/* BFD support for handling relocation entries. Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Written by Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* SECTION Relocations BFD maintains relocations in much the same way it maintains symbols: they are left alone until required, then read in en-masse and translated into an internal form. A common routine <> acts upon the canonical form to do the fixup. Relocations are maintained on a per section basis, while symbols are maintained on a per BFD basis. All that a back end has to do to fit the BFD interface is to create a <> for each relocation in a particular section, and fill in the right bits of the structures. @menu @* typedef arelent:: @* howto manager:: @end menu */ /* DO compile in the reloc_code name table from libbfd.h. */ #define _BFD_MAKE_TABLE_bfd_reloc_code_real #include "bfd.h" #include "sysdep.h" #include "bfdlink.h" #include "libbfd.h" /* DOCDD INODE typedef arelent, howto manager, Relocations, Relocations SUBSECTION typedef arelent This is the structure of a relocation entry: CODE_FRAGMENT . .typedef enum bfd_reloc_status .{ . {* No errors detected. *} . bfd_reloc_ok, . . {* The relocation was performed, but there was an overflow. *} . bfd_reloc_overflow, . . {* The address to relocate was not within the section supplied. *} . bfd_reloc_outofrange, . . {* Used by special functions. *} . bfd_reloc_continue, . . {* Unsupported relocation size requested. *} . bfd_reloc_notsupported, . . {* Unused. *} . bfd_reloc_other, . . {* The symbol to relocate against was undefined. *} . bfd_reloc_undefined, . . {* The relocation was performed, but may not be ok - presently . generated only when linking i960 coff files with i960 b.out . symbols. If this type is returned, the error_message argument . to bfd_perform_relocation will be set. *} . bfd_reloc_dangerous . } . bfd_reloc_status_type; . . .typedef struct reloc_cache_entry .{ . {* A pointer into the canonical table of pointers. *} . struct bfd_symbol **sym_ptr_ptr; . . {* offset in section. *} . bfd_size_type address; . . {* addend for relocation value. *} . bfd_vma addend; . . {* Pointer to how to perform the required relocation. *} . reloc_howto_type *howto; . .} .arelent; . */ /* DESCRIPTION Here is a description of each of the fields within an <>: o <> The symbol table pointer points to a pointer to the symbol associated with the relocation request. It is the pointer into the table returned by the back end's <> action. @xref{Symbols}. The symbol is referenced through a pointer to a pointer so that tools like the linker can fix up all the symbols of the same name by modifying only one pointer. The relocation routine looks in the symbol and uses the base of the section the symbol is attached to and the value of the symbol as the initial relocation offset. If the symbol pointer is zero, then the section provided is looked up. o <
> The <
> field gives the offset in bytes from the base of the section data which owns the relocation record to the first byte of relocatable information. The actual data relocated will be relative to this point; for example, a relocation type which modifies the bottom two bytes of a four byte word would not touch the first byte pointed to in a big endian world. o <> The <> is a value provided by the back end to be added (!) to the relocation offset. Its interpretation is dependent upon the howto. For example, on the 68k the code: | char foo[]; | main() | { | return foo[0x12345678]; | } Could be compiled into: | linkw fp,#-4 | moveb @@#12345678,d0 | extbl d0 | unlk fp | rts This could create a reloc pointing to <>, but leave the offset in the data, something like: |RELOCATION RECORDS FOR [.text]: |offset type value |00000006 32 _foo | |00000000 4e56 fffc ; linkw fp,#-4 |00000004 1039 1234 5678 ; moveb @@#12345678,d0 |0000000a 49c0 ; extbl d0 |0000000c 4e5e ; unlk fp |0000000e 4e75 ; rts Using coff and an 88k, some instructions don't have enough space in them to represent the full address range, and pointers have to be loaded in two parts. So you'd get something like: | or.u r13,r0,hi16(_foo+0x12345678) | ld.b r2,r13,lo16(_foo+0x12345678) | jmp r1 This should create two relocs, both pointing to <<_foo>>, and with 0x12340000 in their addend field. The data would consist of: |RELOCATION RECORDS FOR [.text]: |offset type value |00000002 HVRT16 _foo+0x12340000 |00000006 LVRT16 _foo+0x12340000 | |00000000 5da05678 ; or.u r13,r0,0x5678 |00000004 1c4d5678 ; ld.b r2,r13,0x5678 |00000008 f400c001 ; jmp r1 The relocation routine digs out the value from the data, adds it to the addend to get the original offset, and then adds the value of <<_foo>>. Note that all 32 bits have to be kept around somewhere, to cope with carry from bit 15 to bit 16. One further example is the sparc and the a.out format. The sparc has a similar problem to the 88k, in that some instructions don't have room for an entire offset, but on the sparc the parts are created in odd sized lumps. The designers of the a.out format chose to not use the data within the section for storing part of the offset; all the offset is kept within the reloc. Anything in the data should be ignored. | save %sp,-112,%sp | sethi %hi(_foo+0x12345678),%g2 | ldsb [%g2+%lo(_foo+0x12345678)],%i0 | ret | restore Both relocs contain a pointer to <>, and the offsets contain junk. |RELOCATION RECORDS FOR [.text]: |offset type value |00000004 HI22 _foo+0x12345678 |00000008 LO10 _foo+0x12345678 | |00000000 9de3bf90 ; save %sp,-112,%sp |00000004 05000000 ; sethi %hi(_foo+0),%g2 |00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0 |0000000c 81c7e008 ; ret |00000010 81e80000 ; restore o <> The <> field can be imagined as a relocation instruction. It is a pointer to a structure which contains information on what to do with all of the other information in the reloc record and data section. A back end would normally have a relocation instruction set and turn relocations into pointers to the correct structure on input - but it would be possible to create each howto field on demand. */ /* SUBSUBSECTION <> Indicates what sort of overflow checking should be done when performing a relocation. CODE_FRAGMENT . .enum complain_overflow .{ . {* Do not complain on overflow. *} . complain_overflow_dont, . . {* Complain if the bitfield overflows, whether it is considered . as signed or unsigned. *} . complain_overflow_bitfield, . . {* Complain if the value overflows when considered as signed . number. *} . complain_overflow_signed, . . {* Complain if the value overflows when considered as an . unsigned number. *} . complain_overflow_unsigned .}; */ /* SUBSUBSECTION <> The <> is a structure which contains all the information that libbfd needs to know to tie up a back end's data. CODE_FRAGMENT .struct bfd_symbol; {* Forward declaration. *} . .struct reloc_howto_struct .{ . {* The type field has mainly a documentary use - the back end can . do what it wants with it, though normally the back end's . external idea of what a reloc number is stored . in this field. For example, a PC relative word relocation . in a coff environment has the type 023 - because that's . what the outside world calls a R_PCRWORD reloc. *} . unsigned int type; . . {* The value the final relocation is shifted right by. This drops . unwanted data from the relocation. *} . unsigned int rightshift; . . {* The size of the item to be relocated. This is *not* a . power-of-two measure. To get the number of bytes operated . on by a type of relocation, use bfd_get_reloc_size. *} . int size; . . {* The number of bits in the item to be relocated. This is used . when doing overflow checking. *} . unsigned int bitsize; . . {* Notes that the relocation is relative to the location in the . data section of the addend. The relocation function will . subtract from the relocation value the address of the location . being relocated. *} . bfd_boolean pc_relative; . . {* The bit position of the reloc value in the destination. . The relocated value is left shifted by this amount. *} . unsigned int bitpos; . . {* What type of overflow error should be checked for when . relocating. *} . enum complain_overflow complain_on_overflow; . . {* If this field is non null, then the supplied function is . called rather than the normal function. This allows really . strange relocation methods to be accommodated (e.g., i960 callj . instructions). *} . bfd_reloc_status_type (*special_function) . (bfd *, arelent *, struct bfd_symbol *, void *, asection *, . bfd *, char **); . . {* The textual name of the relocation type. *} . char *name; . . {* Some formats record a relocation addend in the section contents . rather than with the relocation. For ELF formats this is the . distinction between USE_REL and USE_RELA (though the code checks . for USE_REL == 1/0). The value of this field is TRUE if the . addend is recorded with the section contents; when performing a . partial link (ld -r) the section contents (the data) will be . modified. The value of this field is FALSE if addends are . recorded with the relocation (in arelent.addend); when performing . a partial link the relocation will be modified. . All relocations for all ELF USE_RELA targets should set this field . to FALSE (values of TRUE should be looked on with suspicion). . However, the converse is not true: not all relocations of all ELF . USE_REL targets set this field to TRUE. Why this is so is peculiar . to each particular target. For relocs that aren't used in partial . links (e.g. GOT stuff) it doesn't matter what this is set to. *} . bfd_boolean partial_inplace; . . {* src_mask selects the part of the instruction (or data) to be used . in the relocation sum. If the target relocations don't have an . addend in the reloc, eg. ELF USE_REL, src_mask will normally equal . dst_mask to extract the addend from the section contents. If . relocations do have an addend in the reloc, eg. ELF USE_RELA, this . field should be zero. Non-zero values for ELF USE_RELA targets are . bogus as in those cases the value in the dst_mask part of the . section contents should be treated as garbage. *} . bfd_vma src_mask; . . {* dst_mask selects which parts of the instruction (or data) are . replaced with a relocated value. *} . bfd_vma dst_mask; . . {* When some formats create PC relative instructions, they leave . the value of the pc of the place being relocated in the offset . slot of the instruction, so that a PC relative relocation can . be made just by adding in an ordinary offset (e.g., sun3 a.out). . Some formats leave the displacement part of an instruction . empty (e.g., m88k bcs); this flag signals the fact. *} . bfd_boolean pcrel_offset; .}; . */ /* FUNCTION The HOWTO Macro DESCRIPTION The HOWTO define is horrible and will go away. .#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \ . { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC } DESCRIPTION And will be replaced with the totally magic way. But for the moment, we are compatible, so do it this way. .#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \ . HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \ . NAME, FALSE, 0, 0, IN) . DESCRIPTION This is used to fill in an empty howto entry in an array. .#define EMPTY_HOWTO(C) \ . HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \ . NULL, FALSE, 0, 0, FALSE) . DESCRIPTION Helper routine to turn a symbol into a relocation value. .#define HOWTO_PREPARE(relocation, symbol) \ . { \ . if (symbol != NULL) \ . { \ . if (bfd_is_com_section (symbol->section)) \ . { \ . relocation = 0; \ . } \ . else \ . { \ . relocation = symbol->value; \ . } \ . } \ . } . */ /* FUNCTION bfd_get_reloc_size SYNOPSIS unsigned int bfd_get_reloc_size (reloc_howto_type *); DESCRIPTION For a reloc_howto_type that operates on a fixed number of bytes, this returns the number of bytes operated on. */ unsigned int bfd_get_reloc_size (reloc_howto_type *howto) { switch (howto->size) { case 0: return 1; case 1: return 2; case 2: return 4; case 3: return 0; case 4: return 8; case 8: return 16; case -2: return 4; default: abort (); } } /* TYPEDEF arelent_chain DESCRIPTION How relocs are tied together in an <>: .typedef struct relent_chain .{ . arelent relent; . struct relent_chain *next; .