/* BFD support for handling relocation entries. Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc. Written by Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* SECTION Relocations BFD maintains relocations in much the same way it maintains symbols: they are left alone until required, then read in en-mass and translated into an internal form. A common routine <> acts upon the canonical form to do the fixup. Relocations are maintained on a per section basis, while symbols are maintained on a per BFD basis. All that a back end has to do to fit the BFD interface is to create a <> for each relocation in a particular section, and fill in the right bits of the structures. @menu @* typedef arelent:: @* howto manager:: @end menu */ #include "bfd.h" #include "sysdep.h" #include "bfdlink.h" #include "libbfd.h" /* DOCDD INODE typedef arelent, howto manager, Relocations, Relocations SUBSECTION typedef arelent This is the structure of a relocation entry: CODE_FRAGMENT . .typedef enum bfd_reloc_status .{ . {* No errors detected *} . bfd_reloc_ok, . . {* The relocation was performed, but there was an overflow. *} . bfd_reloc_overflow, . . {* The address to relocate was not within the section supplied. *} . bfd_reloc_outofrange, . . {* Used by special functions *} . bfd_reloc_continue, . . {* Unsupported relocation size requested. *} . bfd_reloc_notsupported, . . {* Unused *} . bfd_reloc_other, . . {* The symbol to relocate against was undefined. *} . bfd_reloc_undefined, . . {* The relocation was performed, but may not be ok - presently . generated only when linking i960 coff files with i960 b.out . symbols. If this type is returned, the error_message argument . to bfd_perform_relocation will be set. *} . bfd_reloc_dangerous . } . bfd_reloc_status_type; . . .typedef struct reloc_cache_entry .{ . {* A pointer into the canonical table of pointers *} . struct symbol_cache_entry **sym_ptr_ptr; . . {* offset in section *} . bfd_size_type address; . . {* addend for relocation value *} . bfd_vma addend; . . {* Pointer to how to perform the required relocation *} . const struct reloc_howto_struct *howto; . .} arelent; */ /* DESCRIPTION Here is a description of each of the fields within an <>: o <> The symbol table pointer points to a pointer to the symbol associated with the relocation request. It is the pointer into the table returned by the back end's <> action. @xref{Symbols}. The symbol is referenced through a pointer to a pointer so that tools like the linker can fix up all the symbols of the same name by modifying only one pointer. The relocation routine looks in the symbol and uses the base of the section the symbol is attached to and the value of the symbol as the initial relocation offset. If the symbol pointer is zero, then the section provided is looked up. o <
> The <
> field gives the offset in bytes from the base of the section data which owns the relocation record to the first byte of relocatable information. The actual data relocated will be relative to this point; for example, a relocation type which modifies the bottom two bytes of a four byte word would not touch the first byte pointed to in a big endian world. o <> The <> is a value provided by the back end to be added (!) to the relocation offset. Its interpretation is dependent upon the howto. For example, on the 68k the code: | char foo[]; | main() | { | return foo[0x12345678]; | } Could be compiled into: | linkw fp,#-4 | moveb @@#12345678,d0 | extbl d0 | unlk fp | rts This could create a reloc pointing to <>, but leave the offset in the data, something like: |RELOCATION RECORDS FOR [.text]: |offset type value |00000006 32 _foo | |00000000 4e56 fffc ; linkw fp,#-4 |00000004 1039 1234 5678 ; moveb @@#12345678,d0 |0000000a 49c0 ; extbl d0 |0000000c 4e5e ; unlk fp |0000000e 4e75 ; rts Using coff and an 88k, some instructions don't have enough space in them to represent the full address range, and pointers have to be loaded in two parts. So you'd get something like: | or.u r13,r0,hi16(_foo+0x12345678) | ld.b r2,r13,lo16(_foo+0x12345678) | jmp r1 This should create two relocs, both pointing to <<_foo>>, and with 0x12340000 in their addend field. The data would consist of: |RELOCATION RECORDS FOR [.text]: |offset type value |00000002 HVRT16 _foo+0x12340000 |00000006 LVRT16 _foo+0x12340000 | |00000000 5da05678 ; or.u r13,r0,0x5678 |00000004 1c4d5678 ; ld.b r2,r13,0x5678 |00000008 f400c001 ; jmp r1 The relocation routine digs out the value from the data, adds it to the addend to get the original offset, and then adds the value of <<_foo>>. Note that all 32 bits have to be kept around somewhere, to cope with carry from bit 15 to bit 16. One further example is the sparc and the a.out format. The sparc has a similar problem to the 88k, in that some instructions don't have room for an entire offset, but on the sparc the parts are created in odd sized lumps. The designers of the a.out format chose to not use the data within the section for storing part of the offset; all the offset is kept within the reloc. Anything in the data should be ignored. | save %sp,-112,%sp | sethi %hi(_foo+0x12345678),%g2 | ldsb [%g2+%lo(_foo+0x12345678)],%i0 | ret | restore Both relocs contain a pointer to <>, and the offsets contain junk. |RELOCATION RECORDS FOR [.text]: |offset type value |00000004 HI22 _foo+0x12345678 |00000008 LO10 _foo+0x12345678 | |00000000 9de3bf90 ; save %sp,-112,%sp |00000004 05000000 ; sethi %hi(_foo+0),%g2 |00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0 |0000000c 81c7e008 ; ret |00000010 81e80000 ; restore o <> The <> field can be imagined as a relocation instruction. It is a pointer to a structure which contains information on what to do with all of the other information in the reloc record and data section. A back end would normally have a relocation instruction set and turn relocations into pointers to the correct structure on input - but it would be possible to create each howto field on demand. */ /* SUBSUBSECTION <> Indicates what sort of overflow checking should be done when performing a relocation. CODE_FRAGMENT . .enum complain_overflow .