/* BFD back-end for ieee-695 objects. Copyright (C) 1990, 91, 92, 93, 94 Free Software Foundation, Inc. Written by Steve Chamberlain of Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #define KEEPMINUSPCININST 0 /* IEEE 695 format is a stream of records, which we parse using a simple one- token (which is one byte in this lexicon) lookahead recursive decent parser. */ #include "bfd.h" #include "sysdep.h" #include "libbfd.h" #include "ieee.h" #include "libieee.h" #include "obstack.h" #define obstack_chunk_alloc malloc #define obstack_chunk_free free /* Functions for writing to ieee files in the strange way that the standard requires. */ static void ieee_write_byte (abfd, byte) bfd *abfd; bfd_byte byte; { if (bfd_write ((PTR) & byte, 1, 1, abfd) != 1) abort (); } static void ieee_write_twobyte (abfd, twobyte) bfd *abfd; int twobyte; { bfd_byte b[2]; b[1] = twobyte & 0xff; b[0] = twobyte >> 8; if (bfd_write ((PTR) & b[0], 1, 2, abfd) != 2) abort (); } static void ieee_write_2bytes (abfd, bytes) bfd *abfd; int bytes; { bfd_byte buffer[2]; buffer[0] = bytes >> 8; buffer[1] = bytes & 0xff; if (bfd_write ((PTR) buffer, 1, 2, abfd) != 2) abort (); } static void ieee_write_int (abfd, value) bfd *abfd; bfd_vma value; { if (((unsigned) value) <= 127) { ieee_write_byte (abfd, (bfd_byte) value); } else { unsigned int length; /* How many significant bytes ? */ /* FIXME FOR LONGER INTS */ if (value & 0xff000000) { length = 4; } else if (value & 0x00ff0000) { length = 3; } else if (value & 0x0000ff00) { length = 2; } else length = 1; ieee_write_byte (abfd, (bfd_byte) ((int) ieee_number_repeat_start_enum + length)); switch (length) { case 4: ieee_write_byte (abfd, (bfd_byte) (value >> 24)); case 3: ieee_write_byte (abfd, (bfd_byte) (value >> 16)); case 2: ieee_write_byte (abfd, (bfd_byte) (value >> 8)); case 1: ieee_write_byte (abfd, (bfd_byte) (value)); } } } static void ieee_write_id (abfd, id) bfd *abfd; CONST char *id; { size_t length = strlen (id); if (length <= 127) { ieee_write_byte (abfd, (bfd_byte) length); } else if (length < 255) { ieee_write_byte (abfd, ieee_extension_length_1_enum); ieee_write_byte (abfd, (bfd_byte) length); } else if (length < 65535) { ieee_write_byte (abfd, ieee_extension_length_2_enum); ieee_write_byte (abfd, (bfd_byte) (length >> 8)); ieee_write_byte (abfd, (bfd_byte) (length & 0xff)); } else { BFD_FAIL (); } if (bfd_write ((PTR) id, 1, length, abfd) != length) abort (); } /*************************************************************************** Functions for reading from ieee files in the strange way that the standard requires: */ #define this_byte(ieee) *((ieee)->input_p) #define next_byte(ieee) ((ieee)->input_p++) #define this_byte_and_next(ieee) (*((ieee)->input_p++)) static unsigned short read_2bytes (ieee) common_header_type *ieee; { unsigned char c1 = this_byte_and_next (ieee); unsigned char c2 = this_byte_and_next (ieee); return (c1 << 8) | c2; } static void bfd_get_string (ieee, string, length) common_header_type *ieee; char *string; size_t length; { size_t i; for (i = 0; i < length; i++) { string[i] = this_byte_and_next (ieee); } } static char * read_id (ieee) common_header_type *ieee; { size_t length; char *string; length = this_byte_and_next (ieee); if (length <= 0x7f) { /* Simple string of length 0 to 127 */ } else if (length == 0xde) { /* Length is next byte, allowing 0..255 */ length = this_byte_and_next (ieee); } else if (length == 0xdf) { /* Length is next two bytes, allowing 0..65535 */ length = this_byte_and_next (ieee); length = (length * 256) + this_byte_and_next (ieee); } /* Buy memory and read string */ string = bfd_alloc (ieee->abfd, length + 1); if (!string) return NULL; bfd_get_string (ieee, string, length); string[length] = 0; return string; } static void ieee_write_expression (abfd, value, symbol, pcrel, index) bfd *abfd; bfd_vma value; asymbol *symbol; boolean pcrel; unsigned int index; { unsigned int term_count = 0; if (value != 0) { ieee_write_int (abfd, value); term_count++; } if (bfd_is_com_section (symbol->section) || bfd_is_und_section (symbol->section)) { /* Def of a common symbol */ ieee_write_byte (abfd, ieee_variable_X_enum); ieee_write_int (abfd, symbol->value); term_count++; } else if (! bfd_is_abs_section (symbol->section)) { /* Ref to defined symbol - */ ieee_write_byte (abfd, ieee_variable_R_enum); ieee_write_byte (abfd, (bfd_byte) (symbol->section->index + IEEE_SECTION_NUMBER_BASE)); term_count++; if (symbol->flags & BSF_GLOBAL) { ieee_write_byte (abfd, ieee_variable_I_enum); ieee_write_int (abfd, symbol->value); term_count++; } else if (symbol->flags & (BSF_LOCAL | BSF_SECTION_SYM)) { /* This is a reference to a defined local symbol, We can easily do a local as a section+offset */ ieee_write_byte (abfd, ieee_variable_R_enum); /* or L */ ieee_write_byte (abfd, (bfd_byte) (symbol->section->index + IEEE_SECTION_NUMBER_BASE)); ieee_write_int (abfd, symbol->value); term_count++; } else { BFD_FAIL (); } } if (pcrel) { /* subtract the pc from here by asking for PC of this section*/ ieee_write_byte (abfd, ieee_variable_P_enum); ieee_write_byte (abfd, (bfd_byte) (index + IEEE_SECTION_NUMBER_BASE)); ieee_write_byte (abfd, ieee_function_minus_enum); } if (term_count == 1) { ieee_write_byte (abfd, 0); } else { while (term_count > 1) { ieee_write_byte (abfd, ieee_function_plus_enum); term_count--; } } } /*****************************************************************************/ /* writes any integer into the buffer supplied and always takes 5 bytes */ static void ieee_write_int5 (buffer, value) bfd_byte *buffer; bfd_vma value; { buffer[0] = (bfd_byte) ieee_number_repeat_4_enum; buffer[1] = (value >> 24) & 0xff; buffer[2] = (value >> 16) & 0xff; buffer[3] = (value >> 8) & 0xff; buffer[4] = (value >> 0) & 0xff; } static void ieee_write_int5_out (abfd, value) bfd *abfd; bfd_vma value; { bfd_byte b[5]; ieee_write_int5 (b, value); if (bfd_write ((PTR) b, 1, 5, abfd) != 5) abort (); } static boolean parse_int (ieee, value_ptr) common_header_type *ieee; bfd_vma *value_ptr; { int value = this_byte (ieee); int result; if (value >= 0 && value <= 127) { *value_ptr = value; next_byte (ieee); return true; } else if (value >= 0x80 && value <= 0x88) { unsigned int count = value & 0xf; result = 0; next_byte (ieee); while (count) { result = (result << 8) | this_byte_and_next (ieee); count--; } *value_ptr = result; return true; } return false; } static int parse_i (ieee, ok) common_header_type *ieee; boolean *ok; { bfd_vma x; *ok = parse_int (ieee, &x); return x; } static bfd_vma must_parse_int (ieee) common_header_type *ieee; { bfd_vma result; BFD_ASSERT (parse_int (ieee, &result) == true); return result; } typedef struct { bfd_vma value; asection *section; ieee_symbol_index_type symbol; } ieee_value_type; static reloc_howto_type abs32_howto = HOWTO (1, 0, 2, 32, false, 0, complain_overflow_bitfield, 0, "abs32", true, 0xffffffff, 0xffffffff, false); static reloc_howto_type abs16_howto = HOWTO (1, 0, 1, 16, false, 0, complain_overflow_bitfield, 0, "abs16", true, 0x0000ffff, 0x0000ffff, false); static reloc_howto_type abs8_howto = HOWTO (1, 0, 0, 8, false, 0, complain_overflow_bitfield, 0, "abs8", true, 0x000000ff, 0x000000ff, false); static reloc_howto_type rel32_howto = HOWTO (1, 0, 2, 32, true, 0, complain_overflow_signed, 0, "rel32", true, 0xffffffff, 0xffffffff, false); static reloc_howto_type rel16_howto = HOWTO (1, 0, 1, 16, true, 0, complain_overflow_signed, 0, "rel16", true, 0x0000ffff, 0x0000ffff, false); static reloc_howto_type rel8_howto = HOWTO (1, 0, 0, 8, true, 0, complain_overflow_signed, 0, "rel8", true, 0x000000ff, 0x000000ff, false); static ieee_symbol_index_type NOSYMBOL = {0, 0}; static void parse_expression (ieee, value, symbol, pcrel, extra, section) ieee_data_type *ieee; bfd_vma *value; ieee_symbol_index_type *symbol; boolean *pcrel; unsigned int *extra; asection **section; { #define POS sp[1] #define TOS sp[0] #define NOS sp[-1] #define INC sp++; #define DEC sp--; boolean loop = true; ieee_value_type stack[10]; /* The stack pointer always points to the next unused location */ #define PUSH(x,y,z) TOS.symbol=x;TOS.section=y;TOS.value=z;INC; #define POP(x,y,z) DEC;x=TOS.symbol;y=TOS.section;z=TOS.value; ieee_value_type *sp = stack; while (loop) { switch (this_byte (&(ieee->h))) { case ieee_variable_P_enum: /* P