/* MIPS-specific support for 64-bit ELF Copyright 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. Ian Lance Taylor, Cygnus Support Linker support added by Mark Mitchell, CodeSourcery, LLC. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This file supports the 64-bit MIPS ELF ABI. The MIPS 64-bit ELF ABI uses an unusual reloc format. This file overrides the usual ELF reloc handling, and handles reading and writing the relocations here. */ /* TODO: Many things are unsupported, even if there is some code for it . (which was mostly stolen from elf32-mips.c and slightly adapted). . . - Relocation handling for REL relocs is wrong in many cases and . generally untested. . - Relocation handling for RELA relocs related to GOT support are . also likely to be wrong. . - Support for MIPS16 is only partially implemented. . - Embedded PIC is only partially implemented (is it needed?). . - Combined relocs with RSS_* entries are unsupported. . - The whole GOT handling for NewABI is missing, some parts of . the OldABI version is still lying around and shold be removed. */ #include "bfd.h" #include "sysdep.h" #include "libbfd.h" #include "aout/ar.h" #include "bfdlink.h" #include "genlink.h" #include "elf-bfd.h" #include "elf/mips.h" /* Get the ECOFF swapping routines. The 64-bit ABI is not supposed to use ECOFF. However, we support it anyhow for an easier changeover. */ #include "coff/sym.h" #include "coff/symconst.h" #include "coff/internal.h" #include "coff/ecoff.h" /* The 64 bit versions of the mdebug data structures are in alpha.h. */ #include "coff/alpha.h" #define ECOFF_SIGNED_64 #include "ecoffswap.h" struct mips_elf64_link_hash_entry; static void mips_elf64_swap_reloc_in PARAMS ((bfd *, const Elf64_Mips_External_Rel *, Elf64_Mips_Internal_Rel *)); static void mips_elf64_swap_reloca_in PARAMS ((bfd *, const Elf64_Mips_External_Rela *, Elf64_Mips_Internal_Rela *)); static void mips_elf64_swap_reloc_out PARAMS ((bfd *, const Elf64_Mips_Internal_Rel *, Elf64_Mips_External_Rel *)); static void mips_elf64_swap_reloca_out PARAMS ((bfd *, const Elf64_Mips_Internal_Rela *, Elf64_Mips_External_Rela *)); static void mips_elf64_be_swap_reloc_in PARAMS ((bfd *, const bfd_byte *, Elf_Internal_Rel *)); static void mips_elf64_be_swap_reloc_out PARAMS ((bfd *, const Elf_Internal_Rel *, bfd_byte *)); static void mips_elf64_be_swap_reloca_in PARAMS ((bfd *, const bfd_byte *, Elf_Internal_Rela *)); static void mips_elf64_be_swap_reloca_out PARAMS ((bfd *, const Elf_Internal_Rela *, bfd_byte *)); static bfd_vma mips_elf64_high PARAMS ((bfd_vma)); static bfd_vma mips_elf64_higher PARAMS ((bfd_vma)); static bfd_vma mips_elf64_highest PARAMS ((bfd_vma)); static reloc_howto_type *mips_elf64_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type)); static void mips_elf64_info_to_howto_rel PARAMS ((bfd *, arelent *, Elf64_Internal_Rel *)); static void mips_elf64_info_to_howto_rela PARAMS ((bfd *, arelent *, Elf64_Internal_Rela *)); static long mips_elf64_get_reloc_upper_bound PARAMS ((bfd *, asection *)); static boolean mips_elf64_slurp_one_reloc_table PARAMS ((bfd *, asection *, asymbol **, const Elf_Internal_Shdr *)); static boolean mips_elf64_slurp_reloc_table PARAMS ((bfd *, asection *, asymbol **, boolean)); static void mips_elf64_write_relocs PARAMS ((bfd *, asection *, PTR)); static void mips_elf64_write_rel PARAMS((bfd *, asection *, Elf_Internal_Shdr *, int *, PTR)); static void mips_elf64_write_rela PARAMS((bfd *, asection *, Elf_Internal_Shdr *, int *, PTR)); static struct bfd_hash_entry *mips_elf64_link_hash_newfunc PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); static bfd_reloc_status_type mips_elf64_hi16_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type mips_elf64_higher_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type mips_elf64_highest_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type mips_elf64_gprel16_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type mips_elf64_gprel16_reloca PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type mips_elf64_literal_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type mips_elf64_gprel32_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type mips_elf64_shift6_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type mips_elf64_got16_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static boolean mips_elf64_assign_gp PARAMS ((bfd *, bfd_vma *)); static bfd_reloc_status_type mips_elf64_final_gp PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *)); static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *, arelent *, asection *, boolean, PTR, bfd_vma)); static int mips_elf64_additional_program_headers PARAMS ((bfd *)); static struct bfd_link_hash_table *mips_elf64_link_hash_table_create PARAMS((bfd *)); static bfd_vma mips_elf64_got_offset_from_index PARAMS ((bfd *, bfd *, bfd_vma)); static struct mips_elf64_got_info *_mips_elf64_got_info PARAMS ((bfd *, asection **)); static bfd_vma mips_elf64_sign_extend PARAMS ((bfd_vma, int)); static boolean mips_elf64_overflow_p PARAMS ((bfd_vma, int)); static bfd_vma mips_elf64_global_got_index PARAMS ((bfd *, struct elf_link_hash_entry *)); static boolean mips_elf64_sort_hash_table_f PARAMS ((struct mips_elf64_link_hash_entry *, PTR)); static boolean mips_elf64_sort_hash_table PARAMS ((struct bfd_link_info *, unsigned long)); static void mips_elf64_swap_msym_out PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *)); static bfd_vma mips_elf64_create_local_got_entry PARAMS ((bfd *abfd, struct mips_elf64_got_info *, asection *, bfd_vma value)); static bfd_vma mips_elf64_local_got_index PARAMS ((bfd *, struct bfd_link_info *, bfd_vma)); static bfd_vma mips_elf64_got_page PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *)); static bfd_vma mips_elf64_got16_entry PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean)); static boolean mips_elf64_local_relocation_p PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean)); static const Elf_Internal_Rela *mips_elf64_next_relocation PARAMS ((unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *)); static boolean mips_elf64_create_dynamic_relocation PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, struct mips_elf64_link_hash_entry *, asection *, bfd_vma, bfd_vma *, asection *, boolean)); static bfd_reloc_status_type mips_elf64_calculate_relocation PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *, const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *, Elf_Internal_Sym *, asection **, bfd_vma *, const char **)); static bfd_vma mips_elf64_obtain_contents PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *)); static boolean mips_elf64_perform_relocation PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd_vma, bfd *, bfd_byte *)); static boolean mips_elf64_relocate_section PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); boolean mips_elf64_create_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); boolean mips_elf64_adjust_dynamic_symbol PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *h)); boolean mips_elf64_always_size_sections PARAMS ((bfd *, struct bfd_link_info *)); boolean mips_elf64_size_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); boolean mips_elf64_finish_dynamic_symbol PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); boolean mips_elf64_finish_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *info)); asection *mips_elf64_gc_mark_hook PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); boolean mips_elf64_gc_sweep_hook PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *)); static boolean mips_elf64_create_got_section PARAMS ((bfd *, struct bfd_link_info *)); static boolean mips_elf64_record_global_got_symbol PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *, struct mips_elf64_got_info *)); static asection *mips_elf64_create_msym_section PARAMS((bfd *)); static void mips_elf64_allocate_dynamic_relocations PARAMS ((bfd *, unsigned int)); boolean mips_elf64_check_relocs PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *)); static boolean mips_elf64_output_extsym PARAMS ((struct mips_elf64_link_hash_entry *, PTR)); static void mips_elf64_swap_gptab_in PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *)); static void mips_elf64_swap_gptab_out PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *)); static int gptab_compare PARAMS ((const PTR, const PTR)); boolean mips_elf64_final_link PARAMS ((bfd *, struct bfd_link_info *)); extern const bfd_target bfd_elf64_bigmips_vec; extern const bfd_target bfd_elf64_littlemips_vec; static bfd_vma prev_reloc_addend = 0; static bfd_size_type prev_reloc_address = 0; /* Whether we are trying to be compatible with IRIX6 (or little endianers which are otherwise IRIX-ABI compliant). */ #define SGI_COMPAT(abfd) \ ((abfd->xvec == &bfd_elf64_bigmips_vec) \ || (abfd->xvec == &bfd_elf64_littlemips_vec) ? true : false) /* In case we're on a 32-bit machine, construct a 64-bit "-1" value from smaller values. Start with zero, widen, *then* decrement. */ #define MINUS_ONE (((bfd_vma)0) - 1) /* The number of local .got entries we reserve. */ #define MIPS_RESERVED_GOTNO (2) /* Instructions which appear in a stub. */ #define ELF_MIPS_GP_OFFSET(abfd) 0x7ff0 #define STUB_LW 0xdf998010 /* ld t9,0x8010(gp) */ #define STUB_MOVE 0x03e07825 /* move t7,ra */ #define STUB_JALR 0x0320f809 /* jal t9 */ #define STUB_LI16 0x34180000 /* ori t8,zero,0 */ #define MIPS_FUNCTION_STUB_SIZE (16) /* The relocation table used for SHT_REL sections. */ #define UNUSED_RELOC(num) { num, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } static reloc_howto_type mips_elf64_howto_table_rel[] = { /* No relocation. */ HOWTO (R_MIPS_NONE, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_NONE", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ false), /* pcrel_offset */ /* 16 bit relocation. */ HOWTO (R_MIPS_16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* 32 bit relocation. */ HOWTO (R_MIPS_32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_32", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* 32 bit symbol relative relocation. */ HOWTO (R_MIPS_REL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_REL32", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* 26 bit jump address. */ HOWTO (R_MIPS_26, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ /* This needs complex overflow detection, because the upper 36 bits must match the PC + 4. */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_26", /* name */ true, /* partial_inplace */ 0x03ffffff, /* src_mask */ 0x03ffffff, /* dst_mask */ false), /* pcrel_offset */ /* High 16 bits of symbol value. */ HOWTO (R_MIPS_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_HI16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Low 16 bits of symbol value. */ HOWTO (R_MIPS_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_LO16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* GP relative reference. */ HOWTO (R_MIPS_GPREL16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ mips_elf64_gprel16_reloc, /* special_function */ "R_MIPS_GPREL16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Reference to literal section. */ HOWTO (R_MIPS_LITERAL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ mips_elf64_literal_reloc, /* special_function */ "R_MIPS_LITERAL", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Reference to global offset table. */ HOWTO (R_MIPS_GOT16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ mips_elf64_got16_reloc, /* special_function */ "R_MIPS_GOT16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* 16 bit PC relative reference. */ HOWTO (R_MIPS_PC16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_PC16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ true), /* pcrel_offset */ /* 16 bit call through global offset table. */ /* FIXME: This is not handled correctly. */ HOWTO (R_MIPS_CALL16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_CALL16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* 32 bit GP relative reference. */ HOWTO (R_MIPS_GPREL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ mips_elf64_gprel32_reloc, /* special_function */ "R_MIPS_GPREL32", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ UNUSED_RELOC (13), UNUSED_RELOC (14), UNUSED_RELOC (15), /* A 5 bit shift field. */ HOWTO (R_MIPS_SHIFT5, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 5, /* bitsize */ false, /* pc_relative */ 6, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_SHIFT5", /* name */ true, /* partial_inplace */ 0x000007c0, /* src_mask */ 0x000007c0, /* dst_mask */ false), /* pcrel_offset */ /* A 6 bit shift field. */ HOWTO (R_MIPS_SHIFT6, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 6, /* bitsize */ false, /* pc_relative */ 6, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ mips_elf64_shift6_reloc, /* special_function */ "R_MIPS_SHIFT6", /* name */ true, /* partial_inplace */ 0x000007c4, /* src_mask */ 0x000007c4, /* dst_mask */ false), /* pcrel_offset */ /* 64 bit relocation. */ HOWTO (R_MIPS_64, /* type */ 0, /* rightshift */ 4, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_64", /* name */ true, /* partial_inplace */ MINUS_ONE, /* src_mask */ MINUS_ONE, /* dst_mask */ false), /* pcrel_offset */ /* Displacement in the global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_DISP, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_DISP", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Displacement to page pointer in the global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_PAGE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_PAGE", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Offset from page pointer in the global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_OFST, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_OFST", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* High 16 bits of displacement in global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_HI16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Low 16 bits of displacement in global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_LO16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* 64 bit substraction. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_SUB, /* type */ 0, /* rightshift */ 4, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_SUB", /* name */ true, /* partial_inplace */ MINUS_ONE, /* src_mask */ MINUS_ONE, /* dst_mask */ false), /* pcrel_offset */ /* Insert the addend as an instruction. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_INSERT_A, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_INSERT_A", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* Insert the addend as an instruction, and change all relocations to refer to the old instruction at the address. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_INSERT_B, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_INSERT_B", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* Delete a 32 bit instruction. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_DELETE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_DELETE", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* Get the higher value of a 64 bit addend. */ HOWTO (R_MIPS_HIGHER, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ mips_elf64_higher_reloc, /* special_function */ "R_MIPS_HIGHER", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Get the highest value of a 64 bit addend. */ HOWTO (R_MIPS_HIGHEST, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ mips_elf64_highest_reloc, /* special_function */ "R_MIPS_HIGHEST", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* High 16 bits of displacement in global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_CALL_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_CALL_HI16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Low 16 bits of displacement in global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_CALL_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_CALL_LO16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Section displacement, used by an associated event location section. