similar to _bfd_section_size_insane() in the BFD library we expect an upper limit of ~10x compression. Any compression larger than that is thought to be due to fuzzing of the compression header. */ if (uncompressed_size > file_size * 10) { error (_("Uncompressed section size is suspiciously large: 0x%" PRIu64 "\n"), uncompressed_size); goto fail; } uncompressed_buffer = xmalloc (uncompressed_size); if (is_zstd) { #ifdef HAVE_ZSTD size_t ret = ZSTD_decompress (uncompressed_buffer, uncompressed_size, compressed_buffer, compressed_size); if (ZSTD_isError (ret)) goto fail; #endif } else { /* It is possible the section consists of several compressed buffers concatenated together, so we uncompress in a loop. */ /* PR 18313: The state field in the z_stream structure is supposed to be invisible to the user (ie us), but some compilers will still complain about it being used without initialisation. So we first zero the entire z_stream structure and then set the fields that we need. */ memset (&strm, 0, sizeof strm); strm.avail_in = compressed_size; strm.next_in = (Bytef *)compressed_buffer; strm.avail_out = uncompressed_size; rc = inflateInit (&strm); while (strm.avail_in > 0) { if (rc != Z_OK) break; strm.next_out = ((Bytef *)uncompressed_buffer + (uncompressed_size - strm.avail_out)); rc = inflate (&strm, Z_FINISH); if (rc != Z_STREAM_END) break; rc = inflateReset (&strm); } if (inflateEnd (&strm) != Z_OK || rc != Z_OK || strm.avail_out != 0) goto fail; } *buffer = uncompressed_buffer; *size = uncompressed_size; return true; fail: free (uncompressed_buffer); /* Indicate decompression failure. */ *buffer = NULL; return false; } static bool dump_section_as_strings (Elf_Internal_Shdr * section, Filedata * filedata) { Elf_Internal_Shdr *relsec; uint64_t num_bytes; unsigned char *data; unsigned char *end; unsigned char *real_start; unsigned char *start; bool some_strings_shown; real_start = start = (unsigned char *) get_section_contents (section, filedata); if (start == NULL) /* PR 21820: Do not fail if the section was empty. */ return section->sh_size == 0 || section->sh_type == SHT_NOBITS; num_bytes = section->sh_size; if (filedata->is_separate) printf (_("\nString dump of section '%s' in linked file %s:\n"), printable_section_name (filedata, section), filedata->file_name); else printf (_("\nString dump of section '%s':\n"), printable_section_name (filedata, section)); if (decompress_dumps) { uint64_t new_size = num_bytes; uint64_t uncompressed_size = 0; bool is_zstd = false; if ((section->sh_flags & SHF_COMPRESSED) != 0) { Elf_Internal_Chdr chdr; unsigned int compression_header_size = get_compression_header (& chdr, (unsigned char *) start, num_bytes); if (compression_header_size == 0) /* An error message will have already been generated by get_compression_header. */ goto error_out; if (chdr.ch_type == ch_compress_zlib) ; #ifdef HAVE_ZSTD else if (chdr.ch_type == ch_compress_zstd) is_zstd = true; #endif else { warn (_("section '%s' has unsupported compress type: %d\n"), printable_section_name (filedata, section), chdr.ch_type); goto error_out; } uncompressed_size = chdr.ch_size; start += compression_header_size; new_size -= compression_header_size; } else if (new_size > 12 && streq ((char *) start, "ZLIB")) { /* Read the zlib header. In this case, it should be "ZLIB" followed by the uncompressed section size, 8 bytes in big-endian order. */ uncompressed_size = start[4]; uncompressed_size <<= 8; uncompressed_size += start[5]; uncompressed_size <<= 8; uncompressed_size += start[6]; uncompressed_size <<= 8; uncompressed_size += start[7]; uncompressed_size <<= 8; uncompressed_size += start[8]; uncompressed_size <<= 8; uncompressed_size += start[9]; uncompressed_size <<= 8; uncompressed_size += start[10]; uncompressed_size <<= 8; uncompressed_size += start[11]; start += 12; new_size -= 12; } if (uncompressed_size) { if (uncompress_section_contents (is_zstd, &start, uncompressed_size, &new_size, filedata->file_size)) num_bytes = new_size; else { error (_("Unable to decompress section %s\n"), printable_section_name (filedata, section)); goto error_out; } } else start = real_start; } /* If the section being dumped has relocations against it the user might be expecting these relocations to have been applied. Check for this case and issue a warning message in order to avoid confusion. FIXME: Maybe we ought to have an option that dumps a section with relocs applied ? */ for (relsec = filedata->section_headers; relsec < filedata->section_headers + filedata->file_header.e_shnum; ++relsec) { if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL) || relsec->sh_info >= filedata->file_header.e_shnum || filedata->section_headers + relsec->sh_info != section || relsec->sh_size == 0 || relsec->sh_link >= filedata->file_header.e_shnum) continue; printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n")); break; } data = start; end = start + num_bytes; some_strings_shown = false; #ifdef HAVE_MBSTATE_T mbstate_t state; /* Initialise the multibyte conversion state. */ memset (& state, 0, sizeof (state)); #endif bool continuing = false; while (data < end) { while (!ISPRINT (* data)) if (++ data >= end) break; if (data < end) { size_t maxlen = end - data; if (continuing) { printf (" "); continuing = false; } else { printf (" [%6tx] ", data - start); } if (maxlen > 0) { char c = 0; while (maxlen) { c = *data++; if (c == 0) break; /* PR 25543: Treat new-lines as string-ending characters. */ if (c == '\n') { printf ("\\n\n"); if (*data != 0) continuing = true; break; } /* Do not print control characters directly as they can affect terminal settings. Such characters usually appear in the names generated by the assembler for local labels. */ if (ISCNTRL (c)) { printf ("^%c", c + 0x40); } else if (ISPRINT (c)) { putchar (c); } else { size_t n; #ifdef HAVE_MBSTATE_T wchar_t w; #endif /* Let printf do the hard work of displaying multibyte characters. */ printf ("%.1s", data - 1); #ifdef HAVE_MBSTATE_T /* Try to find out how many bytes made up the character that was just printed. Advance the symbol pointer past the bytes that were displayed. */ n = mbrtowc (& w, (char *)(data - 1), MB_CUR_MAX, & state); #else n = 1; #endif if (n != (size_t) -1 && n != (size_t) -2 && n > 0) data += (n - 1); } } if (c != '\n') putchar ('\n'); } else { printf (_("\n")); data = end; } some_strings_shown = true; } } if (! some_strings_shown) printf (_(" No strings found in this section.")); free (real_start); putchar ('\n'); return true; error_out: free (real_start); return false; } static bool dump_section_as_bytes (Elf_Internal_Shdr *section, Filedata *filedata, bool relocate) { Elf_Internal_Shdr *relsec; size_t bytes; uint64_t section_size; uint64_t addr; unsigned char *data; unsigned char *real_start; unsigned char *start; real_start = start = (unsigned char *) get_section_contents (section, filedata); if (start == NULL) /* PR 21820: Do not fail if the section was empty. */ return section->sh_size == 0 || section->sh_type == SHT_NOBITS; section_size = section->sh_size; if (filedata->is_separate) printf (_("\nHex dump of section '%s' in linked file %s:\n"), printable_section_name (filedata, section), filedata->file_name); else printf (_("\nHex dump of section '%s':\n"), printable_section_name (filedata, section)); if (decompress_dumps) { uint64_t new_size = section_size; uint64_t uncompressed_size = 0; bool is_zstd = false; if ((section->sh_flags & SHF_COMPRESSED) != 0) { Elf_Internal_Chdr chdr; unsigned int compression_header_size = get_compression_header (& chdr, start, section_size); if (compression_header_size == 0) /* An error message will have already been generated by get_compression_header. */ goto error_out; if (chdr.ch_type == ch_compress_zlib) ; #ifdef HAVE_ZSTD else if (chdr.ch_type == ch_compress_zstd) is_zstd = true; #endif else { warn (_("section '%s' has unsupported compress type: %d\n"), printable_section_name (filedata, section), chdr.ch_type); goto error_out; } uncompressed_size = chdr.ch_size; start += compression_header_size; new_size -= compression_header_size; } else if (new_size > 12 && streq ((char *) start, "ZLIB")) { /* Read the zlib header. In this case, it should be "ZLIB" followed by the uncompressed section size, 8 bytes in big-endian order. */ uncompressed_size = start[4]; uncompressed_size <<= 8; uncompressed_size += start[5]; uncompressed_size <<= 8; uncompressed_size += start[6]; uncompressed_size <<= 8; uncompressed_size += start[7]; uncompressed_size <<= 8; uncompressed_size += start[8]; uncompressed_size <<= 8; uncompressed_size += start[9]; uncompressed_size <<= 8; uncompressed_size += start[10]; uncompressed_size <<= 8; uncompressed_size += start[11]; start += 12; new_size -= 12; } if (uncompressed_size) { if (uncompress_section_contents (is_zstd, &start, uncompressed_size, &new_size, filedata->file_size)) { section_size = new_size; } else { error (_("Unable to decompress section %s\n"), printable_section_name (filedata, section)); /* FIXME: Print the section anyway ? */ goto error_out; } } else start = real_start; } if (relocate) { if (! apply_relocations (filedata, section, start, section_size, NULL, NULL)) goto error_out; } else { /* If the section being dumped has relocations against it the user might be expecting these relocations to have been applied. Check for this case and issue a warning message in order to avoid confusion. FIXME: Maybe we ought to have an option that dumps a section with relocs applied ? */ for (relsec = filedata->section_headers; relsec < filedata->section_headers + filedata->file_header.e_shnum; ++relsec) { if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL) || relsec->sh_info >= filedata->file_header.e_shnum || filedata->section_headers + relsec->sh_info != section || relsec->sh_size == 0 || relsec->sh_link >= filedata->file_header.e_shnum) continue; printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n")); break; } } addr = section->sh_addr; bytes = section_size; data = start; while (bytes) { int j; int k; int lbytes; lbytes = (bytes > 16 ? 16 : bytes); printf (" 0x%8.8" PRIx64 " ", addr); for (j = 0; j < 16; j++) { if (j < lbytes) printf ("%2.2x", data[j]); else printf (" "); if ((j & 3) == 3) printf (" "); } for (j = 0; j < lbytes; j++) { k = data[j]; if (k >= ' ' && k < 0x7f) printf ("%c", k); else printf ("."); } putchar ('\n'); data += lbytes; addr += lbytes; bytes -= lbytes; } free (real_start); putchar ('\n'); return true; error_out: free (real_start); return false; } #ifdef ENABLE_LIBCTF static ctf_sect_t * shdr_to_ctf_sect (ctf_sect_t *buf, Elf_Internal_Shdr *shdr, Filedata *filedata) { buf->cts_name = printable_section_name (filedata, shdr); buf->cts_size = shdr->sh_size; buf->cts_entsize = shdr->sh_entsize; return buf; } /* Formatting callback function passed to ctf_dump. Returns either the pointer it is passed, or a pointer to newly-allocated storage, in which case dump_ctf() will free it when it no longer needs it. */ static char * dump_ctf_indent_lines (ctf_sect_names_t sect ATTRIBUTE_UNUSED, char *s, void *arg) { const char *blanks = arg; char *new_s; if (asprintf (&new_s, "%s%s", blanks, s) < 0) return s; return new_s; } /* Dump CTF errors/warnings. */ static void dump_ctf_errs (ctf_dict_t *fp) { ctf_next_t *it = NULL; char *errtext; int is_warning; int err; /* Dump accumulated errors and warnings. */ while ((errtext = ctf_errwarning_next (fp, &it, &is_warning, &err)) != NULL) { error (_("%s: %s"), is_warning ? _("warning"): _("error"), errtext); free (errtext); } if (err != ECTF_NEXT_END) error (_("CTF error: cannot get CTF errors: `%s'"), ctf_errmsg (err)); } /* Dump one CTF archive member. */ static void dump_ctf_archive_member (ctf_dict_t *ctf, const char *name, ctf_dict_t *parent, size_t member) { const char *things[] = {"Header", "Labels", "Data objects", "Function objects", "Variables", "Types", "Strings", ""}; const char **thing; size_t i; /* Don't print out the name of the default-named archive member if it appears first in the list. The name .ctf appears everywhere, even for things that aren't really archives, so printing it out is liable to be confusing; also, the common case by far is for only one archive member to exist, and hiding it in that case seems worthwhile. */ if (strcmp (name, ".ctf") != 0 || member != 0) printf (_("\nCTF archive member: %s:\n"), name); if (ctf_parent_name (ctf) != NULL) ctf_import (ctf, parent); for (i = 0, thing = things; *thing[0]; thing++, i++) { ctf_dump_state_t *s = NULL; char *item; printf ("\n %s:\n", *thing); while ((item = ctf_dump (ctf, &s, i, dump_ctf_indent_lines, (void *) " ")) != NULL) { printf ("%s\n", item); free (item); } if (ctf_errno (ctf)) { error (_("Iteration failed: %s, %s\n"), *thing, ctf_errmsg (ctf_errno (ctf))); break; } } dump_ctf_errs (ctf); } static bool dump_section_as_ctf (Elf_Internal_Shdr * section, Filedata * filedata) { Elf_Internal_Shdr * symtab_sec = NULL; Elf_Internal_Shdr * strtab_sec = NULL; void * data = NULL; void * symdata = NULL; void * strdata = NULL; ctf_sect_t ctfsect, symsect, strsect; ctf_sect_t * symsectp = NULL; ctf_sect_t * strsectp = NULL; ctf_archive_t * ctfa = NULL; ctf_dict_t * parent = NULL; ctf_dict_t * fp; ctf_next_t *i = NULL; const char *name; size_t member = 0; int err; bool ret = false; shdr_to_ctf_sect (&ctfsect, section, filedata); data = get_section_contents (section, filedata); ctfsect.cts_data = data; if (!dump_ctf_symtab_name) dump_ctf_symtab_name = strdup (".dynsym"); if (!dump_ctf_strtab_name) dump_ctf_strtab_name = strdup (".dynstr"); if (dump_ctf_symtab_name && dump_ctf_symtab_name[0] != 0) { if ((symtab_sec = find_section (filedata, dump_ctf_symtab_name)) == NULL) { error (_("No symbol section named %s\n"), dump_ctf_symtab_name); goto fail; } if ((symdata = (void *) get_data (NULL, filedata, symtab_sec->sh_offset, 1, symtab_sec->sh_size, _("symbols"))) == NULL) goto fail; symsectp = shdr_to_ctf_sect (&symsect, symtab_sec, filedata); symsect.cts_data = symdata; } if (dump_ctf_strtab_name && dump_ctf_strtab_name[0] != 0) { if ((strtab_sec = find_section (filedata, dump_ctf_strtab_name)) == NULL) { error (_("No string table section named %s\n"), dump_ctf_strtab_name); goto fail; } if ((strdata = (void *) get_data (NULL, filedata, strtab_sec->sh_offset, 1, strtab_sec->sh_size, _("strings"))) == NULL) goto fail; strsectp = shdr_to_ctf_sect (&strsect, strtab_sec, filedata); strsect.cts_data = strdata; } /* Load the CTF file and dump it. It may be a raw CTF section, or an archive: libctf papers over the difference, so we can pretend it is always an archive. */ if ((ctfa = ctf_arc_bufopen (&ctfsect, symsectp, strsectp, &err)) == NULL) { dump_ctf_errs (NULL); error (_("CTF open failure: %s\n"), ctf_errmsg (err)); goto fail; } ctf_arc_symsect_endianness (ctfa, filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB); /* Preload the parent dict, since it will need to be imported into every child in turn. */ if ((parent = ctf_dict_open (ctfa, dump_ctf_parent_name, &err)) == NULL) { dump_ctf_errs (NULL); error (_("CTF open failure: %s\n"), ctf_errmsg (err)); goto fail; } ret = true; if (filedata->is_separate) printf (_("\nDump of CTF section '%s' in linked file %s:\n"), printable_section_name (filedata, section), filedata->file_name); else printf (_("\nDump of CTF section '%s':\n"), printable_section_name (filedata, section)); while ((fp = ctf_archive_next (ctfa, &i, &name, 0, &err)) != NULL) dump_ctf_archive_member (fp, name, parent, member++); if (err != ECTF_NEXT_END) { dump_ctf_errs (NULL); error (_("CTF member open failure: %s\n"), ctf_errmsg (err)); ret = false; } fail: ctf_dict_close (parent); ctf_close (ctfa); free (data); free (symdata); free (strdata); return ret; } #endif static bool dump_section_as_sframe (Elf_Internal_Shdr * section, Filedata * filedata) { void * data = NULL; sframe_decoder_ctx *sfd_ctx = NULL; const char *print_name = printable_section_name (filedata, section); bool ret = true; size_t sf_size; int err = 0; if (strcmp (print_name, "") == 0) { error (_("Section name must be provided \n")); ret = false; return ret; } data = get_section_contents (section, filedata); sf_size = section->sh_size; /* Decode the contents of the section. */ sfd_ctx = sframe_decode ((const char*)data, sf_size, &err); if (!sfd_ctx) { ret = false; error (_("SFrame decode failure: %s\n"), sframe_errmsg (err)); goto fail; } printf (_("Contents of the SFrame section %s:"), print_name); /* Dump the contents as text. */ dump_sframe (sfd_ctx, section->sh_addr); fail: free (data); return ret; } static bool load_specific_debug_section (enum dwarf_section_display_enum debug, const Elf_Internal_Shdr * sec, void * data) { struct dwarf_section * section = &debug_displays [debug].section; char buf [64]; Filedata * filedata = (Filedata *) data; if (section->start != NULL) { /* If it is already loaded, do nothing. */ if (streq (section->filename, filedata->file_name)) return true; free (section->start); } snprintf (buf, sizeof (buf), _("%s section data"), section->name); section->address = sec->sh_addr; section->filename = filedata->file_name; section->start = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, sec->sh_size, buf); if (section->start == NULL) section->size = 0; else { unsigned char *start = section->start; uint64_t size = sec->sh_size; uint64_t uncompressed_size = 0; bool is_zstd = false; if ((sec->sh_flags & SHF_COMPRESSED) != 0) { Elf_Internal_Chdr chdr; unsigned int compression_header_size; if (size < (is_32bit_elf ? sizeof (Elf32_External_Chdr) : sizeof (Elf64_External_Chdr))) { warn (_("compressed section %s is too small to contain a compression header\n"), section->name); return false; } compression_header_size = get_compression_header (&chdr, start, size); if (compression_header_size == 0) /* An error message will have already been generated by get_compression_header. */ return false; if (chdr.ch_type == ch_compress_zlib) ; #ifdef HAVE_ZSTD else if (chdr.ch_type == ch_compress_zstd) is_zstd = true; #endif else { warn (_("section '%s' has unsupported compress type: %d\n"), section->name, chdr.ch_type); return false; } uncompressed_size = chdr.ch_size; start += compression_header_size; size -= compression_header_size; } else if (size > 12 && streq ((char *) start, "ZLIB")) { /* Read the zlib header. In this case, it should be "ZLIB" followed by the uncompressed section size, 8 bytes in big-endian order. */ uncompressed_size = start[4]; uncompressed_size <<= 8; uncompressed_size += start[5]; uncompressed_size <<= 8; uncompressed_size += start[6]; uncompressed_size <<= 8; uncompressed_size += start[7]; uncompressed_size <<= 8; uncompressed_size += start[8]; uncompressed_size <<= 8; uncompressed_size += start[9]; uncompressed_size <<= 8; uncompressed_size += start[10]; uncompressed_size <<= 8; uncompressed_size += start[11]; start += 12; size -= 12; } if (uncompressed_size) { if (uncompress_section_contents (is_zstd, &start, uncompressed_size, &size, filedata->file_size)) { /* Free the compressed buffer, update the section buffer and the section size if uncompress is successful. */ free (section->start); section->start = start; } else { error (_("Unable to decompress section %s\n"), printable_section_name (filedata, sec)); return false; } } section->size = size; } if (section->start == NULL) return false; if (debug_displays [debug].relocate) { if (! apply_relocations (filedata, sec, section->start, section->size, & section->reloc_info, & section->num_relocs)) return false; } else { section->reloc_info = NULL; section->num_relocs = 0; } return true; } #if HAVE_LIBDEBUGINFOD /* Return a hex string representation of the build-id. */ unsigned char * get_build_id (void * data) { Filedata * filedata = (Filedata *) data; Elf_Internal_Shdr * shdr; size_t i; /* Iterate through notes to find note.gnu.build-id. FIXME: Only the first note in any note section is examined. */ for (i = 0, shdr = filedata->section_headers; i < filedata->file_header.e_shnum && shdr != NULL; i++, shdr++) { if (shdr->sh_type != SHT_NOTE) continue; char * next; char * end; size_t data_remaining; size_t min_notesz; Elf_External_Note * enote; Elf_Internal_Note inote; uint64_t offset = shdr->sh_offset; uint64_t align = shdr->sh_addralign; uint64_t length = shdr->sh_size; enote = (Elf_External_Note *) get_section_contents (shdr, filedata); if (enote == NULL) continue; if (align < 4) align = 4; else if (align != 4 && align != 8) { free (enote); continue; } end = (char *) enote + length; data_remaining = end - (char *) enote; if (!is_ia64_vms (filedata)) { min_notesz = offsetof (Elf_External_Note, name); if (data_remaining < min_notesz) { warn (_("\ malformed note encountered in section %s whilst scanning for build-id note\n"), printable_section_name (filedata, shdr)); free (enote); continue; } data_remaining -= min_notesz; inote.type = BYTE_GET (enote->type); inote.namesz = BYTE_GET (enote->namesz); inote.namedata = enote->name; inote.descsz = BYTE_GET (enote->descsz); inote.descdata = ((char *) enote + ELF_NOTE_DESC_OFFSET (inote.namesz, align)); inote.descpos = offset + (inote.descdata - (char *) enote); next = ((char *) enote + ELF_NOTE_NEXT_OFFSET (inote.namesz, inote.descsz, align)); } else { Elf64_External_VMS_Note *vms_enote; /* PR binutils/15191 Make sure that there is enough data to read. */ min_notesz = offsetof (Elf64_External_VMS_Note, name); if (data_remaining < min_notesz) { warn (_("\ malformed note encountered in section %s whilst scanning for build-id note\n"), printable_section_name (filedata, shdr)); free (enote); continue; } data_remaining -= min_notesz; vms_enote = (Elf64_External_VMS_Note *) enote; inote.type = BYTE_GET (vms_enote->type); inote.namesz = BYTE_GET (vms_enote->namesz); inote.namedata = vms_enote->name; inote.descsz = BYTE_GET (vms_enote->descsz); inote.descdata = inote.namedata + align_power (inote.namesz, 3); inote.descpos = offset + (inote.descdata - (char *) enote); next = inote.descdata + align_power (inote.descsz, 3); } /* Skip malformed notes. */ if ((size_t) (inote.descdata - inote.namedata) < inote.namesz || (size_t) (inote.descdata - inote.namedata) > data_remaining || (size_t) (next - inote.descdata) < inote.descsz || ((size_t) (next - inote.descdata) > data_remaining - (size_t) (inote.descdata - inote.namedata))) { warn (_("\ malformed note encountered in section %s whilst scanning for build-id note\n"), printable_section_name (filedata, shdr)); free (enote); continue; } /* Check if this is the build-id note. If so then convert the build-id bytes to a hex string. */ if (inote.namesz > 0 && startswith (inote.namedata, "GNU") && inote.type == NT_GNU_BUILD_ID) { size_t j; char * build_id; build_id = malloc (inote.descsz * 2 + 1); if (build_id == NULL) { free (enote); return NULL; } for (j = 0; j < inote.descsz; ++j) sprintf (build_id + (j * 2), "%02x", inote.descdata[j] & 0xff); build_id[inote.descsz * 2] = '\0'; free (enote); return (unsigned char *) build_id; } free (enote); } return NULL; } #endif /* HAVE_LIBDEBUGINFOD */ /* If this is not NULL, load_debug_section will only look for sections within the list of sections given here. */ static unsigned int * section_subset = NULL; bool load_debug_section (enum dwarf_section_display_enum debug, void * data) { struct dwarf_section * section = &debug_displays [debug].section; Elf_Internal_Shdr * sec; Filedata * filedata = (Filedata *) data; if (!dump_any_debugging) return false; /* Without section headers we cannot find any sections. */ if (filedata->section_headers == NULL) return false; if (filedata->string_table == NULL && filedata->file_header.e_shstrndx != SHN_UNDEF && filedata->file_header.e_shstrndx < filedata->file_header.e_shnum) { Elf_Internal_Shdr * strs; /* Read in the string table, so that we have section names to scan. */ strs = filedata->section_headers + filedata->file_header.e_shstrndx; if (strs != NULL && strs->sh_size != 0) { filedata->string_table = (char *) get_data (NULL, filedata, strs->sh_offset, 1, strs->sh_size, _("string table")); filedata->string_table_length = filedata->string_table != NULL ? strs->sh_size : 0; } } /* Locate the debug section. */ sec = find_section_in_set (filedata, section->uncompressed_name, section_subset); if (sec != NULL) section->name = section->uncompressed_name; else { sec = find_section_in_set (filedata, section->compressed_name, section_subset); if (sec != NULL) section->name = section->compressed_name; } if (sec == NULL) return false; /* If we're loading from a subset of sections, and we've loaded a section matching this name before, it's likely that it's a different one. */ if (section_subset != NULL) free_debug_section (debug); return load_specific_debug_section (debug, sec, data); } void free_debug_section (enum dwarf_section_display_enum debug) { struct dwarf_section * section = &debug_displays [debug].section; if (section->start == NULL) return; free ((char *) section->start); section->start = NULL; section->address = 0; section->size = 0; free (section->reloc_info); section->reloc_info = NULL; section->num_relocs = 0; } static bool display_debug_section (int shndx, Elf_Internal_Shdr * section, Filedata * filedata) { const char *name = (section_name_valid (filedata, section) ? section_name (filedata, section) : ""); const char *print_name = printable_section_name (filedata, section); uint64_t length; bool result = true; int i; length = section->sh_size; if (length == 0) { printf (_("\nSection '%s' has no debugging data.\n"), print_name); return true; } if (section->sh_type == SHT_NOBITS) { /* There is no point in dumping the contents of a debugging section which has the NOBITS type - the bits in the file will be random. This can happen when a file containing a .eh_frame section is stripped with the --only-keep-debug command line option. */ printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"), print_name); return false; } if (startswith (name, ".gnu.linkonce.wi.")) name = ".debug_info"; /* See if we know how to display the contents of this section. */ for (i = 0; i < max; i++) { enum dwarf_section_display_enum id = (enum dwarf_section_display_enum) i; struct dwarf_section_display * display = debug_displays + i; struct dwarf_section * sec = & display->section; if (streq (sec->uncompressed_name, name) || (id == line && startswith (name, ".debug_line.")) || streq (sec->compressed_name, name)) { bool secondary = (section != find_section (filedata, name)); if (secondary) free_debug_section (id); if (i == line && startswith (name, ".debug_line.")) sec->name = name; else if (streq (sec->uncompressed_name, name)) sec->name = sec->uncompressed_name; else sec->name = sec->compressed_name; if (load_specific_debug_section (id, section, filedata)) { /* If this debug section is part of a CU/TU set in a .dwp file, restrict load_debug_section to the sections in that set. */ section_subset = find_cu_tu_set (filedata, shndx); result &= display->display (sec, filedata); section_subset = NULL; if (secondary || (id != info && id != abbrev && id != debug_addr)) free_debug_section (id); } break; } } if (i == max) { printf (_("Unrecognized debug section: %s\n"), print_name); result = false; } return result; } /* Set DUMP_SECTS for all sections where dumps were requested based on section name. */ static void initialise_dumps_byname (Filedata * filedata) { struct dump_list_entry * cur; for (cur = dump_sects_byname; cur; cur = cur->next) { unsigned int i; bool any = false; for (i = 0; i < filedata->file_header.e_shnum; i++) if (section_name_valid (filedata, filedata->section_headers + i) && streq (section_name (filedata, filedata->section_headers + i), cur->name)) { request_dump_bynumber (&filedata->dump, i, cur->type); any = true; } if (!any && !filedata->is_separate) warn (_("Section '%s' was not dumped because it does not exist\n"), cur->name); } } static bool process_section_contents (Filedata * filedata) { Elf_Internal_Shdr * section; unsigned int i; bool res = true; if (! do_dump) return true; initialise_dumps_byname (filedata); for (i = 0, section = filedata->section_headers; i < filedata->file_header.e_shnum && i < filedata->dump.num_dump_sects; i++, section++) { dump_type dump = filedata->dump.dump_sects[i]; if (filedata->is_separate && ! process_links) dump &= DEBUG_DUMP; #ifdef SUPPORT_DISASSEMBLY if (dump & DISASS_DUMP) { if (! disassemble_section (section, filedata)) res = false; } #endif if (dump & HEX_DUMP) { if (! dump_section_as_bytes (section, filedata, false)) res = false; } if (dump & RELOC_DUMP) { if (! dump_section_as_bytes (section, filedata, true)) res = false; } if (dump & STRING_DUMP) { if (! dump_section_as_strings (section, filedata)) res = false; } if (dump & DEBUG_DUMP) { if (! display_debug_section (i, section, filedata)) res = false; } #ifdef ENABLE_LIBCTF if (dump & CTF_DUMP) { if (! dump_section_as_ctf (section, filedata)) res = false; } #endif if (dump & SFRAME_DUMP) { if (! dump_section_as_sframe (section, filedata)) res = false; } } if (! filedata->is_separate) { /* Check to see if the user requested a dump of a section that does not exist. */ for (; i < filedata->dump.num_dump_sects; i++) if (filedata->dump.dump_sects[i]) { warn (_("Section %d was not dumped because it does not exist!\n"), i); res = false; } } return res; } static void process_mips_fpe_exception (int mask) { if (mask) { bool first = true; if (mask & OEX_FPU_INEX) fputs ("INEX", stdout), first = false; if (mask & OEX_FPU_UFLO) printf ("%sUFLO", first ? "" : "|"), first = false; if (mask & OEX_FPU_OFLO) printf ("%sOFLO", first ? "" : "|"), first = false; if (mask & OEX_FPU_DIV0) printf ("%sDIV0", first ? "" : "|"), first = false; if (mask & OEX_FPU_INVAL) printf ("%sINVAL", first ? "" : "|"); } else fputs ("0", stdout); } /* Display's the value of TAG at location P. If TAG is greater than 0 it is assumed to be an unknown tag, and a message is printed to this effect. Otherwise it is assumed that a message has already been printed. If the bottom bit of TAG is set it assumed to have a string value, otherwise it is assumed to have an integer value. Returns an updated P pointing to the first unread byte beyond the end of TAG's value. Reads at or beyond END will not be made. */ static unsigned char * display_tag_value (signed int tag, unsigned char * p, const unsigned char * const end) { uint64_t val; if (tag > 0) printf (" Tag_unknown_%d: ", tag); if (p >= end) { warn (_("\n")); } else if (tag & 1) { /* PR 17531 file: 027-19978-0.004. */ size_t maxlen = (end - p) - 1; putchar ('"'); if (maxlen > 0) { print_symbol_name ((int) maxlen, (const char *) p); p += strnlen ((char *) p, maxlen) + 1; } else { printf (_("")); p = (unsigned char *) end; } printf ("\"\n"); } else { READ_ULEB (val, p, end); printf ("%" PRId64 " (0x%" PRIx64 ")\n", val, val); } assert (p <= end); return p; } /* ARC ABI attributes section. */ static unsigned char * display_arc_attribute (unsigned char * p, const unsigned char * const end) { unsigned int tag; unsigned int val; READ_ULEB (tag, p, end); switch (tag) { case Tag_ARC_PCS_config: READ_ULEB (val, p, end); printf (" Tag_ARC_PCS_config: "); switch (val) { case 0: printf (_("Absent/Non standard\n")); break; case 1: printf (_("Bare metal/mwdt\n")); break; case 2: printf (_("Bare metal/newlib\n")); break; case 3: printf (_("Linux/uclibc\n")); break; case 4: printf (_("Linux/glibc\n")); break; default: printf (_("Unknown\n")); break; } break; case Tag_ARC_CPU_base: READ_ULEB (val, p, end); printf (" Tag_ARC_CPU_base: "); switch (val) { default: case TAG_CPU_NONE: printf (_("Absent\n")); break; case TAG_CPU_ARC6xx: printf ("ARC6xx\n"); break; case TAG_CPU_ARC7xx: printf ("ARC7xx\n"); break; case TAG_CPU_ARCEM: printf ("ARCEM\n"); break; case TAG_CPU_ARCHS: printf ("ARCHS\n"); break; } break; case Tag_ARC_CPU_variation: READ_ULEB (val, p, end); printf (" Tag_ARC_CPU_variation: "); switch (val) { default: if (val > 0 && val < 16) printf ("Core%d\n", val); else printf ("Unknown\n"); break; case 0: printf (_("Absent\n")); break; } break; case Tag_ARC_CPU_name: printf (" Tag_ARC_CPU_name: "); p = display_tag_value (-1, p, end); break; case Tag_ARC_ABI_rf16: READ_ULEB (val, p, end); printf (" Tag_ARC_ABI_rf16: %s\n", val ? _("yes") : _("no")); break; case Tag_ARC_ABI_osver: READ_ULEB (val, p, end); printf (" Tag_ARC_ABI_osver: v%d\n", val); break; case Tag_ARC_ABI_pic: case Tag_ARC_ABI_sda: READ_ULEB (val, p, end); printf (tag == Tag_ARC_ABI_sda ? " Tag_ARC_ABI_sda: " : " Tag_ARC_ABI_pic: "); switch (val) { case 0: printf (_("Absent\n")); break; case 1: printf ("MWDT\n"); break; case 2: printf ("GNU\n"); break; default: printf (_("Unknown\n")); break; } break; case Tag_ARC_ABI_tls: READ_ULEB (val, p, end); printf (" Tag_ARC_ABI_tls: %s\n", val ? "r25": "none"); break; case Tag_ARC_ABI_enumsize: READ_ULEB (val, p, end); printf (" Tag_ARC_ABI_enumsize: %s\n", val ? _("default") : _("smallest")); break; case Tag_ARC_ABI_exceptions: READ_ULEB (val, p, end); printf (" Tag_ARC_ABI_exceptions: %s\n", val ? _("OPTFP") : _("default")); break; case Tag_ARC_ABI_double_size: READ_ULEB (val, p, end); printf (" Tag_ARC_ABI_double_size: %d\n", val); break; case Tag_ARC_ISA_config: printf (" Tag_ARC_ISA_config: "); p = display_tag_value (-1, p, end); break; case Tag_ARC_ISA_apex: printf (" Tag_ARC_ISA_apex: "); p = display_tag_value (-1, p, end); break; case Tag_ARC_ISA_mpy_option: READ_ULEB (val, p, end); printf (" Tag_ARC_ISA_mpy_option: %d\n", val); break; case Tag_ARC_ATR_version: READ_ULEB (val, p, end); printf (" Tag_ARC_ATR_version: %d\n", val); break; default: return display_tag_value (tag & 1, p, end); } return p; } /* ARM EABI attributes section. */ typedef struct { unsigned int tag; const char * name; /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */ unsigned int type; const char *const *table; } arm_attr_public_tag; static const char *const arm_attr_tag_CPU_arch[] = {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2", "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "v8-R", "v8-M.baseline", "v8-M.mainline", "v8.1-A", "v8.2-A", "v8.3-A", "v8.1-M.mainline", "v9"}; static const char *const arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"}; static const char *const arm_attr_tag_THUMB_ISA_use[] = {"No", "Thumb-1", "Thumb-2", "Yes"}; static const char *const arm_attr_tag_FP_arch[] = {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16", "FP for ARMv8", "FPv5/FP-D16 for ARMv8"}; static const char *const arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"}; static const char *const arm_attr_tag_Advanced_SIMD_arch[] = {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8", "NEON for ARMv8.1"}; static const char *const arm_attr_tag_PCS_config[] = {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004", "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"}; static const char *const arm_attr_tag_ABI_PCS_R9_use[] = {"V6", "SB", "TLS", "Unused"}; static const char *const arm_attr_tag_ABI_PCS_RW_data[] = {"Absolute", "PC-relative", "SB-relative", "None"}; static const char *const arm_attr_tag_ABI_PCS_RO_data[] = {"Absolute", "PC-relative", "None"}; static const char *const arm_attr_tag_ABI_PCS_GOT_use[] = {"None", "direct", "GOT-indirect"}; static const char *const arm_attr_tag_ABI_PCS_wchar_t[] = {"None", "??? 1", "2", "??? 3", "4"}; static const char *const arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"}; static const char *const arm_attr_tag_ABI_FP_denormal[] = {"Unused", "Needed", "Sign only"}; static const char *const arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"}; static const char *const arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"}; static const char *const arm_attr_tag_ABI_FP_number_model[] = {"Unused", "Finite", "RTABI", "IEEE 754"}; static const char *const arm_attr_tag_ABI_enum_size[] = {"Unused", "small", "int", "forced to int"}; static const char *const arm_attr_tag_ABI_HardFP_use[] = {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"}; static const char *const arm_attr_tag_ABI_VFP_args[] = {"AAPCS", "VFP registers", "custom", "compatible"}; static const char *const arm_attr_tag_ABI_WMMX_args[] = {"AAPCS", "WMMX registers", "custom"}; static const char *const arm_attr_tag_ABI_optimization_goals[] = {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size", "Aggressive Size", "Prefer Debug", "Aggressive Debug"}; static const char *const arm_attr_tag_ABI_FP_optimization_goals[] = {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size", "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"}; static const char *const arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"}; static const char *const arm_attr_tag_FP_HP_extension[] = {"Not Allowed", "Allowed"}; static const char *const arm_attr_tag_ABI_FP_16bit_format[] = {"None", "IEEE 754", "Alternative Format"}; static const char *const arm_attr_tag_DSP_extension[] = {"Follow architecture", "Allowed"}; static const char *const arm_attr_tag_MPextension_use[] = {"Not Allowed", "Allowed"}; static const char *const arm_attr_tag_DIV_use[] = {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed", "Allowed in v7-A with integer division extension"}; static const char *const arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"}; static const char *const arm_attr_tag_Virtualization_use[] = {"Not Allowed", "TrustZone", "Virtualization Extensions", "TrustZone and Virtualization Extensions"}; static const char *const arm_attr_tag_MPextension_use_legacy[] = {"Not Allowed", "Allowed"}; static const char *const arm_attr_tag_MVE_arch[] = {"No MVE", "MVE Integer only", "MVE Integer and FP"}; static const char * arm_attr_tag_PAC_extension[] = {"No PAC/AUT instructions", "PAC/AUT instructions permitted in the NOP space", "PAC/AUT instructions permitted in the NOP and in the non-NOP space"}; static const char * arm_attr_tag_BTI_extension[] = {"BTI instructions not permitted", "BTI instructions permitted in the NOP space", "BTI instructions permitted in the NOP and in the non-NOP space"}; static const char * arm_attr_tag_BTI_use[] = {"Compiled without branch target enforcement", "Compiled with branch target enforcement"}; static const char * arm_attr_tag_PACRET_use[] = {"Compiled without return address signing and authentication", "Compiled with return address signing and authentication"}; #define LOOKUP(id, name) \ {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name} static arm_attr_public_tag arm_attr_public_tags[] = { {4, "CPU_raw_name", 1, NULL}, {5, "CPU_name", 1, NULL}, LOOKUP(6, CPU_arch), {7, "CPU_arch_profile", 0, NULL}, LOOKUP(8, ARM_ISA_use), LOOKUP(9, THUMB_ISA_use), LOOKUP(10, FP_arch), LOOKUP(11, WMMX_arch), LOOKUP(12, Advanced_SIMD_arch), LOOKUP(13, PCS_config), LOOKUP(14, ABI_PCS_R9_use), LOOKUP(15, ABI_PCS_RW_data), LOOKUP(16, ABI_PCS_RO_data), LOOKUP(17, ABI_PCS_GOT_use), LOOKUP(18, ABI_PCS_wchar_t), LOOKUP(19, ABI_FP_rounding), LOOKUP(20, ABI_FP_denormal), LOOKUP(21, ABI_FP_exceptions), LOOKUP(22, ABI_FP_user_exceptions), LOOKUP(23, ABI_FP_number_model), {24, "ABI_align_needed", 0, NULL}, {25, "ABI_align_preserved", 0, NULL}, LOOKUP(26, ABI_enum_size), LOOKUP(27, ABI_HardFP_use), LOOKUP(28, ABI_VFP_args), LOOKUP(29, ABI_WMMX_args), LOOKUP(30, ABI_optimization_goals), LOOKUP(31, ABI_FP_optimization_goals), {32, "compatibility", 0, NULL}, LOOKUP(34, CPU_unaligned_access), LOOKUP(36, FP_HP_extension), LOOKUP(38, ABI_FP_16bit_format), LOOKUP(42, MPextension_use), LOOKUP(44, DIV_use), LOOKUP(46, DSP_extension), LOOKUP(48, MVE_arch), LOOKUP(50, PAC_extension), LOOKUP(52, BTI_extension), LOOKUP(74, BTI_use), LOOKUP(76, PACRET_use), {64, "nodefaults", 0, NULL}, {65, "also_compatible_with", 0, NULL}, LOOKUP(66, T2EE_use), {67, "conformance", 1, NULL}, LOOKUP(68, Virtualization_use), LOOKUP(70, MPextension_use_legacy) }; #undef LOOKUP static unsigned char * display_arm_attribute (unsigned char * p, const unsigned char * const end) { unsigned int tag; unsigned int val; arm_attr_public_tag * attr; unsigned i; unsigned int type; READ_ULEB (tag, p, end); attr = NULL; for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++) { if (arm_attr_public_tags[i].tag == tag) { attr = &arm_attr_public_tags[i]; break; } } if (attr) { printf (" Tag_%s: ", attr->name); switch (attr->type) { case 0: switch (tag) { case 7: /* Tag_CPU_arch_profile. */ READ_ULEB (val, p, end); switch (val) { case 0: printf (_("None\n")); break; case 'A': printf (_("Application\n")); break; case 'R': printf (_("Realtime\n")); break; case 'M': printf (_("Microcontroller\n")); break; case 'S': printf (_("Application or Realtime\n")); break; default: printf ("??? (%d)\n", val); break; } break; case 24: /* Tag_align_needed. */ READ_ULEB (val, p, end); switch (val) { case 0: printf (_("None\n")); break; case 1: printf (_("8-byte\n")); break; case 2: printf (_("4-byte\n")); break; case 3: printf ("??? 3\n"); break; default: if (val <= 12) printf (_("8-byte and up to %d-byte extended\n"), 1 << val); else printf ("??? (%d)\n", val); break; } break; case 25: /* Tag_align_preserved. */ READ_ULEB (val, p, end); switch (val) { case 0: printf (_("None\n")); break; case 1: printf (_("8-byte, except leaf SP\n")); break; case 2: printf (_("8-byte\n")); break; case 3: printf ("??? 3\n"); break; default: if (val <= 12) printf (_("8-byte and up to %d-byte extended\n"), 1 << val); else printf ("??? (%d)\n", val); break; } break; case 32: /* Tag_compatibility. */ { READ_ULEB (val, p, end); printf (_("flag = %d, vendor = "), val); if (p < end - 1) { size_t maxlen = (end - p) - 1; print_symbol_name ((int) maxlen, (const char *) p); p += strnlen ((char *) p, maxlen) + 1; } else { printf (_("")); p = (unsigned char *) end; } putchar ('\n'); } break; case 64: /* Tag_nodefaults. */ /* PR 17531: file: 001-505008-0.01. */ if (p < end) p++; printf (_("True\n")); break; case 65: /* Tag_also_compatible_with. */ READ_ULEB (val, p, end); if (val == 6 /* Tag_CPU_arch. */) { READ_ULEB (val, p, end); if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch)) printf ("??? (%d)\n", val); else printf ("%s\n", arm_attr_tag_CPU_arch[val]); } else printf ("???