variable, current program counter for section n */ { int section_n; next_byte (&(ieee->h)); *pcrel = true; section_n = must_parse_int (&(ieee->h)); PUSH (NOSYMBOL, bfd_abs_section_ptr, TOS.value = ieee->section_table[section_n]->vma + ieee_per_section (ieee->section_table[section_n])->pc); break; } case ieee_variable_L_enum: /* L variable address of section N */ next_byte (&(ieee->h)); PUSH (NOSYMBOL, ieee->section_table[must_parse_int (&(ieee->h))], 0); break; case ieee_variable_R_enum: /* R variable, logical address of section module */ /* FIXME, this should be different to L */ next_byte (&(ieee->h)); PUSH (NOSYMBOL, ieee->section_table[must_parse_int (&(ieee->h))], 0); break; case ieee_variable_S_enum: /* S variable, size in MAUS of section module */ next_byte (&(ieee->h)); PUSH (NOSYMBOL, 0, ieee->section_table[must_parse_int (&(ieee->h))]->_raw_size); break; case ieee_variable_I_enum: case ieee_variable_X_enum: /* Push the address of external variable n */ { ieee_symbol_index_type sy; next_byte (&(ieee->h)); sy.index = (int) (must_parse_int (&(ieee->h))); sy.letter = 'X'; PUSH (sy, bfd_und_section_ptr, 0); } break; case ieee_function_minus_enum: { bfd_vma value1, value2; asection *section1, *section_dummy; ieee_symbol_index_type sy; next_byte (&(ieee->h)); POP (sy, section1, value1); POP (sy, section_dummy, value2); PUSH (sy, section1 ? section1 : section_dummy, value1 - value2); } break; case ieee_function_plus_enum: { bfd_vma value1, value2; asection *section1; asection *section2; ieee_symbol_index_type sy1; ieee_symbol_index_type sy2; next_byte (&(ieee->h)); POP (sy1, section1, value1); POP (sy2, section2, value2); PUSH (sy1.letter ? sy1 : sy2, bfd_is_abs_section (section1) ? section2 : section1, value1 + value2); } break; default: { bfd_vma va; BFD_ASSERT (this_byte (&(ieee->h)) < (int) ieee_variable_A_enum || this_byte (&(ieee->h)) > (int) ieee_variable_Z_enum); if (parse_int (&(ieee->h), &va)) { PUSH (NOSYMBOL, bfd_abs_section_ptr, va); } else { /* Thats all that we can understand. As far as I can see there is a bug in the Microtec IEEE output which I'm using to scan, whereby the comma operator is omitted sometimes in an expression, giving expressions with too many terms. We can tell if that's the case by ensuring that sp == stack here. If not, then we've pushed something too far, so we keep adding. */ while (sp != stack + 1) { asection *section1; ieee_symbol_index_type sy1; POP (sy1, section1, *extra); } { asection *dummy; POP (*symbol, dummy, *value); if (section) *section = dummy; } loop = false; } } } } } #define ieee_seek(abfd, offset) \ IEEE_DATA(abfd)->h.input_p = IEEE_DATA(abfd)->h.first_byte + offset #define ieee_pos(abfd) \ (IEEE_DATA(abfd)->h.input_p - IEEE_DATA(abfd)->h.first_byte) static unsigned int last_index; static char last_type; /* is the index for an X or a D */ static ieee_symbol_type * get_symbol (abfd, ieee, last_symbol, symbol_count, pptr, max_index, this_type ) bfd *abfd; ieee_data_type *ieee; ieee_symbol_type *last_symbol; unsigned int *symbol_count; ieee_symbol_type ***pptr; unsigned int *max_index; char this_type ; { /* Need a new symbol */ unsigned int new_index = must_parse_int (&(ieee->h)); if (new_index != last_index || this_type != last_type) { ieee_symbol_type *new_symbol = (ieee_symbol_type *) bfd_alloc (ieee->h.abfd, sizeof (ieee_symbol_type)); if (!new_symbol) return NULL; new_symbol->index = new_index; last_index = new_index; (*symbol_count)++; **pptr = new_symbol; *pptr = &new_symbol->next; if (new_index > *max_index) { *max_index = new_index; } last_type = this_type; return new_symbol; } return last_symbol; } static boolean ieee_slurp_external_symbols (abfd) bfd *abfd; { ieee_data_type *ieee = IEEE_DATA (abfd); file_ptr offset = ieee->w.r.external_part; ieee_symbol_type **prev_symbols_ptr = &ieee->external_symbols; ieee_symbol_type **prev_reference_ptr = &ieee->external_reference; ieee_symbol_type *symbol = (ieee_symbol_type *) NULL; unsigned int symbol_count = 0; boolean loop = true; last_index = 0xffffff; ieee->symbol_table_full = true; ieee_seek (abfd, offset); while (loop) { switch (this_byte (&(ieee->h))) { case ieee_nn_record: next_byte (&(ieee->h)); symbol = get_symbol (abfd, ieee, symbol, &symbol_count, &prev_symbols_ptr, &ieee->external_symbol_max_index, 'D'); if (symbol == NULL) return false; symbol->symbol.the_bfd = abfd; symbol->symbol.name = read_id (&(ieee->h)); symbol->symbol.udata.p = (PTR) NULL; symbol->symbol.flags = BSF_NO_FLAGS; break; case ieee_external_symbol_enum: next_byte (&(ieee->h)); symbol = get_symbol (abfd, ieee, symbol, &symbol_count, &prev_symbols_ptr, &ieee->external_symbol_max_index, 'D'); if (symbol == NULL) return false; BFD_ASSERT (symbol->index >= ieee->external_symbol_min_index); symbol->symbol.the_bfd = abfd; symbol->symbol.name = read_id (&(ieee->h)); symbol->symbol.udata.p = (PTR) NULL; symbol->symbol.flags = BSF_NO_FLAGS; break; case ieee_attribute_record_enum >> 8: { unsigned int symbol_name_index; unsigned int symbol_type_index; unsigned int symbol_attribute_def; bfd_vma value; next_byte (&(ieee->h)); /* Skip prefix */ next_byte (&(ieee->h)); symbol_name_index = must_parse_int (&(ieee->h)); symbol_type_index = must_parse_int (&(ieee->h)); symbol_attribute_def = must_parse_int (&(ieee->h)); switch (symbol_attribute_def) { case 63: /* Module misc; followed by two fields which describe the current module block. The first fired is the type id number, the second is the number of asn records associated with the directive */ parse_int (&(ieee->h), &value); parse_int (&(ieee->h), &value); break; default: parse_int (&(ieee->h), &value); break; } } break; case ieee_value_record_enum >> 8: { unsigned int symbol_name_index; ieee_symbol_index_type symbol_ignore; boolean pcrel_ignore; unsigned int extra; next_byte (&(ieee->h)); next_byte (&(ieee->h)); symbol_name_index = must_parse_int (&(ieee->h)); parse_expression (ieee, &symbol->symbol.value, &symbol_ignore, &pcrel_ignore, &extra, &symbol->symbol.section); symbol->symbol.flags = BSF_GLOBAL | BSF_EXPORT; } break; case ieee_weak_external_reference_enum: { bfd_vma size; bfd_vma value; next_byte (&(ieee->h)); /* Throw away the external reference index */ (void) must_parse_int (&(ieee->h)); /* Fetch the default size if not resolved */ size = must_parse_int (&(ieee->h)); /* Fetch the defautlt value if available */ if (parse_int (&(ieee->h), &value) == false) { value = 0; } /* This turns into a common */ symbol->symbol.section = bfd_com_section_ptr; symbol->symbol.value = size; } break; case ieee_external_reference_enum: next_byte (&(ieee->h)); symbol = get_symbol (abfd, ieee, symbol, &symbol_count, &prev_reference_ptr, &ieee->external_reference_max_index, 'X'); if (symbol == NULL) return false; symbol->symbol.the_bfd = abfd; symbol->symbol.name = read_id (&(ieee->h)); symbol->symbol.udata.p = (PTR) NULL; symbol->symbol.section = bfd_und_section_ptr; symbol->symbol.value = (bfd_vma) 0; symbol->symbol.flags = 0; BFD_ASSERT (symbol->index >= ieee->external_reference_min_index); break; default: loop = false; } } if (ieee->external_symbol_max_index != 0) { ieee->external_symbol_count = ieee->external_symbol_max_index - ieee->external_symbol_min_index + 1; } else { ieee->external_symbol_count = 0; } if (ieee->external_reference_max_index != 0) { ieee->external_reference_count = ieee->external_reference_max_index - ieee->external_reference_min_index + 1; } else { ieee->external_reference_count = 0; } abfd->symcount = ieee->external_reference_count + ieee->external_symbol_count; if (symbol_count != abfd->symcount) { /* There are gaps in the table -- */ ieee->symbol_table_full = false; } *prev_symbols_ptr = (ieee_symbol_type *) NULL; *prev_reference_ptr = (ieee_symbol_type *) NULL; return true; } static boolean ieee_slurp_symbol_table (abfd) bfd *abfd; { if (IEEE_DATA (abfd)->read_symbols == false) { if (! ieee_slurp_external_symbols (abfd)) return false; IEEE_DATA (abfd)->read_symbols = true; } return true; } long ieee_get_symtab_upper_bound (abfd) bfd *abfd; { if (! ieee_slurp_symbol_table (abfd)) return -1; return (abfd->symcount != 0) ? (abfd->symcount + 1) * (sizeof (ieee_symbol_type *)) : 0; } /* Move from our internal lists to the canon table, and insert in symbol index order */ extern const bfd_target ieee_vec; long ieee_get_symtab (abfd, location) bfd *abfd; asymbol **location; { ieee_symbol_type *symp; static bfd dummy_bfd; static asymbol empty_symbol = /* the_bfd, name, value, attr, section */ {&dummy_bfd, " ieee empty", (symvalue) 0, BSF_DEBUGGING, bfd_abs_section_ptr}; if (abfd->symcount) { ieee_data_type *ieee = IEEE_DATA (abfd); dummy_bfd.xvec = &ieee_vec; if (! ieee_slurp_symbol_table (abfd)) return -1; if (ieee->symbol_table_full == false) { /* Arrgh - there are gaps in the table, run through and fill them */ /* up with pointers to a null place */ unsigned int i; for (i = 0; i < abfd->symcount; i++) { location[i] = &empty_symbol; } } ieee->external_symbol_base_offset = -ieee->external_symbol_min_index; for (symp = IEEE_DATA (abfd)->external_symbols; symp != (ieee_symbol_type *) NULL; symp = symp->next) { /* Place into table at correct index locations */ location[symp->index + ieee->external_symbol_base_offset] = &symp->symbol; } /* The external refs are indexed in a bit */ ieee->external_reference_base_offset = -ieee->external_reference_min_index + ieee->external_symbol_count; for (symp = IEEE_DATA (abfd)->external_reference; symp != (ieee_symbol_type *) NULL; symp = symp->next) { location[symp->index + ieee->external_reference_base_offset] = &symp->symbol; } } if (abfd->symcount) { location[abfd->symcount] = (asymbol *) NULL; } return abfd->symcount; } static asection * get_section_entry (abfd, ieee, index) bfd *abfd; ieee_data_type *ieee; unsigned int index; { if (ieee->section_table[index] == (asection *) NULL) { char *tmp = bfd_alloc (abfd, 11); asection *section; if (!tmp) return NULL; sprintf (tmp, " fsec%4d", index); section = bfd_make_section (abfd, tmp); ieee->section_table[index] = section; section->flags = SEC_NO_FLAGS; section->target_index = index; ieee->section_table[index] = section; } return ieee->section_table[index]; } static void ieee_slurp_sections (abfd) bfd *abfd; { ieee_data_type *ieee = IEEE_DATA (abfd); file_ptr offset = ieee->w.r.section_part; asection *section = (asection *) NULL; char *name; if (offset != 0) { bfd_byte section_type[3]; ieee_seek (abfd, offset); while (true) { switch (this_byte (&(ieee->h))) { case ieee_section_type_enum: { unsigned int section_index; next_byte (&(ieee->h)); section_index = must_parse_int (&(ieee->h)); /* Fixme to be nice about a silly number of sections */ BFD_ASSERT (section_index < NSECTIONS); section = get_section_entry (abfd, ieee, section_index); section_type[0] = this_byte_and_next (&(ieee->h)); switch (section_type[0]) { case 0xC1: /* Normal attributes for absolute sections */ section_type[1] = this_byte (&(ieee->h)); section->flags = SEC_LOAD | SEC_ALLOC | SEC_HAS_CONTENTS; switch (section_type[1]) { case 0xD3: /* AS Absolute section attributes */ next_byte (&(ieee->h)); section_type[2] = this_byte (&(ieee->h)); switch (section_type[2]) { case 0xD0: /* Normal code */ next_byte (&(ieee->h)); section->flags |= SEC_LOAD | SEC_CODE; break; case 0xC4: next_byte (&(ieee->h)); section->flags |= SEC_LOAD | SEC_DATA; /* Normal data */ break; case 0xD2: next_byte (&(ieee->h)); /* Normal rom data */ section->flags |= SEC_LOAD | SEC_ROM | SEC_DATA; break; default: break; } } break; case 0xC3: /* Named relocatable sections (type C) */ section_type[1] = this_byte (&(ieee->h)); section->flags = SEC_LOAD | SEC_ALLOC | SEC_HAS_CONTENTS; switch (section_type[1]) { case 0xD0: /* Normal code (CP) */ next_byte (&(ieee->h)); section->flags |= SEC_LOAD | SEC_CODE; break; case 0xC4: /* Normal data (CD) */ next_byte (&(ieee->h)); section->flags |= SEC_LOAD | SEC_DATA; break; case 0xD2: /* Normal rom data (CR) */ next_byte (&(ieee->h)); section->flags |= SEC_LOAD | SEC_ROM | SEC_DATA; break; default: break; } } /* Read section name, use it if non empty. */ name = read_id (&ieee->h); if (name[0]) section->name = name; /* Skip these fields, which we don't care about */ { bfd_vma parent, brother, context; parse_int (&(ieee->h), &parent); parse_int (&(ieee->h), &brother); parse_int (&(ieee->h), &context); } } break; case ieee_section_alignment_enum: { unsigned int section_index; bfd_vma value; asection *section; next_byte (&(ieee->h)); section_index = must_parse_int (&ieee->h); section = get_section_entry (abfd, ieee, section_index); if (section_index > ieee->section_count) { ieee->section_count = section_index; } section->alignment_power = bfd_log2 (must_parse_int (&ieee->h)); (void) parse_int (&(ieee->h), &value); } break; case ieee_e2_first_byte_enum: { ieee_record_enum_type t = (ieee_record_enum_type) (read_2bytes (&(ieee->h))); switch (t) { case ieee_section_size_enum: section = ieee->section_table[must_parse_int (&(ieee->h))]; section->_raw_size = must_parse_int (&(ieee->h)); break; case ieee_physical_region_size_enum: section = ieee->section_table[must_parse_int (&(ieee->h))]; section->_raw_size = must_parse_int (&(ieee->h)); break; case ieee_region_base_address_enum: section = ieee->section_table[must_parse_int (&(ieee->h))]; section->vma = must_parse_int (&(ieee->h)); break; case ieee_mau_size_enum: must_parse_int (&(ieee->h)); must_parse_int (&(ieee->h)); break; case ieee_m_value_enum: must_parse_int (&(ieee->h)); must_parse_int (&(ieee->h)); break; case ieee_section_base_address_enum: section = ieee->section_table[must_parse_int (&(ieee->h))]; section->vma = must_parse_int (&(ieee->h)); break; case ieee_section_offset_enum: (void) must_parse_int (&(ieee->h)); (void) must_parse_int (&(ieee->h)); break; default: return; } } break; default: return; } } } } /*********************************************************************** * archive stuff */ const bfd_target * ieee_archive_p (abfd) bfd *abfd; { char *library; boolean loop; unsigned int i; unsigned char buffer[512]; struct obstack ob; file_ptr buffer_offset = 0; ieee_ar_data_type *save = abfd->tdata.ieee_ar_data; ieee_ar_data_type *ieee; abfd->tdata.ieee_ar_data = (ieee_ar_data_type *) bfd_alloc (abfd, sizeof (ieee_ar_data_type)); if (!abfd->tdata.ieee_ar_data) return NULL; ieee = IEEE_AR_DATA (abfd); /* FIXME: Check return value. I'm not sure whether it needs to read the entire buffer or not. */ bfd_read ((PTR) buffer, 1, sizeof (buffer), abfd); ieee->h.first_byte = buffer; ieee->h.input_p = buffer; ieee->h.abfd = abfd; if (this_byte (&(ieee->h)) != Module_Beginning) { abfd->tdata.ieee_ar_data = save; return (const bfd_target *) NULL; } next_byte (&(ieee->h)); library = read_id (&(ieee->h)); if (strcmp (library, "LIBRARY") != 0) { bfd_release (abfd, ieee); abfd->tdata.ieee_ar_data = save; return (const bfd_target *) NULL; } /* Throw away the filename */ read_id (&(ieee->h)); /* This must be an IEEE archive, so we'll buy some space to do things */ if (!obstack_begin (&ob, 128)) { bfd_set_error (bfd_error_no_memory); return (const bfd_target *) NULL; } ieee->element_count = 0; ieee->element_index = 0; next_byte (&(ieee->h)); /* Drop the ad part */ must_parse_int (&(ieee->h)); /* And the two dummy numbers */ must_parse_int (&(ieee->h)); loop = true; /* Read the index of the BB table */ while (loop) { ieee_ar_obstack_type t; int rec = read_2bytes (&(ieee->h)); if (rec == (int) ieee_assign_value_to_variable_enum) { must_parse_int (&(ieee->h)); t.file_offset = must_parse_int (&(ieee->h)); t.abfd = (bfd *) NULL; ieee->element_count++; obstack_grow (&ob, (PTR) & t, sizeof (t)); /* Make sure that we don't go over the end of the buffer */ if ((size_t) ieee_pos (abfd) > sizeof (buffer) / 2) { /* Past half way, reseek and reprime */ buffer_offset += ieee_pos (abfd); if (bfd_seek (abfd, buffer_offset, SEEK_SET) != 0) return NULL; /* FIXME: Check return value. I'm not sure whether it needs to read the entire buffer or not. */ bfd_read ((PTR) buffer, 1, sizeof (buffer), abfd); ieee->h.first_byte = buffer; ieee->h.input_p = buffer; } } else loop = false; } ieee->elements = (ieee_ar_obstack_type *) obstack_finish (&ob); if (!ieee->elements) { bfd_set_error (bfd_error_no_memory); return (const bfd_target *) NULL; } /* Now scan the area again, and replace BB offsets with file */ /* offsets */ for (i = 2; i < ieee->element_count; i++) { if (bfd_seek (abfd, ieee->elements[i].file_offset, SEEK_SET) != 0) return NULL; /* FIXME: Check return value. I'm not sure whether it needs to read the entire buffer or not. */ bfd_read ((PTR) buffer, 1, sizeof (buffer), abfd); ieee->h.first_byte = buffer; ieee->h.input_p = buffer; next_byte (&(ieee->h)); /* Drop F8 */ next_byte (&(ieee->h)); /* Drop 14 */ must_parse_int (&(ieee->h)); /* Drop size of block */ if (must_parse_int (&(ieee->h)) != 0) { /* This object has been deleted */ ieee->elements[i].file_offset = 0; } else { ieee->elements[i].file_offset = must_parse_int (&(ieee->h)); } } /* abfd->has_armap = ;*/ return abfd->xvec; } static boolean ieee_mkobject (abfd) bfd *abfd; { abfd->tdata.ieee_data = (ieee_data_type *) bfd_zalloc (abfd, sizeof (ieee_data_type)); return abfd->tdata.ieee_data ? true : false; } const bfd_target * ieee_object_p (abfd) bfd *abfd; { char *processor; unsigned int part; ieee_data_type *ieee; unsigned char buffer[300]; ieee_data_type *save = IEEE_DATA (abfd); abfd->tdata.ieee_data = 0; ieee_mkobject (abfd); ieee = IEEE_DATA (abfd); if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0) goto fail; /* Read the first few bytes in to see if it makes sense */ /* FIXME: Check return value. I'm not sure whether it needs to read the entire buffer or not. */ bfd_read ((PTR) buffer, 1, sizeof (buffer), abfd); ieee->h.input_p = buffer; if (this_byte_and_next (&(ieee->h)) != Module_Beginning) goto got_wrong_format; ieee->read_symbols = false; ieee->read_data = false; ieee->section_count = 0; ieee->external_symbol_max_index = 0; ieee->external_symbol_min_index = IEEE_PUBLIC_BASE; ieee->external_reference_min_index = IEEE_REFERENCE_BASE; ieee->external_reference_max_index = 0; ieee->h.abfd = abfd; memset ((PTR) ieee->section_table, 0, sizeof (ieee->section_table)); processor = ieee->mb.processor = read_id (&(ieee->h)); if (strcmp (processor, "LIBRARY") == 0) goto got_wrong_format; ieee->mb.module_name = read_id (&(ieee->h)); if (abfd->filename == (CONST char *) NULL) { abfd->filename = ieee->mb.module_name; } /* Determine the architecture and machine type of the object file. */ { const bfd_arch_info_type *arch = bfd_scan_arch (processor); if (arch == 0) goto got_wrong_format; abfd->arch_info = arch; } if (this_byte (&(ieee->h)) != (int) ieee_address_descriptor_enum) { goto fail; } next_byte (&(ieee->h)); if (parse_int (&(ieee->h), &ieee->ad.number_of_bits_mau) == false) { goto fail; } if (parse_int (&(ieee->h), &ieee->ad.number_of_maus_in_address) == false) { goto fail; } /* If there is a byte order info, take it */ if (this_byte (&(ieee->h)) == (int) ieee_variable_L_enum || this_byte (&(ieee->h)) == (int) ieee_variable_M_enum) next_byte (&(ieee->h)); for (part = 0; part < N_W_VARIABLES; part++) { boolean ok; if (read_2bytes (&(ieee->h)) != (int) ieee_assign_value_to_variable_enum) { goto fail; } if (this_byte_and_next (&(ieee->h)) != part) { goto fail; } ieee->w.offset[part] = parse_i (&(ieee->h), &ok); if (ok == false) { goto fail; } } abfd->flags = HAS_SYMS; /* By now we know that this is a real IEEE file, we're going to read the whole thing into memory so that we can run up and down it quickly. We can work out how big the file is from the trailer record */ IEEE_DATA (abfd)->h.first_byte = (unsigned char *) bfd_alloc (ieee->h.abfd, ieee->w.r.me_record + 50); if (!IEEE_DATA (abfd)->h.first_byte) goto fail; if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0) goto fail; /* FIXME: Check return value. I'm not sure whether it needs to read the entire buffer or not. */ bfd_read ((PTR) (IEEE_DATA (abfd)->h.first_byte), 1, ieee->w.r.me_record + 50, abfd); ieee_slurp_sections (abfd); return abfd->xvec; got_wrong_format: bfd_set_error (bfd_error_wrong_format); fail: (void) bfd_release (abfd, ieee); abfd->tdata.ieee_data = save; return (const bfd_target *) NULL; } void ieee_get_symbol_info (ignore_abfd, symbol, ret) bfd *ignore_abfd; asymbol *symbol; symbol_info *ret; { bfd_symbol_info (symbol, ret); if (symbol->name[0] == ' ') ret->name = "* empty table entry "; if (!symbol->section) ret->type = (symbol->flags & BSF_LOCAL) ? 'a' : 'A'; } void ieee_print_symbol (ignore_abfd, afile, symbol, how) bfd *ignore_abfd; PTR afile; asymbol *symbol; bfd_print_symbol_type how; { FILE *file = (FILE *) afile; switch (how) { case bfd_print_symbol_name: fprintf (file, "%s", symbol->name); break; case bfd_print_symbol_more: #if 0 fprintf (file, "%4x %2x", aout_symbol (symbol)->desc & 0xffff, aout_symbol (symbol)->other & 0xff); #endif BFD_FAIL (); break; case bfd_print_symbol_all: { CONST char *section_name = symbol->section == (asection *) NULL ? (CONST char *) "*abs" : symbol->section->name; if (symbol->name[0] == ' ') { fprintf (file, "* empty table entry "); } else { bfd_print_symbol_vandf ((PTR) file, symbol); fprintf (file, " %-5s %04x %02x %s", section_name, (unsigned) ieee_symbol (symbol)->index, (unsigned) 0, /* aout_symbol(symbol)->desc & 0xffff, aout_symbol(symbol)->other & 0xff,*/ symbol->name); } } break; } } static boolean do_one (ieee, current_map, location_ptr, s) ieee_data_type *ieee; ieee_per_section_type *current_map; unsigned char *location_ptr; asection *s; { switch (this_byte (&(ieee->h))) { case ieee_load_constant_bytes_enum: { unsigned int number_of_maus; unsigned int i; next_byte (&(ieee->h)); number_of_maus = must_parse_int (&(ieee->h)); for (i = 0; i < number_of_maus; i++) { location_ptr[current_map->pc++] = this_byte (&(ieee->h)); next_byte (&(ieee->h)); } } break; case ieee_load_with_relocation_enum: { boolean loop = true; next_byte (&(ieee->h)); while (loop) { switch (this_byte (&(ieee->h))) { case ieee_variable_R_enum: case ieee_function_signed_open_b_enum: case ieee_function_unsigned_open_b_enum: case ieee_function_either_open_b_enum: { unsigned int extra = 4; boolean pcrel = false; asection *section; ieee_reloc_type *r = (ieee_reloc_type *) bfd_alloc (ieee->h.abfd, sizeof (ieee_reloc_type)); if (!r) return false; *(current_map->reloc_tail_ptr) = r; current_map->reloc_tail_ptr = &r->next; r->next = (ieee_reloc_type *) NULL; next_byte (&(ieee->h)); /* abort();*/ r->relent.sym_ptr_ptr = 0; parse_expression (ieee, &r->relent.addend, &r->symbol, &pcrel, &extra, §ion); r->relent.address = current_map->pc; s->reloc_count++; if (r->relent.sym_ptr_ptr == 0) { r->relent.sym_ptr_ptr = section->symbol_ptr_ptr; } if (this_byte (&(ieee->h)) == (int) ieee_comma) { next_byte (&(ieee->h)); /* Fetch number of bytes to pad */ extra = must_parse_int (&(ieee->h)); }; switch (this_byte (&(ieee->h))) { case ieee_function_signed_close_b_enum: next_byte (&(ieee->h)); break; case ieee_function_unsigned_close_b_enum: next_byte (&(ieee->h)); break; case ieee_function_either_close_b_enum: next_byte (&(ieee->h)); break; default: break; } /* Build a relocation entry for this type */ /* If pc rel then stick -ve pc into instruction and take out of reloc .. I've changed this. It's all too complicated. I keep 0 in the instruction now. */ switch (extra) { case 0: case 4: if (pcrel == true) { #if KEEPMINUSPCININST bfd_put_32 (ieee->h.abfd, -current_map->pc, location_ptr + current_map->pc); r->relent.howto = &rel32_howto; r->relent.addend -= current_map->pc; #else bfd_put_32 (ieee->h.abfd, 0, location_ptr + current_map->pc); r->relent.howto = &rel32_howto; #endif } else { bfd_put_32 (ieee->h.abfd, 0, location_ptr + current_map->pc); r->relent.howto = &abs32_howto; } current_map->pc += 4; break; case 2: if (pcrel == true) { #if KEEPMINUSPCININST bfd_put_16 (ieee->h.abfd, (int) (-current_map->pc), location_ptr + current_map->pc); r->relent.addend -= current_map->pc; r->relent.howto = &rel16_howto; #else bfd_put_16 (ieee->h.abfd, 0, location_ptr + current_map->pc); r->relent.howto = &rel16_howto; #endif } else { bfd_put_16 (ieee->h.abfd, 0, location_ptr + current_map->pc); r->relent.howto = &abs16_howto; } current_map->pc += 2; break; case 1: if (pcrel == true) { #if KEEPMINUSPCININST bfd_put_8 (ieee->h.abfd, (int) (-current_map->pc), location_ptr + current_map->pc); r->relent.addend -= current_map->pc; r->relent.howto = &rel8_howto; #else bfd_put_8 (ieee->h.abfd, 0, location_ptr + current_map->pc); r->relent.howto = &rel8_howto; #endif } else { bfd_put_8 (ieee->h.abfd, 0, location_ptr + current_map->pc); r->relent.howto = &abs8_howto; } current_map->pc += 1; break; default: BFD_FAIL (); break; } } break; default: { bfd_vma this_size; if (parse_int (&(ieee->h), &this_size) == true) { unsigned int i; for (i = 0; i < this_size; i++) { location_ptr[current_map->pc++] = this_byte (&(ieee->h)); next_byte (&(ieee->h)); } } else { loop = false; } } } } } } return true; } /* Read in