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_SCN_DISP, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_SCN_DISP", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ HOWTO (R_MIPS_REL16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_REL16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* These two are obsolete. */ EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE), EMPTY_HOWTO (R_MIPS_PJUMP), /* Similiar to R_MIPS_REL32, but used for relocations in a GOT section. It must be used for multigot GOT's (and only there). */ HOWTO (R_MIPS_RELGOT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_RELGOT", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* Protected jump conversion. This is an optimization hint. No relocation is required for correctness. */ HOWTO (R_MIPS_JALR, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_JALR", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x00000000, /* dst_mask */ false), /* pcrel_offset */ }; /* The relocation table used for SHT_RELA sections. */ static reloc_howto_type mips_elf64_howto_table_rela[] = { /* No relocation. */ HOWTO (R_MIPS_NONE, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_NONE", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ false), /* pcrel_offset */ /* 16 bit relocation. */ HOWTO (R_MIPS_16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* 32 bit relocation. */ HOWTO (R_MIPS_32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_32", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* 32 bit symbol relative relocation. */ HOWTO (R_MIPS_REL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_REL32", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* 26 bit jump address. */ HOWTO (R_MIPS_26, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ /* This needs complex overflow detection, because the upper 36 bits must match the PC + 4. */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_26", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x03ffffff, /* dst_mask */ false), /* pcrel_offset */ /* R_MIPS_HI16 and R_MIPS_LO16 are unsupported for 64 bit REL. */ /* High 16 bits of symbol value. */ HOWTO (R_MIPS_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_HI16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Low 16 bits of symbol value. */ HOWTO (R_MIPS_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_LO16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* GP relative reference. */ HOWTO (R_MIPS_GPREL16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ mips_elf64_gprel16_reloca, /* special_function */ "R_MIPS_GPREL16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Reference to literal section. */ HOWTO (R_MIPS_LITERAL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ mips_elf64_literal_reloc, /* special_function */ "R_MIPS_LITERAL", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Reference to global offset table. */ /* FIXME: This is not handled correctly. */ HOWTO (R_MIPS_GOT16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* 16 bit PC relative reference. */ HOWTO (R_MIPS_PC16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_PC16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ true), /* pcrel_offset */ /* 16 bit call through global offset table. */ /* FIXME: This is not handled correctly. */ HOWTO (R_MIPS_CALL16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_CALL16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* 32 bit GP relative reference. */ HOWTO (R_MIPS_GPREL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ mips_elf64_gprel32_reloc, /* special_function */ "R_MIPS_GPREL32", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ UNUSED_RELOC (13), UNUSED_RELOC (14), UNUSED_RELOC (15), /* A 5 bit shift field. */ HOWTO (R_MIPS_SHIFT5, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 5, /* bitsize */ false, /* pc_relative */ 6, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_SHIFT5", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x000007c0, /* dst_mask */ false), /* pcrel_offset */ /* A 6 bit shift field. */ HOWTO (R_MIPS_SHIFT6, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 6, /* bitsize */ false, /* pc_relative */ 6, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ mips_elf64_shift6_reloc, /* special_function */ "R_MIPS_SHIFT6", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x000007c4, /* dst_mask */ false), /* pcrel_offset */ /* 64 bit relocation. */ HOWTO (R_MIPS_64, /* type */ 0, /* rightshift */ 4, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_64", /* name */ false, /* partial_inplace */ 0, /* src_mask */ MINUS_ONE, /* dst_mask */ false), /* pcrel_offset */ /* Displacement in the global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_DISP, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_DISP", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Displacement to page pointer in the global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_PAGE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_PAGE", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Offset from page pointer in the global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_OFST, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_OFST", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* High 16 bits of displacement in global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_HI16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Low 16 bits of displacement in global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_LO16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* 64 bit substraction. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_SUB, /* type */ 0, /* rightshift */ 4, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_SUB", /* name */ false, /* partial_inplace */ 0, /* src_mask */ MINUS_ONE, /* dst_mask */ false), /* pcrel_offset */ /* Insert the addend as an instruction. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_INSERT_A, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_INSERT_A", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* Insert the addend as an instruction, and change all relocations to refer to the old instruction at the address. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_INSERT_B, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_INSERT_B", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* Delete a 32 bit instruction. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_DELETE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_DELETE", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* Get the higher value of a 64 bit addend. */ HOWTO (R_MIPS_HIGHER, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_HIGHER", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Get the highest value of a 64 bit addend. */ HOWTO (R_MIPS_HIGHEST, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_HIGHEST", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* High 16 bits of displacement in global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_CALL_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_CALL_HI16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Low 16 bits of displacement in global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_CALL_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_CALL_LO16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Section displacement, used by an associated event location section. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_SCN_DISP, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_SCN_DISP", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ HOWTO (R_MIPS_REL16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_REL16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* These two are obsolete. */ EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE), EMPTY_HOWTO (R_MIPS_PJUMP), /* Similiar to R_MIPS_REL32, but used for relocations in a GOT section. It must be used for multigot GOT's (and only there). */ HOWTO (R_MIPS_RELGOT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_RELGOT", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* Protected jump conversion. This is an optimization hint. No relocation is required for correctness. */ HOWTO (R_MIPS_JALR, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_JALR", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0x00000000, /* dst_mask */ false), /* pcrel_offset */ }; /* Swap in a MIPS 64-bit Rel reloc. */ static void mips_elf64_swap_reloc_in (abfd, src, dst) bfd *abfd; const Elf64_Mips_External_Rel *src; Elf64_Mips_Internal_Rel *dst; { dst->r_offset = H_GET_64 (abfd, src->r_offset); dst->r_sym = H_GET_32 (abfd, src->r_sym); dst->r_ssym = H_GET_8 (abfd, src->r_ssym); dst->r_type3 = H_GET_8 (abfd, src->r_type3); dst->r_type2 = H_GET_8 (abfd, src->r_type2); dst->r_type = H_GET_8 (abfd, src->r_type); } /* Swap in a MIPS 64-bit Rela reloc. */ static void mips_elf64_swap_reloca_in (abfd, src, dst) bfd *abfd; const Elf64_Mips_External_Rela *src; Elf64_Mips_Internal_Rela *dst; { dst->r_offset = H_GET_64 (abfd, src->r_offset); dst->r_sym = H_GET_32 (abfd, src->r_sym); dst->r_ssym = H_GET_8 (abfd, src->r_ssym); dst->r_type3 = H_GET_8 (abfd, src->r_type3); dst->r_type2 = H_GET_8 (abfd, src->r_type2); dst->r_type = H_GET_8 (abfd, src->r_type); dst->r_addend = H_GET_S64 (abfd, src->r_addend); } /* Swap out a MIPS 64-bit Rel reloc. */ static void mips_elf64_swap_reloc_out (abfd, src, dst) bfd *abfd; const Elf64_Mips_Internal_Rel *src; Elf64_Mips_External_Rel *dst; { H_PUT_64 (abfd, src->r_offset, dst->r_offset); H_PUT_32 (abfd, src->r_sym, dst->r_sym); H_PUT_8 (abfd, src->r_ssym, dst->r_ssym); H_PUT_8 (abfd, src->r_type3, dst->r_type3); H_PUT_8 (abfd, src->r_type2, dst->r_type2); H_PUT_8 (abfd, src->r_type, dst->r_type); } /* Swap out a MIPS 64-bit Rela reloc. */ static void mips_elf64_swap_reloca_out (abfd, src, dst) bfd *abfd; const Elf64_Mips_Internal_Rela *src; Elf64_Mips_External_Rela *dst; { H_PUT_64 (abfd, src->r_offset, dst->r_offset); H_PUT_32 (abfd, src->r_sym, dst->r_sym); H_PUT_8 (abfd, src->r_ssym, dst->r_ssym); H_PUT_8 (abfd, src->r_type3, dst->r_type3); H_PUT_8 (abfd, src->r_type2, dst->r_type2); H_PUT_8 (abfd, src->r_type, dst->r_type); H_PUT_S64 (abfd, src->r_addend, dst->r_addend); } /* Swap in a MIPS 64-bit Rel reloc. */ static void mips_elf64_be_swap_reloc_in (abfd, src, dst) bfd *abfd; const bfd_byte *src; Elf_Internal_Rel *dst; { Elf64_Mips_Internal_Rel mirel; mips_elf64_swap_reloc_in (abfd, (const Elf64_Mips_External_Rel *) src, &mirel); dst[0].r_offset = mirel.r_offset; dst[0].r_info = ELF64_R_INFO (mirel.r_sym, mirel.r_type); dst[1].r_offset = mirel.r_offset; dst[1].r_info = ELF64_R_INFO (mirel.r_ssym, mirel.r_type2); dst[2].r_offset = mirel.r_offset; dst[2].r_info = ELF64_R_INFO (STN_UNDEF, mirel.r_type3); } /* Swap in a MIPS 64-bit Rela reloc. */ static void mips_elf64_be_swap_reloca_in (abfd, src, dst) bfd *abfd; const bfd_byte *src; Elf_Internal_Rela *dst; { Elf64_Mips_Internal_Rela mirela; mips_elf64_swap_reloca_in (abfd, (const Elf64_Mips_External_Rela *) src, &mirela); dst[0].r_offset = mirela.r_offset; dst[0].r_info = ELF64_R_INFO (mirela.r_sym, mirela.r_type); dst[0].r_addend = mirela.r_addend; dst[1].r_offset = mirela.r_offset; dst[1].r_info = ELF64_R_INFO (mirela.r_ssym, mirela.r_type2); dst[1].r_addend = 0; dst[2].r_offset = mirela.r_offset; dst[2].r_info = ELF64_R_INFO (STN_UNDEF, mirela.r_type3); dst[2].r_addend = 0; } /* Swap out a MIPS 64-bit Rel reloc. */ static void mips_elf64_be_swap_reloc_out (abfd, src, dst) bfd *abfd; const Elf_Internal_Rel *src; bfd_byte *dst; { Elf64_Mips_Internal_Rel mirel; mirel.r_offset = src[0].r_offset; BFD_ASSERT(src[0].r_offset == src[1].r_offset); BFD_ASSERT(src[0].r_offset == src[2].r_offset); mirel.r_type = ELF64_MIPS_R_TYPE (src[0].r_info); mirel.r_sym = ELF64_R_SYM (src[0].r_info); mirel.r_type2 = ELF64_MIPS_R_TYPE2 (src[1].r_info); mirel.r_ssym = ELF64_MIPS_R_SSYM (src[1].r_info); mirel.r_type3 = ELF64_MIPS_R_TYPE3 (src[2].r_info); mips_elf64_swap_reloc_out (abfd, &mirel, (Elf64_Mips_External_Rel *) dst); } /* Swap out a MIPS 64-bit Rela reloc. */ static void mips_elf64_be_swap_reloca_out (abfd, src, dst) bfd *abfd; const Elf_Internal_Rela *src; bfd_byte *dst; { Elf64_Mips_Internal_Rela mirela; mirela.r_offset = src[0].r_offset; BFD_ASSERT(src[0].r_offset == src[1].r_offset); BFD_ASSERT(src[0].r_offset == src[2].r_offset); mirela.r_type = ELF64_MIPS_R_TYPE (src[0].r_info); mirela.r_sym = ELF64_R_SYM (src[0].r_info); mirela.r_addend = src[0].r_addend; BFD_ASSERT(src[1].r_addend == 0); BFD_ASSERT(src[2].r_addend == 0); mirela.r_type2 = ELF64_MIPS_R_TYPE2 (src[1].r_info); mirela.r_ssym = ELF64_MIPS_R_SSYM (src[1].r_info); mirela.r_type3 = ELF64_MIPS_R_TYPE3 (src[2].r_info); mips_elf64_swap_reloca_out (abfd, &mirela, (Elf64_Mips_External_Rela *) dst); } /* Calculate the %high function. */ static bfd_vma mips_elf64_high (value) bfd_vma value; { return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; } /* Calculate the %higher function. */ static bfd_vma mips_elf64_higher (value) bfd_vma value; { return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; } /* Calculate the %highest function. */ static bfd_vma mips_elf64_highest (value) bfd_vma value; { return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff; } /* Do a R_MIPS_HI16 relocation. */ bfd_reloc_status_type mips_elf64_hi16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd ATTRIBUTE_UNUSED; arelent *reloc_entry; asymbol *symbol; PTR data ATTRIBUTE_UNUSED; asection *input_section; bfd *output_bfd; char **error_message ATTRIBUTE_UNUSED; { /* If we're relocating, and this is an external symbol, we don't want to change anything. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (((reloc_entry->addend & 0xffff) + 0x8000) & ~0xffff) reloc_entry->addend += 0x8000; return bfd_reloc_continue; } /* Do a R_MIPS_HIGHER relocation. */ bfd_reloc_status_type mips_elf64_higher_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd ATTRIBUTE_UNUSED; arelent *reloc_entry; asymbol *symbol; PTR data ATTRIBUTE_UNUSED; asection *input_section; bfd *output_bfd; char **error_message ATTRIBUTE_UNUSED; { /* If we're relocating, and this is an external symbol, we don't want to change anything. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (((reloc_entry->addend & 0xffffffff) + 0x80008000) & ~0xffffffff) reloc_entry->addend += 0x80008000; return bfd_reloc_continue; } /* Do a R_MIPS_HIGHEST relocation. */ bfd_reloc_status_type mips_elf64_highest_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd ATTRIBUTE_UNUSED; arelent *reloc_entry; asymbol *symbol; PTR data ATTRIBUTE_UNUSED; asection *input_section; bfd *output_bfd; char **error_message ATTRIBUTE_UNUSED; { /* If we're relocating, and this is an external symbol, we don't want to change anything. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (((reloc_entry->addend & 0xffffffffffff) + 0x800080008000) & ~0xffffffffffff) reloc_entry->addend += 0x800080008000; return bfd_reloc_continue; } /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset table used for PIC code. If the symbol is an external symbol, the instruction is modified to contain the offset of the appropriate entry in the global offset table. If the symbol is a section symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit addends are combined to form the real addend against the section symbol; the GOT16 is modified to contain the offset of an entry in the global offset table, and the LO16 is modified to offset it appropriately. Thus an offset larger than 16 bits requires a modified value in the global offset table. This implementation suffices for the assembler, but the linker does not yet know how to create global offset tables. */ bfd_reloc_status_type mips_elf64_got16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { /* If we're relocating, and this an external symbol, we don't want to change anything. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* If we're relocating, and this is a local symbol, we can handle it just like HI16. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) != 0) return mips_elf64_hi16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); abort (); } /* Set the GP value for OUTPUT_BFD. Returns false if this is a dangerous relocation. */ static boolean mips_elf64_assign_gp (output_bfd, pgp) bfd *output_bfd; bfd_vma *pgp; { unsigned int count; asymbol **sym; unsigned int i; /* If we've already figured out what GP will be, just return it. */ *pgp = _bfd_get_gp_value (output_bfd); if (*pgp) return true; count = bfd_get_symcount (output_bfd); sym = bfd_get_outsymbols (output_bfd); /* The linker script will have created a symbol named `_gp' with the appropriate value. */ if (sym == (asymbol **) NULL) i = count; else { for (i = 0; i < count; i++, sym++) { register CONST char *name; name = bfd_asymbol_name (*sym); if (*name == '_' && strcmp (name, "_gp") == 0) { *pgp = bfd_asymbol_value (*sym); _bfd_set_gp_value (output_bfd, *pgp); break; } } } if (i >= count) { /* Only get the error once. */ *pgp = 4; _bfd_set_gp_value (output_bfd, *pgp); return false; } return true; } /* We have to figure out the gp value, so that we can adjust the symbol value correctly. We look up the symbol _gp in the output BFD. If we can't find it, we're stuck. We cache it in the ELF target data. We don't need to adjust the symbol value for an external symbol if we are producing relocateable output. */ static bfd_reloc_status_type mips_elf64_final_gp (output_bfd, symbol, relocateable, error_message, pgp) bfd *output_bfd; asymbol *symbol; boolean relocateable; char **error_message; bfd_vma *pgp; { if (bfd_is_und_section (symbol->section) && ! relocateable) { *pgp = 0; return bfd_reloc_undefined; } *pgp = _bfd_get_gp_value (output_bfd); if (*pgp == 0 && (! relocateable || (symbol->flags & BSF_SECTION_SYM) != 0)) { if (relocateable) { /* Make up a value. */ *pgp = symbol->section->output_section->vma + 0x4000; _bfd_set_gp_value (output_bfd, *pgp); } else if (!mips_elf64_assign_gp (output_bfd, pgp)) { *error_message = (char *) _("GP relative relocation when _gp not defined"); return bfd_reloc_dangerous; } } return bfd_reloc_ok; } /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must become the offset from the gp register. */ bfd_reloc_status_type mips_elf64_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { boolean relocateable; bfd_reloc_status_type ret; bfd_vma gp; /* If we're relocating, and this is an external symbol with no addend, we don't want to change anything. We will only have an addend if this is a newly created reloc, not read from an ELF file. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != (bfd *) NULL) relocateable = true; else { relocateable = false; output_bfd = symbol->section->output_section->owner; } ret = mips_elf64_final_gp (output_bfd, symbol, relocateable, error_message, &gp); if (ret != bfd_reloc_ok) return ret; return gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data, gp); } static bfd_reloc_status_type gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data, gp) bfd *abfd; asymbol *symbol; arelent *reloc_entry; asection *input_section; boolean relocateable; PTR data; bfd_vma gp; { bfd_vma relocation; unsigned long insn; unsigned long val; if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); /* Set val to the offset into the section or symbol. */ if (reloc_entry->howto->src_mask == 0) { /* This case occurs with the 64-bit MIPS ELF ABI. */ val = reloc_entry->addend; } else { val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff; if (val & 0x8000) val -= 0x10000; } /* Adjust val for the final section location and GP value. If we are producing relocateable output, we don't want to do this for an external symbol. */ if (! relocateable || (symbol->flags & BSF_SECTION_SYM) != 0) val += relocation - gp; insn = (insn & ~0xffff) | (val & 0xffff); bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); if (relocateable) reloc_entry->address += input_section->output_offset; else if ((long) val >= 0x8000 || (long) val < -0x8000) return bfd_reloc_overflow; return bfd_reloc_ok; } /* Do a R_MIPS_GPREL16 RELA relocation. */ bfd_reloc_status_type mips_elf64_gprel16_reloca (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data ATTRIBUTE_UNUSED; asection *input_section; bfd *output_bfd; char **error_message; { boolean relocateable; bfd_vma gp; /* This works only for NewABI. */ BFD_ASSERT (reloc_entry->howto->src_mask == 0); /* If we're relocating, and this is an external symbol with no addend, we don't want to change anything. We will only have an addend if this is a newly created reloc, not read from an ELF file. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != (bfd *) NULL) relocateable = true; else { relocateable = false; output_bfd = symbol->section->output_section->owner; } if (prev_reloc_address != reloc_entry->address) prev_reloc_address = reloc_entry->address; else { mips_elf64_final_gp (output_bfd, symbol, relocateable, error_message, &gp); prev_reloc_addend = reloc_entry->addend + reloc_entry->address - gp; if (symbol->flags & BSF_LOCAL) prev_reloc_addend += _bfd_get_gp_value (abfd); /*fprintf(stderr, "Addend: %lx, Next Addend: %lx\n", reloc_entry->addend, prev_reloc_addend);*/ } return bfd_reloc_ok; } /* Do a R_MIPS_LITERAL relocation. */ bfd_reloc_status_type mips_elf64_literal_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { /* If we're relocating, and this is an external symbol, we don't want to change anything. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* FIXME: The entries in the .lit8 and .lit4 sections should be merged. Currently we simply call mips_elf64_gprel16_reloc. */ return mips_elf64_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); } /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset from the gp register? XXX */ bfd_reloc_status_type mips_elf64_gprel32_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { boolean relocateable; bfd_reloc_status_type ret; bfd_vma gp; bfd_vma relocation; unsigned long val; /* If we're relocating, and this is an external symbol with no addend, we don't want to change anything. We will only have an addend if this is a newly created reloc, not read from an ELF file. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { *error_message = (char *) _("32bits gp relative relocation occurs for an external symbol"); return bfd_reloc_outofrange; } if (output_bfd != (bfd *) NULL) { relocateable = true; gp = _bfd_get_gp_value (output_bfd); } else { relocateable = false; output_bfd = symbol->section->output_section->owner; ret = mips_elf64_final_gp (output_bfd, symbol, relocateable, error_message, &gp); if (ret != bfd_reloc_ok) return ret; } if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; if (reloc_entry->howto->src_mask == 0) { /* This case arises with the 64-bit MIPS ELF ABI. */ val = 0; } else val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); /* Set val to the offset into the section or symbol. */ val += reloc_entry->addend; /* Adjust val for the final section location and GP value. If we are producing relocateable output, we don't want to do this for an external symbol. */ if (! relocateable || (symbol->flags & BSF_SECTION_SYM) != 0) val += relocation - gp; bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address); if (relocateable) reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Do a R_MIPS_SHIFT6 relocation. The MSB of the shift is stored at bit 2, the rest is at bits 6-10. The bitpos alredy got right by the howto. */ bfd_reloc_status_type mips_elf64_shift6_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd ATTRIBUTE_UNUSED; arelent *reloc_entry; asymbol *symbol; PTR data ATTRIBUTE_UNUSED; asection *input_section; bfd *output_bfd; char **error_message ATTRIBUTE_UNUSED; { /* If we're relocating, and this is an external symbol, we don't want to change anything. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } reloc_entry->addend = (reloc_entry->addend & 0x00007c0) | (reloc_entry->addend & 0x00000800) >> 9; return bfd_reloc_continue; } static int mips_elf64_additional_program_headers (abfd) bfd *abfd; { int ret = 0; /* See if we need a PT_MIPS_OPTIONS segment. */ if (bfd_get_section_by_name (abfd, ".MIPS.options")) ++ret; return ret; } /* Given a BFD reloc type, return a howto structure. */ static reloc_howto_type * mips_elf64_reloc_type_lookup (abfd, code) bfd *abfd ATTRIBUTE_UNUSED; bfd_reloc_code_real_type code; { /* FIXME: We default to RELA here instead of choosing the right relocation variant. */ reloc_howto_type *howto_table = mips_elf64_howto_table_rela; switch (code) { case BFD_RELOC_NONE: return &howto_table[R_MIPS_NONE]; case BFD_RELOC_16: return &howto_table[R_MIPS_16]; case BFD_RELOC_32: return &howto_table[R_MIPS_32]; case BFD_RELOC_64: case BFD_RELOC_CTOR: /* We need to handle these specially. Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the size of addresses on this architecture. */ if (bfd_arch_bits_per_address (abfd) == 32) return &howto_table[R_MIPS_32]; else return &howto_table[R_MIPS_64]; case BFD_RELOC_16_PCREL: return &howto_table[R_MIPS_PC16]; case BFD_RELOC_HI16_S: return &howto_table[R_MIPS_HI16]; case BFD_RELOC_LO16: return &howto_table[R_MIPS_LO16]; case BFD_RELOC_GPREL16: return &howto_table[R_MIPS_GPREL16]; case BFD_RELOC_GPREL32: return &howto_table[R_MIPS_GPREL32]; case BFD_RELOC_MIPS_JMP: return &howto_table[R_MIPS_26]; case BFD_RELOC_MIPS_LITERAL: return &howto_table[R_MIPS_LITERAL]; case BFD_RELOC_MIPS_GOT16: return &howto_table[R_MIPS_GOT16]; case BFD_RELOC_MIPS_CALL16: return &howto_table[R_MIPS_CALL16]; case BFD_RELOC_MIPS_SHIFT5: return &howto_table[R_MIPS_SHIFT5]; case BFD_RELOC_MIPS_SHIFT6: return &howto_table[R_MIPS_SHIFT6]; case BFD_RELOC_MIPS_GOT_DISP: return &howto_table[R_MIPS_GOT_DISP]; case BFD_RELOC_MIPS_GOT_PAGE: return &howto_table[R_MIPS_GOT_PAGE]; case BFD_RELOC_MIPS_GOT_OFST: return &howto_table[R_MIPS_GOT_OFST]; case BFD_RELOC_MIPS_GOT_HI16: return &howto_table[R_MIPS_GOT_HI16]; case BFD_RELOC_MIPS_GOT_LO16: return &howto_table[R_MIPS_GOT_LO16]; case BFD_RELOC_MIPS_SUB: return &howto_table[R_MIPS_SUB]; case BFD_RELOC_MIPS_INSERT_A: return &howto_table[R_MIPS_INSERT_A]; case BFD_RELOC_MIPS_INSERT_B: return &howto_table[R_MIPS_INSERT_B]; case BFD_RELOC_MIPS_DELETE: return &howto_table[R_MIPS_DELETE]; case BFD_RELOC_MIPS_HIGHEST: return &howto_table[R_MIPS_HIGHEST]; case BFD_RELOC_MIPS_HIGHER: return &howto_table[R_MIPS_HIGHER]; case BFD_RELOC_MIPS_CALL_HI16: return &howto_table[R_MIPS_CALL_HI16]; case BFD_RELOC_MIPS_CALL_LO16: return &howto_table[R_MIPS_CALL_LO16]; case BFD_RELOC_MIPS_SCN_DISP: return &howto_table[R_MIPS_SCN_DISP]; case BFD_RELOC_MIPS_REL16: return &howto_table[R_MIPS_REL16]; /* Use of R_MIPS_ADD_IMMEDIATE and R_MIPS_PJUMP is deprecated. */ case BFD_RELOC_MIPS_RELGOT: return &howto_table[R_MIPS_RELGOT]; case BFD_RELOC_MIPS_JALR: return &howto_table[R_MIPS_JALR]; /* case BFD_RELOC_MIPS16_JMP: return &elf_mips16_jump_howto; case BFD_RELOC_MIPS16_GPREL: return &elf_mips16_gprel_howto; case BFD_RELOC_VTABLE_INHERIT: return &elf_mips_gnu_vtinherit_howto; case BFD_RELOC_VTABLE_ENTRY: return &elf_mips_gnu_vtentry_howto; case BFD_RELOC_PCREL_HI16_S: return &elf_mips_gnu_rel_hi16; case BFD_RELOC_PCREL_LO16: return &elf_mips_gnu_rel_lo16; case BFD_RELOC_16_PCREL_S2: return &elf_mips_gnu_rel16_s2; case BFD_RELOC_64_PCREL: return &elf_mips_gnu_pcrel64; case BFD_RELOC_32_PCREL: return &elf_mips_gnu_pcrel32; */ default: bfd_set_error (bfd_error_bad_value); return NULL; } } /* Prevent relocation handling by bfd for MIPS ELF64. */ static void mips_elf64_info_to_howto_rel (abfd, cache_ptr, dst) bfd *abfd ATTRIBUTE_UNUSED; arelent *cache_ptr ATTRIBUTE_UNUSED; Elf64_Internal_Rel *dst ATTRIBUTE_UNUSED; { BFD_ASSERT (0); } static void mips_elf64_info_to_howto_rela (abfd, cache_ptr, dst) bfd *abfd ATTRIBUTE_UNUSED; arelent *cache_ptr ATTRIBUTE_UNUSED; Elf64_Internal_Rela *dst ATTRIBUTE_UNUSED; { BFD_ASSERT (0); } /* Since each entry in an SHT_REL or SHT_RELA section can represent up to three relocs, we must tell the user to allocate more space. */ static long mips_elf64_get_reloc_upper_bound (abfd, sec) bfd *abfd ATTRIBUTE_UNUSED; asection *sec; { return (sec->reloc_count * 3 + 1) * sizeof (arelent *); } /* Read the relocations from one reloc section. */ static boolean mips_elf64_slurp_one_reloc_table (abfd, asect, symbols, rel_hdr) bfd *abfd; asection *asect; asymbol **symbols; const Elf_Internal_Shdr *rel_hdr; { PTR allocated = NULL; bfd_byte *native_relocs; arelent *relents; arelent *relent; bfd_vma count; bfd_vma i; int entsize; reloc_howto_type *howto_table; allocated = (PTR) bfd_malloc (rel_hdr->sh_size); if (allocated == NULL) return false; if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0 || (bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)) goto error_return; native_relocs = (bfd_byte *) allocated; relents = asect->relocation + asect->reloc_count; entsize = rel_hdr->sh_entsize; BFD_ASSERT (entsize == sizeof (Elf64_Mips_External_Rel) || entsize == sizeof (Elf64_Mips_External_Rela)); count = rel_hdr->sh_size / entsize; if (entsize == sizeof (Elf64_Mips_External_Rel)) howto_table = mips_elf64_howto_table_rel; else howto_table = mips_elf64_howto_table_rela; relent = relents; for (i = 0; i < count; i++, native_relocs += entsize) { Elf64_Mips_Internal_Rela rela; boolean used_sym, used_ssym; int ir; if (entsize == sizeof (Elf64_Mips_External_Rela)) mips_elf64_swap_reloca_in (abfd, (Elf64_Mips_External_Rela *) native_relocs, &rela); else { Elf64_Mips_Internal_Rel rel; mips_elf64_swap_reloc_in (abfd, (Elf64_Mips_External_Rel *) native_relocs, &rel); rela.r_offset = rel.r_offset; rela.r_sym = rel.r_sym; rela.r_ssym = rel.r_ssym; rela.r_type3 = rel.r_type3; rela.r_type2 = rel.r_type2; rela.r_type = rel.r_type; rela.r_addend = 0; } /* Each entry represents up to three actual relocations. */ used_sym = false; used_ssym = false; for (ir = 0; ir < 3; ir++) { enum elf_mips_reloc_type type; switch (ir) { default: abort (); case 0: type = (enum elf_mips_reloc_type) rela.r_type; break; case 1: type = (enum elf_mips_reloc_type) rela.r_type2; break; case 2: type = (enum elf_mips_reloc_type) rela.r_type3; break; } if (type == R_MIPS_NONE) { /* There are no more relocations in this entry. If this is the first entry, we need to generate a dummy relocation so that the generic linker knows that there has been a break in the sequence of relocations applying to a particular address. */ if (ir == 0) { relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) relent->address = rela.r_offset; else relent->address = rela.r_offset - asect->vma; relent->addend = 0; relent->howto = &howto_table[(int) R_MIPS_NONE]; ++relent; } break; } /* Some types require symbols, whereas some do not. */ switch (type) { case R_MIPS_NONE: case R_MIPS_LITERAL: case R_MIPS_INSERT_A: case R_MIPS_INSERT_B: case R_MIPS_DELETE: relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; break; default: if (! used_sym) { if (rela.r_sym == 0) relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; else { asymbol **ps, *s; ps = symbols + rela.r_sym - 1; s = *ps; if ((s->flags & BSF_SECTION_SYM) == 0) relent->sym_ptr_ptr = ps; else relent->sym_ptr_ptr = s->section->symbol_ptr_ptr; } used_sym = true; } else if (! used_ssym) { switch (rela.r_ssym) { case RSS_UNDEF: relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; break; case RSS_GP: case RSS_GP0: case RSS_LOC: /* FIXME: I think these need to be handled using special howto structures. */ BFD_ASSERT (0); break; default: BFD_ASSERT (0); break; } used_ssym = true; } else relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; break; } /* The address of an ELF reloc is section relative for an object file, and absolute for an executable file or shared library. The address of a BFD reloc is always section relative. */ if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) relent->address = rela.r_offset; else relent->address = rela.r_offset - asect->vma; relent->addend = rela.r_addend; relent->howto = &howto_table[(int) type]; ++relent; } } asect->reloc_count += relent - relents; if (allocated != NULL) free (allocated); return true; error_return: if (allocated != NULL) free (allocated); return false; } /* Read the relocations. On Irix 6, there can be two reloc sections associated with a single data section. */ static boolean mips_elf64_slurp_reloc_table (abfd, asect, symbols, dynamic) bfd *abfd; asection *asect; asymbol **symbols; boolean dynamic; { bfd_size_type amt; struct bfd_elf_section_data * const d = elf_section_data (asect); if (dynamic) { bfd_set_error (bfd_error_invalid_operation); return false; } if (asect->relocation != NULL || (asect->flags & SEC_RELOC) == 0 || asect->reloc_count == 0) return true; /* Allocate space for 3 arelent structures for each Rel structure. */ amt = asect->reloc_count; amt *= 3 * sizeof (arelent); asect->relocation = (arelent *) bfd_alloc (abfd, amt); if (asect->relocation == NULL) return false; /* The slurp_one_reloc_table routine increments reloc_count. */ asect->reloc_count = 0; if (! mips_elf64_slurp_one_reloc_table (abfd, asect, symbols, &d->rel_hdr)) return false; if (d->rel_hdr2 != NULL) { if (! mips_elf64_slurp_one_reloc_table (abfd, asect, symbols, d->rel_hdr2)) return false; } return true; } /* Write out the relocations. */ static void mips_elf64_write_relocs (abfd, sec, data) bfd *abfd; asection *sec; PTR data; { boolean *failedp = (boolean *) data; int count; Elf_Internal_Shdr *rel_hdr; unsigned int idx; /* If we have already failed, don't do anything. */ if (*failedp) return; if ((sec->flags & SEC_RELOC) == 0) return; /* The linker backend writes the relocs out itself, and sets the reloc_count field to zero to inhibit writing them here. Also, sometimes the SEC_RELOC flag gets set even when there aren't any relocs. */ if (sec->reloc_count == 0) return; /* We can combine up to three relocs that refer to the same address if the latter relocs have no associated symbol. */ count = 0; for (idx = 0; idx < sec->reloc_count; idx++) { bfd_vma addr; unsigned int i; ++count; addr = sec->orelocation[idx]->address; for (i = 0; i < 2; i++) { arelent *r; if (idx + 1 >= sec->reloc_count) break; r = sec->orelocation[idx + 1]; if (r->address != addr || ! bfd_is_abs_section ((*r->sym_ptr_ptr)->section) || (*r->sym_ptr_ptr)->value != 0) break; /* We can merge the reloc at IDX + 1 with the reloc at IDX. */ ++idx; } } rel_hdr = &elf_section_data (sec)->rel_hdr; /* Do the actual relocation. */ if (rel_hdr->sh_entsize == sizeof(Elf64_Mips_External_Rel)) mips_elf64_write_rel (abfd, sec, rel_hdr, &count, data); else if (rel_hdr->sh_entsize == sizeof(Elf64_Mips_External_Rela)) mips_elf64_write_rela (abfd, sec, rel_hdr, &count, data); else BFD_ASSERT (0); } static void mips_elf64_write_rel (abfd, sec, rel_hdr, count, data) bfd *abfd; asection *sec; Elf_Internal_Shdr *rel_hdr; int *count; PTR data; { boolean *failedp = (boolean *) data; Elf64_Mips_External_Rel *ext_rel; unsigned int idx; asymbol *last_sym = 0; int last_sym_idx = 0; rel_hdr->sh_size = (bfd_vma)(rel_hdr->sh_entsize * *count); rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size); if (rel_hdr->contents == NULL) { *failedp = true; return; } ext_rel = (Elf64_Mips_External_Rel *) rel_hdr->contents; for (idx = 0; idx < sec->reloc_count; idx++, ext_rel++) { arelent *ptr; Elf64_Mips_Internal_Rel int_rel; asymbol *sym; int n; unsigned int i; ptr = sec->orelocation[idx]; /* The address of an ELF reloc is section relative for an object file, and absolute for an executable file or shared library. The address of a BFD reloc is always section relative. */ if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) int_rel.r_offset = ptr->address; else int_rel.r_offset = ptr->address + sec->vma; sym = *ptr->sym_ptr_ptr; if (sym == last_sym) n = last_sym_idx; else { last_sym = sym; n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym); if (n < 0) { *failedp = true; return; } last_sym_idx = n; } int_rel.r_sym = n; int_rel.r_ssym = RSS_UNDEF; if ((*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec && ! _bfd_elf_validate_reloc (abfd, ptr)) { *failedp = true; return; } int_rel.r_type = ptr->howto->type; int_rel.r_type2 = (int) R_MIPS_NONE; int_rel.r_type3 = (int) R_MIPS_NONE; for (i = 0; i < 2; i++) { arelent *r; if (idx + 1 >= sec->reloc_count) break; r = sec->orelocation[idx + 1]; if (r->address != ptr->address || ! bfd_is_abs_section ((*r->sym_ptr_ptr)->section) || (*r->sym_ptr_ptr)->value != 0) break; /* We can merge the reloc at IDX + 1 with the reloc at IDX. */ if (i == 0) int_rel.r_type2 = r->howto->type; else int_rel.r_type3 = r->howto->type; ++idx; } mips_elf64_swap_reloc_out (abfd, &int_rel, ext_rel); } BFD_ASSERT (ext_rel - (Elf64_Mips_External_Rel *) rel_hdr->contents == *count); } static void mips_elf64_write_rela (abfd, sec, rela_hdr, count, data) bfd *abfd; asection *sec; Elf_Internal_Shdr *rela_hdr; int *count; PTR data; { boolean *failedp = (boolean *) data; Elf64_Mips_External_Rela *ext_rela; unsigned int idx; asymbol *last_sym = 0; int last_sym_idx = 0; rela_hdr->sh_size = (bfd_vma)(rela_hdr->sh_entsize * *count); rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size); if (rela_hdr->contents == NULL) { *failedp = true; return; } ext_rela = (Elf64_Mips_External_Rela *) rela_hdr->contents; for (idx = 0; idx < sec->reloc_count; idx++, ext_rela++) { arelent *ptr; Elf64_Mips_Internal_Rela int_rela; asymbol *sym; int n; unsigned int i; ptr = sec->orelocation[idx]; /* The address of an ELF reloc is section relative for an object file, and absolute for an executable file or shared library. The address of a BFD reloc is always section relative. */ if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) int_rela.r_offset = ptr->address; else int_rela.r_offset = ptr->address + sec->vma; sym = *ptr->sym_ptr_ptr; if (sym == last_sym) n = last_sym_idx; else { last_sym = sym; n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym); if (n < 0) { *failedp = true; return; } last_sym_idx = n; } int_rela.r_sym = n; int_rela.r_addend = ptr->addend; int_rela.r_ssym = RSS_UNDEF; if ((*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec && ! _bfd_elf_validate_reloc (abfd, ptr)) { *failedp = true; return; } int_rela.r_type = ptr->howto->type; int_rela.r_type2 = (int) R_MIPS_NONE; int_rela.r_type3 = (int) R_MIPS_NONE; for (i = 0; i < 2; i++) { arelent *r; if (idx + 1 >= sec->reloc_count) break; r = sec->orelocation[idx + 1]; if (r->address != ptr->address || ! bfd_is_abs_section ((*r->sym_ptr_ptr)->section) || (*r->sym_ptr_ptr)->value != 0) break; /* We can merge the reloc at IDX + 1 with the reloc at IDX. */ if (i == 0) int_rela.r_type2 = r->howto->type; else int_rela.r_type3 = r->howto->type; ++idx; } mips_elf64_swap_reloca_out (abfd, &int_rela, ext_rela); } BFD_ASSERT (ext_rela - (Elf64_Mips_External_Rela *) rela_hdr->contents == *count); } /* This structure is used to hold .got information when linking. It is stored in the tdata field of the bfd_elf_section_data structure. */ struct mips_elf64_got_info { /* The global symbol in the GOT with the lowest index in the dynamic symbol table. */ struct elf_link_hash_entry *global_gotsym; /* The number of global .got entries. */ unsigned int global_gotno; /* The number of local .got entries. */ unsigned int local_gotno; /* The number of local .got entries we have used. */ unsigned int assigned_gotno; }; /* The MIPS ELF64 linker needs additional information for each symbol in the global hash table. */ struct mips_elf64_link_hash_entry { struct elf_link_hash_entry root; /* External symbol information. */ EXTR esym; /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against this symbol. */ unsigned int possibly_dynamic_relocs; /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against a readonly section. */ boolean readonly_reloc; /* The index of the first dynamic relocation (in the .rel.dyn section) against this symbol. */ unsigned int min_dyn_reloc_index; }; /* MIPS ELF64 linker hash table. */ struct mips_elf64_link_hash_table { struct elf_link_hash_table root; }; /* Look up an entry in a MIPS ELF64 linker hash table. */ #define mips_elf64_link_hash_lookup(table, string, create, copy, follow) \ ((struct mips_elf64_link_hash_entry *) \ elf_link_hash_lookup (&(table)->root, (string), (create), \ (copy), (follow))) /* Traverse a MIPS ELF linker hash table. */ #define