/* BFD back-end for ieee-695 objects. Copyright (C) 1990-2016 Free Software Foundation, Inc. Written by Steve Chamberlain of Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #define KEEPMINUSPCININST 0 /* IEEE 695 format is a stream of records, which we parse using a simple one- token (which is one byte in this lexicon) lookahead recursive decent parser. */ #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include "ieee.h" #include "libieee.h" #include "safe-ctype.h" #include "libiberty.h" struct output_buffer_struct { unsigned char *ptrp; int buffer; }; static unsigned char *output_ptr_start; static unsigned char *output_ptr; static unsigned char *output_ptr_end; static unsigned char *input_ptr_start; static unsigned char *input_ptr; static unsigned char *input_ptr_end; static bfd *input_bfd; static bfd *output_bfd; static int output_buffer; static void block (void); /* Functions for writing to ieee files in the strange way that the standard requires. */ static bfd_boolean ieee_write_byte (bfd *abfd, int barg) { bfd_byte byte; byte = barg; if (bfd_bwrite ((void *) &byte, (bfd_size_type) 1, abfd) != 1) return FALSE; return TRUE; } static bfd_boolean ieee_write_2bytes (bfd *abfd, int bytes) { bfd_byte buffer[2]; buffer[0] = bytes >> 8; buffer[1] = bytes & 0xff; if (bfd_bwrite ((void *) buffer, (bfd_size_type) 2, abfd) != 2) return FALSE; return TRUE; } static bfd_boolean ieee_write_int (bfd *abfd, bfd_vma value) { if (value <= 127) { if (! ieee_write_byte (abfd, (bfd_byte) value)) return FALSE; } else { unsigned int length; /* How many significant bytes ? */ /* FIXME FOR LONGER INTS. */ if (value & 0xff000000) length = 4; else if (value & 0x00ff0000) length = 3; else if (value & 0x0000ff00) length = 2; else length = 1; if (! ieee_write_byte (abfd, (bfd_byte) ((int) ieee_number_repeat_start_enum + length))) return FALSE; switch (length) { case 4: if (! ieee_write_byte (abfd, (bfd_byte) (value >> 24))) return FALSE; /* Fall through. */ case 3: if (! ieee_write_byte (abfd, (bfd_byte) (value >> 16))) return FALSE; /* Fall through. */ case 2: if (! ieee_write_byte (abfd, (bfd_byte) (value >> 8))) return FALSE; /* Fall through. */ case 1: if (! ieee_write_byte (abfd, (bfd_byte) (value))) return FALSE; } } return TRUE; } static bfd_boolean ieee_write_id (bfd *abfd, const char *id) { size_t length = strlen (id); if (length <= 127) { if (! ieee_write_byte (abfd, (bfd_byte) length)) return FALSE; } else if (length < 255) { if (! ieee_write_byte (abfd, ieee_extension_length_1_enum) || ! ieee_write_byte (abfd, (bfd_byte) length)) return FALSE; } else if (length < 65535) { if (! ieee_write_byte (abfd, ieee_extension_length_2_enum) || ! ieee_write_2bytes (abfd, (int) length)) return FALSE; } else { _bfd_error_handler (_("%s: string too long (%d chars, max 65535)"), bfd_get_filename (abfd), length); bfd_set_error (bfd_error_invalid_operation); return FALSE; } if (bfd_bwrite ((void *) id, (bfd_size_type) length, abfd) != length) return FALSE; return TRUE; } /* Functions for reading from ieee files in the strange way that the standard requires. */ #define this_byte(ieee) *((ieee)->input_p) #define this_byte_and_next(ieee) (*((ieee)->input_p++)) static bfd_boolean next_byte (common_header_type * ieee) { ieee->input_p++; return ieee->input_p < ieee->last_byte; } static unsigned short read_2bytes (common_header_type *ieee) { unsigned char c1 = this_byte_and_next (ieee); unsigned char c2 = this_byte_and_next (ieee); return (c1 << 8) | c2; } static void bfd_get_string (common_header_type *ieee, char *string, size_t length) { size_t i; for (i = 0; i < length; i++) string[i] = this_byte_and_next (ieee); } static char * read_id (common_header_type *ieee) { size_t length; char *string; length = this_byte_and_next (ieee); if (length <= 0x7f) /* Simple string of length 0 to 127. */ ; else if (length == 0xde) /* Length is next byte, allowing 0..255. */ length = this_byte_and_next (ieee); else if (length == 0xdf) { /* Length is next two bytes, allowing 0..65535. */ length = this_byte_and_next (ieee); length = (length * 256) + this_byte_and_next (ieee); } /* Buy memory and read string. */ string = bfd_alloc (ieee->abfd, (bfd_size_type) length + 1); if (!string) return NULL; bfd_get_string (ieee, string, length); string[length] = 0; return string; } static bfd_boolean ieee_write_expression (bfd *abfd, bfd_vma value, asymbol *symbol, bfd_boolean pcrel, unsigned int sindex) { unsigned int term_count = 0; if (value != 0) { if (! ieee_write_int (abfd, value)) return FALSE; term_count++; } /* Badly formatted binaries can have a missing symbol, so test here to prevent a seg fault. */ if (symbol != NULL) { if (bfd_is_com_section (symbol->section) || bfd_is_und_section (symbol->section)) { /* Def of a common symbol. */ if (! ieee_write_byte (abfd, ieee_variable_X_enum) || ! ieee_write_int (abfd, symbol->value)) return FALSE; term_count ++; } else if (! bfd_is_abs_section (symbol->section)) { /* Ref to defined symbol - */ if (symbol->flags & BSF_GLOBAL) { if (! ieee_write_byte (abfd, ieee_variable_I_enum) || ! ieee_write_int (abfd, symbol->value)) return FALSE; term_count++; } else if (symbol->flags & (BSF_LOCAL | BSF_SECTION_SYM)) { /* This is a reference to a defined local symbol. We can easily do a local as a section+offset. */ if (! ieee_write_byte (abfd, ieee_variable_R_enum) || ! ieee_write_byte (abfd, (bfd_byte) (symbol->section->index + IEEE_SECTION_NUMBER_BASE))) return FALSE; term_count++; if (symbol->value != 0) { if (! ieee_write_int (abfd, symbol->value)) return FALSE; term_count++; } } else { _bfd_error_handler (_("%s: unrecognized symbol `%s' flags 0x%x"), bfd_get_filename (abfd), bfd_asymbol_name (symbol), symbol->flags); bfd_set_error (bfd_error_invalid_operation); return FALSE; } } } if (pcrel) { /* Subtract the pc from here by asking for PC of this section. */ if (! ieee_write_byte (abfd, ieee_variable_P_enum) || ! ieee_write_byte (abfd, (bfd_byte) (sindex + IEEE_SECTION_NUMBER_BASE)) || ! ieee_write_byte (abfd, ieee_function_minus_enum)) return FALSE; } /* Handle the degenerate case of a 0 address. */ if (term_count == 0) if (! ieee_write_int (abfd, (bfd_vma) 0)) return FALSE; while (term_count > 1) { if (! ieee_write_byte (abfd, ieee_function_plus_enum)) return FALSE; term_count--; } return TRUE; } /* Writes any integer into the buffer supplied and always takes 5 bytes. */ static void ieee_write_int5 (bfd_byte *buffer, bfd_vma value) { buffer[0] = (bfd_byte) ieee_number_repeat_4_enum; buffer[1] = (value >> 24) & 0xff; buffer[2] = (value >> 16) & 0xff; buffer[3] = (value >> 8) & 0xff; buffer[4] = (value >> 0) & 0xff; } static bfd_boolean ieee_write_int5_out (bfd *abfd, bfd_vma value) { bfd_byte b[5]; ieee_write_int5 (b, value); if (bfd_bwrite ((void *) b, (bfd_size_type) 5, abfd) != 5) return FALSE; return TRUE; } static bfd_boolean parse_int (common_header_type *ieee, bfd_vma *value_ptr) { int value = this_byte (ieee); int result; if (value >= 0 && value <= 127) { *value_ptr = value; return next_byte (ieee); } else if (value >= 0x80 && value <= 0x88) { unsigned int count = value & 0xf; result = 0; if (! next_byte (ieee)) return FALSE; while (count) { result = (result << 8) | this_byte_and_next (ieee); count--; } *value_ptr = result; return TRUE; } return FALSE; } static int parse_i (common_header_type *ieee, bfd_boolean *ok) { bfd_vma x = 0; *ok = parse_int (ieee, &x); return x; } static bfd_vma must_parse_int (common_header_type *ieee) { bfd_vma result = 0; BFD_ASSERT (parse_int (ieee, &result)); return result; } typedef struct { bfd_vma value; asection *section; ieee_symbol_index_type symbol; } ieee_value_type; #if KEEPMINUSPCININST #define SRC_MASK(arg) arg #define PCREL_OFFSET FALSE #else #define SRC_MASK(arg) 0 #define PCREL_OFFSET TRUE #endif static reloc_howto_type abs32_howto = HOWTO (1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "abs32", TRUE, 0xffffffff, 0xffffffff, FALSE); static reloc_howto_type abs16_howto = HOWTO (1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, 0, "abs16", TRUE, 0x0000ffff, 0x0000ffff, FALSE); static reloc_howto_type abs8_howto = HOWTO (1, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, 0, "abs8", TRUE, 0x000000ff, 0x000000ff, FALSE); static reloc_howto_type rel32_howto = HOWTO (1, 0, 2, 32, TRUE, 0, complain_overflow_signed, 0, "rel32", TRUE, SRC_MASK (0xffffffff), 0xffffffff, PCREL_OFFSET); static reloc_howto_type rel16_howto = HOWTO (1, 0, 1, 16, TRUE, 0, complain_overflow_signed, 0, "rel16", TRUE, SRC_MASK (0x0000ffff), 0x0000ffff, PCREL_OFFSET); static reloc_howto_type rel8_howto = HOWTO (1, 0, 0, 8, TRUE, 0, complain_overflow_signed, 0, "rel8", TRUE, SRC_MASK (0x000000ff), 0x000000ff, PCREL_OFFSET); static ieee_symbol_index_type NOSYMBOL = {0, 0}; static bfd_boolean parse_expression (ieee_data_type *ieee, bfd_vma *value, ieee_symbol_index_type *symbol, bfd_boolean *pcrel, unsigned int *extra, asection **section) { bfd_boolean loop = TRUE; ieee_value_type stack[10]; ieee_value_type *sp = stack; asection *dummy; #define POS sp[1] #define TOS sp[0] #define NOS sp[-1] #define INC sp++; #define DEC sp--; /* The stack pointer always points to the next unused location. */ #define PUSH(x,y,z) TOS.symbol = x; TOS.section = y; TOS.value = z; INC; #define POP(x,y,z) DEC; x = TOS.symbol; y = TOS.section; z = TOS.value; while (loop && ieee->h.input_p < ieee->h.last_byte) { switch (this_byte (&(ieee->h))) { case ieee_variable_P_enum: /* P variable, current program counter for section n. */ { int section_n; if (! next_byte (&(ieee->h))) return FALSE; *pcrel = TRUE; section_n = must_parse_int (&(ieee->h)); (void) section_n; PUSH (NOSYMBOL, bfd_abs_section_ptr, 0); break; } case ieee_variable_L_enum: /* L variable address of section N. */ if (! next_byte (&(ieee->h))) return FALSE; PUSH (NOSYMBOL, ieee->section_table[must_parse_int (&(ieee->h))], 0); break; case ieee_variable_R_enum: /* R variable, logical address of section module. */ /* FIXME, this should be different to L. */ if (! next_byte (&(ieee->h))) return FALSE; PUSH (NOSYMBOL, ieee->section_table[must_parse_int (&(ieee->h))], 0); break; case ieee_variable_S_enum: /* S variable, size in MAUS of section module. */ if (! next_byte (&(ieee->h))) return FALSE; PUSH (NOSYMBOL, 0, ieee->section_table[must_parse_int (&(ieee->h))]->size); break; case ieee_variable_I_enum: /* Push the address of variable n. */ { ieee_symbol_index_type sy; if (! next_byte (&(ieee->h))) return FALSE; sy.index = (int) must_parse_int (&(ieee->h)); sy.letter = 'I'; PUSH (sy, bfd_abs_section_ptr, 0); } break; case ieee_variable_X_enum: /* Push the address of external variable n. */ { ieee_symbol_index_type sy; if (! next_byte (&(ieee->h))) return FALSE; sy.index = (int) (must_parse_int (&(ieee->h))); sy.letter = 'X'; PUSH (sy, bfd_und_section_ptr, 0); } break; case ieee_function_minus_enum: { bfd_vma value1, value2; asection *section1, *section_dummy; ieee_symbol_index_type sy; if (! next_byte (&(ieee->h))) return FALSE; POP (sy, section1, value1); POP (sy, section_dummy, value2); PUSH (sy, section1 ? section1 : section_dummy, value2 - value1); } break; case ieee_function_plus_enum: { bfd_vma value1, value2; asection *section1; asection *section2; ieee_symbol_index_type sy1; ieee_symbol_index_type sy2; if (! next_byte (&(ieee->h))) return FALSE; POP (sy1, section1, value1); POP (sy2, section2, value2); PUSH (sy1.letter ? sy1 : sy2, bfd_is_abs_section (section1) ? section2 : section1, value1 + value2); } break; default: { bfd_vma va; BFD_ASSERT (this_byte (&(ieee->h)) < (int) ieee_variable_A_enum || this_byte (&(ieee->h)) > (int) ieee_variable_Z_enum); if (parse_int (&(ieee->h), &va)) { PUSH (NOSYMBOL, bfd_abs_section_ptr, va); } else /* Thats all that we can understand. */ loop = FALSE; } } } /* As far as I can see there is a bug in the Microtec IEEE output which I'm using to scan, whereby the comma operator is omitted sometimes in an expression, giving expressions with too many terms. We can tell if that's the case by ensuring that sp == stack here. If not, then we've pushed something too far, so we keep adding. */ while (sp != stack + 1) { asection *section1; ieee_symbol_index_type sy1; POP (sy1, section1, *extra); (void) section1; (void) sy1; } POP (*symbol, dummy, *value); if (section) *section = dummy; return TRUE; } #define ieee_pos(ieee) \ (ieee->h.input_p - ieee->h.first_byte) /* Find the first part of the ieee file after HERE. */ static file_ptr ieee_part_after (ieee_data_type *ieee, file_ptr here) { int part; file_ptr after = ieee->w.r.me_record; /* File parts can come in any order, except that module end is guaranteed to be last (and the header first). */ for (part = 0; part < N_W_VARIABLES; part++) if (ieee->w.offset[part] > here && after > ieee->w.offset[part]) after = ieee->w.offset[part]; return after; } static bfd_boolean ieee_seek (ieee_data_type * ieee, file_ptr offset) { /* PR 17512: file: 017-1157-0.004. */ if (offset < 0 || (bfd_size_type) offset >= ieee->h.total_amt) { ieee->h.input_p = ieee->h.first_byte + ieee->h.total_amt; ieee->h.last_byte = ieee->h.input_p; return FALSE; } ieee->h.input_p = ieee->h.first_byte + offset; ieee->h.last_byte = (ieee->h.first_byte + ieee_part_after (ieee, offset)); return TRUE; } static unsigned int last_index; static char last_type; /* Is the index for an X or a D. */ static ieee_symbol_type * get_symbol (bfd *abfd ATTRIBUTE_UNUSED, ieee_data_type *ieee, ieee_symbol_type *last_symbol, unsigned int *symbol_count, ieee_symbol_type ***pptr, unsigned int *max_index, int this_type) { /* Need a new symbol. */ unsigned int new_index = must_parse_int (&(ieee->h)); if (new_index != last_index || this_type != last_type) { ieee_symbol_type *new_symbol; bfd_size_type amt = sizeof (ieee_symbol_type); new_symbol = bfd_alloc (ieee->h.abfd, amt); if (!new_symbol) return NULL; new_symbol->index = new_index; last_index = new_index; (*symbol_count)++; **pptr = new_symbol; *pptr = &new_symbol->next; if (new_index > *max_index) *max_index = new_index; last_type = this_type; new_symbol->symbol.section = bfd_abs_section_ptr; return new_symbol; } return last_symbol; } static bfd_boolean ieee_slurp_external_symbols (bfd *abfd) { ieee_data_type *ieee = IEEE_DATA (abfd); file_ptr offset = ieee->w.r.external_part; ieee_symbol_type **prev_symbols_ptr = &ieee->external_symbols; ieee_symbol_type **prev_reference_ptr = &ieee->external_reference; ieee_symbol_type *symbol = NULL; unsigned int symbol_count = 0; bfd_boolean loop = TRUE; last_index = 0xffffff; ieee->symbol_table_full = TRUE; if (! ieee_seek (ieee, offset)) return FALSE; while (loop) { switch (this_byte (&(ieee->h))) { case ieee_nn_record: if (! next_byte (&(ieee->h))) return FALSE; symbol = get_symbol (abfd, ieee, symbol, &symbol_count, & prev_symbols_ptr, & ieee->external_symbol_max_index, 'I'); if (symbol == NULL) return FALSE; symbol->symbol.the_bfd = abfd; symbol->symbol.name = read_id (&(ieee->h)); symbol->symbol.udata.p = NULL; symbol->symbol.flags = BSF_NO_FLAGS; break; case ieee_external_symbol_enum: if (! next_byte (&(ieee->h))) return FALSE; symbol = get_symbol (abfd, ieee, symbol, &symbol_count, &prev_symbols_ptr, &ieee->external_symbol_max_index, 'D'); if (symbol == NULL) return FALSE; BFD_ASSERT (symbol->index >= ieee->external_symbol_min_index); symbol->symbol.the_bfd = abfd; symbol->symbol.name = read_id (&(ieee->h)); symbol->symbol.udata.p = NULL; symbol->symbol.flags = BSF_NO_FLAGS; break; case ieee_attribute_record_enum >> 8: { unsigned int symbol_name_index; unsigned int symbol_type_index; unsigned int symbol_attribute_def; bfd_vma value = 0; switch (read_2bytes (&ieee->h)) { case ieee_attribute_record_enum: symbol_name_index = must_parse_int (&(ieee->h)); symbol_type_index = must_parse_int (&(ieee->h)); (void) symbol_type_index; symbol_attribute_def = must_parse_int (&(ieee->h)); switch (symbol_attribute_def) { case 8: case 19: parse_int (&ieee->h, &value); break; default: _bfd_error_handler (_("%B: unimplemented ATI record %u for symbol %u"), abfd, symbol_attribute_def, symbol_name_index); bfd_set_error (bfd_error_bad_value); return FALSE; break; } break; case ieee_external_reference_info_record_enum: /* Skip over ATX record. */ parse_int (&(ieee->h), &value); parse_int (&(ieee->h), &value); parse_int (&(ieee->h), &value); parse_int (&(ieee->h), &value); break; case ieee_atn_record_enum: /* We may get call optimization information here, which we just ignore. The format is {$F1}${CE}{index}{$00}{$3F}{$3F}{#_of_ASNs}. */ parse_int (&ieee->h, &value); parse_int (&ieee->h, &value); parse_int (&ieee->h, &value); if (value != 0x3f) { _bfd_error_handler (_("%B: unexpected ATN type %d in external part"), abfd, (int) value); bfd_set_error (bfd_error_bad_value); return FALSE; } parse_int (&ieee->h, &value); parse_int (&ieee->h, &value); while (value > 0) { bfd_vma val1; --value; switch (read_2bytes (&ieee->h)) { case ieee_asn_record_enum: parse_int (&ieee->h, &val1); parse_int (&ieee->h, &val1); break; default: _bfd_error_handler (_("%B: unexpected type after ATN"), abfd); bfd_set_error (bfd_error_bad_value); return FALSE; } } } } break; case ieee_value_record_enum >> 8: { unsigned int symbol_name_index; ieee_symbol_index_type symbol_ignore; bfd_boolean pcrel_ignore; unsigned int extra; if (! next_byte (&(ieee->h))) return FALSE; if (! next_byte (&(ieee->h))) return FALSE; symbol_name_index = must_parse_int (&(ieee->h)); (void) symbol_name_index; if (! parse_expression (ieee, &symbol->symbol.value, &symbol_ignore, &pcrel_ignore, &extra, &symbol->symbol.section)) return FALSE; /* Fully linked IEEE-695 files tend to give every symbol an absolute value. Try to convert that back into a section relative value. FIXME: This won't always to the right thing. */ if (bfd_is_abs_section (symbol->symbol.section) && (abfd->flags & HAS_RELOC) == 0) { bfd_vma val; asection *s; val = symbol->symbol.value; for (s = abfd->sections; s != NULL; s = s->next) { if (val >= s->vma && val < s->vma + s->size) { symbol->symbol.section = s; symbol->symbol.value -= s->vma; break; } } } symbol->symbol.flags = BSF_GLOBAL | BSF_EXPORT; } break; case ieee_weak_external_reference_enum: { bfd_vma size; bfd_vma value; if (! next_byte (&(ieee->h))) return FALSE; /* Throw away the external reference index. */ (void) must_parse_int (&(ieee->h)); /* Fetch the default size if not resolved. */ size = must_parse_int (&(ieee->h)); /* Fetch the default value if available. */ if (! parse_int (&(ieee->h), &value)) value = 0; /* This turns into a common. */ symbol->symbol.section = bfd_com_section_ptr; symbol->symbol.value = size; } break; case ieee_external_reference_enum: if (! next_byte (&(ieee->h))) return FALSE; symbol = get_symbol (abfd, ieee, symbol, &symbol_count, &prev_reference_ptr, &ieee->external_reference_max_index, 'X'); if (symbol == NULL) return FALSE; symbol->symbol.the_bfd = abfd; symbol->symbol.name = read_id (&(ieee->h)); symbol->symbol.udata.p = NULL; symbol->symbol.section = bfd_und_section_ptr; symbol->symbol.value = (bfd_vma) 0; symbol->symbol.flags = 0; BFD_ASSERT (symbol->index >= ieee->external_reference_min_index); break; default: loop = FALSE; } } if (ieee->external_symbol_max_index != 0) { ieee->external_symbol_count = ieee->external_symbol_max_index - ieee->external_symbol_min_index + 1; } else ieee->external_symbol_count = 0; if (ieee->external_reference_max_index != 0) { ieee->external_reference_count = ieee->external_reference_max_index - ieee->external_reference_min_index + 1; } else ieee->external_reference_count = 0; abfd->symcount = ieee->external_reference_count + ieee->external_symbol_count; if (symbol_count != abfd->symcount) /* There are gaps in the table -- */ ieee->symbol_table_full = FALSE; *prev_symbols_ptr = NULL; *prev_reference_ptr = NULL; return TRUE; } static bfd_boolean ieee_slurp_symbol_table (bfd *abfd) { if (! IEEE_DATA (abfd)->read_symbols) { if (! ieee_slurp_external_symbols (abfd)) return FALSE; IEEE_DATA (abfd)->read_symbols = TRUE; } return TRUE; } static long ieee_get_symtab_upper_bound (bfd *abfd) { if (! ieee_slurp_symbol_table (abfd)) return -1; return (abfd->symcount != 0) ? (abfd->symcount + 1) * (sizeof (ieee_symbol_type *)) : 0; } /* Move from our internal lists to the canon table, and insert in symbol index order. */ extern const bfd_target ieee_vec; static long ieee_canonicalize_symtab (bfd *abfd, asymbol **location) { ieee_symbol_type *symp; static bfd dummy_bfd; static asymbol empty_symbol = { &dummy_bfd, " ieee empty", (symvalue) 0, BSF_DEBUGGING, bfd_abs_section_ptr #ifdef __STDC__ /* K&R compilers can't initialise unions. */ , { 0 } #endif }; if (abfd->symcount) { ieee_data_type *ieee = IEEE_DATA (abfd); dummy_bfd.xvec = &ieee_vec; if (! ieee_slurp_symbol_table (abfd)) return -1; if (! ieee->symbol_table_full) { /* Arrgh - there are gaps in the table, run through and fill them up with pointers to a null place. */ unsigned int i; for (i = 0; i < abfd->symcount; i++) location[i] = &empty_symbol; } ieee->external_symbol_base_offset = -ieee->external_symbol_min_index; for (symp = IEEE_DATA (abfd)->external_symbols; symp != (ieee_symbol_type *) NULL; symp = symp->next) /* Place into table at correct index locations. */ location[symp->index + ieee->external_symbol_base_offset] = &symp->symbol; /* The external refs are indexed in a bit. */ ieee->external_reference_base_offset = -ieee->external_reference_min_index + ieee->external_symbol_count; for (symp = IEEE_DATA (abfd)->external_reference; symp != (ieee_symbol_type *) NULL; symp = symp->next) location[symp->index + ieee->external_reference_base_offset] = &symp->symbol; } if (abfd->symcount) location[abfd->symcount] = (asymbol *) NULL; return abfd->symcount; } static asection * get_section_entry (bfd *abfd, ieee_data_type *ieee, unsigned int sindex) { if (sindex >= ieee->section_table_size) { unsigned int c, i; asection **n; bfd_size_type amt; c = ieee->section_table_size; if (c == 0) c = 20; while (c <= sindex) c *= 2; amt = c; amt *= sizeof (asection *); n = bfd_realloc (ieee->section_table, amt); if (n == NULL) return NULL; for (i = ieee->section_table_size; i < c; i++) n[i] = NULL; ieee->section_table = n; ieee->section_table_size = c; } if (ieee->section_table[sindex] == (asection *) NULL) { char *tmp = bfd_alloc (abfd, (bfd_size_type) 11); asection *section; if (!tmp) return NULL; sprintf (tmp, " fsec%4d", sindex); section = bfd_make_section (abfd, tmp); ieee->section_table[sindex] = section; section->target_index = sindex; ieee->section_table[sindex] = section; } return ieee->section_table[sindex]; } static bfd_boolean ieee_slurp_sections (bfd *abfd) { ieee_data_type *ieee = IEEE_DATA (abfd); file_ptr offset = ieee->w.r.section_part; char *name; if (offset != 0) { bfd_byte section_type[3]; if (! ieee_seek (ieee, offset)) return FALSE; while (TRUE) { switch (this_byte (&(ieee->h))) { case ieee_section_type_enum: { asection *section; unsigned int section_index; if (! next_byte (&(ieee->h))) return FALSE; section_index = must_parse_int (&(ieee->h)); section = get_section_entry (abfd, ieee, section_index); section_type[0] = this_byte_and_next (&(ieee->h)); /* Set minimal section attributes. Attributes are extended later, based on section contents. */ switch (section_type[0]) { case 0xC1: /* Normal attributes for absolute sections. */ section_type[1] = this_byte (&(ieee->h)); section->flags = SEC_ALLOC; switch (section_type[1]) { /* AS Absolute section attributes. */ case 0xD3: if (! next_byte (&(ieee->h))) return FALSE; section_type[2] = this_byte (&(ieee->h)); switch (section_type[2]) { case 0xD0: /* Normal code. */ if (! next_byte (&(ieee->h))) return FALSE; section->flags |= SEC_CODE; break; case 0xC4: /* Normal data. */ if (! next_byte (&(ieee->h))) return FALSE; section->flags |= SEC_DATA; break; case 0xD2: if (! next_byte (&(ieee->h))) return FALSE; /* Normal rom data. */ section->flags |= SEC_ROM | SEC_DATA; break; default: break; } } break; /* Named relocatable sections (type C). */ case 0xC3: section_type[1] = this_byte (&(ieee->h)); section->flags = SEC_ALLOC; switch (section_type[1]) { case 0xD0: /* Normal code (CP). */ if (! next_byte (&(ieee->h))) return FALSE; section->flags |= SEC_CODE; break; case 0xC4: /* Normal data (CD). */ if (! next_byte (&(ieee->h))) return FALSE; section->flags |= SEC_DATA; break; case 0xD2: /* Normal rom data (CR). */ if (! next_byte (&(ieee->h))) return FALSE; section->flags |= SEC_ROM | SEC_DATA; break; default: break; } } /* Read section name, use it if non empty. */ name = read_id (&ieee->h); if (name[0]) section->name = name; /* Skip these fields, which we don't care about. */ { bfd_vma parent, brother, context; parse_int (&(ieee->h), &parent); parse_int (&(ieee->h), &brother); parse_int (&(ieee->h), &context); } } break; case ieee_section_alignment_enum: { unsigned int section_index; bfd_vma value; asection *section; if (! next_byte (&(ieee->h))) return FALSE; section_index = must_parse_int (&ieee->h); section = get_section_entry (abfd, ieee, section_index); if (section_index > ieee->section_count) ieee->section_count = section_index; section->alignment_power = bfd_log2 (must_parse_int (&ieee->h)); (void) parse_int (&(ieee->h), &value); } break; case ieee_e2_first_byte_enum: { asection *section; ieee_record_enum_type t; t = (ieee_record_enum_type) (read_2bytes (&(ieee->h))); switch (t) { case ieee_section_size_enum: section = ieee->section_table[must_parse_int (&(ieee->h))]; section->size = must_parse_int (&(ieee->h)); break; case ieee_physical_region_size_enum: section = ieee->section_table[must_parse_int (&(ieee->h))]; section->size = must_parse_int (&(ieee->h)); break; case ieee_region_base_address_enum: section = ieee->section_table[must_parse_int (&(ieee->h))]; section->vma = must_parse_int (&(ieee->h)); section->lma = section->vma; break; case ieee_mau_size_enum: must_parse_int (&(ieee->h)); must_parse_int (&(ieee->h)); break; case ieee_m_value_enum: must_parse_int (&(ieee->h)); must_parse_int (&(ieee->h)); break; case ieee_section_base_address_enum: section = ieee->section_table[must_parse_int (&(ieee->h))]; section->vma = must_parse_int (&(ieee->h)); section->lma = section->vma; break; case ieee_section_offset_enum: (void) must_parse_int (&(ieee->h)); (void) must_parse_int (&(ieee->h)); break; default: return TRUE; } } break; default: return TRUE; } } } return TRUE; } /* Make a section for the debugging information, if any. We don't try to interpret the debugging information; we just point the section at the area in the file so that program which understand can dig it out. */ static bfd_boolean ieee_slurp_debug (bfd *abfd) { ieee_data_type *ieee = IEEE_DATA (abfd); asection *sec; file_ptr debug_end; flagword flags; if (ieee->w.r.debug_information_part == 0) return TRUE; flags = SEC_DEBUGGING | SEC_HAS_CONTENTS; sec = bfd_make_section_with_flags (abfd, ".debug", flags); if (sec == NULL) return FALSE; sec->filepos = ieee->w.r.debug_information_part; debug_end = ieee_part_after (ieee, ieee->w.r.debug_information_part); sec->size = debug_end - ieee->w.r.debug_information_part; return TRUE; } /* Archive stuff. */ static const bfd_target * ieee_archive_p (bfd *abfd) { char *library; unsigned int i; unsigned char buffer[512]; file_ptr buffer_offset = 0; ieee_ar_data_type *save = abfd->tdata.ieee_ar_data; ieee_ar_data_type *ieee; bfd_size_type alc_elts; ieee_ar_obstack_type *elts = NULL; bfd_size_type amt = sizeof (ieee_ar_data_type); abfd->tdata.ieee_ar_data = bfd_alloc (abfd, amt); if (!abfd->tdata.ieee_ar_data) goto error_ret_restore; ieee = IEEE_AR_DATA (abfd); /* Ignore the return value here. It doesn't matter if we don't read the entire buffer. We might have a very small ieee file. */ if (bfd_bread ((void *) buffer, (bfd_size_type) sizeof (buffer), abfd) <= 0) goto got_wrong_format_error; ieee->h.first_byte = buffer; ieee->h.input_p = buffer; ieee->h.abfd = abfd; if (this_byte (&(ieee->h)) != Module_Beginning) goto got_wrong_format_error; (void) next_byte (&(ieee->h)); library = read_id (&(ieee->h)); if (strcmp (library, "LIBRARY") != 0) goto got_wrong_format_error; /* Throw away the filename. */ read_id (&(ieee->h)); ieee->element_count = 0; ieee->element_index = 0; (void) next_byte (&(ieee->h)); /* Drop the ad part. */ must_parse_int (&(ieee->h)); /* And the two dummy numbers. */ must_parse_int (&(ieee->h)); alc_elts = 10; elts = bfd_malloc (alc_elts * sizeof *elts); if (elts == NULL) goto error_return; /* Read the index of the BB table. */ while (1) { int rec; ieee_ar_obstack_type *t; rec = read_2bytes (&(ieee->h)); if (rec != (int) ieee_assign_value_to_variable_enum) break; if (ieee->element_count >= alc_elts) { ieee_ar_obstack_type *n; alc_elts *= 2; n = bfd_realloc (elts, alc_elts * sizeof (* elts)); if (n == NULL) goto error_return; elts = n; } t = &elts[ieee->element_count]; ieee->element_count++; must_parse_int (&(ieee->h)); t->file_offset = must_parse_int (&(ieee->h)); t->abfd = (bfd *) NULL; /* Make sure that we don't go over the end of the buffer. */ if ((size_t) ieee_pos (IEEE_DATA (abfd)) > sizeof (buffer) / 2) { /* Past half way, reseek and reprime. */ buffer_offset += ieee_pos (IEEE_DATA (abfd)); if (bfd_seek (abfd, buffer_offset, SEEK_SET) != 0) goto error_return; /* Again ignore return value of bfd_bread. */ bfd_bread ((void *) buffer, (bfd_size_type) sizeof (buffer), abfd); ieee->h.first_byte = buffer; ieee->h.input_p = buffer; } } amt = ieee->element_count; amt *= sizeof *ieee->elements; ieee->elements = bfd_alloc (abfd, amt); if (ieee->elements == NULL) goto error_return; memcpy (ieee->elements, elts, (size_t) amt); free (elts); elts = NULL; /* Now scan the area again, and replace BB offsets with file offsets. */ for (i = 2; i < ieee->element_count; i++) { if (bfd_seek (abfd, ieee->elements[i].file_offset, SEEK_SET) != 0) goto error_return; /* Again ignore return value of bfd_bread. */ bfd_bread ((void *) buffer, (bfd_size_type) sizeof (buffer), abfd); ieee->h.first_byte = buffer; ieee->h.input_p = buffer; (void) next_byte (&(ieee->h)); /* Drop F8. */ if (! next_byte (&(ieee->h))) /* Drop 14. */ goto error_return; must_parse_int (&(ieee->h)); /* Drop size of block. */ if (must_parse_int (&(ieee->h)) != 0) /* This object has been deleted. */ ieee->elements[i].file_offset = 0; else ieee->elements[i].file_offset = must_parse_int (&(ieee->h)); } /* abfd->has_armap = ;*/ return abfd->xvec; got_wrong_format_error: bfd_set_error (bfd_error_wrong_format); error_return: if (elts != NULL) free (elts); bfd_release (abfd, ieee); error_ret_restore: abfd->tdata.ieee_ar_data = save; return NULL; } static bfd_boolean ieee_mkobject (bfd *abfd) { bfd_size_type amt; output_ptr_start = NULL; output_ptr = NULL; output_ptr_end = NULL; input_ptr_start = NULL; input_ptr = NULL; input_ptr_end = NULL; input_bfd = NULL; output_bfd = NULL; output_buffer = 0; amt = sizeof (ieee_data_type); abfd->tdata.ieee_data = bfd_zalloc (abfd, amt); return abfd->tdata.ieee_data != NULL; } static bfd_boolean do_one (ieee_data_type *ieee, ieee_per_section_type *current_map, unsigned char *location_ptr, asection *s, int iterations) { switch (this_byte (&(ieee->h))) { case ieee_load_constant_bytes_enum: { unsigned int number_of_maus; unsigned int i; if (! next_byte (&(ieee->h))) return FALSE; number_of_maus = must_parse_int (&(ieee->h)); for (i = 0; i < number_of_maus; i++) { location_ptr[current_map->pc++] = this_byte (&(ieee->h)); next_byte (&(ieee->h)); } } break; case ieee_load_with_relocation_enum: { bfd_boolean loop = TRUE; if (! next_byte (&(ieee->h))) return FALSE; while (loop) { switch (this_byte (&(ieee->h))) { case ieee_variable_R_enum: case ieee_function_signed_open_b_enum: case ieee_function_unsigned_open_b_enum: case ieee_function_either_open_b_enum: { unsigned int extra = 4; bfd_boolean pcrel = FALSE; asection *section; ieee_reloc_type *r; r = bfd_alloc (ieee->h.abfd, sizeof (* r)); if (!r) return FALSE; *(current_map->reloc_tail_ptr) = r; current_map->reloc_tail_ptr = &r->next; r->next = (ieee_reloc_type *) NULL; if (! next_byte (&(ieee->h))) return FALSE; r->relent.sym_ptr_ptr = 0; if (! parse_expression (ieee, &r->relent.addend, &r->symbol, &pcrel, &extra, §ion)) return FALSE; r->relent.address = current_map->pc; s->flags |= SEC_RELOC; s->owner->flags |= HAS_RELOC; s->reloc_count++; if (r->relent.sym_ptr_ptr == NULL && section != NULL) r->relent.sym_ptr_ptr = section->symbol_ptr_ptr; if (this_byte (&(ieee->h)) == (int) ieee_comma) { if (! next_byte (&(ieee->h))) return FALSE; /* Fetch number of bytes to pad. */ extra = must_parse_int (&(ieee->h)); }; switch (this_byte (&(ieee->h))) { case ieee_function_signed_close_b_enum: if (! next_byte (&(ieee->h))) return FALSE; break; case ieee_function_unsigned_close_b_enum: if (! next_byte (&(ieee->h))) return FALSE; break; case ieee_function_either_close_b_enum: if (! next_byte (&(ieee->h))) return FALSE; break; default: break; } /* Build a relocation entry for this type. */ /* If pc rel then stick -ve pc into instruction and take out of reloc .. I've changed this. It's all too complicated. I keep 0 in the instruction now. */ switch (extra) { case 0: case 4: if (pcrel) { #if KEEPMINUSPCININST bfd_put_32 (ieee->h.abfd, -current_map->pc, location_ptr + current_map->pc); r->relent.howto = &rel32_howto; r->relent.addend -= current_map->pc; #else bfd_put_32 (ieee->h.abfd, (bfd_vma) 0, location_ptr + current_map->pc); r->relent.howto = &rel32_howto; #endif } else { bfd_put_32 (ieee->h.abfd, (bfd_vma) 0, location_ptr + current_map->pc); r->relent.howto = &abs32_howto; } current_map->pc += 4; break; case 2: if (pcrel) { #if KEEPMINUSPCININST bfd_put_16 (ieee->h.abfd, (bfd_vma) -current_map->pc, location_ptr + current_map->pc); r->relent.addend -= current_map->pc; r->relent.howto = &rel16_howto; #else bfd_put_16 (ieee->h.abfd, (bfd_vma) 0, location_ptr + current_map->pc); r->relent.howto = &rel16_howto; #endif } else { bfd_put_16 (ieee->h.abfd, (bfd_vma) 0, location_ptr + current_map->pc); r->relent.howto = &abs16_howto; } current_map->pc += 2; break; case 1: if (pcrel) { #if KEEPMINUSPCININST bfd_put_8 (ieee->h.abfd, (int) (-current_map->pc), location_ptr + current_map->pc); r->relent.addend -= current_map->pc; r->relent.howto = &rel8_howto; #else bfd_put_8 (ieee->h.abfd, 0, location_ptr + current_map->pc); r->relent.howto = &rel8_howto; #endif } else { bfd_put_8 (ieee->h.abfd, 0, location_ptr + current_map->pc); r->relent.howto = &abs8_howto; } current_map->pc += 1; break; default: BFD_FAIL (); return FALSE; } } break; default: { bfd_vma this_size; if (parse_int (&(ieee->h), &this_size)) { unsigned int i; for (i = 0; i < this_size; i++) { location_ptr[current_map->pc++] = this_byte (&(ieee->h)); if (! next_byte (&(ieee->h))) return FALSE; } } else loop = FALSE; } } /* Prevent more than the first load-item of an LR record from being repeated (MRI convention). */ if (iterations != 1) loop = FALSE; } } } return TRUE; } /* Read in all the section data and relocation stuff too. */ static bfd_boolean ieee_slurp_section_data (bfd *abfd) { bfd_byte *location_ptr = (bfd_byte *) NULL; ieee_data_type *ieee = IEEE_DATA (abfd); unsigned int section_number; ieee_per_section_type *current_map = NULL; asection *s; /* Seek to the start of the data area. */ if (ieee->read_data) return TRUE; ieee->read_data = TRUE; if (! ieee_seek (ieee, ieee->w.r.data_part)) return FALSE; /* Allocate enough space for all the section contents. */ for (s = abfd->sections; s != (asection *) NULL; s = s->next) { ieee_per_section_type *per = ieee_per_section (s); arelent **relpp; if ((s->flags & SEC_DEBUGGING) != 0) continue; per->data = bfd_alloc (ieee->h.abfd, s->size); if (!per->data) return FALSE; relpp = &s->relocation; per->reloc_tail_ptr = (ieee_reloc_type **) relpp; } while (TRUE) { switch (this_byte (&(ieee->h))) { /* IF we see anything strange then quit. */ default: return TRUE; case ieee_set_current_section_enum: if (! next_byte (&(ieee->h))) return FALSE; section_number = must_parse_int (&(ieee->h)); s = ieee->section_table[section_number]; s->flags |= SEC_LOAD | SEC_HAS_CONTENTS; current_map = ieee_per_section (s); location_ptr = current_map->data - s->vma; /* The document I have says that Microtec's compilers reset this after a sec section, even though the standard says not to, SO... */ current_map->pc = s->vma; break; case ieee_e2_first_byte_enum: if (! next_byte (&(ieee->h))) return FALSE; switch (this_byte (&(ieee->h))) { case ieee_set_current_pc_enum & 0xff: { bfd_vma value; ieee_symbol_index_type symbol; unsigned int extra; bfd_boolean pcrel; if (! next_byte (&(ieee->h))) return FALSE; must_parse_int (&(ieee->h)); /* Throw away section #. */ if (! parse_expression (ieee, &value, &symbol, &pcrel, &extra, 0)) return FALSE; current_map->pc = value; BFD_ASSERT ((unsigned) (value - s->vma) <= s->size); } break; case ieee_value_starting_address_enum & 0xff: if (! next_byte (&(ieee->h))) return FALSE; if (this_byte (&(ieee->h)) == ieee_function_either_open_b_enum) { if (! next_byte (&(ieee->h))) return FALSE; } abfd->start_address = must_parse_int (&(ieee->h)); /* We've got to the end of the data now - */ return TRUE; default: BFD_FAIL (); return FALSE; } break; case ieee_repeat_data_enum: { /* Repeat the following LD or LR n times - we do this by remembering the stream pointer before running it and resetting it and running it n times. We special case the repetition of a repeat_data/load_constant. */ unsigned int iterations; unsigned char *start; if (! next_byte (&(ieee->h))) return FALSE; iterations = must_parse_int (&(ieee->h)); start = ieee->h.input_p; if (start[0] == (int) ieee_load_constant_bytes_enum && start[1] == 1) { while (iterations != 0) { location_ptr[current_map->pc++] = start[2]; iterations--; } (void) next_byte (&(ieee->h)); (void) next_byte (&(ieee->h)); if (! next_byte (&(ieee->h))) return FALSE; } else { while (iterations != 0) { ieee->h.input_p = start; if (!do_one (ieee, current_map, location_ptr, s, (int) iterations)) return FALSE; iterations--; } } } break; case ieee_load_constant_bytes_enum: case ieee_load_with_relocation_enum: if (!do_one (ieee, current_map, location_ptr, s, 1)) return FALSE; } } } static const bfd_target * ieee_object_p (bfd *abfd) { char *processor; unsigned int part; ieee_data_type *ieee; unsigned char buffer[300]; ieee_data_type *save = IEEE_DATA (abfd); bfd_size_type amt; abfd->tdata.ieee_data = 0; ieee_mkobject (abfd); ieee = IEEE_DATA (abfd); if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0) goto fail; /* Read the first few bytes in to see if it makes sense. Ignore bfd_bread return value; The file might be very small. */ if (bfd_bread ((void *) buffer, (bfd_size_type) sizeof (buffer), abfd) <= 0) goto got_wrong_format; ieee->h.input_p = buffer; ieee->h.total_amt = sizeof (buffer); if (this_byte_and_next (&(ieee->h)) != Module_Beginning) goto got_wrong_format; ieee->read_symbols = FALSE; ieee->read_data = FALSE; ieee->section_count = 0; ieee->external_symbol_max_index = 0; ieee->external_symbol_min_index = IEEE_PUBLIC_BASE; ieee->external_reference_min_index = IEEE_REFERENCE_BASE; ieee->external_reference_max_index = 0; ieee->h.abfd = abfd; ieee->section_table = NULL; ieee->section_table_size = 0; processor = ieee->mb.processor = read_id (&(ieee->h)); if (strcmp (processor, "LIBRARY") == 0) goto got_wrong_format; ieee->mb.module_name = read_id (&(ieee->h)); if (abfd->filename == (const char *) NULL) abfd->filename = xstrdup (ieee->mb.module_name); /* Determine the architecture and machine type of the object file. */ { const bfd_arch_info_type *arch; char family[10]; /* IEEE does not specify the format of the processor identification string, so the compiler is free to put in it whatever it wants. We try here to recognize different processors belonging to the m68k family. Code for other processors can be added here. */ if ((processor[0] == '6') && (processor[1] == '8')) { if (processor[2] == '3') /* 683xx integrated processors. */ { switch (processor[3]) { case '0': /* 68302, 68306, 68307 */ case '2': /* 68322, 68328 */ case '5': /* 68356 */ strcpy (family, "68000"); /* MC68000-based controllers. */ break; case '3': /* 68330, 68331, 68332, 68333, 68334, 68335, 68336, 68338 */ case '6': /* 68360 */ case '7': /* 68376 */ strcpy (family, "68332"); /* CPU32 and CPU32+ */ break; case '4': if (processor[4] == '9') /* 68349 */ strcpy (family, "68030"); /* CPU030 */ else /* 68340, 68341 */ strcpy (family, "68332"); /* CPU32 and CPU32+ */ break; default: /* Does not exist yet. */ strcpy (family, "68332"); /* Guess it will be CPU32 */ } } else if (TOUPPER (processor[3]) == 'F') /* 68F333 */ strcpy (family, "68332"); /* CPU32 */ else if ((TOUPPER (processor[3]) == 'C') /* Embedded controllers. */ && ((TOUPPER (processor[2]) == 'E') || (TOUPPER (processor[2]) == 'H') || (TOUPPER (processor[2]) == 'L'))) { strcpy (family, "68"); strncat (family, processor + 4, 7); family[9] = '\0'; } else /* "Regular" processors. */ { strncpy (family, processor, 9); family[9] = '\0'; } } else if ((CONST_STRNEQ (processor, "cpu32")) /* CPU32 and CPU32+ */ || (CONST_STRNEQ (processor, "CPU32"))) strcpy (family, "68332"); else { strncpy (family, processor, 9); family[9] = '\0'; } arch = bfd_scan_arch (family); if (arch == 0) goto got_wrong_format; abfd->arch_info = arch; } if (this_byte (&(ieee->h)) != (int) ieee_address_descriptor_enum) goto fail; if (! next_byte (&(ieee->h))) goto fail; if (! parse_int (&(ieee->h), &ieee->ad.number_of_bits_mau)) goto fail; if (! parse_int (&(ieee->h), &ieee->ad.number_of_maus_in_address)) goto fail; /* If there is a byte order info, take it. */ if (this_byte (&(ieee->h)) == (int) ieee_variable_L_enum || this_byte (&(ieee->h)) == (int) ieee_variable_M_enum) { if (! next_byte (&(ieee->h))) goto fail; } for (part = 0; part < N_W_VARIABLES; part++) { bfd_boolean ok; if (read_2bytes (&(ieee->h)) != (int) ieee_assign_value_to_variable_enum) goto fail; if (this_byte_and_next (&(ieee->h)) != part) goto fail; ieee->w.offset[part] = parse_i (&(ieee->h), &ok); if (! ok) goto fail; } if (ieee->w.r.external_part != 0) abfd->flags = HAS_SYMS; /* By now we know that this is a real IEEE file, we're going to read the whole thing into memory so that we can run up and down it quickly. We can work out how big the file is from the trailer record. */ amt = ieee->w.r.me_record + 1; IEEE_DATA (abfd)->h.first_byte = bfd_alloc (ieee->h.abfd, amt); if (!IEEE_DATA (abfd)->h.first_byte) goto fail; if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0) goto fail; /* FIXME: Check return value. I'm not sure whether it needs to read the entire buffer or not. */ amt = bfd_bread ((void *) (IEEE_DATA (abfd)->h.first_byte), (bfd_size_type) ieee->w.r.me_record + 1, abfd); if (amt <= 0) goto fail; IEEE_DATA (abfd)->h.total_amt = amt; if (ieee_slurp_sections (abfd)) goto fail; if (! ieee_slurp_debug (abfd)) goto fail; /* Parse section data to activate file and section flags implied by section contents. */ if (! ieee_slurp_section_data (abfd)) goto fail; return abfd->xvec; got_wrong_format: bfd_set_error (bfd_error_wrong_format); fail: bfd_release (abfd, ieee); abfd->tdata.ieee_data = save; return (const bfd_target *) NULL; } static void ieee_get_symbol_info (bfd *ignore_abfd ATTRIBUTE_UNUSED, asymbol *symbol, symbol_info *ret) { bfd_symbol_info (symbol, ret); if (symbol->name[0] == ' ') ret->name = "* empty table entry "; if (!symbol->section) ret->type = (symbol->flags & BSF_LOCAL) ? 'a' : 'A'; } static void ieee_print_symbol (bfd *abfd, void * afile, asymbol *symbol, bfd_print_symbol_type how) { FILE *file = (FILE *) afile; switch (how) { case bfd_print_symbol_name: fprintf (file, "%s", symbol->name); break; case bfd_print_symbol_more: BFD_FAIL (); break; case bfd_print_symbol_all: { const char *section_name = (symbol->section == (asection *) NULL ? "*abs" : symbol->section->name); if (symbol->name[0] == ' ') fprintf (file, "* empty table entry "); else { bfd_print_symbol_vandf (abfd, (void *) file, symbol); fprintf (file, " %-5s %04x %02x %s", section_name, (unsigned) ieee_symbol (symbol)->index, (unsigned) 0, symbol->name); } } break; } } static bfd_boolean ieee_new_section_hook (bfd *abfd, asection *newsect) { if (!newsect->used_by_bfd) { newsect->used_by_bfd = bfd_alloc (abfd, sizeof (ieee_per_section_type)); if (!newsect->used_by_bfd) return FALSE; } ieee_per_section (newsect)->data = NULL; ieee_per_section (newsect)->section = newsect; return _bfd_generic_new_section_hook (abfd, newsect); } static long ieee_get_reloc_upper_bound (bfd *abfd, sec_ptr asect) { if ((asect->flags & SEC_DEBUGGING) != 0) return 0; if (! ieee_slurp_section_data (abfd)) return -1; return (asect->reloc_count + 1) * sizeof (arelent *); } static bfd_boolean ieee_get_section_contents (bfd *abfd, sec_ptr section, void * location, file_ptr offset, bfd_size_type count) { ieee_per_section_type *p = ieee_per_section (section); if ((section->flags & SEC_DEBUGGING) != 0) return _bfd_generic_get_section_contents (abfd, section, location, offset, count); ieee_slurp_section_data (abfd); (void) memcpy ((void *) location, (void *) (p->data + offset), (unsigned) count); return TRUE; } static long ieee_canonicalize_reloc (bfd *abfd, sec_ptr section, arelent **relptr, asymbol **symbols) { ieee_reloc_type *src = (ieee_reloc_type *) (section->relocation); ieee_data_type *ieee = IEEE_DATA (abfd); if ((section->flags & SEC_DEBUGGING) != 0) return 0; while (src != (ieee_reloc_type *) NULL) { /* Work out which symbol to attach it this reloc to. */ switch (src->symbol.letter) { case 'I': src->relent.sym_ptr_ptr = symbols + src->symbol.index + ieee->external_symbol_base_offset; break; case 'X': src->relent.sym_ptr_ptr = symbols + src->symbol.index + ieee->external_reference_base_offset; break; case 0: if (src->relent.sym_ptr_ptr != NULL) src->relent.sym_ptr_ptr = src->relent.sym_ptr_ptr[0]->section->symbol_ptr_ptr; break; default: BFD_FAIL (); } *relptr++ = &src->relent; src = src->next; } *relptr = NULL; return section->reloc_count; } static int comp (const void * ap, const void * bp) { arelent *a = *((arelent **) ap); arelent *b = *((arelent **) bp); return a->address - b->address; } /* Write the section headers. */ static bfd_boolean ieee_write_section_part (bfd *abfd) { ieee_data_type *ieee = IEEE_DATA (abfd); asection *s; ieee->w.r.section_part = bfd_tell (abfd); for (s = abfd->sections; s != (asection *) NULL; s = s->next) { if (! bfd_is_abs_section (s) && (s->flags & SEC_DEBUGGING) == 0) { if (! ieee_write_byte (abfd, ieee_section_type_enum) || ! ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE))) return FALSE; if (abfd->flags & EXEC_P) { /* This image is executable, so output absolute sections. */ if (! ieee_write_byte (abfd, ieee_variable_A_enum) || ! ieee_write_byte (abfd, ieee_variable_S_enum)) return FALSE; } else { if (! ieee_write_byte (abfd, ieee_variable_C_enum)) return FALSE; } switch (s->flags & (SEC_CODE | SEC_DATA | SEC_ROM)) { case SEC_CODE | SEC_LOAD: case SEC_CODE: if (! ieee_write_byte (abfd, ieee_variable_P_enum)) return FALSE; break; case SEC_DATA: default: if (! ieee_write_byte (abfd, ieee_variable_D_enum)) return FALSE; break; case SEC_ROM: case SEC_ROM | SEC_DATA: case SEC_ROM | SEC_LOAD: case SEC_ROM | SEC_DATA | SEC_LOAD: if (! ieee_write_byte (abfd, ieee_variable_R_enum)) return FALSE; } if (! ieee_write_id (abfd, s->name)) return FALSE; /* Alignment. */ if (! ieee_write_byte (abfd, ieee_section_alignment_enum) || ! ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE)) || ! ieee_write_int (abfd, (bfd_vma) 1 << s->alignment_power)) return FALSE; /* Size. */ if (! ieee_write_2bytes (abfd, ieee_section_size_enum) || ! ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE)) || ! ieee_write_int (abfd, s->size)) return FALSE; if (abfd->flags & EXEC_P) { /* Relocateable sections don't have asl records. */ /* Vma. */ if (! ieee_write_2bytes (abfd, ieee_section_base_address_enum) || ! ieee_write_byte (abfd, ((bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE))) || ! ieee_write_int (abfd, s->lma)) return FALSE; } } } return TRUE; } static bfd_boolean do_with_relocs (bfd *abfd, asection *s) { unsigned int number_of_maus_in_address = bfd_arch_bits_per_address (abfd) / bfd_arch_bits_per_byte (abfd); unsigned int relocs_to_go = s->reloc_count; bfd_byte *stream = ieee_per_section (s)->data; arelent **p = s->orelocation; bfd_size_type current_byte_index = 0; qsort (s->orelocation, relocs_to_go, sizeof (arelent **), comp); /* Output the section preheader. */ if (! ieee_write_byte (abfd, ieee_set_current_section_enum) || ! ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE)) || ! ieee_write_2bytes (abfd, ieee_set_current_pc_enum) || ! ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE))) return FALSE; if ((abfd->flags & EXEC_P) != 0 && relocs_to_go == 0) { if (! ieee_write_int (abfd, s->lma)) return FALSE; } else { if (! ieee_write_expression (abfd, (bfd_vma) 0, s->symbol, 0, 0)) return FALSE; } if (relocs_to_go == 0) { /* If there aren't any relocations then output the load constant byte opcode rather than the load with relocation opcode. */ while (current_byte_index < s->size) { bfd_size_type run; unsigned int MAXRUN = 127; run = MAXRUN; if (run > s->size - current_byte_index) run = s->size - current_byte_index; if (run != 0) { if (! ieee_write_byte (abfd, ieee_load_constant_bytes_enum)) return FALSE; /* Output a stream of bytes. */ if (! ieee_write_int (abfd, run)) return FALSE; if (bfd_bwrite ((void *) (stream + current_byte_index), run, abfd) != run) return FALSE; current_byte_index += run; } } } else { if (! ieee_write_byte (abfd, ieee_load_with_relocation_enum)) return FALSE; /* Output the data stream as the longest sequence of bytes possible, allowing for the a reasonable packet size and relocation stuffs. */ if (stream == NULL) { /* Outputting a section without data, fill it up. */ stream = bfd_zalloc (abfd, s->size); if (!stream) return FALSE; } while (current_byte_index < s->size) { bfd_size_type run; unsigned int MAXRUN = 127; if (relocs_to_go) { run = (*p)->address - current_byte_index; if (run > MAXRUN) run = MAXRUN; } else run = MAXRUN; if (run > s->size - current_byte_index) run = s->size - current_byte_index; if (run != 0) { /* Output a stream of bytes. */ if (! ieee_write_int (abfd, run)) return FALSE; if (bfd_bwrite ((void *) (stream + current_byte_index), run, abfd) != run) return FALSE; current_byte_index += run; } /* Output any relocations here. */ if (relocs_to_go && (*p) && (*p)->address == current_byte_index) { while (relocs_to_go && (*p) && (*p)->address == current_byte_index) { arelent *r = *p; bfd_signed_vma ov; switch (r->howto->size) { case 2: ov = bfd_get_signed_32 (abfd, stream + current_byte_index); current_byte_index += 4; break; case 1: ov = bfd_get_signed_16 (abfd, stream + current_byte_index); current_byte_index += 2; break; case 0: ov = bfd_get_signed_8 (abfd, stream + current_byte_index); current_byte_index++; break; default: ov = 0; BFD_FAIL (); return FALSE; } ov &= r->howto->src_mask; if (r->howto->pc_relative && ! r->howto->pcrel_offset) ov += r->address; if (! ieee_write_byte (abfd, ieee_function_either_open_b_enum)) return FALSE; if (r->sym_ptr_ptr != (asymbol **) NULL) { if (! ieee_write_expression (abfd, r->addend + ov, *(r->sym_ptr_ptr), r->howto->pc_relative, (unsigned) s->index)) return FALSE; } else { if (! ieee_write_expression (abfd, r->addend + ov, (asymbol *) NULL, r->howto->pc_relative, (unsigned) s->index)) return FALSE; } if (number_of_maus_in_address != bfd_get_reloc_size (r->howto)) { bfd_vma rsize = bfd_get_reloc_size (r->howto); if (! ieee_write_int (abfd, rsize)) return FALSE; } if (! ieee_write_byte (abfd, ieee_function_either_close_b_enum)) return FALSE; relocs_to_go--; p++; } } } } return TRUE; } /* If there are no relocations in the output section then we can be clever about how we write. We block items up into a max of 127 bytes. */ static bfd_boolean do_as_repeat (bfd *abfd, asection *s) { if (s->size) { if (! ieee_write_byte (abfd, ieee_set_current_section_enum) || ! ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE)) || ! ieee_write_byte (abfd, ieee_set_current_pc_enum >> 8) || ! ieee_write_byte (abfd, ieee_set_current_pc_enum & 0xff) || ! ieee_write_byte (abfd, (bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE))) return FALSE; if ((abfd->flags & EXEC_P) != 0) { if (! ieee_write_int (abfd, s->lma)) return FALSE; } else { if (! ieee_write_expression (abfd, (bfd_vma) 0, s->symbol, 0, 0)) return FALSE; } if (! ieee_write_byte (abfd, ieee_repeat_data_enum) || ! ieee_write_int (abfd, s->size) || ! ieee_write_byte (abfd, ieee_load_constant_bytes_enum) || ! ieee_write_byte (abfd, 1) || ! ieee_write_byte (abfd, 0)) return FALSE; } return TRUE; } static bfd_boolean do_without_relocs (bfd *abfd, asection *s) { bfd_byte *stream = ieee_per_section (s)->data; if (stream == 0 || ((s->flags & SEC_LOAD) == 0)) { if (! do_as_repeat (abfd, s)) return FALSE; } else { unsigned int i; for (i = 0; i < s->size; i++) { if (stream[i] != 0) { if (! do_with_relocs (abfd, s)) return FALSE; return TRUE; } } if (! do_as_repeat (abfd, s)) return FALSE; } return TRUE; } static void fill (void) { bfd_size_type amt = input_ptr_end - input_ptr_start; /* FIXME: Check return value. I'm not sure whether it needs to read the entire buffer or not. */ bfd_bread ((void *) input_ptr_start, amt, input_bfd); input_ptr = input_ptr_start; } static void flush (void) { bfd_size_type amt = output_ptr - output_ptr_start; if (bfd_bwrite ((void *) (output_ptr_start), amt, output_bfd) != amt) abort (); output_ptr = output_ptr_start; output_buffer++; } #define THIS() ( *input_ptr ) #define NEXT() { input_ptr++; if (input_ptr == input_ptr_end) fill (); } #define OUT(x) { *output_ptr++ = (x); if (output_ptr == output_ptr_end) flush (); } static void write_int (int value) { if (value >= 0 && value <= 127) { OUT (value); } else { unsigned int length; /* How many significant bytes ? */ /* FIXME FOR LONGER INTS. */ if (value & 0xff000000) length = 4; else if (value & 0x00ff0000) length = 3; else if (value & 0x0000ff00) length = 2; else length = 1; OUT ((int) ieee_number_repeat_start_enum + length); switch (length) { case 4: OUT (value >> 24); case 3: OUT (value >> 16); case 2: OUT (value >> 8); case 1: OUT (value); } } } static void copy_id (void) { int length = THIS (); char ch; OUT (length); NEXT (); while (length--) { ch = THIS (); OUT (ch); NEXT (); } } #define VAR(x) ((x | 0x80)) static void copy_expression (void) { int stack[10]; int *tos = stack; int value; while (1) { switch (THIS ()) { case 0x84: NEXT (); value = THIS (); NEXT (); value = (value << 8) | THIS (); NEXT (); value = (value << 8) | THIS (); NEXT (); value = (value << 8) | THIS (); NEXT (); *tos++ = value; break; case 0x83: NEXT (); value = THIS (); NEXT (); value = (value << 8) | THIS (); NEXT (); value = (value << 8) | THIS (); NEXT (); *tos++ = value; break; case 0x82: NEXT (); value = THIS (); NEXT (); value = (value << 8) | THIS (); NEXT (); *tos++ = value; break; case 0x81: NEXT (); value = THIS (); NEXT (); *tos++ = value; break; case 0x80: NEXT (); *tos++ = 0; break; default: if (THIS () > 0x84) { /* Not a number, just bug out with the answer. */ write_int (*(--tos)); return; } *tos++ = THIS (); NEXT (); break; case 0xa5: /* PLUS anything. */ value = *(--tos); value += *(--tos); *tos++ = value; NEXT (); break; case VAR ('R'): { int section_number; ieee_data_type *ieee; asection *s; NEXT (); section_number = THIS (); NEXT (); ieee = IEEE_DATA (input_bfd); s = ieee->section_table[section_number]; value = 0; if (s->output_section) value = s->output_section->lma; value += s->output_offset; *tos++ = value; } break; case 0x90: { NEXT (); write_int (*(--tos)); OUT (0x90); return; } } } } /* Drop the int in the buffer, and copy a null into the gap, which we will overwrite later. */ static void fill_int (struct output_buffer_struct *buf) { if (buf->buffer == output_buffer) { /* Still a chance to output the size. */ int value = output_ptr - buf->ptrp + 3; buf->ptrp[0] = value >> 24; buf->ptrp[1] = value >> 16; buf->ptrp[2] = value >> 8; buf->ptrp[3] = value >> 0; } } static void drop_int (struct output_buffer_struct *buf) { int type = THIS (); int ch; if (type <= 0x84) { NEXT (); switch (type) { case 0x84: ch = THIS (); NEXT (); case 0x83: ch = THIS (); NEXT (); case 0x82: ch = THIS (); NEXT (); case 0x81: ch = THIS (); NEXT (); case 0x80: break; } } (void) ch; OUT (0x84); buf->ptrp = output_ptr; buf->buffer = output_buffer; OUT (0); OUT (0); OUT (0); OUT (0); } static void copy_int (void) { int type = THIS (); int ch; if (type <= 0x84) { OUT (type); NEXT (); switch (type) { case 0x84: ch = THIS (); NEXT (); OUT (ch); case 0x83: ch = THIS (); NEXT (); OUT (ch); case 0x82: ch = THIS (); NEXT (); OUT (ch); case 0x81: ch = THIS (); NEXT (); OUT (ch); case 0x80: break; } } } #define ID copy_id () #define INT copy_int () #define EXP copy_expression () #define INTn(q) copy_int () #define EXPn(q) copy_expression () static void copy_till_end (void) { int ch = THIS (); while (1) { while (ch <= 0x80) { OUT (ch); NEXT (); ch = THIS (); } switch (ch) { case 0x84: OUT (THIS ()); NEXT (); case 0x83: OUT (THIS ()); NEXT (); case 0x82: OUT (THIS ()); NEXT (); case 0x81: OUT (THIS ()); NEXT (); OUT (THIS ()); NEXT (); ch = THIS (); break; default: return; } } } static void f1_record (void) { int ch; /* ATN record. */ NEXT (); ch = THIS (); switch (ch) { default: OUT (0xf1); OUT (ch); break; case 0xc9: NEXT (); OUT (0xf1); OUT (0xc9); INT; INT; ch = THIS (); switch (ch) { case 0x16: NEXT (); break; case 0x01: NEXT (); break; case 0x00: NEXT (); INT; break; case 0x03: NEXT (); INT; break; case 0x13: EXPn (instruction address); break; default: break; } break; case 0xd8: /* EXternal ref. */ NEXT (); OUT (0xf1); OUT (0xd8); EXP; EXP; EXP; EXP; break; case 0xce: NEXT (); OUT (0xf1); OUT (0xce); INT; INT; ch = THIS (); INT; switch (ch) { case 0x01: INT; INT; break; case 0x02: INT; break; case 0x04: EXPn (external function); break; case 0x05: break; case 0x07: INTn (line number); INT; case 0x08: break; case 0x0a: INTn (locked register); INT; break; case 0x3f: copy_till_end (); break; case 0x3e: copy_till_end (); break; case 0x40: copy_till_end (); break; case 0x41: ID; break; } } } static void f0_record (void) { /* Attribute record. */ NEXT (); OUT (0xf0); INTn (Symbol name); ID; } static void f2_record (void) { NEXT (); OUT (0xf2); INT; NEXT (); OUT (0xce); INT; copy_till_end (); } static void f8_record (void) { int ch; NEXT (); ch = THIS (); switch (ch) { case 0x01: case 0x02: case 0x03: /* Unique typedefs for module. */ /* GLobal typedefs. */ /* High level module scope beginning. */ { struct output_buffer_struct ob; NEXT (); OUT (0xf8); OUT (ch); drop_int (&ob); ID; block (); NEXT (); fill_int (&ob); OUT (0xf9); } break; case 0x04: /* Global function. */ { struct output_buffer_struct ob; NEXT (); OUT (0xf8); OUT (0x04); drop_int (&ob); ID; INTn (stack size); INTn (ret val); EXPn (offset); block (); NEXT (); OUT (0xf9); EXPn (size of block); fill_int (&ob); } break; case 0x05: /* File name for source line numbers. */ { struct output_buffer_struct ob; NEXT (); OUT (0xf8); OUT (0x05); drop_int (&ob); ID; INTn (year); INTn (month); INTn (day); INTn (hour); INTn (monute); INTn (second); block (); NEXT (); OUT (0xf9); fill_int (&ob); } break; case 0x06: /* Local function. */ { struct output_buffer_struct ob; NEXT (); OUT (0xf8); OUT (0x06); drop_int (&ob); ID; INTn (stack size); INTn (type return); EXPn (offset); block (); NEXT (); OUT (0xf9); EXPn (size); fill_int (&ob); } break; case 0x0a: /* Assembler module scope beginning - */ { struct output_buffer_struct ob; NEXT (); OUT (0xf8); OUT (0x0a); drop_int (&ob); ID; ID; INT; ID; INT; INT; INT; INT; INT; INT; block (); NEXT (); OUT (0xf9); fill_int (&ob); } break; case 0x0b: { struct output_buffer_struct ob; NEXT (); OUT (0xf8); OUT (0x0b); drop_int (&ob); ID; INT; INTn (section index); EXPn (offset); INTn (stuff); block (); OUT (0xf9); NEXT (); EXPn (Size in Maus); fill_int (&ob); } break; } } static void e2_record (void) { OUT (0xe2); NEXT (); OUT (0xce); NEXT (); INT; EXP; } static void block (void) { int ch; while (1) { ch = THIS (); switch (ch) { case 0xe1: case 0xe5: return; case 0xf9: return; case 0xf0: f0_record (); break; case 