/* Assorted BFD support routines, only used internally. Copyright 1990, 1991, 1992, 1993 Free Software Foundation, Inc. Written by Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "bfd.h" #include "sysdep.h" #include "libbfd.h" /* SECTION Internal functions DESCRIPTION These routines are used within BFD. They are not intended for export, but are documented here for completeness. */ /*ARGSUSED*/ boolean DEFUN(_bfd_dummy_new_section_hook,(ignore, ignore_newsect), bfd *ignore AND asection *ignore_newsect) { return true; } /*ARGSUSED*/ boolean DEFUN(bfd_false ,(ignore), bfd *ignore) { return false; } /*ARGSUSED*/ boolean DEFUN(bfd_true,(ignore), bfd *ignore) { return true; } /*ARGSUSED*/ PTR DEFUN(bfd_nullvoidptr,(ignore), bfd *ignore) { return (PTR)NULL; } /*ARGSUSED*/ int DEFUN(bfd_0,(ignore), bfd *ignore) { return 0; } /*ARGSUSED*/ unsigned int DEFUN(bfd_0u,(ignore), bfd *ignore) { return 0; } /*ARGSUSED*/ void DEFUN(bfd_void,(ignore), bfd *ignore) { } /*ARGSUSED*/ boolean DEFUN(_bfd_dummy_core_file_matches_executable_p,(ignore_core_bfd, ignore_exec_bfd), bfd *ignore_core_bfd AND bfd *ignore_exec_bfd) { bfd_error = invalid_operation; return false; } /* of course you can't initialize a function to be the same as another, grr */ /*ARGSUSED*/ char * DEFUN(_bfd_dummy_core_file_failing_command,(ignore_abfd), bfd *ignore_abfd) { return (char *)NULL; } /*ARGSUSED*/ int DEFUN(_bfd_dummy_core_file_failing_signal,(ignore_abfd), bfd *ignore_abfd) { return 0; } /*ARGSUSED*/ bfd_target * DEFUN(_bfd_dummy_target,(ignore_abfd), bfd *ignore_abfd) { return 0; } /** zalloc -- allocate and clear storage */ #ifndef zalloc char * DEFUN(zalloc,(size), bfd_size_type size) { char *ptr = (char *) malloc ((size_t)size); if ((ptr != NULL) && (size != 0)) memset(ptr,0, (size_t) size); return ptr; } #endif /* INTERNAL_FUNCTION bfd_xmalloc SYNOPSIS PTR bfd_xmalloc (bfd_size_type size); DESCRIPTION Like <<malloc>>, but exit if no more memory. */ /** There is major inconsistency in how running out of memory is handled. Some routines return a NULL, and set bfd_error to no_memory. However, obstack routines can't do this ... */ DEFUN(PTR bfd_xmalloc,(size), bfd_size_type size) { static CONST char no_memory_message[] = "Virtual memory exhausted!\n"; PTR ptr; if (size == 0) size = 1; ptr = (PTR)malloc((size_t) size); if (!ptr) { write (2, no_memory_message, sizeof(no_memory_message)-1); exit (1); } return ptr; } /* INTERNAL_FUNCTION bfd_xmalloc_by_size_t SYNOPSIS PTR bfd_xmalloc_by_size_t (size_t size); DESCRIPTION Like <<malloc>>, but exit if no more memory. Uses <<size_t>>, so it's suitable for use as <<obstack_chunk_alloc>>. */ PTR DEFUN(bfd_xmalloc_by_size_t, (size), size_t size) { return bfd_xmalloc ((bfd_size_type) size); } /* Some IO code */ /* Note that archive entries don't have streams; they share their parent's. This allows someone to play with the iostream behind BFD's back. Also, note that the origin pointer points to the beginning of a file's contents (0 for non-archive elements). For archive entries this is the first octet in the file, NOT the beginning of the archive header. */ static int DEFUN(real_read,(where, a,b, file), PTR where AND int a AND int b AND FILE *file) { return fread(where, a,b,file); } bfd_size_type DEFUN(bfd_read,(ptr, size, nitems, abfd), PTR ptr AND bfd_size_type size AND bfd_size_type nitems AND bfd *abfd) { int nread; nread = real_read (ptr, 1, (int)(size*nitems), bfd_cache_lookup(abfd)); #ifdef FILE_OFFSET_IS_CHAR_INDEX if (nread > 0) abfd->where += nread; #endif return nread; } bfd_size_type bfd_write (ptr, size, nitems, abfd) CONST