/* ELF support for AArch64. Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc. Contributed by ARM Ltd. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING3. If not, see . */ /* Notes on implementation: Thread Local Store (TLS) Overview: The implementation currently supports both traditional TLS and TLS descriptors, but only general dynamic (GD). For traditional TLS the assembler will present us with code fragments of the form: adrp x0, :tlsgd:foo R_AARCH64_TLSGD_ADR_PAGE21(foo) add x0, :tlsgd_lo12:foo R_AARCH64_TLSGD_ADD_LO12_NC(foo) bl __tls_get_addr nop For TLS descriptors the assembler will present us with code fragments of the form: adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE(foo) ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo) add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo) .tlsdesccall foo blr x1 R_AARCH64_TLSDESC_CALL(foo) The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo indicate that foo is thread local and should be accessed via the traditional TLS mechanims. The relocations R_AARCH64_TLSDESC_{ADR_PAGE,LD64_LO12_NC,ADD_LO12_NC} against foo indicate that 'foo' is thread local and should be accessed via a TLS descriptor mechanism. The precise instruction sequence is only relevant from the perspective of linker relaxation which is currently not implemented. The static linker must detect that 'foo' is a TLS object and allocate a double GOT entry. The GOT entry must be created for both global and local TLS symbols. Note that this is different to none TLS local objects which do not need a GOT entry. In the traditional TLS mechanism, the double GOT entry is used to provide the tls_index structure, containing module and offset entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD64 on the module entry. The loader will subsequently fixup this relocation with the module identity. For global traditional TLS symbols the static linker places an R_AARCH64_TLS_DTPREL64 relocation on the offset entry. The loader will subsequently fixup the offset. For local TLS symbols the static linker fixes up offset. In the TLS descriptor mechanism the double GOT entry is used to provide the descriptor. The static linker places the relocation R_AARCH64_TLSDESC on the first GOT slot. The loader will subsequently fix this up. Implementation: The handling of TLS symbols is implemented across a number of different backend functions. The following is a top level view of what processing is performed where. The TLS implementation maintains state information for each TLS symbol. The state information for local and global symbols is kept in different places. Global symbols use generic BFD structures while local symbols use backend specific structures that are allocated and maintained entirely by the backend. The flow: aarch64_check_relocs() This function is invoked for each relocation. The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and R_AARCH64_TLSDESC_{ADR_PAGE,LD64_LO12_NC,ADD_LO12_NC} are spotted. One time creation of local symbol data structures are created when the first local symbol is seen. The reference count for a symbol is incremented. The GOT type for each symbol is marked as general dynamic. elf64_aarch64_allocate_dynrelocs () For each global with positive reference count we allocate a double GOT slot. For a traditional TLS symbol we allocate space for two relocation entries on the GOT, for a TLS descriptor symbol we allocate space for one relocation on the slot. Record the GOT offset for this symbol. elf64_aarch64_size_dynamic_sections () Iterate all input BFDS, look for in the local symbol data structure constructed earlier for local TLS symbols and allocate them double GOT slots along with space for a single GOT relocation. Update the local symbol structure to record the GOT offset allocated. elf64_aarch64_relocate_section () Calls elf64_aarch64_final_link_relocate () Emit the relevant TLS relocations against the GOT for each TLS symbol. For local TLS symbols emit the GOT offset directly. The GOT relocations are emitted once the first time a TLS symbol is encountered. The implementation uses the LSB of the GOT offset to flag that the relevant GOT relocations for a symbol have been emitted. All of the TLS code that uses the GOT offset needs to take care to mask out this flag bit before using the offset. elf64_aarch64_final_link_relocate () Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */ #include "sysdep.h" #include "bfd.h" #include "libiberty.h" #include "libbfd.h" #include "bfd_stdint.h" #include "elf-bfd.h" #include "bfdlink.h" #include "elf/aarch64.h" static bfd_reloc_status_type bfd_elf_aarch64_put_addend (bfd *abfd, bfd_byte *address, reloc_howto_type *howto, bfd_signed_vma addend); #define IS_AARCH64_TLS_RELOC(R_TYPE) \ ((R_TYPE) == R_AARCH64_TLSGD_ADR_PAGE21 \ || (R_TYPE) == R_AARCH64_TLSGD_ADD_LO12_NC \ || (R_TYPE) == R_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \ || (R_TYPE) == R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \ || (R_TYPE) == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \ || (R_TYPE) == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \ || (R_TYPE) == R_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \ || (R_TYPE) == R_AARCH64_TLSLE_ADD_TPREL_LO12 \ || (R_TYPE) == R_AARCH64_TLSLE_ADD_TPREL_HI12 \ || (R_TYPE) == R_AARCH64_TLSLE_ADD_TPREL_LO12_NC \ || (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G2 \ || (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G1 \ || (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G1_NC \ || (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G0 \ || (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G0_NC \ || (R_TYPE) == R_AARCH64_TLS_DTPMOD64 \ || (R_TYPE) == R_AARCH64_TLS_DTPREL64 \ || (R_TYPE) == R_AARCH64_TLS_TPREL64 \ || IS_AARCH64_TLSDESC_RELOC ((R_TYPE))) #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \ ((R_TYPE) == R_AARCH64_TLSDESC_LD64_PREL19 \ || (R_TYPE) == R_AARCH64_TLSDESC_ADR_PREL21 \ || (R_TYPE) == R_AARCH64_TLSDESC_ADR_PAGE \ || (R_TYPE) == R_AARCH64_TLSDESC_ADD_LO12_NC \ || (R_TYPE) == R_AARCH64_TLSDESC_LD64_LO12_NC \ || (R_TYPE) == R_AARCH64_TLSDESC_OFF_G1 \ || (R_TYPE) == R_AARCH64_TLSDESC_OFF_G0_NC \ || (R_TYPE) == R_AARCH64_TLSDESC_LDR \ || (R_TYPE) == R_AARCH64_TLSDESC_ADD \ || (R_TYPE) == R_AARCH64_TLSDESC_CALL \ || (R_TYPE) == R_AARCH64_TLSDESC) #define ELIMINATE_COPY_RELOCS 0 /* Return the relocation section associated with NAME. HTAB is the bfd's elf64_aarch64_link_hash_entry. */ #define RELOC_SECTION(HTAB, NAME) \ ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME) /* Return size of a relocation entry. HTAB is the bfd's elf64_aarch64_link_hash_entry. */ #define RELOC_SIZE(HTAB) (sizeof (Elf64_External_Rela)) /* Return function to swap relocations in. HTAB is the bfd's elf64_aarch64_link_hash_entry. */ #define SWAP_RELOC_IN(HTAB) (bfd_elf64_swap_reloca_in) /* Return function to swap relocations out. HTAB is the bfd's elf64_aarch64_link_hash_entry. */ #define SWAP_RELOC_OUT(HTAB) (bfd_elf64_swap_reloca_out) /* GOT Entry size - 8 bytes. */ #define GOT_ENTRY_SIZE (8) #define PLT_ENTRY_SIZE (32) #define PLT_SMALL_ENTRY_SIZE (16) #define PLT_TLSDESC_ENTRY_SIZE (32) /* Take the PAGE component of an address or offset. */ #define PG(x) ((x) & ~ 0xfff) #define PG_OFFSET(x) ((x) & 0xfff) /* Encoding of the nop instruction */ #define INSN_NOP 0xd503201f #define aarch64_compute_jump_table_size(htab) \ (((htab)->root.srelplt == NULL) ? 0 \ : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE) /* The first entry in a procedure linkage table looks like this if the distance between the PLTGOT and the PLT is < 4GB use these PLT entries. Note that the dynamic linker gets &PLTGOT[2] in x16 and needs to work out PLTGOT[1] by using an address of [x16,#-8]. */ static const bfd_byte elf64_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] = { 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */ 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */ 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */ 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */ 0x20, 0x02, 0x1f, 0xd6, /* br x17 */ 0x1f, 0x20, 0x03, 0xd5, /* nop */ 0x1f, 0x20, 0x03, 0xd5, /* nop */ 0x1f, 0x20, 0x03, 0xd5, /* nop */ }; /* Per function entry in a procedure linkage table looks like this if the distance between the PLTGOT and the PLT is < 4GB use these PLT entries. */ static const bfd_byte elf64_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] = { 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */ 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */ 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */ 0x20, 0x02, 0x1f, 0xd6, /* br x17. */ }; static const bfd_byte elf64_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] = { 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */ 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */ 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */ 0x42, 0x08, 0x40, 0xF9, /* ldr x2, [x2, #0] */ 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */ 0x40, 0x00, 0x1F, 0xD6, /* br x2 */ 0x1f, 0x20, 0x03, 0xd5, /* nop */ 0x1f, 0x20, 0x03, 0xd5, /* nop */ }; #define elf_info_to_howto elf64_aarch64_info_to_howto #define elf_info_to_howto_rel elf64_aarch64_info_to_howto #define AARCH64_ELF_ABI_VERSION 0 #define AARCH64_ELF_OS_ABI_VERSION 0 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ #define ALL_ONES (~ (bfd_vma) 0) static reloc_howto_type elf64_aarch64_howto_none = HOWTO (R_AARCH64_NONE, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_NONE", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE); /* pcrel_offset */ static reloc_howto_type elf64_aarch64_howto_dynrelocs[] = { HOWTO (R_AARCH64_COPY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_COPY", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_GLOB_DAT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_GLOB_DAT", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_JUMP_SLOT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_JUMP_SLOT", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_RELATIVE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_RELATIVE", /* name */ TRUE, /* partial_inplace */ ALL_ONES, /* src_mask */ ALL_ONES, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLS_DTPMOD64, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLS_DTPMOD64", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ ALL_ONES, /* dst_mask */ FALSE), /* pc_reloffset */ HOWTO (R_AARCH64_TLS_DTPREL64, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLS_DTPREL64", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ ALL_ONES, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLS_TPREL64, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLS_TPREL64", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ ALL_ONES, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSDESC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSDESC", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ ALL_ONES, /* dst_mask */ FALSE), /* pcrel_offset */ }; /* Note: code such as elf64_aarch64_reloc_type_lookup expect to use e.g. R_AARCH64_PREL64 as an index into this, and find the R_AARCH64_PREL64 HOWTO in that slot. */ static reloc_howto_type elf64_aarch64_howto_table[] = { /* Basic data relocations. */ HOWTO (R_AARCH64_NULL, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_NULL", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* .xword: (S+A) */ HOWTO (R_AARCH64_ABS64, /* type */ 0, /* rightshift */ 4, /* size (4 = long long) */ 64, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_ABS64", /* name */ FALSE, /* partial_inplace */ ALL_ONES, /* src_mask */ ALL_ONES, /* dst_mask */ FALSE), /* pcrel_offset */ /* .word: (S+A) */ HOWTO (R_AARCH64_ABS32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_ABS32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* .half: (S+A) */ HOWTO (R_AARCH64_ABS16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_ABS16", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* .xword: (S+A-P) */ HOWTO (R_AARCH64_PREL64, /* type */ 0, /* rightshift */ 4, /* size (4 = long long) */ 64, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_PREL64", /* name */ FALSE, /* partial_inplace */ ALL_ONES, /* src_mask */ ALL_ONES, /* dst_mask */ TRUE), /* pcrel_offset */ /* .word: (S+A-P) */ HOWTO (R_AARCH64_PREL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_PREL32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* .half: (S+A-P) */ HOWTO (R_AARCH64_PREL16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_PREL16", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* Group relocations to create a 16, 32, 48 or 64 bit unsigned data or abs address inline. */ /* MOVZ: ((S+A) >> 0) & 0xffff */ HOWTO (R_AARCH64_MOVW_UABS_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_MOVW_UABS_G0", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */ HOWTO (R_AARCH64_MOVW_UABS_G0_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_MOVW_UABS_G0_NC", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* MOVZ: ((S+A) >> 16) & 0xffff */ HOWTO (R_AARCH64_MOVW_UABS_G1, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_MOVW_UABS_G1", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */ HOWTO (R_AARCH64_MOVW_UABS_G1_NC, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_MOVW_UABS_G1_NC", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* MOVZ: ((S+A) >> 32) & 0xffff */ HOWTO (R_AARCH64_MOVW_UABS_G2, /* type */ 32, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_MOVW_UABS_G2", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */ HOWTO (R_AARCH64_MOVW_UABS_G2_NC, /* type */ 32, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_MOVW_UABS_G2_NC", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* MOVZ: ((S+A) >> 48) & 0xffff */ HOWTO (R_AARCH64_MOVW_UABS_G3, /* type */ 48, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_MOVW_UABS_G3", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Group relocations to create high part of a 16, 32, 48 or 64 bit signed data or abs address inline. Will change instruction to MOVN or MOVZ depending on sign of calculated value. */ /* MOV[ZN]: ((S+A) >> 0) & 0xffff */ HOWTO (R_AARCH64_MOVW_SABS_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_MOVW_SABS_G0", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* MOV[ZN]: ((S+A) >> 16) & 0xffff */ HOWTO (R_AARCH64_MOVW_SABS_G1, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_MOVW_SABS_G1", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* MOV[ZN]: ((S+A) >> 32) & 0xffff */ HOWTO (R_AARCH64_MOVW_SABS_G2, /* type */ 32, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_MOVW_SABS_G2", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relocations to generate 19, 21 and 33 bit PC-relative load/store addresses: PG(x) is (x & ~0xfff). */ /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */ HOWTO (R_AARCH64_LD_PREL_LO19, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 19, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_LD_PREL_LO19", /* name */ FALSE, /* partial_inplace */ 0x7ffff, /* src_mask */ 0x7ffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* ADR: (S+A-P) & 0x1fffff */ HOWTO (R_AARCH64_ADR_PREL_LO21, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 21, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_ADR_PREL_LO21", /* name */ FALSE, /* partial_inplace */ 0x1fffff, /* src_mask */ 0x1fffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */ HOWTO (R_AARCH64_ADR_PREL_PG_HI21, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 21, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_ADR_PREL_PG_HI21", /* name */ FALSE, /* partial_inplace */ 0x1fffff, /* src_mask */ 0x1fffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */ HOWTO (R_AARCH64_ADR_PREL_PG_HI21_NC, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 21, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_ADR_PREL_PG_HI21_NC", /* name */ FALSE, /* partial_inplace */ 0x1fffff, /* src_mask */ 0x1fffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* ADD: (S+A) & 0xfff [no overflow check] */ HOWTO (R_AARCH64_ADD_ABS_LO12_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 10, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_ADD_ABS_LO12_NC", /* name */ FALSE, /* partial_inplace */ 0x3ffc00, /* src_mask */ 0x3ffc00, /* dst_mask */ FALSE), /* pcrel_offset */ /* LD/ST8: (S+A) & 0xfff */ HOWTO (R_AARCH64_LDST8_ABS_LO12_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_LDST8_ABS_LO12_NC", /* name */ FALSE, /* partial_inplace */ 0xfff, /* src_mask */ 0xfff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relocations for control-flow instructions. */ /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */ HOWTO (R_AARCH64_TSTBR14, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 14, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TSTBR14", /* name */ FALSE, /* partial_inplace */ 0x3fff, /* src_mask */ 0x3fff, /* dst_mask */ TRUE), /* pcrel_offset */ /* B.cond: ((S+A-P) >> 2) & 0x7ffff */ HOWTO (R_AARCH64_CONDBR19, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 19, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_CONDBR19", /* name */ FALSE, /* partial_inplace */ 0x7ffff, /* src_mask */ 0x7ffff, /* dst_mask */ TRUE), /* pcrel_offset */ EMPTY_HOWTO (281), /* B: ((S+A-P) >> 2) & 0x3ffffff */ HOWTO (R_AARCH64_JUMP26, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_JUMP26", /* name */ FALSE, /* partial_inplace */ 0x3ffffff, /* src_mask */ 0x3ffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* BL: ((S+A-P) >> 2) & 0x3ffffff */ HOWTO (R_AARCH64_CALL26, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_CALL26", /* name */ FALSE, /* partial_inplace */ 0x3ffffff, /* src_mask */ 0x3ffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* LD/ST16: (S+A) & 0xffe */ HOWTO (R_AARCH64_LDST16_ABS_LO12_NC, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_LDST16_ABS_LO12_NC", /* name */ FALSE, /* partial_inplace */ 0xffe, /* src_mask */ 0xffe, /* dst_mask */ FALSE), /* pcrel_offset */ /* LD/ST32: (S+A) & 0xffc */ HOWTO (R_AARCH64_LDST32_ABS_LO12_NC, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_LDST32_ABS_LO12_NC", /* name */ FALSE, /* partial_inplace */ 0xffc, /* src_mask */ 0xffc, /* dst_mask */ FALSE), /* pcrel_offset */ /* LD/ST64: (S+A) & 0xff8 */ HOWTO (R_AARCH64_LDST64_ABS_LO12_NC, /* type */ 3, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_LDST64_ABS_LO12_NC", /* name */ FALSE, /* partial_inplace */ 0xff8, /* src_mask */ 0xff8, /* dst_mask */ FALSE), /* pcrel_offset */ EMPTY_HOWTO (287), EMPTY_HOWTO (288), EMPTY_HOWTO (289), EMPTY_HOWTO (290), EMPTY_HOWTO (291), EMPTY_HOWTO (292), EMPTY_HOWTO (293), EMPTY_HOWTO (294), EMPTY_HOWTO (295), EMPTY_HOWTO (296), EMPTY_HOWTO (297), EMPTY_HOWTO (298), /* LD/ST128: (S+A) & 0xff0 */ HOWTO (R_AARCH64_LDST128_ABS_LO12_NC, /* type */ 4, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_LDST128_ABS_LO12_NC", /* name */ FALSE, /* partial_inplace */ 0xff0, /* src_mask */ 0xff0, /* dst_mask */ FALSE), /* pcrel_offset */ EMPTY_HOWTO (300), EMPTY_HOWTO (301), EMPTY_HOWTO (302), EMPTY_HOWTO (303), EMPTY_HOWTO (304), EMPTY_HOWTO (305), EMPTY_HOWTO (306), EMPTY_HOWTO (307), EMPTY_HOWTO (308), /* Set a load-literal immediate field to bits 0x1FFFFC of G(S)-P */ HOWTO (R_AARCH64_GOT_LD_PREL19, /* type */ 2, /* rightshift */ 2, /* size (0 = byte,1 = short,2 = long) */ 19, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_GOT_LD_PREL19", /* name */ FALSE, /* partial_inplace */ 0xffffe0, /* src_mask */ 0xffffe0, /* dst_mask */ TRUE), /* pcrel_offset */ EMPTY_HOWTO (310), /* Get to the page for the GOT entry for the symbol (G(S) - P) using an ADRP instruction. */ HOWTO (R_AARCH64_ADR_GOT_PAGE, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 21, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_ADR_GOT_PAGE", /* name */ FALSE, /* partial_inplace */ 0x1fffff, /* src_mask */ 0x1fffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* LD64: GOT offset G(S) & 0xff8 */ HOWTO (R_AARCH64_LD64_GOT_LO12_NC, /* type */ 3, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_LD64_GOT_LO12_NC", /* name */ FALSE, /* partial_inplace */ 0xff8, /* src_mask */ 0xff8, /* dst_mask */ FALSE) /* pcrel_offset */ }; static reloc_howto_type elf64_aarch64_tls_howto_table[] = { EMPTY_HOWTO (512), /* Get to the page for the GOT entry for the symbol (G(S) - P) using an ADRP instruction. */ HOWTO (R_AARCH64_TLSGD_ADR_PAGE21, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 21, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSGD_ADR_PAGE21", /* name */ FALSE, /* partial_inplace */ 0x1fffff, /* src_mask */ 0x1fffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */ HOWTO (R_AARCH64_TLSGD_ADD_LO12_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSGD_ADD_LO12_NC", /* name */ FALSE, /* partial_inplace */ 0xfff, /* src_mask */ 0xfff, /* dst_mask */ FALSE), /* pcrel_offset */ EMPTY_HOWTO (515), EMPTY_HOWTO (516), EMPTY_HOWTO (517), EMPTY_HOWTO (518), EMPTY_HOWTO (519), EMPTY_HOWTO (520), EMPTY_HOWTO (521), EMPTY_HOWTO (522), EMPTY_HOWTO (523), EMPTY_HOWTO (524), EMPTY_HOWTO (525), EMPTY_HOWTO (526), EMPTY_HOWTO (527), EMPTY_HOWTO (528), EMPTY_HOWTO (529), EMPTY_HOWTO (530), EMPTY_HOWTO (531), EMPTY_HOWTO (532), EMPTY_HOWTO (533), EMPTY_HOWTO (534), EMPTY_HOWTO (535), EMPTY_HOWTO (536), EMPTY_HOWTO (537), EMPTY_HOWTO (538), HOWTO (R_AARCH64_TLSIE_MOVW_GOTTPREL_G1, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSIE_MOVW_GOTTPREL_G1", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 21, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21", /* name */ FALSE, /* partial_inplace */ 0x1fffff, /* src_mask */ 0x1fffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, /* type */ 3, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC", /* name */ FALSE, /* partial_inplace */ 0xff8, /* src_mask */ 0xff8, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSIE_LD_GOTTPREL_PREL19, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 21, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSIE_LD_GOTTPREL_PREL19", /* name */ FALSE, /* partial_inplace */ 0x1ffffc, /* src_mask */ 0x1ffffc, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G2, /* type */ 32, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSLE_MOVW_TPREL_G2", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G1, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSLE_MOVW_TPREL_G1", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G1_NC, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSLE_MOVW_TPREL_G1_NC", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSLE_MOVW_TPREL_G0", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G0_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSLE_MOVW_TPREL_G0_NC", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSLE_ADD_TPREL_HI12, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSLE_ADD_TPREL_HI12", /* name */ FALSE, /* partial_inplace */ 0xfff, /* src_mask */ 0xfff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSLE_ADD_TPREL_LO12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSLE_ADD_TPREL_LO12", /* name */ FALSE, /* partial_inplace */ 0xfff, /* src_mask */ 0xfff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSLE_ADD_TPREL_LO12_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSLE_ADD_TPREL_LO12_NC", /* name */ FALSE, /* partial_inplace */ 0xfff, /* src_mask */ 0xfff, /* dst_mask */ FALSE), /* pcrel_offset */ }; static reloc_howto_type elf64_aarch64_tlsdesc_howto_table[] = { HOWTO (R_AARCH64_TLSDESC_LD64_PREL19, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 21, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSDESC_LD64_PREL19", /* name */ FALSE, /* partial_inplace */ 0x1ffffc, /* src_mask */ 0x1ffffc, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSDESC_ADR_PREL21, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 21, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSDESC_ADR_PREL21", /* name */ FALSE, /* partial_inplace */ 0x1fffff, /* src_mask */ 0x1fffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* Get to the page for the GOT entry for the symbol (G(S) - P) using an ADRP instruction. */ HOWTO (R_AARCH64_TLSDESC_ADR_PAGE, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 21, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSDESC_ADR_PAGE", /* name */ FALSE, /* partial_inplace */ 0x1fffff, /* src_mask */ 0x1fffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* LD64: GOT offset G(S) & 0xfff. */ HOWTO (R_AARCH64_TLSDESC_LD64_LO12_NC, /* type */ 3, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSDESC_LD64_LO12_NC", /* name */ FALSE, /* partial_inplace */ 0xfff, /* src_mask */ 0xfff, /* dst_mask */ FALSE), /* pcrel_offset */ /* ADD: GOT offset G(S) & 0xfff. */ HOWTO (R_AARCH64_TLSDESC_ADD_LO12_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSDESC_ADD_LO12_NC", /* name */ FALSE, /* partial_inplace */ 0xfff, /* src_mask */ 0xfff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSDESC_OFF_G1, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSDESC_OFF_G1", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSDESC_OFF_G0_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSDESC_OFF_G0_NC", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSDESC_LDR, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSDESC_LDR", /* name */ FALSE, /* partial_inplace */ 0x0, /* src_mask */ 0x0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSDESC_ADD, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSDESC_ADD", /* name */ FALSE, /* partial_inplace */ 0x0, /* src_mask */ 0x0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_AARCH64_TLSDESC_CALL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_AARCH64_TLSDESC_CALL", /* name */ FALSE, /* partial_inplace */ 0x0, /* src_mask */ 0x0, /* dst_mask */ FALSE), /* pcrel_offset */ }; static reloc_howto_type * elf64_aarch64_howto_from_type (unsigned int r_type) { if (r_type >= R_AARCH64_static_min && r_type < R_AARCH64_static_max) return &elf64_aarch64_howto_table[r_type - R_AARCH64_static_min]; if (r_type >= R_AARCH64_tls_min && r_type < R_AARCH64_tls_max) return &elf64_aarch64_tls_howto_table[r_type - R_AARCH64_tls_min]; if (r_type >= R_AARCH64_tlsdesc_min && r_type < R_AARCH64_tlsdesc_max) return &elf64_aarch64_tlsdesc_howto_table[r_type - R_AARCH64_tlsdesc_min]; if (r_type >= R_AARCH64_dyn_min && r_type < R_AARCH64_dyn_max) return &elf64_aarch64_howto_dynrelocs[r_type - R_AARCH64_dyn_min]; switch (r_type) { case R_AARCH64_NONE: return &elf64_aarch64_howto_none; } bfd_set_error (bfd_error_bad_value); return NULL; } static void elf64_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc, Elf_Internal_Rela *elf_reloc) { unsigned int r_type; r_type = ELF64_R_TYPE (elf_reloc->r_info); bfd_reloc->howto = elf64_aarch64_howto_from_type (r_type); } struct elf64_aarch64_reloc_map { bfd_reloc_code_real_type bfd_reloc_val; unsigned int elf_reloc_val; }; /* All entries in this list must also be present in elf64_aarch64_howto_table. */ static const struct elf64_aarch64_reloc_map elf64_aarch64_reloc_map[] = { {BFD_RELOC_NONE, R_AARCH64_NONE}, /* Basic data relocations. */ {BFD_RELOC_CTOR, R_AARCH64_ABS64}, {BFD_RELOC_64, R_AARCH64_ABS64}, {BFD_RELOC_32, R_AARCH64_ABS32}, {BFD_RELOC_16, R_AARCH64_ABS16}, {BFD_RELOC_64_PCREL, R_AARCH64_PREL64}, {BFD_RELOC_32_PCREL, R_AARCH64_PREL32}, {BFD_RELOC_16_PCREL, R_AARCH64_PREL16}, /* Group relocations to low order bits of a 16, 32, 48 or 64 bit value inline. */ {BFD_RELOC_AARCH64_MOVW_G0_NC, R_AARCH64_MOVW_UABS_G0_NC}, {BFD_RELOC_AARCH64_MOVW_G1_NC, R_AARCH64_MOVW_UABS_G1_NC}, {BFD_RELOC_AARCH64_MOVW_G2_NC, R_AARCH64_MOVW_UABS_G2_NC}, /* Group relocations to create high bits of a 16, 32, 48 or 64 bit signed value inline. */ {BFD_RELOC_AARCH64_MOVW_G0_S, R_AARCH64_MOVW_SABS_G0}, {BFD_RELOC_AARCH64_MOVW_G1_S, R_AARCH64_MOVW_SABS_G1}, {BFD_RELOC_AARCH64_MOVW_G2_S, R_AARCH64_MOVW_SABS_G2}, /* Group relocations to create high bits of a 16, 32, 48 or 64 bit unsigned value inline. */ {BFD_RELOC_AARCH64_MOVW_G0, R_AARCH64_MOVW_UABS_G0}, {BFD_RELOC_AARCH64_MOVW_G1, R_AARCH64_MOVW_UABS_G1}, {BFD_RELOC_AARCH64_MOVW_G2, R_AARCH64_MOVW_UABS_G2}, {BFD_RELOC_AARCH64_MOVW_G3, R_AARCH64_MOVW_UABS_G3}, /* Relocations to generate 19, 21 and 33 bit PC-relative load/store. */ {BFD_RELOC_AARCH64_LD_LO19_PCREL, R_AARCH64_LD_PREL_LO19}, {BFD_RELOC_AARCH64_ADR_LO21_PCREL, R_AARCH64_ADR_PREL_LO21}, {BFD_RELOC_AARCH64_ADR_HI21_PCREL, R_AARCH64_ADR_PREL_PG_HI21}, {BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL, R_AARCH64_ADR_PREL_PG_HI21_NC}, {BFD_RELOC_AARCH64_ADD_LO12, R_AARCH64_ADD_ABS_LO12_NC}, {BFD_RELOC_AARCH64_LDST8_LO12, R_AARCH64_LDST8_ABS_LO12_NC}, {BFD_RELOC_AARCH64_LDST16_LO12, R_AARCH64_LDST16_ABS_LO12_NC}, {BFD_RELOC_AARCH64_LDST32_LO12, R_AARCH64_LDST32_ABS_LO12_NC}, {BFD_RELOC_AARCH64_LDST64_LO12, R_AARCH64_LDST64_ABS_LO12_NC}, {BFD_RELOC_AARCH64_LDST128_LO12, R_AARCH64_LDST128_ABS_LO12_NC}, /* Relocations for control-flow instructions. */ {BFD_RELOC_AARCH64_TSTBR14, R_AARCH64_TSTBR14}, {BFD_RELOC_AARCH64_BRANCH19, R_AARCH64_CONDBR19}, {BFD_RELOC_AARCH64_JUMP26, R_AARCH64_JUMP26}, {BFD_RELOC_AARCH64_CALL26, R_AARCH64_CALL26}, /* Relocations for PIC. */ {BFD_RELOC_AARCH64_GOT_LD_PREL19, R_AARCH64_GOT_LD_PREL19}, {BFD_RELOC_AARCH64_ADR_GOT_PAGE, R_AARCH64_ADR_GOT_PAGE}, {BFD_RELOC_AARCH64_LD64_GOT_LO12_NC, R_AARCH64_LD64_GOT_LO12_NC}, /* Relocations for TLS. */ {BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21, R_AARCH64_TLSGD_ADR_PAGE21}, {BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC, R_AARCH64_TLSGD_ADD_LO12_NC}, {BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1, R_AARCH64_TLSIE_MOVW_GOTTPREL_G1}, {BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC, R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC}, {BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21}, {BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC}, {BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19, R_AARCH64_TLSIE_LD_GOTTPREL_PREL19}, {BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2, R_AARCH64_TLSLE_MOVW_TPREL_G2}, {BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1, R_AARCH64_TLSLE_MOVW_TPREL_G1}, {BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC, R_AARCH64_TLSLE_MOVW_TPREL_G1_NC}, {BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0, R_AARCH64_TLSLE_MOVW_TPREL_G0}, {BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC, R_AARCH64_TLSLE_MOVW_TPREL_G0_NC}, {BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12, R_AARCH64_TLSLE_ADD_TPREL_LO12}, {BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12, R_AARCH64_TLSLE_ADD_TPREL_HI12}, {BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC, R_AARCH64_TLSLE_ADD_TPREL_LO12_NC}, {BFD_RELOC_AARCH64_TLSDESC_LD64_PREL19, R_AARCH64_TLSDESC_LD64_PREL19}, {BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, R_AARCH64_TLSDESC_ADR_PREL21}, {BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE, R_AARCH64_TLSDESC_ADR_PAGE}, {BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC, R_AARCH64_TLSDESC_ADD_LO12_NC}, {BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC, R_AARCH64_TLSDESC_LD64_LO12_NC}, {BFD_RELOC_AARCH64_TLSDESC_OFF_G1, R_AARCH64_TLSDESC_OFF_G1}, {BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC, R_AARCH64_TLSDESC_OFF_G0_NC}, {BFD_RELOC_AARCH64_TLSDESC_LDR, R_AARCH64_TLSDESC_LDR}, {BFD_RELOC_AARCH64_TLSDESC_ADD, R_AARCH64_TLSDESC_ADD}, {BFD_RELOC_AARCH64_TLSDESC_CALL, R_AARCH64_TLSDESC_CALL}, {BFD_RELOC_AARCH64_TLS_DTPMOD64, R_AARCH64_TLS_DTPMOD64}, {BFD_RELOC_AARCH64_TLS_DTPREL64, R_AARCH64_TLS_DTPREL64}, {BFD_RELOC_AARCH64_TLS_TPREL64, R_AARCH64_TLS_TPREL64}, {BFD_RELOC_AARCH64_TLSDESC, R_AARCH64_TLSDESC}, }; static reloc_howto_type * elf64_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { unsigned int i; for (i = 0; i < ARRAY_SIZE (elf64_aarch64_reloc_map); i++) if (elf64_aarch64_reloc_map[i].bfd_reloc_val == code) return elf64_aarch64_howto_from_type (elf64_aarch64_reloc_map[i].elf_reloc_val); bfd_set_error (bfd_error_bad_value); return NULL; } static reloc_howto_type * elf64_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < ARRAY_SIZE (elf64_aarch64_howto_table); i++) if (elf64_aarch64_howto_table[i].name != NULL && strcasecmp (elf64_aarch64_howto_table[i].name, r_name) == 0) return &elf64_aarch64_howto_table[i]; return NULL; } /* Support for core dump NOTE sections. */ static bfd_boolean elf64_aarch64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) { int offset; size_t size; switch (note->descsz) { default: return FALSE; case 408: /* sizeof(struct elf_prstatus) on Linux/arm64. */ /* pr_cursig */ elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); /* pr_pid */ elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 32); /* pr_reg */ offset = 112; size = 272; break; } /* Make a ".reg/999" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", size, note->descpos + offset); } #define TARGET_LITTLE_SYM bfd_elf64_littleaarch64_vec #define TARGET_LITTLE_NAME "elf64-littleaarch64" #define TARGET_BIG_SYM bfd_elf64_bigaarch64_vec #define TARGET_BIG_NAME "elf64-bigaarch64" #define elf_backend_grok_prstatus elf64_aarch64_grok_prstatus typedef unsigned long int insn32; /* The linker script knows the section names for placement. The entry_names are used to do simple name mangling on the stubs. Given a function name, and its type, the stub can be found. The name can be changed. The only requirement is the %s be present. */ #define STUB_ENTRY_NAME "__%s_veneer" /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" #define AARCH64_MAX_FWD_BRANCH_OFFSET \ (((1 << 25) - 1) << 2) #define AARCH64_MAX_BWD_BRANCH_OFFSET \ (-((1 << 25) << 2)) #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1) #define AARCH64_MIN_ADRP_IMM (-(1 << 20)) static int aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place) { bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12; return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM; } static int aarch64_valid_branch_p (bfd_vma value, bfd_vma place) { bfd_signed_vma offset = (bfd_signed_vma) (value - place); return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET); } static const uint32_t aarch64_adrp_branch_stub [] = { 0x90000010, /* adrp ip0, X */ /* R_AARCH64_ADR_HI21_PCREL(X) */ 0x91000210, /* add ip0, ip0, :lo12:X */ /* R_AARCH64_ADD_ABS_LO12_NC(X) */ 0xd61f0200, /* br ip0 */ }; static const uint32_t aarch64_long_branch_stub[] = { 0x58000090, /* ldr ip0, 1f */ 0x10000011, /* adr ip1, #0 */ 0x8b110210, /* add ip0, ip0, ip1 */ 0xd61f0200, /* br ip0 */ 0x00000000, /* 1: .xword R_AARCH64_PREL64(X) + 12 */ 0x00000000, }; /* Section name for stubs is the associated section name plus this string. */ #define STUB_SUFFIX ".stub" enum elf64_aarch64_stub_type { aarch64_stub_none, aarch64_stub_adrp_branch, aarch64_stub_long_branch, }; struct elf64_aarch64_stub_hash_entry { /* Base hash table entry structure. */ struct bfd_hash_entry root; /* The stub section. */ asection *stub_sec; /* Offset within stub_sec of the beginning of this stub. */ bfd_vma stub_offset; /* Given the symbol's value and its section we can determine its final value when building the stubs (so the stub knows where to jump). */ bfd_vma target_value; asection *target_section; enum elf64_aarch64_stub_type stub_type; /* The symbol table entry, if any, that this was derived from. */ struct elf64_aarch64_link_hash_entry *h; /* Destination symbol type */ unsigned char st_type; /* Where this stub is being called from, or, in the case of combined stub sections, the first input section in the group. */ asection *id_sec; /* The name for the local symbol at the start of this stub. The stub name in the hash table has to be unique; this does not, so it can be friendlier. */ char *output_name; }; /* Used to build a map of a section. This is required for mixed-endian code/data. */ typedef struct elf64_elf_section_map { bfd_vma vma; char type; } elf64_aarch64_section_map; typedef struct _aarch64_elf_section_data { struct bfd_elf_section_data elf; unsigned int mapcount; unsigned int mapsize; elf64_aarch64_section_map *map; } _aarch64_elf_section_data; #define elf64_aarch64_section_data(sec) \ ((_aarch64_elf_section_data *) elf_section_data (sec)) /* The size of the thread control block. */ #define TCB_SIZE 16 struct elf_aarch64_local_symbol { unsigned int got_type; bfd_signed_vma got_refcount; bfd_vma got_offset; /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset is from the end of the jump table and reserved entries within the PLTGOT. The magic value (bfd_vma) -1 indicates that an offset has not be allocated. */ bfd_vma tlsdesc_got_jump_table_offset; }; struct elf_aarch64_obj_tdata { struct elf_obj_tdata root; /* local symbol descriptors */ struct elf_aarch64_local_symbol *locals; /* Zero to warn when linking objects with incompatible enum sizes. */ int no_enum_size_warning; /* Zero to warn when linking objects with incompatible wchar_t sizes. */ int no_wchar_size_warning; }; #define elf_aarch64_tdata(bfd) \ ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any) #define elf64_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals) #define is_aarch64_elf(bfd) \ (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ && elf_tdata (bfd) != NULL \ && elf_object_id (bfd) == AARCH64_ELF_DATA) static bfd_boolean elf64_aarch64_mkobject (bfd *abfd) { return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata), AARCH64_ELF_DATA); } /* The AArch64 linker needs to keep track of the number of relocs that it decides to copy in check_relocs for each symbol. This is so that it can discard PC relative relocs if it doesn't need them when linking with -Bsymbolic. We store the information in a field extending the regular ELF linker hash table. */ /* This structure keeps track of the number of relocs we have copied for a given symbol. */ struct elf64_aarch64_relocs_copied { /* Next section. */ struct elf64_aarch64_relocs_copied *next; /* A section in dynobj. */ asection *section; /* Number of relocs copied in this section. */ bfd_size_type count; /* Number of PC-relative relocs copied in this section. */ bfd_size_type pc_count; }; #define elf64_aarch64_hash_entry(ent) \ ((struct elf64_aarch64_link_hash_entry *)(ent)) #define GOT_UNKNOWN 0 #define GOT_NORMAL 1 #define GOT_TLS_GD 2 #define GOT_TLS_IE 4 #define GOT_TLSDESC_GD 8 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD)) /* AArch64 ELF linker hash entry. */ struct elf64_aarch64_link_hash_entry { struct elf_link_hash_entry root; /* Track dynamic relocs copied for this symbol. */ struct elf_dyn_relocs *dyn_relocs; /* Number of PC relative relocs copied for this symbol. */ struct elf64_aarch64_relocs_copied *relocs_copied; /* Since PLT entries have variable size, we need to record the index into .got.plt instead of recomputing it from the PLT offset. */ bfd_signed_vma plt_got_offset; /* Bit mask representing the type of GOT entry(s) if any required by this symbol. */ unsigned int got_type; /* A pointer to the most recently used stub hash entry against this symbol. */ struct elf64_aarch64_stub_hash_entry *stub_cache; /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset is from the end of the jump table and reserved entries within the PLTGOT. The magic value (bfd_vma) -1 indicates that an offset has not be allocated. */ bfd_vma tlsdesc_got_jump_table_offset; }; static unsigned int elf64_aarch64_symbol_got_type (struct elf_link_hash_entry *h, bfd *abfd, unsigned long r_symndx) { if (h) return elf64_aarch64_hash_entry (h)->got_type; if (! elf64_aarch64_locals (abfd)) return GOT_UNKNOWN; return elf64_aarch64_locals (abfd)[r_symndx].got_type; } /* Traverse an AArch64 ELF linker hash table. */ #define elf64_aarch64_link_hash_traverse(table, func, info) \ (elf_link_hash_traverse \ (&(table)->root, \ (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ (info))) /* Get the AArch64 elf linker hash table from a link_info structure. */ #define elf64_aarch64_hash_table(info) \ ((struct elf64_aarch64_link_hash_table *) ((info)->hash)) #define aarch64_stub_hash_lookup(table, string, create, copy) \ ((struct elf64_aarch64_stub_hash_entry *) \ bfd_hash_lookup ((table), (string), (create), (copy))) /* AArch64 ELF linker hash table. */ struct elf64_aarch64_link_hash_table { /* The main hash table. */ struct elf_link_hash_table root; /* Nonzero to force PIC branch veneers. */ int pic_veneer; /* The number of bytes in the initial entry in the PLT. */ bfd_size_type plt_header_size; /* The number of bytes in the subsequent PLT etries. */ bfd_size_type plt_entry_size; /* Short-cuts to get to dynamic linker sections. */ asection *sdynbss; asection *srelbss; /* Small local sym cache. */ struct sym_cache sym_cache; /* For convenience in allocate_dynrelocs. */ bfd *obfd; /* The amount of space used by the reserved portion of the sgotplt section, plus whatever space is used by the jump slots. */ bfd_vma sgotplt_jump_table_size; /* The stub hash table. */ struct bfd_hash_table stub_hash_table; /* Linker stub bfd. */ bfd *stub_bfd; /* Linker call-backs. */ asection *(*add_stub_section) (const char *, asection *); void (*layout_sections_again) (void); /* Array to keep track of which stub sections have been created, and information on stub grouping. */ struct map_stub { /* This is the section to which stubs in the group will be attached. */ asection *link_sec; /* The stub section. */ asection *stub_sec; } *stub_group; /* Assorted information used by