/* ELF support for AArch64.
Copyright 2009-2013 Free Software Foundation, Inc.
Contributed by ARM Ltd.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING3. If not,
see . */
/* Notes on implementation:
Thread Local Store (TLS)
Overview:
The implementation currently supports both traditional TLS and TLS
descriptors, but only general dynamic (GD).
For traditional TLS the assembler will present us with code
fragments of the form:
adrp x0, :tlsgd:foo
R_AARCH64_TLSGD_ADR_PAGE21(foo)
add x0, :tlsgd_lo12:foo
R_AARCH64_TLSGD_ADD_LO12_NC(foo)
bl __tls_get_addr
nop
For TLS descriptors the assembler will present us with code
fragments of the form:
adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE(foo)
ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
.tlsdesccall foo
blr x1 R_AARCH64_TLSDESC_CALL(foo)
The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
indicate that foo is thread local and should be accessed via the
traditional TLS mechanims.
The relocations R_AARCH64_TLSDESC_{ADR_PAGE,LD64_LO12_NC,ADD_LO12_NC}
against foo indicate that 'foo' is thread local and should be accessed
via a TLS descriptor mechanism.
The precise instruction sequence is only relevant from the
perspective of linker relaxation which is currently not implemented.
The static linker must detect that 'foo' is a TLS object and
allocate a double GOT entry. The GOT entry must be created for both
global and local TLS symbols. Note that this is different to none
TLS local objects which do not need a GOT entry.
In the traditional TLS mechanism, the double GOT entry is used to
provide the tls_index structure, containing module and offset
entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD64
on the module entry. The loader will subsequently fixup this
relocation with the module identity.
For global traditional TLS symbols the static linker places an
R_AARCH64_TLS_DTPREL64 relocation on the offset entry. The loader
will subsequently fixup the offset. For local TLS symbols the static
linker fixes up offset.
In the TLS descriptor mechanism the double GOT entry is used to
provide the descriptor. The static linker places the relocation
R_AARCH64_TLSDESC on the first GOT slot. The loader will
subsequently fix this up.
Implementation:
The handling of TLS symbols is implemented across a number of
different backend functions. The following is a top level view of
what processing is performed where.
The TLS implementation maintains state information for each TLS
symbol. The state information for local and global symbols is kept
in different places. Global symbols use generic BFD structures while
local symbols use backend specific structures that are allocated and
maintained entirely by the backend.
The flow:
aarch64_check_relocs()
This function is invoked for each relocation.
The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
R_AARCH64_TLSDESC_{ADR_PAGE,LD64_LO12_NC,ADD_LO12_NC} are
spotted. One time creation of local symbol data structures are
created when the first local symbol is seen.
The reference count for a symbol is incremented. The GOT type for
each symbol is marked as general dynamic.
elf64_aarch64_allocate_dynrelocs ()
For each global with positive reference count we allocate a double
GOT slot. For a traditional TLS symbol we allocate space for two
relocation entries on the GOT, for a TLS descriptor symbol we
allocate space for one relocation on the slot. Record the GOT offset
for this symbol.
elf64_aarch64_size_dynamic_sections ()
Iterate all input BFDS, look for in the local symbol data structure
constructed earlier for local TLS symbols and allocate them double
GOT slots along with space for a single GOT relocation. Update the
local symbol structure to record the GOT offset allocated.
elf64_aarch64_relocate_section ()
Calls elf64_aarch64_final_link_relocate ()
Emit the relevant TLS relocations against the GOT for each TLS
symbol. For local TLS symbols emit the GOT offset directly. The GOT
relocations are emitted once the first time a TLS symbol is
encountered. The implementation uses the LSB of the GOT offset to
flag that the relevant GOT relocations for a symbol have been
emitted. All of the TLS code that uses the GOT offset needs to take
care to mask out this flag bit before using the offset.
