/* SPARC-specific support for 64-bit ELF Copyright (C) 1993, 1995, 1996, 1997 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "bfd.h" #include "sysdep.h" #include "libbfd.h" #include "elf-bfd.h" /* This is defined if one wants to build upward compatible binaries with the original sparc64-elf toolchain. The support is kept in for now but is turned off by default. dje 970930 */ /*#define SPARC64_OLD_RELOCS*/ #include "elf/sparc.h" /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ #define MINUS_ONE (~ (bfd_vma) 0) static reloc_howto_type *sparc64_elf_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type)); static void sparc64_elf_info_to_howto PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); static boolean sparc64_elf_check_relocs PARAMS((bfd *, struct bfd_link_info *, asection *sec, const Elf_Internal_Rela *)); static boolean sparc64_elf_adjust_dynamic_symbol PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *)); static boolean sparc64_elf_size_dynamic_sections PARAMS((bfd *, struct bfd_link_info *)); static boolean sparc64_elf_adjust_dynindx PARAMS((struct elf_link_hash_entry *, PTR)); static boolean sparc64_elf_merge_private_bfd_data PARAMS ((bfd *, bfd *)); static boolean sparc64_elf_relocate_section PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); static boolean sparc64_elf_object_p PARAMS ((bfd *)); /* The relocation "howto" table. */ static bfd_reloc_status_type sparc_elf_notsup_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type sparc_elf_wdisp16_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type sparc_elf_hix22_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type sparc_elf_lox10_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static reloc_howto_type sparc64_elf_howto_table[] = { HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true), HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true), HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true), HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true), HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true), HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true), HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true), HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true), HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true), HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true), HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true), HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true), HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true), HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true), HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true), HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true), HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true), HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true), HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true), HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true), HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true), HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true), HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true), HOWTO(R_SPARC_UA32, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0x00000000,true), #ifndef SPARC64_OLD_RELOCS /* These aren't implemented yet. */ HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true), HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true), HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true), HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true), HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true), HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true), #endif HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true), HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true), HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true), HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true), HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true), HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true), HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true), HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true), HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true), HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true), HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true), HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true), HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true), HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true), HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true), HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true), HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true), HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false), HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false), HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false), HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false), HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false), HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false), HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false), HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true), HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true) }; struct elf_reloc_map { unsigned char bfd_reloc_val; unsigned char elf_reloc_val; }; static CONST struct elf_reloc_map sparc_reloc_map[] = { { BFD_RELOC_NONE, R_SPARC_NONE, }, { BFD_RELOC_16, R_SPARC_16, }, { BFD_RELOC_8, R_SPARC_8 }, { BFD_RELOC_8_PCREL, R_SPARC_DISP8 }, { BFD_RELOC_CTOR, R_SPARC_64 }, { BFD_RELOC_32, R_SPARC_32 }, { BFD_RELOC_32_PCREL, R_SPARC_DISP32 }, { BFD_RELOC_HI22, R_SPARC_HI22 }, { BFD_RELOC_LO10, R_SPARC_LO10, }, { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 }, { BFD_RELOC_SPARC22, R_SPARC_22 }, { BFD_RELOC_SPARC13, R_SPARC_13 }, { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 }, { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 }, { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 }, { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 }, { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 }, { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 }, { BFD_RELOC_SPARC_COPY, R_SPARC_COPY }, { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT }, { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT }, { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE }, { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 }, /* ??? Doesn't dwarf use this? */ /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */ {BFD_RELOC_SPARC_10, R_SPARC_10}, {BFD_RELOC_SPARC_11, R_SPARC_11}, {BFD_RELOC_SPARC_64, R_SPARC_64}, {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10}, {BFD_RELOC_SPARC_HH22, R_SPARC_HH22}, {BFD_RELOC_SPARC_HM10, R_SPARC_HM10}, {BFD_RELOC_SPARC_LM22, R_SPARC_LM22}, {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22}, {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10}, {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22}, {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16}, {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19}, {BFD_RELOC_SPARC_7, R_SPARC_7}, {BFD_RELOC_SPARC_5, R_SPARC_5}, {BFD_RELOC_SPARC_6, R_SPARC_6}, {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64}, {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64}, {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22}, {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10}, {BFD_RELOC_SPARC_H44, R_SPARC_H44}, {BFD_RELOC_SPARC_M44, R_SPARC_M44}, {BFD_RELOC_SPARC_L44, R_SPARC_L44}, {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER} }; static reloc_howto_type * sparc64_elf_reloc_type_lookup (abfd, code) bfd *abfd; bfd_reloc_code_real_type code; { unsigned int i; for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++) { if (sparc_reloc_map[i].bfd_reloc_val == code) return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val]; } return 0; } static void sparc64_elf_info_to_howto (abfd, cache_ptr, dst) bfd *abfd; arelent *cache_ptr; Elf64_Internal_Rela *dst; { BFD_ASSERT (ELF64_R_TYPE (dst->r_info) < (unsigned int) R_SPARC_max); cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE (dst->r_info)]; } /* Utility for performing the standard initial work of an instruction relocation. *PRELOCATION will contain the relocated item. *PINSN will contain the instruction from the input stream. If the result is `bfd_reloc_other' the caller can continue with performing the relocation. Otherwise it must stop and return the value to its caller. */ static bfd_reloc_status_type init_insn_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, prelocation, pinsn) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; bfd_vma *prelocation; bfd_vma *pinsn; { bfd_vma relocation; reloc_howto_type *howto = reloc_entry->howto; if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* This works because partial_inplace == false. */ if (output_bfd != NULL) return bfd_reloc_continue; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; relocation = (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset); relocation += reloc_entry->addend; if (howto->pc_relative) { relocation -= (input_section->output_section->vma + input_section->output_offset); relocation -= reloc_entry->address; } *prelocation = relocation; *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); return bfd_reloc_other; } /* For unsupported relocs. */ static bfd_reloc_status_type sparc_elf_notsup_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { return bfd_reloc_notsupported; } /* Handle the WDISP16 reloc. */ static bfd_reloc_status_type sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { bfd_vma relocation; bfd_vma insn; bfd_reloc_status_type status; status = init_insn_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, &relocation, &insn); if (status != bfd_reloc_other) return status; insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff)); bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); if ((bfd_signed_vma) relocation < - 0x40000 || (bfd_signed_vma) relocation > 0x3ffff) return bfd_reloc_overflow; else return bfd_reloc_ok; } /* Handle the HIX22 reloc. */ static bfd_reloc_status_type sparc_elf_hix22_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { bfd_vma relocation; bfd_vma insn; bfd_reloc_status_type status; status = init_insn_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, &relocation, &insn); if (status != bfd_reloc_other) return status; relocation ^= MINUS_ONE; insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff); bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); if ((relocation & ~ (bfd_vma) 0xffffffff) != 0) return bfd_reloc_overflow; else return bfd_reloc_ok; } /* Handle the LOX10 reloc. */ static bfd_reloc_status_type sparc_elf_lox10_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { bfd_vma relocation; bfd_vma insn; bfd_reloc_status_type status; status = init_insn_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, &relocation, &insn); if (status != bfd_reloc_other) return status; insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff); bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); return bfd_reloc_ok; } /* PLT/GOT stuff */ /* FIXME: Do Delta Doc PLT entries. */ /* We use five different formats, chosing an optimal form for the code model used by the application/library. All of which provide the exact same interface to ld.so. FIXME, well, only three actually used right now -- fix up medlow and fullany later. */ /* Both the headers and the entries are icache aligned. */ #define PLT_HEADER_SIZE 32 #define PLT_ENTRY_SIZE 32 #define GOT_RESERVED_ENTRIES 3 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1" /* Values for fixups: 0 == got0 1 == got0 - plt0 2 == gotN 3 == gotN - pltN 4 == relN 5 == gotN@got */ struct plt_template { unsigned int insns[8]; struct { unsigned char reloc; unsigned char value; } fixup[8]; }; static const struct plt_template plt_medlow_header = { { 0x07000000, /* sethi %hi(got0),%g3 */ 0x8610E000, /* or %g3,%lo(got0),%g3 */ 0xC258E008, /* ldx [%g3+8],%g1 */ 0x81C04000, /* jmp %g1 */ 0xC258E010, /* ldx [%g3+16],%g1 */ 0x01000000, /* nop */ 0x01000000, /* nop */ 0x01000000 /* nop */ }, { { R_SPARC_HI22, 0 }, { R_SPARC_LO10, 0 }, /* Rest null */ } }; static const struct plt_template plt_medlow_entry = { { 0x03000000, /* sethi %hi(gotN),%g1 */ 0x05000000, /* sethi %hi(relN),%g2 */ 0xC2586000, /* ldx [%g1+%lo(gotN)],%g1 */ 0x8410A000, /* or %g2,%lo(relN),%g2 */ 0x81C04000, /* jmp %g1 */ 0x01000000, /* nop */ 0x01000000, /* nop */ 0x01000000 /* nop */ }, { { R_SPARC_HI22, 2 }, { R_SPARC_HI22, 4 }, { R_SPARC_LO10, 2 }, { R_SPARC_LO10, 2 } } }; static const struct plt_template plt_medany_header = { { 0x07000000, /* sethi %hi(got0),%g3 */ 0x8610E000, /* or %g3,%lo(got0),%g3 */ 0x8600C004, /* add %g3,%g4,%g3 */ 0xC258E008, /* ldx [%g3+8],%g1 */ 0x81C04000, /* jmp %g1 */ 0xC258E010, /* ldx [%g3+16],%g1 */ 0x01000000, /* nop */ 0x01000000, /* nop */ }, { { R_SPARC_HI22, 0 }, { R_SPARC_LO10, 0 } } }; static const struct plt_template plt_medany_entry = { { 0x03000000, /* sethi %hi(gotN),%g1 */ 0x82106000, /* or %g1,%lo(gotN),%g1 */ 0xC2584004, /* ldx [%g1+%g4],%g1 */ 0x05000000, /* sethi %hi(relN),%g2 */ 0x81C04000, /* jmp %g1 */ 0x8410A000, /* or %g2,%lo(relN),%g2 */ 0x01000000, /* nop */ 0x01000000 /* nop */ }, { { R_SPARC_HI22, 