/* bfd backend for ieee objects. IEEE format is a stream of records, which we parse using a simple one token (which is one byte in this lexicon) lookahead recursive decent parser. On output, this module creates files with the parts in this order: header external_part, data_part, section_part, */ #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include "obstack.h" #include "ieee.h" #include "libieee.h" #define obstack_chunk_alloc malloc #define obstack_chunk_free free typedef void generic_symbol_type; static bfd_byte current_c; /*************************************************************************** Functions for writing to ieee files in the strange way that the standard requires: */ static void ieee_write_byte(abfd, byte) bfd *abfd; bfd_byte byte; { bfd_write(&byte, 1, 1, abfd); } static void ieee_write_2bytes(abfd, bytes) bfd *abfd; int bytes; { bfd_byte buffer[2]; buffer[0] = bytes >> 8; buffer[1] = bytes & 0xff; bfd_write(buffer, 1, 2, abfd); } static void ieee_write_int(abfd, value) bfd *abfd; bfd_vma value; { if (value >= 0 && value <= 127) { ieee_write_byte(abfd, value); } else { unsigned int length; /* How many significant bytes ? */ /* FIXME FOR LONGER INTS */ if (value & 0xff000000) { length = 4; } else if (value & 0x00ff0000) { length = 3; } else if (value & 0x0000ff00) { length = 2; } else length = 1; ieee_write_byte(abfd, ieee_number_repeat_start_enum + length); switch (length) { case 4: ieee_write_byte(abfd, value >> 24); case 3: ieee_write_byte(abfd, value >> 16); case 2: ieee_write_byte(abfd, value >> 8); case 1: ieee_write_byte(abfd, value); } } } static void ieee_write_id(abfd, id) bfd *abfd; char *id; { size_t length = strlen(id); if (length >= 0 && length <= 127) { ieee_write_byte(abfd, length); } else if (length < 255) { ieee_write_byte(abfd, ieee_extension_length_1_enum); ieee_write_byte(abfd, length); } else if (length < 65535) { ieee_write_byte(abfd, ieee_extension_length_2_enum); ieee_write_byte(abfd, length >> 8); ieee_write_byte(abfd, length & 0xff); } else { BFD_FAIL(); } bfd_write((bfd_byte *)id, 1, length, abfd); } /*************************************************************************** Functions for reading from ieee files in the strange way that the standard requires: */ static bfd_byte this_byte(abfd) bfd *abfd; { return current_c; } static void next_byte(abfd) bfd *abfd; { if ( bfd_read(¤t_c, 1, 1, abfd) != 1) { BFD_FAIL(); } } static bfd_byte this_byte_and_next(abfd) bfd *abfd; { bfd_byte r = this_byte(abfd); next_byte(abfd); return r; } static unsigned short read_2bytes(abfd) bfd *abfd; { unsigned char c1 = this_byte_and_next(abfd); unsigned char c2 = this_byte_and_next(abfd); return (c1<<8 ) | c2; } static void bfd_get_string(abfd, string, length) bfd *abfd; char *string; size_t length; { size_t i; for (i= 0; i < length; i++) { string[i] = this_byte_and_next(abfd); } } static char *read_id(abfd) bfd *abfd; { size_t length; char *string; length = this_byte_and_next(abfd); if (length >= 0x00 && length <= 0x7f) { /* Simple string of length 0 to 127 */ } else if (length == 0xde) { /* Length is next byte, allowing 0..255 */ length = this_byte_and_next(abfd); } else if (length == 0xdf) { /* Length is next two bytes, allowing 0..65535 */ length = this_byte_and_next(abfd) ; length = (length * 256) + this_byte_and_next(abfd); } /* Buy memory and read string */ string = malloc(length+1); bfd_get_string(abfd, string, length); string[length] = 0; return string; } static void ieee_write_expression(abfd, value, section, symbol) bfd*abfd; bfd_vma value; asection *section; asymbol *symbol; { unsigned int plus_count = 0; ieee_write_int(abfd, value); if (section != (asection *)NULL) { plus_count++; ieee_write_byte(abfd, ieee_variable_L_enum); ieee_write_byte(abfd, section->index +IEEE_SECTION_NUMBER_BASE); } if (symbol != (asymbol *)NULL) { plus_count++; if ((symbol->flags & BSF_UNDEFINED ) || (symbol->flags & BSF_FORT_COMM)) { ieee_write_byte(abfd, ieee_variable_X_enum); ieee_write_int(abfd, symbol->value); } else if (symbol->flags & BSF_GLOBAL) { ieee_write_byte(abfd, ieee_variable_I_enum); ieee_write_int(abfd, symbol->value); } else { BFD_FAIL(); } } while (plus_count != 0) { ieee_write_byte(abfd, ieee_function_plus_enum); plus_count--; } } /*****************************************************************************/ /* writes any integer into the buffer supplied and always takes 5 bytes */ static void ieee_write_int5(buffer, value) bfd_byte*buffer; bfd_vma value; { buffer[0] = ieee_number_repeat_4_enum; buffer[1] = (value >> 24 ) & 0xff; buffer[2] = (value >> 16 ) & 0xff; buffer[3] = (value >> 8 ) & 0xff; buffer[4] = (value >> 4 ) & 0xff; } static boolean parse_int(abfd, value_ptr) bfd *abfd; bfd_vma *value_ptr; { int value = this_byte(abfd); int result; if (value >= 0 && value <= 127) { *value_ptr = value; next_byte(abfd); return true; } else if (value >= 0x80 && value <= 0x88) { unsigned int count = value & 0xf; result = 0; next_byte(abfd); while (count) { result =(result << 8) | this_byte_and_next(abfd); count--; } *value_ptr = result; return true; } return false; } static int parse_i(abfd, ok) bfd *abfd; boolean *ok; { bfd_vma