{ . {* Do not complain on overflow. *} . complain_overflow_dont, . . {* Complain if the bitfield overflows, whether it is considered . as signed or unsigned. *} . complain_overflow_bitfield, . . {* Complain if the value overflows when considered as signed . number. *} . complain_overflow_signed, . . {* Complain if the value overflows when considered as an . unsigned number. *} . complain_overflow_unsigned .}; */ /* SUBSUBSECTION <> The <> is a structure which contains all the information that libbfd needs to know to tie up a back end's data. CODE_FRAGMENT .struct symbol_cache_entry; {* Forward declaration *} . .typedef struct reloc_howto_struct .{ . {* The type field has mainly a documetary use - the back end can . do what it wants with it, though normally the back end's . external idea of what a reloc number is stored . in this field. For example, a PC relative word relocation . in a coff environment has the type 023 - because that's . what the outside world calls a R_PCRWORD reloc. *} . unsigned int type; . . {* The value the final relocation is shifted right by. This drops . unwanted data from the relocation. *} . unsigned int rightshift; . . {* The size of the item to be relocated. This is *not* a . power-of-two measure. To get the number of bytes operated . on by a type of relocation, use bfd_get_reloc_size. *} . int size; . . {* The number of bits in the item to be relocated. This is used . when doing overflow checking. *} . unsigned int bitsize; . . {* Notes that the relocation is relative to the location in the . data section of the addend. The relocation function will . subtract from the relocation value the address of the location . being relocated. *} . boolean pc_relative; . . {* The bit position of the reloc value in the destination. . The relocated value is left shifted by this amount. *} . unsigned int bitpos; . . {* What type of overflow error should be checked for when . relocating. *} . enum complain_overflow complain_on_overflow; . . {* If this field is non null, then the supplied function is . called rather than the normal function. This allows really . strange relocation methods to be accomodated (e.g., i960 callj . instructions). *} . bfd_reloc_status_type (*special_function) . PARAMS ((bfd *abfd, . arelent *reloc_entry, . struct symbol_cache_entry *symbol, . PTR data, . asection *input_section, . bfd *output_bfd, . char **error_message)); . . {* The textual name of the relocation type. *} . char *name; . . {* When performing a partial link, some formats must modify the . relocations rather than the data - this flag signals this.*} . boolean partial_inplace; . . {* The src_mask selects which parts of the read in data . are to be used in the relocation sum. E.g., if this was an 8 bit . bit of data which we read and relocated, this would be . 0x000000ff. When we have relocs which have an addend, such as . sun4 extended relocs, the value in the offset part of a . relocating field is garbage so we never use it. In this case . the mask would be 0x00000000. *} . bfd_vma src_mask; . . {* The dst_mask selects which parts of the instruction are replaced . into the instruction. In most cases src_mask == dst_mask, . except in the above special case, where dst_mask would be . 0x000000ff, and src_mask would be 0x00000000. *} . bfd_vma dst_mask; . . {* When some formats create PC relative instructions, they leave . the value of the pc of the place being relocated in the offset . slot of the instruction, so that a PC relative relocation can . be made just by adding in an ordinary offset (e.g., sun3 a.out). . Some formats leave the displacement part of an instruction . empty (e.g., m88k bcs); this flag signals the fact.*} . boolean pcrel_offset; . .} reloc_howto_type; */ /* FUNCTION The HOWTO Macro DESCRIPTION The HOWTO define is horrible and will go away. .#define HOWTO(C, R,S,B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \ . {(unsigned)C,R,S,B, P, BI, O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC} DESCRIPTION And will be replaced with the totally magic way. But for the moment, we are compatible, so do it this way. .#define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,complain_overflow_dont,FUNCTION, NAME,false,0,0,IN) . DESCRIPTION Helper routine to turn a symbol into a relocation value. .#define HOWTO_PREPARE(relocation, symbol) \ . { \ . if (symbol != (asymbol *)NULL) { \ . if (bfd_is_com_section (symbol->section)) { \ . relocation = 0; \ . } \ . else { \ . relocation = symbol->value; \ . } \ . } \ .} */ /* FUNCTION bfd_get_reloc_size SYNOPSIS int bfd_get_reloc_size (const reloc_howto_type *); DESCRIPTION For a reloc_howto_type that operates on a fixed number of bytes, this returns the number of bytes operated on. */ int bfd_get_reloc_size (howto) const reloc_howto_type *howto; { switch (howto->size) { case 0: return 1; case 1: return 2; case 2: return 4; case 3: return 0; case 4: return 8; case -2: return 4; default: abort (); } } /* TYPEDEF arelent_chain DESCRIPTION How relocs are tied together in an <>: .typedef unsigned char bfd_byte; . .typedef struct relent_chain { . arelent relent; . struct relent_chain *next; .