} .arelent_chain; . */ /* N_ONES produces N one bits, without overflowing machine arithmetic. */ #define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1) /* FUNCTION bfd_check_overflow SYNOPSIS bfd_reloc_status_type bfd_check_overflow (enum complain_overflow how, unsigned int bitsize, unsigned int rightshift, unsigned int addrsize, bfd_vma relocation); DESCRIPTION Perform overflow checking on @var{relocation} which has @var{bitsize} significant bits and will be shifted right by @var{rightshift} bits, on a machine with addresses containing @var{addrsize} significant bits. The result is either of @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}. */ bfd_reloc_status_type bfd_check_overflow (enum complain_overflow how, unsigned int bitsize, unsigned int rightshift, unsigned int addrsize, bfd_vma relocation) { bfd_vma fieldmask, addrmask, signmask, ss, a; bfd_reloc_status_type flag = bfd_reloc_ok; a = relocation; /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not, we'll be permissive: extra bits in the field mask will automatically extend the address mask for purposes of the overflow check. */ fieldmask = N_ONES (bitsize); addrmask = N_ONES (addrsize) | fieldmask; switch (how) { case complain_overflow_dont: break; case complain_overflow_signed: /* If any sign bits are set, all sign bits must be set. That is, A must be a valid negative address after shifting. */ a = (a & addrmask) >> rightshift; signmask = ~ (fieldmask >> 1); ss = a & signmask; if (ss != 0 && ss != ((addrmask >> rightshift) & signmask)) flag = bfd_reloc_overflow; break; case complain_overflow_unsigned: /* We have an overflow if the address does not fit in the field. */ a = (a & addrmask) >> rightshift; if ((a & ~ fieldmask) != 0) flag = bfd_reloc_overflow; break; case complain_overflow_bitfield: /* Bitfields are sometimes signed, sometimes unsigned. We explicitly allow an address wrap too, which means a bitfield of n bits is allowed to store -2**n to 2**n-1. Thus overflow if the value has some, but not all, bits set outside the field. */ a >>= rightshift; ss = a & ~ fieldmask; if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask)) flag = bfd_reloc_overflow; break; default: abort (); } return flag; } /* FUNCTION bfd_perform_relocation SYNOPSIS bfd_reloc_status_type bfd_perform_relocation (bfd *abfd, arelent *reloc_entry, void *data, asection *input_section, bfd *output_bfd, char **error_message); DESCRIPTION If @var{output_bfd} is supplied to this function, the generated image will be relocatable; the relocations are copied to the output file after they have been changed to reflect the new state of the world. There are two ways of reflecting the results of partial linkage in an output file: by modifying the output data in place, and by modifying the relocation record. Some native formats (e.g., basic a.out and basic coff) have no way of specifying an addend in the relocation type, so the addend has to go in the output data. This is no big deal since in these formats the output data slot will always be big enough for the addend. Complex reloc types with addends were invented to solve just this problem. The @var{error_message} argument is set to an error message if this return @code{bfd_reloc_dangerous}. */ bfd_reloc_status_type bfd_perform_relocation (bfd *abfd, arelent *reloc_entry, void *data, asection *input_section, bfd *output_bfd, char **error_message) { bfd_vma relocation; bfd_reloc_status_type flag = bfd_reloc_ok; bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd); bfd_vma output_base = 0; reloc_howto_type *howto = reloc_entry->howto; asection *reloc_target_output_section; asymbol *symbol; symbol = *(reloc_entry->sym_ptr_ptr); if (bfd_is_abs_section (symbol->section) && output_bfd != NULL) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* If we are not producing relocatable output, return an error if the symbol is not defined. An undefined weak symbol is considered to have a value of zero (SVR4 ABI, p. 4-27). */ if (bfd_is_und_section (symbol->section) && (symbol->flags & BSF_WEAK) == 0 && output_bfd == NULL) flag = bfd_reloc_undefined; /* If there is a function supplied to handle this relocation type, call it. It'll return `bfd_reloc_continue' if further processing can be done. */ if (howto->special_function) { bfd_reloc_status_type cont; cont = howto->special_function (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); if (cont != bfd_reloc_continue) return cont; } /* Is the address of the relocation really within the section? */ if (reloc_entry->address > (input_section->_cooked_size / bfd_octets_per_byte (abfd))) return bfd_reloc_outofrange; /* Work out which section the relocation is targeted at and the initial relocation command value. */ /* Get symbol value. (Common symbols are special.) */ if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; reloc_target_output_section = symbol->section->output_section; /* Convert input-section-relative symbol value to absolute. */ if ((output_bfd && ! howto->partial_inplace) || reloc_target_output_section == NULL) output_base = 0; else output_base = reloc_target_output_section->vma; relocation += output_base + symbol->section->output_offset; /* Add in supplied addend. */ relocation += reloc_entry->addend; /* Here the variable relocation holds the final address of the symbol we are relocating against, plus any addend. */ if (howto->pc_relative) { /* This is a PC relative relocation. We want to set RELOCATION to the distance between the address of the symbol and the location. RELOCATION is already the address of the symbol. We start by subtracting the address of the section containing the location. If pcrel_offset is set, we must further subtract the position of the location within the section. Some targets arrange for the addend to be the negative of the position of the location within the section; for example, i386-aout does this. For i386-aout, pcrel_offset is FALSE. Some other targets do not include the position of the location; for example, m88kbcs, or ELF. For those targets, pcrel_offset is TRUE. If we are producing relocatable output, then we must ensure that this reloc will be correctly computed when the final relocation is done. If pcrel_offset is FALSE we want to wind up with the negative of the location within the section, which means we must adjust the existing addend by the change in the location within the section. If pcrel_offset is TRUE we do not want to adjust the existing addend at all. FIXME: This seems logical to me, but for the case of producing relocatable output it is not what the code actually does. I don't want to change it, because it seems far too likely that something will break. */ relocation -= input_section->output_section->vma + input_section->output_offset; if (howto->pcrel_offset) relocation -= reloc_entry->address; } if (output_bfd != NULL) { if (! howto->partial_inplace) { /* This is a partial relocation, and we want to apply the relocation to the reloc entry rather than the raw data. Modify the reloc inplace to reflect what we now know. */ reloc_entry->addend = relocation; reloc_entry->address += input_section->output_offset; return flag; } else { /* This is a partial relocation, but inplace, so modify the reloc record a bit. If we've relocated with a symbol with a section, change into a ref to the section belonging to the symbol. */ reloc_entry->address += input_section->output_offset; /* WTF?? */ if (abfd->xvec->flavour == bfd_target_coff_flavour && strcmp (abfd->xvec->name, "coff-Intel-little") != 0 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0) { #if 1 /* For m68k-coff, the addend was being subtracted twice during relocation with -r. Removing the line below this comment fixes that problem; see PR 2953. However, Ian wrote the following, regarding removing the line below, which explains why it is still enabled: --djm If you put a patch like that into BFD you need to check all the COFF linkers. I am fairly certain that patch will break coff-i386 (e.g., SCO); see coff_i386_reloc in coff-i386.c where I worked around the problem in a different way. There may very well be a reason that the code works as it does. Hmmm. The first obvious point is that bfd_perform_relocation should not have any tests that depend upon the flavour. It's seem like entirely the wrong place for such a thing. The second obvious point is that the current code ignores the reloc addend when producing relocatable output for COFF. That's peculiar. In fact, I really have no idea what the point of the line you want to remove is. A typical COFF reloc subtracts the old value of the symbol and adds in the new value to the location in the object file (if it's a pc relative reloc it adds the difference between the symbol value and the location). When relocating we need to preserve that property. BFD handles this by setting the addend to the negative of the old value of the symbol. Unfortunately it handles common symbols in a non-standard way (it doesn't subtract the old value) but that's a different story (we can't change it without losing backward compatibility with old object files) (coff-i386 does subtract the old value, to be compatible with existing coff-i386 targets, like SCO). So everything works fine when not producing relocatable output. When we are producing relocatable output, logically we should do exactly what we do when not producing relocatable output. Therefore, your patch is correct. In fact, it should probably always just set reloc_entry->addend to 0 for all cases, since it is, in fact, going to add the value into the object file. This won't hurt the COFF code, which doesn't use the addend; I'm not sure what it will do to other formats (the thing to check for would be whether any formats both use the addend and set partial_inplace). When I wanted to make coff-i386 produce relocatable output, I ran into the problem that you are running into: I wanted to remove that line. Rather than risk it, I made the coff-i386 relocs use a special function; it's coff_i386_reloc in coff-i386.c. The function specifically adds the addend field into the object file, knowing that bfd_perform_relocation is not going to. If you remove that line, then coff-i386.c will wind up adding the addend field in twice. It's trivial to fix; it just needs to be done. The problem with removing the line is just that it may break some working code. With BFD it's hard to be sure of anything. The right way to deal with this is simply to build and test at least all the supported COFF targets. It should be straightforward if time and disk space consuming. For each target: 1) build the linker 2) generate some executable, and link it using -r (I would probably use paranoia.o and link against newlib/libc.a, which for all the supported targets would be available in /usr/cygnus/progressive/H-host/target/lib/libc.a). 