elf64_aarch64_final_link_relocate ()
Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
#include "sysdep.h"
#include "bfd.h"
#include "libiberty.h"
#include "libbfd.h"
#include "bfd_stdint.h"
#include "elf-bfd.h"
#include "bfdlink.h"
#include "elf/aarch64.h"
static bfd_reloc_status_type
bfd_elf_aarch64_put_addend (bfd *abfd,
bfd_byte *address,
reloc_howto_type *howto, bfd_signed_vma addend);
#define IS_AARCH64_TLS_RELOC(R_TYPE) \
((R_TYPE) == R_AARCH64_TLSGD_ADR_PAGE21 \
|| (R_TYPE) == R_AARCH64_TLSGD_ADD_LO12_NC \
|| (R_TYPE) == R_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
|| (R_TYPE) == R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
|| (R_TYPE) == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
|| (R_TYPE) == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
|| (R_TYPE) == R_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
|| (R_TYPE) == R_AARCH64_TLSLE_ADD_TPREL_LO12 \
|| (R_TYPE) == R_AARCH64_TLSLE_ADD_TPREL_HI12 \
|| (R_TYPE) == R_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
|| (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G2 \
|| (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G1 \
|| (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
|| (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G0 \
|| (R_TYPE) == R_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
|| (R_TYPE) == R_AARCH64_TLS_DTPMOD64 \
|| (R_TYPE) == R_AARCH64_TLS_DTPREL64 \
|| (R_TYPE) == R_AARCH64_TLS_TPREL64 \
|| IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
#define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
((R_TYPE) == R_AARCH64_TLSDESC_LD64_PREL19 \
|| (R_TYPE) == R_AARCH64_TLSDESC_ADR_PREL21 \
|| (R_TYPE) == R_AARCH64_TLSDESC_ADR_PAGE \
|| (R_TYPE) == R_AARCH64_TLSDESC_ADD_LO12_NC \
|| (R_TYPE) == R_AARCH64_TLSDESC_LD64_LO12_NC \
|| (R_TYPE) == R_AARCH64_TLSDESC_OFF_G1 \
|| (R_TYPE) == R_AARCH64_TLSDESC_OFF_G0_NC \
|| (R_TYPE) == R_AARCH64_TLSDESC_LDR \
|| (R_TYPE) == R_AARCH64_TLSDESC_ADD \
|| (R_TYPE) == R_AARCH64_TLSDESC_CALL \
|| (R_TYPE) == R_AARCH64_TLSDESC)
#define ELIMINATE_COPY_RELOCS 0
/* Return the relocation section associated with NAME. HTAB is the
bfd's elf64_aarch64_link_hash_entry. */
#define RELOC_SECTION(HTAB, NAME) \
((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
/* Return size of a relocation entry. HTAB is the bfd's
elf64_aarch64_link_hash_entry. */
#define RELOC_SIZE(HTAB) (sizeof (Elf64_External_Rela))
/* Return function to swap relocations in. HTAB is the bfd's
elf64_aarch64_link_hash_entry. */
#define SWAP_RELOC_IN(HTAB) (bfd_elf64_swap_reloca_in)
/* Return function to swap relocations out. HTAB is the bfd's
elf64_aarch64_link_hash_entry. */
#define SWAP_RELOC_OUT(HTAB) (bfd_elf64_swap_reloca_out)
/* GOT Entry size - 8 bytes. */
#define GOT_ENTRY_SIZE (8)
#define PLT_ENTRY_SIZE (32)
#define PLT_SMALL_ENTRY_SIZE (16)
#define PLT_TLSDESC_ENTRY_SIZE (32)
/* Take the PAGE component of an address or offset. */
#define PG(x) ((x) & ~ 0xfff)
#define PG_OFFSET(x) ((x) & 0xfff)
/* Encoding of the nop instruction */
#define INSN_NOP 0xd503201f
#define aarch64_compute_jump_table_size(htab) \
(((htab)->root.srelplt == NULL) ? 0 \
: (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
/* The first entry in a procedure linkage table looks like this
if the distance between the PLTGOT and the PLT is < 4GB use
these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
in x16 and needs to work out PLTGOT[1] by using an address of
[x16,#-8]. */
static const bfd_byte elf64_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
{
0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
0x20, 0x02, 0x1f, 0xd6, /* br x17 */
0x1f, 0x20, 0x03, 0xd5, /* nop */
0x1f, 0x20, 0x03, 0xd5, /* nop */
0x1f, 0x20, 0x03, 0xd5, /* nop */
};
/* Per function entry in a procedure linkage table looks like this
if the distance between the PLTGOT and the PLT is < 4GB use
these PLT entries. */
static const bfd_byte elf64_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
{
0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
0x20, 0x02, 0x1f, 0xd6, /* br x17. */
};
static const bfd_byte
elf64_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
{
0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
0x42, 0x08, 0x40, 0xF9, /* ldr x2, [x2, #0] */
0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
0x40, 0x00, 0x1F, 0xD6, /* br x2 */
0x1f, 0x20, 0x03, 0xd5, /* nop */
0x1f, 0x20, 0x03, 0xd5, /* nop */
};
#define elf_info_to_howto elf64_aarch64_info_to_howto
#define elf_info_to_howto_rel elf64_aarch64_info_to_howto