} arelent_chain; */ /* FUNCTION bfd_perform_relocation SYNOPSIS bfd_reloc_status_type bfd_perform_relocation (bfd *abfd, arelent *reloc_entry, PTR data, asection *input_section, bfd *output_bfd, char **error_message); DESCRIPTION If @var{output_bfd} is supplied to this function, the generated image will be relocatable; the relocations are copied to the output file after they have been changed to reflect the new state of the world. There are two ways of reflecting the results of partial linkage in an output file: by modifying the output data in place, and by modifying the relocation record. Some native formats (e.g., basic a.out and basic coff) have no way of specifying an addend in the relocation type, so the addend has to go in the output data. This is no big deal since in these formats the output data slot will always be big enough for the addend. Complex reloc types with addends were invented to solve just this problem. The @var{error_message} argument is set to an error message if this return @code{bfd_reloc_dangerous}. */ bfd_reloc_status_type bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { bfd_vma relocation; bfd_reloc_status_type flag = bfd_reloc_ok; bfd_size_type addr = reloc_entry->address ; bfd_vma output_base = 0; const reloc_howto_type *howto = reloc_entry->howto; asection *reloc_target_output_section; asymbol *symbol; symbol = *(reloc_entry->sym_ptr_ptr); if ((symbol->section == &bfd_abs_section) && output_bfd != (bfd *)NULL) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* If we are not producing relocateable output, return an error if the symbol is not defined. An undefined weak symbol is considered to have a value of zero (SVR4 ABI, p. 4-27). */ if (symbol->section == &bfd_und_section && (symbol->flags & BSF_WEAK) == 0 && output_bfd == (bfd *) NULL) flag = bfd_reloc_undefined; /* If there is a function supplied to handle this relocation type, call it. It'll return `bfd_reloc_continue' if further processing can be done. */ if (howto->special_function) { bfd_reloc_status_type cont; cont = howto->special_function (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); if (cont != bfd_reloc_continue) return cont; } /* Is the address of the relocation really within the section? */ if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; /* Work out which section the relocation is targetted at and the initial relocation command value. */ /* Get symbol value. (Common symbols are special.) */ if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; reloc_target_output_section = symbol->section->output_section; /* Convert input-section-relative symbol value to absolute. */ if (output_bfd && howto->partial_inplace==false) output_base = 0; else output_base = reloc_target_output_section->vma; relocation += output_base + symbol->section->output_offset; /* Add in supplied addend. */ relocation += reloc_entry->addend; /* Here the variable relocation holds the final address of the symbol we are relocating against, plus any addend. */ if (howto->pc_relative == true) { /* This is a PC relative relocation. We want to set RELOCATION to the distance between the address of the symbol and the location. RELOCATION is already the address of the symbol. We start by subtracting the address of the section containing the location. If pcrel_offset is set, we must further subtract the position of the location within the section. Some targets arrange for the addend to be the negative of the position of the location within the section; for example, i386-aout does this. For i386-aout, pcrel_offset is false. Some other targets do not include the position of the location; for example, m88kbcs, or ELF. For those targets, pcrel_offset is true. If we are producing relocateable output, then we must ensure that this reloc will be correctly computed when the final relocation is done. If pcrel_offset is false we want to wind up with the negative of the location within the section, which means we must adjust the existing addend by the change in the location within the section. If pcrel_offset is true we do not want to adjust the existing addend at all. FIXME: This seems logical to me, but for the case of producing relocateable output it is not what the code actually does. I don't want to change it, because it seems far too likely that something will break. */ relocation -= input_section->output_section->vma + input_section->output_offset; if (howto->pcrel_offset == true) relocation -= reloc_entry->address; } if (output_bfd!= (bfd *)NULL) { if ( howto->partial_inplace == false) { /* This is a partial relocation, and we want to apply the relocation to the reloc entry rather than the raw data. Modify the reloc inplace to reflect what we now know. */ reloc_entry->addend = relocation; reloc_entry->address += input_section->output_offset; return flag; } else { /* This is a partial relocation, but inplace, so modify the reloc record a bit. If we've relocated with a symbol with a section, change into a ref to the section belonging to the symbol. */ reloc_entry->address += input_section->output_offset; /* WTF?? */ if (abfd->xvec->flavour == bfd_target_coff_flavour && strcmp (abfd->xvec->name, "aixcoff-rs6000") != 0) { #if 1 /* For m68k-coff, the addend was being subtracted twice during relocation with -r. Removing the line below this comment fixes that problem; see PR 2953. However, Ian wrote the following, regarding removing the line below, which explains why it is still enabled: --djm If you put a patch like that into BFD you need to check all the COFF linkers. I am fairly certain that patch will break coff-i386 (e.g., SCO); see coff_i386_reloc in coff-i386.c where I worked around the problem in a different