3) make the change to reloc.c 4) rebuild the linker 5) repeat step 2 6) if the resulting object files are the same, you have at least made it no worse 7) if they are different you have to figure out which version is right */ relocation -= reloc_entry->addend; #endif reloc_entry->addend = 0; } else { reloc_entry->addend = relocation; } } } else { reloc_entry->addend = 0; } /* FIXME: This overflow checking is incomplete, because the value might have overflowed before we get here. For a correct check we need to compute the value in a size larger than bitsize, but we can't reasonably do that for a reloc the same size as a host machine word. FIXME: We should also do overflow checking on the result after adding in the value contained in the object file. */ if (howto->complain_on_overflow != complain_overflow_dont && flag == bfd_reloc_ok) flag = bfd_check_overflow (howto->complain_on_overflow, howto->bitsize, howto->rightshift, bfd_arch_bits_per_address (abfd), relocation); /* Either we are relocating all the way, or we don't want to apply the relocation to the reloc entry (probably because there isn't any room in the output format to describe addends to relocs). */ /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler (OSF version 1.3, compiler version 3.11). It miscompiles the following program: struct str { unsigned int i0; } s = { 0 }; int main () { unsigned long x; x = 0x100000000; x <<= (unsigned long) s.i0; if (x == 0) printf ("failed\n"); else printf ("succeeded (%lx)\n", x); } */ relocation >>= (bfd_vma) howto->rightshift; /* Shift everything up to where it's going to be used. */ relocation <<= (bfd_vma) howto->bitpos; /* Wait for the day when all have the mask in them. */ /* What we do: i instruction to be left alone o offset within instruction r relocation offset to apply S src mask D dst mask N ~dst mask A part 1 B part 2 R result Do this: (( i i i i i o o o o o from bfd_get and S S S S S) to get the size offset we want + r r r r r r r r r r) to get the final value to place and D D D D D to chop to right size ----------------------- = A A A A A And this: ( i i i i i o o o o o from bfd_get and N N N N N ) get instruction ----------------------- = B B B B B And then: ( B B B B B or A A A A A) ----------------------- = R R R R R R R R R R put into bfd_put */ #define DOIT(x) \ x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask)) switch (howto->size) { case 0: { char x = bfd_get_8 (abfd, (char *) data + octets); DOIT (x); bfd_put_8 (abfd, x, (unsigned char *) data + octets); } break; case 1: { short x = bfd_get_16 (abfd, (bfd_byte *) data + octets); DOIT (x); bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets); } break; case 2: { long x = bfd_get_32 (abfd, (bfd_byte *) data + octets); DOIT (x); bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets); } break; case -2: { long x = bfd_get_32 (abfd, (bfd_byte *) data + octets); relocation = -relocation; DOIT (x); bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets); } break; case -1: { long x = bfd_get_16 (abfd, (bfd_byte *) data + octets); relocation = -relocation; DOIT (x); bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets); } break; case 3: /* Do nothing */ break; case 4: #ifdef BFD64 { bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets); DOIT (x); bfd_put_64 (abfd, x, (bfd_byte *) data + octets); } #else abort (); #endif break; default: return bfd_reloc_other; } return flag; } /* FUNCTION bfd_install_relocation SYNOPSIS bfd_reloc_status_type bfd_install_relocation (bfd *abfd, arelent *reloc_entry, void *data, bfd_vma data_start, asection *input_section, char **error_message); DESCRIPTION This looks remarkably like <>, except it does not expect that the section contents have been filled in. I.e., it's suitable for use when creating, rather than applying a relocation. For now, this function should be considered reserved for the assembler. */ bfd_reloc_status_type bfd_install_relocation (bfd *abfd, arelent *reloc_entry, void *data_start, bfd_vma data_start_offset, asection *input_section, char **error_message) { bfd_vma relocation; bfd_reloc_status_type flag = bfd_reloc_ok; bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd); bfd_vma output_base = 0; reloc_howto_type *howto = reloc_entry->howto; asection *reloc_target_output_section; asymbol *symbol; bfd_byte *data; symbol = *(reloc_entry->sym_ptr_ptr); if (bfd_is_abs_section (symbol->section)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* If there is a function supplied to handle this relocation type, call it. It'll return `bfd_reloc_continue' if further processing can be done. */ if (howto->special_function) { bfd_reloc_status_type cont; /* XXX - The special_function calls haven't been fixed up to deal with creating new relocations and section contents. */ cont = howto->special_function (abfd, reloc_entry, symbol, /* XXX - Non-portable! */ ((bfd_byte *) data_start - data_start_offset), input_section, abfd, error_message); if (cont != bfd_reloc_continue) return cont; } /* Is the address of the relocation really within the section? */ if (reloc_entry->address > (input_section->_cooked_size / bfd_octets_per_byte (abfd))) return bfd_reloc_outofrange; /* Work out which section the relocation is targeted at and the initial relocation command value. */ /* Get symbol value. (Common symbols are special.) */ if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; reloc_target_output_section = symbol->section->output_section; /* Convert input-section-relative symbol value to absolute. */ if (! howto->partial_inplace) output_base = 0; else output_base = reloc_target_output_section->vma; relocation += output_base + symbol->section->output_offset; /* Add in supplied addend. */ relocation += reloc_entry->addend; /* Here the variable relocation holds the final address of the symbol we are relocating against, plus any addend. */ if (howto->pc_relative) { /* This is a PC relative relocation. We want to set RELOCATION to the distance between the address of the symbol and the location. RELOCATION is already the address of the symbol. We start by subtracting the address of the section containing the location. If pcrel_offset is set, we must further subtract the position of the location within the section. Some targets arrange for the addend to be the negative of the position of the location within the section; for example, i386-aout does this. For i386-aout, pcrel_offset is FALSE. Some other targets do not include the position of the location; for example, m88kbcs, or ELF. For those targets, pcrel_offset is TRUE. If we are producing relocatable output, then we must ensure that this reloc will be correctly computed when the final relocation is done. If pcrel_offset is FALSE we want to wind up with the negative of the location within the section, which means we must adjust the existing addend by the change in the location within the section. If pcrel_offset is TRUE we do not want to adjust the existing addend at all. FIXME: This seems logical to me, but for the case of producing relocatable output it is not what the code actually does. I don't want to change it, because it seems far too likely that something will break. */ relocation -= input_section->output_section->vma + input_section->output_offset; if (howto->pcrel_offset && howto->partial_inplace) relocation -= reloc_entry->address; } if (! howto->partial_inplace) { /* This is a partial relocation, and we want to apply the relocation to the reloc entry rather than the raw data. Modify the reloc inplace to reflect what we now know. */ reloc_entry->addend = relocation; reloc_entry->address += input_section->output_offset; return flag; } else { /* This is a partial relocation, but inplace, so modify the reloc record a bit. If we've relocated with a symbol with a section, change into a ref to the section belonging to the symbol. */ reloc_entry->address += input_section->output_offset; /* WTF?? */ if (abfd->xvec->flavour == bfd_target_coff_flavour && strcmp (abfd->xvec->name, "coff-Intel-little") != 0 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0) { #if 1 /* For m68k-coff, the addend was being subtracted twice during relocation with -r. Removing the line below this comment fixes that problem; see PR 2953. However, Ian wrote the following, regarding removing the line below, which explains why it is still enabled: --djm If you put a patch like that into BFD you need to check all the COFF linkers. I am fairly certain that patch will break coff-i386 (e.g., SCO); see coff_i386_reloc in coff-i386.c where I worked around the problem in a different way. There may very well be a reason that the code works as it does. Hmmm. The first obvious point is that bfd_install_relocation should not have any tests that depend upon the flavour. It's seem like entirely the wrong place for such a thing. The second obvious point is that the current code ignores the reloc addend when producing relocatable output for COFF. That's peculiar. In fact, I really have no idea what the point of the line you want to remove is. A typical COFF reloc subtracts the old value of the symbol and adds in the new value to the location in the object file (if it's a pc relative reloc it adds the difference between the symbol value and the location). When relocating we need to preserve that property. BFD handles this by setting the addend to the negative of the old value of the symbol. Unfortunately it handles common symbols in a non-standard way (it doesn't subtract the old value) but that's a different story (we can't change it without losing backward compatibility with old object files) (coff-i386 does subtract the old value, to be compatible with existing coff-i386 targets, like SCO). So everything works fine when not producing relocatable output. When we are producing relocatable output, logically we should do exactly what we do when not producing relocatable output. Therefore, your patch is correct. In fact, it should probably always just set reloc_entry->addend to 0 for all cases, since it is, in fact, going to add the value into the object file. This won't hurt the COFF code, which doesn't use the addend; I'm not sure what it will do to other formats (the thing to check for would be whether any formats both use the addend and set partial_inplace). When I wanted to make coff-i386 produce relocatable output, I ran into the problem that you are running into: I wanted to remove that line. Rather than risk it, I made the coff-i386 relocs use a special function; it's coff_i386_reloc in coff-i386.c. The function specifically adds the addend field into the object file, knowing that bfd_install_relocation is not going to. If you remove that line, then coff-i386.c will wind up adding the addend field in twice. It's trivial to fix; it just needs to be done. The problem with removing the line is just that it may break some working code. With BFD it's hard to be sure of anything. The right way to deal with this is simply to build and test at least all the supported COFF targets. It should be straightforward if time and disk space consuming. For each target: 1) build the linker 2) generate some executable, and link it using -r (I would probably use paranoia.o and link against newlib/libc.a, which for all the supported targets would be available in /usr/cygnus/progressive/H-host/target/lib/libc.a). 3) make the change to reloc.c 4) rebuild the linker 5) repeat step 2 6) if the resulting object files are the same, you have at least made it no worse 7) if they are different you have to figure out which version is right. */ relocation -= reloc_entry->addend; #endif reloc_entry->addend = 0; } else { reloc_entry->addend = relocation; } } /* FIXME: This overflow checking is incomplete, because the value might have overflowed before we get here. For a correct check we need to compute the value in a size larger than bitsize, but we can't reasonably do that for a reloc the same size as a host machine word. FIXME: We should also do overflow checking on the result after adding in the value contained in the object file. */ if (howto->complain_on_overflow != complain_overflow_dont) flag = bfd_check_overflow (howto->complain_on_overflow, howto->bitsize, howto->rightshift, bfd_arch_bits_per_address (abfd), relocation); /* Either we are relocating all the way, or we don't want to apply the relocation to the reloc entry (probably because there isn't any room in the output format to describe addends to relocs). */ /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler (OSF version 1.3, compiler version 3.11). It miscompiles the following program: struct str { unsigned int i0; } s = { 0 }; int main () { unsigned long x; x = 0x100000000; x <<= (unsigned long) s.i0; if (x == 0) printf ("failed\n"); else printf ("succeeded (%lx)\n", x); } */ relocation >>= (bfd_vma) howto->rightshift; /* Shift everything up to where it's going to be used. */ relocation <<= (bfd_vma) howto->bitpos; /* Wait for the day when all have the mask in them. */ /* What we do: i instruction to be left alone o offset within instruction r relocation offset to apply S src mask D dst mask N ~dst mask A part 1 B part 2 R result Do this: (( i i i i i o o o o o from bfd_get and S S S S S) to get the size offset we want + r r r r r r r r r r) to get the final value to place and D D D D D to chop to right size ----------------------- = A A A A A And this: ( i i i i i o o o o o from bfd_get and N N N N N ) get instruction ----------------------- = B B B B B And then: ( B B B B B or A A A A A) ----------------------- = R R R R R R R R R R put into bfd_put */ #define DOIT(x) \ x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask)) data = (bfd_byte *) data_start + (octets - data_start_offset); switch (howto->size) { case 0: { char x = bfd_get_8 (abfd, data); DOIT (x); bfd_put_8 (abfd, x, data); } break; case 