mips_elf64_link_hash_traverse(table, func, info) \ (elf_link_hash_traverse \ (&(table)->root, \ (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \ (info))) /* Get the MIPS ELF64 linker hash table from a link_info structure. */ #define mips_elf64_hash_table(p) \ ((struct mips_elf64_link_hash_table *) ((p)->hash)) /* Create an entry in a MIPS ELF64 linker hash table. */ static struct bfd_hash_entry * mips_elf64_link_hash_newfunc (entry, table, string) struct bfd_hash_entry *entry; struct bfd_hash_table *table; const char *string; { struct mips_elf64_link_hash_entry *ret = (struct mips_elf64_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == (struct mips_elf64_link_hash_entry *) NULL) ret = ((struct mips_elf64_link_hash_entry *) bfd_hash_allocate (table, sizeof (struct mips_elf64_link_hash_entry))); if (ret == (struct mips_elf64_link_hash_entry *) NULL) return (struct bfd_hash_entry *) ret; /* Call the allocation method of the superclass. */ ret = ((struct mips_elf64_link_hash_entry *) _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret != (struct mips_elf64_link_hash_entry *) NULL) { /* Set local fields. */ memset (&ret->esym, 0, sizeof (EXTR)); /* We use -2 as a marker to indicate that the information has not been set. -1 means there is no associated ifd. */ ret->esym.ifd = -2; ret->possibly_dynamic_relocs = 0; ret->readonly_reloc = false; ret->min_dyn_reloc_index = 0; } return (struct bfd_hash_entry *) ret; } /* Create a MIPS ELF64 linker hash table. */ struct bfd_link_hash_table * mips_elf64_link_hash_table_create (abfd) bfd *abfd; { struct mips_elf64_link_hash_table *ret; ret = ((struct mips_elf64_link_hash_table *) bfd_alloc (abfd, sizeof (struct mips_elf64_link_hash_table))); if (ret == (struct mips_elf64_link_hash_table *) NULL) return NULL; if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, mips_elf64_link_hash_newfunc)) { bfd_release (abfd, ret); return NULL; } return &ret->root.root; } /* Returns the offset for the entry at the INDEXth position in the GOT. */ static bfd_vma mips_elf64_got_offset_from_index (dynobj, output_bfd, index) bfd *dynobj; bfd *output_bfd; bfd_vma index; { asection *sgot; bfd_vma gp; sgot = bfd_get_section_by_name (dynobj, ".got"); gp = _bfd_get_gp_value (output_bfd); return (sgot->output_section->vma + sgot->output_offset + index - gp); } /* Returns the GOT information associated with the link indicated by INFO. If SGOTP is non-NULL, it is filled in with the GOT section. */ static struct mips_elf64_got_info * _mips_elf64_got_info (abfd, sgotp) bfd *abfd; asection **sgotp; { asection *sgot; struct mips_elf64_got_info *g; sgot = bfd_get_section_by_name (abfd, ".got"); BFD_ASSERT (sgot != NULL); BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_elf64_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); if (sgotp) *sgotp = sgot; return g; } /* Sign-extend VALUE, which has the indicated number of BITS. */ static bfd_vma mips_elf64_sign_extend (value, bits) bfd_vma value; int bits; { if (value & ((bfd_vma)1 << (bits - 1))) /* VALUE is negative. */ value |= ((bfd_vma) - 1) << bits; return value; } /* Return non-zero if the indicated VALUE has overflowed the maximum range expressable by a signed number with the indicated number of BITS. */ static boolean mips_elf64_overflow_p (value, bits) bfd_vma value; int bits; { bfd_signed_vma svalue = (bfd_signed_vma) value; if (svalue > (1 << (bits - 1)) - 1) /* The value is too big. */ return true; else if (svalue < -(1 << (bits - 1))) /* The value is too small. */ return true; /* All is well. */ return false; } /* Returns the GOT index for the global symbol indicated by H. */ static bfd_vma mips_elf64_global_got_index (abfd, h) bfd *abfd; struct elf_link_hash_entry *h; { bfd_vma index; asection *sgot; struct mips_elf64_got_info *g; g = _mips_elf64_got_info (abfd, &sgot); /* Once we determine the global GOT entry with the lowest dynamic symbol table index, we must put all dynamic symbols with greater indices into the GOT. That makes it easy to calculate the GOT offset. */ BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx); index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno) * (get_elf_backend_data (abfd)->s->arch_size / 8)); BFD_ASSERT (index < sgot->_raw_size); return index; } struct mips_elf64_hash_sort_data { /* The symbol in the global GOT with the lowest dynamic symbol table index. */ struct elf_link_hash_entry *low; /* The least dynamic symbol table index corresponding to a symbol with a GOT entry. */ long min_got_dynindx; /* The greatest dynamic symbol table index not corresponding to a symbol without a GOT entry. */ long max_non_got_dynindx; }; /* If H needs a GOT entry, assign it the highest available dynamic index. Otherwise, assign it the lowest available dynamic index. */ static boolean mips_elf64_sort_hash_table_f (h, data) struct mips_elf64_link_hash_entry *h; PTR data; { struct mips_elf64_hash_sort_data *hsd = (struct mips_elf64_hash_sort_data *) data; /* Symbols without dynamic symbol table entries aren't interesting at all. */ if (h->root.dynindx == -1) return true; if (h->root.got.offset != 0) h->root.dynindx = hsd->max_non_got_dynindx++; else { h->root.dynindx = --hsd->min_got_dynindx; hsd->low = (struct elf_link_hash_entry *) h; } return true; } /* Sort the dynamic symbol table so that symbols that need GOT entries appear towards the end. This reduces the amount of GOT space required. MAX_LOCAL is used to set the number of local symbols known to be in the dynamic symbol table. During mips_elf64_size_dynamic_sections, this value is 1. Afterward, the section symbols are added and the count is higher. */ static boolean mips_elf64_sort_hash_table (info, max_local) struct bfd_link_info *info; unsigned long max_local; { struct mips_elf64_hash_sort_data hsd; struct mips_elf64_got_info *g; bfd *dynobj; dynobj = elf_hash_table (info)->dynobj; hsd.low = NULL; hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount; hsd.max_non_got_dynindx = max_local; mips_elf64_link_hash_traverse (((struct mips_elf64_link_hash_table *) elf_hash_table (info)), mips_elf64_sort_hash_table_f, &hsd); /* There shoud have been enough room in the symbol table to accomodate both the GOT and non-GOT symbols. */ BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); /* Now we know which dynamic symbol has the lowest dynamic symbol table index in the GOT. */ g = _mips_elf64_got_info (dynobj, NULL); g->global_gotsym = hsd.low; return true; } #if 0 /* Swap in an MSYM entry. */ static void mips_elf64_swap_msym_in (abfd, ex, in) bfd *abfd; const Elf32_External_Msym *ex; Elf32_Internal_Msym *in; { in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value); in->ms_info = bfd_h_get_32 (abfd, ex->ms_info); } #endif /* Swap out an MSYM entry. */ static void mips_elf64_swap_msym_out (abfd, in, ex) bfd *abfd; const Elf32_Internal_Msym *in; Elf32_External_Msym *ex; { bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value); bfd_h_put_32 (abfd, in->ms_info, ex->ms_info); } /* Create a local GOT entry for VALUE. Return the index of the entry, or -1 if it could not be created. */ static bfd_vma mips_elf64_create_local_got_entry (abfd, g, sgot, value) bfd *abfd; struct mips_elf64_got_info *g; asection *sgot; bfd_vma value; { CONST bfd_vma got_size = get_elf_backend_data (abfd)->s->arch_size / 8; if (g->assigned_gotno >= g->local_gotno) { /* We didn't allocate enough space in the GOT. */ (*_bfd_error_handler) (_("not enough GOT space for local GOT entries")); bfd_set_error (bfd_error_bad_value); return (bfd_vma) -1; } bfd_put_64 (abfd, value, (sgot->contents + got_size * g->assigned_gotno)); return got_size * g->assigned_gotno++; } /* Returns the GOT offset at which the indicated address can be found. If there is not yet a GOT entry for this value, create one. Returns -1 if no satisfactory GOT offset can be found. */ static bfd_vma mips_elf64_local_got_index (abfd, info, value) bfd *abfd; struct bfd_link_info *info; bfd_vma value; { CONST bfd_vma got_size = get_elf_backend_data (abfd)->s->arch_size / 8; asection *sgot; struct mips_elf64_got_info *g; bfd_byte *entry; g = _mips_elf64_got_info (elf_hash_table (info)->dynobj, &sgot); /* Look to see if we already have an appropriate entry. */ for (entry = (sgot->contents + got_size * MIPS_RESERVED_GOTNO); entry != sgot->contents + got_size * g->assigned_gotno; entry += got_size) { bfd_vma address = bfd_get_64 (abfd, entry); if (address == value) return entry - sgot->contents; } return mips_elf64_create_local_got_entry (abfd, g, sgot, value); } /* Find a GOT entry that is within 32KB of the VALUE. These entries are supposed to be placed at small offsets in the GOT, i.e., within 32KB of GP. Return the index into the GOT for this page, and store the offset from this entry to the desired address in OFFSETP, if it is non-NULL. */ static bfd_vma mips_elf64_got_page (abfd, info, value, offsetp) bfd *abfd; struct bfd_link_info *info; bfd_vma value; bfd_vma *offsetp; { CONST bfd_vma got_size = get_elf_backend_data (abfd)->s->arch_size / 8; asection *sgot; struct mips_elf64_got_info *g; bfd_byte *entry; bfd_byte *last_entry; bfd_vma index = 0; bfd_vma address; g = _mips_elf64_got_info (elf_hash_table (info)->dynobj, &sgot); /* Look to see if we aleady have an appropriate entry. */ last_entry = sgot->contents + got_size * g->assigned_gotno; for (entry = (sgot->contents + got_size * MIPS_RESERVED_GOTNO); entry != last_entry; entry += got_size) { address = bfd_get_64 (abfd, entry); if (!mips_elf64_overflow_p (value - address, 16)) { /* This entry will serve as the page pointer. We can add a 16-bit number to it to get the actual address. */ index = entry - sgot->contents; break; } } /* If we didn't have an appropriate entry, we create one now. */ if (entry == last_entry) index = mips_elf64_create_local_got_entry (abfd, g, sgot, value); if (offsetp) { address = bfd_get_64 (abfd, entry); *offsetp = value - address; } return index; } /* Find a GOT entry whose higher-order 16 bits are the same as those for value. Return the index into the GOT for this entry. */ static bfd_vma mips_elf64_got16_entry (abfd, info, value, external) bfd *abfd; struct bfd_link_info *info; bfd_vma value; boolean external; { CONST bfd_vma got_size = get_elf_backend_data (abfd)->s->arch_size / 8; asection *sgot; struct mips_elf64_got_info *g; bfd_byte *entry; bfd_byte *last_entry; bfd_vma index = 0; bfd_vma address; if (! external) { /* Although the ABI says that it is "the high-order 16 bits" that we want, it is really the %high value. The complete value is calculated with a `addiu' of a LO16 relocation, just as with a HI16/LO16 pair. */ value = mips_elf64_high (value) << 16; } g = _mips_elf64_got_info (elf_hash_table (info)->dynobj, &sgot); /* Look to see if we already have an appropriate entry. */ last_entry = sgot->contents + got_size * g->assigned_gotno; for (entry = (sgot->contents + got_size * MIPS_RESERVED_GOTNO); entry != last_entry; entry += got_size) { address = bfd_get_64 (abfd, entry); if (address == value) { /* This entry has the right high-order 16 bits, and the low-order 16 bits are set to zero. */ index = entry - sgot->contents; break; } } /* If we didn't have an appropriate entry, we create one now. */ if (entry == last_entry) index = mips_elf64_create_local_got_entry (abfd, g, sgot, value); return index; } /* Return whether a relocation is against a local symbol. */ static boolean mips_elf64_local_relocation_p (input_bfd, relocation, local_sections, check_forced) bfd *input_bfd; const Elf_Internal_Rela *relocation; asection **local_sections; boolean check_forced; { unsigned long r_symndx; Elf_Internal_Shdr *symtab_hdr; struct mips_elf64_link_hash_entry* h; size_t extsymoff; r_symndx = ELF64_R_SYM (relocation->r_info); symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; if (r_symndx < extsymoff) return true; if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) return true; if (check_forced) { /* Look up the hash table to check whether the symbol was forced local. */ h = (struct mips_elf64_link_hash_entry *) elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; /* Find the real hash-table entry for this symbol. */ while (h->root.root.type == bfd_link_hash_indirect || h->root.root.type == bfd_link_hash_warning) h = (struct mips_elf64_link_hash_entry *) h->root.root.u.i.link; if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) return true; } return false; } /* Returns the first relocation of type r_type found, beginning with RELOCATION. RELEND is one-past-the-end of the relocation table. */ static const Elf_Internal_Rela * mips_elf64_next_relocation (r_type, relocation, relend) unsigned int r_type; const Elf_Internal_Rela *relocation; const Elf_Internal_Rela *relend; { /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be immediately following. However, for the IRIX6 ABI, the next relocation may be a composed relocation consisting of several relocations for the same address. In that case, the R_MIPS_LO16 relocation may occur as one of these. We permit a similar extension in general, as that is useful for GCC. */ while (relocation < relend) { if (ELF64_MIPS_R_TYPE (relocation->r_info) == r_type) return relocation; ++relocation; } /* We didn't find it. */ bfd_set_error (bfd_error_bad_value); return NULL; } /* Create a rel.dyn relocation for the dynamic linker to resolve. REL is the original relocation, which is now being transformed into a dynamic relocation. The ADDENDP is adjusted if necessary; the caller should store the result in place of the original addend. */ static boolean mips_elf64_create_dynamic_relocation (output_bfd, info, rel, h, sec, symbol, addendp, input_section, local_p) bfd *output_bfd; struct bfd_link_info *info; const Elf_Internal_Rela *rel; struct mips_elf64_link_hash_entry *h; asection *sec; bfd_vma symbol; bfd_vma *addendp; asection *input_section; boolean local_p; { Elf_Internal_Rel outrel[3]; boolean skip; asection *sreloc; bfd *dynobj; int r_type; r_type = ELF64_MIPS_R_TYPE (rel->r_info); dynobj = elf_hash_table (info)->dynobj; sreloc = bfd_get_section_by_name (dynobj, ".rel.dyn"); BFD_ASSERT (sreloc != NULL); BFD_ASSERT (sreloc->contents != NULL); skip = false; /* We begin by assuming that the offset for the dynamic relocation is the same as for the original relocation. We'll adjust this later to reflect the correct output offsets. */ if (elf_section_data (input_section)->stab_info == NULL) { outrel[0].r_offset = rel[0].r_offset; outrel[1].r_offset = rel[1].r_offset; outrel[2].r_offset = rel[2].r_offset; } else { /* Except that in a stab section things are more complex. Because we compress stab information, the offset given in the relocation may not be the one we want; we must let the stabs machinery tell us the offset. */ outrel[0].r_offset = (_bfd_stab_section_offset (output_bfd, &elf_hash_table (info)->stab_info, input_section, &elf_section_data (input_section)->stab_info, rel->r_offset)); outrel[1].r_offset = outrel[0].r_offset; outrel[2].r_offset = outrel[0].r_offset; /* If we didn't need the relocation at all, this value will be -1. */ if (outrel[0].r_offset == (bfd_vma) -1) skip = true; } /* If we've decided to skip this relocation, just output an empty record. Note that R_MIPS_NONE == 0, so that this call to memset is a way of setting R_TYPE to R_MIPS_NONE. */ if (skip) memset (outrel, 0, sizeof (Elf_Internal_Rel) * 3); else { long indx; bfd_vma section_offset; /* We must now calculate the dynamic symbol table index to use in the relocation. */ if (h != NULL && (! info->symbolic || (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) { indx = h->root.dynindx; /* h->root.dynindx may be -1 if this symbol was marked to become local. */ if (indx == -1) indx = 0; } else { if (sec != NULL && bfd_is_abs_section (sec)) indx = 0; else if (sec == NULL || sec->owner == NULL) { bfd_set_error (bfd_error_bad_value); return false; } else { indx = elf_section_data (sec->output_section)->dynindx; if (indx == 0) abort (); } /* Figure out how far the target of the relocation is from the beginning of its section. */ section_offset = symbol - sec->output_section->vma; /* The relocation we're building is section-relative. Therefore, the original addend must be adjusted by the section offset. */ *addendp += symbol - sec->output_section->vma; /* Now, the relocation is just against the section. */ symbol = sec->output_section->vma; } /* If the relocation is against a local symbol was previously an absolute relocation, we must adjust it by the value we give it in the dynamic symbol table. */ if (local_p && r_type != R_MIPS_REL32) *addendp += symbol; /* The relocation is always an REL32 relocation because we don't know where the shared library will wind up at load-time. */ outrel[0].r_info = ELF64_R_INFO (indx, R_MIPS_REL32); /* Adjust the output offset of the relocation to reference the correct location in the output file. */ outrel[0].r_offset += (input_section->output_section->vma + input_section->output_offset); outrel[1].r_offset += (input_section->output_section->vma + input_section->output_offset); outrel[2].r_offset += (input_section->output_section->vma + input_section->output_offset); } /* Put the relocation back out. */ mips_elf64_be_swap_reloc_out (output_bfd, outrel, (sreloc->contents + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); /* Record the index of the first relocation referencing H. This information is later emitted in the .msym section. */ if (h != NULL && (h->min_dyn_reloc_index == 0 || sreloc->reloc_count < h->min_dyn_reloc_index)) h->min_dyn_reloc_index = sreloc->reloc_count; /* We've now added another relocation. */ ++sreloc->reloc_count; /* Make sure the output section is writable. The dynamic linker will be writing to it. */ elf_section_data (input_section->output_section)->this_hdr.sh_flags |= SHF_WRITE; return true; } /* Calculate the value produced by the RELOCATION (which comes from the INPUT_BFD). The ADDEND is the addend to use for this RELOCATION; RELOCATION->R_ADDEND is ignored. The result of the relocation calculation is stored in VALUEP. This function returns bfd_reloc_continue if the caller need take no further action regarding this relocation, bfd_reloc_notsupported if something goes dramatically wrong, bfd_reloc_overflow if an overflow occurs, and bfd_reloc_ok to indicate success. */ static bfd_reloc_status_type mips_elf64_calculate_relocation (abfd, input_bfd, input_section, info, relocation, addend, howto, local_syms, local_sections, valuep, namep) bfd *abfd; bfd *input_bfd; asection *input_section; struct bfd_link_info *info; const Elf_Internal_Rela *relocation; bfd_vma addend; reloc_howto_type *howto; Elf_Internal_Sym *local_syms; asection **local_sections; bfd_vma *valuep; const char **namep; { /* The eventual value we will return. */ bfd_vma value; /* The address of the symbol against which the relocation is occurring. */ bfd_vma symbol = 0; /* The final