PTR ptr; bfd_size_type size; bfd_size_type nitems; bfd *abfd; { int nwrote = fwrite (ptr, 1, (int) (size * nitems), bfd_cache_lookup (abfd)); #ifdef FILE_OFFSET_IS_CHAR_INDEX if (nwrote > 0) abfd->where += nwrote; #endif if (nwrote != size * nitems) { #ifdef ENOSPC if (nwrote >= 0) errno = ENOSPC; #endif bfd_error = system_call_error; } return nwrote; } /* INTERNAL_FUNCTION bfd_write_bigendian_4byte_int SYNOPSIS void bfd_write_bigendian_4byte_int(bfd *abfd, int i); DESCRIPTION Write a 4 byte integer @var{i} to the output BFD @var{abfd}, in big endian order regardless of what else is going on. This is useful in archives. */ void DEFUN(bfd_write_bigendian_4byte_int,(abfd, i), bfd *abfd AND int i) { bfd_byte buffer[4]; bfd_putb32(i, buffer); bfd_write((PTR)buffer, 4, 1, abfd); } long DEFUN(bfd_tell,(abfd), bfd *abfd) { file_ptr ptr; ptr = ftell (bfd_cache_lookup(abfd)); if (abfd->my_archive) ptr -= abfd->origin; abfd->where = ptr; return ptr; } int DEFUN(bfd_flush,(abfd), bfd *abfd) { return fflush (bfd_cache_lookup(abfd)); } int DEFUN(bfd_stat,(abfd, statbuf), bfd *abfd AND struct stat *statbuf) { return fstat (fileno(bfd_cache_lookup(abfd)), statbuf); } int DEFUN(bfd_seek,(abfd, position, direction), bfd * CONST abfd AND CONST file_ptr position AND CONST int direction) { int result; FILE *f; file_ptr file_position; /* For the time being, a BFD may not seek to it's end. The problem is that we don't easily have a way to recognize the end of an element in an archive. */ BFD_ASSERT (direction == SEEK_SET || direction == SEEK_CUR); if (direction == SEEK_CUR && position == 0) return 0; #ifdef FILE_OFFSET_IS_CHAR_INDEX if (abfd->format != bfd_archive && abfd->my_archive == 0) { #if 0 /* Explanation for this code: I'm only about 95+% sure that the above conditions are sufficient and that all i/o calls are properly adjusting the `where' field. So this is sort of an `assert' that the `where' field is correct. If we can go a while without tripping the abort, we can probably safely disable this code, so that the real optimizations happen. */ file_ptr where_am_i_now; where_am_i_now = ftell (bfd_cache_lookup (abfd)); if (abfd->my_archive) where_am_i_now -= abfd->origin; if (where_am_i_now != abfd->where) abort (); #endif if (direction == SEEK_SET && position == abfd->where) return 0; } else { /* We need something smarter to optimize access to archives. Currently, anything inside an archive is read via the file handle for the archive. Which means that a bfd_seek on one component affects the `current position' in the archive, as well as in any other component. It might be sufficient to put a spike through the cache abstraction, and look to the archive for the file position, but I think we should try for something cleaner. In the meantime, no optimization for archives. */ } #endif f = bfd_cache_lookup (abfd); file_position = position; if (direction == SEEK_SET && abfd->my_archive != NULL) file_position += abfd->origin; result = fseek (f, file_position, direction); if (result != 0) { /* Force redetermination of `where' field. */ bfd_tell (abfd); bfd_error = system_call_error; } else { #ifdef FILE_OFFSET_IS_CHAR_INDEX /* Adjust `where' field. */ if (direction == SEEK_SET) abfd->where = position; else abfd->where += position; #endif } return result; } /** Make a string table */ /*>bfd.h< Add string to table pointed to by table, at location starting with free_ptr. resizes the table if necessary (if it's NULL, creates it, ignoring table_length). Updates free_ptr, table, table_length */ boolean DEFUN(bfd_add_to_string_table,(table, new_string, table_length, free_ptr), char **table AND char *new_string AND unsigned int *table_length AND char **free_ptr) { size_t string_length = strlen (new_string) + 1; /* include null here */ char *base = *table; size_t space_length = *table_length; unsigned int offset = (base ? *free_ptr - base : 0); if (base == NULL) { /* Avoid a useless regrow if we can (but of course we still take it next time */ space_length = (string_length < DEFAULT_STRING_SPACE_SIZE ? DEFAULT_STRING_SPACE_SIZE : string_length+1); base = zalloc ((bfd_size_type) space_length); if (base == NULL) { bfd_error = no_memory; return false; } } if ((size_t)(offset + string_length) >= space_length) { /* Make sure we will have enough space */ while ((size_t)(offset + string_length) >= space_length) space_length += space_length/2; /* grow by 50% */ base = (char *) realloc (base, space_length); if (base == NULL) { bfd_error = no_memory; return false; } } memcpy (base + offset, new_string, string_length); *table = base; *table_length = space_length; *free_ptr = base + offset + string_length; return true; } /** The do-it-yourself (byte) sex-change kit */ /* The middle letter e.g. get<b>short indicates Big or Little endian target machine. It doesn't matter what the byte order of the host machine is; these routines work for either. */ /* FIXME: Should these take a count argument? Answer (gnu@cygnus.com): No, but perhaps they should be inline functions in swap.h #ifdef __GNUC__. Gprof them later and find out. */ /* FUNCTION bfd_put_size FUNCTION bfd_get_size DESCRIPTION These macros as used for reading and writing raw data in sections; each access (except for bytes) is vectored through the target format of the BFD and mangled accordingly. The mangling performs any necessary endian translations and removes alignment restrictions. Note that types accepted and returned by these macros are identical so they can be swapped around in macros---for example, @file{libaout.h} defines <<GET_WORD>> to either <<bfd_get_32>> or <<bfd_get_64>>. In the put routines, @var{val} must be a <<bfd_vma>>. If we are on a system without prototypes, the caller is responsible for making sure that is true, with a cast if necessary. We don't cast them in the macro definitions because that would prevent <<lint>> or <<gcc -Wall>> from detecting sins such as passing a pointer. To detect calling these with less than a <<bfd_vma>>, use <<gcc -Wconversion>> on a host with 64 bit <<bfd_vma>>'s. . .{* Byte swapping macros for user section data. *} . .#define bfd_put_8(abfd, val, ptr) \ . (*((unsigned char *)(ptr)) = (unsigned char)(val)) .#define bfd_put_signed_8 \ . bfd_put_8 .#define bfd_get_8(abfd, ptr) \ . (*(unsigned char *)(ptr)) .#define bfd_get_signed_8(abfd, ptr) \ . ((*(unsigned char *)(ptr) ^ 0x80) - 0x80) . .#define bfd_put_16(abfd, val, ptr) \ . BFD_SEND(abfd, bfd_putx16, ((val),(ptr))) .#define bfd_put_signed_16 \ . bfd_put_16 .#define bfd_get_16(abfd, ptr) \ . BFD_SEND(abfd, bfd_getx16, (ptr)) .#define bfd_get_signed_16(abfd, ptr) \ . BFD_SEND (abfd, bfd_getx_signed_16, (ptr)) . .#define bfd_put_32(abfd, val, ptr) \ . BFD_SEND(abfd, bfd_putx32, ((val),(ptr))) .#define bfd_put_signed_32 \ . bfd_put_32 .#define bfd_get_32(abfd, ptr) \ . BFD_SEND(abfd, bfd_getx32, (ptr)) .#define bfd_get_signed_32(abfd, ptr) \ . BFD_SEND(abfd, bfd_getx_signed_32, (ptr)) . .#define bfd_put_64(abfd, val, ptr) \ . BFD_SEND(abfd, bfd_putx64, ((val), (ptr))) .#define bfd_put_signed_64 \ . bfd_put_64 .#define bfd_get_64(abfd, ptr) \ . BFD_SEND(abfd, bfd_getx64, (ptr)) .