\n"); while (p < end && *(p++) != '\0' /* NUL terminator. */) ; break; default: printf (_("\n"), tag); break; } return p; case 1: return display_tag_value (-1, p, end); case 2: return display_tag_value (0, p, end); default: assert (attr->type & 0x80); READ_ULEB (val, p, end); type = attr->type & 0x7f; if (val >= type) printf ("??? (%d)\n", val); else printf ("%s\n", attr->table[val]); return p; } } return display_tag_value (tag, p, end); } static unsigned char * display_gnu_attribute (unsigned char * p, unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const), const unsigned char * const end) { unsigned int tag; unsigned int val; READ_ULEB (tag, p, end); /* Tag_compatibility is the only generic GNU attribute defined at present. */ if (tag == 32) { READ_ULEB (val, p, end); printf (_("flag = %d, vendor = "), val); if (p == end) { printf (_("\n")); warn (_("corrupt vendor attribute\n")); } else { if (p < end - 1) { size_t maxlen = (end - p) - 1; print_symbol_name ((int) maxlen, (const char *) p); p += strnlen ((char *) p, maxlen) + 1; } else { printf (_("")); p = (unsigned char *) end; } putchar ('\n'); } return p; } if ((tag & 2) == 0 && display_proc_gnu_attribute) return display_proc_gnu_attribute (p, tag, end); return display_tag_value (tag, p, end); } static unsigned char * display_m68k_gnu_attribute (unsigned char * p, unsigned int tag, const unsigned char * const end) { unsigned int val; if (tag == Tag_GNU_M68K_ABI_FP) { printf (" Tag_GNU_M68K_ABI_FP: "); if (p == end) { printf (_("\n")); return p; } READ_ULEB (val, p, end); if (val > 3) printf ("(%#x), ", val); switch (val & 3) { case 0: printf (_("unspecified hard/soft float\n")); break; case 1: printf (_("hard float\n")); break; case 2: printf (_("soft float\n")); break; } return p; } return display_tag_value (tag & 1, p, end); } static unsigned char * display_power_gnu_attribute (unsigned char * p, unsigned int tag, const unsigned char * const end) { unsigned int val; if (tag == Tag_GNU_Power_ABI_FP) { printf (" Tag_GNU_Power_ABI_FP: "); if (p == end) { printf (_("\n")); return p; } READ_ULEB (val, p, end); if (val > 15) printf ("(%#x), ", val); switch (val & 3) { case 0: printf (_("unspecified hard/soft float, ")); break; case 1: printf (_("hard float, ")); break; case 2: printf (_("soft float, ")); break; case 3: printf (_("single-precision hard float, ")); break; } switch (val & 0xC) { case 0: printf (_("unspecified long double\n")); break; case 4: printf (_("128-bit IBM long double\n")); break; case 8: printf (_("64-bit long double\n")); break; case 12: printf (_("128-bit IEEE long double\n")); break; } return p; } if (tag == Tag_GNU_Power_ABI_Vector) { printf (" Tag_GNU_Power_ABI_Vector: "); if (p == end) { printf (_("\n")); return p; } READ_ULEB (val, p, end); if (val > 3) printf ("(%#x), ", val); switch (val & 3) { case 0: printf (_("unspecified\n")); break; case 1: printf (_("generic\n")); break; case 2: printf ("AltiVec\n"); break; case 3: printf ("SPE\n"); break; } return p; } if (tag == Tag_GNU_Power_ABI_Struct_Return) { printf (" Tag_GNU_Power_ABI_Struct_Return: "); if (p == end) { printf (_("\n")); return p; } READ_ULEB (val, p, end); if (val > 2) printf ("(%#x), ", val); switch (val & 3) { case 0: printf (_("unspecified\n")); break; case 1: printf ("r3/r4\n"); break; case 2: printf (_("memory\n")); break; case 3: printf ("???\n"); break; } return p; } return display_tag_value (tag & 1, p, end); } static unsigned char * display_s390_gnu_attribute (unsigned char * p, unsigned int tag, const unsigned char * const end) { unsigned int val; if (tag == Tag_GNU_S390_ABI_Vector) { printf (" Tag_GNU_S390_ABI_Vector: "); READ_ULEB (val, p, end); switch (val) { case 0: printf (_("any\n")); break; case 1: printf (_("software\n")); break; case 2: printf (_("hardware\n")); break; default: printf ("??? (%d)\n", val); break; } return p; } return display_tag_value (tag & 1, p, end); } static void display_sparc_hwcaps (unsigned int mask) { if (mask) { bool first = true; if (mask & ELF_SPARC_HWCAP_MUL32) fputs ("mul32", stdout), first = false; if (mask & ELF_SPARC_HWCAP_DIV32) printf ("%sdiv32", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_FSMULD) printf ("%sfsmuld", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_V8PLUS) printf ("%sv8plus", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_POPC) printf ("%spopc", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_VIS) printf ("%svis", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_VIS2) printf ("%svis2", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT) printf ("%sASIBlkInit", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_FMAF) printf ("%sfmaf", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_VIS3) printf ("%svis3", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_HPC) printf ("%shpc", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_RANDOM) printf ("%srandom", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_TRANS) printf ("%strans", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_FJFMAU) printf ("%sfjfmau", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_IMA) printf ("%sima", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING) printf ("%scspare", first ? "" : "|"), first = false; } else fputc ('0', stdout); fputc ('\n', stdout); } static void display_sparc_hwcaps2 (unsigned int mask) { if (mask) { bool first = true; if (mask & ELF_SPARC_HWCAP2_FJATHPLUS) fputs ("fjathplus", stdout), first = false; if (mask & ELF_SPARC_HWCAP2_VIS3B) printf ("%svis3b", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP2_ADP) printf ("%sadp", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP2_SPARC5) printf ("%ssparc5", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP2_MWAIT) printf ("%smwait", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP2_XMPMUL) printf ("%sxmpmul", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP2_XMONT) printf ("%sxmont2", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP2_NSEC) printf ("%snsec", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP2_FJATHHPC) printf ("%sfjathhpc", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP2_FJDES) printf ("%sfjdes", first ? "" : "|"), first = false; if (mask & ELF_SPARC_HWCAP2_FJAES) printf ("%sfjaes", first ? "" : "|"), first = false; } else fputc ('0', stdout); fputc ('\n', stdout); } static unsigned char * display_sparc_gnu_attribute (unsigned char * p, unsigned int tag, const unsigned char * const end) { unsigned int val; if (tag == Tag_GNU_Sparc_HWCAPS) { READ_ULEB (val, p, end); printf (" Tag_GNU_Sparc_HWCAPS: "); display_sparc_hwcaps (val); return p; } if (tag == Tag_GNU_Sparc_HWCAPS2) { READ_ULEB (val, p, end); printf (" Tag_GNU_Sparc_HWCAPS2: "); display_sparc_hwcaps2 (val); return p; } return display_tag_value (tag, p, end); } static void print_mips_fp_abi_value (unsigned int val) { switch (val) { case Val_GNU_MIPS_ABI_FP_ANY: printf (_("Hard or soft float\n")); break; case Val_GNU_MIPS_ABI_FP_DOUBLE: printf (_("Hard float (double precision)\n")); break; case Val_GNU_MIPS_ABI_FP_SINGLE: printf (_("Hard float (single precision)\n")); break; case Val_GNU_MIPS_ABI_FP_SOFT: printf (_("Soft float\n")); break; case Val_GNU_MIPS_ABI_FP_OLD_64: printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n")); break; case Val_GNU_MIPS_ABI_FP_XX: printf (_("Hard float (32-bit CPU, Any FPU)\n")); break; case Val_GNU_MIPS_ABI_FP_64: printf (_("Hard float (32-bit CPU, 64-bit FPU)\n")); break; case Val_GNU_MIPS_ABI_FP_64A: printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n")); break; case Val_GNU_MIPS_ABI_FP_NAN2008: printf (_("NaN 2008 compatibility\n")); break; default: printf ("??? (%d)\n", val); break; } } static unsigned char * display_mips_gnu_attribute (unsigned char * p, unsigned int tag, const unsigned char * const end) { if (tag == Tag_GNU_MIPS_ABI_FP) { unsigned int val; printf (" Tag_GNU_MIPS_ABI_FP: "); READ_ULEB (val, p, end); print_mips_fp_abi_value (val); return p; } if (tag == Tag_GNU_MIPS_ABI_MSA) { unsigned int val; printf (" Tag_GNU_MIPS_ABI_MSA: "); READ_ULEB (val, p, end); switch (val) { case Val_GNU_MIPS_ABI_MSA_ANY: printf (_("Any MSA or not\n")); break; case Val_GNU_MIPS_ABI_MSA_128: printf (_("128-bit MSA\n")); break; default: printf ("??? (%d)\n", val); break; } return p; } return display_tag_value (tag & 1, p, end); } static unsigned char * display_tic6x_attribute (unsigned char * p, const unsigned char * const end) { unsigned int tag; unsigned int val; READ_ULEB (tag, p, end); switch (tag) { case Tag_ISA: printf (" Tag_ISA: "); READ_ULEB (val, p, end); switch (val) { case C6XABI_Tag_ISA_none: printf (_("None\n")); break; case C6XABI_Tag_ISA_C62X: printf ("C62x\n"); break; case C6XABI_Tag_ISA_C67X: printf ("C67x\n"); break; case C6XABI_Tag_ISA_C67XP: printf ("C67x+\n"); break; case C6XABI_Tag_ISA_C64X: printf ("C64x\n"); break; case C6XABI_Tag_ISA_C64XP: printf ("C64x+\n"); break; case C6XABI_Tag_ISA_C674X: printf ("C674x\n"); break; default: printf ("??? (%d)\n", val); break; } return p; case Tag_ABI_wchar_t: printf (" Tag_ABI_wchar_t: "); READ_ULEB (val, p, end); switch (val) { case 0: printf (_("Not used\n")); break; case 1: printf (_("2 bytes\n")); break; case 2: printf (_("4 bytes\n")); break; default: printf ("??? (%d)\n", val); break; } return p; case Tag_ABI_stack_align_needed: printf (" Tag_ABI_stack_align_needed: "); READ_ULEB (val, p, end); switch (val) { case 0: printf (_("8-byte\n")); break; case 1: printf (_("16-byte\n")); break; default: printf ("??? (%d)\n", val); break; } return p; case Tag_ABI_stack_align_preserved: READ_ULEB (val, p, end); printf (" Tag_ABI_stack_align_preserved: "); switch (val) { case 0: printf (_("8-byte\n")); break; case 1: printf (_("16-byte\n")); break; default: printf ("??? (%d)\n", val); break; } return p; case Tag_ABI_DSBT: READ_ULEB (val, p, end); printf (" Tag_ABI_DSBT: "); switch (val) { case 0: printf (_("DSBT addressing not used\n")); break; case 1: printf (_("DSBT addressing used\n")); break; default: printf ("??? (%d)\n", val); break; } return p; case Tag_ABI_PID: READ_ULEB (val, p, end); printf (" Tag_ABI_PID: "); switch (val) { case 0: printf (_("Data addressing position-dependent\n")); break; case 1: printf (_("Data addressing position-independent, GOT near DP\n")); break; case 2: printf (_("Data addressing position-independent, GOT far from DP\n")); break; default: printf ("??? (%d)\n", val); break; } return p; case Tag_ABI_PIC: READ_ULEB (val, p, end); printf (" Tag_ABI_PIC: "); switch (val) { case 0: printf (_("Code addressing position-dependent\n")); break; case 1: printf (_("Code addressing position-independent\n")); break; default: printf ("??? (%d)\n", val); break; } return p; case Tag_ABI_array_object_alignment: READ_ULEB (val, p, end); printf (" Tag_ABI_array_object_alignment: "); switch (val) { case 0: printf (_("8-byte\n")); break; case 1: printf (_("4-byte\n")); break; case 2: printf (_("16-byte\n")); break; default: printf ("??? (%d)\n", val); break; } return p; case Tag_ABI_array_object_align_expected: READ_ULEB (val, p, end); printf (" Tag_ABI_array_object_align_expected: "); switch (val) { case 0: printf (_("8-byte\n")); break; case 1: printf (_("4-byte\n")); break; case 2: printf (_("16-byte\n")); break; default: printf ("??? (%d)\n", val); break; } return p; case Tag_ABI_compatibility: { READ_ULEB (val, p, end); printf (" Tag_ABI_compatibility: "); printf (_("flag = %d, vendor = "), val); if (p < end - 1) { size_t maxlen = (end - p) - 1; print_symbol_name ((int) maxlen, (const char *) p); p += strnlen ((char *) p, maxlen) + 1; } else { printf (_("")); p = (unsigned char *) end; } putchar ('\n'); return p; } case Tag_ABI_conformance: { printf (" Tag_ABI_conformance: \""); if (p < end - 1) { size_t maxlen = (end - p) - 1; print_symbol_name ((int) maxlen, (const char *) p); p += strnlen ((char *) p, maxlen) + 1; } else { printf (_("")); p = (unsigned char *) end; } printf ("\"\n"); return p; } } return display_tag_value (tag, p, end); } static void display_raw_attribute (unsigned char * p, unsigned char const * const end) { uint64_t addr = 0; size_t bytes = end - p; assert (end >= p); while (bytes) { int j; int k; int lbytes = (bytes > 16 ? 16 : bytes); printf (" 0x%8.8" PRIx64 " ", addr); for (j = 0; j < 16; j++) { if (j < lbytes) printf ("%2.2x", p[j]); else printf (" "); if ((j & 3) == 3) printf (" "); } for (j = 0; j < lbytes; j++) { k = p[j]; if (k >= ' ' && k < 0x7f) printf ("%c", k); else printf ("."); } putchar ('\n'); p += lbytes; bytes -= lbytes; addr += lbytes; } putchar ('\n'); } static unsigned char * display_msp430_attribute (unsigned char * p, const unsigned char * const end) { uint64_t val; uint64_t tag; READ_ULEB (tag, p, end); switch (tag) { case OFBA_MSPABI_Tag_ISA: printf (" Tag_ISA: "); READ_ULEB (val, p, end); switch (val) { case 0: printf (_("None\n")); break; case 1: printf (_("MSP430\n")); break; case 2: printf (_("MSP430X\n")); break; default: printf ("??? (%" PRId64 ")\n", val); break; } break; case OFBA_MSPABI_Tag_Code_Model: printf (" Tag_Code_Model: "); READ_ULEB (val, p, end); switch (val) { case 0: printf (_("None\n")); break; case 1: printf (_("Small\n")); break; case 2: printf (_("Large\n")); break; default: printf ("??? (%" PRId64 ")\n", val); break; } break; case OFBA_MSPABI_Tag_Data_Model: printf (" Tag_Data_Model: "); READ_ULEB (val, p, end); switch (val) { case 0: printf (_("None\n")); break; case 1: printf (_("Small\n")); break; case 2: printf (_("Large\n")); break; case 3: printf (_("Restricted Large\n")); break; default: printf ("??? (%" PRId64 ")\n", val); break; } break; default: printf (_(" : "), tag); if (tag & 1) { putchar ('"'); if (p < end - 1) { size_t maxlen = (end - p) - 1; print_symbol_name ((int) maxlen, (const char *) p); p += strnlen ((char *) p, maxlen) + 1; } else { printf (_("")); p = (unsigned char *) end; } printf ("\"\n"); } else { READ_ULEB (val, p, end); printf ("%" PRId64 " (0x%" PRIx64 ")\n", val, val); } break; } assert (p <= end); return p; } static unsigned char * display_msp430_gnu_attribute (unsigned char * p, unsigned int tag, const unsigned char * const end) { if (tag == Tag_GNU_MSP430_Data_Region) { uint64_t val; printf (" Tag_GNU_MSP430_Data_Region: "); READ_ULEB (val, p, end); switch (val) { case Val_GNU_MSP430_Data_Region_Any: printf (_("Any Region\n")); break; case Val_GNU_MSP430_Data_Region_Lower: printf (_("Lower Region Only\n")); break; default: printf ("??? (%" PRIu64 ")\n", val); } return p; } return display_tag_value (tag & 1, p, end); } struct riscv_attr_tag_t { const char *name; unsigned int tag; }; static struct riscv_attr_tag_t riscv_attr_tag[] = { #define T(tag) {"Tag_RISCV_" #tag, Tag_RISCV_##tag} T(arch), T(priv_spec), T(priv_spec_minor), T(priv_spec_revision), T(unaligned_access), T(stack_align), #undef T }; static unsigned char * display_riscv_attribute (unsigned char *p, const unsigned char * const end) { uint64_t val; uint64_t tag; struct riscv_attr_tag_t *attr = NULL; unsigned i; READ_ULEB (tag, p, end); /* Find the name of attribute. */ for (i = 0; i < ARRAY_SIZE (riscv_attr_tag); i++) { if (riscv_attr_tag[i].tag == tag) { attr = &riscv_attr_tag[i]; break; } } if (attr) printf (" %s: ", attr->name); else return display_tag_value (tag, p, end); switch (tag) { case Tag_RISCV_priv_spec: case Tag_RISCV_priv_spec_minor: case Tag_RISCV_priv_spec_revision: READ_ULEB (val, p, end); printf ("%" PRIu64 "\n", val); break; case Tag_RISCV_unaligned_access: READ_ULEB (val, p, end); switch (val) { case 0: printf (_("No unaligned access\n")); break; case 1: printf (_("Unaligned access\n")); break; } break; case Tag_RISCV_stack_align: READ_ULEB (val, p, end); printf (_("%" PRIu64 "-bytes\n"), val); break; case Tag_RISCV_arch: p = display_tag_value (-1, p, end); break; default: return display_tag_value (tag, p, end); } return p; } static unsigned char * display_csky_attribute (unsigned char * p, const unsigned char * const end) { uint64_t tag; uint64_t val; READ_ULEB (tag, p, end); if (tag >= Tag_CSKY_MAX) { return display_tag_value (-1, p, end); } switch (tag) { case Tag_CSKY_ARCH_NAME: printf (" Tag_CSKY_ARCH_NAME:\t\t"); return display_tag_value (-1, p, end); case Tag_CSKY_CPU_NAME: printf (" Tag_CSKY_CPU_NAME:\t\t"); return display_tag_value (-1, p, end); case Tag_CSKY_ISA_FLAGS: printf (" Tag_CSKY_ISA_FLAGS:\t\t"); return display_tag_value (0, p, end); case Tag_CSKY_ISA_EXT_FLAGS: printf (" Tag_CSKY_ISA_EXT_FLAGS:\t"); return display_tag_value (0, p, end); case Tag_CSKY_DSP_VERSION: printf (" Tag_CSKY_DSP_VERSION:\t\t"); READ_ULEB (val, p, end); if (val == VAL_CSKY_DSP_VERSION_EXTENSION) printf ("DSP Extension\n"); else if (val == VAL_CSKY_DSP_VERSION_2) printf ("DSP 2.0\n"); break; case Tag_CSKY_VDSP_VERSION: printf (" Tag_CSKY_VDSP_VERSION:\t"); READ_ULEB (val, p, end); printf ("VDSP Version %" PRId64 "\n", val); break; case Tag_CSKY_FPU_VERSION: printf (" Tag_CSKY_FPU_VERSION:\t\t"); READ_ULEB (val, p, end); if (val == VAL_CSKY_FPU_VERSION_1) printf ("ABIV1 FPU Version 1\n"); else if (val == VAL_CSKY_FPU_VERSION_2) printf ("FPU Version 2\n"); break; case Tag_CSKY_FPU_ABI: printf (" Tag_CSKY_FPU_ABI:\t\t"); READ_ULEB (val, p, end); if (val == VAL_CSKY_FPU_ABI_HARD) printf ("Hard\n"); else if (val == VAL_CSKY_FPU_ABI_SOFTFP) printf ("SoftFP\n"); else if (val == VAL_CSKY_FPU_ABI_SOFT) printf ("Soft\n"); break; case Tag_CSKY_FPU_ROUNDING: READ_ULEB (val, p, end); if (val == 1) { printf (" Tag_CSKY_FPU_ROUNDING:\t"); printf ("Needed\n"); } break; case Tag_CSKY_FPU_DENORMAL: READ_ULEB (val, p, end); if (val == 1) { printf (" Tag_CSKY_FPU_DENORMAL:\t"); printf ("Needed\n"); } break; case Tag_CSKY_FPU_Exception: READ_ULEB (val, p, end); if (val == 1) { printf (" Tag_CSKY_FPU_Exception:\t"); printf ("Needed\n"); } break; case Tag_CSKY_FPU_NUMBER_MODULE: printf (" Tag_CSKY_FPU_NUMBER_MODULE:\t"); return display_tag_value (-1, p, end); case Tag_CSKY_FPU_HARDFP: printf (" Tag_CSKY_FPU_HARDFP:\t\t"); READ_ULEB (val, p, end); if (val & VAL_CSKY_FPU_HARDFP_HALF) printf (" Half"); if (val & VAL_CSKY_FPU_HARDFP_SINGLE) printf (" Single"); if (val & VAL_CSKY_FPU_HARDFP_DOUBLE) printf (" Double"); printf ("\n"); break; default: return display_tag_value (tag, p, end); } return p; } static bool process_attributes (Filedata * filedata, const char * public_name, unsigned int proc_type, unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const), unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const)) { Elf_Internal_Shdr * sect; unsigned i; bool res = true; /* Find the section header so that we get the size. */ for (i = 0, sect = filedata->section_headers; i < filedata->file_header.e_shnum; i++, sect++) { unsigned char * contents; unsigned char * p; if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES) continue; contents = (unsigned char *) get_data (NULL, filedata, sect->sh_offset, 1, sect->sh_size, _("attributes")); if (contents == NULL) { res = false; continue; } p = contents; /* The first character is the version of the attributes. Currently only version 1, (aka 'A') is recognised here. */ if (*p != 'A') { printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p); res = false; } else { uint64_t section_len; section_len = sect->sh_size - 1; p++; while (section_len > 0) { uint64_t attr_len; unsigned int namelen; bool public_section; bool gnu_section; if (section_len <= 4) { error (_("Tag section ends prematurely\n")); res = false; break; } attr_len = byte_get (p, 4); p += 4; if (attr_len > section_len) { error (_("Bad attribute length (%u > %u)\n"), (unsigned) attr_len, (unsigned) section_len); attr_len = section_len; res = false; } /* PR 17531: file: 001-101425-0.004 */ else if (attr_len < 5) { error (_("Attribute length of %u is too small\n"), (unsigned) attr_len); res = false; break; } section_len -= attr_len; attr_len -= 4; namelen = strnlen ((char *) p, attr_len) + 1; if (namelen == 0 || namelen >= attr_len) { error (_("Corrupt attribute section name\n")); res = false; break; } printf (_("Attribute Section: ")); print_symbol_name (INT_MAX, (const char *) p); putchar ('\n'); if (public_name && streq ((char *) p, public_name)) public_section = true; else public_section = false; if (streq ((char *) p, "gnu")) gnu_section = true; else gnu_section = false; p += namelen; attr_len -= namelen; while (attr_len > 0 && p < contents + sect->sh_size) { int tag; unsigned int val; uint64_t size; unsigned char * end; /* PR binutils/17531: Safe handling of corrupt files. */ if (attr_len < 6) { error (_("Unused bytes at end of section\n")); res = false; section_len = 0; break; } tag = *(p++); size = byte_get (p, 4); if (size > attr_len) { error (_("Bad subsection length (%u > %u)\n"), (unsigned) size, (unsigned) attr_len); res = false; size = attr_len; } /* PR binutils/17531: Safe handling of corrupt files. */ if (size < 6) { error (_("Bad subsection length (%u < 6)\n"), (unsigned) size); res = false; section_len = 0; break; } attr_len -= size; end = p + size - 1; assert (end <= contents + sect->sh_size); p += 4; switch (tag) { case 1: printf (_("File Attributes\n")); break; case 2: printf (_("Section Attributes:")); goto do_numlist; case 3: printf (_("Symbol Attributes:")); /* Fall through. */ do_numlist: for (;;) { READ_ULEB (val, p, end); if (val == 0) break; printf (" %d", val); } printf ("\n"); break; default: printf (_("Unknown tag: %d\n"), tag); public_section = false; break; } if (public_section && display_pub_attribute != NULL) { while (p < end) p = display_pub_attribute (p, end); assert (p == end); } else if (gnu_section && display_proc_gnu_attribute != NULL) { while (p < end) p = display_gnu_attribute (p, display_proc_gnu_attribute, end); assert (p == end); } else if (p < end) { printf (_(" Unknown attribute:\n")); display_raw_attribute (p, end); p = end; } else attr_len = 0; } } } free (contents); } return res; } /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT. Print the Address, Access and Initial fields of an entry at VMA ADDR and return the VMA of the next entry, or -1 if there was a problem. Does not read from DATA_END or beyond. */ static uint64_t print_mips_got_entry (unsigned char * data, uint64_t pltgot, uint64_t addr, unsigned char * data_end) { printf (" "); print_vma (addr, LONG_HEX); printf (" "); if (addr < pltgot + 0xfff0) printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0)); else printf ("%10s", ""); printf (" "); if (data == NULL) printf ("%*s", is_32bit_elf ? 8 : 16, _("")); else { uint64_t entry; unsigned char * from = data + addr - pltgot; if (from + (is_32bit_elf ? 4 : 8) > data_end) { warn (_("MIPS GOT entry extends beyond the end of available data\n")); printf ("%*s", is_32bit_elf ? 8 : 16, _("")); return (uint64_t) -1; } else { entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8); print_vma (entry, LONG_HEX); } } return addr + (is_32bit_elf ? 4 : 8); } /* DATA points to the contents of a MIPS PLT GOT that starts at VMA PLTGOT. Print the Address and Initial fields of an entry at VMA ADDR and return the VMA of the next entry. */ static uint64_t print_mips_pltgot_entry (unsigned char * data, uint64_t pltgot, uint64_t addr) { printf (" "); print_vma (addr, LONG_HEX); printf (" "); if (data == NULL) printf ("%*s", is_32bit_elf ? 