elf64_aarch64_size_stubs. */ unsigned int bfd_count; int top_index; asection **input_list; /* The offset into splt of the PLT entry for the TLS descriptor resolver. Special values are 0, if not necessary (or not found to be necessary yet), and -1 if needed but not determined yet. */ bfd_vma tlsdesc_plt; /* The GOT offset for the lazy trampoline. Communicated to the loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1 indicates an offset is not allocated. */ bfd_vma dt_tlsdesc_got; }; /* Return non-zero if the indicated VALUE has overflowed the maximum range expressible by a unsigned number with the indicated number of BITS. */ static bfd_reloc_status_type aarch64_unsigned_overflow (bfd_vma value, unsigned int bits) { bfd_vma lim; if (bits >= sizeof (bfd_vma) * 8) return bfd_reloc_ok; lim = (bfd_vma) 1 << bits; if (value >= lim) return bfd_reloc_overflow; return bfd_reloc_ok; } /* Return non-zero if the indicated VALUE has overflowed the maximum range expressible by an signed number with the indicated number of BITS. */ static bfd_reloc_status_type aarch64_signed_overflow (bfd_vma value, unsigned int bits) { bfd_signed_vma svalue = (bfd_signed_vma) value; bfd_signed_vma lim; if (bits >= sizeof (bfd_vma) * 8) return bfd_reloc_ok; lim = (bfd_signed_vma) 1 << (bits - 1); if (svalue < -lim || svalue >= lim) return bfd_reloc_overflow; return bfd_reloc_ok; } /* Create an entry in an AArch64 ELF linker hash table. */ static struct bfd_hash_entry * elf64_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { struct elf64_aarch64_link_hash_entry *ret = (struct elf64_aarch64_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == NULL) ret = bfd_hash_allocate (table, sizeof (struct elf64_aarch64_link_hash_entry)); if (ret == NULL) return (struct bfd_hash_entry *) ret; /* Call the allocation method of the superclass. */ ret = ((struct elf64_aarch64_link_hash_entry *) _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret != NULL) { ret->dyn_relocs = NULL; ret->relocs_copied = NULL; ret->got_type = GOT_UNKNOWN; ret->plt_got_offset = (bfd_vma) - 1; ret->stub_cache = NULL; ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1; } return (struct bfd_hash_entry *) ret; } /* Initialize an entry in the stub hash table. */ static struct bfd_hash_entry * stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = bfd_hash_allocate (table, sizeof (struct elf64_aarch64_stub_hash_entry)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = bfd_hash_newfunc (entry, table, string); if (entry != NULL) { struct elf64_aarch64_stub_hash_entry *eh; /* Initialize the local fields. */ eh = (struct elf64_aarch64_stub_hash_entry *) entry; eh->stub_sec = NULL; eh->stub_offset = 0; eh->target_value = 0; eh->target_section = NULL; eh->stub_type = aarch64_stub_none; eh->h = NULL; eh->id_sec = NULL; } return entry; } /* Copy the extra info we tack onto an elf_link_hash_entry. */ static void elf64_aarch64_copy_indirect_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *dir, struct elf_link_hash_entry *ind) { struct elf64_aarch64_link_hash_entry *edir, *eind; edir = (struct elf64_aarch64_link_hash_entry *) dir; eind = (struct elf64_aarch64_link_hash_entry *) ind; if (eind->dyn_relocs != NULL) { if (edir->dyn_relocs != NULL) { struct elf_dyn_relocs **pp; struct elf_dyn_relocs *p; /* Add reloc counts against the indirect sym to the direct sym list. Merge any entries against the same section. */ for (pp = &eind->dyn_relocs; (p = *pp) != NULL;) { struct elf_dyn_relocs *q; for (q = edir->dyn_relocs; q != NULL; q = q->next) if (q->sec == p->sec) { q->pc_count += p->pc_count; q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->dyn_relocs; } edir->dyn_relocs = eind->dyn_relocs; eind->dyn_relocs = NULL; } if (eind->relocs_copied != NULL) { if (edir->relocs_copied != NULL) { struct elf64_aarch64_relocs_copied **pp; struct elf64_aarch64_relocs_copied *p; /* Add reloc counts against the indirect sym to the direct sym list. Merge any entries against the same section. */ for (pp = &eind->relocs_copied; (p = *pp) != NULL;) { struct elf64_aarch64_relocs_copied *q; for (q = edir->relocs_copied; q != NULL; q = q->next) if (q->section == p->section) { q->pc_count += p->pc_count; q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->relocs_copied; } edir->relocs_copied = eind->relocs_copied; eind->relocs_copied = NULL; } if (ind->root.type == bfd_link_hash_indirect) { /* Copy over PLT info. */ if (dir->got.refcount <= 0) { edir->got_type = eind->got_type; eind->got_type = GOT_UNKNOWN; } } _bfd_elf_link_hash_copy_indirect (info, dir, ind); } /* Create an AArch64 elf linker hash table. */ static struct bfd_link_hash_table * elf64_aarch64_link_hash_table_create (bfd *abfd) { struct elf64_aarch64_link_hash_table *ret; bfd_size_type amt = sizeof (struct elf64_aarch64_link_hash_table); ret = bfd_zmalloc (amt); if (ret == NULL) return NULL; if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, elf64_aarch64_link_hash_newfunc, sizeof (struct elf64_aarch64_link_hash_entry), AARCH64_ELF_DATA)) { free (ret); return NULL; } ret->plt_header_size = PLT_ENTRY_SIZE; ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE; ret->obfd = abfd; ret->dt_tlsdesc_got = (bfd_vma) - 1; if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc, sizeof (struct elf64_aarch64_stub_hash_entry))) { free (ret); return NULL; } return &ret->root.root; } /* Free the derived linker hash table. */ static void elf64_aarch64_hash_table_free (struct bfd_link_hash_table *hash) { struct elf64_aarch64_link_hash_table *ret = (struct elf64_aarch64_link_hash_table *) hash; bfd_hash_table_free (&ret->stub_hash_table); _bfd_elf_link_hash_table_free (hash); } static bfd_vma aarch64_resolve_relocation (unsigned int r_type, bfd_vma place, bfd_vma value, bfd_vma addend, bfd_boolean weak_undef_p) { switch (r_type) { case R_AARCH64_TLSDESC_CALL: case R_AARCH64_NONE: case R_AARCH64_NULL: break; case R_AARCH64_ADR_PREL_LO21: case R_AARCH64_CONDBR19: case R_AARCH64_LD_PREL_LO19: case R_AARCH64_PREL16: case R_AARCH64_PREL32: case R_AARCH64_PREL64: case R_AARCH64_TSTBR14: if (weak_undef_p) value = place; value = value + addend - place; break; case R_AARCH64_CALL26: case R_AARCH64_JUMP26: value = value + addend - place; break; case R_AARCH64_ABS16: case R_AARCH64_ABS32: case R_AARCH64_MOVW_SABS_G0: case R_AARCH64_MOVW_SABS_G1: case R_AARCH64_MOVW_SABS_G2: case R_AARCH64_MOVW_UABS_G0: case R_AARCH64_MOVW_UABS_G0_NC: case R_AARCH64_MOVW_UABS_G1: case R_AARCH64_MOVW_UABS_G1_NC: case R_AARCH64_MOVW_UABS_G2: case R_AARCH64_MOVW_UABS_G2_NC: case R_AARCH64_MOVW_UABS_G3: value = value + addend; break; case R_AARCH64_ADR_PREL_PG_HI21: case R_AARCH64_ADR_PREL_PG_HI21_NC: if (weak_undef_p) value = PG (place); value = PG (value + addend) - PG (place); break; case R_AARCH64_GOT_LD_PREL19: value = value + addend - place; break; case R_AARCH64_ADR_GOT_PAGE: case R_AARCH64_TLSDESC_ADR_PAGE: case R_AARCH64_TLSGD_ADR_PAGE21: case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: value = PG (value + addend) - PG (place); break; case R_AARCH64_ADD_ABS_LO12_NC: case R_AARCH64_LD64_GOT_LO12_NC: case R_AARCH64_LDST8_ABS_LO12_NC: case R_AARCH64_LDST16_ABS_LO12_NC: case R_AARCH64_LDST32_ABS_LO12_NC: case R_AARCH64_LDST64_ABS_LO12_NC: case R_AARCH64_LDST128_ABS_LO12_NC: case R_AARCH64_TLSDESC_ADD_LO12_NC: case R_AARCH64_TLSDESC_ADD: case R_AARCH64_TLSDESC_LD64_LO12_NC: case R_AARCH64_TLSDESC_LDR: case R_AARCH64_TLSGD_ADD_LO12_NC: case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: case R_AARCH64_TLSLE_ADD_TPREL_LO12: case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: value = PG_OFFSET (value + addend); break; case R_AARCH64_TLSLE_MOVW_TPREL_G1: case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: value = (value + addend) & (bfd_vma) 0xffff0000; break; case R_AARCH64_TLSLE_ADD_TPREL_HI12: value = (value + addend) & (bfd_vma) 0xfff000; break; case R_AARCH64_TLSLE_MOVW_TPREL_G0: case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: value = (value + addend) & (bfd_vma) 0xffff; break; case R_AARCH64_TLSLE_MOVW_TPREL_G2: value = (value + addend) & ~(bfd_vma) 0xffffffff; value -= place & ~(bfd_vma) 0xffffffff; break; } return value; } static bfd_boolean aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section, bfd_vma offset, bfd_vma value) { reloc_howto_type *howto; bfd_vma place; howto = elf64_aarch64_howto_from_type (r_type); place = (input_section->output_section->vma + input_section->output_offset + offset); value = aarch64_resolve_relocation (r_type, place, value, 0, FALSE); return bfd_elf_aarch64_put_addend (input_bfd, input_section->contents + offset, howto, value); } static enum elf64_aarch64_stub_type aarch64_select_branch_stub (bfd_vma value, bfd_vma place) { if (aarch64_valid_for_adrp_p (value, place)) return aarch64_stub_adrp_branch; return aarch64_stub_long_branch; } /* Determine the type of stub needed, if any, for a call. */ static enum elf64_aarch64_stub_type aarch64_type_of_stub (struct bfd_link_info *info, asection *input_sec, const Elf_Internal_Rela *rel, unsigned char st_type, struct elf64_aarch64_link_hash_entry *hash, bfd_vma destination) { bfd_vma location; bfd_signed_vma branch_offset; unsigned int r_type; struct elf64_aarch64_link_hash_table *globals; enum elf64_aarch64_stub_type stub_type = aarch64_stub_none; bfd_boolean via_plt_p; if (st_type != STT_FUNC) return stub_type; globals = elf64_aarch64_hash_table (info); via_plt_p = (globals->root.splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) - 1); if (via_plt_p) return stub_type; /* Determine where the call point is. */ location = (input_sec->output_offset + input_sec->output_section->vma + rel->r_offset); branch_offset = (bfd_signed_vma) (destination - location); r_type = ELF64_R_TYPE (rel->r_info); /* We don't want to redirect any old unconditional jump in this way, only one which is being used for a sibcall, where it is acceptable for the IP0 and IP1 registers to be clobbered. */ if ((r_type == R_AARCH64_CALL26 || r_type == R_AARCH64_JUMP26) && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET)) { stub_type = aarch64_stub_long_branch; } return stub_type; } /* Build a name for an entry in the stub hash table. */ static char * elf64_aarch64_stub_name (const asection *input_section, const asection *sym_sec, const struct elf64_aarch64_link_hash_entry *hash, const Elf_Internal_Rela *rel) { char *stub_name; bfd_size_type len; if (hash) { len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1; stub_name = bfd_malloc (len); if (stub_name != NULL) snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x", (unsigned int) input_section->id, hash->root.root.root.string, rel->r_addend); } else { len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1; stub_name = bfd_malloc (len); if (stub_name != NULL) snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x", (unsigned int) input_section->id, (unsigned int) sym_sec->id, (unsigned int) ELF64_R_SYM (rel->r_info), rel->r_addend); } return stub_name; } /* Look up an entry in the stub hash. Stub entries are cached because creating the stub name takes a bit of time. */ static struct elf64_aarch64_stub_hash_entry * elf64_aarch64_get_stub_entry (const asection *input_section, const asection *sym_sec, struct elf_link_hash_entry *hash, const Elf_Internal_Rela *rel, struct elf64_aarch64_link_hash_table *htab) { struct elf64_aarch64_stub_hash_entry *stub_entry; struct elf64_aarch64_link_hash_entry *h = (struct elf64_aarch64_link_hash_entry *) hash; const asection *id_sec; if ((input_section->flags & SEC_CODE) == 0) return NULL; /* If this input section is part of a group of sections sharing one stub section, then use the id of the first section in the group. Stub names need to include a section id, as there may well be more than one stub used to reach say, printf, and we need to distinguish between them. */ id_sec = htab->stub_group[input_section->id].link_sec; if (h != NULL && h->stub_cache != NULL && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec) { stub_entry = h->stub_cache; } else { char *stub_name; stub_name = elf64_aarch64_stub_name (id_sec, sym_sec, h, rel); if (stub_name == NULL) return NULL; stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE, FALSE); if (h != NULL) h->stub_cache = stub_entry; free (stub_name); } return stub_entry; } /* Add a new stub entry to the stub hash. Not all fields of the new stub entry are initialised. */ static struct elf64_aarch64_stub_hash_entry * elf64_aarch64_add_stub (const char *stub_name, asection *section, struct elf64_aarch64_link_hash_table *htab) { asection *link_sec; asection *stub_sec; struct elf64_aarch64_stub_hash_entry *stub_entry; link_sec = htab->stub_group[section->id].link_sec; stub_sec = htab->stub_group[section->id].stub_sec; if (stub_sec == NULL) { stub_sec = htab->stub_group[link_sec->id].stub_sec; if (stub_sec == NULL) { size_t namelen; bfd_size_type len; char *s_name; namelen = strlen (link_sec->name); len = namelen + sizeof (STUB_SUFFIX); s_name = bfd_alloc (htab->stub_bfd, len); if (s_name == NULL) return NULL; memcpy (s_name, link_sec->name, namelen); memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); stub_sec = (*htab->add_stub_section) (s_name, link_sec); if (stub_sec == NULL) return NULL; htab->stub_group[link_sec->id].stub_sec = stub_sec; } htab->stub_group[section->id].stub_sec = stub_sec; } /* Enter this entry into the linker stub hash table. */ stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name, TRUE, FALSE); if (stub_entry == NULL) { (*_bfd_error_handler) (_("%s: cannot create stub entry %s"), section->owner, stub_name); return NULL; } stub_entry->stub_sec = stub_sec; stub_entry->stub_offset = 0; stub_entry->id_sec = link_sec; return stub_entry; } static bfd_boolean aarch64_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg ATTRIBUTE_UNUSED) { struct elf64_aarch64_stub_hash_entry *stub_entry; asection *stub_sec; bfd *stub_bfd; bfd_byte *loc; bfd_vma sym_value; unsigned int template_size; const uint32_t *template; unsigned int i; /* Massage our args to the form they really have. */ stub_entry = (struct elf64_aarch64_stub_hash_entry *) gen_entry; stub_sec = stub_entry->stub_sec; /* Make a note of the offset within the stubs for this entry. */ stub_entry->stub_offset = stub_sec->size; loc = stub_sec->contents + stub_entry->stub_offset; stub_bfd = stub_sec->owner; /* This is the address of the stub destination. */ sym_value = (stub_entry->target_value + stub_entry->target_section->output_offset + stub_entry->target_section->output_section->vma); if (stub_entry->stub_type == aarch64_stub_long_branch) { bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma + stub_sec->output_offset); /* See if we can relax the stub. */ if (aarch64_valid_for_adrp_p (sym_value, place)) stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place); } switch (stub_entry->stub_type) { case aarch64_stub_adrp_branch: template = aarch64_adrp_branch_stub; template_size = sizeof (aarch64_adrp_branch_stub); break; case aarch64_stub_long_branch: template = aarch64_long_branch_stub; template_size = sizeof (aarch64_long_branch_stub); break; default: BFD_FAIL (); return FALSE; } for (i = 0; i < (template_size / sizeof template[0]); i++) { bfd_putl32 (template[i], loc); loc += 4; } template_size = (template_size + 7) & ~7; stub_sec->size += template_size; switch (stub_entry->stub_type) { case aarch64_stub_adrp_branch: if (aarch64_relocate (R_AARCH64_ADR_PREL_PG_HI21, stub_bfd, stub_sec, stub_entry->stub_offset, sym_value)) /* The stub would not have been relaxed if the offset was out of range. */ BFD_FAIL (); _bfd_final_link_relocate (elf64_aarch64_howto_from_type (R_AARCH64_ADD_ABS_LO12_NC), stub_bfd, stub_sec, stub_sec->contents, stub_entry->stub_offset + 4, sym_value, 0); break; case aarch64_stub_long_branch: /* We want the value relative to the address 12 bytes back from the value itself. */ _bfd_final_link_relocate (elf64_aarch64_howto_from_type (R_AARCH64_PREL64), stub_bfd, stub_sec, stub_sec->contents, stub_entry->stub_offset + 16, sym_value + 12, 0); break; default: break; } return TRUE; } /* As above, but don't actually build the stub. Just bump offset so we know stub section sizes. */ static bfd_boolean aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg ATTRIBUTE_UNUSED) { struct elf64_aarch64_stub_hash_entry *stub_entry; int size; /* Massage our args to the form they really have. */ stub_entry = (struct elf64_aarch64_stub_hash_entry *) gen_entry; switch (stub_entry->stub_type) { case aarch64_stub_adrp_branch: size = sizeof (aarch64_adrp_branch_stub); break; case aarch64_stub_long_branch: size = sizeof (aarch64_long_branch_stub); break; default: BFD_FAIL (); return FALSE; break; } size = (size + 7) & ~7; stub_entry->stub_sec->size += size; return TRUE; } /* External entry points for sizing and building linker stubs. */ /* Set up various things so that we can make a list of input sections for each output section included in the link. Returns -1 on error, 0 when no stubs will be needed, and 1 on success. */ int elf64_aarch64_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) { bfd *input_bfd; unsigned int bfd_count; int top_id, top_index; asection *section; asection **input_list, **list; bfd_size_type amt; struct elf64_aarch64_link_hash_table *htab = elf64_aarch64_hash_table (info); if (!is_elf_hash_table (htab)) return 0; /* Count the number of input BFDs and find the top input section id. */ for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; input_bfd != NULL; input_bfd = input_bfd->link_next) { bfd_count += 1; for (section = input_bfd->sections; section != NULL; section = section->next) { if (top_id < section->id) top_id = section->id; } } htab->bfd_count = bfd_count; amt = sizeof (struct map_stub) * (top_id + 1); htab->stub_group = bfd_zmalloc (amt); if (htab->stub_group == NULL) return -1; /* We can't use output_bfd->section_count here to find the top output section index as some sections may have been removed, and _bfd_strip_section_from_output doesn't renumber the indices. */ for (section = output_bfd->sections, top_index = 0; section != NULL; section = section->next) { if (top_index < section->index) top_index = section->index; } htab->top_index = top_index; amt = sizeof (asection *) * (top_index + 1); input_list = bfd_malloc (amt); htab->input_list = input_list; if (input_list == NULL) return -1; /* For sections we aren't interested in, mark their entries with a value we can check later. */ list = input_list + top_index; do *list = bfd_abs_section_ptr; while (list-- != input_list); for (section = output_bfd->sections; section != NULL; section = section->next) { if ((section->flags & SEC_CODE) != 0) input_list[section->index] = NULL; } return 1; } /* Used by elf64_aarch64_next_input_section and group_sections. */ #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) /* The linker repeatedly calls this function for each input section, in the order that input sections are linked into output sections. Build lists of input sections to determine groupings between which we may insert linker stubs. */ void elf64_aarch64_next_input_section (struct bfd_link_info *info, asection *isec) { struct elf64_aarch64_link_hash_table *htab = elf64_aarch64_hash_table (info); if (isec->output_section->index <= htab->top_index) { asection **list = htab->input_list + isec->output_section->index; if (*list != bfd_abs_section_ptr) { /* Steal the link_sec pointer for our list. */ /* This happens to make the list in reverse order, which is what we want. */ PREV_SEC (isec) = *list; *list = isec; } } } /* See whether we can group stub sections together. Grouping stub sections may result in fewer stubs. More importantly, we need to put all .init* and .fini* stubs at the beginning of the .init or .fini output sections respectively, because glibc splits the _init and _fini functions into multiple parts. Putting a stub in the middle of a function is not a good idea. */ static void group_sections (struct elf64_aarch64_link_hash_table *htab, bfd_size_type stub_group_size, bfd_boolean stubs_always_before_branch) { asection **list = htab->input_list + htab->top_index; do { asection *tail = *list; if (tail == bfd_abs_section_ptr) continue; while (tail != NULL) { asection *curr; asection *prev; bfd_size_type total; curr = tail; total = tail->size; while ((prev = PREV_SEC (curr)) != NULL && ((total += curr->output_offset - prev->output_offset) < stub_group_size)) curr = prev; /* OK, the size from the start of CURR to the end is less than stub_group_size and thus can be handled by one stub section. (Or the tail section is itself larger than stub_group_size, in which case we may be toast.) We should really be keeping track of the total size of stubs added here, as stubs contribute to