1: { short x = bfd_get_16 (abfd, data); DOIT (x); bfd_put_16 (abfd, (bfd_vma) x, data); } break; case 2: { long x = bfd_get_32 (abfd, data); DOIT (x); bfd_put_32 (abfd, (bfd_vma) x, data); } break; case -2: { long x = bfd_get_32 (abfd, data); relocation = -relocation; DOIT (x); bfd_put_32 (abfd, (bfd_vma) x, data); } break; case 3: /* Do nothing */ break; case 4: { bfd_vma x = bfd_get_64 (abfd, data); DOIT (x); bfd_put_64 (abfd, x, data); } break; default: return bfd_reloc_other; } return flag; } /* This relocation routine is used by some of the backend linkers. They do not construct asymbol or arelent structures, so there is no reason for them to use bfd_perform_relocation. Also, bfd_perform_relocation is so hacked up it is easier to write a new function than to try to deal with it. This routine does a final relocation. Whether it is useful for a relocatable link depends upon how the object format defines relocations. FIXME: This routine ignores any special_function in the HOWTO, since the existing special_function values have been written for bfd_perform_relocation. HOWTO is the reloc howto information. INPUT_BFD is the BFD which the reloc applies to. INPUT_SECTION is the section which the reloc applies to. CONTENTS is the contents of the section. ADDRESS is the address of the reloc within INPUT_SECTION. VALUE is the value of the symbol the reloc refers to. ADDEND is the addend of the reloc. */ bfd_reloc_status_type _bfd_final_link_relocate (reloc_howto_type *howto, bfd *input_bfd, asection *input_section, bfd_byte *contents, bfd_vma address, bfd_vma value, bfd_vma addend) { bfd_vma relocation; /* Sanity check the address. */ if (address > input_section->_raw_size) return bfd_reloc_outofrange; /* This function assumes that we are dealing with a basic relocation against a symbol. We want to compute the value of the symbol to relocate to. This is just VALUE, the value of the symbol, plus ADDEND, any addend associated with the reloc. */ relocation = value + addend; /* If the relocation is PC relative, we want to set RELOCATION to the distance between the symbol (currently in RELOCATION) and the location we are relocating. Some targets (e.g., i386-aout) arrange for the contents of the section to be the negative of the offset of the location within the section; for such targets pcrel_offset is FALSE. Other targets (e.g., m88kbcs or ELF) simply leave the contents of the section as zero; for such targets pcrel_offset is TRUE. If pcrel_offset is FALSE we do not need to subtract out the offset of the location within the section (which is just ADDRESS). */ if (howto->pc_relative) { relocation -= (input_section->output_section->vma + input_section->output_offset); if (howto->pcrel_offset) relocation -= address; } return _bfd_relocate_contents (howto, input_bfd, relocation, contents + address); } /* Relocate a given location using a given value and howto. */ bfd_reloc_status_type _bfd_relocate_contents (reloc_howto_type *howto, bfd *input_bfd, bfd_vma relocation, bfd_byte *location) { int size; bfd_vma x = 0; bfd_reloc_status_type flag; unsigned int rightshift = howto->rightshift; unsigned int bitpos = howto->bitpos; /* If the size is negative, negate RELOCATION. This isn't very general. */ if (howto->size < 0) relocation = -relocation; /* Get the value we are going to relocate. */ size = bfd_get_reloc_size (howto); switch (size) { default: case 0: abort (); case 1: x = bfd_get_8 (input_bfd, location); break; case 2: x = bfd_get_16 (input_bfd, location); break; case 4: x = bfd_get_32 (input_bfd, location); break; case 8: #ifdef BFD64 x = bfd_get_64 (input_bfd, location); #else abort (); #endif break; } /* Check for overflow. FIXME: We may drop bits during the addition which we don't check for. We must either check at every single operation, which would be tedious, or we must do the computations in a type larger than bfd_vma, which would be inefficient. */ flag = bfd_reloc_ok; if (howto->complain_on_overflow != complain_overflow_dont) { bfd_vma addrmask, fieldmask, signmask, ss; bfd_vma a, b, sum; /* Get the values to be added together. For signed and unsigned relocations, we assume that all values should be truncated to the size of an address. For bitfields, all the bits matter. See also bfd_check_overflow. */ fieldmask = N_ONES (howto->bitsize); addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask; a = relocation; b = x & howto->src_mask; switch (howto->complain_on_overflow) { case complain_overflow_signed: a = (a & addrmask) >> rightshift; /* If any sign bits are set, all sign bits must be set. That is, A must be a valid negative address after shifting. */ signmask = ~ (fieldmask >> 1); ss = a & signmask; if (ss != 0 && ss != ((addrmask >> rightshift) & signmask)) flag = bfd_reloc_overflow; /* We only need this next bit of code if the sign bit of B is below the sign bit of A. This would only happen if SRC_MASK had fewer bits than BITSIZE. Note that if SRC_MASK has more bits than BITSIZE, we can get into trouble; we would need to verify that B is in range, as we do for A above. */ signmask = ((~ howto->src_mask) >> 1) & howto->src_mask; /* Set all the bits above the sign bit. */ b = (b ^ signmask) - signmask; b = (b & addrmask) >> bitpos; /* Now we can do the addition. */ sum = a + b; /* See if the result has the correct sign. Bits above the sign bit are junk now; ignore them. If the sum is positive, make sure we did not have all negative inputs; if the sum is negative, make sure we did not have all positive inputs. The test below looks only at the sign bits, and it really just SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM) */ signmask = (fieldmask >> 1) + 1; if (((~ (a ^ b)) & (a ^ sum)) & signmask) flag = bfd_reloc_overflow; break; case complain_overflow_unsigned: /* Checking for an unsigned overflow is relatively easy: trim the addresses and add, and trim the result as well. Overflow is normally indicated when the result does not fit in the field. However, we also need to consider the case when, e.g., fieldmask is 0x7fffffff or smaller, an input is 0x80000000, and bfd_vma is only 32 bits; then we will get sum == 0, but there is an overflow, since the inputs did not fit in the field. Instead of doing a separate test, we can check for this by or-ing in the operands when testing for the sum overflowing its final field. */ a = (a & addrmask) >> rightshift; b = (b & addrmask) >> bitpos; sum = (a + b) & addrmask; if ((a | b | sum) & ~ fieldmask) flag = bfd_reloc_overflow; break; case complain_overflow_bitfield: /* Much like the signed check, but for a field one bit wider, and no trimming inputs with addrmask. We allow a bitfield to represent numbers in the range -2**n to 2**n-1, where n is the number of bits in the field. Note that when bfd_vma is 32 bits, a 32-bit reloc can't overflow, which is exactly what we want. */ a >>= rightshift; signmask = ~ fieldmask; ss = a & signmask; if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask)) flag = bfd_reloc_overflow; signmask = ((~ howto->src_mask) >> 1) & howto->src_mask; b = (b ^ signmask) - signmask; b >>= bitpos; sum = a + b; /* We mask with addrmask here to explicitly allow an address wrap-around. The Linux kernel relies on it, and it is the only way to write assembler code which can run when loaded at a location 0x80000000 away from the location at which it is linked. */ signmask = fieldmask + 1; if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask) flag = bfd_reloc_overflow; break; default: abort (); } } /* Put RELOCATION in the right bits. */ relocation >>= (bfd_vma) rightshift; relocation <<= (bfd_vma) bitpos; /* Add RELOCATION to the right bits of X. */ x = ((x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask)); /* Put the relocated value back in the object file. */ switch (size) { default: case 0: abort (); case 1: bfd_put_8 (input_bfd, x, location); break; case 2: bfd_put_16 (input_bfd, x, location); break; case 4: bfd_put_32 (input_bfd, x, location); break; case 8: #ifdef BFD64 bfd_put_64 (input_bfd, x, location); #else abort (); #endif break; } return flag; } /* DOCDD INODE howto manager, , typedef arelent, Relocations SECTION The howto manager When an application wants to create a relocation, but doesn't know what the target machine might call it, it can find out by using this bit of code. */ /* TYPEDEF bfd_reloc_code_type DESCRIPTION The insides of a reloc code. The idea is that, eventually, there will be one enumerator for every type of relocation we ever do. Pass one of these values to <>, and it'll return a howto pointer. This does mean that the application must determine the correct enumerator value; you can't get a howto pointer from a random set of attributes. SENUM bfd_reloc_code_real ENUM BFD_RELOC_64 ENUMX BFD_RELOC_32 ENUMX BFD_RELOC_26 ENUMX BFD_RELOC_24 ENUMX BFD_RELOC_16 ENUMX BFD_RELOC_14 ENUMX BFD_RELOC_8 ENUMDOC Basic absolute relocations of N bits. ENUM BFD_RELOC_64_PCREL ENUMX BFD_RELOC_32_PCREL ENUMX BFD_RELOC_24_PCREL ENUMX BFD_RELOC_16_PCREL ENUMX BFD_RELOC_12_PCREL ENUMX BFD_RELOC_8_PCREL ENUMDOC PC-relative relocations. Sometimes these are relative to the address of the relocation itself; sometimes they are relative to the start of the section containing the relocation. It depends on the specific target. The 24-bit relocation is used in some Intel 960 configurations. ENUM BFD_RELOC_32_SECREL ENUMDOC Section relative relocations. Some targets need this for DWARF2. ENUM BFD_RELOC_32_GOT_PCREL ENUMX BFD_RELOC_16_GOT_PCREL ENUMX BFD_RELOC_8_GOT_PCREL ENUMX BFD_RELOC_32_GOTOFF ENUMX BFD_RELOC_16_GOTOFF ENUMX BFD_RELOC_LO16_GOTOFF ENUMX BFD_RELOC_HI16_GOTOFF ENUMX BFD_RELOC_HI16_S_GOTOFF ENUMX BFD_RELOC_8_GOTOFF ENUMX BFD_RELOC_64_PLT_PCREL ENUMX BFD_RELOC_32_PLT_PCREL ENUMX BFD_RELOC_24_PLT_PCREL ENUMX BFD_RELOC_16_PLT_PCREL ENUMX BFD_RELOC_8_PLT_PCREL ENUMX BFD_RELOC_64_PLTOFF ENUMX BFD_RELOC_32_PLTOFF ENUMX BFD_RELOC_16_PLTOFF ENUMX BFD_RELOC_LO16_PLTOFF ENUMX BFD_RELOC_HI16_PLTOFF ENUMX BFD_RELOC_HI16_S_PLTOFF ENUMX BFD_RELOC_8_PLTOFF ENUMDOC For ELF. ENUM BFD_RELOC_68K_GLOB_DAT ENUMX BFD_RELOC_68K_JMP_SLOT ENUMX BFD_RELOC_68K_RELATIVE ENUMDOC Relocations used by 68K ELF. ENUM BFD_RELOC_32_BASEREL ENUMX BFD_RELOC_16_BASEREL ENUMX BFD_RELOC_LO16_BASEREL ENUMX BFD_RELOC_HI16_BASEREL ENUMX BFD_RELOC_HI16_S_BASEREL ENUMX BFD_RELOC_8_BASEREL ENUMX BFD_RELOC_RVA ENUMDOC Linkage-table relative. ENUM BFD_RELOC_8_FFnn ENUMDOC Absolute 8-bit relocation, but used to form an address like 0xFFnn. ENUM BFD_RELOC_32_PCREL_S2 ENUMX BFD_RELOC_16_PCREL_S2 ENUMX BFD_RELOC_23_PCREL_S2 ENUMDOC These PC-relative relocations are stored as word displacements -- i.e., byte displacements shifted right two bits. The 30-bit word displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the SPARC. (SPARC tools generally refer to this as <>.) The signed 16-bit displacement is used on the MIPS, and the 23-bit displacement is used on the Alpha. ENUM BFD_RELOC_HI22 ENUMX BFD_RELOC_LO10 ENUMDOC High 22 bits and low 10 bits of 32-bit value, placed into lower bits of the target word. These are used on the SPARC. ENUM BFD_RELOC_GPREL16 ENUMX BFD_RELOC_GPREL32 ENUMDOC For systems that allocate a Global Pointer register, these are displacements off that register. These relocation types are handled specially, because the value the register will have is decided relatively late. ENUM BFD_RELOC_I960_CALLJ ENUMDOC Reloc types used for i960/b.out. ENUM BFD_RELOC_NONE ENUMX BFD_RELOC_SPARC_WDISP22 ENUMX BFD_RELOC_SPARC22 ENUMX BFD_RELOC_SPARC13 ENUMX BFD_RELOC_SPARC_GOT10 ENUMX BFD_RELOC_SPARC_GOT13 ENUMX BFD_RELOC_SPARC_GOT22 ENUMX BFD_RELOC_SPARC_PC10 ENUMX BFD_RELOC_SPARC_PC22 ENUMX BFD_RELOC_SPARC_WPLT30 ENUMX BFD_RELOC_SPARC_COPY ENUMX BFD_RELOC_SPARC_GLOB_DAT ENUMX BFD_RELOC_SPARC_JMP_SLOT ENUMX BFD_RELOC_SPARC_RELATIVE ENUMX BFD_RELOC_SPARC_UA16 ENUMX BFD_RELOC_SPARC_UA32 ENUMX BFD_RELOC_SPARC_UA64 ENUMDOC SPARC ELF relocations. There is probably some overlap with other relocation types already defined. ENUM BFD_RELOC_SPARC_BASE13 ENUMX BFD_RELOC_SPARC_BASE22 ENUMDOC I think these are specific to SPARC a.out (e.g., Sun 4). ENUMEQ BFD_RELOC_SPARC_64 BFD_RELOC_64 ENUMX BFD_RELOC_SPARC_10 ENUMX BFD_RELOC_SPARC_11 ENUMX BFD_RELOC_SPARC_OLO10 ENUMX BFD_RELOC_SPARC_HH22 ENUMX BFD_RELOC_SPARC_HM10 ENUMX