#define bfd_get_signed_64(abfd, ptr) \ . BFD_SEND(abfd, bfd_getx_signed_64, (ptr)) . */ /* FUNCTION bfd_h_put_size bfd_h_get_size DESCRIPTION These macros have the same function as their <<bfd_get_x>> bretheren, except that they are used for removing information for the header records of object files. Believe it or not, some object files keep their header records in big endian order and their data in little endian order. . .{* Byte swapping macros for file header data. *} . .#define bfd_h_put_8(abfd, val, ptr) \ . bfd_put_8 (abfd, val, ptr) .#define bfd_h_put_signed_8(abfd, val, ptr) \ . bfd_put_8 (abfd, val, ptr) .#define bfd_h_get_8(abfd, ptr) \ . bfd_get_8 (abfd, ptr) .#define bfd_h_get_signed_8(abfd, ptr) \ . bfd_get_signed_8 (abfd, ptr) . .#define bfd_h_put_16(abfd, val, ptr) \ . BFD_SEND(abfd, bfd_h_putx16,(val,ptr)) .#define bfd_h_put_signed_16 \ . bfd_h_put_16 .#define bfd_h_get_16(abfd, ptr) \ . BFD_SEND(abfd, bfd_h_getx16,(ptr)) .#define bfd_h_get_signed_16(abfd, ptr) \ . BFD_SEND(abfd, bfd_h_getx_signed_16, (ptr)) . .#define bfd_h_put_32(abfd, val, ptr) \ . BFD_SEND(abfd, bfd_h_putx32,(val,ptr)) .#define bfd_h_put_signed_32 \ . bfd_h_put_32 .#define bfd_h_get_32(abfd, ptr) \ . BFD_SEND(abfd, bfd_h_getx32,(ptr)) .#define bfd_h_get_signed_32(abfd, ptr) \ . BFD_SEND(abfd, bfd_h_getx_signed_32, (ptr)) . .#define bfd_h_put_64(abfd, val, ptr) \ . BFD_SEND(abfd, bfd_h_putx64,(val, ptr)) .#define bfd_h_put_signed_64 \ . bfd_h_put_64 .#define bfd_h_get_64(abfd, ptr) \ . BFD_SEND(abfd, bfd_h_getx64,(ptr)) .#define bfd_h_get_signed_64(abfd, ptr) \ . BFD_SEND(abfd, bfd_h_getx_signed_64, (ptr)) . */ /* Sign extension to bfd_signed_vma. */ #define COERCE16(x) (((bfd_signed_vma) (x) ^ 0x8000) - 0x8000) #define COERCE32(x) (((bfd_signed_vma) (x) ^ 0x80000000) - 0x80000000) #define EIGHT_GAZILLION (((HOST_64_BIT)0x80000000) << 32) #define COERCE64(x) \ (((bfd_signed_vma) (x) ^ EIGHT_GAZILLION) - EIGHT_GAZILLION) bfd_vma DEFUN(bfd_getb16,(addr), register bfd_byte *addr) { return (addr[0] << 8) | addr[1]; } bfd_vma DEFUN(bfd_getl16,(addr), register bfd_byte *addr) { return (addr[1] << 8) | addr[0]; } bfd_signed_vma DEFUN(bfd_getb_signed_16,(addr), register bfd_byte *addr) { return COERCE16((addr[0] << 8) | addr[1]); } bfd_signed_vma DEFUN(bfd_getl_signed_16,(addr), register bfd_byte *addr) { return COERCE16((addr[1] << 8) | addr[0]); } void DEFUN(bfd_putb16,(data, addr), bfd_vma data AND register bfd_byte *addr) { addr[0] = (bfd_byte)(data >> 8); addr[1] = (bfd_byte )data; } void DEFUN(bfd_putl16,(data, addr), bfd_vma data AND register bfd_byte *addr) { addr[0] = (bfd_byte )data; addr[1] = (bfd_byte)(data >> 8); } bfd_vma bfd_getb32 (addr) register bfd_byte *addr; { return (((((bfd_vma)addr[0] << 8) | addr[1]) << 8) | addr[2]) << 8 | addr[3]; } bfd_vma bfd_getl32 (addr) register bfd_byte *addr; { return (((((bfd_vma)addr[3] << 8) | addr[2]) << 8) | addr[1]) << 8 | addr[0]; } bfd_signed_vma bfd_getb_signed_32 (addr) register bfd_byte *addr; { return COERCE32((((((bfd_vma)addr[0] << 8) | addr[1]) << 8) | addr[2]) << 8 | addr[3]); } bfd_signed_vma bfd_getl_signed_32 (addr) register bfd_byte *addr; { return COERCE32((((((bfd_vma)addr[3] << 8) | addr[2]) << 8) | addr[1]) << 8 | addr[0]); } bfd_vma DEFUN(bfd_getb64,(addr), register bfd_byte *addr) { #ifdef BFD64 bfd_vma low, high; high= ((((((((addr[0]) << 8) | addr[1]) << 8) | addr[2]) << 8) | addr[3]) ); low = (((((((((bfd_vma)addr[4]) << 8) | addr[5]) << 8) | addr[6]) << 8) | addr[7])); return high << 32 | low; #else BFD_FAIL(); return 0; #endif } bfd_vma DEFUN(bfd_getl64,(addr), register bfd_byte *addr) { #ifdef BFD64 bfd_vma low, high; high= (((((((addr[7] << 8) | addr[6]) << 