8 : 16, _("")); else { uint64_t entry; entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8); print_vma (entry, LONG_HEX); } return addr + (is_32bit_elf ? 4 : 8); } static void print_mips_ases (unsigned int mask) { if (mask & AFL_ASE_DSP) fputs ("\n\tDSP ASE", stdout); if (mask & AFL_ASE_DSPR2) fputs ("\n\tDSP R2 ASE", stdout); if (mask & AFL_ASE_DSPR3) fputs ("\n\tDSP R3 ASE", stdout); if (mask & AFL_ASE_EVA) fputs ("\n\tEnhanced VA Scheme", stdout); if (mask & AFL_ASE_MCU) fputs ("\n\tMCU (MicroController) ASE", stdout); if (mask & AFL_ASE_MDMX) fputs ("\n\tMDMX ASE", stdout); if (mask & AFL_ASE_MIPS3D) fputs ("\n\tMIPS-3D ASE", stdout); if (mask & AFL_ASE_MT) fputs ("\n\tMT ASE", stdout); if (mask & AFL_ASE_SMARTMIPS) fputs ("\n\tSmartMIPS ASE", stdout); if (mask & AFL_ASE_VIRT) fputs ("\n\tVZ ASE", stdout); if (mask & AFL_ASE_MSA) fputs ("\n\tMSA ASE", stdout); if (mask & AFL_ASE_MIPS16) fputs ("\n\tMIPS16 ASE", stdout); if (mask & AFL_ASE_MICROMIPS) fputs ("\n\tMICROMIPS ASE", stdout); if (mask & AFL_ASE_XPA) fputs ("\n\tXPA ASE", stdout); if (mask & AFL_ASE_MIPS16E2) fputs ("\n\tMIPS16e2 ASE", stdout); if (mask & AFL_ASE_CRC) fputs ("\n\tCRC ASE", stdout); if (mask & AFL_ASE_GINV) fputs ("\n\tGINV ASE", stdout); if (mask & AFL_ASE_LOONGSON_MMI) fputs ("\n\tLoongson MMI ASE", stdout); if (mask & AFL_ASE_LOONGSON_CAM) fputs ("\n\tLoongson CAM ASE", stdout); if (mask & AFL_ASE_LOONGSON_EXT) fputs ("\n\tLoongson EXT ASE", stdout); if (mask & AFL_ASE_LOONGSON_EXT2) fputs ("\n\tLoongson EXT2 ASE", stdout); if (mask == 0) fprintf (stdout, "\n\t%s", _("None")); else if ((mask & ~AFL_ASE_MASK) != 0) fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK); } static void print_mips_isa_ext (unsigned int isa_ext) { switch (isa_ext) { case 0: fputs (_("None"), stdout); break; case AFL_EXT_XLR: fputs ("RMI XLR", stdout); break; case AFL_EXT_OCTEON3: fputs ("Cavium Networks Octeon3", stdout); break; case AFL_EXT_OCTEON2: fputs ("Cavium Networks Octeon2", stdout); break; case AFL_EXT_OCTEONP: fputs ("Cavium Networks OcteonP", stdout); break; case AFL_EXT_OCTEON: fputs ("Cavium Networks Octeon", stdout); break; case AFL_EXT_5900: fputs ("Toshiba R5900", stdout); break; case AFL_EXT_4650: fputs ("MIPS R4650", stdout); break; case AFL_EXT_4010: fputs ("LSI R4010", stdout); break; case AFL_EXT_4100: fputs ("NEC VR4100", stdout); break; case AFL_EXT_3900: fputs ("Toshiba R3900", stdout); break; case AFL_EXT_10000: fputs ("MIPS R10000", stdout); break; case AFL_EXT_SB1: fputs ("Broadcom SB-1", stdout); break; case AFL_EXT_4111: fputs ("NEC VR4111/VR4181", stdout); break; case AFL_EXT_4120: fputs ("NEC VR4120", stdout); break; case AFL_EXT_5400: fputs ("NEC VR5400", stdout); break; case AFL_EXT_5500: fputs ("NEC VR5500", stdout); break; case AFL_EXT_LOONGSON_2E: fputs ("ST Microelectronics Loongson 2E", stdout); break; case AFL_EXT_LOONGSON_2F: fputs ("ST Microelectronics Loongson 2F", stdout); break; case AFL_EXT_INTERAPTIV_MR2: fputs ("Imagination interAptiv MR2", stdout); break; default: fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext); } } static signed int get_mips_reg_size (int reg_size) { return (reg_size == AFL_REG_NONE) ? 0 : (reg_size == AFL_REG_32) ? 32 : (reg_size == AFL_REG_64) ? 64 : (reg_size == AFL_REG_128) ? 128 : -1; } static bool process_mips_specific (Filedata * filedata) { Elf_Internal_Dyn * entry; Elf_Internal_Shdr *sect = NULL; size_t liblist_offset = 0; size_t liblistno = 0; size_t conflictsno = 0; size_t options_offset = 0; size_t conflicts_offset = 0; size_t pltrelsz = 0; size_t pltrel = 0; uint64_t pltgot = 0; uint64_t mips_pltgot = 0; uint64_t jmprel = 0; uint64_t local_gotno = 0; uint64_t gotsym = 0; uint64_t symtabno = 0; bool res = true; if (! process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL, display_mips_gnu_attribute)) res = false; sect = find_section (filedata, ".MIPS.abiflags"); if (sect != NULL) { Elf_External_ABIFlags_v0 *abiflags_ext; Elf_Internal_ABIFlags_v0 abiflags_in; if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size) { error (_("Corrupt MIPS ABI Flags section.\n")); res = false; } else { abiflags_ext = get_data (NULL, filedata, sect->sh_offset, 1, sect->sh_size, _("MIPS ABI Flags section")); if (abiflags_ext) { abiflags_in.version = BYTE_GET (abiflags_ext->version); abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level); abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev); abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size); abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size); abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size); abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi); abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext); abiflags_in.ases = BYTE_GET (abiflags_ext->ases); abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1); abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2); printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version); printf ("\nISA: MIPS%d", abiflags_in.isa_level); if (abiflags_in.isa_rev > 1) printf ("r%d", abiflags_in.isa_rev); printf ("\nGPR size: %d", get_mips_reg_size (abiflags_in.gpr_size)); printf ("\nCPR1 size: %d", get_mips_reg_size (abiflags_in.cpr1_size)); printf ("\nCPR2 size: %d", get_mips_reg_size (abiflags_in.cpr2_size)); fputs ("\nFP ABI: ", stdout); print_mips_fp_abi_value (abiflags_in.fp_abi); fputs ("ISA Extension: ", stdout); print_mips_isa_ext (abiflags_in.isa_ext); fputs ("\nASEs:", stdout); print_mips_ases (abiflags_in.ases); printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1); printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2); fputc ('\n', stdout); free (abiflags_ext); } } } /* We have a lot of special sections. Thanks SGI! */ if (filedata->dynamic_section == NULL) { /* No dynamic information available. See if there is static GOT. */ sect = find_section (filedata, ".got"); if (sect != NULL) { unsigned char *data_end; unsigned char *data; uint64_t ent, end; int addr_size; pltgot = sect->sh_addr; ent = pltgot; addr_size = (is_32bit_elf ? 4 : 8); end = pltgot + sect->sh_size; data = (unsigned char *) get_data (NULL, filedata, sect->sh_offset, end - pltgot, 1, _("Global Offset Table data")); /* PR 12855: Null data is handled gracefully throughout. */ data_end = data + (end - pltgot); printf (_("\nStatic GOT:\n")); printf (_(" Canonical gp value: ")); print_vma (ent + 0x7ff0, LONG_HEX); printf ("\n\n"); /* In a dynamic binary GOT[0] is reserved for the dynamic loader to store the lazy resolver pointer, however in a static binary it may well have been omitted and GOT reduced to a table of addresses. PR 21344: Check for the entry being fully available before fetching it. */ if (data && data + ent - pltgot + addr_size <= data_end && byte_get (data + ent - pltgot, addr_size) == 0) { printf (_(" Reserved entries:\n")); printf (_(" %*s %10s %*s\n"), addr_size * 2, _("Address"), _("Access"), addr_size * 2, _("Value")); ent = print_mips_got_entry (data, pltgot, ent, data_end); printf ("\n"); if (ent == (uint64_t) -1) goto sgot_print_fail; /* Check for the MSB of GOT[1] being set, identifying a GNU object. This entry will be used by some runtime loaders, to store the module pointer. Otherwise this is an ordinary local entry. PR 21344: Check for the entry being fully available before fetching it. */ if (data && data + ent - pltgot + addr_size <= data_end && (byte_get (data + ent - pltgot, addr_size) >> (addr_size * 8 - 1)) != 0) { ent = print_mips_got_entry (data, pltgot, ent, data_end); printf ("\n"); if (ent == (uint64_t) -1) goto sgot_print_fail; } printf ("\n"); } if (data != NULL && ent < end) { printf (_(" Local entries:\n")); printf (" %*s %10s %*s\n", addr_size * 2, _("Address"), _("Access"), addr_size * 2, _("Value")); while (ent < end) { ent = print_mips_got_entry (data, pltgot, ent, data_end); printf ("\n"); if (ent == (uint64_t) -1) goto sgot_print_fail; } printf ("\n"); } sgot_print_fail: free (data); } return res; } for (entry = filedata->dynamic_section; /* PR 17531 file: 012-50589-0.004. */ (entry < filedata->dynamic_section + filedata->dynamic_nent && entry->d_tag != DT_NULL); ++entry) switch (entry->d_tag) { case DT_MIPS_LIBLIST: liblist_offset = offset_from_vma (filedata, entry->d_un.d_val, liblistno * sizeof (Elf32_External_Lib)); break; case DT_MIPS_LIBLISTNO: liblistno = entry->d_un.d_val; break; case DT_MIPS_OPTIONS: options_offset = offset_from_vma (filedata, entry->d_un.d_val, 0); break; case DT_MIPS_CONFLICT: conflicts_offset = offset_from_vma (filedata, entry->d_un.d_val, conflictsno * sizeof (Elf32_External_Conflict)); break; case DT_MIPS_CONFLICTNO: conflictsno = entry->d_un.d_val; break; case DT_PLTGOT: pltgot = entry->d_un.d_ptr; break; case DT_MIPS_LOCAL_GOTNO: local_gotno = entry->d_un.d_val; break; case DT_MIPS_GOTSYM: gotsym = entry->d_un.d_val; break; case DT_MIPS_SYMTABNO: symtabno = entry->d_un.d_val; break; case DT_MIPS_PLTGOT: mips_pltgot = entry->d_un.d_ptr; break; case DT_PLTREL: pltrel = entry->d_un.d_val; break; case DT_PLTRELSZ: pltrelsz = entry->d_un.d_val; break; case DT_JMPREL: jmprel = entry->d_un.d_ptr; break; default: break; } if (liblist_offset != 0 && liblistno != 0 && do_dynamic) { Elf32_External_Lib * elib; size_t cnt; elib = (Elf32_External_Lib *) get_data (NULL, filedata, liblist_offset, sizeof (Elf32_External_Lib), liblistno, _("liblist section data")); if (elib) { printf (ngettext ("\nSection '.liblist' contains %zu entry:\n", "\nSection '.liblist' contains %zu entries:\n", liblistno), liblistno); fputs (_(" Library Time Stamp Checksum Version Flags\n"), stdout); for (cnt = 0; cnt < liblistno; ++cnt) { Elf32_Lib liblist; time_t atime; char timebuf[128]; struct tm * tmp; liblist.l_name = BYTE_GET (elib[cnt].l_name); atime = BYTE_GET (elib[cnt].l_time_stamp); liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum); liblist.l_version = BYTE_GET (elib[cnt].l_version); liblist.l_flags = BYTE_GET (elib[cnt].l_flags); tmp = gmtime (&atime); snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u", tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday, tmp->tm_hour, tmp->tm_min, tmp->tm_sec); printf ("%3zu: ", cnt); if (valid_dynamic_name (filedata, liblist.l_name)) print_symbol_name (20, get_dynamic_name (filedata, liblist.l_name)); else printf (_(""), liblist.l_name); printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum, liblist.l_version); if (liblist.l_flags == 0) puts (_(" NONE")); else { static const struct { const char * name; int bit; } l_flags_vals[] = { { " EXACT_MATCH", LL_EXACT_MATCH }, { " IGNORE_INT_VER", LL_IGNORE_INT_VER }, { " REQUIRE_MINOR", LL_REQUIRE_MINOR }, { " EXPORTS", LL_EXPORTS }, { " DELAY_LOAD", LL_DELAY_LOAD }, { " DELTA", LL_DELTA } }; int flags = liblist.l_flags; size_t fcnt; for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt) if ((flags & l_flags_vals[fcnt].bit) != 0) { fputs (l_flags_vals[fcnt].name, stdout); flags ^= l_flags_vals[fcnt].bit; } if (flags != 0) printf (" %#x", (unsigned int) flags); puts (""); } } free (elib); } else res = false; } if (options_offset != 0) { Elf_External_Options * eopt; size_t offset; int cnt; /* Find the section header so that we get the size. */ sect = find_section_by_type (filedata, SHT_MIPS_OPTIONS); /* PR 17533 file: 012-277276-0.004. */ if (sect == NULL) { error (_("No MIPS_OPTIONS header found\n")); return false; } /* PR 24243 */ if (sect->sh_size < sizeof (* eopt)) { error (_("The MIPS options section is too small.\n")); return false; } eopt = (Elf_External_Options *) get_data (NULL, filedata, options_offset, 1, sect->sh_size, _("options")); if (eopt) { Elf_Internal_Options option; offset = cnt = 0; while (offset <= sect->sh_size - sizeof (* eopt)) { Elf_External_Options * eoption; unsigned int optsize; eoption = (Elf_External_Options *) ((char *) eopt + offset); optsize = BYTE_GET (eoption->size); /* PR 17531: file: ffa0fa3b. */ if (optsize < sizeof (* eopt) || optsize > sect->sh_size - offset) { error (_("Invalid size (%u) for MIPS option\n"), optsize); free (eopt); return false; } offset += optsize; ++cnt; } printf (ngettext ("\nSection '%s' contains %d entry:\n", "\nSection '%s' contains %d entries:\n", cnt), printable_section_name (filedata, sect), cnt); offset = 0; while (cnt-- > 0) { size_t len; Elf_External_Options * eoption; eoption = (Elf_External_Options *) ((char *) eopt + offset); option.kind = BYTE_GET (eoption->kind); option.size = BYTE_GET (eoption->size); option.section = BYTE_GET (eoption->section); option.info = BYTE_GET (eoption->info); switch (option.kind) { case ODK_NULL: /* This shouldn't happen. */ printf (" NULL %" PRId16 " %" PRIx32, option.section, option.info); break; case ODK_REGINFO: printf (" REGINFO "); if (filedata->file_header.e_machine == EM_MIPS) { Elf32_External_RegInfo * ereg; Elf32_RegInfo reginfo; /* 32bit form. */ if (option.size < (sizeof (Elf_External_Options) + sizeof (Elf32_External_RegInfo))) { printf (_("\n")); error (_("Truncated MIPS REGINFO option\n")); cnt = 0; break; } ereg = (Elf32_External_RegInfo *) (eoption + 1); reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask); reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]); reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]); reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]); reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]); reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value); printf ("GPR %08" PRIx32 " GP 0x%" PRIx32 "\n", reginfo.ri_gprmask, reginfo.ri_gp_value); printf (" " " CPR0 %08" PRIx32 " CPR1 %08" PRIx32 " CPR2 %08" PRIx32 " CPR3 %08" PRIx32 "\n", reginfo.ri_cprmask[0], reginfo.ri_cprmask[1], reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]); } else { /* 64 bit form. */ Elf64_External_RegInfo * ereg; Elf64_Internal_RegInfo reginfo; if (option.size < (sizeof (Elf_External_Options) + sizeof (Elf64_External_RegInfo))) { printf (_("\n")); error (_("Truncated MIPS REGINFO option\n")); cnt = 0; break; } ereg = (Elf64_External_RegInfo *) (eoption + 1); reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask); reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]); reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]); reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]); reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]); reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value); printf ("GPR %08" PRIx32 " GP 0x%" PRIx64 "\n", reginfo.ri_gprmask, reginfo.ri_gp_value); printf (" " " CPR0 %08" PRIx32 " CPR1 %08" PRIx32 " CPR2 %08" PRIx32 " CPR3 %08" PRIx32 "\n", reginfo.ri_cprmask[0], reginfo.ri_cprmask[1], reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]); } offset += option.size; continue; case ODK_EXCEPTIONS: fputs (" EXCEPTIONS fpe_min(", stdout); process_mips_fpe_exception (option.info & OEX_FPU_MIN); fputs (") fpe_max(", stdout); process_mips_fpe_exception ((option.info & OEX_FPU_MAX) >> 8); fputs (")", stdout); if (option.info & OEX_PAGE0) fputs (" PAGE0", stdout); if (option.info & OEX_SMM) fputs (" SMM", stdout); if (option.info & OEX_FPDBUG) fputs (" FPDBUG", stdout); if (option.info & OEX_DISMISS) fputs (" DISMISS", stdout); break; case ODK_PAD: fputs (" PAD ", stdout); if (option.info & OPAD_PREFIX) fputs (" PREFIX", stdout); if (option.info & OPAD_POSTFIX) fputs (" POSTFIX", stdout); if (option.info & OPAD_SYMBOL) fputs (" SYMBOL", stdout); break; case ODK_HWPATCH: fputs (" HWPATCH ", stdout); if (option.info & OHW_R4KEOP) fputs (" R4KEOP", stdout); if (option.info & OHW_R8KPFETCH) fputs (" R8KPFETCH", stdout); if (option.info & OHW_R5KEOP) fputs (" R5KEOP", stdout); if (option.info & OHW_R5KCVTL) fputs (" R5KCVTL", stdout); break; case ODK_FILL: fputs (" FILL ", stdout); /* XXX Print content of info word? */ break; case ODK_TAGS: fputs (" TAGS ", stdout); /* XXX Print content of info word? */ break; case ODK_HWAND: fputs (" HWAND ", stdout); if (option.info & OHWA0_R4KEOP_CHECKED) fputs (" R4KEOP_CHECKED", stdout); if (option.info & OHWA0_R4KEOP_CLEAN) fputs (" R4KEOP_CLEAN", stdout); break; case ODK_HWOR: fputs (" HWOR ", stdout); if (option.info & OHWA0_R4KEOP_CHECKED) fputs (" R4KEOP_CHECKED", stdout); if (option.info & OHWA0_R4KEOP_CLEAN) fputs (" R4KEOP_CLEAN", stdout); break; case ODK_GP_GROUP: printf (" GP_GROUP %#06x self-contained %#06x", option.info & OGP_GROUP, (option.info & OGP_SELF) >> 16); break; case ODK_IDENT: printf (" IDENT %#06x self-contained %#06x", option.info & OGP_GROUP, (option.info & OGP_SELF) >> 16); break; default: /* This shouldn't happen. */ printf (" %3d ??? %" PRId16 " %" PRIx32, option.kind, option.section, option.info); break; } len = sizeof (* eopt); while (len < option.size) { unsigned char datum = *((unsigned char *) eoption + len); if (ISPRINT (datum)) printf ("%c", datum); else printf ("\\%03o", datum); len ++; } fputs ("\n", stdout); offset += option.size; } free (eopt); } else res = false; } if (conflicts_offset != 0 && conflictsno != 0) { Elf32_Conflict * iconf; size_t cnt; if (filedata->dynamic_symbols == NULL) { error (_("conflict list found without a dynamic symbol table\n")); return false; } /* PR 21345 - print a slightly more helpful error message if we are sure that the cmalloc will fail. */ if (conflictsno > filedata->file_size / sizeof (* iconf)) { error (_("Overlarge number of conflicts detected: %zx\n"), conflictsno); return false; } iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf)); if (iconf == NULL) { error (_("Out of memory allocating space for dynamic conflicts\n")); return false; } if (is_32bit_elf) { Elf32_External_Conflict * econf32; econf32 = (Elf32_External_Conflict *) get_data (NULL, filedata, conflicts_offset, sizeof (*econf32), conflictsno, _("conflict")); if (!econf32) { free (iconf); return false; } for (cnt = 0; cnt < conflictsno; ++cnt) iconf[cnt] = BYTE_GET (econf32[cnt]); free (econf32); } else { Elf64_External_Conflict * econf64; econf64 = (Elf64_External_Conflict *) get_data (NULL, filedata, conflicts_offset, sizeof (*econf64), conflictsno, _("conflict")); if (!econf64) { free (iconf); return false; } for (cnt = 0; cnt < conflictsno; ++cnt) iconf[cnt] = BYTE_GET (econf64[cnt]); free (econf64); } printf (ngettext ("\nSection '.conflict' contains %zu entry:\n", "\nSection '.conflict' contains %zu entries:\n", conflictsno), conflictsno); puts (_(" Num: Index Value Name")); for (cnt = 0; cnt < conflictsno; ++cnt) { printf ("%5zu: %8lu ", cnt, iconf[cnt]); if (iconf[cnt] >= filedata->num_dynamic_syms) printf (_("")); else { Elf_Internal_Sym * psym; psym = & filedata->dynamic_symbols[iconf[cnt]]; print_vma (psym->st_value, FULL_HEX); putchar (' '); if (valid_dynamic_name (filedata, psym->st_name)) print_symbol_name (25, get_dynamic_name (filedata, psym->st_name)); else printf (_(""), psym->st_name); } putchar ('\n'); } free (iconf); } if (pltgot != 0 && local_gotno != 0) { uint64_t ent, local_end, global_end; size_t i, offset; unsigned char * data; unsigned char * data_end; int addr_size; ent = pltgot; addr_size = (is_32bit_elf ? 4 : 8); local_end = pltgot + local_gotno * addr_size; /* PR binutils/17533 file: 012-111227-0.004 */ if (symtabno < gotsym) { error (_("The GOT symbol offset (%" PRIu64 ") is greater than the symbol table size (%" PRIu64 ")\n"), gotsym, symtabno); return false; } global_end = local_end + (symtabno - gotsym) * addr_size; /* PR 17531: file: 54c91a34. */ if (global_end < local_end) { error (_("Too many GOT symbols: %" PRIu64 "\n"), symtabno); return false; } offset = offset_from_vma (filedata, pltgot, global_end - pltgot); data = (unsigned char *) get_data (NULL, filedata, offset, global_end - pltgot, 1, _("Global Offset Table data")); /* PR 12855: Null data is handled gracefully throughout. */ data_end = data + (global_end - pltgot); printf (_("\nPrimary GOT:\n")); printf (_(" Canonical gp value: ")); print_vma (pltgot + 0x7ff0, LONG_HEX); printf ("\n\n"); printf (_(" Reserved entries:\n")); printf (_(" %*s %10s %*s Purpose\n"), addr_size * 2, _("Address"), _("Access"), addr_size * 2, _("Initial")); ent = print_mips_got_entry (data, pltgot, ent, data_end); printf (_(" Lazy resolver\n")); if (ent == (uint64_t) -1) goto got_print_fail; /* Check for the MSB of GOT[1] being set, denoting a GNU object. This entry will be used by some runtime loaders, to store the module pointer. Otherwise this is an ordinary local entry. PR 21344: Check for the entry being fully available before fetching it. */ if (data && data + ent - pltgot + addr_size <= data_end && (byte_get (data + ent - pltgot, addr_size) >> (addr_size * 8 - 1)) != 0) { ent = print_mips_got_entry (data, pltgot, ent, data_end); printf (_(" Module pointer (GNU extension)\n")); if (ent == (uint64_t) -1) goto got_print_fail; } printf ("\n"); if (data != NULL && ent < local_end) { printf (_(" Local entries:\n")); printf (" %*s %10s %*s\n", addr_size * 2, _("Address"), _("Access"), addr_size * 2, _("Initial")); while (ent < local_end) { ent = print_mips_got_entry (data, pltgot, ent, data_end); printf ("\n"); if (ent == (uint64_t) -1) goto got_print_fail; } printf ("\n"); } if (data != NULL && gotsym < symtabno) { int sym_width; printf (_(" Global entries:\n")); printf (" %*s %10s %*s %*s %-7s %3s %s\n", addr_size * 2, _("Address"), _("Access"), addr_size * 2, _("Initial"), addr_size * 2, _("Sym.Val."), _("Type"), /* Note for translators: "Ndx" = abbreviated form of "Index". */ _("Ndx"), _("Name")); sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1; for (i = gotsym; i < symtabno; i++) { ent = print_mips_got_entry (data, pltgot, ent, data_end); printf (" "); if (filedata->dynamic_symbols == NULL) printf (_("")); else if (i < filedata->num_dynamic_syms) { Elf_Internal_Sym * psym = filedata->dynamic_symbols + i; print_vma (psym->st_value, LONG_HEX); printf (" %-7s ", get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info))); bool is_special; const char * s = printable_section_name_from_index (filedata, psym->st_shndx, & is_special); if (is_special) printf ("%3s ", s); else printf ("%3u ", psym->st_shndx); if (valid_dynamic_name (filedata, psym->st_name)) print_symbol_name (sym_width, get_dynamic_name (filedata, psym->st_name)); else printf (_(""), psym->st_name); } else printf (_(""), i); printf ("\n"); if (ent == (uint64_t) -1) break; } printf ("\n"); } got_print_fail: free (data); } if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0) { uint64_t ent, end; uint64_t offset, rel_offset; uint64_t count, i; unsigned char * data; int addr_size, sym_width; Elf_Internal_Rela * rels; rel_offset = offset_from_vma (filedata, jmprel, pltrelsz); if (pltrel == DT_RELA) { if (!slurp_rela_relocs (filedata, rel_offset, pltrelsz, &rels, &count)) return false; } else { if (!slurp_rel_relocs (filedata, rel_offset, pltrelsz, &rels, &count)) return false; } ent = mips_pltgot; addr_size = (is_32bit_elf ? 