all the section data and relocation stuff too */ static boolean ieee_slurp_section_data (abfd) bfd *abfd; { bfd_byte *location_ptr = (bfd_byte *) NULL; ieee_data_type *ieee = IEEE_DATA (abfd); unsigned int section_number; ieee_per_section_type *current_map = (ieee_per_section_type *) NULL; asection *s; /* Seek to the start of the data area */ if (ieee->read_data == true) return true; ieee->read_data = true; ieee_seek (abfd, ieee->w.r.data_part); /* Allocate enough space for all the section contents */ for (s = abfd->sections; s != (asection *) NULL; s = s->next) { ieee_per_section_type *per = (ieee_per_section_type *) s->used_by_bfd; per->data = (bfd_byte *) bfd_alloc (ieee->h.abfd, s->_raw_size); if (!per->data) return false; /*SUPPRESS 68*/ per->reloc_tail_ptr = (ieee_reloc_type **) & (s->relocation); } while (true) { switch (this_byte (&(ieee->h))) { /* IF we see anything strange then quit */ default: return true; case ieee_set_current_section_enum: next_byte (&(ieee->h)); section_number = must_parse_int (&(ieee->h)); s = ieee->section_table[section_number]; current_map = (ieee_per_section_type *) s->used_by_bfd; location_ptr = current_map->data - s->vma; /* The document I have says that Microtec's compilers reset */ /* this after a sec section, even though the standard says not */ /* to. SO .. */ current_map->pc = s->vma; break; case ieee_e2_first_byte_enum: next_byte (&(ieee->h)); switch (this_byte (&(ieee->h))) { case ieee_set_current_pc_enum & 0xff: { bfd_vma value; ieee_symbol_index_type symbol; unsigned int extra; boolean pcrel; next_byte (&(ieee->h)); must_parse_int (&(ieee->h)); /* Thow away section #*/ parse_expression (ieee, &value, &symbol, &pcrel, &extra, 0); current_map->pc = value; BFD_ASSERT ((unsigned) (value - s->vma) <= s->_raw_size); } break; case ieee_value_starting_address_enum & 0xff: /* We've got to the end of the data now - */ return true; default: BFD_FAIL (); return true; } break; case ieee_repeat_data_enum: { /* Repeat the following LD or LR n times - we do this by remembering the stream pointer before running it and resetting it and running it n times. We special case the repetition of a repeat_data/load_constant */ unsigned int iterations; unsigned char *start; next_byte (&(ieee->h)); iterations = must_parse_int (&(ieee->h)); start = ieee->h.input_p; if (start[0] == (int) ieee_load_constant_bytes_enum && start[1] == 1) { while (iterations != 0) { location_ptr[current_map->pc++] = start[2]; iterations--; } next_byte (&(ieee->h)); next_byte (&(ieee->h)); next_byte (&(ieee->h)); } else { while (iterations != 0) { ieee->h.input_p = start; if (!do_one (ieee, current_map, location_ptr, s)) return false; iterations--; } } } break; case ieee_load_constant_bytes_enum: case ieee_load_with_relocation_enum: { if (!do_one (ieee, current_map, location_ptr, s)) return false; } } } } boolean ieee_new_section_hook (abfd, newsect) bfd *abfd; asection *newsect; { newsect->used_by_bfd = (PTR) bfd_alloc (abfd, sizeof (ieee_per_section_type)); if (!newsect->used_by_bfd) return false; ieee_per_section (newsect)->data = (bfd_byte *) NULL; ieee_per_section (newsect)->section = newsect; return true; } long ieee_get_reloc_upper_bound (abfd, asect) bfd *abfd; sec_ptr asect; { if (! ieee_slurp_section_data (abfd)) return -1; return (asect->reloc_count + 1) * sizeof (arelent *); } static boolean ieee_get_section_contents (abfd, section, location, offset, count) bfd *abfd; sec_ptr section; PTR location; file_ptr offset; bfd_size_type count; { ieee_per_section_type *p = (ieee_per_section_type *) section->used_by_bfd; ieee_slurp_section_data (abfd); (void) memcpy ((PTR) location, (PTR) (p->data + offset), (unsigned) count); return true; } long ieee_canonicalize_reloc (abfd, section, relptr, symbols) bfd *abfd; sec_ptr section; arelent **relptr; asymbol **symbols; { /* ieee_per_section_type *p = (ieee_per_section_type *) section->used_by_bfd;*/ ieee_reloc_type *src = (ieee_reloc_type *) (section->relocation); ieee_data_type *ieee = IEEE_DATA (abfd); while (src != (ieee_reloc_type *) NULL) { /* Work out which symbol to attach it this reloc to */ switch (src->symbol.letter) { case 'X': src->relent.sym_ptr_ptr = symbols + src->symbol.index + ieee->external_reference_base_offset; break; case 0: src->relent.sym_ptr_ptr = src->relent.sym_ptr_ptr[0]->section->symbol_ptr_ptr; break; default: BFD_FAIL (); } *relptr++ = &src->relent; src = src->next; } *relptr = (arelent *) NULL; return section->reloc_count; } static int comp (ap, bp) CONST PTR ap; CONST PTR bp; { arelent *a = *((arelent **) ap); arelent *b = *((arelent **) bp); return a->address - b->address; } /* Write the section headers */ static void ieee_write_section_part (abfd) bfd *abfd; { ieee_data_type *ieee = IEEE_DATA (abfd); asection *s; ieee->w.r.section_part = bfd_tell (abfd); for (s = abfd->sections; s != (asection *) NULL; s = s->next) { if (! bfd_is_abs_section (s)) { ieee_write_byte (abfd, ieee_section_type_enum); ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE)); if (abfd->flags & EXEC_P) { /* This image is executable, so output absolute sections */ ieee_write_byte (abfd, ieee_variable_A_enum); ieee_write_byte (abfd, ieee_variable_S_enum); } else { ieee_write_byte (abfd, ieee_variable_C_enum); } switch (s->flags & (SEC_CODE | SEC_DATA | SEC_ROM)) { case SEC_CODE | SEC_LOAD: case SEC_CODE: ieee_write_byte (abfd, ieee_variable_P_enum); break; case SEC_DATA: default: ieee_write_byte (abfd, ieee_variable_D_enum); break; case SEC_ROM: case SEC_ROM | SEC_DATA: case SEC_ROM | SEC_LOAD: case SEC_ROM | SEC_DATA | SEC_LOAD: ieee_write_byte (abfd, ieee_variable_R_enum); } ieee_write_id (abfd, s->name); #if 0 ieee_write_int (abfd, 0); /* Parent */ ieee_write_int (abfd, 0); /* Brother */ ieee_write_int (abfd, 0); /* Context */ #endif /* Alignment */ ieee_write_byte (abfd, ieee_section_alignment_enum); ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE)); ieee_write_int (abfd, 1 << s->alignment_power); /* Size */ ieee_write_2bytes (abfd, ieee_section_size_enum); ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE)); ieee_write_int (abfd, s->_raw_size); if (abfd->flags & EXEC_P) { /* Relocateable sections don't have asl records */ /* Vma */ ieee_write_2bytes (abfd, ieee_section_base_address_enum); ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE)); ieee_write_int (abfd, s->vma); } } } } static boolean do_with_relocs (abfd, s) bfd *abfd; asection *s; { unsigned int relocs_to_go = s->reloc_count; bfd_byte *stream = ieee_per_section (s)->data; arelent **p = s->orelocation; bfd_size_type current_byte_index = 0; qsort (s->orelocation, relocs_to_go, sizeof (arelent **), comp); /* Output the section preheader */ ieee_write_byte (abfd, ieee_set_current_section_enum); ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE)); ieee_write_twobyte (abfd, ieee_set_current_pc_enum); ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE)); ieee_write_expression (abfd, 0, s->symbol, 0, 0); if (relocs_to_go == 0) { /* If there arn't any relocations then output the load constant byte opcode rather than the load with relocation opcode */ while (current_byte_index < s->_raw_size) { bfd_size_type run; unsigned int MAXRUN = 32; run = MAXRUN; if (run > s->_raw_size - current_byte_index) { run = s->_raw_size - current_byte_index; } if (run != 0) { ieee_write_byte (abfd, ieee_load_constant_bytes_enum); /* Output a stream of bytes */ ieee_write_int (abfd, run); if (bfd_write ((PTR) (stream + current_byte_index), 1, run, abfd) != run) return false; current_byte_index += run; } } } else { ieee_write_byte (abfd, ieee_load_with_relocation_enum); /* Output the data stream as the longest sequence of bytes possible, allowing for the a reasonable packet size and relocation stuffs */ if ((PTR) stream == (PTR) NULL) { /* Outputting a section without data, fill it up */ stream = (unsigned char *) (bfd_alloc (abfd, s->_raw_size)); if (!stream) return false; memset ((PTR) stream, 0, (size_t) s->_raw_size); } while (current_byte_index < s->_raw_size) { bfd_size_type run; unsigned int MAXRUN = 32; if (relocs_to_go) { run = (*p)->address - current_byte_index; } else { run = MAXRUN; } if (run > s->_raw_size - current_byte_index) { run = s->_raw_size - current_byte_index; } if (run != 0) { /* Output a stream of bytes */ ieee_write_int (abfd, run); if (bfd_write ((PTR) (stream + current_byte_index), 1, run, abfd) != run) return false; current_byte_index += run; } /* Output any relocations here */ if (relocs_to_go && (*p) && (*p)->address == current_byte_index) { while (relocs_to_go && (*p) && (*p)->address == current_byte_index) { arelent *r = *p; bfd_vma ov; #if 0 if (r->howto->pc_relative) { r->addend += current_byte_index; } #endif switch (r->howto->size) { case 2: ov = bfd_get_32 (abfd, stream + current_byte_index); current_byte_index += 4; break; case 1: ov = bfd_get_16 (abfd, stream + current_byte_index); current_byte_index += 2; break; case 0: ov = bfd_get_8 (abfd, stream + current_byte_index); current_byte_index++; break; default: ov = 0; BFD_FAIL (); } ieee_write_byte (abfd, ieee_function_either_open_b_enum); /* abort();*/ if (r->sym_ptr_ptr != (asymbol **) NULL) { ieee_write_expression (abfd, r->addend + ov, *(r->sym_ptr_ptr), r->howto->pc_relative, s->index); } else { ieee_write_expression (abfd, r->addend + ov, (asymbol *) NULL, r->howto->pc_relative, s->index); } if (1 || r->howto->size != 2) { ieee_write_byte (abfd, ieee_comma); ieee_write_int (abfd, 1 << r->howto->size); } ieee_write_byte (abfd, ieee_function_either_close_b_enum); relocs_to_go--; p++; } } } } return true; } /* If there are no relocations in the output section then we can be clever about how we write. We block items up into a max of 127 bytes */ static void do_as_repeat (abfd, s) bfd *abfd; asection *s; { if (s->_raw_size) { ieee_write_byte (abfd, ieee_set_current_section_enum); ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE)); ieee_write_byte (abfd, ieee_set_current_pc_enum >> 8); ieee_write_byte (abfd, ieee_set_current_pc_enum & 0xff); ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE)); ieee_write_int (abfd, s->vma); ieee_write_byte (abfd, ieee_repeat_data_enum); ieee_write_int (abfd, s->_raw_size); ieee_write_byte (abfd, ieee_load_constant_bytes_enum); ieee_write_byte (abfd, 1); ieee_write_byte (abfd, 0); } } static void do_without_relocs (abfd, s) bfd *abfd; asection *s; { bfd_byte *stream = ieee_per_section (s)->data; if (stream == 0 || ((s->flags & SEC_LOAD) == 0)) { do_as_repeat (abfd, s); } else { unsigned int i; for (i = 0; i < s->_raw_size; i++) { if (stream[i] != 0) { do_with_relocs (abfd, s); return; } } do_as_repeat (abfd, s); } } static unsigned char *output_ptr_start; static unsigned char *output_ptr; static unsigned char *output_ptr_end; static unsigned char *input_ptr_start; static unsigned char *input_ptr; static unsigned char *input_ptr_end; static bfd *input_bfd; static bfd *output_bfd; static int output_buffer; static void fill () { /* FIXME: Check return value. I'm not sure whether it needs to read the entire buffer or not. */ bfd_read ((PTR) input_ptr_start, 1, input_ptr_end - input_ptr_start, input_bfd); input_ptr = input_ptr_start; } static void flush () { if (bfd_write ((PTR) (output_ptr_start), 1, output_ptr - output_ptr_start, output_bfd) != (bfd_size_type) (output_ptr - output_ptr_start)) abort (); output_ptr = output_ptr_start; output_buffer++; } #define THIS() ( *input_ptr ) #define NEXT() { input_ptr++; if (input_ptr == input_ptr_end) fill(); } #define OUT(x) { *output_ptr++ = (x); if(output_ptr == output_ptr_end) flush(); } static void write_int (value) int value; { if (value >= 0 && value <= 127) { OUT (value); } else { unsigned int length; /* How many significant bytes ? */ /* FIXME FOR LONGER INTS */ if (value & 0xff000000) { length = 4; } else if (value & 0x00ff0000) { length = 3; } else if (value & 0x0000ff00) { length = 2; } else length = 1; OUT ((int) ieee_number_repeat_start_enum + length); switch (length) { case 4: OUT (value >> 24); case 3: OUT (value >> 16); case 2: OUT (value >> 8); case 1: OUT (value); } } } static void copy_id () { int length = THIS (); char ch; OUT (length); NEXT (); while (length--) { ch = THIS (); OUT (ch); NEXT (); } } #define VAR(x) ((x | 0x80)) static void copy_expression () { int stack[10]; int *tos = stack; int value = 0; while (1) { switch (THIS ()) { case 0x84: NEXT (); value = THIS (); NEXT (); value = (value << 8) | THIS (); NEXT (); value = (value << 8) | THIS (); NEXT (); value = (value << 8) | THIS (); NEXT (); *tos++ = value; break; case 0x83: NEXT (); value = THIS (); NEXT (); value = (value << 8) | THIS (); NEXT (); value = (value << 8) | THIS (); NEXT (); *tos++ = value; break; case 0x82: NEXT (); value = THIS (); NEXT (); value = (value << 8) | THIS (); NEXT (); *tos++ = value; break; case 0x81: NEXT (); value = THIS (); NEXT (); *tos++ = value; break; case 0x80: NEXT (); *tos++ = 0; break; default: if (THIS () > 0x84) { /* Not a number, just bug out with the answer */ write_int (*(--tos)); return; } *tos++ = THIS (); NEXT (); value = 0; break; case 0xa5: /* PLUS anything */ { int value = *(--tos); value += *(--tos); *tos++ = value; NEXT (); } break; case VAR ('R'): { int section_number; ieee_data_type *ieee; asection *s; NEXT (); section_number = THIS (); NEXT (); ieee = IEEE_DATA (input_bfd); s = ieee->section_table[section_number]; if (s->output_section) { value = s->output_section->vma; } else { value = 0; } value += s->output_offset; *tos++ = value; value = 0; } break; case 0x90: { NEXT (); write_int (*(--tos)); OUT (0x90); return; } } } } /* Drop the int in the buffer, and copy a null into the gap, which we will overwrite later */ struct output_buffer_struct { unsigned char *ptrp; int buffer; }; static void fill_int (buf) struct output_buffer_struct *buf; { if (buf->buffer == output_buffer) { /* Still a chance to output the size */ int value = output_ptr - buf->ptrp + 3; buf->ptrp[0] = value >> 24; buf->ptrp[1] = value >> 16; buf->ptrp[2] = value >> 8; buf->ptrp[3] = value >> 0; } } static void drop_int (buf) struct output_buffer_struct *buf; { int type = THIS (); int ch; if (type <= 0x84) { NEXT (); switch (type) { case 0x84: ch = THIS (); NEXT (); case 0x83: ch = THIS (); NEXT (); case 0x82: ch = THIS (); NEXT (); case 0x81: ch = THIS (); NEXT (); case 0x80: break; } } OUT (0x84); buf->ptrp = output_ptr; buf->buffer = output_buffer; OUT (0); OUT (0); OUT (0); OUT (0); } static void copy_int () { int type = THIS (); int ch; if (type <= 0x84) { OUT (type); NEXT (); switch (type) { case 0x84: ch = THIS (); NEXT (); OUT (ch); case 0x83: ch = THIS (); NEXT (); OUT (ch); case 0x82: ch = THIS (); NEXT (); OUT (ch); case 0x81: ch = THIS (); NEXT (); OUT (ch); case 0x80: break; } } } #define ID copy_id() #define INT copy_int() #define EXP copy_expression() static void copy_till_end (); #define INTn(q) copy_int() #define EXPn(q) copy_expression() static void f1_record () { int ch; /* ATN record */ NEXT (); ch = THIS (); switch (ch) { default: OUT (0xf1); OUT (ch); break; case 0xc9: NEXT (); OUT (0xf1); OUT (0xc9); INT; INT; ch = THIS (); switch (ch) { case 0x16: NEXT (); break; case 0x01: NEXT (); break; case 0x00: NEXT (); INT; break; case 0x03: NEXT (); INT; break; case 0x13: EXPn (instruction address); break; default: break; } break; case 0xd8: /* EXternal ref */ NEXT (); OUT (0xf1); OUT (0xd8); EXP; EXP; EXP; EXP; break; case 0xce: NEXT (); OUT (0xf1); OUT (0xce); INT; INT; ch = THIS (); INT; switch (ch) { case 0x01: INT; INT; break; case 0x02: INT; break; case 0x04: EXPn (external function); break; case 0x05: break; case 0x07: INTn (line number); INT; case 0x08: break; case 0x0a: INTn (locked register); INT; break; case 0x3f: copy_till_end (); break; case 0x3e: copy_till_end (); break; case 0x40: copy_till_end (); break; case 0x41: ID; break; } } } static void f0_record () { /* Attribute record */ NEXT (); OUT (0xf0); INTn (Symbol name); ID; } static void copy_till_end () { int ch = THIS (); while (1) { while (ch <= 0x80) { OUT (ch); NEXT (); ch = THIS (); } switch (ch) { case 0x84: OUT (THIS ()); NEXT (); case 0x83: OUT (THIS ()); NEXT (); case 0x82: OUT (THIS ()); NEXT (); case 0x81: OUT (THIS ()); NEXT (); OUT (THIS ()); NEXT (); ch = THIS (); break; default: return; } } } static void f2_record () { NEXT (); OUT (0xf2); INT; NEXT (); OUT (0xce); INT; copy_till_end (); } static void block (); static void f8_record () { int ch; NEXT (); ch = THIS (); switch (ch) { case 0x01: case 0x02: case 0x03: /* Unique typedefs for module */ /* GLobal typedefs */ /* High level module scope beginning */ { struct output_buffer_struct ob; NEXT (); OUT (0xf8); OUT (ch); drop_int (&ob); ID; block (); NEXT (); fill_int (&ob); OUT (0xf9); } break; case 0x04: /* Global function */ { struct output_buffer_struct ob; NEXT (); OUT (0xf8); OUT (0x04); drop_int (&ob); ID; INTn (stack size); INTn (ret val); EXPn (offset); block (); NEXT (); OUT (0xf9); EXPn (size of block); fill_int (&ob); } break; case 0x05: /* File name for source line numbers */ { struct output_buffer_struct ob; NEXT (); OUT (0xf8); OUT (0x05); drop_int (&ob); ID; INTn (year); INTn (month); INTn (day); INTn (hour); INTn (monute); INTn (second); block (); NEXT (); OUT (0xf9); fill_int (&ob); } break; case 0x06: /* Local function */ { struct output_buffer_struct ob; NEXT (); OUT (0xf8); OUT (0x06); drop_int (&ob); ID; INTn (stack size); INTn (type return); EXPn (offset); block (); NEXT (); OUT (0xf9); EXPn (size); fill_int (&ob); } break; case 0x0a: /* Assembler module scope beginning -*/ { struct output_buffer_struct ob; NEXT (); OUT (0xf8); OUT (0x0a); drop_int (&ob); ID; ID; INT; ID; INT; INT; INT; INT; INT; INT; block (); NEXT (); OUT (0xf9); fill_int (&ob); } break; case 0x0b: { struct output_buffer_struct ob; NEXT (); OUT (0xf8); OUT (0x0b); drop_int (&ob); ID; INT; INTn (section index); EXPn (offset); INTn (stuff); block (); OUT (0xf9); NEXT (); EXPn (Size in Maus); fill_int (&ob); } break; } } static void e2_record () { OUT (0xe2); NEXT (); OUT (0xce); NEXT (); INT; EXP; } static void block () { int ch; while (1) { ch = THIS (); switch (ch) { case 0xe1: case 0xe5: return; case 0xf9: return; case 0xf0: f0_record (); break; case 0xf1: f1_record (); break; case 0xf2: f2_record (); break; case 0xf8: f8_record (); break; case 0xe2: e2_record (); break; } } } /* relocate_debug, moves all the debug information from the source bfd to the output bfd, and relocates any expressions it finds */ static void relocate_debug (output, input) bfd *output; bfd *input; { #define IBS 400 #define OBS 400 unsigned char input_buffer[IBS]; input_ptr_start = input_ptr = input_buffer; input_ptr_end = input_buffer + IBS; input_bfd = input; /* FIXME: Check return value. I'm not sure whether it needs to read the entire buffer or not. */ bfd_read ((PTR) input_ptr_start, 1, IBS, input); block (); } /* During linking, we we told about the bfds which made up our contents, we have a list of them. They will still be open, so go to the debug info in each, and copy it out, relocating it as we go. */ static void ieee_write_debug_part (abfd) bfd *abfd; { ieee_data_type *ieee = IEEE_DATA (abfd); bfd_chain_type *chain = ieee->chain_root; unsigned char output_buffer[OBS]; boolean some_debug = false; file_ptr here = bfd_tell (abfd); output_ptr_start = output_ptr = output_buffer; output_ptr_end = output_buffer + OBS; output_ptr = output_buffer; output_bfd = abfd; if (chain == (bfd_chain_type *) NULL) { #if 0 /* There is no debug info, so we'll fake some up */ CONST static char fake[] = { 0xf8, 0xa, 0, 5, 't', 't', 't', 't', 't', 0, 2, 3, '1', '.', '1', 0x82, 1991 >> 8, 1991 & 0xff, 9, 20, 11, 07, 50}; ieee->w.r.debug_information_part = 0; here; /* bfd_write(fake, 1, sizeof(fake), abfd);*/ /* Now write a header for each section */ { int i = 0; asection *s = abfd->sections; while (s) { if (s != abfd->abs_section) { ieee_write_byte (abfd, 0xf8); ieee_write_byte (abfd, 0x0b); ieee_write_byte (abfd, 0); ieee_write_byte (abfd, 0); ieee_write_byte (abfd, 1); ieee_write_byte (abfd, i + IEEE_SECTION_NUMBER_BASE); ieee_write_expression (abfd, 0, s->symbol, 0, 0, 0); ieee_write_byte (abfd, 0); ieee_write_byte (abfd, 0xf9); ieee_write_expression (abfd, s->size, bfd_abs_section_ptr->symbol, 0, 0, 0); i++; } s = s->next; } /* Close the scope */ ieee_write_byte (abfd, 0xf9); } #endif } else { while (chain != (bfd_chain_type *) NULL) { bfd *entry = chain->this; ieee_data_type *entry_ieee = IEEE_DATA (entry); if (entry_ieee->w.r.debug_information_part) { if (bfd_seek (entry, entry_ieee->w.r.debug_information_part, SEEK_SET) != 0) abort (); relocate_debug (abfd, entry); } chain = chain->next; } if (some_debug) { ieee->w.r.debug_information_part = here; } else { ieee->w.r.debug_information_part = 0; } } flush (); } /* write the data in an ieee way */ static void ieee_write_data_part (abfd) bfd *abfd; { asection *s; ieee_data_type *ieee = IEEE_DATA (abfd); ieee->w.r.data_part = bfd_tell (abfd); for (s = abfd->sections; s != (asection *) NULL; s = s->next) { /* Sort the reloc records so we can insert them in the correct places */ if (s->reloc_count != 0) { do_with_relocs (abfd, s); } else { do_without_relocs (abfd, s); } } } static boolean init_for_output (abfd) bfd *abfd; { asection *s; for (s = abfd->sections; s != (asection *) NULL; s = s->next) { if (s->_raw_size != 0) { ieee_per_section (s)->data = (bfd_byte *) (bfd_alloc (abfd, s->_raw_size)); if (!ieee_per_section (s)->data) return false; } } return true; } /** exec and core file sections */ /* set section contents is complicated with IEEE since the format is * not a byte image, but a record stream. */ boolean ieee_set_section_contents (abfd, section, location, offset, count) bfd *abfd; sec_ptr section; PTR location; file_ptr offset; bfd_size_type count; { if (ieee_per_section (section)->data == (bfd_byte *) NULL) { if (!init_for_output (abfd)) return false; } memcpy ((PTR) (ieee_per_section (section)->data + offset), (PTR) location, (unsigned int) count); return true; } /* write the external symbols of a file, IEEE considers two sorts of external symbols, public, and referenced. It uses to internal forms to index them as well. When we write them out we turn their symbol values into indexes from the right base. */ static void ieee_write_external_part (abfd) bfd *abfd; { asymbol **q; ieee_data_type *ieee = IEEE_DATA (abfd); unsigned int reference_index = IEEE_REFERENCE_BASE; unsigned int public_index = IEEE_PUBLIC_BASE + 2; file_ptr here = bfd_tell (abfd); boolean hadone = false; if (abfd->outsymbols != (asymbol **) NULL) { for (q = abfd->outsymbols; *q != (asymbol *) NULL; q++) { asymbol *p = *q; hadone = true; if (bfd_is_und_section (p->section)) { /* This must be a symbol reference .. */ ieee_write_byte (abfd, ieee_external_reference_enum); ieee_write_int (abfd, reference_index); ieee_write_id (abfd, p->name); p->value = reference_index; reference_index++; } else if (bfd_is_com_section (p->section)) { /* This is a weak reference */ ieee_write_byte (abfd, ieee_external_reference_enum); ieee_write_int (abfd, reference_index); ieee_write_id (abfd, p->name); ieee_write_byte (abfd, ieee_weak_external_reference_enum); ieee_write_int (abfd, reference_index); ieee_write_int (abfd, p->value); ieee_write_int (abfd, BFD_FORT_COMM_DEFAULT_VALUE); p->value = reference_index; reference_index++; } else if (p->flags & BSF_GLOBAL) { /* This must be a symbol definition */ ieee_write_byte (abfd, ieee_external_symbol_enum); ieee_write_int (abfd, public_index); ieee_write_id (abfd, p->name); ieee_write_twobyte (abfd, ieee_attribute_record_enum); ieee_write_int (abfd, public_index); ieee_write_byte (abfd, 15); /* instruction address */ ieee_write_byte (abfd, 19); /* static symbol */ ieee_write_byte (abfd, 1); /* one of them */ /* Write out the value */ ieee_write_2bytes (abfd, ieee_value_record_enum); ieee_write_int (abfd, public_index); if (! bfd_is_abs_section (p->section)) { if (abfd->flags & EXEC_P) { /* If fully linked, then output all symbols relocated */ ieee_write_int (abfd, p->value + p->section->output_offset + p->section->output_section->vma); } else { ieee_write_expression (abfd, p->value + p->section->output_offset, p->section->output_section->symbol ,false, 0); } } else { ieee_write_expression (abfd, p->value, bfd_abs_section_ptr->symbol, false, 0); } p->value = public_index; public_index++; } else { /* This can happen - when there are gaps in the symbols read */ /* from an input ieee file */ } } } if (hadone) ieee->w.r.external_part = here; } static CONST unsigned char exten[] = { 0xf0, 0x20, 0x00, 0xf1, 0xce, 0x20, 0x00, 37, 3, 3, /* Set version 3 rev 3 */ 0xf1, 0xce, 0x20, 0x00, 39, 2,/* keep symbol in original case */ 0xf1, 0xce, 0x20, 0x00, 38 /* set object type relocateable to x */ }; static CONST unsigned char envi[] = { 0xf0, 0x21, 0x00, /* 0xf1, 0xce, 0x21, 00, 50, 0x82, 0x07, 0xc7, 0x09, 0x11, 0x11, 0x19, 0x2c, */ 0xf1, 0xce, 0x21, 00, 52, 0x00, /* exec ok */ 0xf1, 0xce, 