2 }, { R_SPARC_LO10, 2 }, { R_SPARC_NONE, 0 }, { R_SPARC_HI22, 4 }, { R_SPARC_NONE, 0 }, { R_SPARC_LO10, 4 } } }; static const struct plt_template plt_fullany_header = { { 0x07000000, /* sethi %hi(got0-plt0),%g3 */ 0x8610E000, /* or %g3,%lo(got0-plt0),%g3 */ 0x86004003, /* add %g1,%g3,%g3 */ 0xC258C008, /* ldx [%g3+8],%g1 */ 0x81C04000, /* jmp %g1 */ 0xC258E010, /* ldx [%g3+16],%g1 */ 0x01000000, /* nop */ 0x01000000 /* nop */ }, { { R_SPARC_HI22, 1 }, { R_SPARC_LO10, 1 } } }; static const struct plt_template plt_fullany_entry = { { 0x83414000, /* rd %pc,%g1 */ 0x07000000, /* sethi %hi(gotN-pltN),%g3 */ 0x05000000, /* sethi %hi(relN),%g2 */ 0x8610E000, /* or %g3,%lo(gotN-pltN),%g3 */ 0xC2584003, /* ldx [%g1+%g3],%g1 */ 0x81C04000, /* jmp %g1 */ 0x8410A000, /* or %g2,%lo(relN),%g2 */ 0x01000000 /* nop */ }, { { R_SPARC_NONE, 0 }, { R_SPARC_HI22, 3 }, { R_SPARC_HI22, 4 }, { R_SPARC_LO10, 3 }, { R_SPARC_NONE, 0 }, { R_SPARC_NONE, 0 }, { R_SPARC_LO10, 4 } } }; static const struct plt_template plt_pic_header = { { 0xC25DE008, /* ldx [%l7+8],%g1 */ 0x81C04000, /* jmp %g1 */ 0xC25DE010, /* ldx [%l7+16],%g1 */ 0x01000000, /* nop */ 0x01000000, /* nop */ 0x01000000, /* nop */ 0x01000000, /* nop */ 0x01000000 /* nop */ }, { } }; static const struct plt_template plt_pic_small_entry = { { 0xC25DE000, /* ldx [%l7+gotN@got],%g1 */ 0x05000000, /* sethi %hi(relN),%g2 */ 0x81C04017, /* jmp %g1+%l7 */ 0x8410A000, /* or %g2,%lo(relN),%g2 */ 0x01000000, /* nop */ 0x01000000, /* nop */ 0x01000000, /* nop */ 0x01000000 /* nop */ }, { { R_SPARC_13, 5 }, /* R_SPARC_GOT13 */ { R_SPARC_HI22, 4 }, { R_SPARC_NONE, 0 }, { R_SPARC_LO10, 4 } } }; static const struct plt_template plt_pic_large_entry = { { 0x03000000, /* sethi %hi(gotN@got),%g1 */ 0x82106000, /* or %g1,%lo(gotN@got),%g1 */ 0xC2584017, /* ldx [%g1+%l7],%g1 */ 0x05000000, /* sethi %hi(relN),%g2 */ 0x81C04000, /* jmp %g1 */ 0x8410A000, /* or %g2,%lo(relN),%g2 */ 0x01000000, /* nop */ 0x01000000 /* nop */ }, { { R_SPARC_HI22, 5 }, /* R_SPARC_GOT22 */ { R_SPARC_LO10, 5 }, /* R_SPARC_GOT10 */ { R_SPARC_NONE, 0 }, { R_SPARC_HI22, 4 }, { R_SPARC_NONE, 0 }, { R_SPARC_LO10, 4 } } }; /* Build a plt entry given a template and values. */ static boolean sparc64_elf_build_plt_entry(output_bfd, loc, tmpl, values) bfd *output_bfd; unsigned char *loc; const struct plt_template *tmpl; bfd_vma values[]; { int i; for (i = 0; i < 8; ++i) { unsigned int insn = tmpl->insns[i]; bfd_vma value = values[tmpl->fixup[i].value]; #if 1 switch (tmpl->fixup[i].reloc) { case R_SPARC_NONE: break; case R_SPARC_HI22: insn |= (value >> 10) & 0x3fffff; break; case R_SPARC_LO10: insn |= value & 0x3ff; break; case R_SPARC_13: if ((bfd_signed_vma)value > 0xfff || (bfd_signed_vma)value < -0x1000) return false; insn |= value & 0x1fff; break; default: abort(); } #else /* FIXME -- possibly use _bfd_final_link_relocate? */ howto = sparc64_elf_howto_table + tmpl->fixups[i].reloc; r = _bfd_final_link_relocate (howto, input_bfd, input_section, &insn, 0, value, 0); if (r != bfd_reloc_ok) return false; #endif bfd_put_32(output_bfd, insn, loc); loc += 4; } return true; } /* Look through the relocs for a section during the first phase, and allocate space in the global offset table or procedure linkage table. */ static boolean sparc64_elf_check_relocs (abfd, info, sec, relocs) bfd *abfd; struct bfd_link_info *info; asection *sec; const Elf_Internal_Rela *relocs; { bfd *dynobj; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_vma *local_got_offsets; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *sgot; asection *srelgot; asection *sreloc; if (info->relocateable || (sec->flags & SEC_DEBUGGING)) return true; dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_offsets = elf_local_got_offsets (abfd); sgot = NULL; srelgot = NULL; sreloc = NULL; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { unsigned long r_symndx; struct elf_link_hash_entry *h; r_symndx = ELF64_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else h = sym_hashes[r_symndx - symtab_hdr->sh_info]; switch (ELF64_R_TYPE (rel->r_info)) { case R_SPARC_GOT10: case R_SPARC_GOT13: case R_SPARC_GOT22: /* This symbol requires a global offset table entry. */ if (dynobj == NULL) { /* Create the .got section. */ elf_hash_table (info)->dynobj = dynobj = abfd; if (! _bfd_elf_create_got_section (dynobj, info)) return false; } if (sgot == NULL) { sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); } if (srelgot == NULL && (h != NULL || info->shared)) { srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); if (srelgot == NULL) { srelgot = bfd_make_section (dynobj, ".rela.got"); if (srelgot == NULL || ! bfd_set_section_flags (dynobj, srelgot, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)) || ! bfd_set_section_alignment (dynobj, srelgot, 3)) return false; } } if (h != NULL) { if (h->got_offset != (bfd_vma) -1) { /* We have already allocated space in the .got. */ break; } h->got_offset = sgot->_raw_size; /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1) { if (! bfd_elf64_link_record_dynamic_symbol (info, h)) return false; } srelgot->_raw_size += sizeof (Elf64_External_Rela); } else { /* This is a global offset table entry for a local symbol. */ if (local_got_offsets == NULL) { size_t size; register unsigned int i; size = symtab_hdr->sh_info * sizeof (bfd_vma); local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size); if (local_got_offsets == NULL) return false; elf_local_got_offsets (abfd) = local_got_offsets; for (i = 0; i < symtab_hdr->sh_info; i++) local_got_offsets[i] = (bfd_vma) -1; } if (local_got_offsets[r_symndx] != (bfd_vma) -1) { /* We have already allocated space in the .got. */ break; } local_got_offsets[r_symndx] = sgot->_raw_size; if (info->shared) { /* If we are generating a shared object, we need to output a R_SPARC_RELATIVE reloc so that the dynamic linker can adjust this GOT entry. */ srelgot->_raw_size += sizeof (Elf64_External_Rela); } } sgot->_raw_size += 8; #if 0 /* Doesn't work for 64-bit -fPIC, since sethi/or builds unsigned numbers. If we permit ourselves to modify code so we get sethi/xor, this could work. Question: do we consider conditionally re-enabling this for -fpic, once we know about object code models? */ /* If the .got section is more than 0x1000 bytes, we add 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13 bit relocations have a greater chance of working. */ if (sgot->_raw_size >= 0x1000 && elf_hash_table (info)->hgot->root.u.def.value == 0) elf_hash_table (info)->hgot->root.u.def.value = 0x1000; #endif break; case R_SPARC_WPLT30: case R_SPARC_PLT32: case R_SPARC_HIPLT22: case R_SPARC_LOPLT10: case R_SPARC_PCPLT32: case R_SPARC_PCPLT22: case R_SPARC_PCPLT10: case