BFD_RELOC_SPARC_LM22 ENUMX BFD_RELOC_SPARC_PC_HH22 ENUMX BFD_RELOC_SPARC_PC_HM10 ENUMX BFD_RELOC_SPARC_PC_LM22 ENUMX BFD_RELOC_SPARC_WDISP16 ENUMX BFD_RELOC_SPARC_WDISP19 ENUMX BFD_RELOC_SPARC_7 ENUMX BFD_RELOC_SPARC_6 ENUMX BFD_RELOC_SPARC_5 ENUMEQX BFD_RELOC_SPARC_DISP64 BFD_RELOC_64_PCREL ENUMX BFD_RELOC_SPARC_PLT32 ENUMX BFD_RELOC_SPARC_PLT64 ENUMX BFD_RELOC_SPARC_HIX22 ENUMX BFD_RELOC_SPARC_LOX10 ENUMX BFD_RELOC_SPARC_H44 ENUMX BFD_RELOC_SPARC_M44 ENUMX BFD_RELOC_SPARC_L44 ENUMX BFD_RELOC_SPARC_REGISTER ENUMDOC SPARC64 relocations ENUM BFD_RELOC_SPARC_REV32 ENUMDOC SPARC little endian relocation ENUM BFD_RELOC_SPARC_TLS_GD_HI22 ENUMX BFD_RELOC_SPARC_TLS_GD_LO10 ENUMX BFD_RELOC_SPARC_TLS_GD_ADD ENUMX BFD_RELOC_SPARC_TLS_GD_CALL ENUMX BFD_RELOC_SPARC_TLS_LDM_HI22 ENUMX BFD_RELOC_SPARC_TLS_LDM_LO10 ENUMX BFD_RELOC_SPARC_TLS_LDM_ADD ENUMX BFD_RELOC_SPARC_TLS_LDM_CALL ENUMX BFD_RELOC_SPARC_TLS_LDO_HIX22 ENUMX BFD_RELOC_SPARC_TLS_LDO_LOX10 ENUMX BFD_RELOC_SPARC_TLS_LDO_ADD ENUMX BFD_RELOC_SPARC_TLS_IE_HI22 ENUMX BFD_RELOC_SPARC_TLS_IE_LO10 ENUMX BFD_RELOC_SPARC_TLS_IE_LD ENUMX BFD_RELOC_SPARC_TLS_IE_LDX ENUMX BFD_RELOC_SPARC_TLS_IE_ADD ENUMX BFD_RELOC_SPARC_TLS_LE_HIX22 ENUMX BFD_RELOC_SPARC_TLS_LE_LOX10 ENUMX BFD_RELOC_SPARC_TLS_DTPMOD32 ENUMX BFD_RELOC_SPARC_TLS_DTPMOD64 ENUMX BFD_RELOC_SPARC_TLS_DTPOFF32 ENUMX BFD_RELOC_SPARC_TLS_DTPOFF64 ENUMX BFD_RELOC_SPARC_TLS_TPOFF32 ENUMX BFD_RELOC_SPARC_TLS_TPOFF64 ENUMDOC SPARC TLS relocations ENUM BFD_RELOC_ALPHA_GPDISP_HI16 ENUMDOC Alpha ECOFF and ELF relocations. Some of these treat the symbol or "addend" in some special way. For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when writing; when reading, it will be the absolute section symbol. The addend is the displacement in bytes of the "lda" instruction from the "ldah" instruction (which is at the address of this reloc). ENUM BFD_RELOC_ALPHA_GPDISP_LO16 ENUMDOC For GPDISP_LO16 ("ignore") relocations, the symbol is handled as with GPDISP_HI16 relocs. The addend is ignored when writing the relocations out, and is filled in with the file's GP value on reading, for convenience. ENUM BFD_RELOC_ALPHA_GPDISP ENUMDOC The ELF GPDISP relocation is exactly the same as the GPDISP_HI16 relocation except that there is no accompanying GPDISP_LO16 relocation. ENUM BFD_RELOC_ALPHA_LITERAL ENUMX BFD_RELOC_ALPHA_ELF_LITERAL ENUMX BFD_RELOC_ALPHA_LITUSE ENUMDOC The Alpha LITERAL/LITUSE relocs are produced by a symbol reference; the assembler turns it into a LDQ instruction to load the address of the symbol, and then fills in a register in the real instruction. The LITERAL reloc, at the LDQ instruction, refers to the .lita section symbol. The addend is ignored when writing, but is filled in with the file's GP value on reading, for convenience, as with the GPDISP_LO16 reloc. The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16. It should refer to the symbol to be referenced, as with 16_GOTOFF, but it generates output not based on the position within the .got section, but relative to the GP value chosen for the file during the final link stage. The LITUSE reloc, on the instruction using the loaded address, gives information to the linker that it might be able to use to optimize away some literal section references. The symbol is ignored (read as the absolute section symbol), and the "addend" indicates the type of instruction using the register: 1 - "memory" fmt insn 2 - byte-manipulation (byte offset reg) 3 - jsr (target of branch) ENUM BFD_RELOC_ALPHA_HINT ENUMDOC The HINT relocation indicates a value that should be filled into the "hint" field of a jmp/jsr/ret instruction, for possible branch- prediction logic which may be provided on some processors. ENUM BFD_RELOC_ALPHA_LINKAGE ENUMDOC The LINKAGE relocation outputs a linkage pair in the object file, which is filled by the linker. ENUM BFD_RELOC_ALPHA_CODEADDR ENUMDOC The CODEADDR relocation outputs a STO_CA in the object file, which is filled by the linker. ENUM BFD_RELOC_ALPHA_GPREL_HI16 ENUMX BFD_RELOC_ALPHA_GPREL_LO16 ENUMDOC The GPREL_HI/LO relocations together form a 32-bit offset from the GP register. ENUM BFD_RELOC_ALPHA_BRSGP ENUMDOC Like BFD_RELOC_23_PCREL_S2, except that the source and target must share a common GP, and the target address is adjusted for STO_ALPHA_STD_GPLOAD. ENUM BFD_RELOC_ALPHA_TLSGD ENUMX BFD_RELOC_ALPHA_TLSLDM ENUMX BFD_RELOC_ALPHA_DTPMOD64 ENUMX BFD_RELOC_ALPHA_GOTDTPREL16 ENUMX BFD_RELOC_ALPHA_DTPREL64 ENUMX BFD_RELOC_ALPHA_DTPREL_HI16 ENUMX BFD_RELOC_ALPHA_DTPREL_LO16 ENUMX BFD_RELOC_ALPHA_DTPREL16 ENUMX BFD_RELOC_ALPHA_GOTTPREL16 ENUMX BFD_RELOC_ALPHA_TPREL64 ENUMX BFD_RELOC_ALPHA_TPREL_HI16 ENUMX BFD_RELOC_ALPHA_TPREL_LO16 ENUMX BFD_RELOC_ALPHA_TPREL16 ENUMDOC Alpha thread-local storage relocations. ENUM BFD_RELOC_MIPS_JMP ENUMDOC Bits 27..2 of the relocation address shifted right 2 bits; simple reloc otherwise. ENUM BFD_RELOC_MIPS16_JMP ENUMDOC The MIPS16 jump instruction. ENUM BFD_RELOC_MIPS16_GPREL ENUMDOC MIPS16 GP relative reloc. ENUM BFD_RELOC_HI16 ENUMDOC High 16 bits of 32-bit value; simple reloc. ENUM BFD_RELOC_HI16_S ENUMDOC High 16 bits of 32-bit value but the low 16 bits will be sign extended and added to form the final result. If the low 16 bits form a negative number, we need to add one to the high value to compensate for the borrow when the low bits are added. ENUM BFD_RELOC_LO16 ENUMDOC Low 16 bits. ENUM BFD_RELOC_PCREL_HI16_S ENUMDOC Like BFD_RELOC_HI16_S, but PC relative. ENUM BFD_RELOC_PCREL_LO16 ENUMDOC Like BFD_RELOC_LO16, but PC relative. ENUM BFD_RELOC_MIPS_LITERAL ENUMDOC Relocation against a MIPS literal section. ENUM BFD_RELOC_MIPS_GOT16 ENUMX BFD_RELOC_MIPS_CALL16 ENUMX BFD_RELOC_MIPS_GOT_HI16 ENUMX BFD_RELOC_MIPS_GOT_LO16 ENUMX BFD_RELOC_MIPS_CALL_HI16 ENUMX BFD_RELOC_MIPS_CALL_LO16 ENUMX BFD_RELOC_MIPS_SUB ENUMX BFD_RELOC_MIPS_GOT_PAGE ENUMX BFD_RELOC_MIPS_GOT_OFST ENUMX BFD_RELOC_MIPS_GOT_DISP ENUMX BFD_RELOC_MIPS_SHIFT5 ENUMX BFD_RELOC_MIPS_SHIFT6 ENUMX BFD_RELOC_MIPS_INSERT_A ENUMX BFD_RELOC_MIPS_INSERT_B ENUMX BFD_RELOC_MIPS_DELETE ENUMX BFD_RELOC_MIPS_HIGHEST ENUMX BFD_RELOC_MIPS_HIGHER ENUMX BFD_RELOC_MIPS_SCN_DISP ENUMX BFD_RELOC_MIPS_REL16 ENUMX BFD_RELOC_MIPS_RELGOT ENUMX BFD_RELOC_MIPS_JALR ENUMDOC MIPS ELF relocations. COMMENT ENUM BFD_RELOC_FRV_LABEL16 ENUMX BFD_RELOC_FRV_LABEL24 ENUMX BFD_RELOC_FRV_LO16 ENUMX BFD_RELOC_FRV_HI16 ENUMX BFD_RELOC_FRV_GPREL12 ENUMX BFD_RELOC_FRV_GPRELU12 ENUMX BFD_RELOC_FRV_GPREL32 ENUMX BFD_RELOC_FRV_GPRELHI ENUMX BFD_RELOC_FRV_GPRELLO ENUMX BFD_RELOC_FRV_GOT12 ENUMX BFD_RELOC_FRV_GOTHI ENUMX BFD_RELOC_FRV_GOTLO ENUMX BFD_RELOC_FRV_FUNCDESC ENUMX BFD_RELOC_FRV_FUNCDESC_GOT12 ENUMX BFD_RELOC_FRV_FUNCDESC_GOTHI ENUMX BFD_RELOC_FRV_FUNCDESC_GOTLO ENUMX BFD_RELOC_FRV_FUNCDESC_VALUE ENUMX BFD_RELOC_FRV_FUNCDESC_GOTOFF12 ENUMX BFD_RELOC_FRV_FUNCDESC_GOTOFFHI ENUMX BFD_RELOC_FRV_FUNCDESC_GOTOFFLO ENUMX BFD_RELOC_FRV_GOTOFF12 ENUMX BFD_RELOC_FRV_GOTOFFHI ENUMX BFD_RELOC_FRV_GOTOFFLO ENUMDOC Fujitsu Frv Relocations. COMMENT ENUM BFD_RELOC_MN10300_GOTOFF24 ENUMDOC This is a 24bit GOT-relative reloc for the mn10300. ENUM BFD_RELOC_MN10300_GOT32 ENUMDOC This is a 32bit GOT-relative reloc for the mn10300, offset by two bytes in the instruction. ENUM BFD_RELOC_MN10300_GOT24 ENUMDOC This is a 24bit GOT-relative reloc for the mn10300, offset by two bytes in the instruction. ENUM BFD_RELOC_MN10300_GOT16 ENUMDOC This is a 16bit GOT-relative reloc for the mn10300, offset by two bytes in the instruction. ENUM BFD_RELOC_MN10300_COPY ENUMDOC Copy symbol at runtime. ENUM BFD_RELOC_MN10300_GLOB_DAT ENUMDOC Create GOT entry. ENUM BFD_RELOC_MN10300_JMP_SLOT ENUMDOC Create PLT entry. ENUM BFD_RELOC_MN10300_RELATIVE ENUMDOC Adjust by program base. COMMENT ENUM BFD_RELOC_386_GOT32 ENUMX BFD_RELOC_386_PLT32 ENUMX BFD_RELOC_386_COPY ENUMX BFD_RELOC_386_GLOB_DAT ENUMX BFD_RELOC_386_JUMP_SLOT ENUMX BFD_RELOC_386_RELATIVE ENUMX BFD_RELOC_386_GOTOFF ENUMX BFD_RELOC_386_GOTPC ENUMX BFD_RELOC_386_TLS_TPOFF ENUMX BFD_RELOC_386_TLS_IE ENUMX BFD_RELOC_386_TLS_GOTIE ENUMX BFD_RELOC_386_TLS_LE ENUMX BFD_RELOC_386_TLS_GD ENUMX BFD_RELOC_386_TLS_LDM ENUMX BFD_RELOC_386_TLS_LDO_32 ENUMX BFD_RELOC_386_TLS_IE_32 ENUMX BFD_RELOC_386_TLS_LE_32 ENUMX BFD_RELOC_386_TLS_DTPMOD32 ENUMX BFD_RELOC_386_TLS_DTPOFF32 ENUMX BFD_RELOC_386_TLS_TPOFF32 ENUMDOC i386/elf relocations ENUM BFD_RELOC_X86_64_GOT32 ENUMX BFD_RELOC_X86_64_PLT32 ENUMX BFD_RELOC_X86_64_COPY ENUMX BFD_RELOC_X86_64_GLOB_DAT ENUMX BFD_RELOC_X86_64_JUMP_SLOT ENUMX BFD_RELOC_X86_64_RELATIVE ENUMX BFD_RELOC_X86_64_GOTPCREL ENUMX BFD_RELOC_X86_64_32S ENUMX BFD_RELOC_X86_64_DTPMOD64 ENUMX BFD_RELOC_X86_64_DTPOFF64 ENUMX BFD_RELOC_X86_64_TPOFF64 ENUMX BFD_RELOC_X86_64_TLSGD ENUMX BFD_RELOC_X86_64_TLSLD ENUMX BFD_RELOC_X86_64_DTPOFF32 ENUMX BFD_RELOC_X86_64_GOTTPOFF ENUMX BFD_RELOC_X86_64_TPOFF32 ENUMDOC x86-64/elf relocations ENUM BFD_RELOC_NS32K_IMM_8 ENUMX BFD_RELOC_NS32K_IMM_16 ENUMX BFD_RELOC_NS32K_IMM_32 ENUMX BFD_RELOC_NS32K_IMM_8_PCREL ENUMX BFD_RELOC_NS32K_IMM_16_PCREL ENUMX BFD_RELOC_NS32K_IMM_32_PCREL ENUMX BFD_RELOC_NS32K_DISP_8 ENUMX BFD_RELOC_NS32K_DISP_16 ENUMX BFD_RELOC_NS32K_DISP_32 ENUMX BFD_RELOC_NS32K_DISP_8_PCREL ENUMX BFD_RELOC_NS32K_DISP_16_PCREL ENUMX BFD_RELOC_NS32K_DISP_32_PCREL ENUMDOC ns32k relocations ENUM BFD_RELOC_PDP11_DISP_8_PCREL ENUMX BFD_RELOC_PDP11_DISP_6_PCREL ENUMDOC PDP11 relocations ENUM BFD_RELOC_PJ_CODE_HI16 ENUMX BFD_RELOC_PJ_CODE_LO16 ENUMX BFD_RELOC_PJ_CODE_DIR16 ENUMX BFD_RELOC_PJ_CODE_DIR32 ENUMX BFD_RELOC_PJ_CODE_REL16 ENUMX BFD_RELOC_PJ_CODE_REL32 ENUMDOC Picojava relocs. Not all of these appear in object files. ENUM BFD_RELOC_PPC_B26 ENUMX BFD_RELOC_PPC_BA26 ENUMX BFD_RELOC_PPC_TOC16 ENUMX BFD_RELOC_PPC_B16 ENUMX BFD_RELOC_PPC_B16_BRTAKEN ENUMX BFD_RELOC_PPC_B16_BRNTAKEN ENUMX BFD_RELOC_PPC_BA16 ENUMX BFD_RELOC_PPC_BA16_BRTAKEN ENUMX BFD_RELOC_PPC_BA16_BRNTAKEN ENUMX BFD_RELOC_PPC_COPY ENUMX BFD_RELOC_PPC_GLOB_DAT ENUMX BFD_RELOC_PPC_JMP_SLOT ENUMX BFD_RELOC_PPC_RELATIVE ENUMX BFD_RELOC_PPC_LOCAL24PC ENUMX BFD_RELOC_PPC_EMB_NADDR32 ENUMX BFD_RELOC_PPC_EMB_NADDR16 ENUMX BFD_RELOC_PPC_EMB_NADDR16_LO ENUMX BFD_RELOC_PPC_EMB_NADDR16_HI ENUMX BFD_RELOC_PPC_EMB_NADDR16_HA ENUMX BFD_RELOC_PPC_EMB_SDAI16 ENUMX BFD_RELOC_PPC_EMB_SDA2I16 ENUMX BFD_RELOC_PPC_EMB_SDA2REL ENUMX BFD_RELOC_PPC_EMB_SDA21 ENUMX BFD_RELOC_PPC_EMB_MRKREF ENUMX BFD_RELOC_PPC_EMB_RELSEC16 ENUMX BFD_RELOC_PPC_EMB_RELST_LO ENUMX BFD_RELOC_PPC_EMB_RELST_HI ENUMX BFD_RELOC_PPC_EMB_RELST_HA ENUMX BFD_RELOC_PPC_EMB_BIT_FLD ENUMX BFD_RELOC_PPC_EMB_RELSDA ENUMX BFD_RELOC_PPC64_HIGHER ENUMX BFD_RELOC_PPC64_HIGHER_S ENUMX BFD_RELOC_PPC64_HIGHEST ENUMX BFD_RELOC_PPC64_HIGHEST_S ENUMX BFD_RELOC_PPC64_TOC16_LO ENUMX BFD_RELOC_PPC64_TOC16_HI ENUMX BFD_RELOC_PPC64_TOC16_HA ENUMX BFD_RELOC_PPC64_TOC ENUMX BFD_RELOC_PPC64_PLTGOT16 ENUMX BFD_RELOC_PPC64_PLTGOT16_LO ENUMX BFD_RELOC_PPC64_PLTGOT16_HI ENUMX BFD_RELOC_PPC64_PLTGOT16_HA ENUMX BFD_RELOC_PPC64_ADDR16_DS ENUMX BFD_RELOC_PPC64_ADDR16_LO_DS ENUMX BFD_RELOC_PPC64_GOT16_DS ENUMX BFD_RELOC_PPC64_GOT16_LO_DS ENUMX BFD_RELOC_PPC64_PLT16_LO_DS ENUMX BFD_RELOC_PPC64_SECTOFF_DS ENUMX BFD_RELOC_PPC64_SECTOFF_LO_DS ENUMX BFD_RELOC_PPC64_TOC16_DS ENUMX BFD_RELOC_PPC64_TOC16_LO_DS ENUMX BFD_RELOC_PPC64_PLTGOT16_DS ENUMX BFD_RELOC_PPC64_PLTGOT16_LO_DS ENUMDOC Power(rs6000) and PowerPC relocations. ENUM BFD_RELOC_PPC_TLS ENUMX BFD_RELOC_PPC_DTPMOD ENUMX BFD_RELOC_PPC_TPREL16 ENUMX BFD_RELOC_PPC_TPREL16_LO ENUMX BFD_RELOC_PPC_TPREL16_HI ENUMX BFD_RELOC_PPC_TPREL16_HA ENUMX BFD_RELOC_PPC_TPREL ENUMX BFD_RELOC_PPC_DTPREL16 ENUMX BFD_RELOC_PPC_DTPREL16_LO ENUMX BFD_RELOC_PPC_DTPREL16_HI ENUMX BFD_RELOC_PPC_DTPREL16_HA ENUMX BFD_RELOC_PPC_DTPREL ENUMX BFD_RELOC_PPC_GOT_TLSGD16 ENUMX BFD_RELOC_PPC_GOT_TLSGD16_LO ENUMX BFD_RELOC_PPC_GOT_TLSGD16_HI ENUMX BFD_RELOC_PPC_GOT_TLSGD16_HA ENUMX BFD_RELOC_PPC_GOT_TLSLD16 ENUMX BFD_RELOC_PPC_GOT_TLSLD16_LO ENUMX BFD_RELOC_PPC_GOT_TLSLD16_HI ENUMX BFD_RELOC_PPC_GOT_TLSLD16_HA ENUMX BFD_RELOC_PPC_GOT_TPREL16 ENUMX BFD_RELOC_PPC_GOT_TPREL16_LO ENUMX BFD_RELOC_PPC_GOT_TPREL16_HI ENUMX BFD_RELOC_PPC_GOT_TPREL16_HA ENUMX BFD_RELOC_PPC_GOT_DTPREL16 ENUMX BFD_RELOC_PPC_GOT_DTPREL16_LO ENUMX BFD_RELOC_PPC_GOT_DTPREL16_HI ENUMX BFD_RELOC_PPC_GOT_DTPREL16_HA ENUMX BFD_RELOC_PPC64_TPREL16_DS ENUMX BFD_RELOC_PPC64_TPREL16_LO_DS ENUMX BFD_RELOC_PPC64_TPREL16_HIGHER