GP value to be used for the relocatable, executable, or shared object file being produced. */ bfd_vma gp = (bfd_vma) - 1; /* The place (section offset or address) of the storage unit being relocated. */ bfd_vma p; /* The value of GP used to create the relocatable object. */ bfd_vma gp0 = (bfd_vma) - 1; /* The offset into the global offset table at which the address of the relocation entry symbol, adjusted by the addend, resides during execution. */ bfd_vma g = (bfd_vma) - 1; /* The section in which the symbol referenced by the relocation is located. */ asection *sec = NULL; struct mips_elf64_link_hash_entry* h = NULL; /* True if the symbol referred to by this relocation is a local symbol. */ boolean local_p; Elf_Internal_Shdr *symtab_hdr; size_t extsymoff; unsigned long r_symndx; int r_type; /* True if overflow occurred during the calculation of the relocation value. */ boolean overflowed_p; /* Parse the relocation. */ r_symndx = ELF64_R_SYM (relocation->r_info); r_type = ELF64_MIPS_R_TYPE (relocation->r_info); p = (input_section->output_section->vma + input_section->output_offset + relocation->r_offset); /* Assume that there will be no overflow. */ overflowed_p = false; /* Figure out whether or not the symbol is local, and get the offset used in the array of hash table entries. */ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; local_p = mips_elf64_local_relocation_p (input_bfd, relocation, local_sections, false); if (! elf_bad_symtab (input_bfd)) extsymoff = symtab_hdr->sh_info; else { /* The symbol table does not follow the rule that local symbols must come before globals. */ extsymoff = 0; } /* Figure out the value of the symbol. */ if (local_p) { Elf_Internal_Sym *sym; sym = local_syms + r_symndx; sec = local_sections[r_symndx]; symbol = sec->output_section->vma + sec->output_offset; if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) symbol += sym->st_value; /* Record the name of this symbol, for our caller. */ *namep = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (*namep == '\0') *namep = bfd_section_name (input_bfd, sec); } else { /* For global symbols we look up the symbol in the hash-table. */ h = ((struct mips_elf64_link_hash_entry *) elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); /* Find the real hash-table entry for this symbol. */ while (h->root.root.type == bfd_link_hash_indirect || h->root.root.type == bfd_link_hash_warning) h = (struct mips_elf64_link_hash_entry *) h->root.root.u.i.link; /* Record the name of this symbol, for our caller. */ *namep = h->root.root.root.string; /* If this symbol is defined, calculate its address. */ if ((h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak) && h->root.root.u.def.section) { sec = h->root.root.u.def.section; if (sec->output_section) symbol = (h->root.root.u.def.value + sec->output_section->vma + sec->output_offset); else symbol = h->root.root.u.def.value; } else if (h->root.root.type == bfd_link_hash_undefweak) /* We allow relocations against undefined weak symbols, giving it the value zero, so that you can undefined weak functions and check to see if they exist by looking at their addresses. */ symbol = 0; else if (info->shared && !info->symbolic && !info->no_undefined && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) symbol = 0; else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 || strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0) { /* If this is a dynamic link, we should have created a _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol in in mips_elf64_create_dynamic_sections. Otherwise, we should define the symbol with a value of 0. FIXME: It should probably get into the symbol table somehow as well. */ BFD_ASSERT (! info->shared); BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); symbol = 0; } else { if (! ((*info->callbacks->undefined_symbol) (info, h->root.root.root.string, input_bfd, input_section, relocation->r_offset, (!info->shared || info->no_undefined || ELF_ST_VISIBILITY (h->root.other))))) return bfd_reloc_undefined; symbol = 0; } } /* If we haven't already determined the GOT offset, or the GP value, and we're going to need it, get it now. */ switch (r_type) { case R_MIPS_CALL16: case R_MIPS_GOT16: case R_MIPS_GOT_DISP: case R_MIPS_GOT_HI16: case R_MIPS_CALL_HI16: case R_MIPS_GOT_LO16: case R_MIPS_CALL_LO16: /* Find the index into the GOT where this value is located. */ if (!local_p) { BFD_ASSERT (addend == 0); g = mips_elf64_global_got_index (elf_hash_table (info)->dynobj, (struct elf_link_hash_entry*) h); if (! elf_hash_table(info)->dynamic_sections_created || (info->shared && (info->symbolic || h->root.dynindx == -1) && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) { /* This is a static link or a -Bsymbolic link. The symbol is defined locally, or was forced to be local. We must initialize this entry in the GOT. */ bfd *tmpbfd = elf_hash_table (info)->dynobj; asection *sgot = bfd_get_section_by_name (tmpbfd, ".got"); bfd_put_64 (tmpbfd, symbol + addend, sgot->contents + g); } } else if (r_type == R_MIPS_GOT16) /* There's no need to create a local GOT entry here; the calculation for a local GOT16 entry does not involve G. */ break; else { g = mips_elf64_local_got_index (abfd, info, symbol + addend); if (g == (bfd_vma) -1) return false; } /* Convert GOT indices to actual offsets. */ g = mips_elf64_got_offset_from_index (elf_hash_table (info)->dynobj, abfd, g); break; case R_MIPS_HI16: case R_MIPS_LO16: case R_MIPS_GPREL16: case R_MIPS_GPREL32: case R_MIPS_LITERAL: gp0 = _bfd_get_gp_value (input_bfd); gp = _bfd_get_gp_value (abfd); break; default: break; } /* Figure out what kind of relocation is being performed. */ switch (r_type) { case R_MIPS_NONE: return bfd_reloc_continue; case R_MIPS_16: value = symbol + mips_elf64_sign_extend (addend, 16); overflowed_p = mips_elf64_overflow_p (value, 16); break; case R_MIPS_32: case R_MIPS_REL32: case R_MIPS_64: if ((info->shared || (elf_hash_table (info)->dynamic_sections_created && h != NULL && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))) && (input_section->flags & SEC_ALLOC) != 0) { /* If we're creating a shared library, or this relocation is against a symbol in a shared library, then we can't know where the symbol will end up. So, we create a relocation record in the output, and leave the job up to the dynamic linker. */ value = addend; if (!mips_elf64_create_dynamic_relocation (abfd, info, relocation, h, sec, symbol, &value, input_section, local_p)) return false; } else { if (r_type != R_MIPS_REL32) value = symbol + addend; else value = addend; } value &= howto->dst_mask; break; case R_MIPS_PC32: case R_MIPS_PC64: case R_MIPS_GNU_REL_LO16: value = symbol + addend - p; value &= howto->dst_mask; break; case R_MIPS_GNU_REL16_S2: value = symbol + mips_elf64_sign_extend (addend << 2, 18) - p; overflowed_p = mips_elf64_overflow_p (value, 18); value = (value >> 2) & howto->dst_mask; break; case R_MIPS_GNU_REL_HI16: value = mips_elf64_high (addend + symbol - p); value &= howto->dst_mask; break; case R_MIPS_26: if (local_p) value = (((addend << 2) | (p & 0xf0000000)) + symbol) >> 2; else value = (mips_elf64_sign_extend (addend << 2, 28) + symbol) >> 2; value &= howto->dst_mask; break; case R_MIPS_HI16: value = mips_elf64_high (addend + symbol); value &= howto->dst_mask; break; case R_MIPS_LO16: value = (addend + symbol) & 0xffff; value &= howto->dst_mask; break; case R_MIPS_LITERAL: /* Because we don't merge literal sections, we can handle this just like R_MIPS_GPREL16. In the long run, we should merge shared literals, and then we will need to additional work here. */ /* Fall through. */ case R_MIPS_GPREL16: if (local_p) value = mips_elf64_sign_extend (addend, 16) + symbol + gp0 - gp; else value = mips_elf64_sign_extend (addend, 16) + symbol - gp; overflowed_p = mips_elf64_overflow_p (value, 16); break; case R_MIPS_PC16: value = mips_elf64_sign_extend (addend, 16) + symbol - p; overflowed_p = mips_elf64_overflow_p (value, 16); value = (bfd_vma) ((bfd_signed_vma) value / 4); break; case R_MIPS_GOT16: if (local_p) { boolean forced; /* The special case is when the symbol is forced to be local. We need the full address in the GOT since no R_MIPS_LO16 relocation follows. */ forced = ! mips_elf64_local_relocation_p (input_bfd, relocation, local_sections, false); value = mips_elf64_got16_entry (abfd, info, symbol + addend, forced); if (value == (bfd_vma) -1) return false; value = mips_elf64_got_offset_from_index (elf_hash_table (info)->dynobj, abfd, value); overflowed_p = mips_elf64_overflow_p (value, 16); break; } /* Fall through. */ case R_MIPS_CALL16: case R_MIPS_GOT_DISP: value = g; overflowed_p = mips_elf64_overflow_p (value, 16); break; case R_MIPS_GPREL32: value = (addend + symbol + gp0 - gp) & howto->dst_mask; break; case R_MIPS_GOT_HI16: case R_MIPS_CALL_HI16: /* We're allowed to handle these two relocations identically. The dynamic linker is allowed to handle the CALL relocations differently by creating a lazy evaluation stub. */ value = g; value = mips_elf64_high (value); value &= howto->dst_mask; break; case R_MIPS_GOT_LO16: case R_MIPS_CALL_LO16: value = g & howto->dst_mask; break; case R_MIPS_GOT_PAGE: value = mips_elf64_got_page (abfd, info, symbol + addend, NULL); if (value == (bfd_vma) -1) return false; value = mips_elf64_got_offset_from_index (elf_hash_table (info)->dynobj, abfd, value); overflowed_p = mips_elf64_overflow_p (value, 16); break; case R_MIPS_GOT_OFST: mips_elf64_got_page (abfd, info, symbol + addend, &value); overflowed_p = mips_elf64_overflow_p (value, 16); break; case R_MIPS_SUB: value = symbol - addend; value &= howto->dst_mask; break; case R_MIPS_HIGHER: value = mips_elf64_higher (addend + symbol); value &= howto->dst_mask; break; case R_MIPS_HIGHEST: value = mips_elf64_highest (addend + symbol); value &= howto->dst_mask; break; case R_MIPS_SCN_DISP: value = symbol + addend - sec->output_offset; value &= howto->dst_mask; break; case R_MIPS_PJUMP: case R_MIPS_JALR: /* Both of these may be ignored. R_MIPS_JALR is an optimization hint; we could improve performance by honoring that hint. */ return bfd_reloc_continue; case R_MIPS_GNU_VTINHERIT: case R_MIPS_GNU_VTENTRY: /* We don't do anything with these at present. */ return bfd_reloc_continue; default: /* An unrecognized relocation type. */ return bfd_reloc_notsupported; } /* Store the VALUE for our caller. */ *valuep = value; return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; } /* Obtain the field relocated by RELOCATION. */ static bfd_vma mips_elf64_obtain_contents (howto, relocation, input_bfd, contents) reloc_howto_type *howto; const Elf_Internal_Rela *relocation; bfd *input_bfd; bfd_byte *contents; { bfd_byte *location = contents + relocation->r_offset; /* Obtain the bytes. */ return bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location); } /* It has been determined that the result of the RELOCATION is the VALUE. Use HOWTO to place VALUE into the output file at the appropriate position. The SECTION is the section to which the relocation applies. Returns false if anything goes wrong. */ static boolean mips_elf64_perform_relocation (howto, relocation, value, abfd, contents) reloc_howto_type *howto; const Elf_Internal_Rela *relocation; bfd_vma value; bfd *abfd; bfd_byte *contents; { bfd_byte *location = contents + relocation->r_offset; bfd_vma x = mips_elf64_obtain_contents (howto, relocation, abfd, contents); /* Set the field. */ x = (x & ~howto->dst_mask) | (value & howto->dst_mask); /* Put the value into the output. */ bfd_put (8 * bfd_get_reloc_size (howto), abfd, x, location); return true; } /* Relocate a MIPS ELF64 section. */ static boolean mips_elf64_relocate_section (output_bfd, info, input_bfd, input_section, contents, relocs, local_syms, local_sections) bfd *output_bfd; struct bfd_link_info *info; bfd *input_bfd; asection *input_section; bfd_byte *contents; Elf_Internal_Rela *relocs; Elf_Internal_Sym *local_syms; asection **local_sections; { Elf_Internal_Rela *rel; const Elf_Internal_Rela *relend; bfd_vma addend = 0; boolean use_saved_addend_p = false; struct elf_backend_data *bed; bed = get_elf_backend_data (output_bfd); relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; for (rel = relocs; rel < relend; ++rel) { const char *name; bfd_vma value; reloc_howto_type *howto; /* True if the relocation is a RELA relocation, rather than a REL relocation. */ boolean rela_relocation_p = true; int r_type = ELF64_MIPS_R_TYPE (rel->r_info); /* Find the relocation howto for this relocation. */ howto = &mips_elf64_howto_table_rela[r_type]; if (!use_saved_addend_p) { Elf_Internal_Shdr *rel_hdr; /* If these relocations were originally of the REL variety, we must pull the addend out of the field that will be relocated. Otherwise, we simply use the contents of the RELA relocation. To determine which flavor or relocation this is, we depend on the fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */ rel_hdr = &elf_section_data (input_section)->rel_hdr; if ((size_t) (rel - relocs) >= (rel_hdr->sh_size / rel_hdr->sh_entsize * bed->s->int_rels_per_ext_rel)) rel_hdr = elf_section_data (input_section)->rel_hdr2; if (rel_hdr->sh_entsize == (get_elf_backend_data (input_bfd)->s->sizeof_rel)) { /* Note that this is a REL relocation. */ rela_relocation_p = false; /* Find the relocation howto for this relocation. */ howto = &mips_elf64_howto_table_rel[r_type]; /* Get the addend, which is stored in the input file. */ addend = mips_elf64_obtain_contents (howto, rel, input_bfd, contents); addend &= howto->src_mask; /* For some kinds of relocations, the ADDEND is a combination of the addend stored in two different relocations. */ if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GNU_REL_HI16 || (r_type == R_MIPS_GOT16 && mips_elf64_local_relocation_p (input_bfd, rel, local_sections, false))) { bfd_vma l; const Elf_Internal_Rela *lo16_relocation; reloc_howto_type *lo16_howto; int lo; /* The combined value is the sum of the HI16 addend, left-shifted by sixteen bits, and the LO16 addend, sign extended. (Usually, the code does a `lui' of the HI16 value, and then an `addiu' of the LO16 value.) Scan ahead to find a matching LO16 relocation. */ if (r_type == R_MIPS_GNU_REL_HI16) lo = R_MIPS_GNU_REL_LO16; else lo = R_MIPS_LO16; lo16_relocation = mips_elf64_next_relocation (lo, rel, relend); if (lo16_relocation == NULL) return false; /* Obtain the addend kept there. */ if (rela_relocation_p == false) lo16_howto = &mips_elf64_howto_table_rel[lo]; else lo16_howto = &mips_elf64_howto_table_rela[lo]; l = mips_elf64_obtain_contents (lo16_howto, lo16_relocation, input_bfd, contents); l &= lo16_howto->src_mask; l = mips_elf64_sign_extend (l, 16); addend <<= 16; /* Compute the combined addend. */ addend += l; } } else addend = rel->r_addend; } if (info->relocateable) { Elf_Internal_Sym *sym; unsigned long r_symndx; /* Since we're just relocating, all we need to do is copy the relocations back out to the object file, unless they're against a section symbol, in which case we need to adjust by the section offset, or unless they're GP relative in which case we need to adjust by the amount that we're adjusting GP in this relocateable object. */ if (!mips_elf64_local_relocation_p (input_bfd, rel, local_sections, false)) /* There's nothing to do for non-local relocations. */ continue; if (r_type == R_MIPS_GPREL16 || r_type == R_MIPS_GPREL32 || r_type == R_MIPS_LITERAL) addend -= (_bfd_get_gp_value (output_bfd) - _bfd_get_gp_value (input_bfd)); else if (r_type == R_MIPS_26 || r_type == R_MIPS_GNU_REL16_S2) /* The addend is stored without its two least significant bits (which are always zero.) In a non-relocateable link, calculate_relocation will do this shift; here, we must do it ourselves. */ addend <<= 2; r_symndx = ELF64_R_SYM (rel->r_info); sym = local_syms + r_symndx; if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) /* Adjust the addend appropriately. */ addend += local_sections[r_symndx]->output_offset; #if 0 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16, then we only want to write out the high-order 16 bits. The subsequent R_MIPS_LO16 will handle the low-order bits. */ if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16 || r_type == R_MIPS_GNU_REL_HI16) addend = mips_elf64_high (addend); else if (r_type == R_MIPS_HIGHER) addend = mips_elf64_higher (addend); else if (r_type == R_MIPS_HIGHEST) addend = mips_elf64_highest (addend); #endif /* If the relocation is for an R_MIPS_26 relocation, then the two low-order bits are not stored in the object file; they are implicitly zero. */ if (r_type == R_MIPS_26 || r_type == R_MIPS_GNU_REL16_S2) addend >>= 2; if (rela_relocation_p) /* If this is a RELA relocation, just update the addend. We have to cast away constness for REL. */ rel->r_addend = addend; else { /* Otherwise, we have to write the value back out. Note that we use the source mask, rather than the destination mask because the place to which we are writing will be source of the addend in the final link. */ addend &= howto->src_mask; if (!mips_elf64_perform_relocation (howto, rel, addend, input_bfd, contents)) return false; } /* Go on to the next relocation. */ continue; } /* In the N32 and 64-bit ABIs there may be multiple consecutive relocations for the same offset. In that case we are supposed to treat the output of each relocation as the addend for the next. */ if (rel + 1 < relend && rel->r_offset == rel[1].r_offset && ELF64_MIPS_R_TYPE (rel[1].r_info) != R_MIPS_NONE) use_saved_addend_p = true; else use_saved_addend_p = false; /* Figure out what value we are supposed to relocate. */ switch (mips_elf64_calculate_relocation (output_bfd, input_bfd, input_section, info, rel, addend, howto, local_syms, local_sections, &value, &name)) { case bfd_reloc_continue: /* There's nothing to do. */ continue; case bfd_reloc_undefined: /* mips_elf64_calculate_relocation already called the undefined_symbol callback. There's no real point in trying to perform the relocation at this point, so we just skip ahead to the next relocation. */ continue; case bfd_reloc_notsupported: abort (); break; case bfd_reloc_overflow: if (use_saved_addend_p) /* Ignore overflow until we reach the last relocation for a given location. */ ; else { BFD_ASSERT (name != NULL); if (! ((*info->callbacks->reloc_overflow) (info, name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return false; } break; case bfd_reloc_ok: break; default: abort (); break; } /* If we've got another relocation for the address, keep going until we reach the last one. */ if (use_saved_addend_p) { addend = value; continue; } /* Actually perform the relocation. */ if (!mips_elf64_perform_relocation (howto, rel, value, input_bfd, contents)) return false; } return true; } /* Create dynamic sections when linking against a dynamic object. */ boolean mips_elf64_create_dynamic_sections (abfd, info) bfd *abfd; struct bfd_link_info *info; { flagword flags; register asection *s; flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY); /* Mips ABI requests the .dynamic section to be read only. */ s = bfd_get_section_by_name (abfd, ".dynamic"); if (s != NULL) { if (! bfd_set_section_flags (abfd, s, flags)) return false; } /* We need to create .got section. */ if (! mips_elf64_create_got_section (abfd, info)) return false; /* Create the .msym section on IRIX6. It is used by the dynamic linker to speed up dynamic relocations, and to avoid computing the ELF hash for symbols. */ if (!mips_elf64_create_msym_section (abfd)) return false; /* Create .stub section. */ if (bfd_get_section_by_name (abfd, ".MIPS.stubs") == NULL) { s = bfd_make_section (abfd, ".MIPS.stubs"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE) || ! bfd_set_section_alignment (abfd, s, 3)) return false; } return true; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ boolean mips_elf64_adjust_dynamic_symbol (info, h) struct bfd_link_info *info; struct elf_link_hash_entry *h; { bfd *dynobj; struct mips_elf64_link_hash_entry *hmips; asection *s; dynobj = elf_hash_table (info)->dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) || h->weakdef != NULL || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))); /* If this symbol is defined in a dynamic object, we need to copy any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output file. */ hmips = (struct mips_elf64_link_hash_entry *) h; if (! info->relocateable && hmips->possibly_dynamic_relocs != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) { mips_elf64_allocate_dynamic_relocations (dynobj, hmips->possibly_dynamic_relocs); if (hmips->readonly_reloc) /* We tell the dynamic linker that there are relocations against the text segment. */ info->flags |= DF_TEXTREL; } /* For a function, create a stub, if needed. */ if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) { if (! elf_hash_table (info)->dynamic_sections_created) return true; /* If this symbol is not defined in a regular file, then set the symbol to the stub location. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) { /* We need .stub section. */ s = bfd_get_section_by_name (dynobj, ".MIPS.stubs"); BFD_ASSERT (s != NULL); h->root.u.def.section = s; h->root.u.def.value = s->_raw_size; /* XXX Write this stub address somewhere. */ h->plt.offset = s->_raw_size; /* Make room for this stub code. */ s->_raw_size += MIPS_FUNCTION_STUB_SIZE; /* The last half word of the stub will be filled with the index of this symbol in .dynsym section. */ return true; } } else if ((h->type == STT_FUNC) && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) { /* This will set the entry for this symbol in the GOT to 0, and the dynamic linker will take care of this. */ h->root.u.def.value = 0; return true; } /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->weakdef != NULL) { BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined || h->weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->weakdef->root.u.def.section; h->root.u.def.value = h->weakdef->root.u.def.value; return true; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ return true; } /* This function is called after all the input files have been read, and the input sections have been assigned to output sections. */ boolean mips_elf64_always_size_sections (output_bfd, info) bfd *output_bfd ATTRIBUTE_UNUSED; struct bfd_link_info *info ATTRIBUTE_UNUSED; { return true; } /* Set the sizes of the dynamic sections. */ boolean mips_elf64_size_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *s; boolean reltext; struct mips_elf64_got_info *g = NULL; dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (! info->shared) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->_raw_size = strlen ("/usr/lib64/libc.so.1") + 1; s->contents = (bfd_byte *) "/usr/lib64/libc.so.1"; } } /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ reltext = false; for (s = dynobj->sections; s != NULL; s = s->next) { const char *name; boolean strip; /* It's OK to base decisions on the section name, because none of the dynobj section names depend upon the input files. */ name = bfd_get_section_name (dynobj, s); if ((s->flags & SEC_LINKER_CREATED) == 0) continue; strip = false; if (strncmp (name, ".rel", 4) == 0) { if (s->_raw_size == 0) { /* We only strip the section if the output section name has the same name. Otherwise, there might be several input sections for this output section. FIXME: This code is probably not needed these days anyhow, since the linker now does not create empty output sections. */ if (s->output_section != NULL && strcmp (name, bfd_get_section_name (s->output_section->owner, s->output_section)) == 0) strip = true; } else { const char *outname; asection *target; /* If this relocation section applies to a read only section, then we probably need a DT_TEXTREL entry. If the relocation section is .rel.dyn, we always assert a DT_TEXTREL entry rather than testing whether there exists a relocation to a read only section or not. */ outname = bfd_get_section_name (output_bfd, s->output_section); target = bfd_get_section_by_name (output_bfd, outname + 4); if ((target != NULL && (target->flags & SEC_READONLY) != 0 && (target->flags & SEC_ALLOC) != 0) || strcmp (outname, "rel.dyn") == 0) reltext = true; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ if (strcmp (name, "rel.dyn") != 0) s->reloc_count = 0; } } else if (strncmp (name, ".got", 4) == 0) { int i; bfd_size_type loadable_size = 0; bfd_size_type local_gotno; bfd *sub; BFD_ASSERT (elf_section_data (s) != NULL); g = (struct mips_elf64_got_info *) elf_section_data (s)->tdata; BFD_ASSERT (g != NULL); /* Calculate the total loadable size of the output. That will give us the maximum number of GOT_PAGE entries required. */ for (sub = info->input_bfds; sub; sub = sub->link_next) { asection *subsection; for (subsection = sub->sections; subsection; subsection = subsection->next) { if ((subsection->flags & SEC_ALLOC) == 0) continue; loadable_size += (subsection->_raw_size + 0xf) & ~0xf; } } loadable_size += MIPS_FUNCTION_STUB_SIZE; /* Assume there are two loadable segments consisting of contiguous sections. Is 5 enough? */ local_gotno = (loadable_size >> 16) + 5; /* It's possible we will need GOT_PAGE entries as well as GOT16 entries. Often, these will be able to share GOT entries, but not always. */ local_gotno *= 2; g->local_gotno += local_gotno; s->_raw_size += local_gotno * 8; /* There has to be a global GOT entry for every symbol with a dynamic symbol table index of DT_MIPS_GOTSYM or higher. Therefore, it make sense to put those symbols that need GOT entries at the end of the symbol table. We do that here. */ if (!mips_elf64_sort_hash_table (info, 1)) return false; if (g->global_gotsym != NULL) i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx; else /* If there are no global symbols, or none requiring relocations, then GLOBAL_GOTSYM will be NULL. */ i = 0; g->global_gotno = i; s->_raw_size += i * 8; } else if (strcmp (name, ".MIPS.stubs") == 0) { /* Irix rld assumes that the function stub isn't at the end of .text section. So put a dummy. XXX */ s->_raw_size += MIPS_FUNCTION_STUB_SIZE; } else if (strcmp (name, ".msym") == 0) s->_raw_size = (sizeof (Elf32_External_Msym) * (elf_hash_table (info)->dynsymcount + bfd_count_sections (output_bfd))); else if (strncmp (name, ".init", 5) != 0) { /* It's not one of our sections, so don't allocate space. */ continue; } if (strip) { _bfd_strip_section_from_output (info, s); continue; } /* Allocate memory for the section contents. */ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size); if (s->contents == NULL && s->_raw_size != 0) { bfd_set_error (bfd_error_no_memory); return false; } } if (elf_hash_table (info)->dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in elf_mips_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ if (! info->shared) { /* SGI object has the equivalence of DT_DEBUG in the DT_MIPS_RLD_MAP entry. */ if (!bfd_elf64_add_dynamic_entry (info, DT_MIPS_RLD_MAP, 0)) return false; if (!SGI_COMPAT (output_bfd)) { if (!bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)) return false; } } else { /* Shared libraries on traditional mips have DT_DEBUG. */ if (!SGI_COMPAT (output_bfd)) { if (!bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)) return false; } } if (reltext && SGI_COMPAT (output_bfd)) info->flags |= DF_TEXTREL; if ((info->flags & DF_TEXTREL) != 0) { if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0)) return false; } if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)) return false; if (bfd_get_section_by_name (dynobj, "rel.dyn")) { if (! bfd_elf64_add_dynamic_entry (info, DT_REL, 0)) return false; if (! bfd_elf64_add_dynamic_entry (info, DT_RELSZ, 0)) return false; if (! bfd_elf64_add_dynamic_entry (info, DT_RELENT, 0)) return false; } if (SGI_COMPAT (output_bfd)) { if (!bfd_elf64_add_dynamic_entry (info, DT_MIPS_CONFLICTNO, 0)) return false; } if (SGI_COMPAT (output_bfd)) { if (!bfd_elf64_add_dynamic_entry (info, DT_MIPS_LIBLISTNO, 0)) return false; } if (bfd_get_section_by_name (dynobj, ".conflict") != NULL) { if (! bfd_elf64_add_dynamic_entry (info, DT_MIPS_CONFLICT, 0)) return false; s = bfd_get_section_by_name (dynobj, ".liblist"); BFD_ASSERT (s != NULL); if (! bfd_elf64_add_dynamic_entry (info, DT_MIPS_LIBLIST, 0)) return false; } if (! bfd_elf64_add_dynamic_entry (info, DT_MIPS_RLD_VERSION, 0)) return false; if (! bfd_elf64_add_dynamic_entry (info, DT_MIPS_FLAGS, 0)) return false; #if 0 /* Time stamps in executable files are a bad idea. */ if (! bfd_elf64_add_dynamic_entry (info, DT_MIPS_TIME_STAMP, 0)) return false; #endif #if 0 /* FIXME */ if (! bfd_elf64_add_dynamic_entry (info, DT_MIPS_ICHECKSUM, 0)) return false; #endif #if 0 /* FIXME */ if (! bfd_elf64_add_dynamic_entry (info, DT_MIPS_IVERSION, 0)) return false; #endif if (! bfd_elf64_add_dynamic_entry (info, DT_MIPS_BASE_ADDRESS, 0)) return false; if (! bfd_elf64_add_dynamic_entry (info, DT_MIPS_LOCAL_GOTNO, 0)) return false; if (! bfd_elf64_add_dynamic_entry (info, DT_MIPS_SYMTABNO, 0)) return false; if (! bfd_elf64_add_dynamic_entry (info, DT_MIPS_UNREFEXTNO, 0)) return false; if (! bfd_elf64_add_dynamic_entry (info, DT_MIPS_GOTSYM, 0)) return false; if ((bfd_get_section_by_name(dynobj, ".MIPS.options")) && !bfd_elf64_add_dynamic_entry (info, DT_MIPS_OPTIONS, 0)) return false; if (bfd_get_section_by_name (dynobj, ".msym") && !bfd_elf64_add_dynamic_entry (info, DT_MIPS_MSYM, 0)) return false; } return true; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ boolean mips_elf64_finish_dynamic_symbol (output_bfd, info, h, sym) bfd *output_bfd; struct bfd_link_info *info; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { bfd *dynobj; bfd_vma gval; asection *sgot; asection *smsym; struct mips_elf64_got_info *g; const char *name; struct mips_elf64_link_hash_entry *mh; dynobj = elf_hash_table (info)->dynobj; gval = sym->st_value; mh = (struct mips_elf64_link_hash_entry *) h; if (h->plt.offset != (bfd_vma) -1) { asection *s; bfd_byte stub[MIPS_FUNCTION_STUB_SIZE]; /* This symbol has a stub. Set it up. */ BFD_ASSERT (h->dynindx != -1); s = bfd_get_section_by_name (dynobj, ".MIPS.stubs"); BFD_ASSERT (s != NULL); /* FIXME: Can h->dynindex be more than 64K? */ if (h->dynindx & 0xffff0000) return false; /* Fill the stub. */ bfd_put_32 (output_bfd, STUB_LW, stub); bfd_put_32 (output_bfd, STUB_MOVE, stub + 4); bfd_put_32 (output_bfd, STUB_JALR, stub + 8); bfd_put_32 (output_bfd, STUB_LI16 + h->dynindx, stub + 12); BFD_ASSERT (h->plt.offset <= s->_raw_size); memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE); /* Mark the symbol as undefined. plt.offset != -1 occurs only for the referenced symbol. */ sym->st_shndx = SHN_UNDEF; /* The run-time linker uses the st_value field of the symbol to reset the global offset table entry for this external to its stub address when unlinking a shared object. */ gval = s->output_section->vma + s->output_offset + h->plt.offset; sym->st_value = gval; } BFD_ASSERT (h->dynindx != -1 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0); sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_elf64_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); /* Run through the global symbol table, creating GOT entries for all the symbols that need them. */ if (g->global_gotsym != NULL && h->dynindx >= g->global_gotsym->dynindx) { bfd_vma offset; bfd_vma value; if (sym->st_value) value = sym->st_value; else { /* For an entity defined in a shared object, this will be NULL. (For functions in shared objects for which we have created stubs, ST_VALUE will be non-NULL. That's because such the functions are now no longer defined in a shared object.) */ if (info->shared && h->root.type == bfd_link_hash_undefined) value = 0; else value = h->root.u.def.value; } offset = mips_elf64_global_got_index (dynobj, h); bfd_put_64 (output_bfd, value, sgot->contents + offset); } /* Create a .msym entry, if appropriate. */ smsym = bfd_get_section_by_name (dynobj, ".msym"); if (smsym) { Elf32_Internal_Msym msym; msym.ms_hash_value = bfd_elf_hash (h->root.root.string); /* It is undocumented what the `1' indicates, but IRIX6 uses this value. */ msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1); mips_elf64_swap_msym_out (dynobj, &msym, ((Elf32_External_Msym *) smsym->contents) + h->dynindx); } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ name = h->root.root.string; if (strcmp (name, "_DYNAMIC") == 0 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0) sym->st_shndx = SHN_ABS; else if (strcmp (name, "_DYNAMIC_LINK") == 0 || strcmp (name, "_DYNAMIC_LINKING") == 0) { sym->st_shndx = SHN_ABS; sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_value = 1; } else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) { if (h->type == STT_FUNC) sym->st_shndx = SHN_MIPS_TEXT; else if (h->type == STT_OBJECT) sym->st_shndx = SHN_MIPS_DATA; } /* Handle the IRIX6-specific symbols. */ { /* The linker script takes care of providing names and values for these, but we must place them into the right sections. */ static const char* const text_section_symbols[] = { "_ftext", "_etext", "__dso_displacement", "__elf_header", "__program_header_table", NULL }; static const char* const data_section_symbols[] = { "_fdata", "_edata", "_end", "_fbss", NULL }; const char* const *p; int i; for (i = 0; i < 2; ++i) for (p = (i == 0) ? text_section_symbols : data_section_symbols; *p; ++p) if (strcmp (*p, name) == 0) { /* All of these symbols are given type STT_SECTION by the IRIX6 linker. */ sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); /* The IRIX linker puts these symbols in special sections. */ if (i == 0) sym->st_shndx = SHN_MIPS_TEXT; else sym->st_shndx = SHN_MIPS_DATA; break; } } return true; } /* Finish up the dynamic sections. */ boolean mips_elf64_finish_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *sdyn; asection *sgot; struct mips_elf64_got_info *g; dynobj = elf_hash_table (info)->dynobj; sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); sgot = bfd_get_section_by_name (dynobj, ".got"); if (sgot == NULL) g = NULL; else { BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_elf64_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); } if (elf_hash_table (info)->dynamic_sections_created) { bfd_byte *b; BFD_ASSERT (sdyn != NULL); BFD_ASSERT (g != NULL); for (b = sdyn->contents; b < sdyn->contents + sdyn->_raw_size; b += get_elf_backend_data (dynobj)->s->sizeof_dyn) { Elf_Internal_Dyn dyn; const char *name; size_t elemsize; asection *s; boolean swap_out_p; /* Read in the current dynamic entry. */ (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); /* Assume that we're going to modify it and write it out. */ swap_out_p = true; switch (dyn.d_tag) { case DT_RELENT: s = bfd_get_section_by_name(dynobj, "rel.dyn"); BFD_ASSERT (s != NULL); dyn.d_un.d_val = get_elf_backend_data (dynobj)->s->sizeof_rel; break; case DT_STRSZ: /* Rewrite DT_STRSZ. */ dyn.d_un.d_val = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); break; case DT_PLTGOT: name = ".got"; goto get_vma; case DT_MIPS_CONFLICT: name = ".conflict"; goto get_vma; case DT_MIPS_LIBLIST: name = ".liblist"; get_vma: s = bfd_get_section_by_name (output_bfd, name); BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->vma; break; case DT_MIPS_RLD_VERSION: dyn.d_un.d_val = 1; /* XXX */ break; case DT_MIPS_FLAGS: dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ break; case DT_MIPS_CONFLICTNO: name = ".conflict"; elemsize = sizeof (Elf32_Conflict); goto set_elemno; case DT_MIPS_LIBLISTNO: name = ".liblist"; elemsize = sizeof (Elf32_Lib); set_elemno: s = bfd_get_section_by_name (output_bfd, name); if (s != NULL) { if (s->_cooked_size != 0) dyn.d_un.d_val = s->_cooked_size / elemsize; else dyn.d_un.d_val = s->_raw_size / elemsize; } else dyn.d_un.d_val = 0; break; case DT_MIPS_TIME_STAMP: time ((time_t *) &dyn.d_un.d_val); break; case DT_MIPS_ICHECKSUM: /* XXX FIXME: */ swap_out_p = false; break; case DT_MIPS_IVERSION: /* XXX FIXME: */ swap_out_p = false; break; case DT_MIPS_BASE_ADDRESS: s = output_bfd->sections; BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->vma & ~(0xffff); break; case DT_MIPS_LOCAL_GOTNO: dyn.d_un.d_val = g->local_gotno; break; case DT_MIPS_UNREFEXTNO: /* The index into the dynamic symbol table which is the entry of the first external symbol that is not referenced within the same object. */ dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; break; case DT_MIPS_GOTSYM: if (g->global_gotsym) { dyn.d_un.d_val = g->global_gotsym->dynindx; break; } /* In case if we don't have global got symbols we default to setting DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO, so we just fall through. */ case DT_MIPS_SYMTABNO: name = ".dynsym"; elemsize = get_elf_backend_data (output_bfd)->s->sizeof_sym; s = bfd_get_section_by_name (output_bfd, name); BFD_ASSERT (s != NULL); if (s->_cooked_size != 0) dyn.d_un.d_val = s->_cooked_size / elemsize; else dyn.d_un.d_val = s->_raw_size / elemsize; break; case DT_MIPS_HIPAGENO: dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO; break; case DT_MIPS_OPTIONS: s = bfd_get_section_by_name(output_bfd, ".MIPS.options"); dyn.d_un.d_ptr = s->vma; break; case DT_MIPS_MSYM: s = bfd_get_section_by_name(output_bfd, ".msym"); dyn.d_un.d_ptr = s->vma; break; default: swap_out_p = false; break; } if (swap_out_p) (*get_elf_backend_data (dynobj)->s->swap_dyn_out) (dynobj, &dyn, b); } } /* The first entry of the global offset table will be filled at runtime. The second entry will be used by some runtime loaders. This isn't the case of Irix rld. */ if (sgot != NULL && sgot->_raw_size > 0) { bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents); bfd_put_64 (output_bfd, (bfd_vma) 0x80000000, sgot->contents + 8); } if (sgot != NULL) elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8; { asection *smsym; asection *s; /* ??? The section symbols for the output sections were set up in _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these symbols. Should we do so? */ smsym = bfd_get_section_by_name (dynobj, ".msym"); if (smsym != NULL) { Elf32_Internal_Msym msym; msym.ms_hash_value = 0; msym.ms_info = ELF32_MS_INFO (0, 1); for (s = output_bfd->sections; s != NULL; s = s->next) { long dynindx = elf_section_data (s)->dynindx; mips_elf64_swap_msym_out (output_bfd, &msym, (((Elf32_External_Msym *) smsym->contents) + dynindx)); } } /* Clean up a first relocation in .rel.dyn. */ s = bfd_get_section_by_name (dynobj, "rel.dyn"); if (s != NULL && s->_raw_size > 0) memset (s->contents, 0, get_elf_backend_data (dynobj)->s->sizeof_rel); } return true; } /* Return the section that should be marked against GC for a given relocation. */ asection * mips_elf64_gc_mark_hook (abfd, info, rel, h, sym) bfd *abfd; struct bfd_link_info *info ATTRIBUTE_UNUSED; Elf_Internal_Rela *rel; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { if (h != NULL) { switch (ELF64_R_TYPE (rel->r_info)) { case R_MIPS_GNU_VTINHERIT: case R_MIPS_GNU_VTENTRY: break; default: switch (h->root.type) { case bfd_link_hash_defined: case bfd_link_hash_defweak: return h->root.u.def.section; case bfd_link_hash_common: return h->root.u.c.p->section; default: break; } } } else { return bfd_section_from_elf_index (abfd, sym->st_shndx); } return NULL; } /* Update the got entry reference counts for the section being removed. */ boolean mips_elf64_gc_sweep_hook (abfd, info, sec, relocs) bfd *abfd ATTRIBUTE_UNUSED; struct bfd_link_info *info ATTRIBUTE_UNUSED; asection *sec ATTRIBUTE_UNUSED; const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED; { #if 0 Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel, *relend; unsigned long r_symndx; struct elf_link_hash_entry *h; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) switch (ELF64_R_TYPE (rel->r_info)) { case R_MIPS_GOT16: case R_MIPS_CALL16: case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: case R_MIPS_GOT_HI16: case R_MIPS_GOT_LO16: /* ??? It would seem that the existing MIPS code does no sort of reference counting or whatnot on its GOT and PLT entries, so it is not possible to garbage collect them at this time. */ break; default: break; } #endif return true; } /* Create the .got section to hold the global offset table. */ static boolean mips_elf64_create_got_section (abfd, info) bfd *abfd; struct bfd_link_info *info; { flagword flags; register asection *s; struct elf_link_hash_entry *h; struct mips_elf64_got_info *g; /* This function may be called more than once. */ if (bfd_get_section_by_name (abfd, ".got")) return true; flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); s = bfd_make_section (abfd, ".got"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags) || ! bfd_set_section_alignment (abfd, s, 4)) return false; /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the linker script because we don't want to define the symbol if we are not creating a global offset table. */ h = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, (bfd_vma) 0, (const char *) NULL, false, get_elf_backend_data (abfd)->collect, (struct bfd_link_hash_entry **) &h))) return false; h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_OBJECT; if (info->shared && ! bfd_elf64_link_record_dynamic_symbol (info, h)) return false; /* The first several global offset table entries are reserved. */ s->_raw_size = MIPS_RESERVED_GOTNO * (get_elf_backend_data (abfd)->s->arch_size / 8); g = (struct mips_elf64_got_info *) bfd_alloc (abfd, sizeof (struct mips_elf64_got_info)); if (g == NULL) return false; g->global_gotsym = NULL; g->local_gotno = MIPS_RESERVED_GOTNO; g->assigned_gotno = MIPS_RESERVED_GOTNO; if (elf_section_data (s) == NULL) { s->used_by_bfd = (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data)); if (elf_section_data (s) == NULL) return false; } elf_section_data (s)->tdata = (PTR) g; elf_section_data (s)->this_hdr.sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; return true; } /* If H is a symbol that needs a global GOT entry, but has a dynamic symbol table index lower than any we've seen to date, record it for posterity. */ static boolean mips_elf64_record_global_got_symbol (h, info, g) struct elf_link_hash_entry *h; struct bfd_link_info *info; struct mips_elf64_got_info *g ATTRIBUTE_UNUSED; { /* A global symbol in the GOT must also be in the dynamic symbol table. */ if (h->dynindx == -1 && !bfd_elf64_link_record_dynamic_symbol (info, h)) return false; /* If we've already marked this entry as need GOT space, we don't need to do it again. */ if (h->got.offset != (bfd_vma) - 1) return true; /* By setting this to a value other than -1, we are indicating that there needs to be a GOT entry for H. */ h->got.offset = 0; return true; } /* Returns the .msym section for ABFD, creating it if it does not already exist. Returns NULL to indicate error. */ static asection * mips_elf64_create_msym_section (abfd) bfd *abfd; { asection *s; s = bfd_get_section_by_name (abfd, ".msym"); if (!s) { s = bfd_make_section (abfd, ".msym"); if (!s || !bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED | SEC_READONLY) || !bfd_set_section_alignment (abfd, s, 3)) return NULL; } return s; } /* Add room for N relocations to the .rel.dyn section in ABFD. */ static void mips_elf64_allocate_dynamic_relocations (abfd, n) bfd *abfd; unsigned int n; { asection *s; s = bfd_get_section_by_name (abfd, ".rel.dyn"); BFD_ASSERT (s != NULL); if (s->_raw_size == 0) { /* Make room for a null element. */ s->_raw_size += get_elf_backend_data (abfd)->s->sizeof_rel; ++s->reloc_count; } s->_raw_size += n * get_elf_backend_data (abfd)->s->sizeof_rel; } /* Look through the relocs for a section during the first phase, and allocate space in the global offset table. */ boolean mips_elf64_check_relocs (abfd, info, sec, relocs) bfd *abfd; struct bfd_link_info *info; asection *sec; const Elf_Internal_Rela *relocs; { const char *name; bfd *dynobj; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; struct mips_elf64_got_info *g; size_t extsymoff; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *sgot; asection *sreloc; struct elf_backend_data *bed; if (info->relocateable) return true; dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; name = bfd_get_section_name (abfd, sec); if (dynobj == NULL) { sgot = NULL; g = NULL; } else { sgot = bfd_get_section_by_name (dynobj, ".got"); if (sgot == NULL) g = NULL; else { BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_elf64_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); } } sreloc = NULL; bed = get_elf_backend_data (abfd); rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; for (rel = relocs; rel < rel_end; ++rel) { unsigned long r_symndx; int r_type; struct elf_link_hash_entry *h; r_symndx = ELF64_R_SYM (rel->r_info); r_type = ELF64_MIPS_R_TYPE (rel->r_info); if (r_symndx < extsymoff) h = NULL; else if (r_symndx >= extsymoff + (symtab_hdr->sh_size / symtab_hdr->sh_entsize)) { (*_bfd_error_handler) (_("Malformed reloc detected for section %s"), name); bfd_set_error (bfd_error_bad_value); return false; } else { h = sym_hashes[r_symndx - extsymoff]; /* This may be an indirect symbol created because of a version. */ if (h != NULL) { while (h->root.type == bfd_link_hash_indirect) h = (struct elf_link_hash_entry *) h->root.u.i.link; } } /* Some relocs require a global offset table. */ if (dynobj == NULL || sgot == NULL) { switch (r_type) { case R_MIPS_GOT16: case R_MIPS_CALL16: case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: case R_MIPS_GOT_HI16: case R_MIPS_GOT_LO16: case R_MIPS_GOT_PAGE: case R_MIPS_GOT_OFST: case R_MIPS_GOT_DISP: if (dynobj == NULL) elf_hash_table (info)->dynobj = dynobj = abfd; if (! mips_elf64_create_got_section (dynobj, info)) return false; g = _mips_elf64_got_info (dynobj, &sgot); break; case R_MIPS_32: case R_MIPS_REL32: case R_MIPS_64: if (dynobj == NULL && (info->shared || h != NULL) && (sec->flags & SEC_ALLOC) != 0) elf_hash_table (info)->dynobj = dynobj = abfd; break; default: break; } } if (!h && (r_type == R_MIPS_CALL_LO16 || r_type == R_MIPS_GOT_LO16 || r_type == R_MIPS_GOT_DISP)) { /* We may need a local GOT entry for this relocation. We don't count R_MIPS_GOT_PAGE because we can estimate the maximum number of pages needed by looking at the size of the segment. Similar comments apply to R_MIPS_GOT16. We don't count R_MIPS_GOT_HI16, or R_MIPS_CALL_HI16 because these are always followed by an R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. This estimation is very conservative since we can merge duplicate entries in the GOT. In order to be less conservative, we could actually build the GOT here, rather than in relocate_section. */ g->local_gotno++; sgot->_raw_size += get_elf_backend_data (dynobj)->s->arch_size / 8; } switch (r_type) { case R_MIPS_CALL16: if (h == NULL) { (*_bfd_error_handler) (_("%s: CALL16 reloc at 0x%lx not against global symbol"), bfd_get_filename (abfd), (unsigned long) rel->r_offset); bfd_set_error (bfd_error_bad_value); return false; } /* Fall through. */ case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: if (h != NULL) { /* This symbol requires a global offset table entry. */ if (!mips_elf64_record_global_got_symbol (h, info, g)) return false; /* We need a stub, not a plt entry for the undefined function. But we record it as if it needs plt. See elf_adjust_dynamic_symbol in elflink.h. */ h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; h->type = STT_FUNC; } break; case R_MIPS_GOT16: case R_MIPS_GOT_HI16: case R_MIPS_GOT_LO16: case R_MIPS_GOT_DISP: /* This symbol requires a global offset table entry. */ if (h && !mips_elf64_record_global_got_symbol (h, info, g)) return false; break; case R_MIPS_32: case R_MIPS_REL32: case R_MIPS_64: if ((info->shared || h != NULL) && (sec->flags & SEC_ALLOC) != 0) { if (sreloc == NULL) { const char *name = ".rel.dyn"; sreloc = bfd_get_section_by_name (dynobj, name); if (sreloc == NULL) { sreloc = bfd_make_section (dynobj, name); if (sreloc == NULL || ! bfd_set_section_flags (dynobj, sreloc, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)) || ! bfd_set_section_alignment (dynobj, sreloc, 4)) return false; } } #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY) if (info->shared) { /* When creating a shared object, we must copy these reloc types into the output file as R_MIPS_REL32 relocs. We make room for this reloc in the .rel.dyn reloc section. */ mips_elf64_allocate_dynamic_relocations (dynobj, 1); if ((sec->flags & MIPS_READONLY_SECTION) == MIPS_READONLY_SECTION) /* We tell the dynamic linker that there are relocations against the text segment. */ info->flags |= DF_TEXTREL; } else { struct mips_elf64_link_hash_entry *hmips; /* We only need to copy this reloc if the symbol is defined in a dynamic object. */ hmips = (struct mips_elf64_link_hash_entry *) h; ++hmips->possibly_dynamic_relocs; if ((sec->flags & MIPS_READONLY_SECTION) == MIPS_READONLY_SECTION) /* We need it to tell the dynamic linker if there are relocations against the text segment. */ hmips->readonly_reloc = true; } /* Even though we don't directly need a GOT entry for this symbol, a symbol must have a dynamic symbol table index greater that DT_MIPS_GOTSYM if there are dynamic relocations against it. */ if (h != NULL && !mips_elf64_record_global_got_symbol (h, info, g)) return false; } break; case R_MIPS_26: case R_MIPS_GPREL16: case R_MIPS_LITERAL: case R_MIPS_GPREL32: break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_MIPS_GNU_VTINHERIT: if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return false; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_MIPS_GNU_VTENTRY: if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_offset)) return false; break; default: break; } } return true; } /* Structure used to pass information to mips_elf64_output_extsym. */ struct extsym_info { bfd *abfd; struct bfd_link_info *info; struct ecoff_debug_info *debug; const struct ecoff_debug_swap *swap; boolean failed; }; /* This routine is used to write out ECOFF debugging external symbol information. It is called via mips_elf64_link_hash_traverse. The ECOFF external symbol information must match the ELF external symbol information. Unfortunately, at this point we don't know whether a symbol is required by reloc information, so the two tables may wind up being different. We must sort out the external symbol information before we can set the final size of the .mdebug section, and we must set the size of the .mdebug section before we can relocate any sections, and we can't know which symbols are required by relocation until we relocate the sections. Fortunately, it is relatively unlikely that any symbol will be stripped but required by a reloc. In particular, it can not happen when generating a final executable. */ static boolean mips_elf64_output_extsym (h, data) struct mips_elf64_link_hash_entry *h; PTR data; { struct extsym_info *einfo = (struct extsym_info *) data; boolean strip; asection *sec, *output_section; if (h->root.indx == -2) strip = false; else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) strip = true; else if (einfo->info->strip == strip_all || (einfo->info->strip == strip_some && bfd_hash_lookup (einfo->info->keep_hash, h->root.root.root.string, false, false) == NULL)) strip = true; else strip = false; if (strip) return true; if (h->esym.ifd == -2) { h->esym.jmptbl = 0; h->esym.cobol_main = 0; h->esym.weakext = 0; h->esym.reserved = 0; h->esym.ifd = ifdNil; h->esym.asym.value = 0; h->esym.asym.st = stGlobal; if (h->root.root.type == bfd_link_hash_undefined || h->root.root.type == bfd_link_hash_undefweak) { const char *name; /* Use undefined class. Also, set class and type for some special symbols. */ name = h->root.root.root.string; h->esym.asym.sc = scUndefined; } else if (h->root.root.type != bfd_link_hash_defined && h->root.root.type != bfd_link_hash_defweak) h->esym.asym.sc = scAbs; else { const char *name; sec = h->root.root.u.def.section; output_section = sec->output_section; /* When making a shared library and symbol h is the one from the another shared library, OUTPUT_SECTION may be null. */ if (output_section == NULL) h->esym.asym.sc = scUndefined; else { name = bfd_section_name (output_section->owner, output_section); if (strcmp (name, ".text") == 0) h->esym.asym.sc = scText; else if (strcmp (name, ".data") == 0) h->esym.asym.sc = scData; else if (strcmp (name, ".sdata") == 0) h->esym.asym.sc = scSData; else if (strcmp (name, ".rodata") == 0 || strcmp (name, ".rdata") == 0) h->esym.asym.sc = scRData; else if (strcmp (name, ".bss") == 0) h->esym.asym.sc = scBss; else if (strcmp (name, ".sbss") == 0) h->esym.asym.sc = scSBss; else if (strcmp (name, ".init") == 0) h->esym.asym.sc = scInit; else if (strcmp (name, ".fini") == 0) h->esym.asym.sc = scFini; else h->esym.asym.sc = scAbs; } } h->esym.asym.reserved = 0; h->esym.asym.index = indexNil; } if (h->root.root.type == bfd_link_hash_common) h->esym.asym.value = h->root.root.u.c.size; else if (h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak) { if (h->esym.asym.sc == scCommon) h->esym.asym.sc = scBss; else if (h->esym.asym.sc == scSCommon) h->esym.asym.sc = scSBss; sec = h->root.root.u.def.section; output_section = sec->output_section; if (output_section != NULL) h->esym.asym.value = (h->root.root.u.def.value + sec->output_offset + output_section->vma); else h->esym.asym.value = 0; } else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) { /* Set type and value for a symbol with a function stub. */ h->esym.asym.st = stProc; sec = h->root.root.u.def.section; if (sec == NULL) h->esym.asym.value = 0; else { output_section = sec->output_section; if (output_section != NULL) h->esym.asym.value = (h->root.plt.offset + sec->output_offset + output_section->vma); else h->esym.asym.value = 0; } #if 0 /* FIXME? */ h->esym.ifd = 0; #endif } if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, h->root.root.root.string, &h->esym)) { einfo->failed = true; return false; } return true; } /* Swap an entry in a .gptab section. Note that these routines rely on the equivalence of the two elements of the union. */ static void mips_elf64_swap_gptab_in (abfd, ex, in) bfd *abfd; const Elf32_External_gptab *ex; Elf32_gptab *in; { in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value); in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes); } static void mips_elf64_swap_gptab_out (abfd, in, ex) bfd *abfd; const Elf32_gptab *in; Elf32_External_gptab *ex; { bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); } /* A comparison routine used to sort .gptab entries. */ static int gptab_compare (p1, p2) const PTR p1; const PTR p2; { const Elf32_gptab *a1 = (const Elf32_gptab *) p1; const Elf32_gptab *a2 = (const Elf32_gptab *) p2; return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; } /* We need to use a special link routine to handle the .mdebug section. We need to merge all instances of this section together, not write them all out sequentially. */ boolean mips_elf64_final_link (abfd, info) bfd *abfd; struct bfd_link_info *info; { asection **secpp; asection *o; struct bfd_link_order *p; asection *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; struct ecoff_debug_info debug; const struct ecoff_debug_swap *swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; HDRR *symhdr = &debug.symbolic_header; PTR mdebug_handle = NULL; asection *s; EXTR esym; bfd_vma last; unsigned int i; static const char * const name[] = { ".text", ".init", ".fini", ".data", ".rodata", ".sdata", ".sbss", ".bss" }; static const int sc[] = { scText, scInit, scFini, scData, scRData, scSData, scSBss, scBss }; /* If all the things we linked together were PIC, but we're producing an executable (rather than a shared object), then the resulting file is CPIC (i.e., it calls PIC code.) */ if (!info->shared && !info->relocateable && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) { elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC; elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC; } /* We'd carefully arranged the dynamic symbol indices, and then the generic size_dynamic_sections renumbered them out from under us. Rather than trying somehow to prevent the renumbering, just do the sort again. */ if (elf_hash_table (info)->dynamic_sections_created) { bfd *dynobj; asection *got; struct mips_elf64_got_info *g; /* When we resort, we must tell mips_elf64_sort_hash_table what the lowest index it may use is. That's the number of section symbols we're going to add. The generic ELF linker only adds these symbols when building a shared object. Note that we count the sections after (possibly) removing the .options section above. */ if (!mips_elf64_sort_hash_table (info, (info->shared ? bfd_count_sections (abfd) + 1 : 1))) return false; /* Make sure we didn't grow the global .got region. */ dynobj = elf_hash_table (info)->dynobj; got = bfd_get_section_by_name (dynobj, ".got"); g = (struct mips_elf64_got_info *) elf_section_data (got)->tdata; if (g->global_gotsym != NULL) BFD_ASSERT ((elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx) <= g->global_gotno); } /* We include .MIPS.options, even though we don't process it quite right. (Some entries are supposed to be merged.) At IRIX6 empirically we seem to be better off including it than not. */ for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next) { if (strcmp ((*secpp)->name, ".MIPS.options") == 0) { for (p = (*secpp)->link_order_head; p != NULL; p = p->next) if (p->type == bfd_indirect_link_order) p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS; (*secpp)->link_order_head = NULL; *secpp = (*secpp)->next; --abfd->section_count; break; } } /* Get a value for the GP register. */ if (elf_gp (abfd) == 0) { struct bfd_link_hash_entry *h; h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true); if (h != (struct bfd_link_hash_entry *) NULL && h->type == bfd_link_hash_defined) elf_gp (abfd) = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); else if (info->relocateable) { bfd_vma lo = MINUS_ONE; /* Find the GP-relative section with the lowest offset. */ for (o = abfd->sections; o != NULL; o = o->next) if (o->vma < lo && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) lo = o->vma; /* And calculate GP relative to that. */ elf_gp (abfd) = (lo + 0x7ff0); } else { /* If the relocate_section function needs to do a reloc involving the GP value, it should make a reloc_dangerous callback to warn that GP is not defined. */ } } /* Go through the sections and collect the .mdebug information. */ mdebug_sec = NULL; gptab_data_sec = NULL; gptab_bss_sec = NULL; for (o = abfd->sections; o != (asection *) NULL; o = o->next) { if (strcmp (o->name, ".mdebug") == 0) { struct extsym_info einfo; /* We have found the .mdebug section in the output file. Look through all the link_orders comprising it and merge the information together. */ symhdr->magic = swap->sym_magic; /* FIXME: What should the version stamp be? */ symhdr->vstamp = 0; symhdr->ilineMax = 0; symhdr->cbLine = 0; symhdr->idnMax = 0; symhdr->ipdMax = 0; symhdr->isymMax = 0; symhdr->ioptMax = 0; symhdr->iauxMax = 0; symhdr->issMax = 0; symhdr->issExtMax = 0; symhdr->ifdMax = 0; symhdr->crfd = 0; symhdr->iextMax = 0; /* We accumulate the debugging information itself in the debug_info structure. */ debug.line = NULL; debug.external_dnr = NULL; debug.external_pdr = NULL; debug.external_sym = NULL; debug.external_opt = NULL; debug.external_aux = NULL; debug.ss = NULL; debug.ssext = debug.ssext_end = NULL; debug.external_fdr = NULL; debug.external_rfd = NULL; debug.external_ext = debug.external_ext_end = NULL; mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); if (mdebug_handle == (PTR) NULL) return false; esym.jmptbl = 0; esym.cobol_main = 0; esym.weakext = 0; esym.reserved = 0; esym.ifd = ifdNil; esym.asym.iss = issNil; esym.asym.st = stLocal; esym.asym.reserved = 0; esym.asym.index = indexNil; last = 0; for (i = 0; i < 8; i++) { esym.asym.sc = sc[i]; s = bfd_get_section_by_name (abfd, name[i]); if (s != NULL) { esym.asym.value = s->vma; last = s->vma + s->_raw_size; } else esym.asym.value = last; if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, name[i], &esym)) return false; } for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { asection *input_section; bfd *input_bfd; const struct ecoff_debug_swap *input_swap; struct ecoff_debug_info input_debug; char *eraw_src; char *eraw_end; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_fill_link_order) continue; abort (); } input_section = p->u.indirect.section; input_bfd = input_section->owner; if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour || (get_elf_backend_data (input_bfd) ->elf_backend_ecoff_debug_swap) == NULL) { /* I don't know what a non MIPS ELF bfd would be doing with a .mdebug section, but I don't really want to deal with it. */ continue; } input_swap = (get_elf_backend_data (input_bfd) ->elf_backend_ecoff_debug_swap); BFD_ASSERT (p->size == input_section->_raw_size); /* The ECOFF linking code expects that we have already read in the debugging information and set up an ecoff_debug_info structure, so we do that now. */ if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, &input_debug)) return false; if (! (bfd_ecoff_debug_accumulate (mdebug_handle, abfd, &debug, swap, input_bfd, &input_debug, input_swap, info))) return false; /* Loop through the external symbols. For each one with interesting information, try to find the symbol in the linker global hash table and save the information for the output external symbols. */ eraw_src = input_debug.external_ext; eraw_end = (eraw_src + (input_debug.symbolic_header.iextMax * input_swap->external_ext_size)); for (; eraw_src < eraw_end; eraw_src += input_swap->external_ext_size) { EXTR ext; const char *name; struct mips_elf64_link_hash_entry *h; (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext); if (ext.asym.sc == scNil || ext.asym.sc == scUndefined || ext.asym.sc == scSUndefined) continue; name = input_debug.ssext + ext.asym.iss; h = mips_elf64_link_hash_lookup (mips_elf64_hash_table (info), name, false, false, true); if (h == NULL || h->esym.ifd != -2) continue; if (ext.ifd != -1) { BFD_ASSERT (ext.ifd < input_debug.symbolic_header.ifdMax); ext.ifd = input_debug.ifdmap[ext.ifd]; } h->esym = ext; } /* Free up the information we just read. */ free (input_debug.line); free (input_debug.external_dnr); free (input_debug.external_pdr); free (input_debug.external_sym); free (input_debug.external_opt); free (input_debug.external_aux); free (input_debug.ss); free (input_debug.ssext); free (input_debug.external_fdr); free (input_debug.external_rfd); free (input_debug.external_ext); /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &=~ SEC_HAS_CONTENTS; } /* Build the external symbol information. */ einfo.abfd = abfd; einfo.info = info; einfo.debug = &debug; einfo.swap = swap; einfo.failed = false; mips_elf64_link_hash_traverse (mips_elf64_hash_table (info), mips_elf64_output_extsym, (PTR) &einfo); if (einfo.failed) return false; /* Set the size of the .mdebug section. */ o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap); /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->link_order_head = (struct bfd_link_order *) NULL; mdebug_sec = o; } if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0) { const char *subname; unsigned int c; Elf32_gptab *tab; Elf32_External_gptab *ext_tab; unsigned int i; /* The .gptab.sdata and .gptab.sbss sections hold information describing how the small data area would change depending upon the -G switch. These sections not used in executables files. */ if (! info->relocateable) { asection **secpp; for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { asection *input_section; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_fill_link_order) continue; abort (); } input_section = p->u.indirect.section; /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &=~ SEC_HAS_CONTENTS; } /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->link_order_head = (struct bfd_link_order *) NULL; /* Really remove the section. */ for (secpp = &abfd->sections; *secpp != o; secpp = &(*secpp)->next) ; *secpp = (*secpp)->next; --abfd->section_count; continue; } /* There is one gptab for initialized data, and one for uninitialized data. */ if (strcmp (o->name, ".gptab.sdata") == 0) gptab_data_sec = o; else if (strcmp (o->name, ".gptab.sbss") == 0) gptab_bss_sec = o; else { (*_bfd_error_handler) (_("%s: illegal section name `%s'"), bfd_get_filename (abfd), o->name); bfd_set_error (bfd_error_nonrepresentable_section); return false; } /* The linker script always combines .gptab.data and .gptab.sdata into .gptab.sdata, and likewise for .gptab.bss and .gptab.sbss. It is possible that there is no .sdata or .sbss section in the output file, in which case we must change the name of the output section. */ subname = o->name + sizeof ".gptab" - 1; if (bfd_get_section_by_name (abfd, subname) == NULL) { if (o == gptab_data_sec) o->name = ".gptab.data"; else o->name = ".gptab.bss"; subname = o->name + sizeof ".gptab" - 1; BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); } /* Set up the first entry. */ c = 1; tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab)); if (tab == NULL) return false; tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); tab[0].gt_header.gt_unused = 0; /* Combine the input sections. */ for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { asection *input_section; bfd *input_bfd; bfd_size_type size; unsigned long last; bfd_size_type gpentry; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_fill_link_order) continue; abort (); } input_section = p->u.indirect.section; input_bfd = input_section->owner; /* Combine the gptab entries for this input section one by one. We know that the input gptab entries are sorted by ascending -G value. */ size = bfd_section_size (input_bfd, input_section); last = 0; for (gpentry = sizeof (Elf32_External_gptab); gpentry < size; gpentry += sizeof (Elf32_External_gptab)) { Elf32_External_gptab ext_gptab; Elf32_gptab int_gptab; unsigned long val; unsigned long add; boolean exact; unsigned int look; if (! (bfd_get_section_contents (input_bfd, input_section, (PTR) &ext_gptab, gpentry, sizeof (Elf32_External_gptab)))) { free (tab); return false; } mips_elf64_swap_gptab_in (input_bfd, &ext_gptab, &int_gptab); val = int_gptab.gt_entry.gt_g_value; add = int_gptab.gt_entry.gt_bytes - last; exact = false; for (look = 1; look < c; look++) { if (tab[look].gt_entry.gt_g_value >= val) tab[look].gt_entry.gt_bytes += add; if (tab[look].gt_entry.gt_g_value == val) exact = true; } if (! exact) { Elf32_gptab *new_tab; unsigned int max; /* We need a new table entry. */ new_tab = ((Elf32_gptab *) bfd_realloc ((PTR) tab, (c + 1) * sizeof (Elf32_gptab))); if (new_tab == NULL) { free (tab); return false; } tab = new_tab; tab[c].gt_entry.gt_g_value = val; tab[c].gt_entry.gt_bytes = add; /* Merge in the size for the next smallest -G value, since that will be implied by this new value. */ max = 0; for (look = 1; look < c; look++) { if (tab[look].gt_entry.gt_g_value < val && (max == 0 || (tab[look].gt_entry.gt_g_value > tab[max].gt_entry.gt_g_value))) max = look; } if (max != 0) tab[c].gt_entry.gt_bytes += tab[max].gt_entry.gt_bytes; ++c; } last = int_gptab.gt_entry.gt_bytes; } /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &=~ SEC_HAS_CONTENTS; } /* The table must be sorted by -G value. */ if (c > 2) qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); /* Swap out the table. */ ext_tab = ((Elf32_External_gptab *) bfd_alloc (abfd, c * sizeof (Elf32_External_gptab))); if (ext_tab == NULL) { free (tab); return false; } for (i = 0; i < c; i++) mips_elf64_swap_gptab_out (abfd, tab + i, ext_tab + i); free (tab); o->_raw_size = c * sizeof (Elf32_External_gptab); o->contents = (bfd_byte *) ext_tab; /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->link_order_head = (struct bfd_link_order *) NULL; } } /* Invoke the regular ELF backend linker to do all the work. */ if (!bfd_elf64_bfd_final_link (abfd, info)) return false; /* Now write out the computed sections. */ if (mdebug_sec != (asection *) NULL) { BFD_ASSERT (abfd->output_has_begun); if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, swap, info, mdebug_sec->filepos)) return false; bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); } if (gptab_data_sec != (asection *) NULL) { if (! bfd_set_section_contents (abfd, gptab_data_sec, gptab_data_sec->contents, (file_ptr) 0, gptab_data_sec->_raw_size)) return false; } if (gptab_bss_sec != (asection *) NULL) { if (! bfd_set_section_contents (abfd, gptab_bss_sec, gptab_bss_sec->contents, (file_ptr) 0, gptab_bss_sec->_raw_size)) return false; } return true; } /* ECOFF swapping routines. These are used when dealing with the .mdebug section, which is in the ECOFF debugging format. */ static const struct ecoff_debug_swap mips_elf64_ecoff_debug_swap = { /* Symbol table magic number. */ magicSym2, /* Alignment of debugging information. E.g., 4. */ 8, /* Sizes of external symbolic information. */ sizeof (struct hdr_ext), sizeof (struct dnr_ext), sizeof (struct pdr_ext), sizeof (struct sym_ext), sizeof (struct opt_ext), sizeof (struct fdr_ext), sizeof (struct rfd_ext), sizeof (struct ext_ext), /* Functions to swap in external symbolic data. */ ecoff_swap_hdr_in, ecoff_swap_dnr_in, ecoff_swap_pdr_in, ecoff_swap_sym_in, ecoff_swap_opt_in, ecoff_swap_fdr_in, ecoff_swap_rfd_in, ecoff_swap_ext_in, _bfd_ecoff_swap_tir_in, _bfd_ecoff_swap_rndx_in, /* Functions to swap out external symbolic data. */ ecoff_swap_hdr_out, ecoff_swap_dnr_out, ecoff_swap_pdr_out, ecoff_swap_sym_out, ecoff_swap_opt_out, ecoff_swap_fdr_out, ecoff_swap_rfd_out, ecoff_swap_ext_out, _bfd_ecoff_swap_tir_out, _bfd_ecoff_swap_rndx_out, /* Function to read in symbolic data. */ _bfd_mips_elf_read_ecoff_info }; /* Relocations in the 64 bit MIPS ELF ABI are more complex than in standard ELF. This structure is used to redirect the relocation handling routines. */ const struct elf_size_info mips_elf64_size_info = { sizeof (Elf64_External_Ehdr), sizeof (Elf64_External_Phdr), sizeof (Elf64_External_Shdr), sizeof (Elf64_Mips_External_Rel), sizeof (Elf64_Mips_External_Rela), sizeof (Elf64_External_Sym), sizeof (Elf64_External_Dyn), sizeof (Elf_External_Note), 4, /* hash-table entry size */ 3, /* internal relocations per external relocations */ 64, /* arch_size */ 8, /* file_align */ ELFCLASS64, EV_CURRENT, bfd_elf64_write_out_phdrs, bfd_elf64_write_shdrs_and_ehdr, mips_elf64_write_relocs, bfd_elf64_swap_symbol_out, mips_elf64_slurp_reloc_table, bfd_elf64_slurp_symbol_table, bfd_elf64_swap_dyn_in, bfd_elf64_swap_dyn_out, mips_elf64_be_swap_reloc_in, mips_elf64_be_swap_reloc_out, mips_elf64_be_swap_reloca_in, mips_elf64_be_swap_reloca_out }; #define ELF_ARCH bfd_arch_mips #define ELF_MACHINE_CODE EM_MIPS #define ELF_MAXPAGESIZE 0x1000 #define elf_backend_collect true #define elf_backend_type_change_ok true #define elf_backend_can_gc_sections true #define elf_info_to_howto mips_elf64_info_to_howto_rela #define elf_info_to_howto_rel mips_elf64_info_to_howto_rel #define elf_backend_object_p _bfd_mips_elf_object_p #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing #define elf_backend_section_processing _bfd_mips_elf_section_processing #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr #define elf_backend_fake_sections _bfd_mips_elf_fake_sections #define elf_backend_section_from_bfd_section \ _bfd_mips_elf_section_from_bfd_section #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook #define elf_backend_link_output_symbol_hook \ _bfd_mips_elf_link_output_symbol_hook #define elf_backend_create_dynamic_sections \ mips_elf64_create_dynamic_sections #define elf_backend_check_relocs mips_elf64_check_relocs #define elf_backend_adjust_dynamic_symbol \ mips_elf64_adjust_dynamic_symbol #define elf_backend_always_size_sections \ mips_elf64_always_size_sections #define elf_backend_size_dynamic_sections \ mips_elf64_size_dynamic_sections #define elf_backend_relocate_section mips_elf64_relocate_section #define elf_backend_finish_dynamic_symbol \ mips_elf64_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections \ mips_elf64_finish_dynamic_sections #define elf_backend_final_write_processing \ _bfd_mips_elf_final_write_processing #define elf_backend_additional_program_headers \ mips_elf64_additional_program_headers #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map #define elf_backend_gc_mark_hook mips_elf64_gc_mark_hook #define elf_backend_gc_sweep_hook mips_elf64_gc_sweep_hook #define elf_backend_ecoff_debug_swap &mips_elf64_ecoff_debug_swap #define elf_backend_size_info mips_elf64_size_info #define elf_backend_got_header_size (4 * MIPS_RESERVED_GOTNO) #define elf_backend_plt_header_size 0 /* MIPS ELF64 can use a mixture of REL and RELA, but some Relocations * work better/work only in RELA, so we default to this. */ #define elf_backend_may_use_rel_p 1 #define elf_backend_may_use_rela_p 1 #define elf_backend_default_use_rela_p 1 /* We don't set bfd_elf64_bfd_is_local_label_name because the 32-bit MIPS-specific function only applies to IRIX5, which had no 64-bit ABI. */ #define bfd_elf64_find_nearest_line _bfd_mips_elf_find_nearest_line #define bfd_elf64_set_section_contents _bfd_mips_elf_set_section_contents #define bfd_elf64_bfd_link_hash_table_create \ mips_elf64_link_hash_table_create #define bfd_elf64_bfd_final_link mips_elf64_final_link #define bfd_elf64_bfd_copy_private_bfd_data \ _bfd_mips_elf_copy_private_bfd_data #define bfd_elf64_bfd_merge_private_bfd_data \ _bfd_mips_elf_merge_private_bfd_data #define bfd_elf64_bfd_set_private_flags _bfd_mips_elf_set_private_flags #define bfd_elf64_bfd_print_private_bfd_data \ _bfd_mips_elf_print_private_bfd_data #define bfd_elf64_get_reloc_upper_bound mips_elf64_get_reloc_upper_bound #define bfd_elf64_bfd_reloc_type_lookup mips_elf64_reloc_type_lookup #define bfd_elf64_archive_functions extern boolean bfd_elf64_archive_slurp_armap PARAMS((bfd *)); extern boolean bfd_elf64_archive_write_armap PARAMS((bfd *, unsigned int, struct orl *, unsigned int, int)); #define bfd_elf64_archive_slurp_extended_name_table \ _bfd_archive_coff_slurp_extended_name_table #define bfd_elf64_archive_construct_extended_name_table \ _bfd_archive_coff_construct_extended_name_table #define bfd_elf64_archive_truncate_arname \ _bfd_archive_coff_truncate_arname #define bfd_elf64_archive_read_ar_hdr _bfd_archive_coff_read_ar_hdr #define bfd_elf64_archive_openr_next_archived_file \ _bfd_archive_coff_openr_next_archived_file #define bfd_elf64_archive_get_elt_at_index \ _bfd_archive_coff_get_elt_at_index #define bfd_elf64_archive_generic_stat_arch_elt \ _bfd_archive_coff_generic_stat_arch_elt #define bfd_elf64_archive_update_armap_timestamp \ _bfd_archive_coff_update_armap_timestamp /* The SGI style (n)64 NewABI. */ #define TARGET_LITTLE_SYM bfd_elf64_littlemips_vec #define TARGET_LITTLE_NAME "elf64-littlemips" #define TARGET_BIG_SYM bfd_elf64_bigmips_vec #define TARGET_BIG_NAME "elf64-bigmips" #include "elf64-target.h" #define INCLUDED_TARGET_FILE /* More a type of flag. */ /* The SYSV-style 'traditional' (n)64 NewABI. */ #undef TARGET_LITTLE_SYM #undef TARGET_LITTLE_NAME #undef TARGET_BIG_SYM #undef TARGET_BIG_NAME #define TARGET_LITTLE_SYM bfd_elf64_tradlittlemips_vec #define TARGET_LITTLE_NAME "elf64-tradlittlemips" #define TARGET_BIG_SYM bfd_elf64_tradbigmips_vec #define TARGET_BIG_NAME "elf64-tradbigmips" /* Include the target file again for this target. */ #include "elf64-target.h"