/* Assorted BFD support routines, only used internally. Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Written by Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "bfd.h" #include "sysdep.h" #include "libbfd.h" #ifndef HAVE_GETPAGESIZE #define getpagesize() 2048 #endif /* SECTION Internal functions DESCRIPTION These routines are used within BFD. They are not intended for export, but are documented here for completeness. */ /* A routine which is used in target vectors for unsupported operations. */ bfd_boolean bfd_false (bfd *ignore ATTRIBUTE_UNUSED) { bfd_set_error (bfd_error_invalid_operation); return FALSE; } /* A routine which is used in target vectors for supported operations which do not actually do anything. */ bfd_boolean bfd_true (bfd *ignore ATTRIBUTE_UNUSED) { return TRUE; } /* A routine which is used in target vectors for unsupported operations which return a pointer value. */ void * bfd_nullvoidptr (bfd *ignore ATTRIBUTE_UNUSED) { bfd_set_error (bfd_error_invalid_operation); return NULL; } int bfd_0 (bfd *ignore ATTRIBUTE_UNUSED) { return 0; } unsigned int bfd_0u (bfd *ignore ATTRIBUTE_UNUSED) { return 0; } long bfd_0l (bfd *ignore ATTRIBUTE_UNUSED) { return 0; } /* A routine which is used in target vectors for unsupported operations which return -1 on error. */ long _bfd_n1 (bfd *ignore_abfd ATTRIBUTE_UNUSED) { bfd_set_error (bfd_error_invalid_operation); return -1; } void bfd_void (bfd *ignore ATTRIBUTE_UNUSED) { } bfd_boolean _bfd_nocore_core_file_matches_executable_p (bfd *ignore_core_bfd ATTRIBUTE_UNUSED, bfd *ignore_exec_bfd ATTRIBUTE_UNUSED) { bfd_set_error (bfd_error_invalid_operation); return FALSE; } /* Routine to handle core_file_failing_command entry point for targets without core file support. */ char * _bfd_nocore_core_file_failing_command (bfd *ignore_abfd ATTRIBUTE_UNUSED) { bfd_set_error (bfd_error_invalid_operation); return NULL; } /* Routine to handle core_file_failing_signal entry point for targets without core file support. */ int _bfd_nocore_core_file_failing_signal (bfd *ignore_abfd ATTRIBUTE_UNUSED) { bfd_set_error (bfd_error_invalid_operation); return 0; } const bfd_target * _bfd_dummy_target (bfd *ignore_abfd ATTRIBUTE_UNUSED) { bfd_set_error (bfd_error_wrong_format); return 0; } /* Allocate memory using malloc. */ void * bfd_malloc (bfd_size_type size) { void *ptr; if (size != (size_t) size) { bfd_set_error (bfd_error_no_memory); return NULL; } ptr = malloc ((size_t) size); if (ptr == NULL && (size_t) size != 0) bfd_set_error (bfd_error_no_memory); return ptr; } /* Reallocate memory using realloc. */ void * bfd_realloc (void *ptr, bfd_size_type size) { void *ret; if (size != (size_t) size) { bfd_set_error (bfd_error_no_memory); return NULL; } if (ptr == NULL) ret = malloc ((size_t) size); else ret = realloc (ptr, (size_t) size); if (ret == NULL && (size_t) size != 0) bfd_set_error (bfd_error_no_memory); return ret; } /* Allocate memory using malloc and clear it. */ void * bfd_zmalloc (bfd_size_type size) { void *ptr; if (size != (size_t) size) { bfd_set_error (bfd_error_no_memory); return NULL; } ptr = malloc ((size_t) size); if ((size_t) size != 0) { if (ptr == NULL) bfd_set_error (bfd_error_no_memory); else