4 : 8); end = mips_pltgot + (2 + count) * addr_size; offset = offset_from_vma (filedata, mips_pltgot, end - mips_pltgot); data = (unsigned char *) get_data (NULL, filedata, offset, end - mips_pltgot, 1, _("Procedure Linkage Table data")); if (data == NULL) { free (rels); return false; } printf ("\nPLT GOT:\n\n"); printf (_(" Reserved entries:\n")); printf (_(" %*s %*s Purpose\n"), addr_size * 2, _("Address"), addr_size * 2, _("Initial")); ent = print_mips_pltgot_entry (data, mips_pltgot, ent); printf (_(" PLT lazy resolver\n")); ent = print_mips_pltgot_entry (data, mips_pltgot, ent); printf (_(" Module pointer\n")); printf ("\n"); printf (_(" Entries:\n")); printf (" %*s %*s %*s %-7s %3s %s\n", addr_size * 2, _("Address"), addr_size * 2, _("Initial"), addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name")); sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1; for (i = 0; i < count; i++) { uint64_t idx = get_reloc_symindex (rels[i].r_info); ent = print_mips_pltgot_entry (data, mips_pltgot, ent); printf (" "); if (idx >= filedata->num_dynamic_syms) printf (_(""), idx); else { Elf_Internal_Sym * psym = filedata->dynamic_symbols + idx; print_vma (psym->st_value, LONG_HEX); printf (" %-7s %3s ", get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)), printable_section_name_from_index (filedata, psym->st_shndx, NULL)); if (valid_dynamic_name (filedata, psym->st_name)) print_symbol_name (sym_width, get_dynamic_name (filedata, psym->st_name)); else printf (_(""), psym->st_name); } printf ("\n"); } printf ("\n"); free (data); free (rels); } return res; } static bool process_nds32_specific (Filedata * filedata) { Elf_Internal_Shdr *sect = NULL; sect = find_section (filedata, ".nds32_e_flags"); if (sect != NULL && sect->sh_size >= 4) { unsigned char *buf; unsigned int flag; printf ("\nNDS32 elf flags section:\n"); buf = get_data (NULL, filedata, sect->sh_offset, 1, 4, _("NDS32 elf flags section")); if (buf == NULL) return false; flag = byte_get (buf, 4); free (buf); switch (flag & 0x3) { case 0: printf ("(VEC_SIZE):\tNo entry.\n"); break; case 1: printf ("(VEC_SIZE):\t4 bytes\n"); break; case 2: printf ("(VEC_SIZE):\t16 bytes\n"); break; case 3: printf ("(VEC_SIZE):\treserved\n"); break; } } return true; } static bool process_gnu_liblist (Filedata * filedata) { Elf_Internal_Shdr * section; Elf_Internal_Shdr * string_sec; Elf32_External_Lib * elib; char * strtab; size_t strtab_size; size_t cnt; uint64_t num_liblist; unsigned i; bool res = true; if (! do_arch) return true; for (i = 0, section = filedata->section_headers; i < filedata->file_header.e_shnum; i++, section++) { switch (section->sh_type) { case SHT_GNU_LIBLIST: if (section->sh_link >= filedata->file_header.e_shnum) break; elib = (Elf32_External_Lib *) get_data (NULL, filedata, section->sh_offset, 1, section->sh_size, _("liblist section data")); if (elib == NULL) { res = false; break; } string_sec = filedata->section_headers + section->sh_link; strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset, 1, string_sec->sh_size, _("liblist string table")); if (strtab == NULL || section->sh_entsize != sizeof (Elf32_External_Lib)) { free (elib); free (strtab); res = false; break; } strtab_size = string_sec->sh_size; num_liblist = section->sh_size / sizeof (Elf32_External_Lib); printf (ngettext ("\nLibrary list section '%s' contains %" PRIu64 " entries:\n", "\nLibrary list section '%s' contains %" PRIu64 " entries:\n", num_liblist), printable_section_name (filedata, section), num_liblist); puts (_(" Library Time Stamp Checksum Version Flags")); for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib); ++cnt) { Elf32_Lib liblist; time_t atime; char timebuf[128]; struct tm * tmp; liblist.l_name = BYTE_GET (elib[cnt].l_name); atime = BYTE_GET (elib[cnt].l_time_stamp); liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum); liblist.l_version = BYTE_GET (elib[cnt].l_version); liblist.l_flags = BYTE_GET (elib[cnt].l_flags); tmp = gmtime (&atime); snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u", tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday, tmp->tm_hour, tmp->tm_min, tmp->tm_sec); printf ("%3zu: ", cnt); if (do_wide) printf ("%-20s", liblist.l_name < strtab_size ? strtab + liblist.l_name : _("")); else printf ("%-20.20s", liblist.l_name < strtab_size ? strtab + liblist.l_name : _("")); printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum, liblist.l_version, liblist.l_flags); } free (elib); free (strtab); } } return res; } static const char * get_note_type (Filedata * filedata, unsigned e_type) { static char buff[64]; if (filedata->file_header.e_type == ET_CORE) switch (e_type) { case NT_AUXV: return _("NT_AUXV (auxiliary vector)"); case NT_PRSTATUS: return _("NT_PRSTATUS (prstatus structure)"); case NT_FPREGSET: return _("NT_FPREGSET (floating point registers)"); case NT_PRPSINFO: return _("NT_PRPSINFO (prpsinfo structure)"); case NT_TASKSTRUCT: return _("NT_TASKSTRUCT (task structure)"); case NT_GDB_TDESC: return _("NT_GDB_TDESC (GDB XML target description)"); case NT_PRXFPREG: return _("NT_PRXFPREG (user_xfpregs structure)"); case NT_PPC_VMX: return _("NT_PPC_VMX (ppc Altivec registers)"); case NT_PPC_VSX: return _("NT_PPC_VSX (ppc VSX registers)"); case NT_PPC_TAR: return _("NT_PPC_TAR (ppc TAR register)"); case NT_PPC_PPR: return _("NT_PPC_PPR (ppc PPR register)"); case NT_PPC_DSCR: return _("NT_PPC_DSCR (ppc DSCR register)"); case NT_PPC_EBB: return _("NT_PPC_EBB (ppc EBB registers)"); case NT_PPC_PMU: return _("NT_PPC_PMU (ppc PMU registers)"); case NT_PPC_TM_CGPR: return _("NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"); case NT_PPC_TM_CFPR: return _("NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"); case NT_PPC_TM_CVMX: return _("NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"); case NT_PPC_TM_CVSX: return _("NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"); case NT_PPC_TM_SPR: return _("NT_PPC_TM_SPR (ppc TM special purpose registers)"); case NT_PPC_TM_CTAR: return _("NT_PPC_TM_CTAR (ppc checkpointed TAR register)"); case NT_PPC_TM_CPPR: return _("NT_PPC_TM_CPPR (ppc checkpointed PPR register)"); case NT_PPC_TM_CDSCR: return _("NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"); case NT_386_TLS: return _("NT_386_TLS (x86 TLS information)"); case NT_386_IOPERM: return _("NT_386_IOPERM (x86 I/O permissions)"); case NT_X86_XSTATE: return _("NT_X86_XSTATE (x86 XSAVE extended state)"); case NT_X86_CET: return _("NT_X86_CET (x86 CET state)"); case NT_S390_HIGH_GPRS: return _("NT_S390_HIGH_GPRS (s390 upper register halves)"); case NT_S390_TIMER: return _("NT_S390_TIMER (s390 timer register)"); case NT_S390_TODCMP: return _("NT_S390_TODCMP (s390 TOD comparator register)"); case NT_S390_TODPREG: return _("NT_S390_TODPREG (s390 TOD programmable register)"); case NT_S390_CTRS: return _("NT_S390_CTRS (s390 control registers)"); case NT_S390_PREFIX: return _("NT_S390_PREFIX (s390 prefix register)"); case NT_S390_LAST_BREAK: return _("NT_S390_LAST_BREAK (s390 last breaking event address)"); case NT_S390_SYSTEM_CALL: return _("NT_S390_SYSTEM_CALL (s390 system call restart data)"); case NT_S390_TDB: return _("NT_S390_TDB (s390 transaction diagnostic block)"); case NT_S390_VXRS_LOW: return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"); case NT_S390_VXRS_HIGH: return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)"); case NT_S390_GS_CB: return _("NT_S390_GS_CB (s390 guarded-storage registers)"); case NT_S390_GS_BC: return _("NT_S390_GS_BC (s390 guarded-storage broadcast control)"); case NT_ARM_VFP: return _("NT_ARM_VFP (arm VFP registers)"); case NT_ARM_TLS: return _("NT_ARM_TLS (AArch TLS registers)"); case NT_ARM_HW_BREAK: return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"); case NT_ARM_HW_WATCH: return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"); case NT_ARM_SYSTEM_CALL: return _("NT_ARM_SYSTEM_CALL (AArch system call number)"); case NT_ARM_SVE: return _("NT_ARM_SVE (AArch SVE registers)"); case NT_ARM_PAC_MASK: return _("NT_ARM_PAC_MASK (AArch pointer authentication code masks)"); case NT_ARM_PACA_KEYS: return _("NT_ARM_PACA_KEYS (ARM pointer authentication address keys)"); case NT_ARM_PACG_KEYS: return _("NT_ARM_PACG_KEYS (ARM pointer authentication generic keys)"); case NT_ARM_TAGGED_ADDR_CTRL: return _("NT_ARM_TAGGED_ADDR_CTRL (AArch tagged address control)"); case NT_ARM_SSVE: return _("NT_ARM_SSVE (AArch64 streaming SVE registers)"); case NT_ARM_ZA: return _("NT_ARM_ZA (AArch64 SME ZA register)"); case NT_ARM_ZT: return _("NT_ARM_ZT (AArch64 SME2 ZT registers)"); case NT_ARM_PAC_ENABLED_KEYS: return _("NT_ARM_PAC_ENABLED_KEYS (AArch64 pointer authentication enabled keys)"); case NT_ARC_V2: return _("NT_ARC_V2 (ARC HS accumulator/extra registers)"); case NT_RISCV_CSR: return _("NT_RISCV_CSR (RISC-V control and status registers)"); case NT_PSTATUS: return _("NT_PSTATUS (pstatus structure)"); case NT_FPREGS: return _("NT_FPREGS (floating point registers)"); case NT_PSINFO: return _("NT_PSINFO (psinfo structure)"); case NT_LWPSTATUS: return _("NT_LWPSTATUS (lwpstatus_t structure)"); case NT_LWPSINFO: return _("NT_LWPSINFO (lwpsinfo_t structure)"); case NT_WIN32PSTATUS: return _("NT_WIN32PSTATUS (win32_pstatus structure)"); case NT_SIGINFO: return _("NT_SIGINFO (siginfo_t data)"); case NT_FILE: return _("NT_FILE (mapped files)"); default: break; } else switch (e_type) { case NT_VERSION: return _("NT_VERSION (version)"); case NT_ARCH: return _("NT_ARCH (architecture)"); case NT_GNU_BUILD_ATTRIBUTE_OPEN: return _("OPEN"); case NT_GNU_BUILD_ATTRIBUTE_FUNC: return _("func"); case NT_GO_BUILDID: return _("GO BUILDID"); case FDO_PACKAGING_METADATA: return _("FDO_PACKAGING_METADATA"); default: break; } snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type); return buff; } static bool print_core_note (Elf_Internal_Note *pnote) { unsigned int addr_size = is_32bit_elf ? 4 : 8; uint64_t count, page_size; unsigned char *descdata, *filenames, *descend; if (pnote->type != NT_FILE) { if (do_wide) printf ("\n"); return true; } if (!is_32bit_elf) { printf (_(" Cannot decode 64-bit note in 32-bit build\n")); /* Still "successful". */ return true; } if (pnote->descsz < 2 * addr_size) { error (_(" Malformed note - too short for header\n")); return false; } descdata = (unsigned char *) pnote->descdata; descend = descdata + pnote->descsz; if (descdata[pnote->descsz - 1] != '\0') { error (_(" Malformed note - does not end with \\0\n")); return false; } count = byte_get (descdata, addr_size); descdata += addr_size; page_size = byte_get (descdata, addr_size); descdata += addr_size; if (count > ((uint64_t) -1 - 2 * addr_size) / (3 * addr_size) || pnote->descsz < 2 * addr_size + count * 3 * addr_size) { error (_(" Malformed note - too short for supplied file count\n")); return false; } printf (_(" Page size: ")); print_vma (page_size, DEC); printf ("\n"); printf (_(" %*s%*s%*s\n"), (int) (2 + 2 * addr_size), _("Start"), (int) (4 + 2 * addr_size), _("End"), (int) (4 + 2 * addr_size), _("Page Offset")); filenames = descdata + count * 3 * addr_size; while (count-- > 0) { uint64_t start, end, file_ofs; if (filenames == descend) { error (_(" Malformed note - filenames end too early\n")); return false; } start = byte_get (descdata, addr_size); descdata += addr_size; end = byte_get (descdata, addr_size); descdata += addr_size; file_ofs = byte_get (descdata, addr_size); descdata += addr_size; printf (" "); print_vma (start, FULL_HEX); printf (" "); print_vma (end, FULL_HEX); printf (" "); print_vma (file_ofs, FULL_HEX); printf ("\n %s\n", filenames); filenames += 1 + strlen ((char *) filenames); } return true; } static const char * get_gnu_elf_note_type (unsigned e_type) { /* NB/ Keep this switch statement in sync with print_gnu_note (). */ switch (e_type) { case NT_GNU_ABI_TAG: return _("NT_GNU_ABI_TAG (ABI version tag)"); case NT_GNU_HWCAP: return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)"); case NT_GNU_BUILD_ID: return _("NT_GNU_BUILD_ID (unique build ID bitstring)"); case NT_GNU_GOLD_VERSION: return _("NT_GNU_GOLD_VERSION (gold version)"); case NT_GNU_PROPERTY_TYPE_0: return _("NT_GNU_PROPERTY_TYPE_0"); case NT_GNU_BUILD_ATTRIBUTE_OPEN: return _("NT_GNU_BUILD_ATTRIBUTE_OPEN"); case NT_GNU_BUILD_ATTRIBUTE_FUNC: return _("NT_GNU_BUILD_ATTRIBUTE_FUNC"); default: { static char buff[64]; snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type); return buff; } } } static void decode_x86_compat_isa (unsigned int bitmask) { while (bitmask) { unsigned int bit = bitmask & (- bitmask); bitmask &= ~ bit; switch (bit) { case GNU_PROPERTY_X86_COMPAT_ISA_1_486: printf ("i486"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_586: printf ("586"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_686: printf ("686"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE: printf ("SSE"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE2: printf ("SSE2"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE3: printf ("SSE3"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_SSSE3: printf ("SSSE3"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE4_1: printf ("SSE4_1"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE4_2: printf ("SSE4_2"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX: printf ("AVX"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX2: printf ("AVX2"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512F: printf ("AVX512F"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512CD: printf ("AVX512CD"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512ER: printf ("AVX512ER"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512PF: printf ("AVX512PF"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512VL: printf ("AVX512VL"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512DQ: printf ("AVX512DQ"); break; case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512BW: printf ("AVX512BW"); break; default: printf (_(""), bit); break; } if (bitmask) printf (", "); } } static void decode_x86_compat_2_isa (unsigned int bitmask) { if (!bitmask) { printf (_("")); return; } while (bitmask) { unsigned int bit = bitmask & (- bitmask); bitmask &= ~ bit; switch (bit) { case GNU_PROPERTY_X86_COMPAT_2_ISA_1_CMOV: printf ("CMOV"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_SSE: printf ("SSE"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_SSE2: printf ("SSE2"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_SSE3: printf ("SSE3"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_SSSE3: printf ("SSSE3"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_SSE4_1: printf ("SSE4_1"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_SSE4_2: printf ("SSE4_2"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX: printf ("AVX"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX2: printf ("AVX2"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_FMA: printf ("FMA"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512F: printf ("AVX512F"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512CD: printf ("AVX512CD"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512ER: printf ("AVX512ER"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512PF: printf ("AVX512PF"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512VL: printf ("AVX512VL"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512DQ: printf ("AVX512DQ"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512BW: printf ("AVX512BW"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512_4FMAPS: printf ("AVX512_4FMAPS"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512_4VNNIW: printf ("AVX512_4VNNIW"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512_BITALG: printf ("AVX512_BITALG"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512_IFMA: printf ("AVX512_IFMA"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512_VBMI: printf ("AVX512_VBMI"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512_VBMI2: printf ("AVX512_VBMI2"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512_VNNI: printf ("AVX512_VNNI"); break; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_AVX512_BF16: printf ("AVX512_BF16"); break; default: printf (_(""), bit); break; } if (bitmask) printf (", "); } } static const char * get_amdgpu_elf_note_type (unsigned int e_type) { switch (e_type) { case NT_AMDGPU_METADATA: return _("NT_AMDGPU_METADATA (code object metadata)"); default: { static char buf[64]; snprintf (buf, sizeof (buf), _("Unknown note type: (0x%08x)"), e_type); return buf; } } } static void decode_x86_isa (unsigned int bitmask) { while (bitmask) { unsigned int bit = bitmask & (- bitmask); bitmask &= ~ bit; switch (bit) { case GNU_PROPERTY_X86_ISA_1_BASELINE: printf ("x86-64-baseline"); break; case GNU_PROPERTY_X86_ISA_1_V2: printf ("x86-64-v2"); break; case GNU_PROPERTY_X86_ISA_1_V3: printf ("x86-64-v3"); break; case GNU_PROPERTY_X86_ISA_1_V4: printf ("x86-64-v4"); break; default: printf (_(""), bit); break; } if (bitmask) printf (", "); } } static void decode_x86_feature_1 (unsigned int bitmask) { if (!bitmask) { printf (_("")); return; } while (bitmask) { unsigned int bit = bitmask & (- bitmask); bitmask &= ~ bit; switch (bit) { case GNU_PROPERTY_X86_FEATURE_1_IBT: printf ("IBT"); break; case GNU_PROPERTY_X86_FEATURE_1_SHSTK: printf ("SHSTK"); break; case GNU_PROPERTY_X86_FEATURE_1_LAM_U48: printf ("LAM_U48"); break; case GNU_PROPERTY_X86_FEATURE_1_LAM_U57: printf ("LAM_U57"); break; default: printf (_(""), bit); break; } if (bitmask) printf (", "); } } static void decode_x86_feature_2 (unsigned int bitmask) { if (!bitmask) { printf (_("")); return; } while (bitmask) { unsigned int bit = bitmask & (- bitmask); bitmask &= ~ bit; switch (bit) { case GNU_PROPERTY_X86_FEATURE_2_X86: printf ("x86"); break; case GNU_PROPERTY_X86_FEATURE_2_X87: printf ("x87"); break; case GNU_PROPERTY_X86_FEATURE_2_MMX: printf ("MMX"); break; case GNU_PROPERTY_X86_FEATURE_2_XMM: printf ("XMM"); break; case GNU_PROPERTY_X86_FEATURE_2_YMM: printf ("YMM"); break; case GNU_PROPERTY_X86_FEATURE_2_ZMM: printf ("ZMM"); break; case GNU_PROPERTY_X86_FEATURE_2_TMM: printf ("TMM"); break; case GNU_PROPERTY_X86_FEATURE_2_MASK: printf ("MASK"); break; case GNU_PROPERTY_X86_FEATURE_2_FXSR: printf ("FXSR"); break; case GNU_PROPERTY_X86_FEATURE_2_XSAVE: printf ("XSAVE"); break; case GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT: printf ("XSAVEOPT"); break; case GNU_PROPERTY_X86_FEATURE_2_XSAVEC: printf ("XSAVEC"); break; default: printf (_(""), bit); break; } if (bitmask) printf (", "); } } static void decode_aarch64_feature_1_and (unsigned int bitmask) { while (bitmask) { unsigned int bit = bitmask & (- bitmask); bitmask &= ~ bit; switch (bit) { case GNU_PROPERTY_AARCH64_FEATURE_1_BTI: printf ("BTI"); break; case GNU_PROPERTY_AARCH64_FEATURE_1_PAC: printf ("PAC"); break; default: printf (_(""), bit); break; } if (bitmask) printf (", "); } } static void decode_1_needed (unsigned int bitmask) { while (bitmask) { unsigned int bit = bitmask & (- bitmask); bitmask &= ~ bit; switch (bit) { case GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS: printf ("indirect external access"); break; default: printf (_(""), bit); break; } if (bitmask) printf (", "); } } static void print_gnu_property_note (Filedata * filedata, Elf_Internal_Note * pnote) { unsigned char * ptr = (unsigned char *) pnote->descdata; unsigned char * ptr_end = ptr + pnote->descsz; unsigned int size = is_32bit_elf ? 