x; *ok = parse_int(abfd, &x); return x; } static bfd_vma must_parse_int(abfd) bfd *abfd; { bfd_vma result; BFD_ASSERT(parse_int(abfd, &result) == true); return result; } typedef struct { bfd_vma value; asection *section; ieee_symbol_index_type symbol; } ieee_value_type; static reloc_howto_type abs32_howto = {1,0,2,32,0,0,0,true,0,"abs32",false,0xffffffff}; static reloc_howto_type abs16_howto = {1,0,1,16,0,0,0,true,0,"abs16",false,0x0000ffff}; static ieee_symbol_index_type NOSYMBOL = { 0, 0}; void frob(abfd, value, section, symbol, pcrel, extra) bfd *abfd; bfd_vma *value; asection **section; ieee_symbol_index_type *symbol; boolean *pcrel; unsigned int *extra; { #define POS sp[1] #define TOS sp[0] #define NOS sp[-1] #define INC sp++; #define DEC sp--; boolean loop = true; ieee_value_type stack[10]; /* The stack pointer always points to the next unused location */ #define PUSH(x,y,z) TOS.symbol=x;TOS.section=y;TOS.value=z;INC; #define POP(x,y,z) DEC;x=TOS.symbol;y=TOS.section;z=TOS.value; ieee_value_type *sp = stack; while (loop) { switch (this_byte(abfd)) { case ieee_variable_P_enum: /* P variable, current program counter for section n */ { int section_n ; next_byte(abfd); section_n = must_parse_int(abfd); PUSH(NOSYMBOL, 0, TOS.value = ieee_data(abfd)->section_table[section_n]->vma + ieee_per_section(ieee_data(abfd)->section_table[section_n])->pc); break; } case ieee_variable_L_enum: /* L variable address of section N */ next_byte(abfd); PUSH(NOSYMBOL,ieee_data(abfd)->section_table[must_parse_int(abfd)],0); break; case ieee_variable_R_enum: /* R variable, logical address of section module */ /* FIXME, this should be different to L */ next_byte(abfd); PUSH(NOSYMBOL,ieee_data(abfd)->section_table[must_parse_int(abfd)],0); break; case ieee_variable_S_enum: /* S variable, size in MAUS of section module */ next_byte(abfd); PUSH(NOSYMBOL, 0, ieee_data(abfd)->section_table[must_parse_int(abfd)]->size); break; case ieee_variable_X_enum: /* Push the address of external variable n */ { ieee_symbol_index_type sy; next_byte(abfd); sy.index = (int)(must_parse_int(abfd)) ; sy.letter = 'X'; PUSH(sy, 0, 0); } break; case ieee_function_minus_enum: { bfd_vma value1, value2; asection *section; ieee_symbol_index_type sy; next_byte(abfd); POP(sy, section, value1); POP(sy, section, value2); PUSH(NOSYMBOL, 0, value1-value2); } break; case ieee_function_plus_enum: { bfd_vma value1, value2; asection *section1; asection *section2; ieee_symbol_index_type sy; next_byte(abfd); POP(sy, section1, value1); POP(sy, section2, value2); PUSH(NOSYMBOL, section1 ? section1: section2, value1+value2); } break; default: { bfd_vma va; BFD_ASSERT(this_byte(abfd) < ieee_variable_A_enum || this_byte(abfd) > ieee_variable_Z_enum); if (parse_int(abfd, &va)) { PUSH(NOSYMBOL,0, va); } else { /* Thats all that we can understand. As far as I can see there is a bug in the Microtec IEEE output which I'm using to scan, whereby the comma operator is ommited sometimes in an expression, giving expressions with too many terms. We can tell if that's the case by ensuring that sp == stack here. If not, then we've pushed something too far. - */ POP(*symbol, *section, *value); if (sp != stack) { BFD_ASSERT(*section == 0); *extra = *value; /* Get what should be returned */ POP(*symbol, *section, *value); } else { *extra = 0; } loop = false; } } } } } static void ieee_seek(abfd, offset, rel) bfd *abfd; file_ptr offset; boolean rel; { (void) bfd_seek(abfd, offset, rel); /* Prime look ahead token */ next_byte(abfd); } static void ieee_slurp_external_symbols(abfd) bfd *abfd; { ieee_data_type *ieee = ieee_data(abfd); file_ptr offset = ieee->w.r.external_part; ieee_symbol_type **prev_symbols_ptr = &ieee->external_symbols; ieee_symbol_type **prev_reference_ptr = &ieee->external_reference; ieee_symbol_type *symbol; unsigned int symbol_count = 0; boolean loop = true; ieee->symbol_table_full = true; ieee_seek(abfd, offset ,false); while (loop) { switch (this_byte(abfd)) { case ieee_external_symbol_enum: next_byte(abfd); symbol = (ieee_symbol_type *)malloc(sizeof(ieee_symbol_type)); *prev_symbols_ptr = symbol; prev_symbols_ptr= &symbol->next; symbol->index = must_parse_int(abfd); if (symbol->index > ieee->external_symbol_max_index) { ieee->external_symbol_max_index = symbol->index; } BFD_ASSERT (symbol->index >= ieee->external_symbol_min_index); symbol_count++; symbol->symbol.the_bfd = abfd; symbol->symbol.name = read_id(abfd); symbol->symbol.udata = (void *)NULL; symbol->symbol.flags = BSF_NO_FLAGS; break; case ieee_attribute_record_enum >> 8: { unsigned int symbol_name_index; unsigned int symbol_type_index; unsigned int symbol_attribute_def; bfd_vma value; next_byte(abfd); /* Skip prefix */ next_byte(abfd); symbol_name_index = must_parse_int(abfd); symbol_type_index = must_parse_int(abfd); symbol_attribute_def = must_parse_int(abfd); parse_int(abfd,&value); } break; case ieee_value_record_enum >> 8: { unsigned int symbol_name_index; ieee_symbol_index_type symbol_ignore; boolean *pcrel_ignore; unsigned int extra_ignore; next_byte(abfd); next_byte(abfd); symbol_name_index = must_parse_int(abfd); frob(abfd, &symbol->symbol.value, &symbol->symbol.section, &symbol_ignore, &pcrel_ignore, &extra_ignore); if (symbol->symbol.section != (asection *)NULL) { symbol->symbol.flags = BSF_GLOBAL | BSF_EXPORT; } else { symbol->symbol.flags = BSF_GLOBAL | BSF_EXPORT | BSF_ABSOLUTE; } } break; case ieee_weak_external_reference_enum: { bfd_vma size; bfd_vma value ; next_byte(abfd); /* Throw away the external reference index */ (void)must_parse_int(abfd); /* Fetch the default size if not resolved */ size = must_parse_int(abfd); /* Fetch the defautlt value if available */ if ( parse_int(abfd, &value) == false) { value = 0; } /* This turns into a common */ symbol->symbol.flags = BSF_FORT_COMM; symbol->symbol.value = size; } break; case ieee_external_reference_enum: next_byte(abfd); symbol = (ieee_symbol_type *)malloc(sizeof(ieee_symbol_type)); symbol_count++; *prev_reference_ptr = symbol; prev_reference_ptr = &symbol->next; symbol->index = must_parse_int(abfd); symbol->symbol.the_bfd = abfd; symbol->symbol.name = read_id(abfd); symbol->symbol.udata = (void *)NULL; symbol->symbol.section = (asection *)NULL; symbol->symbol.value = (bfd_vma)0; symbol->symbol.flags = BSF_UNDEFINED; if (symbol->index > ieee->external_reference_max_index) { ieee->external_reference_max_index = symbol->index; } BFD_ASSERT (symbol->index >= ieee->external_reference_min_index); break; default: loop = false; } } if (ieee->external_symbol_max_index != 0) { ieee->external_symbol_count = ieee->external_symbol_max_index - ieee->external_symbol_min_index + 1 ; } else { ieee->external_symbol_count = 0; } if(ieee->external_reference_max_index != 0) { ieee->external_reference_count = ieee->external_reference_max_index - ieee->external_reference_min_index + 1; } else { ieee->external_reference_count = 0; } abfd->symcount = ieee->external_reference_count + ieee->external_symbol_count; if (symbol_count != abfd->symcount) { /* There are gaps in the table -- */ ieee->symbol_table_full = false; } *prev_symbols_ptr = (ieee_symbol_type *)NULL; *prev_reference_ptr = (ieee_symbol_type *)NULL; } static void ieee_slurp_symbol_table(abfd) bfd *abfd; { if (ieee_data(abfd)->read_symbols == false) { ieee_slurp_external_symbols(abfd); ieee_data(abfd)->read_symbols= true; } } size_t ieee_get_symtab_upper_bound (abfd) bfd *abfd; { ieee_slurp_symbol_table (abfd); return (abfd->symcount != 0) ? (abfd->symcount+1) * (sizeof (ieee_symbol_type *)) : 0; } /* Move from our internal lists to the canon table, and insert in symbol index order */ extern bfd_target ieee_vec; unsigned int ieee_get_symtab (abfd, location) bfd *abfd; asymbol **location; { ieee_symbol_type *symp; static bfd dummy_bfd; static asymbol empty_symbol = { &dummy_bfd," ieee empty",(symvalue)0,BSF_DEBUGGING | BSF_FAKE}; ieee_data_type *ieee = ieee_data(abfd); dummy_bfd.xvec= &ieee_vec; ieee_slurp_symbol_table(abfd); if (ieee->symbol_table_full == false) { /* Arrgh - there are gaps in the table, run through and fill them */ /* up with pointers to a null place */ unsigned int i; for (i= 0; i < abfd->symcount; i++) { location[i] = &empty_symbol; } } ieee->external_symbol_base_offset= - ieee->external_symbol_min_index; for (symp = ieee_data(abfd)->external_symbols; symp != (ieee_symbol_type *)NULL; symp = symp->next) { /* Place into table at correct index locations */ location[symp->index + ieee->external_symbol_base_offset] = &symp->symbol; } /* The external refs are indexed in a bit */ ieee->external_reference_base_offset = - ieee->external_reference_min_index +ieee->external_symbol_count ; for (symp = ieee_data(abfd)->external_reference; symp != (ieee_symbol_type *)NULL; symp = symp->next) { location[symp->index + ieee->external_reference_base_offset] = &symp->symbol; } location[abfd->symcount] = (asymbol *)NULL; return abfd->symcount; } static void ieee_slurp_sections(abfd) bfd *abfd; { ieee_data_type *ieee = ieee_data(abfd); file_ptr offset = ieee->w.r.section_part; asection *section = (asection *)NULL; if (offset != 0) { bfd_byte section_type[3]; ieee_seek(abfd, offset, false); while (true) { switch (this_byte(abfd)) { case ieee_section_type_enum: { unsigned int section_index ; next_byte(abfd); section_index = must_parse_int(abfd); /* Fixme to be nice about a silly number of sections */ BFD_ASSERT(section_index < NSECTIONS); section = bfd_make_section(abfd, " tempname"); ieee->section_table[section_index] = section; section->flags = SEC_NO_FLAGS; section->target_index = section_index; section_type[0] = this_byte_and_next(abfd); switch (section_type[0]) { case 0xC3: section_type[1] = this_byte(abfd); section->flags = SEC_LOAD; switch (section_type[1]) { case 0xD0: /* Normal code */ next_byte(abfd); section->flags |= SEC_LOAD | SEC_CODE; break; case 0xC4: next_byte(abfd); section->flags |= SEC_LOAD | SEC_DATA; /* Normal data */ break; case 0xD2: next_byte(abfd); /* Normal rom data */ section->flags |= SEC_LOAD | SEC_ROM | SEC_DATA; break; default: break; } } section->name = read_id(abfd); { bfd_vma parent, brother, context; parse_int(abfd, &parent); parse_int(abfd, &brother); parse_int(abfd, &context); } } break; case ieee_section_alignment_enum: { unsigned int section_index; bfd_vma value; next_byte(abfd); section_index = must_parse_int(abfd); if (section_index > ieee->section_count) { ieee->section_count = section_index; } ieee->section_table[section_index]->alignment_power = bfd_log2(must_parse_int(abfd)); (void)parse_int(abfd, & value); } break; case ieee_e2_first_byte_enum: { ieee_record_enum_type t = read_2bytes(abfd); switch (t) { case ieee_section_size_enum: section = ieee->section_table[must_parse_int(abfd)]; section->size = must_parse_int(abfd); break; case ieee_physical_region_size_enum: section = ieee->section_table[must_parse_int(abfd)]; section->size = must_parse_int(abfd); break; case ieee_region_base_address_enum: section = ieee->section_table[must_parse_int(abfd)]; section->vma = must_parse_int(abfd); break; case ieee_mau_size_enum: must_parse_int(abfd); must_parse_int(abfd); break; case ieee_m_value_enum: must_parse_int(abfd); must_parse_int(abfd); break; case ieee_section_base_address_enum: section = ieee->section_table[must_parse_int(abfd)]; section->vma = must_parse_int(abfd); break; case ieee_section_offset_enum: (void) must_parse_int(abfd); (void) must_parse_int(abfd); break; default: return; } } break; default: return; } } } } /*********************************************************************** * archive stuff */ bfd_target * ieee_archive_p(abfd) bfd *abfd; { char *library; boolean loop; ieee_ar_data_type *ar; unsigned int i; ieee_seek(abfd, (file_ptr) 0, false); if (this_byte(abfd) != Module_Beginning) return (bfd_target*)NULL; next_byte(abfd); library= read_id(abfd); if (strcmp(library , "LIBRARY") != 0) { free(library); return (bfd_target *)NULL; } /* Throw away the filename */ free( read_id(abfd)); /* This must be an IEEE archive, so we'll buy some space to do things */ ar = (ieee_ar_data_type *) malloc(sizeof(ieee_ar_data_type)); ieee_ar_data(abfd) = ar; ar->element_count = 0; ar->element_index = 0; obstack_init(&ar->element_obstack); next_byte(abfd); /* Drop the ad part */ must_parse_int(abfd); /* And the two dummy numbers */ must_parse_int(abfd); loop = true; /* Read the index of the BB table */ while (loop) { ieee_ar_obstack_type t; int rec =read_2bytes(abfd); if (rec ==ieee_assign_value_to_variable_enum) { int record_number = must_parse_int(abfd); t.file_offset = must_parse_int(abfd); t.abfd = (bfd *)NULL; ar->element_count++; obstack_grow(&ar->element_obstack, &t, sizeof(t)); } else loop = false; } ar->elements = (ieee_ar_obstack_type *)obstack_base(&ar->element_obstack); /* Now scan the area again, and replace BB offsets with file */ /* offsets */ for (i = 2; i < ar->element_count; i++) { ieee_seek(abfd, ar->elements[i].file_offset, false); next_byte(abfd); /* Drop F8 */ next_byte(abfd); /* Drop 14 */ must_parse_int(abfd); /* Drop size of block */ if (must_parse_int(abfd) != 0) { /* This object has been deleted */ ar->elements[i].file_offset = 0; } else { ar->elements[i].file_offset = must_parse_int(abfd); } } obstack_finish(&ar->element_obstack); return abfd->xvec; } bfd_target * ieee_object_p (abfd) bfd *abfd; { char *processor; unsigned int part; ieee_data_type ieee; ieee_seek(abfd, (file_ptr)0, false); if (this_byte(abfd) != Module_Beginning) return (bfd_target*)NULL; next_byte(abfd); ieee.read_symbols= false; ieee.read_data= false; ieee.section_count = 0; ieee.external_symbol_max_index = 0; ieee.external_symbol_min_index = IEEE_PUBLIC_BASE; ieee.external_reference_min_index =IEEE_REFERENCE_BASE; ieee.external_reference_max_index = 0; memset((PTR)ieee.section_table, 0, sizeof(ieee.section_table)); processor = ieee.mb.processor = read_id(abfd); if (strcmp(processor,"LIBRARY") == 0) return (bfd_target *)NULL; ieee.mb.module_name = read_id(abfd); if (abfd->filename == (char *)NULL) { abfd->filename = ieee.mb.module_name; } /* Determine the architecture and machine type of the object file. */ bfd_scan_arch_mach(processor, &abfd->obj_arch, &abfd->obj_machine); if (this_byte(abfd) != ieee_address_descriptor_enum) { return (bfd_target *)NULL; } next_byte(abfd); if (parse_int(abfd, &ieee.ad.number_of_bits_mau) == false) { return (bfd_target *)NULL; } if(parse_int(abfd, &ieee.ad.number_of_maus_in_address) == false) { return (bfd_target *)NULL; } /* If there is a byte order info, take it */ if (this_byte(abfd) == ieee_variable_L_enum || this_byte(abfd) == ieee_variable_M_enum) next_byte(abfd); for (part = 0; part < N_W_VARIABLES; part++) { boolean ok; if (read_2bytes(abfd) != ieee_assign_value_to_variable_enum) { return (bfd_target *)NULL; } if (this_byte_and_next(abfd) != part) { return (bfd_target *)NULL; } ieee.w.offset[part] = parse_i(abfd, &ok); if (ok==false) { return (bfd_target *)NULL; } } abfd->flags = HAS_SYMS; /* Read in the section info */ ieee_data(abfd) = (ieee_data_type *)(malloc(sizeof(ieee_data_type))); memcpy(ieee_data(abfd), &ieee, sizeof(ieee)); ieee_slurp_sections(abfd); return abfd->xvec; } void ieee_print_symbol(ignore_abfd, file, symbol, how) bfd *ignore_abfd; FILE *file; asymbol *symbol; bfd_print_symbol_enum_type how; { switch (how) { case bfd_print_symbol_name_enum: fprintf(file,"%s", symbol->name); break; case bfd_print_symbol_type_enum: #if 0 fprintf(file,"%4x %2x",aout_symbol(symbol)->desc & 0xffff, aout_symbol(symbol)->other & 0xff); #endif BFD_FAIL(); break; case bfd_print_symbol_all_enum: { char *section_name = symbol->section == (asection *)NULL ? "*abs" : symbol->section->name; bfd_print_symbol_vandf((void *)file,symbol); fprintf(file," %-5s %04x %02x %s", section_name, (unsigned) ieee_symbol(symbol)->index, (unsigned) 0, /* aout_symbol(symbol)->desc & 0xffff, aout_symbol(symbol)->other & 0xff,*/ symbol->name); } break; } } /* Read in all the section data and relocation stuff too */ static boolean ieee_slurp_section_data(abfd) bfd *abfd; { bfd_byte *location_ptr ; ieee_data_type *ieee = ieee_data(abfd); unsigned int section_number ; ieee_per_section_type *current_map; asection *s; /* Seek to the start of the data area */ if (ieee->read_data== true) return true; ieee->read_data = true; ieee_seek(abfd, ieee->w.r.data_part, false); /* Allocate enough space for all the section contents */ for (s = abfd->sections; s != (asection *)NULL; s = s->next) { ieee_per_section_type *per = s->used_by_bfd; per->data = (bfd_byte *) malloc(s->size); /*SUPPRESS 68*/ obstack_init( &per->reloc_obstack); per->reloc_tail_ptr = (ieee_reloc_type **)&(s->relocation); } while (true) { switch (this_byte(abfd)) { /* IF we see anything strange then quit */ default: return true; case ieee_set_current_section_enum: next_byte(abfd); section_number = must_parse_int(abfd); s = ieee->section_table[section_number]; current_map = s->used_by_bfd; location_ptr = current_map->data - s->vma; /* The document I have says that Microtec's compilers reset */ /* this after a sec section, even though the standard says not */ /* to. SO .. */ current_map->pc =s->vma; break; case ieee_load_constant_bytes_enum: { unsigned int number_of_maus; unsigned int i; next_byte(abfd); number_of_maus = must_parse_int(abfd); for (i = 0; i < number_of_maus; i++) { location_ptr[current_map->pc++]= this_byte(abfd); next_byte(abfd); } } break; case ieee_e2_first_byte_enum: next_byte(abfd); switch (this_byte(abfd)) { case ieee_set_current_pc_enum & 0xff: { bfd_vma value; asection *dsection; ieee_symbol_index_type symbol; unsigned int extra; boolean pcrel; next_byte(abfd); must_parse_int(abfd); /* Thow away section #*/ frob(abfd, &value, &dsection, &symbol, &pcrel, &extra); current_map->pc = value; BFD_ASSERT((unsigned)(value - s->vma) < s->size); } break; case ieee_value_starting_address_enum & 0xff: /* We've got to the end of the data now - */ return true; break; default: BFD_FAIL(); return true; } break; case ieee_load_with_relocation_enum: { boolean loop = true; next_byte(abfd); while (loop) { switch (this_byte(abfd)) { case ieee_variable_R_enum: case ieee_function_signed_open_b_enum: case ieee_function_unsigned_open_b_enum: case ieee_function_either_open_b_enum: { unsigned int extra; boolean pcrel; ieee_reloc_type *r = (ieee_reloc_type *) obstack_alloc( ¤t_map->reloc_obstack, sizeof(ieee_reloc_type)); *(current_map->reloc_tail_ptr) = r; current_map->reloc_tail_ptr= &r->next; r->next = (ieee_reloc_type *)NULL; next_byte(abfd); frob(abfd, &r->relent.addend, &r->relent.section, &r->symbol, &pcrel, &extra); r->relent.address = current_map->pc; s->reloc_count++; switch (this_byte(abfd)) { case ieee_function_signed_close_b_enum: next_byte(abfd); break; case ieee_function_unsigned_close_b_enum: next_byte(abfd); break; case ieee_function_either_close_b_enum: next_byte(abfd); break; default: break; } /* Build a relocation entry for this type */ if (this_byte(abfd) == ieee_comma) { next_byte(abfd); /* Fetch number of bytes to pad */ extra = must_parse_int(abfd); BFD_FAIL(); } switch (extra) { case 0: case 4: location_ptr[current_map->pc++] = 0; location_ptr[current_map->pc++] = 0; location_ptr[current_map->pc++] = 0; location_ptr[current_map->pc++] = 0; r->relent.howto = &abs32_howto; break; case 2: location_ptr[current_map->pc++] = 0; location_ptr[current_map->pc++] = 0; r->relent.howto = &abs16_howto; break; default: BFD_FAIL(); break; } } break; default: { bfd_vma this_size ; if (parse_int(abfd, &this_size) == true) { unsigned int i; for (i = 0; i < this_size; i++) { location_ptr[current_map->pc ++] = this_byte(abfd); next_byte(abfd); } } else { loop = false; } } } } } } } } boolean ieee_new_section_hook (abfd, newsect) bfd *abfd; asection *newsect; { newsect->used_by_bfd = (ieee_per_section_type *) malloc(sizeof(ieee_per_section_type)); ieee_per_section( newsect)->data = (bfd_byte *)NULL; ieee_per_section(newsect)->section = newsect; return true; } unsigned int ieee_get_reloc_upper_bound (abfd, asect) bfd *abfd; sec_ptr asect; { ieee_slurp_section_data(abfd); return (asect->reloc_count+1) * sizeof(arelent *); } static boolean ieee_get_section_contents (abfd, section, location, offset, count) bfd *abfd; sec_ptr section; void *location; file_ptr offset; unsigned int count; { ieee_per_section_type *p = section->used_by_bfd; ieee_slurp_section_data(abfd); (void) memcpy(location, p->data + offset, count); return true; } unsigned int ieee_canonicalize_reloc (abfd, section, relptr, symbols) bfd *abfd; sec_ptr section; arelent **relptr; asymbol **symbols; { ieee_per_section_type *p = section->used_by_bfd; ieee_reloc_type *src = (ieee_reloc_type *)(section->relocation); ieee_data_type *ieee = ieee_data(abfd); while (src != (ieee_reloc_type *)NULL) { /* Work out which symbol to attatch it this reloc to */ switch (src->symbol.letter) { case 'X': src->relent.sym_ptr_ptr = symbols + src->symbol.index + ieee->external_reference_base_offset; break; case 0: src->relent.sym_ptr_ptr = (asymbol **)NULL; break; default: BFD_FAIL(); } *relptr++ = &src->relent; src = src->next; } *relptr = (arelent *)NULL; return section->reloc_count; } boolean ieee_set_arch_mach (abfd, arch, machine) bfd *abfd; enum bfd_architecture arch; unsigned long machine; { abfd->obj_arch = arch; abfd->obj_machine = machine; return true; } boolean ieee_mkobject(abfd) bfd *abfd; { ieee_data_type *ieee = (ieee_data_type *) malloc(sizeof(ieee_data_type)); ieee_data(abfd) = ieee; if (ieee == (ieee_data_type *)NULL) { bfd_error = no_memory; return false; } return true; } static int comp(ap, bp) arelent **ap; arelent **bp; { arelent *a = *ap; arelent *b = *bp; return a->address - b->address; } /* Write the section headers */ static void ieee_write_section_part(abfd) bfd *abfd; { ieee_data_type *ieee = ieee_data(abfd); asection *s; ieee->w.r.section_part = bfd_tell(abfd); for (s = abfd->sections; s != (asection *)NULL; s=s->next) { ieee_write_byte(abfd, ieee_section_type_enum); ieee_write_byte(abfd, s->index + IEEE_SECTION_NUMBER_BASE); switch (s->flags & (SEC_LOAD | SEC_CODE | SEC_DATA | SEC_ROM)) { case SEC_LOAD | SEC_CODE: /* Normal named section, code */ ieee_write_byte(abfd, ieee_variable_C_enum); ieee_write_byte(abfd, ieee_variable_P_enum); break; case SEC_LOAD | SEC_DATA: /* Normal named section, data */ ieee_write_byte(abfd, ieee_variable_C_enum); ieee_write_byte(abfd, ieee_variable_D_enum); break; case SEC_LOAD | SEC_DATA | SEC_ROM: /* Normal named section, data rom */ ieee_write_byte(abfd, ieee_variable_C_enum); ieee_write_byte(abfd, ieee_variable_R_enum); break; default: ieee_write_byte(abfd, ieee_variable_C_enum); break; } ieee_write_id(abfd, s->name); ieee_write_int(abfd, 0); /* Parent */ ieee_write_int(abfd, 0); /* Brother */ ieee_write_int(abfd, 0); /* Context */ /* Alignment */ ieee_write_byte(abfd, ieee_section_alignment_enum); ieee_write_byte(abfd, s->index + IEEE_SECTION_NUMBER_BASE); ieee_write_int(abfd, 1 << s->alignment_power); /* Size */ ieee_write_2bytes(abfd, ieee_section_size_enum); ieee_write_byte(abfd, s->index + IEEE_SECTION_NUMBER_BASE); ieee_write_int(abfd, s->size); /* Vma */ ieee_write_2bytes(abfd, ieee_region_base_address_enum); ieee_write_byte(abfd, s->index + IEEE_SECTION_NUMBER_BASE); ieee_write_int(abfd, s->vma); } } /* write the data in an ieee way */ static void ieee_write_data_part(abfd) bfd *abfd; { asection *s; ieee_data_type *ieee = ieee_data(abfd); ieee->w.r.data_part = bfd_tell(abfd); for (s = abfd->sections; s != (asection *)NULL; s = s->next) { bfd_byte header[11]; bfd_byte *stream = ieee_per_section(s)->data; arelent **p = s->orelocation; size_t current_byte_index = 0; /* Sort the reloc records so we can insert them in the correct places */ if (s->reloc_count != 0) { qsort(s->orelocation, s->reloc_count, sizeof(arelent **), comp); } /* Output the section preheader */ header[0] =ieee_set_current_section_enum; header[1] = s->index + IEEE_SECTION_NUMBER_BASE; header[2] = ieee_set_current_pc_enum >> 8; header[3]= ieee_set_current_pc_enum & 0xff; header[4] = s->index + IEEE_SECTION_NUMBER_BASE; ieee_write_int5(header+5, s->vma ); header[10] = ieee_load_with_relocation_enum; bfd_write(header, 1, sizeof(header), abfd); /* Output the data stream as the longest sequence of bytes possible, */ /* allowing for the a reasonable packet size and relocation stuffs */ if (stream == (void *)NULL) { stream = (bfd_byte *)"UNINITIALIZED AREA! "; s->size = strlen(stream); } while (current_byte_index < s->size) { size_t run; unsigned int MAXRUN = 32; if (p && *p) { run = (*p)->address - current_byte_index; } else { run = MAXRUN; } if (run > s->size - current_byte_index) { run = s->size - current_byte_index; } if (run != 0) { /* Output a stream of bytes */ bfd_byte header[1] ; header[0]= run; bfd_write(header, 1, sizeof(header), abfd); bfd_write(stream + current_byte_index, 1, run, abfd); current_byte_index += run; } /* Output any relocations here */ if (p && (*p) && (*p)->address == current_byte_index) { while ((*p) && (*p)->address == current_byte_index) { arelent *r = *p; ieee_write_byte(abfd, ieee_function_either_open_b_enum); if (r->sym_ptr_ptr != (asymbol **)NULL) { ieee_write_expression(abfd, r->addend, r->section, *(r->sym_ptr_ptr)); } else { ieee_write_expression(abfd, r->addend, r->section, (asymbol *)NULL); } ieee_write_byte(abfd, ieee_function_either_close_b_enum); p++; } /* FIXME !! Are all relocations 4 bytes ? */ current_byte_index += 4; } } } } static void init_for_output(abfd) bfd *abfd; { asection *s; for (s = abfd->sections; s != (asection *)NULL; s = s->next) { if (s->size != 0) { ieee_per_section(s)->data = (bfd_byte *)(malloc(s->size)); } } } /** exec and core file sections */ /* set section contents is complicated with IEEE since the format is * not a byte image, but a record stream. */ boolean ieee_set_section_contents (abfd, section, location, offset, count) bfd *abfd; sec_ptr section; unsigned char *location; file_ptr offset; int count; { if (ieee_per_section(section)->data == (bfd_byte *)NULL) { init_for_output(abfd); } (void) memcpy(ieee_per_section(section)->data + offset, location, count); return true; } /* write the external symbols of a file, IEEE considers two sorts of external symbols, public, and referenced. It uses to internal forms to index them as well. When we write them out we turn their symbol values into indexes from the right base. */ static void ieee_write_external_part(abfd) bfd *abfd; { asymbol **q; ieee_data_type *ieee = ieee_data(abfd); unsigned int reference_index = IEEE_REFERENCE_BASE; unsigned int public_index = IEEE_PUBLIC_BASE; ieee->w.r.external_part = bfd_tell(abfd); if (abfd->outsymbols != (asymbol **)NULL) { for (q = abfd->outsymbols; *q != (asymbol *)NULL; q++) { asymbol *p = *q; if (p->flags & BSF_UNDEFINED) { /* This must be a symbol reference .. */ ieee_write_byte(abfd, ieee_external_reference_enum); ieee_write_int(abfd, reference_index); ieee_write_id(abfd, p->name); p->value = reference_index; reference_index++; } else if(p->flags & BSF_FORT_COMM) { /* This is a weak reference */ ieee_write_byte(abfd, ieee_external_reference_enum); ieee_write_int(abfd, reference_index); ieee_write_id(abfd, p->name); ieee_write_byte(abfd, ieee_weak_external_reference_enum); ieee_write_int(abfd, reference_index); ieee_write_int(abfd, p->value); ieee_write_int(abfd, BFD_FORT_COMM_DEFAULT_VALUE); p->value = reference_index; reference_index++; } else if(p->flags & BSF_GLOBAL) { /* This must be a symbol definition */ ieee_write_byte(abfd, ieee_external_symbol_enum); ieee_write_int(abfd, public_index ); ieee_write_id(abfd, p->name); /* Write out the value */ ieee_write_2bytes(abfd, ieee_value_record_enum); ieee_write_int(abfd, public_index); if (p->section != (asection *)NULL) { ieee_write_expression(abfd, p->value + p->section->output_offset, p->section->output_section, (asymbol *)NULL); } else { ieee_write_expression(abfd, p->value, (asection *)NULL, (asymbol *)NULL); } p->value = public_index; public_index++; } else { /* This can happen - when there are gaps in the symbols read */ /* from an input ieee file */ } } } } static void ieee_write_me_part(abfd) bfd *abfd; { ieee_data_type *ieee= ieee_data(abfd); ieee->w.r.me_record = bfd_tell(abfd); ieee_write_2bytes(abfd, ieee_value_starting_address_enum); ieee_write_int(abfd, abfd->start_address); ieee_write_byte(abfd, ieee_module_end_enum); } boolean ieee_write_object_contents (abfd) bfd *abfd; { ieee_data_type *ieee = ieee_data(abfd); unsigned int i; /* Make a guess about the size of the header */ bfd_seek(abfd, 100, false); /* First write the symbols, this changes their values into table indeces so we cant use it after this point */ ieee_write_external_part(abfd); ieee_write_byte(abfd, ieee_record_seperator_enum); ieee_write_section_part(abfd); ieee_write_byte(abfd, ieee_record_seperator_enum); /* Can only write the data once the symbols have been written since the data contains relocation information which points to the symbols */ ieee_write_data_part(abfd); ieee_write_byte(abfd, ieee_record_seperator_enum); /* At the end we put the end ! */ ieee_write_me_part(abfd); /* Now write the header */ /* Generate the header */ bfd_seek(abfd, (file_ptr)0, false); ieee_write_byte(abfd, ieee_module_beginning_enum); ieee_write_id(abfd, bfd_printable_arch_mach(abfd->obj_arch, abfd->obj_machine)); ieee_write_id(abfd, abfd->filename); ieee_write_byte(abfd, ieee_address_descriptor_enum); ieee_write_byte(abfd, 8); /* Bits per MAU */ ieee_write_byte(abfd, 4); /* MAU's per address */ for (i= 0; i < N_W_VARIABLES; i++) { ieee_write_2bytes(abfd,ieee_assign_value_to_variable_enum); ieee_write_byte(abfd, i); ieee_write_int(abfd, ieee->w.offset[i]); } return true; } /* Native-level interface to symbols. */ /* We read the symbols into a buffer, which is discarded when this function exits. We read the strings into a buffer large enough to hold them all plus all the cached symbol entries. */ asymbol * ieee_make_empty_symbol (abfd) bfd *abfd; { ieee_symbol_type *new = (ieee_symbol_type *)zalloc (sizeof (ieee_symbol_type)); new->symbol.the_bfd = abfd; return &new->symbol; } void ieee_reclaim_symbol_table (abfd) bfd *abfd; { #if 0 asection *section; if (!bfd_get_symcount (abfd)) return; for (section = abfd->sections; section != NULL; section = section->next) if (section->relocation) { free ((void *)section->relocation); section->relocation = NULL; section->reloc_count = 0; } bfd_get_symcount (abfd) = 0; free ((void *)obj_aout_symbols (abfd)); obj_aout_symbols (abfd) = (aout_symbol_type *)NULL; #endif } /* Obsolete procedural interface; better to look at the cache directly */ /* User should have checked the file flags; perhaps we should return BFD_NO_MORE_SYMBOLS if there are none? */ int ieee_get_symcount_upper_bound (abfd) bfd *abfd; { #if 0 /* In case we're doing an output file or something...? */ if (bfd_get_symcount (abfd)) return bfd_get_symcount (abfd); return (exec_hdr (abfd)->a_syms) / (sizeof (struct nlist)); #endif return 