way. There may very well be a reason that the code works as it does. Hmmm. The first obvious point is that bfd_perform_relocation should not have any tests that depend upon the flavour. It's seem like entirely the wrong place for such a thing. The second obvious point is that the current code ignores the reloc addend when producing relocateable output for COFF. That's peculiar. In fact, I really have no idea what the point of the line you want to remove is. A typical COFF reloc subtracts the old value of the symbol and adds in the new value to the location in the object file (if it's a pc relative reloc it adds the difference between the symbol value and the location). When relocating we need to preserve that property. BFD handles this by setting the addend to the negative of the old value of the symbol. Unfortunately it handles common symbols in a non-standard way (it doesn't subtract the old value) but that's a different story (we can't change it without losing backward compatibility with old object files) (coff-i386 does subtract the old value, to be compatible with existing coff-i386 targets, like SCO). So everything works fine when not producing relocateable output. When we are producing relocateable output, logically we should do exactly what we do when not producing relocateable output. Therefore, your patch is correct. In fact, it should probably always just set reloc_entry->addend to 0 for all cases, since it is, in fact, going to add the value into the object file. This won't hurt the COFF code, which doesn't use the addend; I'm not sure what it will do to other formats (the thing to check for would be whether any formats both use the addend and set partial_inplace). When I wanted to make coff-i386 produce relocateable output, I ran into the problem that you are running into: I wanted to remove that line. Rather than risk it, I made the coff-i386 relocs use a special function; it's coff_i386_reloc in coff-i386.c. The function specifically adds the addend field into the object file, knowing that bfd_perform_relocation is not going to. If you remove that line, then coff-i386.c will wind up adding the addend field in twice. It's trivial to fix; it just needs to be done. The problem with removing the line is just that it may break some working code. With BFD it's hard to be sure of anything. The right way to deal with this is simply to build and test at least all the supported COFF targets. It should be straightforward if time and disk space consuming. For each target: 1) build the linker 2) generate some executable, and link it using -r (I would probably use paranoia.o and link against newlib/libc.a, which for all the supported targets would be available in /usr/cygnus/progressive/H-host/target/lib/libc.a). 3) make the change to reloc.c 4) rebuild the linker 5) repeat step 2 6) if the resulting object files are the same, you have at least made it no worse 7) if they are different you have to figure out which version is right */ relocation -= reloc_entry->addend; #endif reloc_entry->addend = 0; } else { reloc_entry->addend = relocation; } } } else { reloc_entry->addend = 0; } /* FIXME: This overflow checking is incomplete, because the value might have overflowed before we get here. For a correct check we need to compute the value in a size larger than bitsize, but we can't reasonably do that for a reloc the same size as a host machine word. FIXME: We should also do overflow checking on the result after adding in the value contained in the object file. */ if (howto->complain_on_overflow != complain_overflow_dont) { bfd_vma check; /* Get the value that will be used for the relocation, but starting at bit position zero. */ if (howto->rightshift > howto->bitpos) check = relocation >> (howto->rightshift - howto->bitpos); else check = relocation << (howto->bitpos - howto->rightshift); switch (howto->complain_on_overflow) { case complain_overflow_signed: { /* Assumes two's complement. */ bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1; bfd_signed_vma reloc_signed_min = ~ reloc_signed_max; /* The above right shift is incorrect for a signed value. Fix it up by forcing on the upper bits. */ if (howto->rightshift > howto->bitpos && (bfd_signed_vma) relocation < 0) check |= ((bfd_vma) -1 &~ ((bfd_vma) -1 >> (howto->rightshift - howto->bitpos))); if ((bfd_signed_vma) check > reloc_signed_max || (bfd_signed_vma) check < reloc_signed_min) flag = bfd_reloc_overflow; } break; case complain_overflow_unsigned: { /* Assumes two's complement. This expression avoids overflow if howto->bitsize is the number of bits in bfd_vma. */ bfd_vma reloc_unsigned_max = (((1 << (howto->bitsize - 1)) - 1) << 1) | 1; if ((bfd_vma) check > reloc_unsigned_max) flag = bfd_reloc_overflow; } break; case complain_overflow_bitfield: { /* Assumes two's complement. This expression avoids overflow if howto->bitsize is the number of bits in bfd_vma. */ bfd_vma reloc_bits = (((1 << (howto->bitsize - 1)) - 1) << 1) | 1; if (((bfd_vma) check &~ reloc_bits) != 0 && ((bfd_vma) check &~ reloc_bits) != (-1 &~ reloc_bits)) { /* The above right shift is incorrect for a signed value. See if turning on the upper bits fixes the overflow. */ if (howto->rightshift > howto->bitpos && (bfd_signed_vma) relocation < 0) { check |= ((bfd_vma) -1 &~ ((bfd_vma) -1 >> (howto->rightshift - howto->bitpos))); if (((bfd_vma) check &~ reloc_bits) != (-1 &~ reloc_bits)) flag = bfd_reloc_overflow; } else flag = bfd_reloc_overflow; } } break; default: abort (); } } /* Either we are relocating all the way, or we don't want to apply the relocation to the reloc entry (probably because there isn't any room in the output