ENUMX BFD_RELOC_PPC64_TPREL16_HIGHERA ENUMX BFD_RELOC_PPC64_TPREL16_HIGHEST ENUMX BFD_RELOC_PPC64_TPREL16_HIGHESTA ENUMX BFD_RELOC_PPC64_DTPREL16_DS ENUMX BFD_RELOC_PPC64_DTPREL16_LO_DS ENUMX BFD_RELOC_PPC64_DTPREL16_HIGHER ENUMX BFD_RELOC_PPC64_DTPREL16_HIGHERA ENUMX BFD_RELOC_PPC64_DTPREL16_HIGHEST ENUMX BFD_RELOC_PPC64_DTPREL16_HIGHESTA ENUMDOC PowerPC and PowerPC64 thread-local storage relocations. ENUM BFD_RELOC_I370_D12 ENUMDOC IBM 370/390 relocations ENUM BFD_RELOC_CTOR ENUMDOC The type of reloc used to build a constructor table - at the moment probably a 32 bit wide absolute relocation, but the target can choose. It generally does map to one of the other relocation types. ENUM BFD_RELOC_ARM_PCREL_BRANCH ENUMDOC ARM 26 bit pc-relative branch. The lowest two bits must be zero and are not stored in the instruction. ENUM BFD_RELOC_ARM_PCREL_BLX ENUMDOC ARM 26 bit pc-relative branch. The lowest bit must be zero and is not stored in the instruction. The 2nd lowest bit comes from a 1 bit field in the instruction. ENUM BFD_RELOC_THUMB_PCREL_BLX ENUMDOC Thumb 22 bit pc-relative branch. The lowest bit must be zero and is not stored in the instruction. The 2nd lowest bit comes from a 1 bit field in the instruction. ENUM BFD_RELOC_ARM_IMMEDIATE ENUMX BFD_RELOC_ARM_ADRL_IMMEDIATE ENUMX BFD_RELOC_ARM_OFFSET_IMM ENUMX BFD_RELOC_ARM_SHIFT_IMM ENUMX BFD_RELOC_ARM_SWI ENUMX BFD_RELOC_ARM_MULTI ENUMX BFD_RELOC_ARM_CP_OFF_IMM ENUMX BFD_RELOC_ARM_CP_OFF_IMM_S2 ENUMX BFD_RELOC_ARM_ADR_IMM ENUMX BFD_RELOC_ARM_LDR_IMM ENUMX BFD_RELOC_ARM_LITERAL ENUMX BFD_RELOC_ARM_IN_POOL ENUMX BFD_RELOC_ARM_OFFSET_IMM8 ENUMX BFD_RELOC_ARM_HWLITERAL ENUMX BFD_RELOC_ARM_THUMB_ADD ENUMX BFD_RELOC_ARM_THUMB_IMM ENUMX BFD_RELOC_ARM_THUMB_SHIFT ENUMX BFD_RELOC_ARM_THUMB_OFFSET ENUMX BFD_RELOC_ARM_GOT12 ENUMX BFD_RELOC_ARM_GOT32 ENUMX BFD_RELOC_ARM_JUMP_SLOT ENUMX BFD_RELOC_ARM_COPY ENUMX BFD_RELOC_ARM_GLOB_DAT ENUMX BFD_RELOC_ARM_PLT32 ENUMX BFD_RELOC_ARM_RELATIVE ENUMX BFD_RELOC_ARM_GOTOFF ENUMX BFD_RELOC_ARM_GOTPC ENUMDOC These relocs are only used within the ARM assembler. They are not (at present) written to any object files. ENUM BFD_RELOC_SH_PCDISP8BY2 ENUMX BFD_RELOC_SH_PCDISP12BY2 ENUMX BFD_RELOC_SH_IMM4 ENUMX BFD_RELOC_SH_IMM4BY2 ENUMX BFD_RELOC_SH_IMM4BY4 ENUMX BFD_RELOC_SH_IMM8 ENUMX BFD_RELOC_SH_IMM8BY2 ENUMX BFD_RELOC_SH_IMM8BY4 ENUMX BFD_RELOC_SH_PCRELIMM8BY2 ENUMX BFD_RELOC_SH_PCRELIMM8BY4 ENUMX BFD_RELOC_SH_SWITCH16 ENUMX BFD_RELOC_SH_SWITCH32 ENUMX BFD_RELOC_SH_USES ENUMX BFD_RELOC_SH_COUNT ENUMX BFD_RELOC_SH_ALIGN ENUMX BFD_RELOC_SH_CODE ENUMX BFD_RELOC_SH_DATA ENUMX BFD_RELOC_SH_LABEL ENUMX BFD_RELOC_SH_LOOP_START ENUMX BFD_RELOC_SH_LOOP_END ENUMX BFD_RELOC_SH_COPY ENUMX BFD_RELOC_SH_GLOB_DAT ENUMX BFD_RELOC_SH_JMP_SLOT ENUMX BFD_RELOC_SH_RELATIVE ENUMX BFD_RELOC_SH_GOTPC ENUMX BFD_RELOC_SH_GOT_LOW16 ENUMX BFD_RELOC_SH_GOT_MEDLOW16 ENUMX BFD_RELOC_SH_GOT_MEDHI16 ENUMX BFD_RELOC_SH_GOT_HI16 ENUMX BFD_RELOC_SH_GOTPLT_LOW16 ENUMX BFD_RELOC_SH_GOTPLT_MEDLOW16 ENUMX BFD_RELOC_SH_GOTPLT_MEDHI16 ENUMX BFD_RELOC_SH_GOTPLT_HI16 ENUMX BFD_RELOC_SH_PLT_LOW16 ENUMX BFD_RELOC_SH_PLT_MEDLOW16 ENUMX BFD_RELOC_SH_PLT_MEDHI16 ENUMX BFD_RELOC_SH_PLT_HI16 ENUMX BFD_RELOC_SH_GOTOFF_LOW16 ENUMX BFD_RELOC_SH_GOTOFF_MEDLOW16 ENUMX BFD_RELOC_SH_GOTOFF_MEDHI16 ENUMX BFD_RELOC_SH_GOTOFF_HI16 ENUMX BFD_RELOC_SH_GOTPC_LOW16 ENUMX BFD_RELOC_SH_GOTPC_MEDLOW16 ENUMX BFD_RELOC_SH_GOTPC_MEDHI16 ENUMX BFD_RELOC_SH_GOTPC_HI16 ENUMX BFD_RELOC_SH_COPY64 ENUMX BFD_RELOC_SH_GLOB_DAT64 ENUMX BFD_RELOC_SH_JMP_SLOT64 ENUMX BFD_RELOC_SH_RELATIVE64 ENUMX BFD_RELOC_SH_GOT10BY4 ENUMX BFD_RELOC_SH_GOT10BY8 ENUMX BFD_RELOC_SH_GOTPLT10BY4 ENUMX BFD_RELOC_SH_GOTPLT10BY8 ENUMX BFD_RELOC_SH_GOTPLT32 ENUMX BFD_RELOC_SH_SHMEDIA_CODE ENUMX BFD_RELOC_SH_IMMU5 ENUMX BFD_RELOC_SH_IMMS6 ENUMX BFD_RELOC_SH_IMMS6BY32 ENUMX BFD_RELOC_SH_IMMU6 ENUMX BFD_RELOC_SH_IMMS10 ENUMX BFD_RELOC_SH_IMMS10BY2 ENUMX BFD_RELOC_SH_IMMS10BY4 ENUMX BFD_RELOC_SH_IMMS10BY8 ENUMX BFD_RELOC_SH_IMMS16 ENUMX BFD_RELOC_SH_IMMU16 ENUMX BFD_RELOC_SH_IMM_LOW16 ENUMX BFD_RELOC_SH_IMM_LOW16_PCREL ENUMX BFD_RELOC_SH_IMM_MEDLOW16 ENUMX BFD_RELOC_SH_IMM_MEDLOW16_PCREL ENUMX BFD_RELOC_SH_IMM_MEDHI16 ENUMX BFD_RELOC_SH_IMM_MEDHI16_PCREL ENUMX BFD_RELOC_SH_IMM_HI16 ENUMX BFD_RELOC_SH_IMM_HI16_PCREL ENUMX BFD_RELOC_SH_PT_16 ENUMX BFD_RELOC_SH_TLS_GD_32 ENUMX BFD_RELOC_SH_TLS_LD_32 ENUMX BFD_RELOC_SH_TLS_LDO_32 ENUMX BFD_RELOC_SH_TLS_IE_32 ENUMX BFD_RELOC_SH_TLS_LE_32 ENUMX BFD_RELOC_SH_TLS_DTPMOD32 ENUMX BFD_RELOC_SH_TLS_DTPOFF32 ENUMX BFD_RELOC_SH_TLS_TPOFF32 ENUMDOC Renesas / SuperH SH relocs. Not all of these appear in object files. ENUM BFD_RELOC_THUMB_PCREL_BRANCH9 ENUMX BFD_RELOC_THUMB_PCREL_BRANCH12 ENUMX BFD_RELOC_THUMB_PCREL_BRANCH23 ENUMDOC Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must be zero and is not stored in the instruction. ENUM BFD_RELOC_ARC_B22_PCREL ENUMDOC ARC Cores relocs. ARC 22 bit pc-relative branch. The lowest two bits must be zero and are not stored in the instruction. The high 20 bits are installed in bits 26 through 7 of the instruction. ENUM BFD_RELOC_ARC_B26 ENUMDOC ARC 26 bit absolute branch. The lowest two bits must be zero and are not stored in the instruction. The high 24 bits are installed in bits 23 through 0. ENUM BFD_RELOC_D10V_10_PCREL_R ENUMDOC Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0. ENUM BFD_RELOC_D10V_10_PCREL_L ENUMDOC Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0. This is the same as the previous reloc except it is in the left container, i.e., shifted left 15 bits. ENUM BFD_RELOC_D10V_18 ENUMDOC This is an 18-bit reloc with the right 2 bits assumed to be 0. ENUM BFD_RELOC_D10V_18_PCREL ENUMDOC This is an 18-bit reloc with the right 2 bits assumed to be 0. ENUM BFD_RELOC_D30V_6 ENUMDOC Mitsubishi D30V relocs. This is a 6-bit absolute reloc. ENUM BFD_RELOC_D30V_9_PCREL ENUMDOC This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0. ENUM BFD_RELOC_D30V_9_PCREL_R ENUMDOC This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container. ENUM BFD_RELOC_D30V_15 ENUMDOC This is a 12-bit absolute reloc with the right 3 bitsassumed to be 0. ENUM BFD_RELOC_D30V_15_PCREL ENUMDOC This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0. ENUM BFD_RELOC_D30V_15_PCREL_R ENUMDOC This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container. ENUM BFD_RELOC_D30V_21 ENUMDOC This is an 18-bit absolute reloc with the right 3 bits assumed to be 0. ENUM BFD_RELOC_D30V_21_PCREL ENUMDOC This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0. ENUM BFD_RELOC_D30V_21_PCREL_R ENUMDOC This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container. ENUM BFD_RELOC_D30V_32 ENUMDOC This is a 32-bit absolute reloc. ENUM BFD_RELOC_D30V_32_PCREL ENUMDOC This is a 32-bit pc-relative reloc. ENUM BFD_RELOC_DLX_HI16_S ENUMDOC DLX relocs ENUM BFD_RELOC_DLX_LO16 ENUMDOC DLX relocs ENUM BFD_RELOC_DLX_JMP26 ENUMDOC DLX relocs ENUM BFD_RELOC_M32R_24 ENUMDOC Renesas M32R (formerly Mitsubishi M32R) relocs. This is a 24 bit absolute address. ENUM BFD_RELOC_M32R_10_PCREL ENUMDOC This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0. ENUM BFD_RELOC_M32R_18_PCREL ENUMDOC This is an 18-bit reloc with the right 2 bits assumed to be 0. ENUM BFD_RELOC_M32R_26_PCREL ENUMDOC This is a 26-bit reloc with the right 2 bits assumed to be 0. ENUM BFD_RELOC_M32R_HI16_ULO ENUMDOC This is a 16-bit reloc containing the high 16 bits of an address used when the lower 16 bits are treated as unsigned. ENUM BFD_RELOC_M32R_HI16_SLO ENUMDOC This is a 16-bit reloc containing the high 16 bits of an address used when the lower 16 bits are treated as signed. ENUM BFD_RELOC_M32R_LO16 ENUMDOC This is a 16-bit reloc containing the lower 16 bits of an address. ENUM BFD_RELOC_M32R_SDA16 ENUMDOC This is a 16-bit reloc containing the small data area offset for use in add3, load, and store instructions. ENUM BFD_RELOC_M32R_GOT24 ENUMX BFD_RELOC_M32R_26_PLTREL ENUMX BFD_RELOC_M32R_COPY ENUMX BFD_RELOC_M32R_GLOB_DAT ENUMX BFD_RELOC_M32R_JMP_SLOT ENUMX BFD_RELOC_M32R_RELATIVE ENUMX BFD_RELOC_M32R_GOTOFF ENUMX BFD_RELOC_M32R_GOTPC24 ENUMX BFD_RELOC_M32R_GOT16_HI_ULO ENUMX BFD_RELOC_M32R_GOT16_HI_SLO ENUMX BFD_RELOC_M32R_GOT16_LO ENUMX BFD_RELOC_M32R_GOTPC_HI_ULO ENUMX BFD_RELOC_M32R_GOTPC_HI_SLO ENUMX BFD_RELOC_M32R_GOTPC_LO ENUMDOC For PIC. ENUM BFD_RELOC_V850_9_PCREL ENUMDOC This is a 9-bit reloc ENUM BFD_RELOC_V850_22_PCREL ENUMDOC This is a 22-bit reloc ENUM BFD_RELOC_V850_SDA_16_16_OFFSET ENUMDOC This is a 16 bit offset from the short data area pointer. ENUM BFD_RELOC_V850_SDA_15_16_OFFSET ENUMDOC This is a 16 bit offset (of which only 15 bits are used) from the short data area pointer. ENUM BFD_RELOC_V850_ZDA_16_16_OFFSET ENUMDOC This is a 16 bit offset from the zero data area pointer. ENUM BFD_RELOC_V850_ZDA_15_16_OFFSET ENUMDOC This is a 16 bit offset (of which only 15 bits are used) from the zero data area pointer. ENUM BFD_RELOC_V850_TDA_6_8_OFFSET ENUMDOC This is an 8 bit offset (of which only 6 bits are used) from the tiny data area pointer. ENUM BFD_RELOC_V850_TDA_7_8_OFFSET ENUMDOC This is an 8bit offset (of which only 7 bits are used) from the tiny data area pointer. ENUM BFD_RELOC_V850_TDA_7_7_OFFSET ENUMDOC This is a 7 bit offset from the tiny data area pointer. ENUM BFD_RELOC_V850_TDA_16_16_OFFSET ENUMDOC This is a 16 bit offset from the tiny data area pointer. COMMENT ENUM BFD_RELOC_V850_TDA_4_5_OFFSET ENUMDOC This is a 5 bit offset (of which only 4 bits are used) from the tiny data area pointer. ENUM BFD_RELOC_V850_TDA_4_4_OFFSET ENUMDOC This is a 4 bit offset from the tiny data area pointer. ENUM BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET ENUMDOC This is a 16 bit offset from the short data area pointer, with the bits placed non-contiguously in the instruction. ENUM BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET ENUMDOC This is a 16 bit offset from the zero data area pointer, with the bits placed non-contiguously in the instruction. ENUM BFD_RELOC_V850_CALLT_6_7_OFFSET ENUMDOC This is a 6 bit offset from the call table base pointer. ENUM BFD_RELOC_V850_CALLT_16_16_OFFSET ENUMDOC This is a 16 bit offset from the call table base pointer. ENUM BFD_RELOC_V850_LONGCALL ENUMDOC Used for relaxing indirect function calls. ENUM BFD_RELOC_V850_LONGJUMP ENUMDOC Used for relaxing indirect jumps. ENUM BFD_RELOC_V850_ALIGN ENUMDOC Used to maintain alignment whilst relaxing. ENUM BFD_RELOC_MN10300_32_PCREL ENUMDOC This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the instruction. ENUM BFD_RELOC_MN10300_16_PCREL ENUMDOC This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the instruction. ENUM BFD_RELOC_TIC30_LDP ENUMDOC This is a 8bit DP reloc for the tms320c30, where the most significant 8 bits of a 24 bit word are placed into the least significant 8 bits of the opcode. ENUM BFD_RELOC_TIC54X_PARTLS7 ENUMDOC This is a 7bit reloc for the tms320c54x, where the least significant 7 bits of a 16 bit word are placed into the least significant 7 bits of the opcode. ENUM BFD_RELOC_TIC54X_PARTMS9 ENUMDOC This is a 9bit DP reloc for the tms320c54x, where the most significant 9 bits of a 16 bit word are placed into the least significant 9 bits of the opcode. ENUM BFD_RELOC_TIC54X_23 ENUMDOC This is an extended address 23-bit reloc for the tms320c54x. ENUM BFD_RELOC_TIC54X_16_OF_23 ENUMDOC This is a 16-bit reloc for the tms320c54x, where the least significant 16 bits of a 23-bit extended address are placed into the opcode. ENUM BFD_RELOC_TIC54X_MS7_OF_23 ENUMDOC This is a reloc for the tms320c54x, where the most significant 7 bits of a 23-bit extended address are placed into the opcode. ENUM BFD_RELOC_FR30_48 ENUMDOC This is a 48 bit reloc for the FR30 that stores 32 bits. ENUM BFD_RELOC_FR30_20 ENUMDOC This is a 32 bit reloc for the FR30 that stores 20 bits split up into two sections. ENUM BFD_RELOC_FR30_6_IN_4 ENUMDOC This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in 4 bits. ENUM BFD_RELOC_FR30_8_IN_8 ENUMDOC This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset into 8 bits. ENUM BFD_RELOC_FR30_9_IN_8 ENUMDOC This is a 16 bit reloc for the FR30 that stores a 9 bit short offset into 8 bits. ENUM BFD_RELOC_FR30_10_IN_8 ENUMDOC This is a 16 bit reloc for the FR30 that stores a 10 bit word offset into 8 bits. ENUM BFD_RELOC_FR30_9_PCREL