R_SPARC_PLT64: /* This symbol requires a procedure linkage table entry. We actually build the entry in adjust_dynamic_symbol, because this might be a case of linking PIC code without linking in any dynamic objects, in which case we don't need to generate a procedure linkage table after all. */ if (h == NULL) { /* It does not make sense to have a procedure linkage table entry for a local symbol. */ bfd_set_error (bfd_error_bad_value); return false; } /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1) { if (! bfd_elf64_link_record_dynamic_symbol (info, h)) return false; } h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; break; case R_SPARC_PC10: case R_SPARC_PC22: case R_SPARC_PC_HH22: case R_SPARC_PC_HM10: case R_SPARC_PC_LM22: if (h != NULL && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) break; /* Fall through. */ case R_SPARC_DISP8: case R_SPARC_DISP16: case R_SPARC_DISP32: case R_SPARC_DISP64: case R_SPARC_WDISP30: case R_SPARC_WDISP22: case R_SPARC_WDISP19: case R_SPARC_WDISP16: if (h == NULL) break; /* Fall through. */ case R_SPARC_8: case R_SPARC_16: case R_SPARC_32: case R_SPARC_HI22: case R_SPARC_22: case R_SPARC_13: case R_SPARC_LO10: case R_SPARC_UA32: case R_SPARC_10: case R_SPARC_11: case R_SPARC_64: case R_SPARC_OLO10: case R_SPARC_HH22: case R_SPARC_HM10: case R_SPARC_LM22: case R_SPARC_7: case R_SPARC_5: case R_SPARC_6: case R_SPARC_HIX22: case R_SPARC_LOX10: case R_SPARC_H44: case R_SPARC_M44: case R_SPARC_L44: case R_SPARC_UA64: case R_SPARC_UA16: /* When creating a shared object, we must copy these relocs into the output file. We create a reloc section in dynobj and make room for the reloc. But don't do this for debugging sections -- this shows up with DWARF2 -- first because they are not loaded, and second because DWARF sez the debug info is not to be biased by the load address. */ if (info->shared && !(sec->flags & SEC_DEBUGGING)) { if (sreloc == NULL) { const char *name; name = (bfd_elf_string_from_elf_section (abfd, elf_elfheader (abfd)->e_shstrndx, elf_section_data (sec)->rel_hdr.sh_name)); if (name == NULL) return false; BFD_ASSERT (strncmp (name, ".rela", 5) == 0 && strcmp (bfd_get_section_name (abfd, sec), name + 5) == 0); sreloc = bfd_get_section_by_name (dynobj, name); if (sreloc == NULL) { flagword flags; sreloc = bfd_make_section (dynobj, name); flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED); if ((sec->flags & SEC_ALLOC) != 0) flags |= SEC_ALLOC | SEC_LOAD; if (sreloc == NULL || ! bfd_set_section_flags (dynobj, sreloc, flags) || ! bfd_set_section_alignment (dynobj, sreloc, 3)) return false; } } sreloc->_raw_size += sizeof (Elf64_External_Rela); } break; case R_SPARC_REGISTER: /* Nothing to do. */ break; default: (*_bfd_error_handler)("%s: check_relocs: unhandled reloc type %d", bfd_get_filename(abfd), ELF64_R_TYPE (rel->r_info)); return false; } } return true; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static boolean sparc64_elf_adjust_dynamic_symbol (info, h) struct bfd_link_info *info; struct elf_link_hash_entry *h; { bfd *dynobj; asection *s; unsigned int power_of_two; dynobj = elf_hash_table (info)->dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) || h->weakdef != NULL || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))); /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later (although we could actually do it here). The STT_NOTYPE condition is a hack specifically for the Oracle libraries delivered for Solaris; for some inexplicable reason, they define some of their functions as STT_NOTYPE when they really should be STT_FUNC. */ if (h->type == STT_FUNC || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 || (h->type == STT_NOTYPE && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && (h->root.u.def.section->flags & SEC_CODE) != 0)) { if (! elf_hash_table (info)->dynamic_sections_created) { /* This case can occur if we saw a WPLT30 reloc in an input file, but none of the input files were dynamic objects. In such a case, we don't actually need to build a procedure linkage table, and we can just do a WDISP30 reloc instead. */ BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0); return true; } s = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (s != NULL); /* The first four bit in .plt is reserved. */ if (s->_raw_size == 0) s->_raw_size = PLT_HEADER_SIZE; /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (! info->shared && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) { h->root.u.def.section = s; h->root.u.def.value = s->_raw_size; } h->plt_offset = s->_raw_size; /* Make room for this entry. */ s->_raw_size += PLT_ENTRY_SIZE; /* We also need to make an entry in the .got.plt section, which will be placed in the .got section by the linker script. */ s = bfd_get_section_by_name (dynobj, ".got.plt"); BFD_ASSERT (s != NULL); s->_raw_size += 8; /* We also need to make an entry in the .rela.plt section. */ s = bfd_get_section_by_name (dynobj, ".rela.plt"); BFD_ASSERT (s != NULL); s->_raw_size += sizeof (Elf64_External_Rela); /* The procedure linkage table size is bounded by the magnitude of the offset we can describe in the entry. */ if (s->_raw_size >= (bfd_vma)1 << 32) { bfd_set_error (bfd_error_bad_value); return false; } return true; } /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->weakdef != NULL) { BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined || h->weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->weakdef->root.u.def.section; h->root.u.def.value = h->weakdef->root.u.def.value; return true; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return true; /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ s = bfd_get_section_by_name (dynobj, ".dynbss"); BFD_ASSERT (s != NULL); /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. We need to remember the offset into the .rel.bss section we are going to use. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { asection *srel; srel = bfd_get_section_by_name (dynobj, ".rela.bss"); BFD_ASSERT (srel != NULL); srel->_raw_size += sizeof (Elf64_External_Rela); h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY; } /* We need to figure out the alignment required for this symbol. I have no idea how ELF linkers handle this. 16-bytes is the size of the largest type that requires hard alignment -- long double. */ power_of_two = bfd_log2 (h->size); if (power_of_two > 4) power_of_two = 4; /* Apply the required alignment. */ s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two)); if (power_of_two > bfd_get_section_alignment (dynobj, s)) { if (! bfd_set_section_alignment (dynobj, s, power_of_two)) return false; } /* Define the symbol as being at this point in the section. */ h->root.u.def.section = s; h->root.u.def.value = s->_raw_size; /* Increment the section size to make room for the symbol. */ s->_raw_size += h->size; return true; } /* Set the sizes of the dynamic sections. */ static boolean sparc64_elf_size_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *s; boolean reltext; boolean relplt; dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (! info->shared) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } else { /* We may have created entries in the .rela.got section. However, if we are not creating the dynamic sections, we will not actually use these entries. Reset the size of .rela.got, which will cause it to get stripped from the output file below. */ s = bfd_get_section_by_name (dynobj, ".rela.got"); if (s != NULL) s->_raw_size = 0; } /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ reltext = false; relplt = false; for (s = dynobj->sections; s != NULL; s = s->next) { const char *name; boolean strip; if ((s->flags & SEC_LINKER_CREATED) == 0) continue; /* It's OK to base decisions on the section name, because none of the dynobj section names depend upon the input files. */ name = bfd_get_section_name (dynobj, s); strip = false; if (strncmp (name, ".rela", 5) == 0) { if (s->_raw_size == 0) { /* If we don't need this section, strip it from the output file. This is to handle .rela.bss and .rel.plt. We must create it in create_dynamic_sections, because it must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ strip = true; } else { const char *outname; asection *target; /* If this relocation section applies to a read only section, then we probably need a DT_TEXTREL entry. */ outname = bfd_get_section_name (output_bfd, s->output_section); target = bfd_get_section_by_name (output_bfd, outname + 5); if (target != NULL && (target->flags & SEC_READONLY) != 0) reltext = true; if (strcmp (name, ".rela.plt") == 0) relplt = true; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } } else if (strcmp (name, ".plt") != 0 && strncmp (name, ".got", 4) != 0) { /* It's not one of our sections, so don't allocate space. */ continue; } if (strip) { asection **spp; for (spp = &s->output_section->owner->sections; *spp != s->output_section; spp = &(*spp)->next) ; *spp = s->output_section->next; --s->output_section->owner->section_count; continue; } /* Allocate memory for the section contents. */ s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); if (s->contents == NULL && s->_raw_size != 0) return false; } if (elf_hash_table (info)->dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in sparc64_elf_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ if (! info->shared) { if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)) return false; } if (relplt) { if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0) || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0) || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA) || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0) || ! bfd_elf64_add_dynamic_entry (info, DT_SPARC_PLTFMT, (info->shared != 0) + 1)) return false; } if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0) || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0) || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT, sizeof (Elf64_External_Rela))) return false; if (reltext) { if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0)) return false; } } /* If we are generating a shared library, we generate a section symbol for each output section for which we might need to copy relocs. These are local symbols, which means that they must come first in the dynamic symbol table. That means we must increment the dynamic symbol index of every other dynamic symbol. */ if (info->shared) { int c; c = 0; for (s = output_bfd->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LINKER_CREATED) != 0 || (s->flags & SEC_ALLOC) == 0) continue; elf_section_data (s)->dynindx = c + 1; /* These symbols will have no names, so we don't need to fiddle with dynstr_index. */ ++c; } elf_link_hash_traverse (elf_hash_table (info), sparc64_elf_adjust_dynindx, (PTR) &c); elf_hash_table (info)->dynsymcount += c; } return true; } /* Increment the index of a dynamic symbol by a given amount. Called via elf_link_hash_traverse. */ static boolean sparc64_elf_adjust_dynindx (h, cparg) struct elf_link_hash_entry *h; PTR cparg; { int *cp = (int *) cparg; if (h->dynindx != -1) h->dynindx += *cp; return true; } /* Relocate a SPARC64 ELF section. */ static boolean sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section, contents, relocs, local_syms, local_sections) bfd *output_bfd; struct bfd_link_info *info; bfd *input_bfd; asection *input_section; bfd_byte *contents; Elf_Internal_Rela *relocs; Elf_Internal_Sym *local_syms; asection **local_sections; { bfd *dynobj; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_vma *local_got_offsets; bfd_vma got_base; asection *sgot; asection *splt; asection *sreloc; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); local_got_offsets = elf_local_got_offsets (input_bfd); if (elf_hash_table(info)->hgot == NULL) got_base = 0; else got_base = elf_hash_table (info)->hgot->root.u.def.value; sgot = splt = sreloc = NULL; rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { int r_type; reloc_howto_type *howto; long r_symndx; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; asection *sec; bfd_vma relocation; bfd_reloc_status_type r; r_type = ELF64_R_TYPE (rel->r_info); if (r_type < 0 || r_type >= (int) R_SPARC_max) { bfd_set_error (bfd_error_bad_value); return false; } howto = sparc64_elf_howto_table + r_type; r_symndx = ELF64_R_SYM (rel->r_info); if (info->relocateable) { /* This is a relocateable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) { sec = local_sections[r_symndx]; rel->r_addend += sec->output_offset + sym->st_value; } } continue; } /* This is a final link. */ h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; relocation = (sec->output_section->vma + sec->output_offset + sym->st_value); } else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { boolean skip_it = false; sec = h->root.u.def.section; switch (r_type) { case R_SPARC_WPLT30: case R_SPARC_PLT32: case R_SPARC_HIPLT22: case R_SPARC_LOPLT10: case R_SPARC_PCPLT32: case R_SPARC_PCPLT22: case R_SPARC_PCPLT10: case R_SPARC_PLT64: if (h->plt_offset != (bfd_vma) -1) skip_it = true; break; case R_SPARC_GOT10: case R_SPARC_GOT13: case R_SPARC_GOT22: if (elf_hash_table(info)->dynamic_sections_created && (!info->shared || (!info->symbolic && h->dynindx != -1) || !