format to describe addends to relocs) */ /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler (OSF version 1.3, compiler version 3.11). It miscompiles the following program: struct str { unsigned int i0; } s = { 0 }; int main () { unsigned long x; x = 0x100000000; x <<= (unsigned long) s.i0; if (x == 0) printf ("failed\n"); else printf ("succeeded (%lx)\n", x); } */ relocation >>= (bfd_vma) howto->rightshift; /* Shift everything up to where it's going to be used */ relocation <<= (bfd_vma) howto->bitpos; /* Wait for the day when all have the mask in them */ /* What we do: i instruction to be left alone o offset within instruction r relocation offset to apply S src mask D dst mask N ~dst mask A part 1 B part 2 R result Do this: i i i i i o o o o o from bfd_get and S S S S S to get the size offset we want + r r r r r r r r r r to get the final value to place and D D D D D to chop to right size ----------------------- A A A A A And this: ... i i i i i o o o o o from bfd_get and N N N N N get instruction ----------------------- ... B B B B B And then: B B B B B or A A A A A ----------------------- R R R R R R R R R R put into bfd_put */ #define DOIT(x) \ x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask)) switch (howto->size) { case 0: { char x = bfd_get_8(abfd, (char *)data + addr); DOIT(x); bfd_put_8(abfd,x, (unsigned char *) data + addr); } break; case 1: if (relocation) { short x = bfd_get_16(abfd, (bfd_byte *)data + addr); DOIT(x); bfd_put_16(abfd, x, (unsigned char *)data + addr); } break; case 2: if (relocation) { long x = bfd_get_32 (abfd, (bfd_byte *) data + addr); DOIT (x); bfd_put_32 (abfd, x, (bfd_byte *)data + addr); } break; case -2: { long x = bfd_get_32(abfd, (bfd_byte *) data + addr); relocation = -relocation; DOIT(x); bfd_put_32(abfd,x, (bfd_byte *)data + addr); } break; case 3: /* Do nothing */ break; case 4: #ifdef BFD64 if (relocation) { bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + addr); DOIT (x); bfd_put_64 (abfd, x, (bfd_byte *) data + addr); } #else abort (); #endif break; default: return bfd_reloc_other; } return flag; } /* This relocation routine is used by some of the backend linkers. They do not construct asymbol or arelent structures, so there is no reason for them to use bfd_perform_relocation. Also, bfd_perform_relocation is so hacked up it is easier to write a new function than to try to deal with it. This routine does a final relocation. It should not be used when generating relocateable output. FIXME: This routine ignores any special_function in the HOWTO, since the existing special_function values have been written for bfd_perform_relocation. HOWTO is the reloc howto information. INPUT_BFD is the BFD which the reloc applies to. INPUT_SECTION is the section which the reloc applies to. CONTENTS is the contents of the section. ADDRESS is the address of the reloc within INPUT_SECTION. VALUE is the value of the symbol the reloc refers to. ADDEND is the addend of the reloc. */ bfd_reloc_status_type _bfd_final_link_relocate (howto, input_bfd, input_section, contents, address, value, addend) const reloc_howto_type *howto; bfd *input_bfd; asection *input_section; bfd_byte *contents; bfd_vma address; bfd_vma value; bfd_vma addend; { bfd_vma relocation; /* Sanity check the address. */ if (address > input_section->_cooked_size) return bfd_reloc_outofrange; /* This function assumes that we are dealing with a basic relocation against a symbol. We want to compute the value of the symbol to relocate to. This is just VALUE, the value of the symbol, plus ADDEND, any addend associated with the reloc. */ relocation = value + addend; /* If the relocation is PC relative, we want to set RELOCATION to the distance between the symbol (currently in RELOCATION) and the location we are relocating. Some targets (e.g., i386-aout) arrange for the contents of the section to be the negative of the offset of the location within the section; for such targets pcrel_offset is false. Other targets (e.g., m88kbcs or ELF) simply leave the contents of the section as zero; for such targets pcrel_offset is true. If pcrel_offset is false we do not need to subtract out the offset of the location within the section (which is just ADDRESS). */ if (howto->pc_relative) { relocation -= (input_section->output_section->vma + input_section->output_offset); if (howto->pcrel_offset) relocation -= address; } return _bfd_relocate_contents (howto, input_bfd, relocation, contents + address); } /* Relocate a given location using a given value and howto. */ bfd_reloc_status_type _bfd_relocate_contents (howto, input_bfd, relocation, location) const reloc_howto_type *howto; bfd *input_bfd; bfd_vma relocation; bfd_byte *location; { int size; bfd_vma x; boolean overflow; /* If the size is negative, negate RELOCATION. This isn't very general. */ if (howto->size < 0) relocation = - relocation; /* Get the value we are going to relocate. */ size = bfd_get_reloc_size (howto); switch (size) { default: case 0: abort (); case 1: x = bfd_get_8 (input_bfd, location); break; case 2: x = bfd_get_16 (input_bfd, location); break; case 4: x = bfd_get_32 (input_bfd, location); break; case 8: #ifdef BFD64 x = bfd_get_64 (input_bfd, location); #else abort (); #endif break; } /* Check for overflow. FIXME: We may drop bits during the addition which we don't check for. We must either check at every single operation, which would be tedious, or we must do the computations in a type larger than bfd_vma, which would be inefficient. */ overflow = false; if (howto->complain_on_overflow != complain_overflow_dont) { bfd_vma check; bfd_signed_vma signed_check; bfd_vma add; bfd_signed_vma