4 : 8; printf (_(" Properties: ")); if (pnote->descsz < 8 || (pnote->descsz % size) != 0) { printf (_("\n"), pnote->descsz); return; } while (ptr < ptr_end) { unsigned int j; unsigned int type; unsigned int datasz; if ((size_t) (ptr_end - ptr) < 8) { printf (_("\n"), pnote->descsz); break; } type = byte_get (ptr, 4); datasz = byte_get (ptr + 4, 4); ptr += 8; if (datasz > (size_t) (ptr_end - ptr)) { printf (_("\n"), type, datasz); break; } if (type >= GNU_PROPERTY_LOPROC && type <= GNU_PROPERTY_HIPROC) { if (filedata->file_header.e_machine == EM_X86_64 || filedata->file_header.e_machine == EM_IAMCU || filedata->file_header.e_machine == EM_386) { unsigned int bitmask; if (datasz == 4) bitmask = byte_get (ptr, 4); else bitmask = 0; switch (type) { case GNU_PROPERTY_X86_ISA_1_USED: if (datasz != 4) printf (_("x86 ISA used: "), datasz); else { printf ("x86 ISA used: "); decode_x86_isa (bitmask); } goto next; case GNU_PROPERTY_X86_ISA_1_NEEDED: if (datasz != 4) printf (_("x86 ISA needed: "), datasz); else { printf ("x86 ISA needed: "); decode_x86_isa (bitmask); } goto next; case GNU_PROPERTY_X86_FEATURE_1_AND: if (datasz != 4) printf (_("x86 feature: "), datasz); else { printf ("x86 feature: "); decode_x86_feature_1 (bitmask); } goto next; case GNU_PROPERTY_X86_FEATURE_2_USED: if (datasz != 4) printf (_("x86 feature used: "), datasz); else { printf ("x86 feature used: "); decode_x86_feature_2 (bitmask); } goto next; case GNU_PROPERTY_X86_FEATURE_2_NEEDED: if (datasz != 4) printf (_("x86 feature needed: "), datasz); else { printf ("x86 feature needed: "); decode_x86_feature_2 (bitmask); } goto next; case GNU_PROPERTY_X86_COMPAT_ISA_1_USED: if (datasz != 4) printf (_("x86 ISA used: "), datasz); else { printf ("x86 ISA used: "); decode_x86_compat_isa (bitmask); } goto next; case GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED: if (datasz != 4) printf (_("x86 ISA needed: "), datasz); else { printf ("x86 ISA needed: "); decode_x86_compat_isa (bitmask); } goto next; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_USED: if (datasz != 4) printf (_("x86 ISA used: "), datasz); else { printf ("x86 ISA used: "); decode_x86_compat_2_isa (bitmask); } goto next; case GNU_PROPERTY_X86_COMPAT_2_ISA_1_NEEDED: if (datasz != 4) printf (_("x86 ISA needed: "), datasz); else { printf ("x86 ISA needed: "); decode_x86_compat_2_isa (bitmask); } goto next; default: break; } } else if (filedata->file_header.e_machine == EM_AARCH64) { if (type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { printf ("AArch64 feature: "); if (datasz != 4) printf (_(" "), datasz); else decode_aarch64_feature_1_and (byte_get (ptr, 4)); goto next; } } } else { switch (type) { case GNU_PROPERTY_STACK_SIZE: printf (_("stack size: ")); if (datasz != size) printf (_(" "), datasz); else printf ("%#" PRIx64, byte_get (ptr, size)); goto next; case GNU_PROPERTY_NO_COPY_ON_PROTECTED: printf ("no copy on protected "); if (datasz) printf (_(" "), datasz); goto next; default: if ((type >= GNU_PROPERTY_UINT32_AND_LO && type <= GNU_PROPERTY_UINT32_AND_HI) || (type >= GNU_PROPERTY_UINT32_OR_LO && type <= GNU_PROPERTY_UINT32_OR_HI)) { switch (type) { case GNU_PROPERTY_1_NEEDED: if (datasz != 4) printf (_("1_needed: "), datasz); else { unsigned int bitmask = byte_get (ptr, 4); printf ("1_needed: "); decode_1_needed (bitmask); } goto next; default: break; } if (type <= GNU_PROPERTY_UINT32_AND_HI) printf (_("UINT32_AND (%#x): "), type); else printf (_("UINT32_OR (%#x): "), type); if (datasz != 4) printf (_(" "), datasz); else printf ("%#x", (unsigned int) byte_get (ptr, 4)); goto next; } break; } } if (type < GNU_PROPERTY_LOPROC) printf (_(""); next: ptr += ((datasz + (size - 1)) & ~ (size - 1)); if (ptr == ptr_end) break; if (do_wide) printf (", "); else printf ("\n\t"); } printf ("\n"); } static bool print_gnu_note (Filedata * filedata, Elf_Internal_Note *pnote) { /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */ switch (pnote->type) { case NT_GNU_BUILD_ID: { size_t i; printf (_(" Build ID: ")); for (i = 0; i < pnote->descsz; ++i) printf ("%02x", pnote->descdata[i] & 0xff); printf ("\n"); } break; case NT_GNU_ABI_TAG: { unsigned int os, major, minor, subminor; const char *osname; /* PR 17531: file: 030-599401-0.004. */ if (pnote->descsz < 16) { printf (_(" \n")); break; } os = byte_get ((unsigned char *) pnote->descdata, 4); major = byte_get ((unsigned char *) pnote->descdata + 4, 4); minor = byte_get ((unsigned char *) pnote->descdata + 8, 4); subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4); switch (os) { case GNU_ABI_TAG_LINUX: osname = "Linux"; break; case GNU_ABI_TAG_HURD: osname = "Hurd"; break; case GNU_ABI_TAG_SOLARIS: osname = "Solaris"; break; case GNU_ABI_TAG_FREEBSD: osname = "FreeBSD"; break; case GNU_ABI_TAG_NETBSD: osname = "NetBSD"; break; case GNU_ABI_TAG_SYLLABLE: osname = "Syllable"; break; case GNU_ABI_TAG_NACL: osname = "NaCl"; break; default: osname = "Unknown"; break; } printf (_(" OS: %s, ABI: %d.%d.%d\n"), osname, major, minor, subminor); } break; case NT_GNU_GOLD_VERSION: { size_t i; printf (_(" Version: ")); for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i) printf ("%c", pnote->descdata[i]); printf ("\n"); } break; case NT_GNU_HWCAP: { unsigned int num_entries, mask; /* Hardware capabilities information. Word 0 is the number of entries. Word 1 is a bitmask of enabled entries. The rest of the descriptor is a series of entries, where each entry is a single byte followed by a nul terminated string. The byte gives the bit number to test if enabled in the bitmask. */ printf (_(" Hardware Capabilities: ")); if (pnote->descsz < 8) { error (_("\n")); return false; } num_entries = byte_get ((unsigned char *) pnote->descdata, 4); mask = byte_get ((unsigned char *) pnote->descdata + 4, 4); printf (_("num entries: %d, enabled mask: %x\n"), num_entries, mask); /* FIXME: Add code to display the entries... */ } break; case NT_GNU_PROPERTY_TYPE_0: print_gnu_property_note (filedata, pnote); break; default: /* Handle unrecognised types. An error message should have already been created by get_gnu_elf_note_type(), so all that we need to do is to display the data. */ { size_t i; printf (_(" Description data: ")); for (i = 0; i < pnote->descsz; ++i) printf ("%02x ", pnote->descdata[i] & 0xff); printf ("\n"); } break; } return true; } static const char * get_v850_elf_note_type (enum v850_notes n_type) { static char buff[64]; switch (n_type) { case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects"); case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double"); case V850_NOTE_FPU_INFO: return _("Type of FPU support needed"); case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions"); case V850_NOTE_CACHE_INFO: return _("Use of cache"); case V850_NOTE_MMU_INFO: return _("Use of MMU"); default: snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type); return buff; } } static bool print_v850_note (Elf_Internal_Note * pnote) { unsigned int val; if (pnote->descsz != 4) return false; val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz); if (val == 0) { printf (_("not set\n")); return true; } switch (pnote->type) { case V850_NOTE_ALIGNMENT: switch (val) { case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return true; case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return true; } break; case V850_NOTE_DATA_SIZE: switch (val) { case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return true; case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return true; } break; case V850_NOTE_FPU_INFO: switch (val) { case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return true; case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return true; } break; case V850_NOTE_MMU_INFO: case V850_NOTE_CACHE_INFO: case V850_NOTE_SIMD_INFO: if (val == EF_RH850_SIMD) { printf (_("yes\n")); return true; } break; default: /* An 'unknown note type' message will already have been displayed. */ break; } printf (_("unknown value: %x\n"), val); return false; } static bool process_netbsd_elf_note (Elf_Internal_Note * pnote) { unsigned int version; switch (pnote->type) { case NT_NETBSD_IDENT: if (pnote->descsz < 1) break; version = byte_get ((unsigned char *) pnote->descdata, sizeof (version)); if ((version / 10000) % 100) printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz, version, version / 100000000, (version / 1000000) % 100, (version / 10000) % 100 > 26 ? "Z" : "", 'A' + (version / 10000) % 26); else printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz, version, version / 100000000, (version / 1000000) % 100, (version / 100) % 100); return true; case NT_NETBSD_MARCH: printf (" NetBSD\t\t0x%08lx\tMARCH <%s>\n", pnote->descsz, pnote->descdata); return true; case NT_NETBSD_PAX: if (pnote->descsz < 1) break; version = byte_get ((unsigned char *) pnote->descdata, sizeof (version)); printf (" NetBSD\t\t0x%08lx\tPaX <%s%s%s%s%s%s>\n", pnote->descsz, ((version & NT_NETBSD_PAX_MPROTECT) ? "+mprotect" : ""), ((version & NT_NETBSD_PAX_NOMPROTECT) ? "-mprotect" : ""), ((version & NT_NETBSD_PAX_GUARD) ? "+guard" : ""), ((version & NT_NETBSD_PAX_NOGUARD) ? "-guard" : ""), ((version & NT_NETBSD_PAX_ASLR) ? "+ASLR" : ""), ((version & NT_NETBSD_PAX_NOASLR) ? "-ASLR" : "")); return true; } printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz, pnote->type); return false; } static const char * get_freebsd_elfcore_note_type (Filedata * filedata, unsigned e_type) { switch (e_type) { case NT_FREEBSD_THRMISC: return _("NT_THRMISC (thrmisc structure)"); case NT_FREEBSD_PROCSTAT_PROC: return _("NT_PROCSTAT_PROC (proc data)"); case NT_FREEBSD_PROCSTAT_FILES: return _("NT_PROCSTAT_FILES (files data)"); case NT_FREEBSD_PROCSTAT_VMMAP: return _("NT_PROCSTAT_VMMAP (vmmap data)"); case NT_FREEBSD_PROCSTAT_GROUPS: return _("NT_PROCSTAT_GROUPS (groups data)"); case NT_FREEBSD_PROCSTAT_UMASK: return _("NT_PROCSTAT_UMASK (umask data)"); case NT_FREEBSD_PROCSTAT_RLIMIT: return _("NT_PROCSTAT_RLIMIT (rlimit data)"); case NT_FREEBSD_PROCSTAT_OSREL: return _("NT_PROCSTAT_OSREL (osreldate data)"); case NT_FREEBSD_PROCSTAT_PSSTRINGS: return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)"); case NT_FREEBSD_PROCSTAT_AUXV: return _("NT_PROCSTAT_AUXV (auxv data)"); case NT_FREEBSD_PTLWPINFO: return _("NT_PTLWPINFO (ptrace_lwpinfo structure)"); case NT_FREEBSD_X86_SEGBASES: return _("NT_X86_SEGBASES (x86 segment base registers)"); } return get_note_type (filedata, e_type); } static const char * get_netbsd_elfcore_note_type (Filedata * filedata, unsigned e_type) { static char buff[64]; switch (e_type) { case NT_NETBSDCORE_PROCINFO: /* NetBSD core "procinfo" structure. */ return _("NetBSD procinfo structure"); case NT_NETBSDCORE_AUXV: return _("NetBSD ELF auxiliary vector data"); case NT_NETBSDCORE_LWPSTATUS: return _("PT_LWPSTATUS (ptrace_lwpstatus structure)"); default: /* As of Jan 2020 there are no other machine-independent notes defined for NetBSD core files. If the note type is less than the start of the machine-dependent note types, we don't understand it. */ if (e_type < NT_NETBSDCORE_FIRSTMACH) { snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type); return buff; } break; } switch (filedata->file_header.e_machine) { /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and PT_GETFPREGS == mach+2. */ case EM_OLD_ALPHA: case EM_ALPHA: case EM_SPARC: case EM_SPARC32PLUS: case EM_SPARCV9: switch (e_type) { case NT_NETBSDCORE_FIRSTMACH + 0: return _("PT_GETREGS (reg structure)"); case NT_NETBSDCORE_FIRSTMACH + 2: return _("PT_GETFPREGS (fpreg structure)"); default: break; } break; /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5. There's also old PT___GETREGS40 == mach + 1 for old reg structure which lacks GBR. */ case EM_SH: switch (e_type) { case NT_NETBSDCORE_FIRSTMACH + 1: return _("PT___GETREGS40 (old reg structure)"); case NT_NETBSDCORE_FIRSTMACH + 3: return _("PT_GETREGS (reg structure)"); case NT_NETBSDCORE_FIRSTMACH + 5: return _("PT_GETFPREGS (fpreg structure)"); default: break; } break; /* On all other arch's, PT_GETREGS == mach+1 and PT_GETFPREGS == mach+3. */ default: switch (e_type) { case NT_NETBSDCORE_FIRSTMACH + 1: return _("PT_GETREGS (reg structure)"); case NT_NETBSDCORE_FIRSTMACH + 3: return _("PT_GETFPREGS (fpreg structure)"); default: break; } } snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d", e_type - NT_NETBSDCORE_FIRSTMACH); return buff; } static const char * get_openbsd_elfcore_note_type (Filedata * filedata, unsigned e_type) { switch (e_type) { case NT_OPENBSD_PROCINFO: return _("OpenBSD procinfo structure"); case NT_OPENBSD_AUXV: return _("OpenBSD ELF auxiliary vector data"); case NT_OPENBSD_REGS: return _("OpenBSD regular registers"); case NT_OPENBSD_FPREGS: return _("OpenBSD floating point registers"); case NT_OPENBSD_WCOOKIE: return _("OpenBSD window cookie"); } return get_note_type (filedata, e_type); } static const char * get_qnx_elfcore_note_type (Filedata * filedata, unsigned e_type) { switch (e_type) { case QNT_DEBUG_FULLPATH: return _("QNX debug fullpath"); case QNT_DEBUG_RELOC: return _("QNX debug relocation"); case QNT_STACK: return _("QNX stack"); case QNT_GENERATOR: return _("QNX generator"); case QNT_DEFAULT_LIB: return _("QNX default library"); case QNT_CORE_SYSINFO: return _("QNX core sysinfo"); case QNT_CORE_INFO: return _("QNX core info"); case QNT_CORE_STATUS: return _("QNX core status"); case QNT_CORE_GREG: return _("QNX general registers"); case QNT_CORE_FPREG: return _("QNX floating point registers"); case QNT_LINK_MAP: return _("QNX link map"); } return get_note_type (filedata, e_type); } static const char * get_stapsdt_note_type (unsigned e_type) { static char buff[64]; switch (e_type) { case NT_STAPSDT: return _("NT_STAPSDT (SystemTap probe descriptors)"); default: break; } snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type); return buff; } static bool print_stapsdt_note (Elf_Internal_Note *pnote) { size_t len, maxlen; size_t addr_size = is_32bit_elf ? 4 : 8; char *data = pnote->descdata; char *data_end = pnote->descdata + pnote->descsz; uint64_t pc, base_addr, semaphore; char *provider, *probe, *arg_fmt; if (pnote->descsz < (addr_size * 3)) goto stapdt_note_too_small; pc = byte_get ((unsigned char *) data, addr_size); data += addr_size; base_addr = byte_get ((unsigned char *) data, addr_size); data += addr_size; semaphore = byte_get ((unsigned char *) data, addr_size); data += addr_size; if (data >= data_end) goto stapdt_note_too_small; maxlen = data_end - data; len = strnlen (data, maxlen); if (len < maxlen) { provider = data; data += len + 1; } else goto stapdt_note_too_small; if (data >= data_end) goto stapdt_note_too_small; maxlen = data_end - data; len = strnlen (data, maxlen); if (len < maxlen) { probe = data; data += len + 1; } else goto stapdt_note_too_small; if (data >= data_end) goto stapdt_note_too_small; maxlen = data_end - data; len = strnlen (data, maxlen); if (len < maxlen) { arg_fmt = data; data += len + 1; } else goto stapdt_note_too_small; printf (_(" Provider: %s\n"), provider); printf (_(" Name: %s\n"), probe); printf (_(" Location: ")); print_vma (pc, FULL_HEX); printf (_(", Base: ")); print_vma (base_addr, FULL_HEX); printf (_(", Semaphore: ")); print_vma (semaphore, FULL_HEX); printf ("\n"); printf (_(" Arguments: %s\n"), arg_fmt); return data == data_end; stapdt_note_too_small: printf (_(" \n")); error (_("corrupt stapdt note - the data size is too small\n")); return false; } static bool print_fdo_note (Elf_Internal_Note * pnote) { if (pnote->descsz > 0 && pnote->type == FDO_PACKAGING_METADATA) { printf (_(" Packaging Metadata: %.*s\n"), (int) pnote->descsz, pnote->descdata); return true; } return false; } static const char * get_ia64_vms_note_type (unsigned e_type) { static char buff[64]; switch (e_type) { case NT_VMS_MHD: return _("NT_VMS_MHD (module header)"); case NT_VMS_LNM: return _("NT_VMS_LNM (language name)"); case NT_VMS_SRC: return _("NT_VMS_SRC (source files)"); case NT_VMS_TITLE: return "NT_VMS_TITLE"; case NT_VMS_EIDC: return _("NT_VMS_EIDC (consistency check)"); case NT_VMS_FPMODE: return _("NT_VMS_FPMODE (FP mode)"); case NT_VMS_LINKTIME: return "NT_VMS_LINKTIME"; case NT_VMS_IMGNAM: return _("NT_VMS_IMGNAM (image name)"); case NT_VMS_IMGID: return _("NT_VMS_IMGID (image id)"); case NT_VMS_LINKID: return _("NT_VMS_LINKID (link id)"); case NT_VMS_IMGBID: return _("NT_VMS_IMGBID (build id)"); case NT_VMS_GSTNAM: return _("NT_VMS_GSTNAM (sym table name)"); case NT_VMS_ORIG_DYN: return "NT_VMS_ORIG_DYN"; case NT_VMS_PATCHTIME: return "NT_VMS_PATCHTIME"; default: snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type); return buff; } } static bool print_ia64_vms_note (Elf_Internal_Note * pnote) { unsigned int maxlen = pnote->descsz; if (maxlen < 2 || maxlen != pnote->descsz) goto desc_size_fail; switch (pnote->type) { case NT_VMS_MHD: if (maxlen <= 36) goto desc_size_fail; size_t l = strnlen (pnote->descdata + 34, maxlen - 34); printf (_(" Creation date : %.17s\n"), pnote->descdata); printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17); if (l + 34 < maxlen) { printf (_(" Module name : %s\n"), pnote->descdata + 34); if (l + 35 < maxlen) printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1); else printf (_(" Module version : \n")); } else { printf (_(" Module name : \n")); printf (_(" Module version : \n")); } break; case NT_VMS_LNM: printf (_(" Language: %.*s\n"), maxlen, pnote->descdata); break; case NT_VMS_FPMODE: printf (_(" Floating Point mode: ")); if (maxlen < 8) goto desc_size_fail; /* FIXME: Generate an error if descsz > 8 ? */ printf ("0x%016" PRIx64 "\n", byte_get ((unsigned char *) pnote->descdata, 8)); break; case NT_VMS_LINKTIME: printf (_(" Link time: ")); if (maxlen < 8) goto desc_size_fail; /* FIXME: Generate an error if descsz > 8 ? */ print_vms_time (byte_get ((unsigned char *) pnote->descdata, 8)); printf ("\n"); break; case NT_VMS_PATCHTIME: printf (_(" Patch time: ")); if (maxlen < 8) goto desc_size_fail; /* FIXME: Generate an error if descsz > 8 ? */ print_vms_time (byte_get ((unsigned char *) pnote->descdata, 8)); printf ("\n"); break; case NT_VMS_ORIG_DYN: if (maxlen < 34) goto desc_size_fail; printf (_(" Major id: %u, minor id: %u\n"), (unsigned) byte_get ((unsigned char *) pnote->descdata, 4), (unsigned) byte_get ((unsigned char *) pnote->descdata + 4, 4)); printf (_(" Last modified : ")); print_vms_time (byte_get ((unsigned char *) pnote->descdata + 8, 8)); printf (_("\n Link flags : ")); printf ("0x%016" PRIx64 "\n", byte_get ((unsigned char *) pnote->descdata + 16, 8)); printf (_(" Header flags: 0x%08x\n"), (unsigned) byte_get ((unsigned char *) pnote->descdata + 24, 4)); printf (_(" Image id : %.*s\n"), maxlen - 32, pnote->descdata + 32); break; case NT_VMS_IMGNAM: printf (_(" Image name: %.*s\n"), maxlen, pnote->descdata); break; case NT_VMS_GSTNAM: printf (_(" Global symbol table name: %.*s\n"), maxlen, pnote->descdata); break; case NT_VMS_IMGID: printf (_(" Image id: %.*s\n"), maxlen, pnote->descdata); break; case NT_VMS_LINKID: printf (_(" Linker id: %.*s\n"), maxlen, pnote->descdata); break; default: return false; } return true; desc_size_fail: printf (_(" \n")); error (_("corrupt IA64 note: data size is too small\n")); return false; } struct build_attr_cache { Filedata *filedata; char *strtab; uint64_t strtablen; Elf_Internal_Sym *symtab; uint64_t nsyms; } ba_cache; /* Find the symbol associated with a build attribute that is attached to address OFFSET. If PNAME is non-NULL then store the name of the symbol (if found) in the provided pointer, Returns NULL if a symbol could not be found. */ static Elf_Internal_Sym * get_symbol_for_build_attribute (Filedata *filedata, uint64_t offset, bool is_open_attr, const char **pname) { Elf_Internal_Sym *saved_sym = NULL; Elf_Internal_Sym *sym; if (filedata->section_headers != NULL && (ba_cache.filedata == NULL || filedata != ba_cache.filedata)) { Elf_Internal_Shdr * symsec; free (ba_cache.strtab); ba_cache.strtab = NULL; free (ba_cache.symtab); ba_cache.symtab = NULL; /* Load the symbol and string sections. */ for (symsec = filedata->section_headers; symsec < filedata->section_headers + filedata->file_header.e_shnum; symsec ++) { if (symsec->sh_type == SHT_SYMTAB && get_symtab (filedata, symsec, &ba_cache.symtab, &ba_cache.nsyms, &ba_cache.strtab, &ba_cache.strtablen)) break; } ba_cache.filedata = filedata; } if (ba_cache.symtab == NULL) return NULL; /* Find a symbol whose value matches offset. */ for (sym = ba_cache.symtab; sym < ba_cache.symtab + ba_cache.nsyms; sym ++) if (sym->st_value == offset) { if (sym->st_name >= ba_cache.strtablen) /* Huh ? This should not happen. */ continue; if (ba_cache.strtab[sym->st_name] == 0) continue; /* The AArch64, ARM and RISC-V architectures define mapping symbols (eg $d, $x, $t) which we want to ignore. */ if (ba_cache.strtab[sym->st_name] == '$' && ba_cache.strtab[sym->st_name + 1] != 0 && ba_cache.strtab[sym->st_name + 2] == 0) continue; if (is_open_attr) { /* For OPEN attributes we prefer GLOBAL over LOCAL symbols and FILE or OBJECT symbols over NOTYPE symbols. We skip FUNC symbols entirely. */ switch (ELF_ST_TYPE (sym->st_info)) { case STT_OBJECT: case STT_FILE: saved_sym = sym; if (sym->st_size) { /* If the symbol has a size associated with it then we can stop searching. */ sym = ba_cache.symtab + ba_cache.nsyms; } continue; case STT_FUNC: /* Ignore function symbols. */ continue; default: break; } switch (ELF_ST_BIND (sym->st_info)) { case STB_GLOBAL: if (saved_sym == NULL || ELF_ST_TYPE (saved_sym->st_info) != STT_OBJECT) saved_sym = sym; break; case STB_LOCAL: if (saved_sym == NULL) saved_sym = sym; break; default: break; } } else { if (ELF_ST_TYPE (sym->st_info) != STT_FUNC) continue; saved_sym = sym; break; } } if (saved_sym && pname) * pname = ba_cache.strtab + saved_sym->st_name; return saved_sym; } /* Returns true iff addr1 and addr2 are in the same section. */ static bool same_section (Filedata * filedata, uint64_t addr1, uint64_t addr2) { Elf_Internal_Shdr * a1; Elf_Internal_Shdr * a2; a1 = find_section_by_address (filedata, addr1); a2 = find_section_by_address (filedata, addr2); return a1 == a2 && a1 != NULL; } static bool print_gnu_build_attribute_description (Elf_Internal_Note * pnote, Filedata * filedata) { static uint64_t global_offset = 0; static uint64_t global_end = 0; static uint64_t func_offset = 0; static uint64_t func_end = 0; Elf_Internal_Sym *sym; const char *name; uint64_t start; uint64_t end; bool is_open_attr = pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN; switch (pnote->descsz) { case 0: /* A zero-length description means that the range of the previous note of the same type should be used. */ if (is_open_attr) { if (global_end > global_offset) printf (_(" Applies to region from %#" PRIx64 " to %#" PRIx64 "\n"), global_offset, global_end); else printf (_(" Applies to region from %#" PRIx64 "\n"), global_offset); } else { if (func_end > func_offset) printf (_(" Applies to region from %#" PRIx64 " to %#" PRIx64 "\n"), func_offset, func_end); else printf (_(" Applies to region from %#" PRIx64 "\n"), func_offset); } return true; case 4: start = byte_get ((unsigned char *) pnote->descdata, 4); end = 0; break; case 8: start = byte_get ((unsigned char *) pnote->descdata, 4); end = byte_get ((unsigned char *) pnote->descdata + 4, 4); break; case 16: start = byte_get ((unsigned char *) pnote->descdata, 8); end = byte_get ((unsigned char *) pnote->descdata + 8, 8); break; default: error (_(" \n"), pnote->descsz); printf (_(" ")); return false; } name = NULL; sym = get_symbol_for_build_attribute (filedata, start, is_open_attr, & name); /* As of version 5 of the annobin plugin, filename symbols are biased by 2 in order to avoid them being confused with the start address of the first function in the file... */ if (sym == NULL && is_open_attr) sym = get_symbol_for_build_attribute (filedata, start + 2, is_open_attr, & name); if (end == 0 && sym != NULL && sym->st_size > 0) end = start + sym->st_size; if (is_open_attr) { /* FIXME: Need to properly allow for section alignment. 