memset (ptr, 0, (size_t) size); } return ptr; } /* INTERNAL_FUNCTION bfd_write_bigendian_4byte_int SYNOPSIS bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int); DESCRIPTION Write a 4 byte integer @var{i} to the output BFD @var{abfd}, in big endian order regardless of what else is going on. This is useful in archives. */ bfd_boolean bfd_write_bigendian_4byte_int (bfd *abfd, unsigned int i) { bfd_byte buffer[4]; bfd_putb32 ((bfd_vma) i, buffer); return bfd_bwrite (buffer, (bfd_size_type) 4, abfd) == 4; } /** The do-it-yourself (byte) sex-change kit */ /* The middle letter e.g. get<b>short indicates Big or Little endian target machine. It doesn't matter what the byte order of the host machine is; these routines work for either. */ /* FIXME: Should these take a count argument? Answer (gnu@cygnus.com): No, but perhaps they should be inline functions in swap.h #ifdef __GNUC__. Gprof them later and find out. */ /* FUNCTION bfd_put_size FUNCTION bfd_get_size DESCRIPTION These macros as used for reading and writing raw data in sections; each access (except for bytes) is vectored through the target format of the BFD and mangled accordingly. The mangling performs any necessary endian translations and removes alignment restrictions. Note that types accepted and returned by these macros are identical so they can be swapped around in macros---for example, @file{libaout.h} defines <<GET_WORD>> to either <<bfd_get_32>> or <<bfd_get_64>>. In the put routines, @var{val} must be a <<bfd_vma>>. If we are on a system without prototypes, the caller is responsible for making sure that is true, with a cast if necessary. We don't cast them in the macro definitions because that would prevent <<lint>> or <<gcc -Wall>> from detecting sins such as passing a pointer. To detect calling these with less than a <<bfd_vma>>, use <<gcc -Wconversion>> on a host with 64 bit <<bfd_vma>>'s. . .{* Byte swapping macros for user section data. *} . .#define bfd_put_8(abfd, val, ptr) \ . ((void) (*((unsigned char *) (ptr)) = (val) & 0xff)) .#define bfd_put_signed_8 \ . bfd_put_8 .#define bfd_get_8(abfd, ptr) \ . (*(unsigned char *) (ptr) & 0xff) .#define bfd_get_signed_8(abfd, ptr) \ . (((*(unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80) . .#define bfd_put_16(abfd, val, ptr) \ . BFD_SEND (abfd, bfd_putx16, ((val),(ptr))) .#define bfd_put_signed_16 \ . bfd_put_16 .#define bfd_get_16(abfd, ptr) \ . BFD_SEND (abfd, bfd_getx16, (ptr)) .#define bfd_get_signed_16(abfd, ptr) \ . BFD_SEND (abfd, bfd_getx_signed_16, (ptr)) . .#define bfd_put_32(abfd, val, ptr) \ . BFD_SEND (abfd, bfd_putx32, ((val),(ptr))) .#define bfd_put_signed_32 \ . bfd_put_32 .#define bfd_get_32(abfd, ptr) \ . BFD_SEND (abfd, bfd_getx32, (ptr)) .#define bfd_get_signed_32(abfd, ptr) \ . BFD_SEND (abfd, bfd_getx_signed_32, (ptr)) . .#define bfd_put_64(abfd, val, ptr) \ . BFD_SEND (abfd, bfd_putx64, ((val), (ptr))) .#define bfd_put_signed_64 \ . bfd_put_64 .#define bfd_get_64(abfd, ptr) \ . BFD_SEND (abfd, bfd_getx64, (ptr)) .#define bfd_get_signed_64(abfd, ptr) \ . BFD_SEND (abfd, bfd_getx_signed_64, (ptr)) . .