0x21, 0, 53, 0x03,/* host unix */ /* 0xf1, 0xce, 0x21, 0, 54, 2,1,1 tool & version # */ }; static void ieee_write_me_part (abfd) bfd *abfd; { ieee_data_type *ieee = IEEE_DATA (abfd); ieee->w.r.trailer_part = bfd_tell (abfd); if (abfd->start_address) { ieee->w.r.me_record = bfd_tell (abfd); ieee_write_2bytes (abfd, ieee_value_starting_address_enum); ieee_write_byte (abfd, ieee_function_either_open_b_enum); ieee_write_int (abfd, abfd->start_address); ieee_write_byte (abfd, ieee_function_either_close_b_enum); } else { ieee->w.r.me_record = bfd_tell (abfd); } ieee_write_byte (abfd, ieee_module_end_enum); } boolean ieee_write_object_contents (abfd) bfd *abfd; { ieee_data_type *ieee = IEEE_DATA (abfd); unsigned int i; file_ptr old; /* Fast forward over the header area */ if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0) return false; ieee_write_byte (abfd, ieee_module_beginning_enum); ieee_write_id (abfd, bfd_printable_name (abfd)); ieee_write_id (abfd, abfd->filename); /* Fast forward over the variable bits */ ieee_write_byte (abfd, ieee_address_descriptor_enum); /* Bits per MAU */ ieee_write_byte (abfd, (bfd_byte) (bfd_arch_bits_per_byte (abfd))); /* MAU's per address */ ieee_write_byte (abfd, (bfd_byte) (bfd_arch_bits_per_address (abfd) / bfd_arch_bits_per_byte (abfd))); old = bfd_tell (abfd); if (bfd_seek (abfd, (file_ptr) (8 * N_W_VARIABLES), SEEK_CUR) != 0) return false; ieee->w.r.extension_record = bfd_tell (abfd); if (bfd_write ((char *) exten, 1, sizeof (exten), abfd) != sizeof (exten)) return false; if (abfd->flags & EXEC_P) ieee_write_byte (abfd, 0x1);/* Absolute */ else ieee_write_byte (abfd, 0x2);/* Relocateable */ ieee->w.r.environmental_record = bfd_tell (abfd); if (bfd_write ((char *) envi, 1, sizeof (envi), abfd) != sizeof (envi)) return false; output_bfd = abfd; flush (); ieee_write_section_part (abfd); /* First write the symbols, this changes their values into table indeces so we cant use it after this point */ ieee_write_external_part (abfd); /* ieee_write_byte(abfd, ieee_record_seperator_enum);*/ /* ieee_write_byte(abfd, ieee_record_seperator_enum);*/ /* Write any debugs we have been told about */ ieee_write_debug_part (abfd); /* Can only write the data once the symbols have been written since the data contains relocation information which points to the symbols */ ieee_write_data_part (abfd); /* At the end we put the end ! */ ieee_write_me_part (abfd); /* Generate the header */ if (bfd_seek (abfd, old, SEEK_SET) != 0) return false; for (i = 0; i < N_W_VARIABLES; i++) { ieee_write_2bytes (abfd, ieee_assign_value_to_variable_enum); ieee_write_byte (abfd, (bfd_byte) i); ieee_write_int5_out (abfd, ieee->w.offset[i]); } return true; } /* Native-level interface to symbols. */ /* We read the symbols into a buffer, which is discarded when this function exits. We read the strings into a buffer large enough to hold them all plus all the cached symbol entries. */ asymbol * ieee_make_empty_symbol (abfd) bfd *abfd; { ieee_symbol_type *new = (ieee_symbol_type *) bfd_zmalloc (sizeof (ieee_symbol_type)); if (!new) return NULL; new->symbol.the_bfd = abfd; return &new->symbol; } static bfd * ieee_openr_next_archived_file (arch, prev) bfd *arch; bfd *prev; { ieee_ar_data_type *ar = IEEE_AR_DATA (arch); /* take the next one from the arch state, or reset */ if (prev == (bfd *) NULL) { /* Reset the index - the first two entries are bogus*/ ar->element_index = 2; } while (true) { ieee_ar_obstack_type *p = ar->elements + ar->element_index; ar->element_index++; if (ar->element_index <= ar->element_count) { if (p->file_offset != (file_ptr) 0) { if (p->abfd == (bfd *) NULL) { p->abfd = _bfd_create_empty_archive_element_shell (arch); p->abfd->origin = p->file_offset; } return p->abfd; } } else { bfd_set_error (bfd_error_no_more_archived_files); return (bfd *) NULL; } } } static boolean ieee_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr) bfd *abfd; asection *section; asymbol **symbols; bfd_vma offset; char **filename_ptr; char **functionname_ptr; int *line_ptr; { return false; } static int ieee_generic_stat_arch_elt (abfd, buf) bfd *abfd; struct stat *buf; { ieee_ar_data_type *ar = abfd->my_archive->tdata.ieee_ar_data; if (ar == (ieee_ar_data_type *) NULL) { bfd_set_error (bfd_error_invalid_operation); return -1; } else { buf->st_size = 0x1; buf->st_mode = 0666; return !ieee_object_p (abfd); } } static int ieee_sizeof_headers (abfd, x) bfd *abfd; boolean x; { return 0; } /* The debug info routines are never used. */ #if 0 static void ieee_bfd_debug_info_start (abfd) bfd *abfd; { } static void ieee_bfd_debug_info_end (abfd) bfd *abfd; { } /* Add this section to the list of sections we have debug info for, to be ready to output it at close time */ static void ieee_bfd_debug_info_accumulate (abfd, section) bfd *abfd; asection *section; { ieee_data_type *ieee = IEEE_DATA (section->owner); ieee_data_type *output_ieee = IEEE_DATA (abfd); /* can only accumulate data from other ieee bfds */ if (section->owner->xvec != abfd->xvec) return; /* Only bother once per bfd */ if (ieee->done_debug == true) return; ieee->done_debug = true; /* Don't bother if there is no debug info */ if (ieee->w.r.debug_information_part == 0) return; /* Add to chain */ { bfd_chain_type *n = (bfd_chain_type *) bfd_alloc (abfd, sizeof (bfd_chain_type)); if (!n) abort (); /* FIXME */ n->this = section->owner; n->next = (bfd_chain_type *) NULL; if (output_ieee->chain_head) { output_ieee->chain_head->next = n; } else { output_ieee->chain_root = n; } output_ieee->chain_head = n; } } #endif #define ieee_close_and_cleanup _bfd_generic_close_and_cleanup #define ieee_bfd_free_cached_info _bfd_generic_bfd_free_cached_info #define ieee_slurp_armap bfd_true #define ieee_slurp_extended_name_table bfd_true #define ieee_construct_extended_name_table \ ((boolean (*) PARAMS ((bfd *, char **, bfd_size_type *, const char **))) \ bfd_true) #define ieee_truncate_arname bfd_dont_truncate_arname #define ieee_write_armap \ ((boolean (*) \ PARAMS ((bfd *, unsigned int, struct orl *, unsigned int, int))) \ bfd_true) #define ieee_read_ar_hdr bfd_nullvoidptr #define ieee_update_armap_timestamp bfd_true #define ieee_bfd_is_local_label bfd_generic_is_local_label #define ieee_get_lineno _bfd_nosymbols_get_lineno #define ieee_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol #define ieee_read_minisymbols _bfd_generic_read_minisymbols #define ieee_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol #define ieee_bfd_reloc_type_lookup _bfd_norelocs_bfd_reloc_type_lookup #define ieee_set_arch_mach _bfd_generic_set_arch_mach #define ieee_get_section_contents_in_window \ _bfd_generic_get_section_contents_in_window #define ieee_bfd_get_relocated_section_contents \ bfd_generic_get_relocated_section_contents #define ieee_bfd_relax_section bfd_generic_relax_section #define ieee_bfd_link_hash_table_create _bfd_generic_link_hash_table_create #define ieee_bfd_link_add_symbols _bfd_generic_link_add_symbols #define ieee_bfd_final_link _bfd_generic_final_link #define ieee_bfd_link_split_section _bfd_generic_link_split_section /*SUPPRESS 460 */ const bfd_target ieee_vec = { "ieee", /* name */ bfd_target_ieee_flavour, true, /* target byte order */ true, /* target headers byte order */ (HAS_RELOC | EXEC_P | /* object flags */ HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED), (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */ 0, /* leading underscore */ ' ', /* ar_pad_char */ 16, /* ar_max_namelen */ bfd_getb64, bfd_getb_signed_64, bfd_putb64, bfd_getb32, bfd_getb_signed_32, bfd_putb32, bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */ bfd_getb64, bfd_getb_signed_64, bfd_putb64, bfd_getb32, bfd_getb_signed_32, bfd_putb32, bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */ {_bfd_dummy_target, ieee_object_p, /* bfd_check_format */ ieee_archive_p, _bfd_dummy_target, }, { bfd_false, ieee_mkobject, _bfd_generic_mkarchive, bfd_false }, { bfd_false, ieee_write_object_contents, _bfd_write_archive_contents, bfd_false, }, BFD_JUMP_TABLE_GENERIC (ieee), BFD_JUMP_TABLE_COPY (_bfd_generic), BFD_JUMP_TABLE_CORE (_bfd_nocore), BFD_JUMP_TABLE_ARCHIVE (ieee), BFD_JUMP_TABLE_SYMBOLS (ieee), BFD_JUMP_TABLE_RELOCS (ieee), BFD_JUMP_TABLE_WRITE (ieee), BFD_JUMP_TABLE_LINK (ieee), BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), (PTR) 0 };