signed_add; if (howto->rightshift == 0) { check = relocation; signed_check = (bfd_signed_vma) relocation; } else { /* Drop unwanted bits from the value we are relocating to. */ check = relocation >> howto->rightshift; /* If this is a signed value, the rightshift just dropped leading 1 bits (assuming twos complement). */ if ((bfd_signed_vma) relocation >= 0) signed_check = check; else signed_check = (check | ((bfd_vma) -1 &~ ((bfd_vma) -1 >> howto->rightshift))); } /* Get the value from the object file. */ add = x & howto->src_mask; /* Get the value from the object file with an appropriate sign. The expression involving howto->src_mask isolates the upper bit of src_mask. If that bit is set in the value we are adding, it is negative, and we subtract out that number times two. If src_mask includes the highest possible bit, then we can not get the upper bit, but that does not matter since signed_add needs no adjustment to become negative in that case. */ signed_add = add; if ((add & (((~ howto->src_mask) >> 1) & howto->src_mask)) != 0) signed_add -= (((~ howto->src_mask) >> 1) & howto->src_mask) << 1; /* Add the value from the object file, shifted so that it is a straight number. */ if (howto->bitpos == 0) { check += add; signed_check += signed_add; } else { check += add >> howto->bitpos; /* For the signed case we use ADD, rather than SIGNED_ADD, to avoid warnings from SVR4 cc. This is OK since we explictly handle the sign bits. */ if (signed_add >= 0) signed_check += add >> howto->bitpos; else signed_check += ((add >> howto->bitpos) | ((bfd_vma) -1 &~ ((bfd_vma) -1 >> howto->bitpos))); } switch (howto->complain_on_overflow) { case complain_overflow_signed: { /* Assumes two's complement. */ bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1; bfd_signed_vma reloc_signed_min = ~ reloc_signed_max; if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) overflow = true; } break; case complain_overflow_unsigned: { /* Assumes two's complement. This expression avoids overflow if howto->bitsize is the number of bits in bfd_vma. */ bfd_vma reloc_unsigned_max = (((1 << (howto->bitsize - 1)) - 1) << 1) | 1; if (check > reloc_unsigned_max) overflow = true; } break; case complain_overflow_bitfield: { /* Assumes two's complement. This expression avoids overflow if howto->bitsize is the number of bits in bfd_vma. */ bfd_vma reloc_bits = (((1 << (howto->bitsize - 1)) - 1) << 1) | 1; if ((check &~ reloc_bits) != 0 && (((bfd_vma) signed_check &~ reloc_bits) != (-1 &~ reloc_bits))) overflow = true; } break; default: abort (); } } /* Put RELOCATION in the right bits. */ relocation >>= (bfd_vma) howto->rightshift; relocation <<= (bfd_vma) howto->bitpos; /* Add RELOCATION to the right bits of X. */ x = ((x &~ howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask)); /* Put the relocated value back in the object file. */ switch (size) { default: case 0: abort (); case 1: bfd_put_8 (input_bfd, x, location); break; case 2: bfd_put_16 (input_bfd, x, location); break; case 4: bfd_put_32 (input_bfd, x, location); break; case 8: #ifdef BFD64 bfd_put_64 (input_bfd, x, location); #else abort (); #endif break; } return overflow ? bfd_reloc_overflow : bfd_reloc_ok; } /* DOCDD INODE howto manager, , typedef arelent, Relocations SECTION The howto manager When an application wants to create a relocation, but doesn't know what the target machine might call it, it can find out by using this bit of code. */ /* TYPEDEF bfd_reloc_code_type DESCRIPTION The insides of a reloc code. The idea is that, eventually, there will be one enumerator for every type of relocation we ever do. Pass one of these values to <>, and it'll return a howto pointer. This does mean that the application must determine the correct enumerator value; you can't get a howto pointer from a random set of attributes. CODE_FRAGMENT . .typedef enum bfd_reloc_code_real .{ . {* Basic absolute relocations *} . BFD_RELOC_64, . BFD_RELOC_32, . BFD_RELOC_16, . BFD_RELOC_14, . BFD_RELOC_8, . . {* PC-relative relocations *} . BFD_RELOC_64_PCREL, . BFD_RELOC_32_PCREL, . BFD_RELOC_24_PCREL, {* used by i960 *} . BFD_RELOC_16_PCREL, . BFD_RELOC_8_PCREL, . . {* Linkage-table relative *} . BFD_RELOC_32_BASEREL, . BFD_RELOC_16_BASEREL, . BFD_RELOC_8_BASEREL, . . {* The type of reloc used to build a contructor table - at the moment . probably a 32 bit wide abs address, but the cpu can choose. *} . BFD_RELOC_CTOR, . . {* 8 bits wide, but used to form an address like 0xffnn *} . BFD_RELOC_8_FFnn, . . {* 32-bit pc-relative, shifted right 2 bits (i.e., 30-bit . word displacement, e.g. for SPARC) *} . BFD_RELOC_32_PCREL_S2, . {* signed 16-bit pc-relative, shifted right 2 bits (e.g. for MIPS) *} . BFD_RELOC_16_PCREL_S2, . {* this is used on the Alpha *} . BFD_RELOC_23_PCREL_S2, . . {* High 22 bits of 32-bit value, placed into lower 22 bits of . target word; simple reloc. *} . BFD_RELOC_HI22, . {* Low 10 bits. *} . BFD_RELOC_LO10, . . {* For systems that allocate a Global Pointer register, these are . displacements off that register. These relocation types are . handled specially, because the value the register will have is . decided relatively late. *} . BFD_RELOC_GPREL16, . BFD_RELOC_GPREL32, . . {* Reloc types used for i960/b.out. *} . BFD_RELOC_I960_CALLJ, . . {* now for the sparc/elf codes *} . BFD_RELOC_NONE, {* actually used *} . BFD_RELOC_SPARC_WDISP22, . BFD_RELOC_SPARC22, . BFD_RELOC_SPARC13, . BFD_RELOC_SPARC_GOT10, . BFD_RELOC_SPARC_GOT13, . BFD_RELOC_SPARC_GOT22, . BFD_RELOC_SPARC_PC10, . BFD_RELOC_SPARC_PC22, . BFD_RELOC_SPARC_WPLT30, . BFD_RELOC_SPARC_COPY, . BFD_RELOC_SPARC_GLOB_DAT, . BFD_RELOC_SPARC_JMP_SLOT, . BFD_RELOC_SPARC_RELATIVE, . BFD_RELOC_SPARC_UA32, . . {* these are a.out specific? *} . BFD_RELOC_SPARC_BASE13, . BFD_RELOC_SPARC_BASE22, . . {* start-sanitize-v9 *} . BFD_RELOC_SPARC_10, . BFD_RELOC_SPARC_11, .