#define bfd_get(bits, abfd, ptr) \ . ((bits) == 8 ? (bfd_vma) bfd_get_8 (abfd, ptr) \ . : (bits) == 16 ? bfd_get_16 (abfd, ptr) \ . : (bits) == 32 ? bfd_get_32 (abfd, ptr) \ . : (bits) == 64 ? bfd_get_64 (abfd, ptr) \ . : (abort (), (bfd_vma) - 1)) . .#define bfd_put(bits, abfd, val, ptr) \ . ((bits) == 8 ? bfd_put_8 (abfd, val, ptr) \ . : (bits) == 16 ? bfd_put_16 (abfd, val, ptr) \ . : (bits) == 32 ? bfd_put_32 (abfd, val, ptr) \ . : (bits) == 64 ? bfd_put_64 (abfd, val, ptr) \ . : (abort (), (void) 0)) . */ /* FUNCTION bfd_h_put_size bfd_h_get_size DESCRIPTION These macros have the same function as their <<bfd_get_x>> brethren, except that they are used for removing information for the header records of object files. Believe it or not, some object files keep their header records in big endian order and their data in little endian order. . .{* Byte swapping macros for file header data. *} . .#define bfd_h_put_8(abfd, val, ptr) \ . bfd_put_8 (abfd, val, ptr) .#define bfd_h_put_signed_8(abfd, val, ptr) \ . bfd_put_8 (abfd, val, ptr) .#define bfd_h_get_8(abfd, ptr) \ . bfd_get_8 (abfd, ptr) .#define bfd_h_get_signed_8(abfd, ptr) \ . bfd_get_signed_8 (abfd, ptr) . .#define bfd_h_put_16(abfd, val, ptr) \ . BFD_SEND (abfd, bfd_h_putx16, (val, ptr)) .#define bfd_h_put_signed_16 \ . bfd_h_put_16 .#define bfd_h_get_16(abfd, ptr) \ . BFD_SEND (abfd, bfd_h_getx16, (ptr)) .#define bfd_h_get_signed_16(abfd, ptr) \ . BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr)) . .#define bfd_h_put_32(abfd, val, ptr) \ . BFD_SEND (abfd, bfd_h_putx32, (val, ptr)) .#define bfd_h_put_signed_32 \ . bfd_h_put_32 .#define bfd_h_get_32(abfd, ptr) \ . BFD_SEND (abfd, bfd_h_getx32, (ptr)) .#define bfd_h_get_signed_32(abfd, ptr) \ . BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr)) . .#define bfd_h_put_64(abfd, val, ptr) \ . BFD_SEND (abfd, bfd_h_putx64, (val, ptr)) .#define bfd_h_put_signed_64 \ . bfd_h_put_64 .#define bfd_h_get_64(abfd, ptr) \ . BFD_SEND (abfd, bfd_h_getx64, (ptr)) .#define bfd_h_get_signed_64(abfd, ptr) \ . BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr)) . .{* Aliases for the above, which should eventually go away. *} . .#define H_PUT_64 bfd_h_put_64 .#define H_PUT_32 bfd_h_put_32 .#define H_PUT_16 bfd_h_put_16 .#define H_PUT_8 bfd_h_put_8 .#define H_PUT_S64 bfd_h_put_signed_64 .#define H_PUT_S32 bfd_h_put_signed_32 .#define H_PUT_S16 bfd_h_put_signed_16 .#define H_PUT_S8 bfd_h_put_signed_8 .#define H_GET_64 bfd_h_get_64 .#define H_GET_32 bfd_h_get_32 .#define H_GET_16 bfd_h_get_16 .#define H_GET_8 bfd_h_get_8 .#define H_GET_S64 bfd_h_get_signed_64 .#define H_GET_S32 bfd_h_get_signed_32 .#define H_GET_S16 bfd_h_get_signed_16 .#define H_GET_S8 bfd_h_get_signed_8 . .*/ /* Sign extension to bfd_signed_vma. */ #define COERCE16(x) (((bfd_signed_vma) (x) ^ 0x8000) - 0x8000) #define COERCE32(x) (((bfd_signed_vma) (x) ^ 0x80000000) - 0x80000000) #define EIGHT_GAZILLION ((bfd_int64_t) 1 << 63) #define COERCE64(x) \ (((bfd_int64_t) (x) ^ EIGHT_GAZILLION) - EIGHT_GAZILLION) bfd_vma bfd_getb16 (const void *p) { const bfd_byte *addr = p; return (addr[0] << 8) | addr[1]; } bfd_vma bfd_getl16 (const void *p) { const bfd_byte *addr = p; return (addr[1] << 8) | addr[0]; } bfd_signed_vma bfd_getb_signed_16 (const void *p) { const bfd_byte *addr = p; return