(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) skip_it = true; break; case R_SPARC_PC10: case R_SPARC_PC22: case R_SPARC_PC_HH22: case R_SPARC_PC_HM10: case R_SPARC_PC_LM22: if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_")) break; /* FALLTHRU */ case R_SPARC_8: case R_SPARC_16: case R_SPARC_32: case R_SPARC_DISP8: case R_SPARC_DISP16: case R_SPARC_DISP32: case R_SPARC_WDISP30: case R_SPARC_WDISP22: case R_SPARC_HI22: case R_SPARC_22: case R_SPARC_13: case R_SPARC_LO10: case R_SPARC_UA32: case R_SPARC_10: case R_SPARC_11: case R_SPARC_64: case R_SPARC_OLO10: case R_SPARC_HH22: case R_SPARC_HM10: case R_SPARC_LM22: case R_SPARC_WDISP19: case R_SPARC_WDISP16: case R_SPARC_7: case R_SPARC_5: case R_SPARC_6: case R_SPARC_DISP64: case R_SPARC_HIX22: case R_SPARC_LOX10: case R_SPARC_H44: case R_SPARC_M44: case R_SPARC_L44: case R_SPARC_UA64: case R_SPARC_UA16: if (info->shared && ((!info->symbolic && h->dynindx != -1) || !(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) skip_it = true; break; } if (skip_it) { /* In these cases, we don't need the relocation value. We check specially because in some obscure cases sec->output_section will be NULL. */ relocation = 0; } else { relocation = (h->root.u.def.value + sec->output_section->vma + sec->output_offset); } } else if (h->root.type == bfd_link_hash_undefweak) relocation = 0; else if (info->shared && !info->symbolic) relocation = 0; else { if (! ((*info->callbacks->undefined_symbol) (info, h->root.root.string, input_bfd, input_section, rel->r_offset))) return false; relocation = 0; } } /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ if (info->shared && !(input_section->flags & SEC_DEBUGGING)) { switch (r_type) { case R_SPARC_PC10: case R_SPARC_PC22: case R_SPARC_PC_HH22: case R_SPARC_PC_HM10: case R_SPARC_PC_LM22: if (h != NULL && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_")) break; /* Fall through. */ case R_SPARC_DISP8: case R_SPARC_DISP16: case R_SPARC_DISP32: case R_SPARC_WDISP30: case R_SPARC_WDISP22: case R_SPARC_WDISP19: case R_SPARC_WDISP16: case R_SPARC_DISP64: if (h == NULL) break; /* Fall through. */ case R_SPARC_8: case R_SPARC_16: case R_SPARC_32: case R_SPARC_HI22: case R_SPARC_22: case R_SPARC_13: case R_SPARC_LO10: case R_SPARC_UA32: case R_SPARC_10: case R_SPARC_11: case R_SPARC_64: case R_SPARC_OLO10: case R_SPARC_HH22: case R_SPARC_HM10: case R_SPARC_LM22: case R_SPARC_7: case R_SPARC_5: case R_SPARC_6: case R_SPARC_HIX22: case R_SPARC_LOX10: case R_SPARC_H44: case R_SPARC_M44: case R_SPARC_L44: case R_SPARC_UA64: case R_SPARC_UA16: { Elf_Internal_Rela outrel; boolean skip; if (sreloc == NULL) { const char *name = (bfd_elf_string_from_elf_section (input_bfd, elf_elfheader (input_bfd)->e_shstrndx, elf_section_data (input_section)->rel_hdr.sh_name)); if (name == NULL) return false; BFD_ASSERT (strncmp (name, ".rela", 5) == 0 && strcmp (bfd_get_section_name(input_bfd, input_section), name + 5) == 0); sreloc = bfd_get_section_by_name (dynobj, name); BFD_ASSERT (sreloc != NULL); } skip = false; if (elf_section_data (input_section)->stab_info == NULL) outrel.r_offset = rel->r_offset; else { bfd_vma off; off = (_bfd_stab_section_offset (output_bfd, &elf_hash_table (info)->stab_info, input_section, &elf_section_data (input_section)->stab_info, rel->r_offset)); if (off == MINUS_ONE) skip = true; outrel.r_offset = off; } outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); /* Optimize unaligned reloc usage now that we know where it finally resides. */ switch (r_type) { case R_SPARC_16: if (outrel.r_offset & 1) r_type = R_SPARC_UA16; break; case R_SPARC_UA16: if (!(outrel.r_offset & 1)) r_type = R_SPARC_16; break; case R_SPARC_32: if (outrel.r_offset & 3) r_type = R_SPARC_UA32; break; case R_SPARC_UA32: if (!(outrel.r_offset & 3)) r_type = R_SPARC_32; break; case R_SPARC_64: if (outrel.r_offset & 7) r_type = R_SPARC_UA64; break; case R_SPARC_UA64: if (!(outrel.r_offset & 7)) r_type = R_SPARC_64; break; } if (skip) memset (&outrel, 0, sizeof outrel); /* h->dynindx may be -1 if the symbol was marked to become local. */ else if (h != NULL && ((! info->symbolic && h->dynindx != -1) || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) { BFD_ASSERT (h->dynindx != -1); outrel.r_info = ELF64_R_INFO (h->dynindx, r_type); outrel.r_addend = rel->r_addend; } else { if (r_type == R_SPARC_64) { outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE); outrel.r_addend = relocation + rel->r_addend; } else { long indx; if (h == NULL) sec = local_sections[r_symndx]; else { BFD_ASSERT (h->root.type == bfd_link_hash_defined || (h->root.type == bfd_link_hash_defweak)); sec = h->root.u.def.section; } if (sec != NULL && bfd_is_abs_section (sec)) indx = 0; else if (sec == NULL || sec->owner == NULL) { bfd_set_error (bfd_error_bad_value); return false; } else { asection *osec; osec = sec->output_section; indx = elf_section_data (osec)->dynindx; BFD_ASSERT (indx > 0); } outrel.r_info = ELF64_R_INFO (indx, r_type); outrel.r_addend = relocation + rel->r_addend; } } bfd_elf64_swap_reloca_out (output_bfd, &outrel, (((Elf64_External_Rela *) sreloc->contents) + sreloc->reloc_count)); ++sreloc->reloc_count; /* This reloc will be computed at runtime, so there's no need to do anything now, unless this is a RELATIVE reloc in an unallocated section. */ if (skip || (input_section->flags & SEC_ALLOC) != 0 || ELF64_R_TYPE (outrel.r_info) != R_SPARC_RELATIVE) continue; } break; } } switch (r_type) { case R_SPARC_GOT10: case R_SPARC_GOT13: case R_SPARC_GOT22: /* Relocation is to the entry for this symbol in the global offset table. */ if (sgot == NULL) { sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); } if (h != NULL) { bfd_vma off = h->got_offset; BFD_ASSERT (off != (bfd_vma) -1); if (! elf_hash_table (info)->dynamic_sections_created || (info->shared && (info->symbolic || h->dynindx == -1) && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally, or the symbol was forced to be local because of a version file. We must initialize this entry in the global offset table. Since the offset must always be a multiple of 8, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a .rela.got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_64 (output_bfd, relocation, sgot->contents + off); h->got_offset |= 1; } } relocation = sgot->output_offset + off - got_base; } else { bfd_vma off; BFD_ASSERT (local_got_offsets != NULL); off = local_got_offsets[r_symndx]; BFD_ASSERT (off != (bfd_vma) -1); /* The offset must always be a multiple of 8. We use the least significant bit to record whether we have already processed this entry. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_64 (output_bfd, relocation, sgot->contents + off); local_got_offsets[r_symndx] |= 1; if (info->shared) { asection *srelgot; Elf_Internal_Rela outrel; /* We need to generate a R_SPARC_RELATIVE reloc for the dynamic linker. */ srelgot = bfd_get_section_by_name(dynobj, ".rela.got"); BFD_ASSERT (srelgot != NULL); outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE); outrel.r_addend = relocation; bfd_elf64_swap_reloca_out (output_bfd, &outrel, (((Elf64_External_Rela *) srelgot->contents) + srelgot->reloc_count)); ++srelgot->reloc_count; } } relocation = sgot->output_offset + off - got_base; } goto do_default; case R_SPARC_WPLT30: case R_SPARC_PLT32: case R_SPARC_HIPLT22: case R_SPARC_LOPLT10: case R_SPARC_PCPLT32: case R_SPARC_PCPLT22: case R_SPARC_PCPLT10: case R_SPARC_PLT64: /* Relocation is to the entry for this symbol in the procedure linkage table. */ BFD_ASSERT (h != NULL); if (h->plt_offset == (bfd_vma) -1) { /* We didn't make a PLT entry for this symbol. This happens when statically linking PIC code, or when using -Bsymbolic. */ goto do_default; } if (splt == NULL) { splt = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (splt != NULL); } relocation = (splt->output_section->vma + splt->output_offset + h->plt_offset); goto do_default; case R_SPARC_OLO10: { bfd_vma x; relocation += rel->r_addend; relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info); x = bfd_get_32 (input_bfd, contents + rel->r_offset); x = (x & ~0x1fff) | (relocation & 0x1fff); bfd_put_32 (input_bfd, x, contents + rel->r_offset); r = bfd_check_overflow (howto->complain_on_overflow, howto->bitsize, howto->rightshift, relocation); } break; case R_SPARC_WDISP16: { bfd_vma x; relocation += rel->r_addend; /* Adjust for pc-relative-ness. */ relocation -= (input_section->output_section->vma + input_section->output_offset); relocation -= rel->r_offset; x = bfd_get_32 (input_bfd, contents + rel->r_offset); x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff)); bfd_put_32 (input_bfd, x, contents + rel->r_offset); r = bfd_check_overflow (howto->complain_on_overflow, howto->bitsize, howto->rightshift, relocation); } break; case R_SPARC_HIX22: { bfd_vma x; relocation += rel->r_addend; relocation = relocation ^ MINUS_ONE; x = bfd_get_32 (input_bfd, contents + rel->r_offset); x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff); bfd_put_32 (input_bfd, x, contents + rel->r_offset); r = bfd_check_overflow (howto->complain_on_overflow, howto->bitsize, howto->rightshift, relocation); } break; case R_SPARC_LOX10: { bfd_vma x; relocation += rel->r_addend; relocation = (relocation & 0x3ff) | 0x1c00; x = bfd_get_32 (input_bfd, contents + rel->r_offset); x = (x & ~0x1fff) | relocation; bfd_put_32 (input_bfd, x, contents + rel->r_offset); r = bfd_reloc_ok; } break; default: do_default: r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; } switch (r) { case bfd_reloc_ok: break; default: case bfd_reloc_outofrange: abort (); case bfd_reloc_overflow: { const char *name; if (h != NULL) { if (h->root.type == bfd_link_hash_undefweak && howto->pc_relative) { /* Assume this is a call protected by other code that detect the symbol is undefined. If this is the case, we can safely ignore the overflow. If not, the program is hosed anyway, and a little warning isn't going to help. */ break; } name = h->root.root.string; } else { name = (bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name)); if (name == NULL) return false; if (*name == '\0') name = bfd_section_name (input_bfd, sec); } if (! ((*info->callbacks->reloc_overflow) (info, name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return false; } break; } } return true; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static boolean sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym) bfd *output_bfd; struct bfd_link_info *info; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { bfd *dynobj; dynobj = elf_hash_table (info)->dynobj; if (h->plt_offset != (bfd_vma) -1) { asection *splt; asection *sgotplt; asection *srela; Elf_Internal_Rela rela; bfd_vma values[6]; bfd_vma plt0, pltN, got0, gotN, plt_index, got_offset; const struct plt_template *plt_tmpl; /* This symbol has an entry in the procedure linkage table. Set it up. */ BFD_ASSERT (h->dynindx != -1); splt = bfd_get_section_by_name (dynobj, ".plt"); sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); srela = bfd_get_section_by_name (dynobj, ".rela.plt"); BFD_ASSERT (splt != NULL && sgotplt != NULL && srela != NULL); /* Fill in the various values the plt entry might care about, as detailed above. */ plt0 = splt->output_section->vma + splt->output_offset; pltN = plt0 + h->plt_offset; plt_index = h->plt_offset / PLT_ENTRY_SIZE - 1; got0 = sgotplt->output_section->vma + sgotplt->output_offset; got_offset = (plt_index + GOT_RESERVED_ENTRIES) * 8; gotN = got0 + got_offset; values[0] = got0; values[1] = got0 - plt0; values[5] = got_offset; values[2] = gotN; values[3] = gotN - pltN; values[4] = plt_index * sizeof(Elf64_External_Rela); /* Fill in the entry in the procedure linkage table. */ if (info->shared) if (got_offset < 0x1000) plt_tmpl = &plt_pic_small_entry; else plt_tmpl = &plt_pic_large_entry; else /* FIXME -- learn how to select code models here. */ plt_tmpl = &plt_medany_entry; sparc64_elf_build_plt_entry(output_bfd, splt->contents + h->plt_offset, plt_tmpl, values); if (plt_index == 0) { /* We also need to fill in the plt header, but we only need to do it once. Choose to do it while we do the first plt entry. */ sparc64_elf_build_plt_entry(output_bfd, splt->contents, (info->shared ? &plt_pic_header : &plt_medany_header), values); } /* Fill in the entry in the .got.plt section. */ bfd_put_64 (output_bfd, (info->shared ? plt0-got0 : plt0), sgotplt->contents + got_offset); /* Fill in the entry in the .rela.plt section. */ rela.r_offset = gotN; rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT); rela.r_addend = 0; bfd_elf64_swap_reloca_out (output_bfd, &rela, ((Elf64_External_Rela *) srela->contents + plt_index)); if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; } } if (h->got_offset != (bfd_vma) -1) { asection *sgot; asection *srela; Elf_Internal_Rela rela; /* This symbol has an entry in the global offset table. Set it up. */ sgot = bfd_get_section_by_name (dynobj, ".got"); srela = bfd_get_section_by_name (dynobj, ".rela.got"); BFD_ASSERT (sgot != NULL && srela != NULL); rela.r_offset = (sgot->output_section->vma + sgot->output_offset + (h->got_offset &~ 1)); /* If this is a -Bsymbolic link, and the symbol is defined locally, we just want to emit a RELATIVE reloc. Likewise if the symbol was forced to be local because of a version file. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (info->shared && (info->symbolic || h->dynindx == -1) && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)) { asection *sec = h->root.u.def.section; rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE); rela.r_addend = (h->root.u.def.value + sec->output_section->vma + sec->output_offset); } else { bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got_offset); rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT); rela.r_addend = 0; } bfd_elf64_swap_reloca_out (output_bfd, &rela, ((Elf64_External_Rela *) srela->contents + srela->reloc_count)); ++srela->reloc_count; } if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0) { asection *s; Elf_Internal_Rela rela; /* This symbols needs a copy reloc. Set it up. */ BFD_ASSERT (h->dynindx != -1); s = bfd_get_section_by_name (h->root.u.def.section->owner, ".rela.bss"); BFD_ASSERT (s != NULL); rela.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY); rela.r_addend = 0; bfd_elf64_swap_reloca_out (output_bfd, &rela, ((Elf64_External_Rela *) s->contents + s->reloc_count)); ++s->reloc_count; } /* Mark some specially defined symbols as absolute. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0) sym->st_shndx = SHN_ABS; return true; } /* Finish up the dynamic sections. */ static boolean sparc64_elf_finish_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *sdyn; asection *sgot; dynobj = elf_hash_table (info)->dynobj; sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (elf_hash_table (info)->dynamic_sections_created) { asection *splt; Elf64_External_Dyn *dyncon, *dynconend; splt = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (splt != NULL && sdyn != NULL); dyncon = (Elf64_External_Dyn *) sdyn->contents; dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; const char *name; boolean size; bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { case DT_PLTGOT: name = ".got"; size = false; break; case DT_PLTRELSZ: name = ".rela.plt"; size = true; break; case DT_JMPREL: name = ".rela.plt"; size = false; break; default: name = NULL; size = false; break; } if (name != NULL) { asection *s; s = bfd_get_section_by_name (output_bfd, name); if (s == NULL) dyn.d_un.d_val = 0; else { if (! size) dyn.d_un.d_ptr = s->vma; else { if (s->_cooked_size != 0) dyn.d_un.d_val = s->_cooked_size; else dyn.d_un.d_val = s->_raw_size; } } bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); } } elf_section_data (splt->output_section)->this_hdr.sh_entsize = PLT_ENTRY_SIZE; } /* Set the first entry in the global offset table to the address of the dynamic section. */ sgot = bfd_get_section_by_name (dynobj, ".got.plt"); BFD_ASSERT (sgot != NULL); if (sgot->_raw_size > 0) { if (sdyn == NULL) bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents); else bfd_put_64 (output_bfd, sdyn->output_section->vma + sdyn->output_offset, sgot->contents); } elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8; if (info->shared) { asection *sdynsym; asection *s; Elf_Internal_Sym sym; int c; /* Set up the section symbols for the output sections. */ sdynsym = bfd_get_section_by_name (dynobj, ".dynsym"); BFD_ASSERT (sdynsym != NULL); sym.st_size = 0; sym.st_name = 0; sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); sym.st_other = 0; c = 0; for (s = output_bfd->sections; s != NULL; s = s->next) { int indx; if (elf_section_data (s)->dynindx == 0) continue; sym.st_value = s->vma; indx = elf_section_data (s)->this_idx; BFD_ASSERT (indx > 0); sym.st_shndx = indx; bfd_elf64_swap_symbol_out (output_bfd, &sym, (PTR) (((Elf64_External_Sym *) sdynsym->contents) + elf_section_data (s)->dynindx)); ++c; } /* Set the sh_info field of the output .dynsym section to the index of the first global symbol. */ elf_section_data (sdynsym->output_section)->this_hdr.sh_info = c + 1; } return true; } /* Functions for dealing with the e_flags field. */ /* Merge backend specific data from an object file to the output object file when linking. */ static boolean sparc64_elf_merge_private_bfd_data (ibfd, obfd) bfd *ibfd; bfd *obfd; { boolean error; flagword new_flags, old_flags; int new_mm, old_mm; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return true; new_flags = elf_elfheader (ibfd)->e_flags; old_flags = elf_elfheader (obfd)->e_flags; if (!elf_flags_init (obfd)) /* First call, no flags set */ { elf_flags_init (obfd) = true; elf_elfheader (obfd)->e_flags = new_flags; } else if (new_flags == old_flags) /* Compatible flags are ok */ ; else /* Incompatible flags */ { error = false; old_flags |= (new_flags & (EF_SPARC_SUN_US1|EF_SPARC_HAL_R1)); new_flags |= (old_flags & (EF_SPARC_SUN_US1|EF_SPARC_HAL_R1)); if ((old_flags & (EF_SPARC_SUN_US1|EF_SPARC_HAL_R1)) == (EF_SPARC_SUN_US1|EF_SPARC_HAL_R1)) { error = true; (*_bfd_error_handler) ("%s: linking UltraSPARC specific with HAL specific code", bfd_get_filename (ibfd)); } /* Choose the most restrictive memory ordering */ old_mm = (old_flags & EF_SPARCV9_MM); new_mm = (new_flags & EF_SPARCV9_MM); old_flags &= ~EF_SPARCV9_MM; new_flags &= ~EF_SPARCV9_MM; if (new_mm < old_mm) old_mm = new_mm; old_flags |= old_mm; new_flags |= old_mm; /* Warn about any other mismatches */ if (new_flags != old_flags) { error = true; (*_bfd_error_handler) ("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)", bfd_get_filename (ibfd), (long)new_flags, (long)old_flags); } elf_elfheader (obfd)->e_flags = old_flags; if (error) { bfd_set_error (bfd_error_bad_value); return false; } } return true; } /* Set the right machine number for a SPARC64 ELF file. */ static boolean sparc64_elf_object_p (abfd) bfd *abfd; { unsigned long mach = bfd_mach_sparc_v9; if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1) mach = bfd_mach_sparc_v9a; return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach); } #define TARGET_BIG_SYM bfd_elf64_sparc_vec #define TARGET_BIG_NAME "elf64-sparc" #define ELF_ARCH bfd_arch_sparc #define ELF_MACHINE_CODE EM_SPARC64 #define ELF_MAXPAGESIZE 0x100000 #define elf_info_to_howto \ sparc64_elf_info_to_howto #define bfd_elf64_bfd_reloc_type_lookup \ sparc64_elf_reloc_type_lookup #define elf_backend_create_dynamic_sections \ _bfd_elf_create_dynamic_sections #define elf_backend_check_relocs \ sparc64_elf_check_relocs #define elf_backend_adjust_dynamic_symbol \ sparc64_elf_adjust_dynamic_symbol #define elf_backend_size_dynamic_sections \ sparc64_elf_size_dynamic_sections #define elf_backend_relocate_section \ sparc64_elf_relocate_section #define elf_backend_finish_dynamic_symbol \ sparc64_elf_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections \ sparc64_elf_finish_dynamic_sections #define bfd_elf64_bfd_merge_private_bfd_data \ sparc64_elf_merge_private_bfd_data #define elf_backend_object_p \ sparc64_elf_object_p #define elf_backend_want_got_plt 1 #define elf_backend_plt_readonly 1 #define elf_backend_want_plt_sym 1 #define elf_backend_plt_alignment 5 #include "elf64-target.h"