16 is just the alignment used on x86_64. */ if (global_end > 0 && start > BFD_ALIGN (global_end, 16) /* Build notes are not guaranteed to be organised in order of increasing address, but we should find the all of the notes for one section in the same place. */ && same_section (filedata, start, global_end)) warn (_("Gap in build notes detected from %#" PRIx64 " to %#" PRIx64 "\n"), global_end + 1, start - 1); printf (_(" Applies to region from %#" PRIx64), start); global_offset = start; if (end) { printf (_(" to %#" PRIx64), end); global_end = end; } } else { printf (_(" Applies to region from %#" PRIx64), start); func_offset = start; if (end) { printf (_(" to %#" PRIx64), end); func_end = end; } } if (sym && name) printf (_(" (%s)"), name); printf ("\n"); return true; } static bool print_gnu_build_attribute_name (Elf_Internal_Note * pnote) { static const char string_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_STRING, 0 }; static const char number_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC, 0 }; static const char bool_expected [3] = { GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE, GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE, 0 }; char name_type; char name_attribute; const char * expected_types; const char * name = pnote->namedata; const char * text; signed int left; if (name == NULL || pnote->namesz < 2) { error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz); print_symbol_name (-20, _(" ")); return false; } if (do_wide) left = 28; else left = 20; /* Version 2 of the spec adds a "GA" prefix to the name field. */ if (name[0] == 'G' && name[1] == 'A') { if (pnote->namesz < 4) { error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz); print_symbol_name (-20, _(" ")); return false; } printf ("GA"); name += 2; left -= 2; } switch ((name_type = * name)) { case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC: case GNU_BUILD_ATTRIBUTE_TYPE_STRING: case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE: case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE: printf ("%c", * name); left --; break; default: error (_("unrecognised attribute type in name field: %d\n"), name_type); print_symbol_name (-20, _("")); return false; } ++ name; text = NULL; switch ((name_attribute = * name)) { case GNU_BUILD_ATTRIBUTE_VERSION: text = _(""); expected_types = string_expected; ++ name; break; case GNU_BUILD_ATTRIBUTE_STACK_PROT: text = _(""); expected_types = "!+*"; ++ name; break; case GNU_BUILD_ATTRIBUTE_RELRO: text = _(""); expected_types = bool_expected; ++ name; break; case GNU_BUILD_ATTRIBUTE_STACK_SIZE: text = _(""); expected_types = number_expected; ++ name; break; case GNU_BUILD_ATTRIBUTE_TOOL: text = _(""); expected_types = string_expected; ++ name; break; case GNU_BUILD_ATTRIBUTE_ABI: text = _(""); expected_types = "$*"; ++ name; break; case GNU_BUILD_ATTRIBUTE_PIC: text = _(""); expected_types = number_expected; ++ name; break; case GNU_BUILD_ATTRIBUTE_SHORT_ENUM: text = _(""); expected_types = bool_expected; ++ name; break; default: if (ISPRINT (* name)) { int len = strnlen (name, pnote->namesz - (name - pnote->namedata)) + 1; if (len > left && ! do_wide) len = left; printf ("%.*s:", len, name); left -= len; name += len; } else { static char tmpbuf [128]; error (_("unrecognised byte in name field: %d\n"), * name); sprintf (tmpbuf, _(""), * name); text = tmpbuf; name ++; } expected_types = "*$!+"; break; } if (text) left -= printf ("%s", text); if (strchr (expected_types, name_type) == NULL) warn (_("attribute does not have an expected type (%c)\n"), name_type); if ((size_t) (name - pnote->namedata) > pnote->namesz) { error (_("corrupt name field: namesz: %lu but parsing gets to %td\n"), pnote->namesz, name - pnote->namedata); return false; } if (left < 1 && ! do_wide) return true; switch (name_type) { case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC: { unsigned int bytes; uint64_t val = 0; unsigned int shift = 0; char *decoded = NULL; bytes = pnote->namesz - (name - pnote->namedata); if (bytes > 0) /* The -1 is because the name field is always 0 terminated, and we want to be able to ensure that the shift in the while loop below will not overflow. */ -- bytes; if (bytes > sizeof (val)) { error (_("corrupt numeric name field: too many bytes in the value: %x\n"), bytes); bytes = sizeof (val); } /* We do not bother to warn if bytes == 0 as this can happen with some early versions of the gcc plugin. */ while (bytes --) { uint64_t byte = *name++ & 0xff; val |= byte << shift; shift += 8; } switch (name_attribute) { case GNU_BUILD_ATTRIBUTE_PIC: switch (val) { case 0: decoded = "static"; break; case 1: decoded = "pic"; break; case 2: decoded = "PIC"; break; case 3: decoded = "pie"; break; case 4: decoded = "PIE"; break; default: break; } break; case GNU_BUILD_ATTRIBUTE_STACK_PROT: switch (val) { /* Based upon the SPCT_FLAG_xxx enum values in gcc/cfgexpand.c. */ case 0: decoded = "off"; break; case 1: decoded = "on"; break; case 2: decoded = "all"; break; case 3: decoded = "strong"; break; case 4: decoded = "explicit"; break; default: break; } break; default: break; } if (decoded != NULL) { print_symbol_name (-left, decoded); left = 0; } else if (val == 0) { printf ("0x0"); left -= 3; } else { if (do_wide) left -= printf ("0x%" PRIx64, val); else left -= printf ("0x%-.*" PRIx64, left, val); } } break; case GNU_BUILD_ATTRIBUTE_TYPE_STRING: left -= print_symbol_name (- left, name); break; case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE: left -= print_symbol_name (- left, "true"); break; case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE: left -= print_symbol_name (- left, "false"); break; } if (do_wide && left > 0) printf ("%-*s", left, " "); return true; } /* Print the contents of PNOTE as hex. */ static void print_note_contents_hex (Elf_Internal_Note *pnote) { if (pnote->descsz) { size_t i; printf (_(" description data: ")); for (i = 0; i < pnote->descsz; i++) printf ("%02x ", pnote->descdata[i] & 0xff); if (!do_wide) printf ("\n"); } if (do_wide) printf ("\n"); } #if defined HAVE_MSGPACK static void print_indents (int n) { printf (" "); for (int i = 0; i < n; i++) printf (" "); } /* Print OBJ in human-readable form. */ static void dump_msgpack_obj (const msgpack_object *obj, int indent) { switch (obj->type) { case MSGPACK_OBJECT_NIL: printf ("(nil)"); break; case MSGPACK_OBJECT_BOOLEAN: printf ("%s", obj->via.boolean ? "true" : "false"); break; case MSGPACK_OBJECT_POSITIVE_INTEGER: printf ("%" PRIu64, obj->via.u64); break; case MSGPACK_OBJECT_NEGATIVE_INTEGER: printf ("%" PRIi64, obj->via.i64); break; case MSGPACK_OBJECT_FLOAT32: case MSGPACK_OBJECT_FLOAT64: printf ("%f", obj->via.f64); break; case MSGPACK_OBJECT_STR: printf ("\"%.*s\"", obj->via.str.size, obj->via.str.ptr); break; case MSGPACK_OBJECT_ARRAY: { const msgpack_object_array *array = &obj->via.array; printf ("[\n"); ++indent; for (uint32_t i = 0; i < array->size; ++i) { const msgpack_object *item = &array->ptr[i]; print_indents (indent); dump_msgpack_obj (item, indent); printf (",\n"); } --indent; print_indents (indent); printf ("]"); break; } break; case MSGPACK_OBJECT_MAP: { const msgpack_object_map *map = &obj->via.map; printf ("{\n"); ++indent; for (uint32_t i = 0; i < map->size; ++i) { const msgpack_object_kv *kv = &map->ptr[i]; const msgpack_object *key = &kv->key; const msgpack_object *val = &kv->val; print_indents (indent); dump_msgpack_obj (key, indent); printf (": "); dump_msgpack_obj (val, indent); printf (",\n"); } --indent; print_indents (indent); printf ("}"); break; } case MSGPACK_OBJECT_BIN: printf ("(bin)"); break; case MSGPACK_OBJECT_EXT: printf ("(ext)"); break; } } static void dump_msgpack (const msgpack_unpacked *msg) { print_indents (0); dump_msgpack_obj (&msg->data, 0); printf ("\n"); } #endif /* defined HAVE_MSGPACK */ static bool print_amdgpu_note (Elf_Internal_Note *pnote) { #if defined HAVE_MSGPACK /* If msgpack is available, decode and dump the note's content. */ bool ret; msgpack_unpacked msg; msgpack_unpack_return msgpack_ret; assert (pnote->type == NT_AMDGPU_METADATA); msgpack_unpacked_init (&msg); msgpack_ret = msgpack_unpack_next (&msg, pnote->descdata, pnote->descsz, NULL); switch (msgpack_ret) { case MSGPACK_UNPACK_SUCCESS: dump_msgpack (&msg); ret = true; break; default: error (_("failed to unpack msgpack contents in NT_AMDGPU_METADATA note")); ret = false; break; } msgpack_unpacked_destroy (&msg); return ret; #else /* msgpack is not available, dump contents as hex. */ print_note_contents_hex (pnote); return true; #endif } static bool print_qnx_note (Elf_Internal_Note *pnote) { switch (pnote->type) { case QNT_STACK: if (pnote->descsz != 12) goto desc_size_fail; printf (_(" Stack Size: 0x%" PRIx32 "\n"), (unsigned) byte_get ((unsigned char *) pnote->descdata, 4)); printf (_(" Stack allocated: %" PRIx32 "\n"), (unsigned) byte_get ((unsigned char *) pnote->descdata + 4, 4)); printf (_(" Executable: %s\n"), ((unsigned) byte_get ((unsigned char *) pnote->descdata + 8, 1)) ? "no": "yes"); break; default: print_note_contents_hex(pnote); } return true; desc_size_fail: printf (_(" \n")); error (_("corrupt QNX note: data size is too small\n")); return false; } /* Note that by the ELF standard, the name field is already null byte terminated, and namesz includes the terminating null byte. I.E. the value of namesz for the name "FSF" is 4. If the value of namesz is zero, there is no name present. */ static bool process_note (Elf_Internal_Note * pnote, Filedata * filedata) { const char * name = pnote->namesz ? pnote->namedata : "(NONE)"; const char * nt; if (pnote->namesz == 0) /* If there is no note name, then use the default set of note type strings. */ nt = get_note_type (filedata, pnote->type); else if (startswith (pnote->namedata, "GNU")) /* GNU-specific object file notes. */ nt = get_gnu_elf_note_type (pnote->type); else if (startswith (pnote->namedata, "AMDGPU")) /* AMDGPU-specific object file notes. */ nt = get_amdgpu_elf_note_type (pnote->type); else if (startswith (pnote->namedata, "FreeBSD")) /* FreeBSD-specific core file notes. */ nt = get_freebsd_elfcore_note_type (filedata, pnote->type); else if (startswith (pnote->namedata, "NetBSD-CORE")) /* NetBSD-specific core file notes. */ nt = get_netbsd_elfcore_note_type (filedata, pnote->type); else if (startswith (pnote->namedata, "NetBSD")) /* NetBSD-specific core file notes. */ return process_netbsd_elf_note (pnote); else if (startswith (pnote->namedata, "PaX")) /* NetBSD-specific core file notes. */ return process_netbsd_elf_note (pnote); else if (startswith (pnote->namedata, "OpenBSD")) /* OpenBSD-specific core file notes. */ nt = get_openbsd_elfcore_note_type (filedata, pnote->type); else if (startswith (pnote->namedata, "QNX")) /* QNX-specific core file notes. */ nt = get_qnx_elfcore_note_type (filedata, pnote->type); else if (startswith (pnote->namedata, "SPU/")) { /* SPU-specific core file notes. */ nt = pnote->namedata + 4; name = "SPU"; } else if (startswith (pnote->namedata, "IPF/VMS")) /* VMS/ia64-specific file notes. */ nt = get_ia64_vms_note_type (pnote->type); else if (startswith (pnote->namedata, "stapsdt")) nt = get_stapsdt_note_type (pnote->type); else /* Don't recognize this note name; just use the default set of note type strings. */ nt = get_note_type (filedata, pnote->type); printf (" "); if (((startswith (pnote->namedata, "GA") && strchr ("*$!+", pnote->namedata[2]) != NULL) || strchr ("*$!+", pnote->namedata[0]) != NULL) && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)) print_gnu_build_attribute_name (pnote); else print_symbol_name (-20, name); if (do_wide) printf (" 0x%08lx\t%s\t", pnote->descsz, nt); else printf (" 0x%08lx\t%s\n", pnote->descsz, nt); if (startswith (pnote->namedata, "IPF/VMS")) return print_ia64_vms_note (pnote); else if (startswith (pnote->namedata, "GNU")) return print_gnu_note (filedata, pnote); else if (startswith (pnote->namedata, "stapsdt")) return print_stapsdt_note (pnote); else if (startswith (pnote->namedata, "CORE")) return print_core_note (pnote); else if (startswith (pnote->namedata, "FDO")) return print_fdo_note (pnote); else if (((startswith (pnote->namedata, "GA") && strchr ("*$!+", pnote->namedata[2]) != NULL) || strchr ("*$!+", pnote->namedata[0]) != NULL) && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)) return print_gnu_build_attribute_description (pnote, filedata); else if (startswith (pnote->namedata, "AMDGPU") && pnote->type == NT_AMDGPU_METADATA) return print_amdgpu_note (pnote); else if (startswith (pnote->namedata, "QNX")) return print_qnx_note (pnote); print_note_contents_hex (pnote); return true; } static bool process_notes_at (Filedata * filedata, Elf_Internal_Shdr * section, uint64_t offset, uint64_t length, uint64_t align) { Elf_External_Note *pnotes; Elf_External_Note *external; char *end; bool res = true; if (length <= 0) return false; if (section) { pnotes = (Elf_External_Note *) get_section_contents (section, filedata); if (pnotes) { if (! apply_relocations (filedata, section, (unsigned char *) pnotes, length, NULL, NULL)) { free (pnotes); return false; } } } else pnotes = (Elf_External_Note *) get_data (NULL, filedata, offset, 1, length, _("notes")); if (pnotes == NULL) return false; external = pnotes; if (filedata->is_separate) printf (_("In linked file '%s': "), filedata->file_name); else printf ("\n"); if (section) printf (_("Displaying notes found in: %s\n"), printable_section_name (filedata, section)); else printf (_("Displaying notes found at file offset 0x%08" PRIx64 " with length 0x%08" PRIx64 ":\n"), offset, length); /* NB: Some note sections may have alignment value of 0 or 1. gABI specifies that notes should be aligned to 4 bytes in 32-bit objects and to 8 bytes in 64-bit objects. As a Linux extension, we also support 4 byte alignment in 64-bit objects. If section alignment is less than 4, we treate alignment as 4 bytes. */ if (align < 4) align = 4; else if (align != 4 && align != 8) { warn (_("Corrupt note: alignment %" PRId64 ", expecting 4 or 8\n"), align); free (pnotes); return false; } printf (_(" %-20s %-10s\tDescription\n"), _("Owner"), _("Data size")); end = (char *) pnotes + length; while ((char *) external < end) { Elf_Internal_Note inote; size_t min_notesz; char * next; char * temp = NULL; size_t data_remaining = end - (char *) external; if (!is_ia64_vms (filedata)) { /* PR binutils/15191 Make sure that there is enough data to read. */ min_notesz = offsetof (Elf_External_Note, name); if (data_remaining < min_notesz) { warn (ngettext ("Corrupt note: only %zd byte remains, " "not enough for a full note\n", "Corrupt note: only %zd bytes remain, " "not enough for a full note\n", data_remaining), data_remaining); break; } data_remaining -= min_notesz; inote.type = BYTE_GET (external->type); inote.namesz = BYTE_GET (external->namesz); inote.namedata = external->name; inote.descsz = BYTE_GET (external->descsz); inote.descdata = ((char *) external + ELF_NOTE_DESC_OFFSET (inote.namesz, align)); inote.descpos = offset + (inote.descdata - (char *) pnotes); next = ((char *) external + ELF_NOTE_NEXT_OFFSET (inote.namesz, inote.descsz, align)); } else { Elf64_External_VMS_Note *vms_external; /* PR binutils/15191 Make sure that there is enough data to read. */ min_notesz = offsetof (Elf64_External_VMS_Note, name); if (data_remaining < min_notesz) { warn (ngettext ("Corrupt note: only %zd byte remains, " "not enough for a full note\n", "Corrupt note: only %zd bytes remain, " "not enough for a full note\n", data_remaining), data_remaining); break; } data_remaining -= min_notesz; vms_external = (Elf64_External_VMS_Note *) external; inote.type = BYTE_GET (vms_external->type); inote.namesz = BYTE_GET (vms_external->namesz); inote.namedata = vms_external->name; inote.descsz = BYTE_GET (vms_external->descsz); inote.descdata = inote.namedata + align_power (inote.namesz, 3); inote.descpos = offset + (inote.descdata - (char *) pnotes); next = inote.descdata + align_power (inote.descsz, 3); } /* PR 17531: file: 3443835e. */ /* PR 17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */ if ((size_t) (inote.descdata - inote.namedata) < inote.namesz || (size_t) (inote.descdata - inote.namedata) > data_remaining || (size_t) (next - inote.descdata) < inote.descsz || ((size_t) (next - inote.descdata) > data_remaining - (size_t) (inote.descdata - inote.namedata))) { warn (_("note with invalid namesz and/or descsz found at offset %#tx\n"), (char *) external - (char *) pnotes); warn (_(" type: %#lx, namesize: %#lx, descsize: %#lx, alignment: %u\n"), inote.type, inote.namesz, inote.descsz, (int) align); break; } external = (Elf_External_Note *) next; /* Verify that name is null terminated. It appears that at least one version of Linux (RedHat 6.0) generates corefiles that don't comply with the ELF spec by failing to include the null byte in namesz. */ if (inote.namesz > 0 && inote.namedata[inote.namesz - 1] != '\0') { if ((size_t) (inote.descdata - inote.namedata) == inote.namesz) { temp = (char *) malloc (inote.namesz + 1); if (temp == NULL) { error (_("Out of memory allocating space for inote name\n")); res = false; break; } memcpy (temp, inote.namedata, inote.namesz); inote.namedata = temp; } inote.namedata[inote.namesz] = 0; } if (! process_note (& inote, filedata)) res = false; free (temp); temp = NULL; } free (pnotes); return res; } static bool process_corefile_note_segments (Filedata * filedata) { Elf_Internal_Phdr *segment; unsigned int i; bool res = true; if (! get_program_headers (filedata)) return true; for (i = 0, segment = filedata->program_headers; i < filedata->file_header.e_phnum; i++, segment++) { if (segment->p_type == PT_NOTE) if (! process_notes_at (filedata, NULL, segment->p_offset, segment->p_filesz, segment->p_align)) res = false; } return res; } static bool process_v850_notes (Filedata * filedata, uint64_t offset, uint64_t length) { Elf_External_Note * pnotes; Elf_External_Note * external; char * end; bool res = true; if (length <= 0) return false; pnotes = (Elf_External_Note *) get_data (NULL, filedata, offset, 1, length, _("v850 notes")); if (pnotes == NULL) return false; external = pnotes; end = (char*) pnotes + length; printf (_("\nDisplaying contents of Renesas V850 notes section at offset" " %#" PRIx64 " with length %#" PRIx64 ":\n"), offset, length); while ((char *) external + sizeof (Elf_External_Note) < end) { Elf_External_Note * next; Elf_Internal_Note inote; inote.type = BYTE_GET (external->type); inote.namesz = BYTE_GET (external->namesz); inote.namedata = external->name; inote.descsz = BYTE_GET (external->descsz); inote.descdata = inote.namedata + align_power (inote.namesz, 2); inote.descpos = offset + (inote.descdata - (char *) pnotes); if (inote.descdata < (char *) pnotes || inote.descdata >= end) { warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz); inote.descdata = inote.namedata; inote.namesz = 0; } next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2)); if ( ((char *) next > end) || ((char *) next < (char *) pnotes)) { warn (_("corrupt descsz found in note at offset %#tx\n"), (char *) external - (char *) pnotes); warn (_(" type: %#lx, namesize: %#lx, descsize: %#lx\n"), inote.type, inote.namesz, inote.descsz); break; } external = next; /* Prevent out-of-bounds indexing. */ if ( inote.namedata + inote.namesz > end || inote.namedata + inote.namesz < inote.namedata) { warn (_("corrupt namesz found in note at offset %#zx\n"), (char *) external - (char *) pnotes); warn (_(" type: %#lx, namesize: %#lx, descsize: %#lx\n"), inote.type, inote.namesz, inote.descsz); break; } printf (" %s: ", get_v850_elf_note_type (inote.type)); if (! print_v850_note (& inote)) { res = false; printf ("\n", inote.namesz, inote.descsz); } } free (pnotes); return res; } static bool process_note_sections (Filedata * filedata) { Elf_Internal_Shdr *section; size_t i; unsigned int n = 0; bool res = true; for (i = 0, section = filedata->section_headers; i < filedata->file_header.e_shnum && section != NULL; i++, section++) { if (section->sh_type == SHT_NOTE) { if (! process_notes_at (filedata, section, section->sh_offset, section->sh_size, section->sh_addralign)) res = false; n++; } if (( filedata->file_header.e_machine == EM_V800 || filedata->file_header.e_machine == EM_V850 || filedata->file_header.e_machine == EM_CYGNUS_V850) && section->sh_type == SHT_RENESAS_INFO) { if (! process_v850_notes (filedata, section->sh_offset, section->sh_size)) res = false; n++; } } if (n == 0) /* Try processing NOTE segments instead. */ return process_corefile_note_segments (filedata); return res; } static bool process_notes (Filedata * filedata) { /* If we have not been asked to display the notes then do nothing. */ if (! do_notes) return true; if (filedata->file_header.e_type != ET_CORE) return process_note_sections (filedata); /* No program headers means no NOTE segment. */ if (filedata->file_header.e_phnum > 0) return process_corefile_note_segments (filedata); if (filedata->is_separate) printf (_("No notes found in linked file '%s'.