COERCE16 ((addr[0] << 8) | addr[1]); } bfd_signed_vma bfd_getl_signed_16 (const void *p) { const bfd_byte *addr = p; return COERCE16 ((addr[1] << 8) | addr[0]); } void bfd_putb16 (bfd_vma data, void *p) { bfd_byte *addr = p; addr[0] = (data >> 8) & 0xff; addr[1] = data & 0xff; } void bfd_putl16 (bfd_vma data, void *p) { bfd_byte *addr = p; addr[0] = data & 0xff; addr[1] = (data >> 8) & 0xff; } bfd_vma bfd_getb32 (const void *p) { const bfd_byte *addr = p; unsigned long v; v = (unsigned long) addr[0] << 24; v |= (unsigned long) addr[1] << 16; v |= (unsigned long) addr[2] << 8; v |= (unsigned long) addr[3]; return v; } bfd_vma bfd_getl32 (const void *p) { const bfd_byte *addr = p; unsigned long v; v = (unsigned long) addr[0]; v |= (unsigned long) addr[1] << 8; v |= (unsigned long) addr[2] << 16; v |= (unsigned long) addr[3] << 24; return v; } bfd_signed_vma bfd_getb_signed_32 (const void *p) { const bfd_byte *addr = p; unsigned long v; v = (unsigned long) addr[0] << 24; v |= (unsigned long) addr[1] << 16; v |= (unsigned long) addr[2] << 8; v |= (unsigned long) addr[3]; return COERCE32 (v); } bfd_signed_vma bfd_getl_signed_32 (const void *p) { const bfd_byte *addr = p; unsigned long v; v = (unsigned long) addr[0]; v |= (unsigned long) addr[1] << 8; v |= (unsigned long) addr[2] << 16; v |= (unsigned long) addr[3] << 24; return COERCE32 (v); } bfd_uint64_t bfd_getb64 (const void *p ATTRIBUTE_UNUSED) { #ifdef BFD_HOST_64_BIT const bfd_byte *addr = p; bfd_uint64_t v; v = addr[0]; v <<= 8; v |= addr[1]; v <<= 8; v |= addr[2]; v <<= 8; v |= addr[3]; v <<= 8; v |= addr[4]; v <<= 8; v |= addr[5]; v <<= 8; v |= addr[6]; v <<= 8; v |= addr[7]; return v; #else BFD_FAIL(); return 0; #endif } bfd_uint64_t bfd_getl64 (const void *p ATTRIBUTE_UNUSED) { #ifdef BFD_HOST_64_BIT const bfd_byte *addr = p; bfd_uint64_t v; v = addr[7]; v <<= 8; v |= addr[6]; v <<= 8; v |= addr[5]; v <<= 8; v |= addr[4]; v <<= 8; v |= addr[3]; v <<= 8; v |= addr[2]; v <<= 8; v |= addr[1]; v <<= 8; v |= addr[0]; return v; #else BFD_FAIL(); return 0; #endif } bfd_int64_t bfd_getb_signed_64 (const void *p ATTRIBUTE_UNUSED) { #ifdef BFD_HOST_64_BIT const bfd_byte *addr = p; bfd_uint64_t v; v = addr[0]; v <<= 8; v |= addr[1]; v <<= 8; v |= addr[2]; v <<= 8; v |= addr[3]; v <<= 8; v |= addr[4]; v <<= 8; v |= addr[5]; v <<= 8; v |= addr[6]; v <<= 8; v |= addr[7]; return COERCE64 (v); #else BFD_FAIL(); return 0; #endif } bfd_int64_t bfd_getl_signed_64 (const void *p ATTRIBUTE_UNUSED) { #ifdef BFD_HOST_64_BIT const bfd_byte *addr = p; bfd_uint64_t v; v = addr[7]; v <<= 8; v |= addr[6]; v <<= 8; v |= addr[5]; v <<= 8; v |= addr[4]; v <<= 8; v |= addr[3]; v <<= 8; v |= addr[2]; v <<= 8; v |= addr[1]; v <<= 8; v |= addr[0]; return COERCE64 (v); #else BFD_FAIL(); return 0; #endif } void bfd_putb32 (bfd_vma data, void *p) { bfd_byte *addr = p; addr[0] = (data >> 24) & 0xff; addr[1] = (data >> 16) & 0xff; addr[2] = (data >> 8) & 0xff; addr[3] = data & 0xff; } void bfd_putl32 (bfd_vma data, void *p) { bfd_byte *addr = p; addr[0] = data & 0xff; addr[1] = (data >> 8) & 0xff; addr[2] = (data >> 16) & 0xff; addr[3] = (data >> 24) & 0xff; } void bfd_putb64 (bfd_uint64_t data ATTRIBUTE_UNUSED, void *p ATTRIBUTE_UNUSED) { #ifdef