0xf1: f1_record (); break; case 0xf2: f2_record (); break; case 0xf8: f8_record (); break; case 0xe2: e2_record (); break; } } } /* Moves all the debug information from the source bfd to the output bfd, and relocates any expressions it finds. */ static void relocate_debug (bfd *output ATTRIBUTE_UNUSED, bfd *input) { #define IBS 400 #define OBS 400 unsigned char input_buffer[IBS]; input_ptr_start = input_ptr = input_buffer; input_ptr_end = input_buffer + IBS; input_bfd = input; /* FIXME: Check return value. I'm not sure whether it needs to read the entire buffer or not. */ bfd_bread ((void *) input_ptr_start, (bfd_size_type) IBS, input); block (); } /* Gather together all the debug information from each input BFD into one place, relocating it and emitting it as we go. */ static bfd_boolean ieee_write_debug_part (bfd *abfd) { ieee_data_type *ieee = IEEE_DATA (abfd); bfd_chain_type *chain = ieee->chain_root; unsigned char obuff[OBS]; bfd_boolean some_debug = FALSE; file_ptr here = bfd_tell (abfd); output_ptr_start = output_ptr = obuff; output_ptr_end = obuff + OBS; output_ptr = obuff; output_bfd = abfd; if (chain == (bfd_chain_type *) NULL) { asection *s; for (s = abfd->sections; s != NULL; s = s->next) if ((s->flags & SEC_DEBUGGING) != 0) break; if (s == NULL) { ieee->w.r.debug_information_part = 0; return TRUE; } ieee->w.r.debug_information_part = here; if (bfd_bwrite (s->contents, s->size, abfd) != s->size) return FALSE; } else { while (chain != (bfd_chain_type *) NULL) { bfd *entry = chain->this; ieee_data_type *entry_ieee = IEEE_DATA (entry); if (entry_ieee->w.r.debug_information_part) { if (bfd_seek (entry, entry_ieee->w.r.debug_information_part, SEEK_SET) != 0) return FALSE; relocate_debug (abfd, entry); } chain = chain->next; } if (some_debug) ieee->w.r.debug_information_part = here; else ieee->w.r.debug_information_part = 0; flush (); } return TRUE; } /* Write the data in an ieee way. */ static bfd_boolean ieee_write_data_part (bfd *abfd) { asection *s; ieee_data_type *ieee = IEEE_DATA (abfd); ieee->w.r.data_part = bfd_tell (abfd); for (s = abfd->sections; s != (asection *) NULL; s = s->next) { /* Skip sections that have no loadable contents (.bss, debugging, etc.) */ if ((s->flags & SEC_LOAD) == 0) continue; /* Sort the reloc records so we can insert them in the correct places. */ if (s->reloc_count != 0) { if (! do_with_relocs (abfd, s)) return FALSE; } else { if (! do_without_relocs (abfd, s)) return FALSE; } } return TRUE; } static bfd_boolean init_for_output (bfd *abfd) { asection *s; for (s = abfd->sections; s != (asection *) NULL; s = s->next) { if ((s->flags & SEC_DEBUGGING) != 0) continue; if (s->size != 0) { bfd_size_type size = s->size; ieee_per_section (s)->data = bfd_alloc (abfd, size); if (!ieee_per_section (s)->data) return FALSE; } } return TRUE; } /* Exec and core file sections. */ /* Set section contents is complicated with IEEE since the format is not a byte image, but a record stream. */ static bfd_boolean ieee_set_section_contents (bfd *abfd, sec_ptr section, const void * location, file_ptr offset, bfd_size_type count) { if ((section->flags & SEC_DEBUGGING) != 0) { if (section->contents == NULL) { bfd_size_type size = section->size; section->contents = bfd_alloc (abfd, size); if (section->contents == NULL) return FALSE; } /* bfd_set_section_contents has already checked that everything is within range. */ memcpy (section->contents + offset, location, (size_t) count); return TRUE; } if (ieee_per_section (section)->data == (bfd_byte *) NULL) { if (!init_for_output (abfd)) return FALSE; } memcpy ((void *) (ieee_per_section (section)->data + offset), (void *) location, (unsigned int) count); return TRUE; } /* Write the external symbols of a file. IEEE considers two sorts of external symbols, public, and referenced. It uses to internal forms to index them as well. When we write them out we turn their symbol values into indexes from the right base. */ static bfd_boolean ieee_write_external_part (bfd *abfd) { asymbol **q; ieee_data_type *ieee = IEEE_DATA (abfd); unsigned int reference_index = IEEE_REFERENCE_BASE; unsigned int public_index = IEEE_PUBLIC_BASE + 2; file_ptr here = bfd_tell (abfd); bfd_boolean hadone = FALSE; if (abfd->outsymbols != (asymbol **) NULL) { for (q = abfd->outsymbols; *q != (asymbol *) NULL; q++) { asymbol *p = *q; if (bfd_is_und_section (p->section)) { /* This must be a symbol reference. */ if (! ieee_write_byte (abfd, ieee_external_reference_enum) || ! ieee_write_int (abfd, (bfd_vma) reference_index) || ! ieee_write_id (abfd, p->name)) return FALSE; p->value = reference_index; reference_index++; hadone = TRUE; } else if (bfd_is_com_section (p->section)) { /* This is a weak reference. */ if (! ieee_write_byte (abfd, ieee_external_reference_enum) || ! ieee_write_int (abfd, (bfd_vma) reference_index) || ! ieee_write_id (abfd, p->name) || ! ieee_write_byte (abfd, ieee_weak_external_reference_enum) || ! ieee_write_int (abfd, (bfd_vma) reference_index) || ! ieee_write_int (abfd, p->value)) return FALSE; p->value = reference_index; reference_index++; hadone = TRUE; } else if (p->flags & BSF_GLOBAL) { /* This must be a symbol definition. */ if (! ieee_write_byte (abfd, ieee_external_symbol_enum) || ! ieee_write_int (abfd, (bfd_vma) public_index) || ! ieee_write_id (abfd, p->name) || ! ieee_write_2bytes (abfd, ieee_attribute_record_enum) || ! ieee_write_int (abfd, (bfd_vma) public_index) || ! ieee_write_byte (abfd, 15) /* Instruction address. */ || ! ieee_write_byte (abfd, 19) /* Static symbol. */ || ! ieee_write_byte (abfd, 1)) /* One of them. */ return FALSE; /* Write out the value. */ if (! ieee_write_2bytes (abfd, ieee_value_record_enum) || ! ieee_write_int (abfd, (bfd_vma) public_index)) return FALSE; if (! bfd_is_abs_section (p->section)) { if (abfd->flags & EXEC_P) { /* If fully linked, then output all symbols relocated. */ if (! (ieee_write_int (abfd, (p->value + p->section->output_offset + p->section->output_section->vma)))) return FALSE; } else { if (! (ieee_write_expression (abfd, p->value + p->section->output_offset, p->section->output_section->symbol, FALSE, 0))) return FALSE; } } else { if (! ieee_write_expression (abfd, p->value, bfd_abs_section_ptr->symbol, FALSE, 0)) return FALSE; } p->value = public_index; public_index++; hadone = TRUE; } else { /* This can happen - when there are gaps in the symbols read from an input ieee file. */ } } } if (hadone) ieee->w.r.external_part = here; return TRUE; } static const unsigned char exten[] = { 0xf0, 0x20, 0x00, 0xf1, 0xce, 0x20, 0x00, 37, 3, 3, /* Set version 3 rev 3. */ 0xf1, 0xce, 0x20, 0x00, 39, 2, /* Keep symbol in original case. */ 0xf1, 0xce, 0x20, 0x00, 38 /* Set object type relocatable to x. */ }; static const unsigned char envi[] = { 0xf0, 0x21, 0x00, /* 0xf1, 0xce, 0x21, 00, 50, 0x82, 0x07, 0xc7, 0x09, 0x11, 0x11, 0x19, 0x2c, */ 0xf1, 0xce, 0x21, 00, 52, 0x00, /* exec ok. */ 0xf1, 0xce, 0x21, 0, 53, 0x03,/* host unix. */ /* 0xf1, 0xce, 0x21, 0, 54, 2,1,1 tool & version # */ }; static bfd_boolean ieee_write_me_part (bfd *abfd) { ieee_data_type *ieee = IEEE_DATA (abfd); ieee->w.r.trailer_part = bfd_tell (abfd); if (abfd->start_address) { if (! ieee_write_2bytes (abfd, ieee_value_starting_address_enum) || ! ieee_write_byte (abfd, ieee_function_either_open_b_enum) || ! ieee_write_int (abfd, abfd->start_address) || ! ieee_write_byte (abfd, ieee_function_either_close_b_enum)) return FALSE; } ieee->w.r.me_record = bfd_tell (abfd); if (! ieee_write_byte (abfd, ieee_module_end_enum)) return FALSE; return TRUE; } /* Write out the IEEE processor ID. */ static bfd_boolean ieee_write_processor (bfd *abfd) { const bfd_arch_info_type *arch; arch = bfd_get_arch_info (abfd); switch (arch->arch) { default: if (! ieee_write_id (abfd, bfd_printable_name (abfd))) return FALSE; break; case bfd_arch_h8300: if (! ieee_write_id (abfd, "H8/300")) return FALSE; break; case bfd_arch_h8500: if (! ieee_write_id (abfd, "H8/500")) return FALSE; break; case bfd_arch_i960: switch (arch->mach) { default: case bfd_mach_i960_core: case bfd_mach_i960_ka_sa: if (! ieee_write_id (abfd, "80960KA")) return FALSE; break; case bfd_mach_i960_kb_sb: if (! ieee_write_id (abfd, "80960KB")) return FALSE; break; case bfd_mach_i960_ca: if (! ieee_write_id (abfd, "80960CA")) return FALSE; break; case bfd_mach_i960_mc: case bfd_mach_i960_xa: if (! ieee_write_id (abfd, "80960MC")) return FALSE; break; } break; case bfd_arch_m68k: { const char *id; switch (arch->mach) { default: id = "68020"; break; case bfd_mach_m68000: id = "68000"; break; case bfd_mach_m68008: id = "68008"; break; case bfd_mach_m68010: id = "68010"; break; case bfd_mach_m68020: id = "68020"; break; case bfd_mach_m68030: id = "68030"; break; case bfd_mach_m68040: id = "68040"; break; case bfd_mach_m68060: id = "68060"; break; case bfd_mach_cpu32: id = "cpu32"; break; case bfd_mach_mcf_isa_a_nodiv: id = "isa-a:nodiv"; break; case bfd_mach_mcf_isa_a: id = "isa-a"; break; case bfd_mach_mcf_isa_a_mac: id = "isa-a:mac"; break; case bfd_mach_mcf_isa_a_emac: id = "isa-a:emac"; break; case bfd_mach_mcf_isa_aplus: id = "isa-aplus"; break; case bfd_mach_mcf_isa_aplus_mac: id = "isa-aplus:mac"; break; case bfd_mach_mcf_isa_aplus_emac: id = "isa-aplus:mac"; break; case bfd_mach_mcf_isa_b_nousp: id = "isa-b:nousp"; break; case bfd_mach_mcf_isa_b_nousp_mac: id = "isa-b:nousp:mac"; break; case bfd_mach_mcf_isa_b_nousp_emac: id = "isa-b:nousp:emac"; break; case bfd_mach_mcf_isa_b: id = "isa-b"; break; case bfd_mach_mcf_isa_b_mac: id = "isa-b:mac"; break; case bfd_mach_mcf_isa_b_emac: id = "isa-b:emac"; break; case bfd_mach_mcf_isa_b_float: id = "isa-b:float"; break; case bfd_mach_mcf_isa_b_float_mac: id = "isa-b:float:mac"; break; case bfd_mach_mcf_isa_b_float_emac: id = "isa-b:float:emac"; break; case bfd_mach_mcf_isa_c: id = "isa-c"; break; case bfd_mach_mcf_isa_c_mac: id = "isa-c:mac"; break; case bfd_mach_mcf_isa_c_emac: id = "isa-c:emac"; break; case bfd_mach_mcf_isa_c_nodiv: id = "isa-c:nodiv"; break; case bfd_mach_mcf_isa_c_nodiv_mac: id = "isa-c:nodiv:mac"; break; case bfd_mach_mcf_isa_c_nodiv_emac: id = "isa-c:nodiv:emac"; break; } if (! ieee_write_id (abfd, id)) return FALSE; } break; } return TRUE; } static bfd_boolean ieee_write_object_contents (bfd *abfd) { ieee_data_type *ieee = IEEE_DATA (abfd); unsigned int i; file_ptr old; /* Fast forward over the header area. */ if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0) return FALSE; if (! ieee_write_byte (abfd, ieee_module_beginning_enum) || ! ieee_write_processor (abfd) || ! ieee_write_id (abfd, abfd->filename)) return FALSE; /* Fast forward over the variable bits. */ if (! ieee_write_byte (abfd, ieee_address_descriptor_enum)) return FALSE; /* Bits per MAU. */ if (! ieee_write_byte (abfd, (bfd_byte) (bfd_arch_bits_per_byte (abfd)))) return FALSE; /* MAU's per address. */ if (! ieee_write_byte (abfd, (bfd_byte) (bfd_arch_bits_per_address (abfd) / bfd_arch_bits_per_byte (abfd)))) return FALSE; old = bfd_tell (abfd); if (bfd_seek (abfd, (file_ptr) (8 * N_W_VARIABLES), SEEK_CUR) != 0) return FALSE; ieee->w.r.extension_record = bfd_tell (abfd); if (bfd_bwrite ((char *) exten, (bfd_size_type) sizeof (exten), abfd) != sizeof (exten)) return FALSE; if (abfd->flags & EXEC_P) { if (! ieee_write_byte (abfd, 0x1)) /* Absolute. */ return FALSE; } else { if (! ieee_write_byte (abfd, 0x2)) /* Relocateable. */ return FALSE; } ieee->w.r.environmental_record = bfd_tell (abfd); if (bfd_bwrite ((char *) envi, (bfd_size_type) sizeof (envi), abfd) != sizeof (envi)) return FALSE; /* The HP emulator database requires a timestamp in the file. */ { time_t now; const struct tm *t; time (&now); t = (struct tm *) localtime (&now); if (! ieee_write_2bytes (abfd, (int) ieee_atn_record_enum) || ! ieee_write_byte (abfd, 0x21) || ! ieee_write_byte (abfd, 0) || ! ieee_write_byte (abfd, 50) || ! ieee_write_int (abfd, (bfd_vma) (t->tm_year + 1900)) || ! ieee_write_int (abfd, (bfd_vma) (t->tm_mon + 1)) || ! ieee_write_int (abfd, (bfd_vma) t->tm_mday) || ! ieee_write_int (abfd, (bfd_vma) t->tm_hour) || ! ieee_write_int (abfd, (bfd_vma) t->tm_min) || ! ieee_write_int (abfd, (bfd_vma) t->tm_sec)) return FALSE; } output_bfd = abfd; flush (); if (! ieee_write_section_part (abfd)) return FALSE; /* First write the symbols. This changes their values into table indeces so we cant use it after this point. */ if (! ieee_write_external_part (abfd)) return FALSE; /* Write any debugs we have been told about. */ if (! ieee_write_debug_part (abfd)) return FALSE; /* Can only write the data once the symbols have been written, since the data contains relocation information which points to the symbols. */ if (! ieee_write_data_part (abfd)) return FALSE; /* At the end we put the end! */ if (! ieee_write_me_part (abfd)) return FALSE; /* Generate the header. */ if (bfd_seek (abfd, old, SEEK_SET) != 0) return FALSE; for (i = 0; i < N_W_VARIABLES; i++) { if (! ieee_write_2bytes (abfd, ieee_assign_value_to_variable_enum) || ! ieee_write_byte (abfd, (bfd_byte) i) || ! ieee_write_int5_out (abfd, (bfd_vma) ieee->w.offset[i])) return FALSE; } return TRUE; } /* Native-level interface to symbols. */ /* We read the symbols into a buffer, which is discarded when this function exits. We read the strings into a buffer large enough to hold them all plus all the cached symbol entries. */ static asymbol * ieee_make_empty_symbol (bfd *abfd) { bfd_size_type amt = sizeof (ieee_symbol_type); ieee_symbol_type *new_symbol = (ieee_symbol_type *) bfd_zalloc (abfd, amt); if (!new_symbol) return NULL; new_symbol->symbol.the_bfd = abfd; return &new_symbol->symbol; } static bfd * ieee_openr_next_archived_file (bfd *arch, bfd *prev) { ieee_ar_data_type *ar = IEEE_AR_DATA (arch); /* Take the next one from the arch state, or reset. */ if (prev == (bfd *) NULL) /* Reset the index - the first two entries are bogus. */ ar->element_index = 2; while (TRUE) { ieee_ar_obstack_type *p = ar->elements + ar->element_index; ar->element_index++; if (ar->element_index <= ar->element_count) { if (p->file_offset != (file_ptr) 0) { if (p->abfd == (bfd *) NULL) { p->abfd = _bfd_create_empty_archive_element_shell (arch); p->abfd->origin = p->file_offset; } return p->abfd; } } else { bfd_set_error (bfd_error_no_more_archived_files); return NULL; } } } #define ieee_find_nearest_line _bfd_nosymbols_find_nearest_line #define ieee_find_line _bfd_nosymbols_find_line #define ieee_find_inliner_info _bfd_nosymbols_find_inliner_info static int ieee_generic_stat_arch_elt (bfd *abfd, struct stat *buf) { ieee_ar_data_type *ar = (ieee_ar_data_type *) NULL; ieee_data_type *ieee; if (abfd->my_archive != NULL) ar = abfd->my_archive->tdata.ieee_ar_data; if (ar == (ieee_ar_data_type *) NULL) { bfd_set_error (bfd_error_invalid_operation); return -1; } if (IEEE_DATA (abfd) == NULL) { if (ieee_object_p (abfd) == NULL) { bfd_set_error (bfd_error_wrong_format); return -1; } } ieee = IEEE_DATA (abfd); buf->st_size = ieee->w.r.me_record + 1; buf->st_mode = 0644; return 0; } static int ieee_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED, struct bfd_link_info *info ATTRIBUTE_UNUSED) { return 0; } #define ieee_close_and_cleanup _bfd_generic_close_and_cleanup #define ieee_bfd_free_cached_info _bfd_generic_bfd_free_cached_info #define ieee_slurp_armap bfd_true #define ieee_slurp_extended_name_table bfd_true #define ieee_construct_extended_name_table \ ((bfd_boolean (*) \ (bfd *, char **, bfd_size_type *, const char **)) \ bfd_true) #define ieee_truncate_arname bfd_dont_truncate_arname #define ieee_write_armap \ ((bfd_boolean (*) \ (bfd *, unsigned int, struct orl *, unsigned int, int)) \ bfd_true) #define ieee_read_ar_hdr bfd_nullvoidptr #define ieee_write_ar_hdr ((bfd_boolean (*) (bfd *, bfd *)) bfd_false) #define ieee_update_armap_timestamp bfd_true #define ieee_get_elt_at_index _bfd_generic_get_elt_at_index #define ieee_get_symbol_version_string \ _bfd_nosymbols_get_symbol_version_string #define ieee_bfd_is_target_special_symbol \ ((bfd_boolean (*) (bfd *, asymbol *)) bfd_false) #define ieee_bfd_is_local_label_name bfd_generic_is_local_label_name #define ieee_get_lineno _bfd_nosymbols_get_lineno #define ieee_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol #define ieee_read_minisymbols _bfd_generic_read_minisymbols #define ieee_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol #define ieee_bfd_reloc_type_lookup _bfd_norelocs_bfd_reloc_type_lookup #define ieee_bfd_reloc_name_lookup _bfd_norelocs_bfd_reloc_name_lookup #define ieee_set_arch_mach _bfd_generic_set_arch_mach #define ieee_get_section_contents_in_window \ _bfd_generic_get_section_contents_in_window #define ieee_bfd_get_relocated_section_contents \ bfd_generic_get_relocated_section_contents #define ieee_bfd_relax_section bfd_generic_relax_section #define ieee_bfd_gc_sections bfd_generic_gc_sections #define ieee_bfd_lookup_section_flags bfd_generic_lookup_section_flags #define ieee_bfd_merge_sections bfd_generic_merge_sections #define ieee_bfd_is_group_section bfd_generic_is_group_section #define ieee_bfd_discard_group bfd_generic_discard_group #define ieee_section_already_linked \ _bfd_generic_section_already_linked #define ieee_bfd_define_common_symbol bfd_generic_define_common_symbol #define ieee_bfd_link_hash_table_create _bfd_generic_link_hash_table_create #define ieee_bfd_link_add_symbols _bfd_generic_link_add_symbols #define ieee_bfd_link_just_syms _bfd_generic_link_just_syms #define ieee_bfd_copy_link_hash_symbol_type \ _bfd_generic_copy_link_hash_symbol_type #define ieee_bfd_final_link _bfd_generic_final_link #define ieee_bfd_link_split_section _bfd_generic_link_split_section #define ieee_bfd_link_check_relocs _bfd_generic_link_check_relocs const bfd_target ieee_vec = { "ieee", /* Name. */ bfd_target_ieee_flavour, BFD_ENDIAN_UNKNOWN, /* Target byte order. */ BFD_ENDIAN_UNKNOWN, /* Target headers byte order. */ (HAS_RELOC | EXEC_P | /* Object flags. */ HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED), (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* Section flags. */ '_', /* Leading underscore. */ ' ', /* AR_pad_char. */ 16, /* AR_max_namelen. */ 0, /* match priority. */ bfd_getb64, bfd_getb_signed_64, bfd_putb64, bfd_getb32, bfd_getb_signed_32, bfd_putb32, bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Data. */ bfd_getb64, bfd_getb_signed_64, bfd_putb64, bfd_getb32, bfd_getb_signed_32, bfd_putb32, bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Headers. */ {_bfd_dummy_target, ieee_object_p, /* bfd_check_format. */ ieee_archive_p, _bfd_dummy_target, }, { bfd_false, ieee_mkobject, _bfd_generic_mkarchive, bfd_false }, { bfd_false, ieee_write_object_contents, _bfd_write_archive_contents, bfd_false, }, /* ieee_close_and_cleanup, ieee_bfd_free_cached_info, ieee_new_section_hook, ieee_get_section_contents, ieee_get_section_contents_in_window. */ BFD_JUMP_TABLE_GENERIC (ieee), BFD_JUMP_TABLE_COPY (_bfd_generic), BFD_JUMP_TABLE_CORE (_bfd_nocore), /* ieee_slurp_armap, ieee_slurp_extended_name_table, ieee_construct_extended_name_table, ieee_truncate_arname, ieee_write_armap, ieee_read_ar_hdr, ieee_openr_next_archived_file, ieee_get_elt_at_index, ieee_generic_stat_arch_elt, ieee_update_armap_timestamp. */ BFD_JUMP_TABLE_ARCHIVE (ieee), /* ieee_get_symtab_upper_bound, ieee_canonicalize_symtab, ieee_make_empty_symbol, ieee_print_symbol, ieee_get_symbol_info, ieee_bfd_is_local_label_name, ieee_get_lineno, ieee_find_nearest_line, ieee_bfd_make_debug_symbol, ieee_read_minisymbols, ieee_minisymbol_to_symbol. */ BFD_JUMP_TABLE_SYMBOLS (ieee), /* ieee_get_reloc_upper_bound, ieee_canonicalize_reloc, ieee_bfd_reloc_type_lookup. */ BFD_JUMP_TABLE_RELOCS (ieee), /* ieee_set_arch_mach, ieee_set_section_contents. */ BFD_JUMP_TABLE_WRITE (ieee), /* ieee_sizeof_headers, ieee_bfd_get_relocated_section_contents, ieee_bfd_relax_section, ieee_bfd_link_hash_table_create, ieee_bfd_link_add_symbols, ieee_bfd_final_link, ieee_bfd_link_split_section, ieee_bfd_gc_sections, ieee_bfd_merge_sections. */ BFD_JUMP_TABLE_LINK (ieee), BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), NULL, NULL };