the final output section size. */ do { prev = PREV_SEC (tail); /* Set up this stub group. */ htab->stub_group[tail->id].link_sec = curr; } while (tail != curr && (tail = prev) != NULL); /* But wait, there's more! Input sections up to stub_group_size bytes before the stub section can be handled by it too. */ if (!stubs_always_before_branch) { total = 0; while (prev != NULL && ((total += tail->output_offset - prev->output_offset) < stub_group_size)) { tail = prev; prev = PREV_SEC (tail); htab->stub_group[tail->id].link_sec = curr; } } tail = prev; } } while (list-- != htab->input_list); free (htab->input_list); } #undef PREV_SEC /* Determine and set the size of the stub section for a final link. The basic idea here is to examine all the relocations looking for PC-relative calls to a target that is unreachable with a "bl" instruction. */ bfd_boolean elf64_aarch64_size_stubs (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info, bfd_signed_vma group_size, asection * (*add_stub_section) (const char *, asection *), void (*layout_sections_again) (void)) { bfd_size_type stub_group_size; bfd_boolean stubs_always_before_branch; bfd_boolean stub_changed = 0; struct elf64_aarch64_link_hash_table *htab = elf64_aarch64_hash_table (info); /* Propagate mach to stub bfd, because it may not have been finalized when we created stub_bfd. */ bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd), bfd_get_mach (output_bfd)); /* Stash our params away. */ htab->stub_bfd = stub_bfd; htab->add_stub_section = add_stub_section; htab->layout_sections_again = layout_sections_again; stubs_always_before_branch = group_size < 0; if (group_size < 0) stub_group_size = -group_size; else stub_group_size = group_size; if (stub_group_size == 1) { /* Default values. */ /* Aarch64 branch range is +-128MB. The value used is 1MB less. */ stub_group_size = 127 * 1024 * 1024; } group_sections (htab, stub_group_size, stubs_always_before_branch); while (1) { bfd *input_bfd; unsigned int bfd_indx; asection *stub_sec; for (input_bfd = info->input_bfds, bfd_indx = 0; input_bfd != NULL; input_bfd = input_bfd->link_next, bfd_indx++) { Elf_Internal_Shdr *symtab_hdr; asection *section; Elf_Internal_Sym *local_syms = NULL; /* We'll need the symbol table in a second. */ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; if (symtab_hdr->sh_info == 0) continue; /* Walk over each section attached to the input bfd. */ for (section = input_bfd->sections; section != NULL; section = section->next) { Elf_Internal_Rela *internal_relocs, *irelaend, *irela; /* If there aren't any relocs, then there's nothing more to do. */ if ((section->flags & SEC_RELOC) == 0 || section->reloc_count == 0 || (section->flags & SEC_CODE) == 0) continue; /* If this section is a link-once section that will be discarded, then don't create any stubs. */ if (section->output_section == NULL || section->output_section->owner != output_bfd) continue; /* Get the relocs. */ internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL, info->keep_memory); if (internal_relocs == NULL) goto error_ret_free_local; /* Now examine each relocation. */ irela = internal_relocs; irelaend = irela + section->reloc_count; for (; irela < irelaend; irela++) { unsigned int r_type, r_indx; enum elf64_aarch64_stub_type stub_type; struct elf64_aarch64_stub_hash_entry *stub_entry; asection *sym_sec; bfd_vma sym_value; bfd_vma destination; struct elf64_aarch64_link_hash_entry *hash; const char *sym_name; char *stub_name; const asection *id_sec; unsigned char st_type; bfd_size_type len; r_type = ELF64_R_TYPE (irela->r_info); r_indx = ELF64_R_SYM (irela->r_info); if (r_type >= (unsigned int) R_AARCH64_end) { bfd_set_error (bfd_error_bad_value); error_ret_free_internal: if (elf_section_data (section)->relocs == NULL) free (internal_relocs); goto error_ret_free_local; } /* Only look for stubs on unconditional branch and branch and link instructions. */ if (r_type != (unsigned int) R_AARCH64_CALL26 && r_type != (unsigned int) R_AARCH64_JUMP26) continue; /* Now determine the call target, its name, value, section. */ sym_sec = NULL; sym_value = 0; destination = 0; hash = NULL; sym_name = NULL; if (r_indx < symtab_hdr->sh_info) { /* It's a local symbol. */ Elf_Internal_Sym *sym; Elf_Internal_Shdr *hdr; if (local_syms == NULL) { local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; if (local_syms == NULL) local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (local_syms == NULL) goto error_ret_free_internal; } sym = local_syms + r_indx; hdr = elf_elfsections (input_bfd)[sym->st_shndx]; sym_sec = hdr->bfd_section; if (!sym_sec) /* This is an undefined symbol. It can never be resolved. */ continue; if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) sym_value = sym->st_value; destination = (sym_value + irela->r_addend + sym_sec->output_offset + sym_sec->output_section->vma); st_type = ELF_ST_TYPE (sym->st_info); sym_name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); } else { int e_indx; e_indx = r_indx - symtab_hdr->sh_info; hash = ((struct elf64_aarch64_link_hash_entry *) elf_sym_hashes (input_bfd)[e_indx]); while (hash->root.root.type == bfd_link_hash_indirect || hash->root.root.type == bfd_link_hash_warning) hash = ((struct elf64_aarch64_link_hash_entry *) hash->root.root.u.i.link); if (hash->root.root.type == bfd_link_hash_defined || hash->root.root.type == bfd_link_hash_defweak) { struct elf64_aarch64_link_hash_table *globals = elf64_aarch64_hash_table (info); sym_sec = hash->root.root.u.def.section; sym_value = hash->root.root.u.def.value; /* For a destination in a shared library, use the PLT stub as target address to decide whether a branch stub is needed. */ if (globals->root.splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) - 1) { sym_sec = globals->root.splt; sym_value = hash->root.plt.offset; if (sym_sec->output_section != NULL) destination = (sym_value + sym_sec->output_offset + sym_sec->output_section->vma); } else if (sym_sec->output_section != NULL) destination = (sym_value + irela->r_addend + sym_sec->output_offset + sym_sec->output_section->vma); } else if (hash->root.root.type == bfd_link_hash_undefined || (hash->root.root.type == bfd_link_hash_undefweak)) { /* For a shared library, use the PLT stub as target address to decide whether a long branch stub is needed. For absolute code, they cannot be handled. */ struct elf64_aarch64_link_hash_table *globals = elf64_aarch64_hash_table (info); if (globals->root.splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) - 1) { sym_sec = globals->root.splt; sym_value = hash->root.plt.offset; if (sym_sec->output_section != NULL) destination = (sym_value + sym_sec->output_offset + sym_sec->output_section->vma); } else continue; } else { bfd_set_error (bfd_error_bad_value); goto error_ret_free_internal; } st_type = ELF_ST_TYPE (hash->root.type); sym_name = hash->root.root.root.string; } /* Determine what (if any) linker stub is needed. */ stub_type = aarch64_type_of_stub (info, section, irela, st_type, hash, destination); if (stub_type == aarch64_stub_none) continue; /* Support for grouping stub sections. */ id_sec = htab->stub_group[section->id].link_sec; /* Get the name of this stub. */ stub_name = elf64_aarch64_stub_name (id_sec, sym_sec, hash, irela); if (!stub_name) goto error_ret_free_internal; stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE, FALSE); if (stub_entry != NULL) { /* The proper stub has already been created. */ free (stub_name); continue; } stub_entry = elf64_aarch64_add_stub (stub_name, section, htab); if (stub_entry == NULL) { free (stub_name); goto error_ret_free_internal; } stub_entry->target_value = sym_value; stub_entry->target_section = sym_sec; stub_entry->stub_type = stub_type; stub_entry->h = hash; stub_entry->st_type = st_type; if (sym_name == NULL) sym_name = "unnamed"; len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name); stub_entry->output_name = bfd_alloc (htab->stub_bfd, len); if (stub_entry->output_name == NULL) { free (stub_name); goto error_ret_free_internal; } snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME, sym_name); stub_changed = TRUE; } /* We're done with the internal relocs, free them. */ if (elf_section_data (section)->relocs == NULL) free (internal_relocs); } } if (!stub_changed) break; /* OK, we've added some stubs. Find out the new size of the stub sections. */ for (stub_sec = htab->stub_bfd->sections; stub_sec != NULL; stub_sec = stub_sec->next) stub_sec->size = 0; bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab); /* Ask the linker to do its stuff. */ (*htab->layout_sections_again) (); stub_changed = FALSE; } return TRUE; error_ret_free_local: return FALSE; } /* Build all the stubs associated with the current output file. The stubs are kept in a hash table attached to the main linker hash table. We also set up the .plt entries for statically linked PIC functions here. This function is called via aarch64_elf_finish in the linker. */ bfd_boolean elf64_aarch64_build_stubs (struct bfd_link_info *info) { asection *stub_sec; struct bfd_hash_table *table; struct elf64_aarch64_link_hash_table *htab; htab = elf64_aarch64_hash_table (info); for (stub_sec = htab->stub_bfd->sections; stub_sec != NULL; stub_sec = stub_sec->next) { bfd_size_type size; /* Ignore non-stub sections. */ if (!strstr (stub_sec->name, STUB_SUFFIX)) continue; /* Allocate memory to hold the linker stubs. */ size = stub_sec->size; stub_sec->contents = bfd_zalloc (htab->stub_bfd, size); if (stub_sec->contents == NULL && size != 0) return FALSE; stub_sec->size = 0; } /* Build the stubs as directed by the stub hash table. */ table = &htab->stub_hash_table; bfd_hash_traverse (table, aarch64_build_one_stub, info); return TRUE; } /* Add an entry to the code/data map for section SEC. */ static void elf64_aarch64_section_map_add (asection *sec, char type, bfd_vma vma) { struct _aarch64_elf_section_data *sec_data = elf64_aarch64_section_data (sec); unsigned int newidx; if (sec_data->map == NULL) { sec_data->map = bfd_malloc (sizeof (elf64_aarch64_section_map)); sec_data->mapcount = 0; sec_data->mapsize = 1; } newidx = sec_data->mapcount++; if (sec_data->mapcount > sec_data->mapsize) { sec_data->mapsize *= 2; sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize * sizeof (elf64_aarch64_section_map)); } if (sec_data->map) { sec_data->map[newidx].vma = vma; sec_data->map[newidx].type = type; } } /* Initialise maps of insn/data for input BFDs. */ void bfd_elf64_aarch64_init_maps (bfd *abfd) { Elf_Internal_Sym *isymbuf; Elf_Internal_Shdr *hdr; unsigned int i, localsyms; /* Make sure that we are dealing with an AArch64 elf binary. */ if (!is_aarch64_elf (abfd)) return; if ((abfd->flags & DYNAMIC) != 0) return; hdr = &elf_symtab_hdr (abfd); localsyms = hdr->sh_info; /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field should contain the number of local symbols, which should come before any global symbols. Mapping symbols are always local. */ isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL); /* No internal symbols read? Skip this BFD. */ if (isymbuf == NULL) return; for (i = 0; i < localsyms; i++) { Elf_Internal_Sym *isym = &isymbuf[i]; asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx); const char *name; if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL) { name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, isym->st_name); if (bfd_is_aarch64_special_symbol_name (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP)) elf64_aarch64_section_map_add (sec, name[1], isym->st_value); } } } /* Set option values needed during linking. */ void bfd_elf64_aarch64_set_options (struct bfd *output_bfd, struct bfd_link_info *link_info, int no_enum_warn, int no_wchar_warn, int pic_veneer) { struct elf64_aarch64_link_hash_table *globals; globals = elf64_aarch64_hash_table (link_info); globals->pic_veneer = pic_veneer; BFD_ASSERT (is_aarch64_elf (output_bfd)); elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn; elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn; } #define MASK(n) ((1u << (n)) - 1) /* Decode the 26-bit offset of unconditional branch. */ static inline uint32_t decode_branch_ofs_26 (uint32_t insn) { return insn & MASK (26); } /* Decode the 19-bit offset of conditional branch and compare & branch. */ static inline uint32_t decode_cond_branch_ofs_19 (uint32_t insn) { return (insn >> 5) & MASK (19); } /* Decode the 19-bit offset of load literal. */ static inline uint32_t decode_ld_lit_ofs_19 (uint32_t insn) { return (insn >> 5) & MASK (19); } /* Decode the 14-bit offset of test & branch. */ static inline uint32_t decode_tst_branch_ofs_14 (uint32_t insn) { return (insn >> 5) & MASK (14); } /* Decode the 16-bit imm of move wide. */ static inline uint32_t decode_movw_imm (uint32_t insn) { return (insn >> 5) & MASK (16); } /* Decode the 21-bit imm of adr. */ static inline uint32_t decode_adr_imm (uint32_t insn) { return ((insn >> 29) & MASK (2)) | ((insn >> 3) & (MASK (19) << 2)); } /* Decode the 12-bit imm of add immediate. */ static inline uint32_t decode_add_imm (uint32_t insn) { return (insn >> 10) & MASK (12); } /* Encode the 26-bit offset of unconditional branch. */ static inline uint32_t reencode_branch_ofs_26 (uint32_t insn, uint32_t ofs) { return (insn & ~MASK (26)) | (ofs & MASK (26)); } /* Encode the 19-bit offset of conditional branch and compare & branch. */ static inline uint32_t reencode_cond_branch_ofs_19 (uint32_t insn, uint32_t ofs) { return (insn & ~(MASK (19) << 5)) | ((ofs & MASK (19)) << 5); } /* Decode the 19-bit offset of load literal. */ static inline uint32_t reencode_ld_lit_ofs_19 (uint32_t insn, uint32_t ofs) { return (insn & ~(MASK (19) << 5)) | ((ofs & MASK (19)) << 5); } /* Encode the 14-bit offset of test & branch. */ static inline uint32_t reencode_tst_branch_ofs_14 (uint32_t insn, uint32_t ofs) { return (insn & ~(MASK (14) << 5)) | ((ofs & MASK (14)) << 5); } /* Reencode the imm field of move wide. */ static inline uint32_t reencode_movw_imm (uint32_t insn, uint32_t imm) { return (insn & ~(MASK (16) << 5)) | ((imm & MASK (16)) << 5); } /* Reencode the imm field of adr. */ static inline uint32_t reencode_adr_imm (uint32_t insn, uint32_t imm) { return (insn & ~((MASK (2) << 29) | (MASK (19) << 5))) | ((imm & MASK (2)) << 29) | ((imm & (MASK (19) << 2)) << 3); } /* Reencode the imm field of ld/st pos immediate. */ static inline uint32_t reencode_ldst_pos_imm (uint32_t insn, uint32_t imm) { return (insn & ~(MASK (12) << 10)) | ((imm & MASK (12)) << 10); } /* Reencode the imm field of add immediate. */ static inline uint32_t reencode_add_imm (uint32_t insn, uint32_t imm) { return (insn & ~(MASK (12) << 10)) | ((imm & MASK (12)) << 10); } /* Reencode mov[zn] to movz. */ static inline uint32_t reencode_movzn_to_movz (uint32_t opcode) { return opcode | (1 << 30); } /* Reencode mov[zn] to movn. */ static inline uint32_t reencode_movzn_to_movn (uint32_t opcode) { return opcode & ~(1 << 30); } /* Insert the addend/value into the instruction or data object being relocated. */ static bfd_reloc_status_type bfd_elf_aarch64_put_addend (bfd *abfd, bfd_byte *address, reloc_howto_type *howto, bfd_signed_vma addend) { bfd_reloc_status_type status = bfd_reloc_ok; bfd_signed_vma old_addend = addend; bfd_vma contents; int size; size = bfd_get_reloc_size (howto); switch (size) { case 2: contents = bfd_get_16 (abfd, address); break; case 4: if (howto->src_mask != 0xffffffff) /* Must be 32-bit instruction, always little-endian. */ contents = bfd_getl32 (address); else /* Must be 32-bit data (endianness dependent). */ contents = bfd_get_32 (abfd, address); break; case 8: contents = bfd_get_64 (abfd, address); break; default: abort (); } switch (howto->complain_on_overflow) { case complain_overflow_dont: break; case complain_overflow_signed: status = aarch64_signed_overflow (addend, howto->bitsize + howto->rightshift); break; case complain_overflow_unsigned: status = aarch64_unsigned_overflow (addend, howto->bitsize + howto->rightshift); break; case complain_overflow_bitfield: default: abort (); } addend >>= howto->rightshift; switch (howto->type) { case R_AARCH64_JUMP26: case R_AARCH64_CALL26: contents = reencode_branch_ofs_26 (contents, addend); break; case R_AARCH64_CONDBR19: contents = reencode_cond_branch_ofs_19 (contents, addend); break; case R_AARCH64_TSTBR14: contents = reencode_tst_branch_ofs_14 (contents, addend); break; case R_AARCH64_LD_PREL_LO19: case R_AARCH64_GOT_LD_PREL19: if (old_addend & ((1 << howto->rightshift) - 1)) return bfd_reloc_overflow; contents = reencode_ld_lit_ofs_19 (contents, addend); break; case R_AARCH64_TLSDESC_CALL: break; case R_AARCH64_TLSGD_ADR_PAGE21: case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: case R_AARCH64_TLSDESC_ADR_PAGE: case R_AARCH64_ADR_GOT_PAGE: case R_AARCH64_ADR_PREL_LO21: case R_AARCH64_ADR_PREL_PG_HI21: case R_AARCH64_ADR_PREL_PG_HI21_NC: contents = reencode_adr_imm (contents, addend); break; case R_AARCH64_TLSGD_ADD_LO12_NC: case R_AARCH64_TLSLE_ADD_TPREL_LO12: case R_AARCH64_TLSLE_ADD_TPREL_HI12: case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: case R_AARCH64_TLSDESC_ADD_LO12_NC: case R_AARCH64_ADD_ABS_LO12_NC: /* Corresponds to: add rd, rn, #uimm12 to provide the low order 12 bits of the page offset following R_AARCH64_ADR_PREL_PG_HI21 which computes the (pc-relative) page base. */ contents = reencode_add_imm (contents, addend); break; case R_AARCH64_LDST8_ABS_LO12_NC: case R_AARCH64_LDST16_ABS_LO12_NC: case R_AARCH64_LDST32_ABS_LO12_NC: case R_AARCH64_LDST64_ABS_LO12_NC: case R_AARCH64_LDST128_ABS_LO12_NC: case R_AARCH64_TLSDESC_LD64_LO12_NC: case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: case R_AARCH64_LD64_GOT_LO12_NC: if (old_addend & ((1 << howto->rightshift) - 1)) return bfd_reloc_overflow; /* Used for ldr*|str* rt, [rn, #uimm12] to provide the low order 12 bits of the page offset following R_AARCH64_ADR_PREL_PG_HI21 which computes the (pc-relative) page base. */ contents = reencode_ldst_pos_imm (contents, addend); break; /* Group relocations to create high bits of a 16, 32, 48 or 64 bit signed data or abs address inline. Will change instruction to MOVN or MOVZ depending on sign of calculated value. */ case R_AARCH64_TLSLE_MOVW_TPREL_G2: case R_AARCH64_TLSLE_MOVW_TPREL_G1: case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G0: case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: case R_AARCH64_MOVW_SABS_G0: case R_AARCH64_MOVW_SABS_G1: case R_AARCH64_MOVW_SABS_G2: /* NOTE: We can only come here with movz or movn. */ if (addend < 0) { /* Force use of MOVN. */ addend = ~addend; contents = reencode_movzn_to_movn (contents); } else { /* Force use of MOVZ. */ contents = reencode_movzn_to_movz (contents); } /* fall through */ /* Group relocations to create a 16, 32, 48 or 64 bit unsigned data or abs address inline. */ case R_AARCH64_MOVW_UABS_G0: case R_AARCH64_MOVW_UABS_G0_NC: case R_AARCH64_MOVW_UABS_G1: case R_AARCH64_MOVW_UABS_G1_NC: case R_AARCH64_MOVW_UABS_G2: case R_AARCH64_MOVW_UABS_G2_NC: case R_AARCH64_MOVW_UABS_G3: contents = reencode_movw_imm (contents, addend); break; default: /* Repack simple data */ if (howto->dst_mask & (howto->dst_mask + 1)) return bfd_reloc_notsupported; contents = ((contents & ~howto->dst_mask) | (addend & howto->dst_mask)); break; } switch (size) { case 2: bfd_put_16 (abfd, contents, address); break; case 4: if (howto->dst_mask != 0xffffffff) /* must be 32-bit instruction, always little-endian */ bfd_putl32 (contents, address); else /* must be 32-bit data (endianness dependent) */ bfd_put_32 (abfd, contents, address); break; case 8: bfd_put_64 (abfd, contents, address); break; default: abort (); } return status; } static bfd_vma aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h, struct elf64_aarch64_link_hash_table *globals, struct bfd_link_info *info, bfd_vma value, bfd *output_bfd, bfd_boolean *unresolved_reloc_p) { bfd_vma off = (bfd_vma) - 1; asection *basegot = globals->root.sgot; bfd_boolean dyn = globals->root.dynamic_sections_created; if (h != NULL) { off = h->got.offset; BFD_ASSERT (off != (bfd_vma) - 1); if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) || (info->shared && SYMBOL_REFERENCES_LOCAL (info, h)) || (ELF_ST_VISIBILITY (h->other) && h->root.type == bfd_link_hash_undefweak)) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally. We must initialize this entry in the global offset table. Since the offset must always be a multiple of 8, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a .rel(a).got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_64 (output_bfd, value, basegot->contents + off); h->got.offset |= 1; } } else *unresolved_reloc_p = FALSE; off = off + basegot->output_section->vma + basegot->output_offset; } return