0; } symindex ieee_get_first_symbol (ignore_abfd) bfd * ignore_abfd; { return 0; } symindex ieee_get_next_symbol (abfd, oidx) bfd *abfd; symindex oidx; { #if 0 if (oidx == BFD_NO_MORE_SYMBOLS) return BFD_NO_MORE_SYMBOLS; return ++oidx >= bfd_get_symcount (abfd) ? BFD_NO_MORE_SYMBOLS : oidx; #endif return 0; } char * ieee_symbol_name (abfd, idx) bfd *abfd; symindex idx; { #if 0 return (obj_aout_symbols (abfd) + idx)->symbol.name; #endif return 0; } long ieee_symbol_value (abfd, idx) bfd *abfd; symindex idx; { #if 0 return (obj_aout_symbols (abfd) + idx)->symbol.value; #endif return 0; } symclass ieee_classify_symbol (abfd, idx) bfd *abfd; symindex idx; { #if 0 aout_symbol_type *sym = obj_aout_symbols (abfd) + idx; if ((sym->symbol.flags & BSF_FORT_COMM) != 0) return bfd_symclass_fcommon; if ((sym->symbol.flags & BSF_GLOBAL) != 0) return bfd_symclass_global; if ((sym->symbol.flags & BSF_DEBUGGING) != 0) return bfd_symclass_debugger; if ((sym->symbol.flags & BSF_UNDEFINED) != 0) return bfd_symclass_undefined; #endif return bfd_symclass_unknown; } boolean ieee_symbol_hasclass (abfd, idx, class) bfd *abfd; symindex idx; symclass class; { #if 0 aout_symbol_type *sym = obj_aout_symbols (abfd) + idx; switch (class) { case bfd_symclass_fcommon: return (sym->symbol.flags & BSF_FORT_COMM) ? true :false; case bfd_symclass_global: return (sym->symbol.flags & BSF_GLOBAL) ? true:false; case bfd_symclass_debugger: return (sym->symbol.flags & BSF_DEBUGGING) ? true:false;; case bfd_symclass_undefined: return (sym->symbol.flags & BSF_UNDEFINED) ? true:false;; default: return false; } #endif return 0; } void ieee_reclaim_reloc (ignore_abfd, section) bfd *ignore_abfd; sec_ptr section; { #if 0 if (section->relocation) { free (section->relocation); section->relocation = NULL; section->reloc_count = 0; } #endif } boolean ieee_close_and_cleanup (abfd) bfd *abfd; { if (bfd_read_p (abfd) == false) switch (abfd->format) { case bfd_archive: if (!_bfd_write_archive_contents (abfd)) { return false; } break; case bfd_object: if (!ieee_write_object_contents (abfd)) { return false; } break; default: bfd_error = invalid_operation; return false; } if (ieee_data(abfd) != (ieee_data_type *)NULL) { /* FIXME MORE LEAKS */ } return true; } static bfd * ieee_openr_next_archived_file(arch, prev) bfd *arch; bfd *prev; { ieee_ar_data_type *ar = ieee_ar_data(arch); /* take the next one from the arch state, or reset */ if (prev == (bfd *)NULL) { /* Reset the index - the first two entries are bogus*/ ar->element_index = 2; } while (true) { ieee_ar_obstack_type *p = ar->elements + ar->element_index; ar->element_index++; if (ar->element_index <= ar->element_count) { if (p->file_offset != (file_ptr)0) { if (p->abfd == (bfd *)NULL) { p->abfd = _bfd_create_empty_archive_element_shell(arch); p->abfd->origin = p->file_offset; } return p->abfd; } } else { return (bfd *)NULL; } } } static boolean ieee_find_nearest_line(abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr) bfd *abfd; asection *section; asymbol **symbols; bfd_vma offset; char **filename_ptr; char **functionname_ptr; unsigned int *line_ptr; { return false; } /*SUPPRESS 460 */ bfd_target ieee_vec = { "ieee", /* name */ bfd_target_ieee_flavour_enum, true, /* target byte order */ true, /* target headers byte order */ (HAS_RELOC | EXEC_P | /* object flags */ HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED), (SEC_CODE|SEC_DATA|SEC_ROM |SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */ 0, /* valid reloc types */ ' ', /* ar_pad_char */ 16, /* ar_max_namelen */ ieee_close_and_cleanup, /* _close_and_cleanup */ ieee_set_section_contents, /* bfd_set_section_contents */ ieee_get_section_contents, ieee_new_section_hook, /* new_section_hook */ 0, /* _core_file_failing_command */ 0, /* _core_file_failing_signal */ 0, /* _core_file_matches_ex...p */ 0, /* bfd_slurp_bsd_armap, bfd_slurp_armap */ bfd_true, /* bfd_slurp_extended_name_table */ bfd_bsd_truncate_arname, /* bfd_truncate_arname */ ieee_get_symtab_upper_bound, /* get_symtab_upper_bound */ ieee_get_symtab, /* canonicalize_symtab */ 0, /* ieee_reclaim_symbol_table, bfd_reclaim_symbol_table */ ieee_get_reloc_upper_bound, /* get_reloc_upper_bound */ ieee_canonicalize_reloc, /* bfd_canonicalize_reloc */ 0, /* ieee_reclaim_reloc, bfd_reclaim_reloc */ 0, /* ieee_get_symcount_upper_bound, bfd_get_symcount_upper_bound */ 0, /* ieee_get_first_symbol, bfd_get_first_symbol */ 0, /* ieee_get_next_symbol, bfd_get_next_symbol */ 0, /* ieee_classify_symbol, bfd_classify_symbol */ 0, /* ieee_symbol_hasclass, bfd_symbol_hasclass */ 0, /* ieee_symbol_name, bfd_symbol_name */ 0, /* ieee_symbol_value, bfd_symbol_value */ _do_getblong, _do_putblong, _do_getbshort, _do_putbshort, /* data */ _do_getblong, _do_putblong, _do_getbshort, _do_putbshort, /* hdrs */ {_bfd_dummy_target, ieee_object_p, /* bfd_check_format */ ieee_archive_p, bfd_false }, { bfd_false, ieee_mkobject, _bfd_generic_mkarchive, bfd_false }, ieee_make_empty_symbol, ieee_print_symbol, bfd_false, /* ieee_get_lineno,*/ ieee_set_arch_mach, /* bfd_set_arch_mach,*/ bfd_false, ieee_openr_next_archived_file, ieee_find_nearest_line, /* bfd_find_nearest_line */ };