8) | addr[5]) << 8) | addr[4])); low = ((((((((bfd_vma)addr[3] << 8) | addr[2]) << 8) | addr[1]) << 8) | addr[0]) ); return high << 32 | low; #else BFD_FAIL(); return 0; #endif } bfd_signed_vma DEFUN(bfd_getb_signed_64,(addr), register bfd_byte *addr) { #ifdef BFD64 bfd_vma low, high; high= ((((((((addr[0]) << 8) | addr[1]) << 8) | addr[2]) << 8) | addr[3]) ); low = (((((((((bfd_vma)addr[4]) << 8) | addr[5]) << 8) | addr[6]) << 8) | addr[7])); return COERCE64(high << 32 | low); #else BFD_FAIL(); return 0; #endif } bfd_signed_vma DEFUN(bfd_getl_signed_64,(addr), register bfd_byte *addr) { #ifdef BFD64 bfd_vma low, high; high= (((((((addr[7] << 8) | addr[6]) << 8) | addr[5]) << 8) | addr[4])); low = ((((((((bfd_vma)addr[3] << 8) | addr[2]) << 8) | addr[1]) << 8) | addr[0]) ); return COERCE64(high << 32 | low); #else BFD_FAIL(); return 0; #endif } void DEFUN(bfd_putb32,(data, addr), bfd_vma data AND register bfd_byte *addr) { addr[0] = (bfd_byte)(data >> 24); addr[1] = (bfd_byte)(data >> 16); addr[2] = (bfd_byte)(data >> 8); addr[3] = (bfd_byte)data; } void DEFUN(bfd_putl32,(data, addr), bfd_vma data AND register bfd_byte *addr) { addr[0] = (bfd_byte)data; addr[1] = (bfd_byte)(data >> 8); addr[2] = (bfd_byte)(data >> 16); addr[3] = (bfd_byte)(data >> 24); } void DEFUN(bfd_putb64,(data, addr), bfd_vma data AND register bfd_byte *addr) { #ifdef BFD64 addr[0] = (bfd_byte)(data >> (7*8)); addr[1] = (bfd_byte)(data >> (6*8)); addr[2] = (bfd_byte)(data >> (5*8)); addr[3] = (bfd_byte)(data >> (4*8)); addr[4] = (bfd_byte)(data >> (3*8)); addr[5] = (bfd_byte)(data >> (2*8)); addr[6] = (bfd_byte)(data >> (1*8)); addr[7] = (bfd_byte)(data >> (0*8)); #else BFD_FAIL(); #endif } void DEFUN(bfd_putl64,(data, addr), bfd_vma data AND register bfd_byte *addr) { #ifdef BFD64 addr[7] = (bfd_byte)(data >> (7*8)); addr[6] = (bfd_byte)(data >> (6*8)); addr[5] = (bfd_byte)(data >> (5*8)); addr[4] = (bfd_byte)(data >> (4*8)); addr[3] = (bfd_byte)(data >> (3*8)); addr[2] = (bfd_byte)(data >> (2*8)); addr[1] = (bfd_byte)(data >> (1*8)); addr[0] = (bfd_byte)(data >> (0*8)); #else BFD_FAIL(); #endif } /* Default implementation */ boolean DEFUN(bfd_generic_get_section_contents, (abfd, section, location, offset, count), bfd *abfd AND sec_ptr section AND PTR location AND file_ptr offset AND bfd_size_type count) { if (count == 0) return true; if ((bfd_size_type)(offset+count) > section->_raw_size || bfd_seek(abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1 || bfd_read(location, (bfd_size_type)1, count, abfd) != count) return (false); /* on error */ return (true); } /* This generic function can only be used in implementations where creating NEW sections is disallowed. It is useful in patching existing sections in read-write files, though. See other set_section_contents functions to see why it doesn't work for new sections. */ boolean bfd_generic_set_section_contents (abfd, section, location, offset, count) bfd *abfd; sec_ptr section; PTR location; file_ptr offset; bfd_size_type count; { if (count == 0) return true; if (offset + count > bfd_get_section_size_after_reloc (section)) { bfd_error = bad_value; return false; } if (bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) == -1 || bfd_write (location, (bfd_size_type) 1, count, abfd) != count) return false; return true; } /* INTERNAL_FUNCTION bfd_log2 SYNOPSIS unsigned int bfd_log2(bfd_vma x); DESCRIPTION Return the log base 2 of the value supplied, rounded up. E.g., an @var{x} of 1025 returns 11. */ unsigned bfd_log2(x) bfd_vma x; { unsigned result = 0; while ( (bfd_vma)(1<< result) < x) result++; return result; }