ENUMDOC This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative short offset into 8 bits. ENUM BFD_RELOC_FR30_12_PCREL ENUMDOC This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative short offset into 11 bits. ENUM BFD_RELOC_MCORE_PCREL_IMM8BY4 ENUMX BFD_RELOC_MCORE_PCREL_IMM11BY2 ENUMX BFD_RELOC_MCORE_PCREL_IMM4BY2 ENUMX BFD_RELOC_MCORE_PCREL_32 ENUMX BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2 ENUMX BFD_RELOC_MCORE_RVA ENUMDOC Motorola Mcore relocations. ENUM BFD_RELOC_MMIX_GETA ENUMX BFD_RELOC_MMIX_GETA_1 ENUMX BFD_RELOC_MMIX_GETA_2 ENUMX BFD_RELOC_MMIX_GETA_3 ENUMDOC These are relocations for the GETA instruction. ENUM BFD_RELOC_MMIX_CBRANCH ENUMX BFD_RELOC_MMIX_CBRANCH_J ENUMX BFD_RELOC_MMIX_CBRANCH_1 ENUMX BFD_RELOC_MMIX_CBRANCH_2 ENUMX BFD_RELOC_MMIX_CBRANCH_3 ENUMDOC These are relocations for a conditional branch instruction. ENUM BFD_RELOC_MMIX_PUSHJ ENUMX BFD_RELOC_MMIX_PUSHJ_1 ENUMX BFD_RELOC_MMIX_PUSHJ_2 ENUMX BFD_RELOC_MMIX_PUSHJ_3 ENUMX BFD_RELOC_MMIX_PUSHJ_STUBBABLE ENUMDOC These are relocations for the PUSHJ instruction. ENUM BFD_RELOC_MMIX_JMP ENUMX BFD_RELOC_MMIX_JMP_1 ENUMX BFD_RELOC_MMIX_JMP_2 ENUMX BFD_RELOC_MMIX_JMP_3 ENUMDOC These are relocations for the JMP instruction. ENUM BFD_RELOC_MMIX_ADDR19 ENUMDOC This is a relocation for a relative address as in a GETA instruction or a branch. ENUM BFD_RELOC_MMIX_ADDR27 ENUMDOC This is a relocation for a relative address as in a JMP instruction. ENUM BFD_RELOC_MMIX_REG_OR_BYTE ENUMDOC This is a relocation for an instruction field that may be a general register or a value 0..255. ENUM BFD_RELOC_MMIX_REG ENUMDOC This is a relocation for an instruction field that may be a general register. ENUM BFD_RELOC_MMIX_BASE_PLUS_OFFSET ENUMDOC This is a relocation for two instruction fields holding a register and an offset, the equivalent of the relocation. ENUM BFD_RELOC_MMIX_LOCAL ENUMDOC This relocation is an assertion that the expression is not allocated as a global register. It does not modify contents. ENUM BFD_RELOC_AVR_7_PCREL ENUMDOC This is a 16 bit reloc for the AVR that stores 8 bit pc relative short offset into 7 bits. ENUM BFD_RELOC_AVR_13_PCREL ENUMDOC This is a 16 bit reloc for the AVR that stores 13 bit pc relative short offset into 12 bits. ENUM BFD_RELOC_AVR_16_PM ENUMDOC This is a 16 bit reloc for the AVR that stores 17 bit value (usually program memory address) into 16 bits. ENUM BFD_RELOC_AVR_LO8_LDI ENUMDOC This is a 16 bit reloc for the AVR that stores 8 bit value (usually data memory address) into 8 bit immediate value of LDI insn. ENUM BFD_RELOC_AVR_HI8_LDI ENUMDOC This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of data memory address) into 8 bit immediate value of LDI insn. ENUM BFD_RELOC_AVR_HH8_LDI ENUMDOC This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of program memory address) into 8 bit immediate value of LDI insn. ENUM BFD_RELOC_AVR_LO8_LDI_NEG ENUMDOC This is a 16 bit reloc for the AVR that stores negated 8 bit value (usually data memory address) into 8 bit immediate value of SUBI insn. ENUM BFD_RELOC_AVR_HI8_LDI_NEG ENUMDOC This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 8 bit of data memory address) into 8 bit immediate value of SUBI insn. ENUM BFD_RELOC_AVR_HH8_LDI_NEG ENUMDOC This is a 16 bit reloc for the AVR that stores negated 8 bit value (most high 8 bit of program memory address) into 8 bit immediate value of LDI or SUBI insn. ENUM BFD_RELOC_AVR_LO8_LDI_PM ENUMDOC This is a 16 bit reloc for the AVR that stores 8 bit value (usually command address) into 8 bit immediate value of LDI insn. ENUM BFD_RELOC_AVR_HI8_LDI_PM ENUMDOC This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of command address) into 8 bit immediate value of LDI insn. ENUM BFD_RELOC_AVR_HH8_LDI_PM ENUMDOC This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of command address) into 8 bit immediate value of LDI insn. ENUM BFD_RELOC_AVR_LO8_LDI_PM_NEG ENUMDOC This is a 16 bit reloc for the AVR that stores negated 8 bit value (usually command address) into 8 bit immediate value of SUBI insn. ENUM BFD_RELOC_AVR_HI8_LDI_PM_NEG ENUMDOC This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 8 bit of 16 bit command address) into 8 bit immediate value of SUBI insn. ENUM BFD_RELOC_AVR_HH8_LDI_PM_NEG ENUMDOC This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 6 bit of 22 bit command address) into 8 bit immediate value of SUBI insn. ENUM BFD_RELOC_AVR_CALL ENUMDOC This is a 32 bit reloc for the AVR that stores 23 bit value into 22 bits. ENUM BFD_RELOC_390_12 ENUMDOC Direct 12 bit. ENUM BFD_RELOC_390_GOT12 ENUMDOC 12 bit GOT offset. ENUM BFD_RELOC_390_PLT32 ENUMDOC 32 bit PC relative PLT address. ENUM BFD_RELOC_390_COPY ENUMDOC Copy symbol at runtime. ENUM BFD_RELOC_390_GLOB_DAT ENUMDOC Create GOT entry. ENUM BFD_RELOC_390_JMP_SLOT ENUMDOC Create PLT entry. ENUM BFD_RELOC_390_RELATIVE ENUMDOC Adjust by program base. ENUM BFD_RELOC_390_GOTPC ENUMDOC 32 bit PC relative offset to GOT. ENUM BFD_RELOC_390_GOT16 ENUMDOC 16 bit GOT offset. ENUM BFD_RELOC_390_PC16DBL ENUMDOC PC relative 16 bit shifted by 1. ENUM BFD_RELOC_390_PLT16DBL ENUMDOC 16 bit PC rel. PLT shifted by 1. ENUM BFD_RELOC_390_PC32DBL ENUMDOC PC relative 32 bit shifted by 1. ENUM BFD_RELOC_390_PLT32DBL ENUMDOC 32 bit PC rel. PLT shifted by 1. ENUM BFD_RELOC_390_GOTPCDBL ENUMDOC 32 bit PC rel. GOT shifted by 1. ENUM BFD_RELOC_390_GOT64 ENUMDOC 64 bit GOT offset. ENUM BFD_RELOC_390_PLT64 ENUMDOC 64 bit PC relative PLT address. ENUM BFD_RELOC_390_GOTENT ENUMDOC 32 bit rel. offset to GOT entry. ENUM BFD_RELOC_390_GOTOFF64 ENUMDOC 64 bit offset to GOT. ENUM BFD_RELOC_390_GOTPLT12 ENUMDOC 12-bit offset to symbol-entry within GOT, with PLT handling. ENUM BFD_RELOC_390_GOTPLT16 ENUMDOC 16-bit offset to symbol-entry within GOT, with PLT handling. ENUM BFD_RELOC_390_GOTPLT32 ENUMDOC 32-bit offset to symbol-entry within GOT, with PLT handling. ENUM BFD_RELOC_390_GOTPLT64 ENUMDOC 64-bit offset to symbol-entry within GOT, with PLT handling. ENUM BFD_RELOC_390_GOTPLTENT ENUMDOC 32-bit rel. offset to symbol-entry within GOT, with PLT handling. ENUM BFD_RELOC_390_PLTOFF16 ENUMDOC 16-bit rel. offset from the GOT to a PLT entry. ENUM BFD_RELOC_390_PLTOFF32 ENUMDOC 32-bit rel. offset from the GOT to a PLT entry. ENUM BFD_RELOC_390_PLTOFF64 ENUMDOC 64-bit rel. offset from the GOT to a PLT entry. ENUM BFD_RELOC_390_TLS_LOAD ENUMX BFD_RELOC_390_TLS_GDCALL ENUMX BFD_RELOC_390_TLS_LDCALL ENUMX BFD_RELOC_390_TLS_GD32 ENUMX BFD_RELOC_390_TLS_GD64 ENUMX BFD_RELOC_390_TLS_GOTIE12 ENUMX BFD_RELOC_390_TLS_GOTIE32 ENUMX BFD_RELOC_390_TLS_GOTIE64 ENUMX BFD_RELOC_390_TLS_LDM32 ENUMX BFD_RELOC_390_TLS_LDM64 ENUMX BFD_RELOC_390_TLS_IE32 ENUMX BFD_RELOC_390_TLS_IE64 ENUMX BFD_RELOC_390_TLS_IEENT ENUMX BFD_RELOC_390_TLS_LE32 ENUMX BFD_RELOC_390_TLS_LE64 ENUMX BFD_RELOC_390_TLS_LDO32 ENUMX BFD_RELOC_390_TLS_LDO64 ENUMX BFD_RELOC_390_TLS_DTPMOD ENUMX BFD_RELOC_390_TLS_DTPOFF ENUMX BFD_RELOC_390_TLS_TPOFF ENUMDOC s390 tls relocations. ENUM BFD_RELOC_390_20 ENUMX BFD_RELOC_390_GOT20 ENUMX BFD_RELOC_390_GOTPLT20 ENUMX BFD_RELOC_390_TLS_GOTIE20 ENUMDOC Long displacement extension. ENUM BFD_RELOC_IP2K_FR9 ENUMDOC Scenix IP2K - 9-bit register number / data address ENUM BFD_RELOC_IP2K_BANK ENUMDOC Scenix IP2K - 4-bit register/data bank number ENUM BFD_RELOC_IP2K_ADDR16CJP ENUMDOC Scenix IP2K - low 13 bits of instruction word address ENUM BFD_RELOC_IP2K_PAGE3 ENUMDOC Scenix IP2K - high 3 bits of instruction word address ENUM BFD_RELOC_IP2K_LO8DATA ENUMX BFD_RELOC_IP2K_HI8DATA ENUMX BFD_RELOC_IP2K_EX8DATA ENUMDOC Scenix IP2K - ext/low/high 8 bits of data address ENUM BFD_RELOC_IP2K_LO8INSN ENUMX BFD_RELOC_IP2K_HI8INSN ENUMDOC Scenix IP2K - low/high 8 bits of instruction word address ENUM BFD_RELOC_IP2K_PC_SKIP ENUMDOC Scenix IP2K - even/odd PC modifier to modify snb pcl.0 ENUM BFD_RELOC_IP2K_TEXT ENUMDOC Scenix IP2K - 16 bit word address in text section. ENUM BFD_RELOC_IP2K_FR_OFFSET ENUMDOC Scenix IP2K - 7-bit sp or dp offset ENUM BFD_RELOC_VPE4KMATH_DATA ENUMX BFD_RELOC_VPE4KMATH_INSN ENUMDOC Scenix VPE4K coprocessor - data/insn-space addressing ENUM BFD_RELOC_VTABLE_INHERIT ENUMX BFD_RELOC_VTABLE_ENTRY ENUMDOC These two relocations are used by the linker to determine which of the entries in a C++ virtual function table are actually used. When the --gc-sections option is given, the linker will zero out the entries that are not used, so that the code for those functions need not be included in the output. VTABLE_INHERIT is a zero-space relocation used to describe to the linker the inheritance tree of a C++ virtual function table. The relocation's symbol should be the parent class' vtable, and the relocation should be located at the child vtable. VTABLE_ENTRY is a zero-space relocation that describes the use of a virtual function table entry. The reloc's symbol should refer to the table of the class mentioned in the code. Off of that base, an offset describes the entry that is being used. For Rela hosts, this offset is stored in the reloc's addend. For Rel hosts, we are forced to put this offset in the reloc's section offset. ENUM BFD_RELOC_IA64_IMM14 ENUMX BFD_RELOC_IA64_IMM22 ENUMX BFD_RELOC_IA64_IMM64 ENUMX BFD_RELOC_IA64_DIR32MSB ENUMX BFD_RELOC_IA64_DIR32LSB ENUMX BFD_RELOC_IA64_DIR64MSB ENUMX BFD_RELOC_IA64_DIR64LSB ENUMX BFD_RELOC_IA64_GPREL22 ENUMX BFD_RELOC_IA64_GPREL64I ENUMX BFD_RELOC_IA64_GPREL32MSB ENUMX BFD_RELOC_IA64_GPREL32LSB ENUMX BFD_RELOC_IA64_GPREL64MSB ENUMX BFD_RELOC_IA64_GPREL64LSB ENUMX BFD_RELOC_IA64_LTOFF22 ENUMX BFD_RELOC_IA64_LTOFF64I ENUMX BFD_RELOC_IA64_PLTOFF22 ENUMX BFD_RELOC_IA64_PLTOFF64I ENUMX BFD_RELOC_IA64_PLTOFF64MSB ENUMX BFD_RELOC_IA64_PLTOFF64LSB ENUMX BFD_RELOC_IA64_FPTR64I ENUMX BFD_RELOC_IA64_FPTR32MSB ENUMX BFD_RELOC_IA64_FPTR32LSB ENUMX BFD_RELOC_IA64_FPTR64MSB ENUMX BFD_RELOC_IA64_FPTR64LSB ENUMX BFD_RELOC_IA64_PCREL21B ENUMX BFD_RELOC_IA64_PCREL21BI ENUMX BFD_RELOC_IA64_PCREL21M ENUMX BFD_RELOC_IA64_PCREL21F ENUMX BFD_RELOC_IA64_PCREL22 ENUMX BFD_RELOC_IA64_PCREL60B ENUMX BFD_RELOC_IA64_PCREL64I ENUMX BFD_RELOC_IA64_PCREL32MSB ENUMX BFD_RELOC_IA64_PCREL32LSB ENUMX BFD_RELOC_IA64_PCREL64MSB ENUMX BFD_RELOC_IA64_PCREL64LSB ENUMX BFD_RELOC_IA64_LTOFF_FPTR22 ENUMX BFD_RELOC_IA64_LTOFF_FPTR64I ENUMX BFD_RELOC_IA64_LTOFF_FPTR32MSB ENUMX BFD_RELOC_IA64_LTOFF_FPTR32LSB ENUMX BFD_RELOC_IA64_LTOFF_FPTR64MSB ENUMX BFD_RELOC_IA64_LTOFF_FPTR64LSB ENUMX BFD_RELOC_IA64_SEGREL32MSB ENUMX BFD_RELOC_IA64_SEGREL32LSB ENUMX BFD_RELOC_IA64_SEGREL64MSB ENUMX BFD_RELOC_IA64_SEGREL64LSB ENUMX BFD_RELOC_IA64_SECREL32MSB ENUMX BFD_RELOC_IA64_SECREL32LSB ENUMX BFD_RELOC_IA64_SECREL64MSB ENUMX BFD_RELOC_IA64_SECREL64LSB ENUMX BFD_RELOC_IA64_REL32MSB ENUMX BFD_RELOC_IA64_REL32LSB ENUMX BFD_RELOC_IA64_REL64MSB ENUMX BFD_RELOC_IA64_REL64LSB ENUMX BFD_RELOC_IA64_LTV32MSB ENUMX BFD_RELOC_IA64_LTV32LSB ENUMX BFD_RELOC_IA64_LTV64MSB ENUMX BFD_RELOC_IA64_LTV64LSB ENUMX BFD_RELOC_IA64_IPLTMSB ENUMX BFD_RELOC_IA64_IPLTLSB ENUMX BFD_RELOC_IA64_COPY ENUMX BFD_RELOC_IA64_LTOFF22X ENUMX BFD_RELOC_IA64_LDXMOV ENUMX BFD_RELOC_IA64_TPREL14 ENUMX BFD_RELOC_IA64_TPREL22 ENUMX BFD_RELOC_IA64_TPREL64I ENUMX BFD_RELOC_IA64_TPREL64MSB ENUMX BFD_RELOC_IA64_TPREL64LSB ENUMX BFD_RELOC_IA64_LTOFF_TPREL22 ENUMX BFD_RELOC_IA64_DTPMOD64MSB ENUMX BFD_RELOC_IA64_DTPMOD64LSB ENUMX BFD_RELOC_IA64_LTOFF_DTPMOD22 ENUMX BFD_RELOC_IA64_DTPREL14 ENUMX BFD_RELOC_IA64_DTPREL22 ENUMX BFD_RELOC_IA64_DTPREL64I ENUMX BFD_RELOC_IA64_DTPREL32MSB ENUMX BFD_RELOC_IA64_DTPREL32LSB ENUMX BFD_RELOC_IA64_DTPREL64MSB ENUMX BFD_RELOC_IA64_DTPREL64LSB ENUMX BFD_RELOC_IA64_LTOFF_DTPREL22 ENUMDOC Intel IA64 Relocations. ENUM BFD_RELOC_M68HC11_HI8 ENUMDOC Motorola 68HC11 reloc. This is the 8 bit high part of an absolute address. ENUM BFD_RELOC_M68HC11_LO8 ENUMDOC Motorola 68HC11 reloc. This is the 8 bit low part of an absolute address. ENUM BFD_RELOC_M68HC11_3B ENUMDOC Motorola 68HC11 reloc. This is the 3 bit of a value. ENUM BFD_RELOC_M68HC11_RL_JUMP ENUMDOC Motorola 68HC11 reloc. This reloc marks the beginning of a jump/call instruction. It is used for linker relaxation to correctly identify beginning of instruction and change some branches to use PC-relative addressing mode. ENUM BFD_RELOC_M68HC11_RL_GROUP ENUMDOC Motorola 68HC11 reloc. This reloc marks a group of several instructions