#define BFD_RELOC_SPARC_64 BFD_RELOC_64 . BFD_RELOC_SPARC_OLO10, . BFD_RELOC_SPARC_HH22, . BFD_RELOC_SPARC_HM10, . BFD_RELOC_SPARC_LM22, . BFD_RELOC_SPARC_PC_HH22, . BFD_RELOC_SPARC_PC_HM10, . BFD_RELOC_SPARC_PC_LM22, . BFD_RELOC_SPARC_WDISP16, . BFD_RELOC_SPARC_WDISP19, . BFD_RELOC_SPARC_GLOB_JMP, . BFD_RELOC_SPARC_LO7, . {* end-sanitize-v9 *} . . {* Alpha ECOFF relocations. Some of these treat the symbol or "addend" . in some special way. *} . {* For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when . writing; when reading, it will be the absolute section symbol. The . addend is the displacement in bytes of the "lda" instruction from . the "ldah" instruction (which is at the address of this reloc). *} . BFD_RELOC_ALPHA_GPDISP_HI16, . {* For GPDISP_LO16 ("ignore") relocations, the symbol is handled as . with GPDISP_HI16 relocs. The addend is ignored when writing the . relocations out, and is filled in with the file's GP value on . reading, for convenience. *} . BFD_RELOC_ALPHA_GPDISP_LO16, . . {* The Alpha LITERAL/LITUSE relocs are produced by a symbol reference; . the assembler turns it into a LDQ instruction to load the address of . the symbol, and then fills in a register in the real instruction. . . The LITERAL reloc, at the LDQ instruction, refers to the .lita . section symbol. The addend is ignored when writing, but is filled . in with the file's GP value on reading, for convenience, as with the . GPDISP_LO16 reloc. . . The LITUSE reloc, on the instruction using the loaded address, gives . information to the linker that it might be able to use to optimize . away some literal section references. The symbol is ignored (read . as the absolute section symbol), and the "addend" indicates the type . of instruction using the register: . 1 - "memory" fmt insn . 2 - byte-manipulation (byte offset reg) . 3 - jsr (target of branch) . . The GNU linker currently doesn't do any of this optimizing. *} . BFD_RELOC_ALPHA_LITERAL, . BFD_RELOC_ALPHA_LITUSE, . . {* The HINT relocation indicates a value that should be filled into the . "hint" field of a jmp/jsr/ret instruction, for possible branch- . prediction logic which may be provided on some processors. *} . BFD_RELOC_ALPHA_HINT, . . {* Bits 27..2 of the relocation address shifted right 2 bits; . simple reloc otherwise. *} . BFD_RELOC_MIPS_JMP, . . {* High 16 bits of 32-bit value; simple reloc. *} . BFD_RELOC_HI16, . {* High 16 bits of 32-bit value but the low 16 bits will be sign . extended and added to form the final result. If the low 16 . bits form a negative number, we need to add one to the high value . to compensate for the borrow when the low bits are added. *} . BFD_RELOC_HI16_S, . {* Low 16 bits. *} . BFD_RELOC_LO16, . . {* relocation relative to the global pointer. *} .#define BFD_RELOC_MIPS_GPREL BFD_RELOC_GPREL16 . . {* Relocation against a MIPS literal section. *} . BFD_RELOC_MIPS_LITERAL, . . {* MIPS ELF relocations. *} . BFD_RELOC_MIPS_GOT16, . BFD_RELOC_MIPS_CALL16, .#define BFD_RELOC_MIPS_GPREL32 BFD_RELOC_GPREL32 . . {* These are, so far, specific to HPPA processors. I'm not sure that some . don't duplicate other reloc types, such as BFD_RELOC_32 and _32_PCREL. . Also, many more were in the list I got that don't fit in well in the . model BFD uses, so I've omitted them for now. If we do make this reloc . type get used for code that really does implement the funky reloc types, . they'll have to be added to this list. *} . BFD_RELOC_HPPA_32, . BFD_RELOC_HPPA_11, . BFD_RELOC_HPPA_14, . BFD_RELOC_HPPA_17, . . BFD_RELOC_HPPA_L21, . BFD_RELOC_HPPA_R11, . BFD_RELOC_HPPA_R14, . BFD_RELOC_HPPA_R17, . BFD_RELOC_HPPA_LS21, . BFD_RELOC_HPPA_RS11, . BFD_RELOC_HPPA_RS14, . BFD_RELOC_HPPA_RS17, . BFD_RELOC_HPPA_LD21, . BFD_RELOC_HPPA_RD11, . BFD_RELOC_HPPA_RD14, . BFD_RELOC_HPPA_RD17, . BFD_RELOC_HPPA_LR21, . BFD_RELOC_HPPA_RR14, . BFD_RELOC_HPPA_RR17, . . BFD_RELOC_HPPA_GOTOFF_11, . BFD_RELOC_HPPA_GOTOFF_14, . BFD_RELOC_HPPA_GOTOFF_L21, . BFD_RELOC_HPPA_GOTOFF_R11, . BFD_RELOC_HPPA_GOTOFF_R14, . BFD_RELOC_HPPA_GOTOFF_LS21, . BFD_RELOC_HPPA_GOTOFF_RS11, . BFD_RELOC_HPPA_GOTOFF_RS14, . BFD_RELOC_HPPA_GOTOFF_LD21, . BFD_RELOC_HPPA_GOTOFF_RD11, . BFD_RELOC_HPPA_GOTOFF_RD14, . BFD_RELOC_HPPA_GOTOFF_LR21, . BFD_RELOC_HPPA_GOTOFF_RR14, . . BFD_RELOC_HPPA_DLT_32, . BFD_RELOC_HPPA_DLT_11, . BFD_RELOC_HPPA_DLT_14, . BFD_RELOC_HPPA_DLT_L21, . BFD_RELOC_HPPA_DLT_R11, . BFD_RELOC_HPPA_DLT_R14, . . BFD_RELOC_HPPA_ABS_CALL_11, . BFD_RELOC_HPPA_ABS_CALL_14, . BFD_RELOC_HPPA_ABS_CALL_17, . BFD_RELOC_HPPA_ABS_CALL_L21, . BFD_RELOC_HPPA_ABS_CALL_R11, . BFD_RELOC_HPPA_ABS_CALL_R14, . BFD_RELOC_HPPA_ABS_CALL_R17, . BFD_RELOC_HPPA_ABS_CALL_LS21, . BFD_RELOC_HPPA_ABS_CALL_RS11, . BFD_RELOC_HPPA_ABS_CALL_RS14, . BFD_RELOC_HPPA_ABS_CALL_RS17, . BFD_RELOC_HPPA_ABS_CALL_LD21, . BFD_RELOC_HPPA_ABS_CALL_RD11, . BFD_RELOC_HPPA_ABS_CALL_RD14, . BFD_RELOC_HPPA_ABS_CALL_RD17, . BFD_RELOC_HPPA_ABS_CALL_LR21, . BFD_RELOC_HPPA_ABS_CALL_RR14, . BFD_RELOC_HPPA_ABS_CALL_RR17, . . BFD_RELOC_HPPA_PCREL_CALL_11, . BFD_RELOC_HPPA_PCREL_CALL_12, . BFD_RELOC_HPPA_PCREL_CALL_14, . BFD_RELOC_HPPA_PCREL_CALL_17, . BFD_RELOC_HPPA_PCREL_CALL_L21, . BFD_RELOC_HPPA_PCREL_CALL_R11, . BFD_RELOC_HPPA_PCREL_CALL_R14, . BFD_RELOC_HPPA_PCREL_CALL_R17, . BFD_RELOC_HPPA_PCREL_CALL_LS21, . BFD_RELOC_HPPA_PCREL_CALL_RS11, . BFD_RELOC_HPPA_PCREL_CALL_RS14, . BFD_RELOC_HPPA_PCREL_CALL_RS17, . BFD_RELOC_HPPA_PCREL_CALL_LD21, . BFD_RELOC_HPPA_PCREL_CALL_RD11, . BFD_RELOC_HPPA_PCREL_CALL_RD14, . BFD_RELOC_HPPA_PCREL_CALL_RD17, . BFD_RELOC_HPPA_PCREL_CALL_LR21, . BFD_RELOC_HPPA_PCREL_CALL_RR14, . BFD_RELOC_HPPA_PCREL_CALL_RR17, . . BFD_RELOC_HPPA_PLABEL_32, . BFD_RELOC_HPPA_PLABEL_11, . BFD_RELOC_HPPA_PLABEL_14, . BFD_RELOC_HPPA_PLABEL_L21, . BFD_RELOC_HPPA_PLABEL_R11, . BFD_RELOC_HPPA_PLABEL_R14, . . BFD_RELOC_HPPA_UNWIND_ENTRY, . BFD_RELOC_HPPA_UNWIND_ENTRIES, . . {* i386/elf