off; } /* Change R_TYPE to a more efficient access model where possible, return the new reloc type. */ static unsigned int aarch64_tls_transition_without_check (unsigned int r_type, struct elf_link_hash_entry *h) { bfd_boolean is_local = h == NULL; switch (r_type) { case R_AARCH64_TLSGD_ADR_PAGE21: case R_AARCH64_TLSDESC_ADR_PAGE: return is_local ? R_AARCH64_TLSLE_MOVW_TPREL_G1 : R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21; case R_AARCH64_TLSGD_ADD_LO12_NC: case R_AARCH64_TLSDESC_LD64_LO12_NC: return is_local ? R_AARCH64_TLSLE_MOVW_TPREL_G0_NC : R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC; case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: return is_local ? R_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type; case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: return is_local ? R_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type; case R_AARCH64_TLSDESC_ADD_LO12_NC: case R_AARCH64_TLSDESC_CALL: /* Instructions with these relocations will become NOPs. */ return R_AARCH64_NONE; } return r_type; } static unsigned int aarch64_reloc_got_type (unsigned int r_type) { switch (r_type) { case R_AARCH64_LD64_GOT_LO12_NC: case R_AARCH64_ADR_GOT_PAGE: case R_AARCH64_GOT_LD_PREL19: return GOT_NORMAL; case R_AARCH64_TLSGD_ADR_PAGE21: case R_AARCH64_TLSGD_ADD_LO12_NC: return GOT_TLS_GD; case R_AARCH64_TLSDESC_ADD_LO12_NC: case R_AARCH64_TLSDESC_ADR_PAGE: case R_AARCH64_TLSDESC_CALL: case R_AARCH64_TLSDESC_LD64_LO12_NC: return GOT_TLSDESC_GD; case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: return GOT_TLS_IE; case R_AARCH64_TLSLE_ADD_TPREL_HI12: case R_AARCH64_TLSLE_ADD_TPREL_LO12: case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G0: case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G1: case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G2: return GOT_UNKNOWN; } return GOT_UNKNOWN; } static bfd_boolean aarch64_can_relax_tls (bfd *input_bfd, struct bfd_link_info *info, unsigned int r_type, struct elf_link_hash_entry *h, unsigned long r_symndx) { unsigned int symbol_got_type; unsigned int reloc_got_type; if (! IS_AARCH64_TLS_RELOC (r_type)) return FALSE; symbol_got_type = elf64_aarch64_symbol_got_type (h, input_bfd, r_symndx); reloc_got_type = aarch64_reloc_got_type (r_type); if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type)) return TRUE; if (info->shared) return FALSE; if (h && h->root.type == bfd_link_hash_undefweak) return FALSE; return TRUE; } static unsigned int aarch64_tls_transition (bfd *input_bfd, struct bfd_link_info *info, unsigned int r_type, struct elf_link_hash_entry *h, unsigned long r_symndx) { if (! aarch64_can_relax_tls (input_bfd, info, r_type, h, r_symndx)) return r_type; return aarch64_tls_transition_without_check (r_type, h); } /* Return the base VMA address which should be subtracted from real addresses when resolving R_AARCH64_TLS_DTPREL64 relocation. */ static bfd_vma dtpoff_base (struct bfd_link_info *info) { /* If tls_sec is NULL, we should have signalled an error already. */ BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL); return elf_hash_table (info)->tls_sec->vma; } /* Return the base VMA address which should be subtracted from real addresses when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */ static bfd_vma tpoff_base (struct bfd_link_info *info) { struct elf_link_hash_table *htab = elf_hash_table (info); /* If tls_sec is NULL, we should have signalled an error already. */ if (htab->tls_sec == NULL) return 0; bfd_vma base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); return htab->tls_sec->vma - base; } static bfd_vma * symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h, unsigned long r_symndx) { /* Calculate the address of the GOT entry for symbol referred to in h. */ if (h != NULL) return &h->got.offset; else { /* local symbol */ struct elf_aarch64_local_symbol *l; l = elf64_aarch64_locals (input_bfd); return &l[r_symndx].got_offset; } } static void symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h, unsigned long r_symndx) { bfd_vma *p; p = symbol_got_offset_ref (input_bfd, h, r_symndx); *p |= 1; } static int symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h, unsigned long r_symndx) { bfd_vma value; value = * symbol_got_offset_ref (input_bfd, h, r_symndx); return value & 1; } static bfd_vma symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h, unsigned long r_symndx) { bfd_vma value; value = * symbol_got_offset_ref (input_bfd, h, r_symndx); value &= ~1; return value; } static bfd_vma * symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h, unsigned long r_symndx) { /* Calculate the address of the GOT entry for symbol referred to in h. */ if (h != NULL) { struct elf64_aarch64_link_hash_entry *eh; eh = (struct elf64_aarch64_link_hash_entry *) h; return &eh->tlsdesc_got_jump_table_offset; } else { /* local symbol */ struct elf_aarch64_local_symbol *l; l = elf64_aarch64_locals (input_bfd); return &l[r_symndx].tlsdesc_got_jump_table_offset; } } static void symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h, unsigned long r_symndx) { bfd_vma *p; p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx); *p |= 1; } static int symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h, unsigned long r_symndx) { bfd_vma value; value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx); return value & 1; } static bfd_vma symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h, unsigned long r_symndx) { bfd_vma value; value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx); value &= ~1; return value; } /* Perform a relocation as part of a final link. */ static bfd_reloc_status_type elf64_aarch64_final_link_relocate (reloc_howto_type *howto, bfd *input_bfd, bfd *output_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *rel, bfd_vma value, struct bfd_link_info *info, asection *sym_sec, struct elf_link_hash_entry *h, bfd_boolean *unresolved_reloc_p, bfd_boolean save_addend, bfd_vma *saved_addend) { unsigned int r_type = howto->type; unsigned long r_symndx; bfd_byte *hit_data = contents + rel->r_offset; bfd_vma place; bfd_signed_vma signed_addend; struct elf64_aarch64_link_hash_table *globals; bfd_boolean weak_undef_p; globals = elf64_aarch64_hash_table (info); BFD_ASSERT (is_aarch64_elf (input_bfd)); r_symndx = ELF64_R_SYM (rel->r_info); /* It is possible to have linker relaxations on some TLS access models. Update our information here. */ r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx); if (r_type != howto->type) howto = elf64_aarch64_howto_from_type (r_type); place = input_section->output_section->vma + input_section->output_offset + rel->r_offset; /* Get addend, accumulating the addend for consecutive relocs which refer to the same offset. */ signed_addend = saved_addend ? *saved_addend : 0; signed_addend += rel->r_addend; weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak : bfd_is_und_section (sym_sec)); switch (r_type) { case R_AARCH64_NONE: case R_AARCH64_NULL: case R_AARCH64_TLSDESC_CALL: *unresolved_reloc_p = FALSE; return bfd_reloc_ok; case R_AARCH64_ABS64: /* When generating a shared object or relocatable executable, these relocations are copied into the output file to be resolved at run time. */ if (((info->shared == TRUE) || globals->root.is_relocatable_executable) && (input_section->flags & SEC_ALLOC) && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) { Elf_Internal_Rela outrel; bfd_byte *loc; bfd_boolean skip, relocate; asection *sreloc; *unresolved_reloc_p = FALSE; sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section, 1); if (sreloc == NULL) return bfd_reloc_notsupported; skip = FALSE; relocate = FALSE; outrel.r_addend = signed_addend; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) - 1) skip = TRUE; else if (outrel.r_offset == (bfd_vma) - 2) { skip = TRUE; relocate = TRUE; } outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); if (skip) memset (&outrel, 0, sizeof outrel); else if (h != NULL && h->dynindx != -1 && (!info->shared || !info->symbolic || !h->def_regular)) outrel.r_info = ELF64_R_INFO (h->dynindx, r_type); else { int symbol; /* On SVR4-ish systems, the dynamic loader cannot relocate the text and data segments independently, so the symbol does not matter. */ symbol = 0; outrel.r_info = ELF64_R_INFO (symbol, R_AARCH64_RELATIVE); outrel.r_addend += value; } loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (htab); bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size) { /* Sanity to check that we have previously allocated sufficient space in the relocation section for the number of relocations we actually want to emit. */ abort (); } /* If this reloc is against an external symbol, we do not want to fiddle with the addend. Otherwise, we need to include the symbol value so that it becomes an addend for the dynamic reloc. */ if (!relocate) return bfd_reloc_ok; return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, signed_addend); } else value += signed_addend; break; case R_AARCH64_JUMP26: case R_AARCH64_CALL26: { asection *splt = globals->root.splt; bfd_boolean via_plt_p = splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1; /* A call to an undefined weak symbol is converted to a jump to the next instruction unless a PLT entry will be created. The jump to the next instruction is optimized as a NOP. Do the same for local undefined symbols. */ if (weak_undef_p && ! via_plt_p) { bfd_putl32 (INSN_NOP, hit_data); return bfd_reloc_ok; } /* If the call goes through a PLT entry, make sure to check distance to the right destination address. */ if (via_plt_p) { value = (splt->output_section->vma + splt->output_offset + h->plt.offset); *unresolved_reloc_p = FALSE; } /* If the target symbol is global and marked as a function the relocation applies a function call or a tail call. In this situation we can veneer out of range branches. The veneers use IP0 and IP1 hence cannot be used arbitrary out of range branches that occur within the body of a function. */ if (h && h->type == STT_FUNC) { /* Check if a stub has to be inserted because the destination is too far away. */ if (! aarch64_valid_branch_p (value, place)) { /* The target is out of reach, so redirect the branch to the local stub for this function. */ struct elf64_aarch64_stub_hash_entry *stub_entry; stub_entry = elf64_aarch64_get_stub_entry (input_section, sym_sec, h, rel, globals); if (stub_entry != NULL) value = (stub_entry->stub_offset + stub_entry->stub_sec->output_offset + stub_entry->stub_sec->output_section->vma); } } } value = aarch64_resolve_relocation (r_type, place, value, signed_addend, weak_undef_p); break; case R_AARCH64_ABS16: case R_AARCH64_ABS32: case R_AARCH64_ADD_ABS_LO12_NC: case R_AARCH64_ADR_PREL_LO21: case R_AARCH64_ADR_PREL_PG_HI21: case R_AARCH64_ADR_PREL_PG_HI21_NC: case R_AARCH64_CONDBR19: case R_AARCH64_LD_PREL_LO19: case R_AARCH64_LDST8_ABS_LO12_NC: case R_AARCH64_LDST16_ABS_LO12_NC: case R_AARCH64_LDST32_ABS_LO12_NC: case R_AARCH64_LDST64_ABS_LO12_NC: case R_AARCH64_LDST128_ABS_LO12_NC: case R_AARCH64_MOVW_SABS_G0: case R_AARCH64_MOVW_SABS_G1: case R_AARCH64_MOVW_SABS_G2: case R_AARCH64_MOVW_UABS_G0: case R_AARCH64_MOVW_UABS_G0_NC: case R_AARCH64_MOVW_UABS_G1: case R_AARCH64_MOVW_UABS_G1_NC: case R_AARCH64_MOVW_UABS_G2: case R_AARCH64_MOVW_UABS_G2_NC: case R_AARCH64_MOVW_UABS_G3: case R_AARCH64_PREL16: case R_AARCH64_PREL32: case R_AARCH64_PREL64: case R_AARCH64_TSTBR14: value = aarch64_resolve_relocation (r_type, place, value, signed_addend, weak_undef_p); break; case R_AARCH64_LD64_GOT_LO12_NC: case R_AARCH64_ADR_GOT_PAGE: case R_AARCH64_GOT_LD_PREL19: if (globals->root.sgot == NULL) BFD_ASSERT (h != NULL); if (h != NULL) { value = aarch64_calculate_got_entry_vma (h, globals, info, value, output_bfd, unresolved_reloc_p); value = aarch64_resolve_relocation (r_type, place, value, 0, weak_undef_p); } break; case R_AARCH64_TLSGD_ADR_PAGE21: case R_AARCH64_TLSGD_ADD_LO12_NC: case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: if (globals->root.sgot == NULL) return bfd_reloc_notsupported; value = (symbol_got_offset (input_bfd, h, r_symndx) + globals->root.sgot->output_section->vma + globals->root.sgot->output_section->output_offset); value = aarch64_resolve_relocation (r_type, place, value, 0, weak_undef_p); *unresolved_reloc_p = FALSE; break; case R_AARCH64_TLSLE_ADD_TPREL_HI12: case R_AARCH64_TLSLE_ADD_TPREL_LO12: case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G0: case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G1: case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G2: value = aarch64_resolve_relocation (r_type, place, value, signed_addend - tpoff_base (info), weak_undef_p); *unresolved_reloc_p = FALSE; break; case R_AARCH64_TLSDESC_ADR_PAGE: case R_AARCH64_TLSDESC_LD64_LO12_NC: case R_AARCH64_TLSDESC_ADD_LO12_NC: case R_AARCH64_TLSDESC_ADD: case R_AARCH64_TLSDESC_LDR: if (globals->root.sgot == NULL) return bfd_reloc_notsupported; value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx) + globals->root.sgotplt->output_section->vma + globals->root.sgotplt->output_section->output_offset + globals->sgotplt_jump_table_size); value = aarch64_resolve_relocation (r_type, place, value, 0, weak_undef_p); *unresolved_reloc_p = FALSE; break; default: return bfd_reloc_notsupported; } if (saved_addend) *saved_addend = value; /* Only apply the final relocation in a sequence. */ if (save_addend) return bfd_reloc_continue; return bfd_elf_aarch64_put_addend (input_bfd, hit_data, howto, value); } /* Handle TLS relaxations. Relaxing is possible for symbols that use R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static link. Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller is to then call final_link_relocate. Return other values in the case of error. */ static bfd_reloc_status_type elf64_aarch64_tls_relax (struct elf64_aarch64_link_hash_table *globals, bfd *input_bfd, bfd_byte *contents, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h) { bfd_boolean is_local = h == NULL; unsigned int r_type = ELF64_R_TYPE (rel->r_info); unsigned long insn; BFD_ASSERT (globals && input_bfd && contents && rel); switch (r_type) { case R_AARCH64_TLSGD_ADR_PAGE21: case R_AARCH64_TLSDESC_ADR_PAGE: if (is_local) { /* GD->LE relaxation: adrp x0, :tlsgd:var => movz x0, :tprel_g1:var or adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var */ bfd_putl32 (0xd2a00000, contents + rel->r_offset); return bfd_reloc_continue; } else { /* GD->IE relaxation: adrp x0, :tlsgd:var => adrp x0, :gottprel:var or adrp x0, :tlsdesc:var => adrp x0, :gottprel:var */ insn = bfd_getl32 (contents + rel->r_offset); return bfd_reloc_continue; } case R_AARCH64_TLSDESC_LD64_LO12_NC: if (is_local) { /* GD->LE relaxation: ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var */ bfd_putl32 (0xf2800000, contents + rel->r_offset); return bfd_reloc_continue; } else { /* GD->IE relaxation: ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var] */ insn = bfd_getl32 (contents + rel->r_offset); insn &= 0xfffffff0; bfd_putl32 (insn, contents + rel->r_offset); return bfd_reloc_continue; } case R_AARCH64_TLSGD_ADD_LO12_NC: if (is_local) { /* GD->LE relaxation add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var bl __tls_get_addr => mrs x1, tpidr_el0 nop => add x0, x1, x0 */ /* First kill the tls_get_addr reloc on the bl instruction. */ BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset); rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_AARCH64_NONE); bfd_putl32 (0xf2800000, contents + rel->r_offset); bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4); bfd_putl32 (0x8b000020, contents + rel->r_offset + 8); return bfd_reloc_continue; } else { /* GD->IE relaxation ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var] BL __tls_get_addr => mrs x1, tpidr_el0 R_AARCH64_CALL26 NOP => add x0, x1, x0 */ BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_AARCH64_CALL26); /* Remove the relocation on the BL instruction. */ rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_AARCH64_NONE); bfd_putl32 (0xf9400000, contents + rel->r_offset); /* We choose to fixup the BL and NOP instructions using the offset from the second relocation to allow flexibility in scheduling instructions between the ADD and BL. */ bfd_putl32 (0xd53bd041, contents + rel[1].r_offset); bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4); return bfd_reloc_continue; } case R_AARCH64_TLSDESC_ADD_LO12_NC: case R_AARCH64_TLSDESC_CALL: /* GD->IE/LE relaxation: add x0, x0, #:tlsdesc_lo12:var => nop blr xd => nop */ bfd_putl32 (INSN_NOP, contents + rel->r_offset); return bfd_reloc_ok; case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: /* IE->LE relaxation: adrp xd, :gottprel:var => movz xd, :tprel_g1:var */ if (is_local) { insn = bfd_getl32 (contents + rel->r_offset); bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset); } return bfd_reloc_continue; case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: /* IE->LE relaxation: ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var */ if (is_local) { insn = bfd_getl32 (contents + rel->r_offset); bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset); } return bfd_reloc_continue; default: return bfd_reloc_continue; } return bfd_reloc_ok; } /* Relocate an AArch64 ELF section. */ static bfd_boolean elf64_aarch64_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; const char *name; struct elf64_aarch64_link_hash_table *globals; bfd_boolean save_addend = FALSE; bfd_vma addend = 0; globals = elf64_aarch64_hash_table (info); symtab_hdr = &elf_symtab_hdr (input_bfd); sym_hashes = elf_sym_hashes (input_bfd); rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { unsigned int r_type; unsigned int relaxed_r_type; reloc_howto_type *howto; unsigned long r_symndx; Elf_Internal_Sym *sym; asection *sec; struct elf_link_hash_entry *h; bfd_vma relocation; bfd_reloc_status_type r; arelent bfd_reloc; char sym_type; bfd_boolean unresolved_reloc = FALSE; char *error_message = NULL; r_symndx = ELF64_R_SYM (rel->r_info); r_type = ELF64_R_TYPE (rel->r_info); bfd_reloc.howto = elf64_aarch64_howto_from_type (r_type); howto = bfd_reloc.howto; h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sym_type = ELF64_ST_TYPE (sym->st_info); sec = local_sections[r_symndx]; /* An object file might have a reference to a local undefined symbol. This is a daft object file, but we should at least do something about it. */ if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL && bfd_is_und_section (sec) && ELF_ST_BIND (sym->st_info) != STB_WEAK) { if (!info->callbacks->undefined_symbol (info, bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name), input_bfd, input_section, rel->r_offset, TRUE)) return FALSE; } if (r_type >= R_AARCH64_dyn_max) { bfd_set_error (bfd_error_bad_value); return FALSE; } relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); } else { bfd_boolean warned; RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, r_symndx, symtab_hdr, sym_hashes, h, sec, relocation, unresolved_reloc, warned); sym_type = h->type; } if (sec != NULL && discarded_section (sec)) RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, rel, 1, relend, howto, 0, contents); if (info->relocatable) { /* This is a relocatable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) rel->r_addend += sec->output_offset; continue; } if (h != NULL) name = h->root.root.string; else { name = (bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name)); if (name == NULL || *name == '\0') name = bfd_section_name (input_bfd, sec); } if (r_symndx != 0 && r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL && (h == NULL || h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && IS_AARCH64_TLS_RELOC (r_type) != (sym_type == STT_TLS)) { (*_bfd_error_handler) ((sym_type == STT_TLS ? _("%B(%A+0x%lx): %s used with TLS symbol %s") : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")), input_bfd, input_section, (long) rel->r_offset, howto->name, name); } /* We relax only if we can see that there can be a valid transition from a reloc type to another. We call elf64_aarch64_final_link_relocate unless we're completely done, i.e., the relaxation produced the final output we want. */ relaxed_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx); if (relaxed_r_type != r_type) { r_type = relaxed_r_type; howto = elf64_aarch64_howto_from_type (r_type); r = elf64_aarch64_tls_relax (globals, input_bfd, contents, rel, h); unresolved_reloc = 0; } else r = bfd_reloc_continue; /* There may be multiple consecutive relocations for the same offset. In that case we are supposed to treat the output of each relocation as the addend for the next. */ if (rel + 1 < relend && rel->r_offset == rel[1].r_offset && ELF64_R_TYPE (rel[1].r_info) != R_AARCH64_NONE && ELF64_R_TYPE (rel[1].r_info) != R_AARCH64_NULL) save_addend = TRUE; else save_addend = FALSE; if (r == bfd_reloc_continue) r = elf64_aarch64_final_link_relocate (howto, input_bfd, output_bfd, input_section, contents, rel, relocation, info, sec, h, &unresolved_reloc, save_addend, &addend); switch (r_type) { case R_AARCH64_TLSGD_ADR_PAGE21: case R_AARCH64_TLSGD_ADD_LO12_NC: if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx)) { bfd_boolean need_relocs = FALSE; bfd_byte *loc; int indx; bfd_vma off; off = symbol_got_offset (input_bfd, h, r_symndx); indx = h && h->dynindx != -1 ? h->dynindx : 0; need_relocs = (info->shared || indx != 0) && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak); BFD_ASSERT (globals->root.srelgot != NULL); if (need_relocs) { Elf_Internal_Rela rela; rela.r_info = ELF64_R_INFO (indx, R_AARCH64_TLS_DTPMOD64); rela.r_addend = 0; rela.r_offset = globals->root.sgot->output_section->vma + globals->root.sgot->output_offset + off; loc = globals->root.srelgot->contents; loc += globals->root.srelgot->reloc_count++ * RELOC_SIZE (htab); bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); if (indx == 0) { bfd_put_64 (output_bfd, relocation - dtpoff_base (info), globals->root.sgot->contents + off + GOT_ENTRY_SIZE); } else { /* This TLS symbol is global. We emit a relocation to fixup the tls offset at load time. */ rela.r_info = ELF64_R_INFO (indx, R_AARCH64_TLS_DTPREL64); rela.r_addend = 0; rela.r_offset = (globals->root.sgot->output_section->vma + globals->root.sgot->output_offset + off + GOT_ENTRY_SIZE); loc = globals->root.srelgot->contents; loc += globals->root.srelgot->reloc_count++ * RELOC_SIZE (globals); bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); bfd_put_64 (output_bfd, (bfd_vma) 0, globals->root.sgot->contents + off + GOT_ENTRY_SIZE); } } else { bfd_put_64 (output_bfd, (bfd_vma) 1, globals->root.sgot->contents + off); bfd_put_64 (output_bfd, relocation - dtpoff_base (info), globals->root.sgot->contents + off + GOT_ENTRY_SIZE); } symbol_got_offset_mark (input_bfd, h, r_symndx); } break; case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx)) { bfd_boolean need_relocs = FALSE; bfd_byte *loc; int indx; bfd_vma off; off = symbol_got_offset (input_bfd, h, r_symndx); indx = h && h->dynindx != -1 ? h->dynindx : 0; need_relocs = (info->shared || indx != 0) && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak); BFD_ASSERT (globals->root.srelgot != NULL); if (need_relocs) { Elf_Internal_Rela rela; if (indx == 0) rela.r_addend = relocation - dtpoff_base (info); else rela.r_addend = 0; rela.r_info = ELF64_R_INFO (indx, R_AARCH64_TLS_TPREL64); rela.r_offset = globals->root.sgot->output_section->vma + globals->root.sgot->output_offset + off; loc = globals->root.srelgot->contents; loc += globals->root.srelgot->reloc_count++ * RELOC_SIZE (htab); bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); bfd_put_64 (output_bfd, rela.r_addend, globals->root.sgot->contents + off); } else bfd_put_64 (output_bfd, relocation - tpoff_base (info), globals->root.sgot->contents + off); symbol_got_offset_mark (input_bfd, h, r_symndx); } break; case R_AARCH64_TLSLE_ADD_TPREL_LO12: case R_AARCH64_TLSLE_ADD_TPREL_HI12: case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G2: case R_AARCH64_TLSLE_MOVW_TPREL_G1: case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G0: case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: break; case R_AARCH64_TLSDESC_ADR_PAGE: case R_AARCH64_TLSDESC_LD64_LO12_NC: case R_AARCH64_TLSDESC_ADD_LO12_NC: if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx)) { bfd_boolean need_relocs = FALSE; int indx = h && h->dynindx != -1 ? h->dynindx : 0; bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx); need_relocs = (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak); BFD_ASSERT (globals->root.srelgot != NULL); BFD_ASSERT (globals->root.sgot != NULL); if (need_relocs) { bfd_byte *loc; Elf_Internal_Rela rela; rela.r_info = ELF64_R_INFO (indx, R_AARCH64_TLSDESC); rela.r_addend = 0; rela.r_offset = (globals->root.sgotplt->output_section->vma + globals->root.sgotplt->output_offset + off + globals->sgotplt_jump_table_size); if (indx == 0) rela.r_addend = relocation - dtpoff_base (info); /* Allocate the next available slot in the PLT reloc section to hold our R_AARCH64_TLSDESC, the next available slot is determined from reloc_count, which we step. But note, reloc_count was artifically moved down while allocating slots for real PLT relocs such that all of the PLT relocs will fit above the initial reloc_count and the extra stuff will fit below. */ loc = globals->root.srelplt->contents; loc += globals->root.srelplt->reloc_count++ * RELOC_SIZE (globals); bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); bfd_put_64 (output_bfd, (bfd_vma) 0, globals->root.sgotplt->contents + off + globals->sgotplt_jump_table_size); bfd_put_64 (output_bfd, (bfd_vma) 0, globals->root.sgotplt->contents + off + globals->sgotplt_jump_table_size + GOT_ENTRY_SIZE); } symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx); } break; } if (!save_addend) addend = 0; /* Dynamic relocs are not propagated for SEC_DEBUGGING sections because such sections are not SEC_ALLOC and thus ld.so will not process them. */ if (unresolved_reloc && !((input_section->flags & SEC_DEBUGGING) != 0 && h->def_dynamic) && _bfd_elf_section_offset (output_bfd, info, input_section, +rel->r_offset) != (bfd_vma) - 1) { (*_bfd_error_handler) (_ ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), input_bfd, input_section, (long) rel->r_offset, howto->name, h->root.root.string); return FALSE; } if (r != bfd_reloc_ok && r != bfd_reloc_continue) { switch (r) { case bfd_reloc_overflow: /* If the overflowing reloc was to an undefined symbol, we have already printed one error message and there is no point complaining again. */ if ((!h || h->root.type != bfd_link_hash_undefined) && (!((*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset)))) return FALSE; break; case bfd_reloc_undefined: if (!((*info->callbacks->undefined_symbol) (info, name, input_bfd, input_section, rel->r_offset, TRUE))) return FALSE; break; case bfd_reloc_outofrange: error_message = _("out of range"); goto common_error; case bfd_reloc_notsupported: error_message = _("unsupported relocation"); goto common_error; case bfd_reloc_dangerous: /* error_message should already be set. */ goto common_error; default: error_message = _("unknown error"); /* Fall through. */ common_error: BFD_ASSERT (error_message != NULL); if (!((*info->callbacks->reloc_dangerous) (info, error_message, input_bfd, input_section, rel->r_offset))) return FALSE; break; } } } return TRUE; } /* Set the right machine number. */ static bfd_boolean elf64_aarch64_object_p (bfd *abfd) { bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64); return TRUE; } /* Function to keep AArch64 specific flags in the ELF header. */ static bfd_boolean elf64_aarch64_set_private_flags (bfd *abfd, flagword flags) { if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags) { } else { elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = TRUE; } return TRUE; } /* Copy backend specific data from one object module to another. */ static bfd_boolean elf64_aarch64_copy_private_bfd_data (bfd *ibfd, bfd *obfd) { flagword in_flags; if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd)) return TRUE; in_flags = elf_elfheader (ibfd)->e_flags; elf_elfheader (obfd)->e_flags = in_flags; elf_flags_init (obfd) = TRUE; /* Also copy the EI_OSABI field. */ elf_elfheader (obfd)->e_ident[EI_OSABI] = elf_elfheader (ibfd)->e_ident[EI_OSABI]; /* Copy object attributes. */ _bfd_elf_copy_obj_attributes (ibfd, obfd); return TRUE; } /* Merge backend specific data from an object file to the output object file when linking. */ static bfd_boolean elf64_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd) { flagword out_flags; flagword in_flags; bfd_boolean flags_compatible = TRUE; asection *sec; /* Check if we have the same endianess. */ if (!_bfd_generic_verify_endian_match (ibfd, obfd)) return FALSE; if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd)) return TRUE; /* The input BFD must have had its flags initialised. */ /* The following seems bogus to me -- The flags are initialized in the assembler but I don't think an elf_flags_init field is written into the object. */ /* BFD_ASSERT (elf_flags_init (ibfd)); */ in_flags = elf_elfheader (ibfd)->e_flags; out_flags = elf_elfheader (obfd)->e_flags; if (!elf_flags_init (obfd)) { /* If the input is the default architecture and had the default flags then do not bother setting the flags for the output architecture, instead allow future merges to do this. If no future merges ever set these flags then they will retain their uninitialised values, which surprise surprise, correspond to the default values. */ if (bfd_get_arch_info (ibfd)->the_default && elf_elfheader (ibfd)->e_flags == 0) return TRUE; elf_flags_init (obfd) = TRUE; elf_elfheader (obfd)->e_flags = in_flags; if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) && bfd_get_arch_info (obfd)->the_default) return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd)); return TRUE; } /* Identical flags must be compatible. */ if (in_flags == out_flags) return TRUE; /* Check to see if the input BFD actually contains any sections. If not, its flags may not have been initialised either, but it cannot actually cause any incompatiblity. Do not short-circuit dynamic objects; their section list may be emptied by elf_link_add_object_symbols. Also check to see if there are no code sections in the input. In this case there is no need to check for code specific flags. XXX - do we need to worry about floating-point format compatability in data sections ? */ if (!(ibfd->flags & DYNAMIC)) { bfd_boolean null_input_bfd = TRUE; bfd_boolean only_data_sections = TRUE; for (sec = ibfd->sections; sec != NULL; sec = sec->next) { if ((bfd_get_section_flags (ibfd, sec) & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) only_data_sections = FALSE; null_input_bfd = FALSE; break; } if (null_input_bfd || only_data_sections) return TRUE; } return flags_compatible; } /* Display the flags field. */ static bfd_boolean elf64_aarch64_print_private_bfd_data (bfd *abfd, void *ptr) { FILE *file = (FILE *) ptr; unsigned long flags; BFD_ASSERT (abfd != NULL && ptr != NULL); /* Print normal ELF private data. */ _bfd_elf_print_private_bfd_data (abfd, ptr); flags = elf_elfheader (abfd)->e_flags; /* Ignore init flag - it may not be set, despite the flags field containing valid data. */ /* xgettext:c-format */ fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); if (flags) fprintf (file, _("")); fputc ('\n', file); return TRUE; } /* Update the got entry reference counts for the section being removed. */ static bfd_boolean elf64_aarch64_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, struct bfd_link_info *info ATTRIBUTE_UNUSED, asection *sec ATTRIBUTE_UNUSED, const Elf_Internal_Rela * relocs ATTRIBUTE_UNUSED) { return TRUE; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bfd_boolean elf64_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { struct elf64_aarch64_link_hash_table *htab; asection *s; /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later, when we know the address of the .got section. */ if (h->type == STT_FUNC || h->needs_plt) { if (h->plt.refcount <= 0 || SYMBOL_CALLS_LOCAL (info, h) || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT && h->root.type == bfd_link_hash_undefweak)) { /* This case can occur if we saw a CALL26 reloc in an input file, but the symbol wasn't referred to by a dynamic object or all references were garbage collected. In which case we can end up resolving. */ h->plt.offset = (bfd_vma) - 1; h->needs_plt = 0; } return TRUE; } else /* It's possible that we incorrectly decided a .plt reloc was needed for an R_X86_64_PC32 reloc to a non-function sym in check_relocs. We can't decide accurately between function and non-function syms in check-relocs; Objects loaded later in the link may change h->type. So fix it now. */ h->plt.offset = (bfd_vma) - 1; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->u.weakdef != NULL) { BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined || h->u.weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->u.weakdef->root.u.def.section; h->root.u.def.value = h->u.weakdef->root.u.def.value; if (ELIMINATE_COPY_RELOCS || info->nocopyreloc) h->non_got_ref = h->u.weakdef->non_got_ref; return TRUE; } /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return TRUE; /* If there are no references to this symbol that do not use the GOT, we don't need to generate a copy reloc. */ if (!h->non_got_ref) return TRUE; /* If -z nocopyreloc was given, we won't generate them either. */ if (info->nocopyreloc) { h->non_got_ref = 0; return TRUE; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ htab = elf64_aarch64_hash_table (info); /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) { htab->srelbss->size += RELOC_SIZE (htab); h->needs_copy = 1; } s = htab->sdynbss; return _bfd_elf_adjust_dynamic_copy (h, s); } static bfd_boolean elf64_aarch64_allocate_local_symbols (bfd *abfd, unsigned number) { struct elf_aarch64_local_symbol *locals; locals = elf64_aarch64_locals (abfd); if (locals == NULL) { locals = (struct elf_aarch64_local_symbol *) bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol)); if (locals == NULL) return FALSE; elf64_aarch64_locals (abfd) = locals; } return TRUE; } /* Look through the relocs for a section during the first phase. */ static bfd_boolean elf64_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *sreloc; struct elf64_aarch64_link_hash_table *htab; unsigned long nsyms; if (info->relocatable) return TRUE; BFD_ASSERT (is_aarch64_elf (abfd)); htab = elf64_aarch64_hash_table (info); sreloc = NULL; symtab_hdr = &elf_symtab_hdr (abfd); sym_hashes = elf_sym_hashes (abfd); nsyms = NUM_SHDR_ENTRIES (symtab_hdr); rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { struct elf_link_hash_entry *h; unsigned long r_symndx; unsigned int r_type; r_symndx = ELF64_R_SYM (rel->r_info); r_type = ELF64_R_TYPE (rel->r_info); if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) { (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd, r_symndx); return FALSE; } if (r_symndx >= nsyms /* PR 9934: It is possible to have relocations that do not refer to symbols, thus it is also possible to have an object file containing relocations but no symbol table. */ && (r_symndx > 0 || nsyms > 0)) { (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd, r_symndx); return FALSE; } if (nsyms == 0 || r_symndx < symtab_hdr->sh_info) h = NULL; else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } /* Could be done earlier, if h were already available. */ r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx); switch (r_type) { case R_AARCH64_ABS64: /* We don't need to handle relocs into sections not going into the "real" output. */ if ((sec->flags & SEC_ALLOC) == 0) break; if (h != NULL) { if (!info->shared) h->non_got_ref = 1; h->plt.refcount += 1; h->pointer_equality_needed = 1; } /* No need to do anything if we're not creating a shared object. */ if (! info->shared) break; { struct elf_dyn_relocs *p; struct elf_dyn_relocs **head; /* We must copy these reloc types into the output file. Create a reloc section in dynobj and make room for this reloc. */ if (sreloc == NULL) { if (htab->root.dynobj == NULL) htab->root.dynobj = abfd; sreloc = _bfd_elf_make_dynamic_reloc_section (sec, htab->root.dynobj, 3, abfd, /*rela? */ TRUE); if (sreloc == NULL) return FALSE; } /* If this is a global symbol, we count the number of relocations we need for this symbol. */ if (h != NULL) { struct elf64_aarch64_link_hash_entry *eh; eh = (struct elf64_aarch64_link_hash_entry *) h; head = &eh->dyn_relocs; } else { /* Track dynamic relocs needed for local syms too. We really need local syms available to do this easily. Oh well. */ asection *s; void **vpp; Elf_Internal_Sym *isym; isym = bfd_sym_from_r_symndx (&htab->sym_cache, abfd, r_symndx); if (isym == NULL) return FALSE; s = bfd_section_from_elf_index (abfd, isym->st_shndx); if (s == NULL) s = sec; /* Beware of type punned pointers vs strict aliasing rules. */ vpp = &(elf_section_data (s)->local_dynrel); head = (struct elf_dyn_relocs **) vpp; } p = *head; if (p == NULL || p->sec != sec) { bfd_size_type amt = sizeof *p; p = ((struct elf_dyn_relocs *) bfd_zalloc (htab->root.dynobj, amt)); if (p == NULL) return FALSE; p->next = *head; *head = p; p->sec = sec; } p->count += 1; } break; /* RR: We probably want to keep a consistency check that there are no dangling GOT_PAGE relocs. */ case R_AARCH64_LD64_GOT_LO12_NC: case R_AARCH64_GOT_LD_PREL19: case R_AARCH64_ADR_GOT_PAGE: case R_AARCH64_TLSGD_ADR_PAGE21: case R_AARCH64_TLSGD_ADD_LO12_NC: case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: case R_AARCH64_TLSLE_ADD_TPREL_LO12: case R_AARCH64_TLSLE_ADD_TPREL_HI12: case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G2: case R_AARCH64_TLSLE_MOVW_TPREL_G1: case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: case R_AARCH64_TLSLE_MOVW_TPREL_G0: case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: case R_AARCH64_TLSDESC_ADR_PAGE: case R_AARCH64_TLSDESC_ADD_LO12_NC: case R_AARCH64_TLSDESC_LD64_LO12_NC: { unsigned got_type; unsigned old_got_type; got_type = aarch64_reloc_got_type (r_type); if (h) { h->got.refcount += 1; old_got_type = elf64_aarch64_hash_entry (h)->got_type; } else { struct elf_aarch64_local_symbol *locals; if (!elf64_aarch64_allocate_local_symbols (abfd, symtab_hdr->sh_info)) return FALSE; locals = elf64_aarch64_locals (abfd); BFD_ASSERT (r_symndx < symtab_hdr->sh_info); locals[r_symndx].got_refcount += 1; old_got_type = locals[r_symndx].got_type; } /* If a variable is accessed with both general dynamic TLS methods, two slots may be created. */ if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type)) got_type |= old_got_type; /* We will already have issued an error message if there is a TLS/non-TLS mismatch, based on the symbol type. So just combine any TLS types needed. */ if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL && got_type != GOT_NORMAL) got_type |= old_got_type; /* If the symbol is accessed by both IE and GD methods, we are able to relax. Turn off the GD flag, without messing up with any other kind of TLS types that may be involved. */ if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type)) got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD); if (old_got_type != got_type) { if (h != NULL) elf64_aarch64_hash_entry (h)->got_type = got_type; else { struct elf_aarch64_local_symbol *locals; locals = elf64_aarch64_locals (abfd); BFD_ASSERT (r_symndx < symtab_hdr->sh_info); locals[r_symndx].got_type = got_type; } } if (htab->root.sgot == NULL) { if (htab->root.dynobj == NULL) htab->root.dynobj = abfd; if (!_bfd_elf_create_got_section (htab->root.dynobj, info)) return FALSE; } break; } case R_AARCH64_ADR_PREL_PG_HI21_NC: case R_AARCH64_ADR_PREL_PG_HI21: case R_AARCH64_ADR_PREL_LO21: if (h != NULL && info->executable) { /* If this reloc is in a read-only section, we might need a copy reloc. We can't check reliably at this stage whether the section is read-only, as input sections have not yet been mapped to output sections. Tentatively set the flag for now, and correct in adjust_dynamic_symbol. */ h->non_got_ref = 1; h->plt.refcount += 1; h->pointer_equality_needed = 1; } /* FIXME:: RR need to handle these in shared libraries and essentially bomb out as these being non-PIC relocations in shared libraries. */ break; case R_AARCH64_CALL26: case R_AARCH64_JUMP26: /* If this is a local symbol then we resolve it directly without creating a PLT entry. */ if (h == NULL) continue; h->needs_plt = 1; h->plt.refcount += 1; break; } } return TRUE; } /* Treat mapping symbols as special target symbols. */ static bfd_boolean elf64_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED, asymbol *sym) { return bfd_is_aarch64_special_symbol_name (sym->name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY); } /* This is a copy of elf_find_function () from elf.c except that AArch64 mapping symbols are ignored when looking for function names. */ static bfd_boolean aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED, asection *section, asymbol **symbols, bfd_vma offset, const char **filename_ptr, const char **functionname_ptr) { const char *filename = NULL; asymbol *func = NULL; bfd_vma low_func = 0; asymbol **p; for (p = symbols; *p != NULL; p++) { elf_symbol_type *q; q = (elf_symbol_type *) * p; switch (ELF_ST_TYPE (q->internal_elf_sym.st_info)) { default: break; case STT_FILE: filename = bfd_asymbol_name (&q->symbol); break; case STT_FUNC: case STT_NOTYPE: /* Skip mapping symbols. */ if ((q->symbol.flags & BSF_LOCAL) && (bfd_is_aarch64_special_symbol_name (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))) continue; /* Fall through. */ if (bfd_get_section (&q->symbol) == section && q->symbol.value >= low_func && q->symbol.value <= offset) { func = (asymbol *) q; low_func = q->symbol.value; } break; } } if (func == NULL) return FALSE; if (filename_ptr) *filename_ptr = filename; if (functionname_ptr) *functionname_ptr = bfd_asymbol_name (func); return TRUE; } /* Find the nearest line to a particular section and offset, for error reporting. This code is a duplicate of the code in elf.c, except that it uses aarch64_elf_find_function. */ static bfd_boolean elf64_aarch64_find_nearest_line (bfd *abfd, asection *section, asymbol **symbols, bfd_vma offset, const char **filename_ptr, const char **functionname_ptr, unsigned int *line_ptr) { bfd_boolean found = FALSE; /* We skip _bfd_dwarf1_find_nearest_line since no known AArch64 toolchain uses it. */ if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr, NULL, 0, &elf_tdata (abfd)->dwarf2_find_line_info)) { if (!