BFD_HOST_64_BIT bfd_byte *addr = p; addr[0] = (data >> (7*8)) & 0xff; addr[1] = (data >> (6*8)) & 0xff; addr[2] = (data >> (5*8)) & 0xff; addr[3] = (data >> (4*8)) & 0xff; addr[4] = (data >> (3*8)) & 0xff; addr[5] = (data >> (2*8)) & 0xff; addr[6] = (data >> (1*8)) & 0xff; addr[7] = (data >> (0*8)) & 0xff; #else BFD_FAIL(); #endif } void bfd_putl64 (bfd_uint64_t data ATTRIBUTE_UNUSED, void *p ATTRIBUTE_UNUSED) { #ifdef BFD_HOST_64_BIT bfd_byte *addr = p; addr[7] = (data >> (7*8)) & 0xff; addr[6] = (data >> (6*8)) & 0xff; addr[5] = (data >> (5*8)) & 0xff; addr[4] = (data >> (4*8)) & 0xff; addr[3] = (data >> (3*8)) & 0xff; addr[2] = (data >> (2*8)) & 0xff; addr[1] = (data >> (1*8)) & 0xff; addr[0] = (data >> (0*8)) & 0xff; #else BFD_FAIL(); #endif } void bfd_put_bits (bfd_uint64_t data, void *p, int bits, bfd_boolean big_p) { bfd_byte *addr = p; int i; int bytes; if (bits % 8 != 0) abort (); bytes = bits / 8; for (i = 0; i < bytes; i++) { int index = big_p ? bytes - i - 1 : i; addr[index] = data & 0xff; data >>= 8; } } bfd_uint64_t bfd_get_bits (const void *p, int bits, bfd_boolean big_p) { const bfd_byte *addr = p; bfd_uint64_t data; int i; int bytes; if (bits % 8 != 0) abort (); data = 0; bytes = bits / 8; for (i = 0; i < bytes; i++) { int index = big_p ? i : bytes - i - 1; data = (data << 8) | addr[index]; } return data; } /* Default implementation */ bfd_boolean _bfd_generic_get_section_contents (bfd *abfd, sec_ptr section, void *location, file_ptr offset, bfd_size_type count) { bfd_size_type sz; if (count == 0) return TRUE; sz = section->rawsize ? section->rawsize : section->size; if (offset + count > sz) { bfd_set_error (bfd_error_invalid_operation); return FALSE; } if (bfd_seek (abfd, section->filepos + offset, SEEK_SET) != 0 || bfd_bread (location, count, abfd) != count) return FALSE; return TRUE; } bfd_boolean _bfd_generic_get_section_contents_in_window (bfd *abfd ATTRIBUTE_UNUSED, sec_ptr section ATTRIBUTE_UNUSED, bfd_window *w ATTRIBUTE_UNUSED, file_ptr offset ATTRIBUTE_UNUSED, bfd_size_type count ATTRIBUTE_UNUSED) { #ifdef USE_MMAP bfd_size_type sz; if (count == 0) return TRUE; if (abfd->xvec->_bfd_get_section_contents != _bfd_generic_get_section_contents) { /* We don't know what changes the bfd's get_section_contents method may have to make. So punt trying to map the file window, and let get_section_contents do its thing. */ /* @@ FIXME : If the internal window has a refcount of 1 and was allocated with malloc instead of mmap, just reuse it. */ bfd_free_window (w); w->i = bfd_zmalloc (sizeof (bfd_window_internal)); if (w->i == NULL) return FALSE; w->i->data = bfd_malloc (count); if (w->i->data == NULL) { free (w->i); w->i = NULL; return FALSE; } w->i->mapped = 0; w->i->refcount = 1; w->size = w->i->size = count; w->data = w->i->data; return bfd_get_section_contents (abfd, section, w->data, offset, count); } sz = section->rawsize ? section->rawsize : section->size; if (offset + count > sz || ! bfd_get_file_window (abfd, section->filepos + offset, count, w, TRUE)) return FALSE; return TRUE; #else abort (); #endif } /* This generic function can only be used in implementations where creating NEW sections is disallowed. It is useful in