\n"), filedata->file_name); else printf (_("No notes found file.\n")); return true; } static unsigned char * display_public_gnu_attributes (unsigned char * start, const unsigned char * const end) { printf (_(" Unknown GNU attribute: %s\n"), start); start += strnlen ((char *) start, end - start); display_raw_attribute (start, end); return (unsigned char *) end; } static unsigned char * display_generic_attribute (unsigned char * start, unsigned int tag, const unsigned char * const end) { if (tag == 0) return (unsigned char *) end; return display_tag_value (tag, start, end); } static bool process_arch_specific (Filedata * filedata) { if (! do_arch) return true; switch (filedata->file_header.e_machine) { case EM_ARC: case EM_ARC_COMPACT: case EM_ARC_COMPACT2: case EM_ARC_COMPACT3: case EM_ARC_COMPACT3_64: return process_attributes (filedata, "ARC", SHT_ARC_ATTRIBUTES, display_arc_attribute, display_generic_attribute); case EM_ARM: return process_attributes (filedata, "aeabi", SHT_ARM_ATTRIBUTES, display_arm_attribute, display_generic_attribute); case EM_MIPS: case EM_MIPS_RS3_LE: return process_mips_specific (filedata); case EM_MSP430: return process_attributes (filedata, "mspabi", SHT_MSP430_ATTRIBUTES, display_msp430_attribute, display_msp430_gnu_attribute); case EM_RISCV: return process_attributes (filedata, "riscv", SHT_RISCV_ATTRIBUTES, display_riscv_attribute, display_generic_attribute); case EM_NDS32: return process_nds32_specific (filedata); case EM_68K: return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL, display_m68k_gnu_attribute); case EM_PPC: case EM_PPC64: return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL, display_power_gnu_attribute); case EM_S390: case EM_S390_OLD: return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL, display_s390_gnu_attribute); case EM_SPARC: case EM_SPARC32PLUS: case EM_SPARCV9: return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL, display_sparc_gnu_attribute); case EM_TI_C6000: return process_attributes (filedata, "c6xabi", SHT_C6000_ATTRIBUTES, display_tic6x_attribute, display_generic_attribute); case EM_CSKY: return process_attributes (filedata, "csky", SHT_CSKY_ATTRIBUTES, display_csky_attribute, NULL); default: return process_attributes (filedata, "gnu", SHT_GNU_ATTRIBUTES, display_public_gnu_attributes, display_generic_attribute); } } static bool get_file_header (Filedata * filedata) { /* Read in the identity array. */ if (fread (filedata->file_header.e_ident, EI_NIDENT, 1, filedata->handle) != 1) return false; /* Determine how to read the rest of the header. */ switch (filedata->file_header.e_ident[EI_DATA]) { default: case ELFDATANONE: case ELFDATA2LSB: byte_get = byte_get_little_endian; byte_put = byte_put_little_endian; break; case ELFDATA2MSB: byte_get = byte_get_big_endian; byte_put = byte_put_big_endian; break; } /* For now we only support 32 bit and 64 bit ELF files. */ is_32bit_elf = (filedata->file_header.e_ident[EI_CLASS] != ELFCLASS64); /* Read in the rest of the header. */ if (is_32bit_elf) { Elf32_External_Ehdr ehdr32; if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, filedata->handle) != 1) return false; filedata->file_header.e_type = BYTE_GET (ehdr32.e_type); filedata->file_header.e_machine = BYTE_GET (ehdr32.e_machine); filedata->file_header.e_version = BYTE_GET (ehdr32.e_version); filedata->file_header.e_entry = BYTE_GET (ehdr32.e_entry); filedata->file_header.e_phoff = BYTE_GET (ehdr32.e_phoff); filedata->file_header.e_shoff = BYTE_GET (ehdr32.e_shoff); filedata->file_header.e_flags = BYTE_GET (ehdr32.e_flags); filedata->file_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize); filedata->file_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize); filedata->file_header.e_phnum = BYTE_GET (ehdr32.e_phnum); filedata->file_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize); filedata->file_header.e_shnum = BYTE_GET (ehdr32.e_shnum); filedata->file_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx); } else { Elf64_External_Ehdr ehdr64; if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, filedata->handle) != 1) return false; filedata->file_header.e_type = BYTE_GET (ehdr64.e_type); filedata->file_header.e_machine = BYTE_GET (ehdr64.e_machine); filedata->file_header.e_version = BYTE_GET (ehdr64.e_version); filedata->file_header.e_entry = BYTE_GET (ehdr64.e_entry); filedata->file_header.e_phoff = BYTE_GET (ehdr64.e_phoff); filedata->file_header.e_shoff = BYTE_GET (ehdr64.e_shoff); filedata->file_header.e_flags = BYTE_GET (ehdr64.e_flags); filedata->file_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize); filedata->file_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize); filedata->file_header.e_phnum = BYTE_GET (ehdr64.e_phnum); filedata->file_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize); filedata->file_header.e_shnum = BYTE_GET (ehdr64.e_shnum); filedata->file_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx); } return true; } static void free_filedata (Filedata *filedata) { free (filedata->program_interpreter); free (filedata->program_headers); free (filedata->section_headers); free (filedata->string_table); free (filedata->dump.dump_sects); free (filedata->dynamic_strings); free (filedata->dynamic_symbols); free (filedata->dynamic_syminfo); free (filedata->dynamic_section); while (filedata->symtab_shndx_list != NULL) { elf_section_list *next = filedata->symtab_shndx_list->next; free (filedata->symtab_shndx_list); filedata->symtab_shndx_list = next; } free (filedata->section_headers_groups); if (filedata->section_groups) { size_t i; struct group_list * g; struct group_list * next; for (i = 0; i < filedata->group_count; i++) { for (g = filedata->section_groups [i].root; g != NULL; g = next) { next = g->next; free (g); } } free (filedata->section_groups); } memset (&filedata->section_headers, 0, sizeof (Filedata) - offsetof (Filedata, section_headers)); } static void close_file (Filedata * filedata) { if (filedata) { if (filedata->handle) fclose (filedata->handle); free (filedata); } } void close_debug_file (void * data) { free_filedata ((Filedata *) data); close_file ((Filedata *) data); } static Filedata * open_file (const char * pathname, bool is_separate) { struct stat statbuf; Filedata * filedata = NULL; if (stat (pathname, & statbuf) < 0 || ! S_ISREG (statbuf.st_mode)) goto fail; filedata = calloc (1, sizeof * filedata); if (filedata == NULL) goto fail; filedata->handle = fopen (pathname, "rb"); if (filedata->handle == NULL) goto fail; filedata->file_size = statbuf.st_size; filedata->file_name = pathname; filedata->is_separate = is_separate; if (! get_file_header (filedata)) goto fail; if (!get_section_headers (filedata, false)) goto fail; return filedata; fail: if (filedata) { if (filedata->handle) fclose (filedata->handle); free (filedata); } return NULL; } void * open_debug_file (const char * pathname) { return open_file (pathname, true); } static void initialise_dump_sects (Filedata * filedata) { /* Initialise the dump_sects array from the cmdline_dump_sects array. Note we do this even if cmdline_dump_sects is empty because we must make sure that the dump_sets array is zeroed out before each object file is processed. */ if (filedata->dump.num_dump_sects > cmdline.num_dump_sects) memset (filedata->dump.dump_sects, 0, filedata->dump.num_dump_sects * sizeof (*filedata->dump.dump_sects)); if (cmdline.num_dump_sects > 0) { if (filedata->dump.num_dump_sects == 0) /* A sneaky way of allocating the dump_sects array. */ request_dump_bynumber (&filedata->dump, cmdline.num_dump_sects, 0); assert (filedata->dump.num_dump_sects >= cmdline.num_dump_sects); memcpy (filedata->dump.dump_sects, cmdline.dump_sects, cmdline.num_dump_sects * sizeof (*filedata->dump.dump_sects)); } } static bool might_need_separate_debug_info (Filedata * filedata) { /* Debuginfo files do not need further separate file loading. */ if (filedata->file_header.e_shstrndx == SHN_UNDEF) return false; /* Since do_follow_links might be enabled by default, only treat it as an indication that separate files should be loaded if setting it was a deliberate user action. */ if (DEFAULT_FOR_FOLLOW_LINKS == 0 && do_follow_links) return true; if (process_links || do_syms || do_unwind || dump_any_debugging || do_dump || do_debugging) return true; return false; } /* Process one ELF object file according to the command line options. This file may actually be stored in an archive. The file is positioned at the start of the ELF object. Returns TRUE if no problems were encountered, FALSE otherwise. */ static bool process_object (Filedata * filedata) { bool have_separate_files; unsigned int i; bool res; if (! get_file_header (filedata)) { error (_("%s: Failed to read file header\n"), filedata->file_name); return false; } /* Initialise per file variables. */ for (i = ARRAY_SIZE (filedata->version_info); i--;) filedata->version_info[i] = 0; for (i = ARRAY_SIZE (filedata->dynamic_info); i--;) filedata->dynamic_info[i] = 0; filedata->dynamic_info_DT_GNU_HASH = 0; filedata->dynamic_info_DT_MIPS_XHASH = 0; /* Process the file. */ if (show_name) printf (_("\nFile: %s\n"), filedata->file_name); initialise_dump_sects (filedata); /* There may be some extensions in the first section header. Don't bomb if we can't read it. */ get_section_headers (filedata, true); if (! process_file_header (filedata)) { res = false; goto out; } /* Throw away the single section header read above, so that we re-read the entire set. */ free (filedata->section_headers); filedata->section_headers = NULL; if (! process_section_headers (filedata)) { /* Without loaded section headers we cannot process lots of things. */ do_unwind = do_version = do_dump = do_arch = false; if (! do_using_dynamic) do_syms = do_dyn_syms = do_reloc = false; } if (! process_section_groups (filedata)) /* Without loaded section groups we cannot process unwind. */ do_unwind = false; process_program_headers (filedata); res = process_dynamic_section (filedata); if (! process_relocs (filedata)) res = false; if (! process_unwind (filedata)) res = false; if (! process_symbol_table (filedata)) res = false; if (! process_lto_symbol_tables (filedata)) res = false; if (! process_syminfo (filedata)) res = false; if (! process_version_sections (filedata)) res = false; if (might_need_separate_debug_info (filedata)) have_separate_files = load_separate_debug_files (filedata, filedata->file_name); else have_separate_files = false; if (! process_section_contents (filedata)) res = false; if (have_separate_files) { separate_info * d; for (d = first_separate_info; d != NULL; d = d->next) { initialise_dump_sects (d->handle); if (process_links && ! process_file_header (d->handle)) res = false; else if (! process_section_headers (d->handle)) res = false; else if (! process_section_contents (d->handle)) res = false; else if (process_links) { if (! process_section_groups (d->handle)) res = false; process_program_headers (d->handle); if (! process_dynamic_section (d->handle)) res = false; if (! process_relocs (d->handle)) res = false; if (! process_unwind (d->handle)) res = false; if (! process_symbol_table (d->handle)) res = false; if (! process_lto_symbol_tables (d->handle)) res = false; if (! process_syminfo (d->handle)) res = false; if (! process_version_sections (d->handle)) res = false; if (! process_notes (d->handle)) res = false; } } /* The file handles are closed by the call to free_debug_memory() below. */ } if (! process_notes (filedata)) res = false; if (! process_gnu_liblist (filedata)) res = false; if (! process_arch_specific (filedata)) res = false; out: free_filedata (filedata); free_debug_memory (); return res; } /* Process an ELF archive. On entry the file is positioned just after the ARMAG string. Returns TRUE upon success, FALSE otherwise. */ static bool process_archive (Filedata * filedata, bool is_thin_archive) { struct archive_info arch; struct archive_info nested_arch; size_t got; bool ret = true; show_name = true; /* The ARCH structure is used to hold information about this archive. */ arch.file_name = NULL; arch.file = NULL; arch.index_array = NULL; arch.sym_table = NULL; arch.longnames = NULL; /* The NESTED_ARCH structure is used as a single-item cache of information about a nested archive (when members of a thin archive reside within another regular archive file). */ nested_arch.file_name = NULL; nested_arch.file = NULL; nested_arch.index_array = NULL; nested_arch.sym_table = NULL; nested_arch.longnames = NULL; if (setup_archive (&arch, filedata->file_name, filedata->handle, filedata->file_size, is_thin_archive, do_archive_index) != 0) { ret = false; goto out; } if (do_archive_index) { if (arch.sym_table == NULL) error (_("%s: unable to dump the index as none was found\n"), filedata->file_name); else { uint64_t i, l; uint64_t current_pos; printf (_("Index of archive %s: (%" PRIu64 " entries," " %#" PRIx64 " bytes in the symbol table)\n"), filedata->file_name, arch.index_num, arch.sym_size); current_pos = ftell (filedata->handle); for (i = l = 0; i < arch.index_num; i++) { if (i == 0 || (i > 0 && arch.index_array[i] != arch.index_array[i - 1])) { char * member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch); if (member_name != NULL) { char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name); if (qualified_name != NULL) { printf (_("Contents of binary %s at offset "), qualified_name); (void) print_vma (arch.index_array[i], PREFIX_HEX); putchar ('\n'); free (qualified_name); } free (member_name); } } if (l >= arch.sym_size) { error (_("%s: end of the symbol table reached " "before the end of the index\n"), filedata->file_name); ret = false; break; } /* PR 17531: file: 0b6630b2. */ printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l); l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1; } if (arch.uses_64bit_indices) l = (l + 7) & ~ 7; else l += l & 1; if (l < arch.sym_size) { error (ngettext ("%s: %" PRId64 " byte remains in the symbol table, " "but without corresponding entries in " "the index table\n", "%s: %" PRId64 " bytes remain in the symbol table, " "but without corresponding entries in " "the index table\n", arch.sym_size - l), filedata->file_name, arch.sym_size - l); ret = false; } if (fseek64 (filedata->handle, current_pos, SEEK_SET) != 0) { error (_("%s: failed to seek back to start of object files " "in the archive\n"), filedata->file_name); ret = false; goto out; } } if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections && !do_segments && !do_header && !do_dump && !do_version && !do_histogram && !do_debugging && !do_arch && !do_notes && !do_section_groups && !do_dyn_syms) { ret = true; /* Archive index only. */ goto out; } } while (1) { char * name; size_t namelen; char * qualified_name; /* Read the next archive header. */ if (fseek64 (filedata->handle, arch.next_arhdr_offset, SEEK_SET) != 0) { error (_("%s: failed to seek to next archive header\n"), arch.file_name); ret = false; break; } got = fread (&arch.arhdr, 1, sizeof arch.arhdr, filedata->handle); if (got != sizeof arch.arhdr) { if (got == 0) break; /* PR 24049 - we cannot use filedata->file_name as this will have already been freed. */ error (_("%s: failed to read archive header\n"), arch.file_name); ret = false; break; } if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0) { error (_("%s: did not find a valid archive header\n"), arch.file_name); ret = false; break; } arch.next_arhdr_offset += sizeof arch.arhdr; filedata->archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10); name = get_archive_member_name (&arch, &nested_arch); if (name == NULL) { error (_("%s: bad archive file name\n"), arch.file_name); ret = false; break; } namelen = strlen (name); qualified_name = make_qualified_name (&arch, &nested_arch, name); if (qualified_name == NULL) { error (_("%s: bad archive file name\n"), arch.file_name); free (name); ret = false; break; } if (is_thin_archive && arch.nested_member_origin == 0) { /* This is a proxy for an external member of a thin archive. */ Filedata * member_filedata; char * member_file_name = adjust_relative_path (filedata->file_name, name, namelen); free (name); if (member_file_name == NULL) { free (qualified_name); ret = false; break; } member_filedata = open_file (member_file_name, false); if (member_filedata == NULL) { error (_("Input file '%s' is not readable.\n"), member_file_name); free (member_file_name); free (qualified_name); ret = false; break; } filedata->archive_file_offset = arch.nested_member_origin; member_filedata->file_name = qualified_name; /* The call to process_object() expects the file to be at the beginning. */ rewind (member_filedata->handle); if (! process_object (member_filedata)) ret = false; close_file (member_filedata); free (member_file_name); } else if (is_thin_archive) { Filedata thin_filedata; memset (&thin_filedata, 0, sizeof (thin_filedata)); /* PR 15140: Allow for corrupt thin archives. */ if (nested_arch.file == NULL) { error (_("%s: contains corrupt thin archive: %s\n"), qualified_name, name); free (qualified_name); free (name); ret = false; break; } free (name); /* This is a proxy for a member of a nested archive. */ filedata->archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr; /* The nested archive file will have been opened and setup by get_archive_member_name. */ if (fseek64 (nested_arch.file, filedata->archive_file_offset, SEEK_SET) != 0) { error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name); free (qualified_name); ret = false; break; } thin_filedata.handle = nested_arch.file; thin_filedata.file_name = qualified_name; if (! process_object (& thin_filedata)) ret = false; } else { free (name); filedata->archive_file_offset = arch.next_arhdr_offset; filedata->file_name = qualified_name; if (! process_object (filedata)) ret = false; arch.next_arhdr_offset += (filedata->archive_file_size + 1) & -2; /* Stop looping with "negative" archive_file_size. */ if (arch.next_arhdr_offset < filedata->archive_file_size) arch.next_arhdr_offset = -1ul; } free (qualified_name); } out: if (nested_arch.file != NULL) fclose (nested_arch.file); release_archive (&nested_arch); release_archive (&arch); return ret; } static bool process_file (char * file_name) { Filedata * filedata = NULL; struct stat statbuf; char armag[SARMAG]; bool ret = true; if (stat (file_name, &statbuf) < 0) { if (errno == ENOENT) error (_("'%s': No such file\n"), file_name); else error (_("Could not locate '%s'. System error message: %s\n"), file_name, strerror (errno)); return false; } if (! S_ISREG (statbuf.st_mode)) { error (_("'%s' is not an ordinary file\n"), file_name); return false; } filedata = calloc (1, sizeof * filedata); if (filedata == NULL) { error (_("Out of memory allocating file data structure\n")); return false; } filedata->file_name = file_name; filedata->handle = fopen (file_name, "rb"); if (filedata->handle == NULL) { error (_("Input file '%s' is not readable.\n"), file_name); free (filedata); return false; } if (fread (armag, SARMAG, 1, filedata->handle) != 1) { error (_("%s: Failed to read file's magic number\n"), file_name); fclose (filedata->handle); free (filedata); return false; } filedata->file_size = statbuf.st_size; filedata->is_separate = false; if (memcmp (armag, ARMAG, SARMAG) == 0) { if (! process_archive (filedata, false)) ret = false; } else if (memcmp (armag, ARMAGT, SARMAG) == 0) { if ( ! process_archive (filedata, true)) ret = false; } else { if (do_archive_index && !check_all) error (_("File %s is not an archive so its index cannot be displayed.\n"), file_name); rewind (filedata->handle); filedata->archive_file_size = filedata->archive_file_offset = 0; if (! process_object (filedata)) ret = false; } fclose (filedata->handle); free (filedata->section_headers); free (filedata->program_headers); free (filedata->string_table); free (filedata->dump.dump_sects); free (filedata); free (ba_cache.strtab); ba_cache.strtab = NULL; free (ba_cache.symtab); ba_cache.symtab = NULL; ba_cache.filedata = NULL; return ret; } #ifdef SUPPORT_DISASSEMBLY /* Needed by the i386 disassembler. For extra credit, someone could fix this so that we insert symbolic addresses here, esp for GOT/PLT symbols. */ void print_address (unsigned int addr, FILE * outfile) { fprintf (outfile,"0x%8.8x", addr); } /* Needed by the i386 disassembler. */ void db_task_printsym (unsigned int addr) { print_address (addr, stderr); } #endif int main (int argc, char ** argv) { int err; #ifdef HAVE_LC_MESSAGES setlocale (LC_MESSAGES, ""); #endif setlocale (LC_CTYPE, ""); bindtextdomain (PACKAGE, LOCALEDIR); textdomain (PACKAGE); expandargv (&argc, &argv); parse_args (& cmdline, argc, argv); if (optind < (argc - 1)) /* When displaying information for more than one file, prefix the information with the file name. */ show_name = true; else if (optind >= argc) { /* Ensure that the warning is always displayed. */ do_checks = true; warn (_("Nothing to do.\n")); usage (stderr); } err = false; while (optind < argc) if (! process_file (argv[optind++])) err = true; free (cmdline.dump_sects); free (dump_ctf_symtab_name); free (dump_ctf_strtab_name); free (dump_ctf_parent_name); return err ? EXIT_FAILURE : EXIT_SUCCESS; }