*functionname_ptr) aarch64_elf_find_function (abfd, section, symbols, offset, *filename_ptr ? NULL : filename_ptr, functionname_ptr); return TRUE; } if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, &found, filename_ptr, functionname_ptr, line_ptr, &elf_tdata (abfd)->line_info)) return FALSE; if (found && (*functionname_ptr || *line_ptr)) return TRUE; if (symbols == NULL) return FALSE; if (!aarch64_elf_find_function (abfd, section, symbols, offset, filename_ptr, functionname_ptr)) return FALSE; *line_ptr = 0; return TRUE; } static bfd_boolean elf64_aarch64_find_inliner_info (bfd *abfd, const char **filename_ptr, const char **functionname_ptr, unsigned int *line_ptr) { bfd_boolean found; found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info); return found; } static void elf64_aarch64_post_process_headers (bfd *abfd, struct bfd_link_info *link_info ATTRIBUTE_UNUSED) { Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */ i_ehdrp = elf_elfheader (abfd); i_ehdrp->e_ident[EI_OSABI] = 0; i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION; } static enum elf_reloc_type_class elf64_aarch64_reloc_type_class (const Elf_Internal_Rela *rela) { switch ((int) ELF64_R_TYPE (rela->r_info)) { case R_AARCH64_RELATIVE: return reloc_class_relative; case R_AARCH64_JUMP_SLOT: return reloc_class_plt; case R_AARCH64_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* Set the right machine number for an AArch64 ELF file. */ static bfd_boolean elf64_aarch64_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr) { if (hdr->sh_type == SHT_NOTE) *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS; return TRUE; } /* Handle an AArch64 specific section when reading an object file. This is called when bfd_section_from_shdr finds a section with an unknown type. */ static bfd_boolean elf64_aarch64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr, const char *name, int shindex) { /* There ought to be a place to keep ELF backend specific flags, but at the moment there isn't one. We just keep track of the sections by their name, instead. Fortunately, the ABI gives names for all the AArch64 specific sections, so we will probably get away with this. */ switch (hdr->sh_type) { case SHT_AARCH64_ATTRIBUTES: break; default: return FALSE; } if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) return FALSE; return TRUE; } /* A structure used to record a list of sections, independently of the next and prev fields in the asection structure. */ typedef struct section_list { asection *sec; struct section_list *next; struct section_list *prev; } section_list; /* Unfortunately we need to keep a list of sections for which an _aarch64_elf_section_data structure has been allocated. This is because it is possible for functions like elf64_aarch64_write_section to be called on a section which has had an elf_data_structure allocated for it (and so the used_by_bfd field is valid) but for which the AArch64 extended version of this structure - the _aarch64_elf_section_data structure - has not been allocated. */ static section_list *sections_with_aarch64_elf_section_data = NULL; static void record_section_with_aarch64_elf_section_data (asection *sec) { struct section_list *entry; entry = bfd_malloc (sizeof (*entry)); if (entry == NULL) return; entry->sec = sec; entry->next = sections_with_aarch64_elf_section_data; entry->prev = NULL; if (entry->next != NULL) entry->next->prev = entry; sections_with_aarch64_elf_section_data = entry; } static struct section_list * find_aarch64_elf_section_entry (asection *sec) { struct section_list *entry; static struct section_list *last_entry = NULL; /* This is a short cut for the typical case where the sections are added to the sections_with_aarch64_elf_section_data list in forward order and then looked up here in backwards order. This makes a real difference to the ld-srec/sec64k.exp linker test. */ entry = sections_with_aarch64_elf_section_data; if (last_entry != NULL) { if (last_entry->sec == sec) entry = last_entry; else if (last_entry->next != NULL && last_entry->next->sec == sec) entry = last_entry->next; } for (; entry; entry = entry->next) if (entry->sec == sec) break; if (entry) /* Record the entry prior to this one - it is the entry we are most likely to want to locate next time. Also this way if we have been called from unrecord_section_with_aarch64_elf_section_data () we will not be caching a pointer that is about to be freed. */ last_entry = entry->prev; return entry; } static void unrecord_section_with_aarch64_elf_section_data (asection *sec) { struct section_list *entry; entry = find_aarch64_elf_section_entry (sec); if (entry) { if (entry->prev != NULL) entry->prev->next = entry->next; if (entry->next != NULL) entry->next->prev = entry->prev; if (entry == sections_with_aarch64_elf_section_data) sections_with_aarch64_elf_section_data = entry->next; free (entry); } } typedef struct { void *finfo; struct bfd_link_info *info; asection *sec; int sec_shndx; int (*func) (void *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *); } output_arch_syminfo; enum map_symbol_type { AARCH64_MAP_INSN, AARCH64_MAP_DATA }; /* Output a single mapping symbol. */ static bfd_boolean elf64_aarch64_output_map_sym (output_arch_syminfo *osi, enum map_symbol_type type, bfd_vma offset) { static const char *names[2] = { "$x", "$d" }; Elf_Internal_Sym sym; sym.st_value = (osi->sec->output_section->vma + osi->sec->output_offset + offset); sym.st_size = 0; sym.st_other = 0; sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); sym.st_shndx = osi->sec_shndx; return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1; } /* Output mapping symbols for PLT entries associated with H. */ static bfd_boolean elf64_aarch64_output_plt_map (struct elf_link_hash_entry *h, void *inf) { output_arch_syminfo *osi = (output_arch_syminfo *) inf; bfd_vma addr; if (h->root.type == bfd_link_hash_indirect) return TRUE; if (h->root.type == bfd_link_hash_warning) /* When warning symbols are created, they **replace** the "real" entry in the hash table, thus we never get to see the real symbol in a hash traversal. So look at it now. */ h = (struct elf_link_hash_entry *) h->root.u.i.link; if (h->plt.offset == (bfd_vma) - 1) return TRUE; addr = h->plt.offset; if (addr == 32) { if (!elf64_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr)) return FALSE; } return TRUE; } /* Output a single local symbol for a generated stub. */ static bfd_boolean elf64_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name, bfd_vma offset, bfd_vma size) { Elf_Internal_Sym sym; sym.st_value = (osi->sec->output_section->vma + osi->sec->output_offset + offset); sym.st_size = size; sym.st_other = 0; sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC); sym.st_shndx = osi->sec_shndx; return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1; } static bfd_boolean aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) { struct elf64_aarch64_stub_hash_entry *stub_entry; asection *stub_sec; bfd_vma addr; char *stub_name; output_arch_syminfo *osi; /* Massage our args to the form they really have. */ stub_entry = (struct elf64_aarch64_stub_hash_entry *) gen_entry; osi = (output_arch_syminfo *) in_arg; stub_sec = stub_entry->stub_sec; /* Ensure this stub is attached to the current section being processed. */ if (stub_sec != osi->sec) return TRUE; addr = (bfd_vma) stub_entry->stub_offset; stub_name = stub_entry->output_name; switch (stub_entry->stub_type) { case aarch64_stub_adrp_branch: if (!elf64_aarch64_output_stub_sym (osi, stub_name, addr, sizeof (aarch64_adrp_branch_stub))) return FALSE; if (!elf64_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr)) return FALSE; break; case aarch64_stub_long_branch: if (!elf64_aarch64_output_stub_sym (osi, stub_name, addr, sizeof (aarch64_long_branch_stub))) return FALSE; if (!elf64_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr)) return FALSE; if (!elf64_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16)) return FALSE; break; default: BFD_FAIL (); } return TRUE; } /* Output mapping symbols for linker generated sections. */ static bfd_boolean elf64_aarch64_output_arch_local_syms (bfd *output_bfd, struct bfd_link_info *info, void *finfo, int (*func) (void *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *)) { output_arch_syminfo osi; struct elf64_aarch64_link_hash_table *htab; htab = elf64_aarch64_hash_table (info); osi.finfo = finfo; osi.info = info; osi.func = func; /* Long calls stubs. */ if (htab->stub_bfd && htab->stub_bfd->sections) { asection *stub_sec; for (stub_sec = htab->stub_bfd->sections; stub_sec != NULL; stub_sec = stub_sec->next) { /* Ignore non-stub sections. */ if (!strstr (stub_sec->name, STUB_SUFFIX)) continue; osi.sec = stub_sec; osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd, osi.sec->output_section); bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub, &osi); } } /* Finally, output mapping symbols for the PLT. */ if (!htab->root.splt || htab->root.splt->size == 0) return TRUE; /* For now live without mapping symbols for the plt. */ osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd, htab->root.splt->output_section); osi.sec = htab->root.splt; elf_link_hash_traverse (&htab->root, elf64_aarch64_output_plt_map, (void *) &osi); return TRUE; } /* Allocate target specific section data. */ static bfd_boolean elf64_aarch64_new_section_hook (bfd *abfd, asection *sec) { if (!sec->used_by_bfd) { _aarch64_elf_section_data *sdata; bfd_size_type amt = sizeof (*sdata); sdata = bfd_zalloc (abfd, amt); if (sdata == NULL) return FALSE; sec->used_by_bfd = sdata; } record_section_with_aarch64_elf_section_data (sec); return _bfd_elf_new_section_hook (abfd, sec); } static void unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *ignore ATTRIBUTE_UNUSED) { unrecord_section_with_aarch64_elf_section_data (sec); } static bfd_boolean elf64_aarch64_close_and_cleanup (bfd *abfd) { if (abfd->sections) bfd_map_over_sections (abfd, unrecord_section_via_map_over_sections, NULL); return _bfd_elf_close_and_cleanup (abfd); } static bfd_boolean elf64_aarch64_bfd_free_cached_info (bfd *abfd) { if (abfd->sections) bfd_map_over_sections (abfd, unrecord_section_via_map_over_sections, NULL); return _bfd_free_cached_info (abfd); } static bfd_boolean elf64_aarch64_is_function_type (unsigned int type) { return type == STT_FUNC; } /* Create dynamic sections. This is different from the ARM backend in that the got, plt, gotplt and their relocation sections are all created in the standard part of the bfd elf backend. */ static bfd_boolean elf64_aarch64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) { struct elf64_aarch64_link_hash_table *htab; struct elf_link_hash_entry *h; if (!_bfd_elf_create_dynamic_sections (dynobj, info)) return FALSE; htab = elf64_aarch64_hash_table (info); htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss"); if (!info->shared) htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss"); if (!htab->sdynbss || (!info->shared && !htab->srelbss)) abort (); /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the dynobj's .got section. We don't do this in the linker script because we don't want to define the symbol if we are not creating a global offset table. */ h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.sgot, "_GLOBAL_OFFSET_TABLE_"); elf_hash_table (info)->hgot = h; if (h == NULL) return FALSE; return TRUE; } /* Allocate space in .plt, .got and associated reloc sections for dynamic relocs. */ static bfd_boolean elf64_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) { struct bfd_link_info *info; struct elf64_aarch64_link_hash_table *htab; struct elf64_aarch64_link_hash_entry *eh; struct elf_dyn_relocs *p; /* An example of a bfd_link_hash_indirect symbol is versioned symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect) -> __gxx_personality_v0(bfd_link_hash_defined) There is no need to process bfd_link_hash_indirect symbols here because we will also be presented with the concrete instance of the symbol and elf64_aarch64_copy_indirect_symbol () will have been called to copy all relevant data from the generic to the concrete symbol instance. */ if (h->root.type == bfd_link_hash_indirect) return TRUE; if (h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; info = (struct bfd_link_info *) inf; htab = elf64_aarch64_hash_table (info); if (htab->root.dynamic_sections_created && h->plt.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (!bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) { asection *s = htab->root.splt; /* If this is the first .plt entry, make room for the special first entry. */ if (s->size == 0) s->size += htab->plt_header_size; h->plt.offset = s->size; /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (!info->shared && !h->def_regular) { h->root.u.def.section = s; h->root.u.def.value = h->plt.offset; } /* Make room for this entry. For now we only create the small model PLT entries. We later need to find a way of relaxing into these from the large model PLT entries. */ s->size += PLT_SMALL_ENTRY_SIZE; /* We also need to make an entry in the .got.plt section, which will be placed in the .got section by the linker script. */ htab->root.sgotplt->size += GOT_ENTRY_SIZE; /* We also need to make an entry in the .rela.plt section. */ htab->root.srelplt->size += RELOC_SIZE (htab); /* We need to ensure that all GOT entries that serve the PLT are consecutive with the special GOT slots [0] [1] and [2]. Any addtional relocations, such as R_AARCH64_TLSDESC, must be placed after the PLT related entries. We abuse the reloc_count such that during sizing we adjust reloc_count to indicate the number of PLT related reserved entries. In subsequent phases when filling in the contents of the reloc entries, PLT related entries are placed by computing their PLT index (0 .. reloc_count). While other none PLT relocs are placed at the slot indicated by reloc_count and reloc_count is updated. */ htab->root.srelplt->reloc_count++; } else { h->plt.offset = (bfd_vma) - 1; h->needs_plt = 0; } } else { h->plt.offset = (bfd_vma) - 1; h->needs_plt = 0; } eh = (struct elf64_aarch64_link_hash_entry *) h; eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1; if (h->got.refcount > 0) { bfd_boolean dyn; unsigned got_type = elf64_aarch64_hash_entry (h)->got_type; h->got.offset = (bfd_vma) - 1; dyn = htab->root.dynamic_sections_created; /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (dyn && h->dynindx == -1 && !h->forced_local) { if (!bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } if (got_type == GOT_UNKNOWN) { } else if (got_type == GOT_NORMAL) { h->got.offset = htab->root.sgot->size; htab->root.sgot->size += GOT_ENTRY_SIZE; if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) { htab->root.srelgot->size += RELOC_SIZE (htab); } } else { int indx; if (got_type & GOT_TLSDESC_GD) { eh->tlsdesc_got_jump_table_offset = (htab->root.sgotplt->size - aarch64_compute_jump_table_size (htab)); htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2; h->got.offset = (bfd_vma) - 2; } if (got_type & GOT_TLS_GD) { h->got.offset = htab->root.sgot->size; htab->root.sgot->size += GOT_ENTRY_SIZE * 2; } if (got_type & GOT_TLS_IE) { h->got.offset = htab->root.sgot->size; htab->root.sgot->size += GOT_ENTRY_SIZE; } indx = h && h->dynindx != -1 ? h->dynindx : 0; if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && (info->shared || indx != 0 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) { if (got_type & GOT_TLSDESC_GD) { htab->root.srelplt->size += RELOC_SIZE (htab); /* Note reloc_count not incremented here! We have already adjusted reloc_count for this relocation type. */ /* TLSDESC PLT is now needed, but not yet determined. */ htab->tlsdesc_plt = (bfd_vma) - 1; } if (got_type & GOT_TLS_GD) htab->root.srelgot->size += RELOC_SIZE (htab) * 2; if (got_type & GOT_TLS_IE) htab->root.srelgot->size += RELOC_SIZE (htab); } } } else { h->got.offset = (bfd_vma) - 1; } if (eh->dyn_relocs == NULL) return TRUE; /* In the shared -Bsymbolic case, discard space allocated for dynamic pc-relative relocs against symbols which turn out to be defined in regular objects. For the normal shared case, discard space for pc-relative relocs that have become local due to symbol visibility changes. */ if (info->shared) { /* Relocs that use pc_count are those that appear on a call insn, or certain REL relocs that can generated via assembly. We want calls to protected symbols to resolve directly to the function rather than going via the plt. If people want function pointer comparisons to work as expected then they should avoid writing weird assembly. */ if (SYMBOL_CALLS_LOCAL (info, h)) { struct elf_dyn_relocs **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL;) { p->count -= p->pc_count; p->pc_count = 0; if (p->count == 0) *pp = p->next; else pp = &p->next; } } /* Also discard relocs on undefined weak syms with non-default visibility. */ if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak) { if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) eh->dyn_relocs = NULL; /* Make sure undefined weak symbols are output as a dynamic symbol in PIEs. */ else if (h->dynindx == -1 && !h->forced_local && !bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } } else if (ELIMINATE_COPY_RELOCS) { /* For the non-shared case, discard space for relocs against symbols which turn out to need copy relocs or are not dynamic. */ if (!h->non_got_ref && ((h->def_dynamic && !h->def_regular) || (htab->root.dynamic_sections_created && (h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined)))) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local && !bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; /* If that succeeded, we know we'll be keeping all the relocs. */ if (h->dynindx != -1) goto keep; } eh->dyn_relocs = NULL; keep:; } /* Finally, allocate space. */ for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *sreloc; sreloc = elf_section_data (p->sec)->sreloc; BFD_ASSERT (sreloc != NULL); sreloc->size += p->count * RELOC_SIZE (htab); } return TRUE; } /* This is the most important function of all . Innocuosly named though ! */ static bfd_boolean elf64_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { struct elf64_aarch64_link_hash_table *htab; bfd *dynobj; asection *s; bfd_boolean relocs; bfd *ibfd; htab = elf64_aarch64_hash_table ((info)); dynobj = htab->root.dynobj; BFD_ASSERT (dynobj != NULL); if (htab->root.dynamic_sections_created) { if (info->executable) { s = bfd_get_linker_section (dynobj, ".interp"); if (s == NULL) abort (); s->size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } /* Set up .got offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { struct elf_aarch64_local_symbol *locals = NULL; Elf_Internal_Shdr *symtab_hdr; asection *srel; unsigned int i; if (!is_aarch64_elf (ibfd)) continue; for (s = ibfd->sections; s != NULL; s = s->next) { struct elf_dyn_relocs *p; for (p = (struct elf_dyn_relocs *) (elf_section_data (s)->local_dynrel); p != NULL; p = p->next) { if (!bfd_is_abs_section (p->sec) && bfd_is_abs_section (p->sec->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (p->count != 0) { srel = elf_section_data (p->sec)->sreloc; srel->size += p->count * RELOC_SIZE (htab); if ((p->sec->output_section->flags & SEC_READONLY) != 0) info->flags |= DF_TEXTREL; } } } locals = elf64_aarch64_locals (ibfd); if (!locals) continue; symtab_hdr = &elf_symtab_hdr (ibfd); srel = htab->root.srelgot; for (i = 0; i < symtab_hdr->sh_info; i++) { locals[i].got_offset = (bfd_vma) - 1; locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1; if (locals[i].got_refcount > 0) { unsigned got_type = locals[i].got_type; if (got_type & GOT_TLSDESC_GD) { locals[i].tlsdesc_got_jump_table_offset = (htab->root.sgotplt->size - aarch64_compute_jump_table_size (htab)); htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2; locals[i].got_offset = (bfd_vma) - 2; } if (got_type & GOT_TLS_GD) { locals[i].got_offset = htab->root.sgot->size; htab->root.sgot->size += GOT_ENTRY_SIZE * 2; } if (got_type & GOT_TLS_IE) { locals[i].got_offset = htab->root.sgot->size; htab->root.sgot->size += GOT_ENTRY_SIZE; } if (got_type == GOT_UNKNOWN) { } if (got_type == GOT_NORMAL) { } if (info->shared) { if (got_type & GOT_TLSDESC_GD) { htab->root.srelplt->size += RELOC_SIZE (htab); /* Note RELOC_COUNT not incremented here! */ htab->tlsdesc_plt = (bfd_vma) - 1; } if (got_type & GOT_TLS_GD) htab->root.srelgot->size += RELOC_SIZE (htab) * 2; if (got_type & GOT_TLS_IE) htab->root.srelgot->size += RELOC_SIZE (htab); } } else { locals[i].got_refcount = (bfd_vma) - 1; } } } /* Allocate global sym .plt and .got entries, and space for global sym dynamic relocs. */ elf_link_hash_traverse (&htab->root, elf64_aarch64_allocate_dynrelocs, info); /* For every jump slot reserved in the sgotplt, reloc_count is incremented. However, when we reserve space for TLS descriptors, it's not incremented, so in order to compute the space reserved for them, it suffices to multiply the reloc count by the jump slot size. */ if (htab->root.srelplt) htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab); if (htab->tlsdesc_plt) { if (htab->root.splt->size == 0) htab->root.splt->size += PLT_ENTRY_SIZE; htab->tlsdesc_plt = htab->root.splt->size; htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE; /* If we're not using lazy TLS relocations, don't generate the GOT entry required. */ if (!