that gcc generates and for which the linker relaxation pass can modify and/or remove some of them. ENUM BFD_RELOC_M68HC11_LO16 ENUMDOC Motorola 68HC11 reloc. This is the 16-bit lower part of an address. It is used for 'call' instruction to specify the symbol address without any special transformation (due to memory bank window). ENUM BFD_RELOC_M68HC11_PAGE ENUMDOC Motorola 68HC11 reloc. This is a 8-bit reloc that specifies the page number of an address. It is used by 'call' instruction to specify the page number of the symbol. ENUM BFD_RELOC_M68HC11_24 ENUMDOC Motorola 68HC11 reloc. This is a 24-bit reloc that represents the address with a 16-bit value and a 8-bit page number. The symbol address is transformed to follow the 16K memory bank of 68HC12 (seen as mapped in the window). ENUM BFD_RELOC_M68HC12_5B ENUMDOC Motorola 68HC12 reloc. This is the 5 bits of a value. ENUM BFD_RELOC_16C_NUM08 ENUMX BFD_RELOC_16C_NUM08_C ENUMX BFD_RELOC_16C_NUM16 ENUMX BFD_RELOC_16C_NUM16_C ENUMX BFD_RELOC_16C_NUM32 ENUMX BFD_RELOC_16C_NUM32_C ENUMX BFD_RELOC_16C_DISP04 ENUMX BFD_RELOC_16C_DISP04_C ENUMX BFD_RELOC_16C_DISP08 ENUMX BFD_RELOC_16C_DISP08_C ENUMX BFD_RELOC_16C_DISP16 ENUMX BFD_RELOC_16C_DISP16_C ENUMX BFD_RELOC_16C_DISP24 ENUMX BFD_RELOC_16C_DISP24_C ENUMX BFD_RELOC_16C_DISP24a ENUMX BFD_RELOC_16C_DISP24a_C ENUMX BFD_RELOC_16C_REG04 ENUMX BFD_RELOC_16C_REG04_C ENUMX BFD_RELOC_16C_REG04a ENUMX BFD_RELOC_16C_REG04a_C ENUMX BFD_RELOC_16C_REG14 ENUMX BFD_RELOC_16C_REG14_C ENUMX BFD_RELOC_16C_REG16 ENUMX BFD_RELOC_16C_REG16_C ENUMX BFD_RELOC_16C_REG20 ENUMX BFD_RELOC_16C_REG20_C ENUMX BFD_RELOC_16C_ABS20 ENUMX BFD_RELOC_16C_ABS20_C ENUMX BFD_RELOC_16C_ABS24 ENUMX BFD_RELOC_16C_ABS24_C ENUMX BFD_RELOC_16C_IMM04 ENUMX BFD_RELOC_16C_IMM04_C ENUMX BFD_RELOC_16C_IMM16 ENUMX BFD_RELOC_16C_IMM16_C ENUMX BFD_RELOC_16C_IMM20 ENUMX BFD_RELOC_16C_IMM20_C ENUMX BFD_RELOC_16C_IMM24 ENUMX BFD_RELOC_16C_IMM24_C ENUMX BFD_RELOC_16C_IMM32 ENUMX BFD_RELOC_16C_IMM32_C ENUMDOC NS CR16C Relocations. ENUM BFD_RELOC_CRIS_BDISP8 ENUMX BFD_RELOC_CRIS_UNSIGNED_5 ENUMX BFD_RELOC_CRIS_SIGNED_6 ENUMX BFD_RELOC_CRIS_UNSIGNED_6 ENUMX BFD_RELOC_CRIS_UNSIGNED_4 ENUMDOC These relocs are only used within the CRIS assembler. They are not (at present) written to any object files. ENUM BFD_RELOC_CRIS_COPY ENUMX BFD_RELOC_CRIS_GLOB_DAT ENUMX BFD_RELOC_CRIS_JUMP_SLOT ENUMX BFD_RELOC_CRIS_RELATIVE ENUMDOC Relocs used in ELF shared libraries for CRIS. ENUM BFD_RELOC_CRIS_32_GOT ENUMDOC 32-bit offset to symbol-entry within GOT. ENUM BFD_RELOC_CRIS_16_GOT ENUMDOC 16-bit offset to symbol-entry within GOT. ENUM BFD_RELOC_CRIS_32_GOTPLT ENUMDOC 32-bit offset to symbol-entry within GOT, with PLT handling. ENUM BFD_RELOC_CRIS_16_GOTPLT ENUMDOC 16-bit offset to symbol-entry within GOT, with PLT handling. ENUM BFD_RELOC_CRIS_32_GOTREL ENUMDOC 32-bit offset to symbol, relative to GOT. ENUM BFD_RELOC_CRIS_32_PLT_GOTREL ENUMDOC 32-bit offset to symbol with PLT entry, relative to GOT. ENUM BFD_RELOC_CRIS_32_PLT_PCREL ENUMDOC 32-bit offset to symbol with PLT entry, relative to this relocation. ENUM BFD_RELOC_860_COPY ENUMX BFD_RELOC_860_GLOB_DAT ENUMX BFD_RELOC_860_JUMP_SLOT ENUMX BFD_RELOC_860_RELATIVE ENUMX BFD_RELOC_860_PC26 ENUMX BFD_RELOC_860_PLT26 ENUMX BFD_RELOC_860_PC16 ENUMX BFD_RELOC_860_LOW0 ENUMX BFD_RELOC_860_SPLIT0 ENUMX BFD_RELOC_860_LOW1 ENUMX BFD_RELOC_860_SPLIT1 ENUMX BFD_RELOC_860_LOW2 ENUMX BFD_RELOC_860_SPLIT2 ENUMX BFD_RELOC_860_LOW3 ENUMX BFD_RELOC_860_LOGOT0 ENUMX BFD_RELOC_860_SPGOT0 ENUMX BFD_RELOC_860_LOGOT1 ENUMX BFD_RELOC_860_SPGOT1 ENUMX BFD_RELOC_860_LOGOTOFF0 ENUMX BFD_RELOC_860_SPGOTOFF0 ENUMX BFD_RELOC_860_LOGOTOFF1 ENUMX BFD_RELOC_860_SPGOTOFF1 ENUMX BFD_RELOC_860_LOGOTOFF2 ENUMX BFD_RELOC_860_LOGOTOFF3 ENUMX BFD_RELOC_860_LOPC ENUMX BFD_RELOC_860_HIGHADJ ENUMX BFD_RELOC_860_HAGOT ENUMX BFD_RELOC_860_HAGOTOFF ENUMX BFD_RELOC_860_HAPC ENUMX BFD_RELOC_860_HIGH ENUMX BFD_RELOC_860_HIGOT ENUMX BFD_RELOC_860_HIGOTOFF ENUMDOC Intel i860 Relocations. ENUM BFD_RELOC_OPENRISC_ABS_26 ENUMX BFD_RELOC_OPENRISC_REL_26 ENUMDOC OpenRISC Relocations. ENUM BFD_RELOC_H8_DIR16A8 ENUMX BFD_RELOC_H8_DIR16R8 ENUMX BFD_RELOC_H8_DIR24A8 ENUMX BFD_RELOC_H8_DIR24R8 ENUMX BFD_RELOC_H8_DIR32A16 ENUMDOC H8 elf Relocations. ENUM BFD_RELOC_XSTORMY16_REL_12 ENUMX BFD_RELOC_XSTORMY16_12 ENUMX BFD_RELOC_XSTORMY16_24 ENUMX BFD_RELOC_XSTORMY16_FPTR16 ENUMDOC Sony Xstormy16 Relocations. ENUM BFD_RELOC_VAX_GLOB_DAT ENUMX BFD_RELOC_VAX_JMP_SLOT ENUMX BFD_RELOC_VAX_RELATIVE ENUMDOC Relocations used by VAX ELF. ENUM BFD_RELOC_MSP430_10_PCREL ENUMX BFD_RELOC_MSP430_16_PCREL ENUMX BFD_RELOC_MSP430_16 ENUMX BFD_RELOC_MSP430_16_PCREL_BYTE ENUMX BFD_RELOC_MSP430_16_BYTE ENUMDOC msp430 specific relocation codes ENUM BFD_RELOC_IQ2000_OFFSET_16 ENUMX BFD_RELOC_IQ2000_OFFSET_21 ENUMX BFD_RELOC_IQ2000_UHI16 ENUMDOC IQ2000 Relocations. ENUM BFD_RELOC_XTENSA_RTLD ENUMDOC Special Xtensa relocation used only by PLT entries in ELF shared objects to indicate that the runtime linker should set the value to one of its own internal functions or data structures. ENUM BFD_RELOC_XTENSA_GLOB_DAT ENUMX BFD_RELOC_XTENSA_JMP_SLOT ENUMX BFD_RELOC_XTENSA_RELATIVE ENUMDOC Xtensa relocations for ELF shared objects. ENUM BFD_RELOC_XTENSA_PLT ENUMDOC Xtensa relocation used in ELF object files for symbols that may require PLT entries. Otherwise, this is just a generic 32-bit relocation. ENUM BFD_RELOC_XTENSA_OP0 ENUMX BFD_RELOC_XTENSA_OP1 ENUMX BFD_RELOC_XTENSA_OP2 ENUMDOC Generic Xtensa relocations. Only the operand number is encoded in the relocation. The details are determined by extracting the instruction opcode. ENUM BFD_RELOC_XTENSA_ASM_EXPAND ENUMDOC Xtensa relocation to mark that the assembler expanded the instructions from an original target. The expansion size is encoded in the reloc size. ENUM BFD_RELOC_XTENSA_ASM_SIMPLIFY ENUMDOC Xtensa relocation to mark that the linker should simplify assembler-expanded instructions. This is commonly used internally by the linker after analysis of a BFD_RELOC_XTENSA_ASM_EXPAND. ENDSENUM BFD_RELOC_UNUSED CODE_FRAGMENT . .typedef enum bfd_reloc_code_real bfd_reloc_code_real_type; */ /* FUNCTION bfd_reloc_type_lookup SYNOPSIS reloc_howto_type *bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code); DESCRIPTION Return a pointer to a howto structure which, when invoked, will perform the relocation @var{code} on data from the architecture noted. */ reloc_howto_type * bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code) { return BFD_SEND (abfd, reloc_type_lookup, (abfd, code)); } static reloc_howto_type bfd_howto_32 = HOWTO (0, 00, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "VRT32", FALSE, 0xffffffff, 0xffffffff, TRUE); /* INTERNAL_FUNCTION bfd_default_reloc_type_lookup SYNOPSIS reloc_howto_type *bfd_default_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code); DESCRIPTION Provides a default relocation lookup routine for any architecture. */ reloc_howto_type * bfd_default_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code) { switch (code) { case BFD_RELOC_CTOR: /* The type of reloc used in a ctor, which will be as wide as the address - so either a 64, 32, or 16 bitter. */ switch (bfd_get_arch_info (abfd)->bits_per_address) { case 64: BFD_FAIL (); case 32: return &bfd_howto_32; case 16: BFD_FAIL (); default: BFD_FAIL (); } default: BFD_FAIL (); } return NULL; } /* FUNCTION bfd_get_reloc_code_name SYNOPSIS const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code); DESCRIPTION Provides a printable name for the supplied relocation code. Useful mainly for printing error messages. */ const char * bfd_get_reloc_code_name (bfd_reloc_code_real_type code) { if (code > BFD_RELOC_UNUSED) return 0; return bfd_reloc_code_real_names[code]; } /* INTERNAL_FUNCTION bfd_generic_relax_section SYNOPSIS bfd_boolean bfd_generic_relax_section (bfd *abfd, asection *section, struct bfd_link_info *, bfd_boolean *); DESCRIPTION Provides default handling for relaxing for back ends which don't do relaxing -- i.e., does nothing except make sure that the final size of the section is set. */ bfd_boolean bfd_generic_relax_section (bfd *abfd ATTRIBUTE_UNUSED, asection *section ATTRIBUTE_UNUSED, struct bfd_link_info *link_info ATTRIBUTE_UNUSED, bfd_boolean *again) { /* We're not relaxing the section, so just copy the size info if it's zero. Someone else, like bfd_merge_sections, might have set it, so don't overwrite a non-zero value. */ if (section->_cooked_size == 0) section->_cooked_size = section->_raw_size; *again = FALSE; return TRUE; } /* INTERNAL_FUNCTION bfd_generic_gc_sections SYNOPSIS bfd_boolean bfd_generic_gc_sections (bfd *, struct bfd_link_info *); DESCRIPTION Provides default handling for relaxing for back ends which don't do section gc -- i.e., does nothing. */ bfd_boolean bfd_generic_gc_sections (bfd *abfd ATTRIBUTE_UNUSED, struct bfd_link_info *link_info ATTRIBUTE_UNUSED) { return TRUE; } /* INTERNAL_FUNCTION bfd_generic_merge_sections SYNOPSIS bfd_boolean bfd_generic_merge_sections (bfd *, struct bfd_link_info *); DESCRIPTION Provides default handling for SEC_MERGE section merging for back ends which don't have SEC_MERGE support -- i.e., does nothing. */ bfd_boolean bfd_generic_merge_sections (bfd *abfd ATTRIBUTE_UNUSED, struct bfd_link_info *link_info ATTRIBUTE_UNUSED) { return TRUE; } /* INTERNAL_FUNCTION bfd_generic_get_relocated_section_contents SYNOPSIS bfd_byte *bfd_generic_get_relocated_section_contents (bfd *abfd, struct bfd_link_info *link_info, struct bfd_link_order *link_order, bfd_byte *data, bfd_boolean relocatable, asymbol **symbols); DESCRIPTION Provides default handling of relocation effort for back ends which can't be bothered to do it efficiently. */ bfd_byte * bfd_generic_get_relocated_section_contents (bfd *abfd, struct bfd_link_info *link_info, struct bfd_link_order *link_order, bfd_byte *data, bfd_boolean relocatable, asymbol **symbols) { /* Get enough memory to hold the stuff. */ bfd *input_bfd = link_order->u.indirect.section->owner; asection *input_section = link_order->u.indirect.section; long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); arelent **reloc_vector = NULL; long reloc_count; if (reloc_size < 0) goto error_return; reloc_vector = bfd_malloc (reloc_size); if (reloc_vector == NULL && reloc_size != 0) goto error_return; /* Read in the section. */ if (!bfd_get_section_contents (input_bfd, input_section, data, 0, input_section->_raw_size)) goto error_return; /* Don't set input_section->_cooked_size here. The caller has set _cooked_size or called bfd_relax_section, which sets _cooked_size. Despite using this generic relocation function, some targets perform target-specific relaxation or string merging, which happens before this function is called. We do not want to clobber the _cooked_size they computed. */ input_section->reloc_done = TRUE; reloc_count = bfd_canonicalize_reloc (input_bfd, input_section, reloc_vector, symbols); if (reloc_count < 0) goto error_return; if (reloc_count > 0) { arelent **parent; for (parent = reloc_vector; *parent != NULL; parent++) { char *error_message = NULL; bfd_reloc_status_type r = bfd_perform_relocation (input_bfd, *parent, data, input_section, relocatable ? abfd : NULL, &error_message); if (relocatable) { asection *os = input_section->output_section; /* A partial link, so keep the relocs. */ os->orelocation[os->reloc_count] = *parent; os->reloc_count++; } if (r != bfd_reloc_ok) { switch (r) { case bfd_reloc_undefined: if (!((*link_info->callbacks->undefined_symbol) (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), input_bfd, input_section, (*parent)->address, TRUE))) goto error_return; break; case bfd_reloc_dangerous: BFD_ASSERT (error_message != NULL); if (!((*link_info->callbacks->reloc_dangerous) (link_info, error_message, input_bfd, input_section, (*parent)->address))) goto error_return; break; case bfd_reloc_overflow: if (!((*link_info->callbacks->reloc_overflow) (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), (*parent)->howto->name, (*parent)->addend, input_bfd, input_section, (*parent)->address))) goto error_return; break; case bfd_reloc_outofrange: default: abort (); break; } } } } if (reloc_vector != NULL) free (reloc_vector); return data; error_return: if (reloc_vector != NULL) free (reloc_vector); return NULL; }