patching existing sections in read-write files, though. See other set_section_contents functions to see why it doesn't work for new sections. */ bfd_boolean _bfd_generic_set_section_contents (bfd *abfd, sec_ptr section, const void *location, file_ptr offset, bfd_size_type count) { if (count == 0) return TRUE; if (bfd_seek (abfd, section->filepos + offset, SEEK_SET) != 0 || bfd_bwrite (location, count, abfd) != count) return FALSE; return TRUE; } /* INTERNAL_FUNCTION bfd_log2 SYNOPSIS unsigned int bfd_log2 (bfd_vma x); DESCRIPTION Return the log base 2 of the value supplied, rounded up. E.g., an @var{x} of 1025 returns 11. A @var{x} of 0 returns 0. */ unsigned int bfd_log2 (bfd_vma x) { unsigned int result = 0; while ((x = (x >> 1)) != 0) ++result; return result; } bfd_boolean bfd_generic_is_local_label_name (bfd *abfd, const char *name) { char locals_prefix = (bfd_get_symbol_leading_char (abfd) == '_') ? 'L' : '.'; return name[0] == locals_prefix; } /* Can be used from / for bfd_merge_private_bfd_data to check that endianness matches between input and output file. Returns TRUE for a match, otherwise returns FALSE and emits an error. */ bfd_boolean _bfd_generic_verify_endian_match (bfd *ibfd, bfd *obfd) { if (ibfd->xvec->byteorder != obfd->xvec->byteorder && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN) { const char *msg; if (bfd_big_endian (ibfd)) msg = _("%B: compiled for a big endian system and target is little endian"); else msg = _("%B: compiled for a little endian system and target is big endian"); (*_bfd_error_handler) (msg, ibfd); bfd_set_error (bfd_error_wrong_format); return FALSE; } return TRUE; } /* Give a warning at runtime if someone compiles code which calls old routines. */ void warn_deprecated (const char *what, const char *file, int line, const char *func) { /* Poor man's tracking of functions we've already warned about. */ static size_t mask = 0; if (~(size_t) func & ~mask) { /* Note: separate sentences in order to allow for translation into other languages. */ if (func) fprintf (stderr, _("Deprecated %s called at %s line %d in %s\n"), what, file, line, func); else fprintf (stderr, _("Deprecated %s called\n"), what); mask |= ~(size_t) func; } } /* Helper function for reading uleb128 encoded data. */ bfd_vma read_unsigned_leb128 (bfd *abfd ATTRIBUTE_UNUSED, char *buf, unsigned int *bytes_read_ptr) { bfd_vma result; unsigned int num_read; int shift; unsigned char byte; result = 0; shift = 0; num_read = 0; do { byte = bfd_get_8 (abfd, (bfd_byte *) buf); buf++; num_read++; result |= (((bfd_vma) byte & 0x7f) << shift); shift += 7; } while (byte & 0x80); *bytes_read_ptr = num_read; return result; } /* Helper function for reading sleb128 encoded data. */ bfd_signed_vma read_signed_leb128 (bfd *abfd ATTRIBUTE_UNUSED, char *buf, unsigned int * bytes_read_ptr) { bfd_vma result; int shift; int num_read; unsigned char byte; result = 0; shift = 0; num_read = 0; do { byte = bfd_get_8 (abfd, (bfd_byte *) buf); buf ++; num_read ++; result |= (((bfd_vma) byte & 0x7f) << shift); shift += 7; } while (byte & 0x80); if ((shift < 8 * sizeof (result)) && (byte & 0x40)) result |= (((bfd_vma) -1) << shift); *bytes_read_ptr = num_read; return result; }