(info->flags & DF_BIND_NOW)) { htab->dt_tlsdesc_got = htab->root.sgot->size; htab->root.sgot->size += GOT_ENTRY_SIZE; } } /* We now have determined the sizes of the various dynamic sections. Allocate memory for them. */ relocs = FALSE; for (s = dynobj->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LINKER_CREATED) == 0) continue; if (s == htab->root.splt || s == htab->root.sgot || s == htab->root.sgotplt || s == htab->root.iplt || s == htab->root.igotplt || s == htab->sdynbss) { /* Strip this section if we don't need it; see the comment below. */ } else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela")) { if (s->size != 0 && s != htab->root.srelplt) relocs = TRUE; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ if (s != htab->root.srelplt) s->reloc_count = 0; } else { /* It's not one of our sections, so don't allocate space. */ continue; } if (s->size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rela.bss and .rela.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ s->flags |= SEC_EXCLUDE; continue; } if ((s->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. We use bfd_zalloc here in case unused entries are not reclaimed before the section's contents are written out. This should not happen, but this way if it does, we get a R_AARCH64_NONE reloc instead of garbage. */ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); if (s->contents == NULL) return FALSE; } if (htab->root.dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in elf64_aarch64_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ #define add_dynamic_entry(TAG, VAL) \ _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (info->executable) { if (!add_dynamic_entry (DT_DEBUG, 0)) return FALSE; } if (htab->root.splt->size != 0) { if (!add_dynamic_entry (DT_PLTGOT, 0) || !add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, DT_RELA) || !add_dynamic_entry (DT_JMPREL, 0)) return FALSE; if (htab->tlsdesc_plt && (!add_dynamic_entry (DT_TLSDESC_PLT, 0) || !add_dynamic_entry (DT_TLSDESC_GOT, 0))) return FALSE; } if (relocs) { if (!add_dynamic_entry (DT_RELA, 0) || !add_dynamic_entry (DT_RELASZ, 0) || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab))) return FALSE; /* If any dynamic relocs apply to a read-only section, then we need a DT_TEXTREL entry. */ if ((info->flags & DF_TEXTREL) != 0) { if (!add_dynamic_entry (DT_TEXTREL, 0)) return FALSE; } } } #undef add_dynamic_entry return TRUE; } static inline void elf64_aarch64_update_plt_entry (bfd *output_bfd, unsigned int r_type, bfd_byte *plt_entry, bfd_vma value) { reloc_howto_type *howto; howto = elf64_aarch64_howto_from_type (r_type); bfd_elf_aarch64_put_addend (output_bfd, plt_entry, howto, value); } static void elf64_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h, struct elf64_aarch64_link_hash_table *htab, bfd *output_bfd) { bfd_byte *plt_entry; bfd_vma plt_index; bfd_vma got_offset; bfd_vma gotplt_entry_address; bfd_vma plt_entry_address; Elf_Internal_Rela rela; bfd_byte *loc; plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size; /* Offset in the GOT is PLT index plus got GOT headers(3) times 8. */ got_offset = (plt_index + 3) * GOT_ENTRY_SIZE; plt_entry = htab->root.splt->contents + h->plt.offset; plt_entry_address = htab->root.splt->output_section->vma + htab->root.splt->output_section->output_offset + h->plt.offset; gotplt_entry_address = htab->root.sgotplt->output_section->vma + htab->root.sgotplt->output_offset + got_offset; /* Copy in the boiler-plate for the PLTn entry. */ memcpy (plt_entry, elf64_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE); /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8. ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */ elf64_aarch64_update_plt_entry (output_bfd, R_AARCH64_ADR_PREL_PG_HI21, plt_entry, PG (gotplt_entry_address) - PG (plt_entry_address)); /* Fill in the lo12 bits for the load from the pltgot. */ elf64_aarch64_update_plt_entry (output_bfd, R_AARCH64_LDST64_ABS_LO12_NC, plt_entry + 4, PG_OFFSET (gotplt_entry_address)); /* Fill in the the lo12 bits for the add from the pltgot entry. */ elf64_aarch64_update_plt_entry (output_bfd, R_AARCH64_ADD_ABS_LO12_NC, plt_entry + 8, PG_OFFSET (gotplt_entry_address)); /* All the GOTPLT Entries are essentially initialized to PLT0. */ bfd_put_64 (output_bfd, (htab->root.splt->output_section->vma + htab->root.splt->output_offset), htab->root.sgotplt->contents + got_offset); /* Fill in the entry in the .rela.plt section. */ rela.r_offset = gotplt_entry_address; rela.r_info = ELF64_R_INFO (h->dynindx, R_AARCH64_JUMP_SLOT); rela.r_addend = 0; /* Compute the relocation entry to used based on PLT index and do not adjust reloc_count. The reloc_count has already been adjusted to account for this entry. */ loc = htab->root.srelplt->contents + plt_index * RELOC_SIZE (htab); bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); } /* Size sections even though they're not dynamic. We use it to setup _TLS_MODULE_BASE_, if needed. */ static bfd_boolean elf64_aarch64_always_size_sections (bfd *output_bfd, struct bfd_link_info *info) { asection *tls_sec; if (info->relocatable) return TRUE; tls_sec = elf_hash_table (info)->tls_sec; if (tls_sec) { struct elf_link_hash_entry *tlsbase; tlsbase = elf_link_hash_lookup (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE); if (tlsbase) { struct bfd_link_hash_entry *h = NULL; const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); if (!(_bfd_generic_link_add_one_symbol (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, tls_sec, 0, NULL, FALSE, bed->collect, &h))) return FALSE; tlsbase->type = STT_TLS; tlsbase = (struct elf_link_hash_entry *) h; tlsbase->def_regular = 1; tlsbase->other = STV_HIDDEN; (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); } } return TRUE; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static bfd_boolean elf64_aarch64_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { struct elf64_aarch64_link_hash_table *htab; htab = elf64_aarch64_hash_table (info); if (h->plt.offset != (bfd_vma) - 1) { /* This symbol has an entry in the procedure linkage table. Set it up. */ if (h->dynindx == -1 || htab->root.splt == NULL || htab->root.sgotplt == NULL || htab->root.srelplt == NULL) abort (); elf64_aarch64_create_small_pltn_entry (h, htab, output_bfd); if (!h->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. This is a clue for the dynamic linker, to make function pointer comparisons work between an application and shared library. */ sym->st_shndx = SHN_UNDEF; } } if (h->got.offset != (bfd_vma) - 1 && elf64_aarch64_hash_entry (h)->got_type == GOT_NORMAL) { Elf_Internal_Rela rela; bfd_byte *loc; /* This symbol has an entry in the global offset table. Set it up. */ if (htab->root.sgot == NULL || htab->root.srelgot == NULL) abort (); rela.r_offset = (htab->root.sgot->output_section->vma + htab->root.sgot->output_offset + (h->got.offset & ~(bfd_vma) 1)); if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h)) { if (!h->def_regular) return FALSE; BFD_ASSERT ((h->got.offset & 1) != 0); rela.r_info = ELF64_R_INFO (0, R_AARCH64_RELATIVE); rela.r_addend = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } else { BFD_ASSERT ((h->got.offset & 1) == 0); bfd_put_64 (output_bfd, (bfd_vma) 0, htab->root.sgot->contents + h->got.offset); rela.r_info = ELF64_R_INFO (h->dynindx, R_AARCH64_GLOB_DAT); rela.r_addend = 0; } loc = htab->root.srelgot->contents; loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab); bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); } if (h->needs_copy) { Elf_Internal_Rela rela; bfd_byte *loc; /* This symbol needs a copy reloc. Set it up. */ if (h->dynindx == -1 || (h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) || htab->srelbss == NULL) abort (); rela.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rela.r_info = ELF64_R_INFO (h->dynindx, R_AARCH64_COPY); rela.r_addend = 0; loc = htab->srelbss->contents; loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab); bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may be NULL for local symbols. */ if (sym != NULL && (h == elf_hash_table (info)->hdynamic || h == elf_hash_table (info)->hgot)) sym->st_shndx = SHN_ABS; return TRUE; } static void elf64_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED, struct elf64_aarch64_link_hash_table *htab) { /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between small and large plts and at the minute just generates the small PLT. */ /* PLT0 of the small PLT looks like this - stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack. adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the // symbol resolver add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the // GOTPLT entry for this. br x17 */ bfd_vma plt_got_base; bfd_vma plt_base; memcpy (htab->root.splt->contents, elf64_aarch64_small_plt0_entry, PLT_ENTRY_SIZE); elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize = PLT_ENTRY_SIZE; plt_got_base = (htab->root.sgotplt->output_section->vma + htab->root.sgotplt->output_offset); plt_base = htab->root.splt->output_section->vma + htab->root.splt->output_section->output_offset; /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8. ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */ elf64_aarch64_update_plt_entry (output_bfd, R_AARCH64_ADR_PREL_PG_HI21, htab->root.splt->contents + 4, PG (plt_got_base + 16) - PG (plt_base + 4)); elf64_aarch64_update_plt_entry (output_bfd, R_AARCH64_LDST64_ABS_LO12_NC, htab->root.splt->contents + 8, PG_OFFSET (plt_got_base + 16)); elf64_aarch64_update_plt_entry (output_bfd, R_AARCH64_ADD_ABS_LO12_NC, htab->root.splt->contents + 12, PG_OFFSET (plt_got_base + 16)); } static bfd_boolean elf64_aarch64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { struct elf64_aarch64_link_hash_table *htab; bfd *dynobj; asection *sdyn; htab = elf64_aarch64_hash_table (info); dynobj = htab->root.dynobj; sdyn = bfd_get_linker_section (dynobj, ".dynamic"); if (htab->root.dynamic_sections_created) { Elf64_External_Dyn *dyncon, *dynconend; if (sdyn == NULL || htab->root.sgot == NULL) abort (); dyncon = (Elf64_External_Dyn *) sdyn->contents; dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; asection *s; bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: continue; case DT_PLTGOT: s = htab->root.sgotplt; dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; break; case DT_JMPREL: dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma; break; case DT_PLTRELSZ: s = htab->root.srelplt->output_section; dyn.d_un.d_val = s->size; break; case DT_RELASZ: /* The procedure linkage table relocs (DT_JMPREL) should not be included in the overall relocs (DT_RELA). Therefore, we override the DT_RELASZ entry here to make it not include the JMPREL relocs. Since the linker script arranges for .rela.plt to follow all other relocation sections, we don't have to worry about changing the DT_RELA entry. */ if (htab->root.srelplt != NULL) { s = htab->root.srelplt->output_section; dyn.d_un.d_val -= s->size; } break; case DT_TLSDESC_PLT: s = htab->root.splt; dyn.d_un.d_ptr = s->output_section->vma + s->output_offset + htab->tlsdesc_plt; break; case DT_TLSDESC_GOT: s = htab->root.sgot; dyn.d_un.d_ptr = s->output_section->vma + s->output_offset + htab->dt_tlsdesc_got; break; } bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); } } /* Fill in the special first entry in the procedure linkage table. */ if (htab->root.splt && htab->root.splt->size > 0) { elf64_aarch64_init_small_plt0_entry (output_bfd, htab); elf_section_data (htab->root.splt->output_section)-> this_hdr.sh_entsize = htab->plt_entry_size; if (htab->tlsdesc_plt) { bfd_put_64 (output_bfd, (bfd_vma) 0, htab->root.sgot->contents + htab->dt_tlsdesc_got); memcpy (htab->root.splt->contents + htab->tlsdesc_plt, elf64_aarch64_tlsdesc_small_plt_entry, sizeof (elf64_aarch64_tlsdesc_small_plt_entry)); { bfd_vma adrp1_addr = htab->root.splt->output_section->vma + htab->root.splt->output_offset + htab->tlsdesc_plt + 4; bfd_vma adrp2_addr = htab->root.splt->output_section->vma + htab->root.splt->output_offset + htab->tlsdesc_plt + 8; bfd_vma got_addr = htab->root.sgot->output_section->vma + htab->root.sgot->output_offset; bfd_vma pltgot_addr = htab->root.sgotplt->output_section->vma + htab->root.sgotplt->output_offset; bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got; bfd_vma opcode; /* adrp x2, DT_TLSDESC_GOT */ opcode = bfd_get_32 (output_bfd, htab->root.splt->contents + htab->tlsdesc_plt + 4); opcode = reencode_adr_imm (opcode, (PG (dt_tlsdesc_got) - PG (adrp1_addr)) >> 12); bfd_put_32 (output_bfd, opcode, htab->root.splt->contents + htab->tlsdesc_plt + 4); /* adrp x3, 0 */ opcode = bfd_get_32 (output_bfd, htab->root.splt->contents + htab->tlsdesc_plt + 8); opcode = reencode_adr_imm (opcode, (PG (pltgot_addr) - PG (adrp2_addr)) >> 12); bfd_put_32 (output_bfd, opcode, htab->root.splt->contents + htab->tlsdesc_plt + 8); /* ldr x2, [x2, #0] */ opcode = bfd_get_32 (output_bfd, htab->root.splt->contents + htab->tlsdesc_plt + 12); opcode = reencode_ldst_pos_imm (opcode, PG_OFFSET (dt_tlsdesc_got) >> 3); bfd_put_32 (output_bfd, opcode, htab->root.splt->contents + htab->tlsdesc_plt + 12); /* add x3, x3, 0 */ opcode = bfd_get_32 (output_bfd, htab->root.splt->contents + htab->tlsdesc_plt + 16); opcode = reencode_add_imm (opcode, PG_OFFSET (pltgot_addr)); bfd_put_32 (output_bfd, opcode, htab->root.splt->contents + htab->tlsdesc_plt + 16); } } } if (htab->root.sgotplt) { if (bfd_is_abs_section (htab->root.sgotplt->output_section)) { (*_bfd_error_handler) (_("discarded output section: `%A'"), htab->root.sgotplt); return FALSE; } /* Fill in the first three entries in the global offset table. */ if (htab->root.sgotplt->size > 0) { /* Set the first entry in the global offset table to the address of the dynamic section. */ if (sdyn == NULL) bfd_put_64 (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents); else bfd_put_64 (output_bfd, sdyn->output_section->vma + sdyn->output_offset, htab->root.sgotplt->contents); /* Write GOT[1] and GOT[2], needed for the dynamic linker. */ bfd_put_64 (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents + GOT_ENTRY_SIZE); bfd_put_64 (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2); } elf_section_data (htab->root.sgotplt->output_section)-> this_hdr.sh_entsize = GOT_ENTRY_SIZE; } if (htab->root.sgot && htab->root.sgot->size > 0) elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; return TRUE; } /* Return address for Ith PLT stub in section PLT, for relocation REL or (bfd_vma) -1 if it should not be included. */ static bfd_vma elf64_aarch64_plt_sym_val (bfd_vma i, const asection *plt, const arelent *rel ATTRIBUTE_UNUSED) { return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE; } /* We use this so we can override certain functions (though currently we don't). */ const struct elf_size_info elf64_aarch64_size_info = { sizeof (Elf64_External_Ehdr), sizeof (Elf64_External_Phdr), sizeof (Elf64_External_Shdr), sizeof (Elf64_External_Rel), sizeof (Elf64_External_Rela), sizeof (Elf64_External_Sym), sizeof (Elf64_External_Dyn), sizeof (Elf_External_Note), 4, /* Hash table entry size. */ 1, /* Internal relocs per external relocs. */ 64, /* Arch size. */ 3, /* Log_file_align. */ ELFCLASS64, EV_CURRENT, bfd_elf64_write_out_phdrs, bfd_elf64_write_shdrs_and_ehdr, bfd_elf64_checksum_contents, bfd_elf64_write_relocs, bfd_elf64_swap_symbol_in, bfd_elf64_swap_symbol_out, bfd_elf64_slurp_reloc_table, bfd_elf64_slurp_symbol_table, bfd_elf64_swap_dyn_in, bfd_elf64_swap_dyn_out, bfd_elf64_swap_reloc_in, bfd_elf64_swap_reloc_out, bfd_elf64_swap_reloca_in, bfd_elf64_swap_reloca_out }; #define ELF_ARCH bfd_arch_aarch64 #define ELF_MACHINE_CODE EM_AARCH64 #define ELF_MAXPAGESIZE 0x10000 #define ELF_MINPAGESIZE 0x1000 #define ELF_COMMONPAGESIZE 0x1000 #define bfd_elf64_close_and_cleanup \ elf64_aarch64_close_and_cleanup #define bfd_elf64_bfd_copy_private_bfd_data \ elf64_aarch64_copy_private_bfd_data #define bfd_elf64_bfd_free_cached_info \ elf64_aarch64_bfd_free_cached_info #define bfd_elf64_bfd_is_target_special_symbol \ elf64_aarch64_is_target_special_symbol #define bfd_elf64_bfd_link_hash_table_create \ elf64_aarch64_link_hash_table_create #define bfd_elf64_bfd_link_hash_table_free \ elf64_aarch64_hash_table_free #define bfd_elf64_bfd_merge_private_bfd_data \ elf64_aarch64_merge_private_bfd_data #define bfd_elf64_bfd_print_private_bfd_data \ elf64_aarch64_print_private_bfd_data #define bfd_elf64_bfd_reloc_type_lookup \ elf64_aarch64_reloc_type_lookup #define bfd_elf64_bfd_reloc_name_lookup \ elf64_aarch64_reloc_name_lookup #define bfd_elf64_bfd_set_private_flags \ elf64_aarch64_set_private_flags #define bfd_elf64_find_inliner_info \ elf64_aarch64_find_inliner_info #define bfd_elf64_find_nearest_line \ elf64_aarch64_find_nearest_line #define bfd_elf64_mkobject \ elf64_aarch64_mkobject #define bfd_elf64_new_section_hook \ elf64_aarch64_new_section_hook #define elf_backend_adjust_dynamic_symbol \ elf64_aarch64_adjust_dynamic_symbol #define elf_backend_always_size_sections \ elf64_aarch64_always_size_sections #define elf_backend_check_relocs \ elf64_aarch64_check_relocs #define elf_backend_copy_indirect_symbol \ elf64_aarch64_copy_indirect_symbol /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts to them in our hash. */ #define elf_backend_create_dynamic_sections \ elf64_aarch64_create_dynamic_sections #define elf_backend_init_index_section \ _bfd_elf_init_2_index_sections #define elf_backend_is_function_type \ elf64_aarch64_is_function_type #define elf_backend_finish_dynamic_sections \ elf64_aarch64_finish_dynamic_sections #define elf_backend_finish_dynamic_symbol \ elf64_aarch64_finish_dynamic_symbol #define elf_backend_gc_sweep_hook \ elf64_aarch64_gc_sweep_hook #define elf_backend_object_p \ elf64_aarch64_object_p #define elf_backend_output_arch_local_syms \ elf64_aarch64_output_arch_local_syms #define elf_backend_plt_sym_val \ elf64_aarch64_plt_sym_val #define elf_backend_post_process_headers \ elf64_aarch64_post_process_headers #define elf_backend_relocate_section \ elf64_aarch64_relocate_section #define elf_backend_reloc_type_class \ elf64_aarch64_reloc_type_class #define elf_backend_section_flags \ elf64_aarch64_section_flags #define elf_backend_section_from_shdr \ elf64_aarch64_section_from_shdr #define elf_backend_size_dynamic_sections \ elf64_aarch64_size_dynamic_sections #define elf_backend_size_info \ elf64_aarch64_size_info #define elf_backend_can_refcount 1 #define elf_backend_can_gc_sections 0 #define elf_backend_plt_readonly 1 #define elf_backend_want_got_plt 1 #define elf_backend_want_plt_sym 0 #define elf_backend_may_use_rel_p 0 #define elf_backend_may_use_rela_p 1 #define elf_backend_default_use_rela_p 1 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3) #undef elf_backend_obj_attrs_section #define elf_backend_obj_attrs_section ".ARM.attributes" #include "elf64-target.h"