relocations *} . BFD_RELOC_386_GOT32, . BFD_RELOC_386_PLT32, . BFD_RELOC_386_COPY, . BFD_RELOC_386_GLOB_DAT, . BFD_RELOC_386_JUMP_SLOT, . BFD_RELOC_386_RELATIVE, . BFD_RELOC_386_GOTOFF, . BFD_RELOC_386_GOTPC, . . {* PowerPC/POWER (RS/6000) relocs. *} . {* 26 bit relative branch. Low two bits must be zero. High 24 . bits installed in bits 6 through 29 of instruction. *} . BFD_RELOC_PPC_B26, . {* 26 bit absolute branch, like BFD_RELOC_PPC_B26 but absolute. *} . BFD_RELOC_PPC_BA26, . {* 16 bit TOC relative reference. *} . BFD_RELOC_PPC_TOC16, . . {* this must be the highest numeric value *} . BFD_RELOC_UNUSED . } bfd_reloc_code_real_type; */ /* FUNCTION bfd_reloc_type_lookup SYNOPSIS const struct reloc_howto_struct * bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code); DESCRIPTION Return a pointer to a howto structure which, when invoked, will perform the relocation @var{code} on data from the architecture noted. */ const struct reloc_howto_struct * DEFUN(bfd_reloc_type_lookup,(abfd, code), bfd *abfd AND bfd_reloc_code_real_type code) { return BFD_SEND (abfd, reloc_type_lookup, (abfd, code)); } static reloc_howto_type bfd_howto_32 = HOWTO(0, 00,2,32,false,0,complain_overflow_bitfield,0,"VRT32", false,0xffffffff,0xffffffff,true); /* INTERNAL_FUNCTION bfd_default_reloc_type_lookup SYNOPSIS const struct reloc_howto_struct *bfd_default_reloc_type_lookup (bfd *abfd AND bfd_reloc_code_real_type code); DESCRIPTION Provides a default relocation lookup routine for any architecture. */ const struct reloc_howto_struct * DEFUN(bfd_default_reloc_type_lookup, (abfd, code), bfd *abfd AND bfd_reloc_code_real_type code) { switch (code) { case BFD_RELOC_CTOR: /* The type of reloc used in a ctor, which will be as wide as the address - so either a 64, 32, or 16 bitter. */ switch (bfd_get_arch_info (abfd)->bits_per_address) { case 64: BFD_FAIL(); case 32: return &bfd_howto_32; case 16: BFD_FAIL(); default: BFD_FAIL(); } default: BFD_FAIL(); } return (const struct reloc_howto_struct *)NULL; } /* INTERNAL_FUNCTION bfd_generic_relax_section SYNOPSIS boolean bfd_generic_relax_section (bfd *abfd, asection *section, struct bfd_link_info *, asymbol **symbols); DESCRIPTION Provides default handling for relaxing for back ends which don't do relaxing -- i.e., does nothing. */ /*ARGSUSED*/ boolean bfd_generic_relax_section (abfd, section, link_info, symbols) bfd *abfd; asection *section; struct bfd_link_info *link_info; asymbol **symbols; { return false; } /* INTERNAL_FUNCTION bfd_generic_get_relocated_section_contents SYNOPSIS bfd_byte * bfd_generic_get_relocated_section_contents (bfd *abfd, struct bfd_link_info *link_info, struct bfd_link_order *link_order, bfd_byte *data, boolean relocateable, asymbol **symbols); DESCRIPTION Provides default handling of relocation effort for back ends which can't be bothered to do it efficiently. */ bfd_byte * bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data, relocateable, symbols) bfd *abfd; struct bfd_link_info *link_info; struct bfd_link_order *link_order; bfd_byte *data; boolean relocateable; asymbol **symbols; { /* Get enough memory to hold the stuff */ bfd *input_bfd = link_order->u.indirect.section->owner; asection *input_section = link_order->u.indirect.section; size_t reloc_size = bfd_get_reloc_upper_bound(input_bfd, input_section); arelent **reloc_vector = NULL; reloc_vector = (arelent **) malloc (reloc_size); if (reloc_vector == NULL) { bfd_set_error (bfd_error_no_memory); goto error_return; } /* read in the section */ if (!bfd_get_section_contents(input_bfd, input_section, (PTR) data, 0, input_section->_raw_size)) goto error_return; /* We're not relaxing the section, so just copy the size info */ input_section->_cooked_size = input_section->_raw_size; input_section->reloc_done = true; if (!bfd_canonicalize_reloc (input_bfd, input_section, reloc_vector, symbols)) goto error_return; { arelent **parent; for (parent = reloc_vector; * parent != (arelent *)NULL; parent++) { char *error_message = (char *) NULL; bfd_reloc_status_type r= bfd_perform_relocation(input_bfd, *parent, (PTR) data, input_section, relocateable ? abfd : (bfd *) NULL, &error_message); if (relocateable) { asection *os = input_section->output_section; /* A partial link, so keep the relocs */ os->orelocation[os->reloc_count] = *parent; os->reloc_count++; } if (r != bfd_reloc_ok) { switch (r) { case bfd_reloc_undefined: if (! ((*link_info->callbacks->undefined_symbol) (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), input_bfd, input_section, (*parent)->address))) goto error_return; break; case bfd_reloc_dangerous: BFD_ASSERT (error_message != (char *) NULL); if (! ((*link_info->callbacks->reloc_dangerous) (link_info, error_message, input_bfd, input_section, (*parent)->address))) goto error_return; break; case bfd_reloc_overflow: if (! ((*link_info->callbacks->reloc_overflow) (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), (*parent)->howto->name, (*parent)->addend, input_bfd, input_section, (*parent)->address))) goto error_return; break; case bfd_reloc_outofrange: default: abort(); break; } } } } if (reloc_vector != NULL) free (reloc_vector); return data; error_return: if (reloc_vector != NULL) free (reloc_vector); return NULL; }