#define AARCH64_ELF_ABI_VERSION 0
#define AARCH64_ELF_OS_ABI_VERSION 0
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
#define ALL_ONES (~ (bfd_vma) 0)
static reloc_howto_type elf64_aarch64_howto_none =
HOWTO (R_AARCH64_NONE, /* type */
0, /* rightshift */
0, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont,/* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_NONE", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
FALSE); /* pcrel_offset */
static reloc_howto_type elf64_aarch64_howto_dynrelocs[] =
{
HOWTO (R_AARCH64_COPY, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_COPY", /* name */
TRUE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_GLOB_DAT, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_GLOB_DAT", /* name */
TRUE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_JUMP_SLOT, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_JUMP_SLOT", /* name */
TRUE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_RELATIVE, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_RELATIVE", /* name */
TRUE, /* partial_inplace */
ALL_ONES, /* src_mask */
ALL_ONES, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLS_DTPMOD64, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLS_DTPMOD64", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
ALL_ONES, /* dst_mask */
FALSE), /* pc_reloffset */
HOWTO (R_AARCH64_TLS_DTPREL64, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLS_DTPREL64", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
ALL_ONES, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLS_TPREL64, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLS_TPREL64", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
ALL_ONES, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSDESC, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSDESC", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
ALL_ONES, /* dst_mask */
FALSE), /* pcrel_offset */
};
/* Note: code such as elf64_aarch64_reloc_type_lookup expect to use e.g.
R_AARCH64_PREL64 as an index into this, and find the R_AARCH64_PREL64 HOWTO
in that slot. */
static reloc_howto_type elf64_aarch64_howto_table[] =
{
/* Basic data relocations. */
HOWTO (R_AARCH64_NULL, /* type */
0, /* rightshift */
0, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_NULL", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
FALSE), /* pcrel_offset */
/* .xword: (S+A) */
HOWTO (R_AARCH64_ABS64, /* type */
0, /* rightshift */
4, /* size (4 = long long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_ABS64", /* name */
FALSE, /* partial_inplace */
ALL_ONES, /* src_mask */
ALL_ONES, /* dst_mask */
FALSE), /* pcrel_offset */
/* .word: (S+A) */
HOWTO (R_AARCH64_ABS32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_ABS32", /* name */
FALSE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* .half: (S+A) */
HOWTO (R_AARCH64_ABS16, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_ABS16", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* .xword: (S+A-P) */
HOWTO (R_AARCH64_PREL64, /* type */
0, /* rightshift */
4, /* size (4 = long long) */
64, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_PREL64", /* name */
FALSE, /* partial_inplace */
ALL_ONES, /* src_mask */
ALL_ONES, /* dst_mask */
TRUE), /* pcrel_offset */
/* .word: (S+A-P) */
HOWTO (R_AARCH64_PREL32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_PREL32", /* name */
FALSE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* .half: (S+A-P) */
HOWTO (R_AARCH64_PREL16, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_PREL16", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* Group relocations to create a 16, 32, 48 or 64 bit
unsigned data or abs address inline. */
/* MOVZ: ((S+A) >> 0) & 0xffff */
HOWTO (R_AARCH64_MOVW_UABS_G0, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_MOVW_UABS_G0", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
HOWTO (R_AARCH64_MOVW_UABS_G0_NC, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_MOVW_UABS_G0_NC", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* MOVZ: ((S+A) >> 16) & 0xffff */
HOWTO (R_AARCH64_MOVW_UABS_G1, /* type */
16, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_MOVW_UABS_G1", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
HOWTO (R_AARCH64_MOVW_UABS_G1_NC, /* type */
16, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_MOVW_UABS_G1_NC", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* MOVZ: ((S+A) >> 32) & 0xffff */
HOWTO (R_AARCH64_MOVW_UABS_G2, /* type */
32, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_MOVW_UABS_G2", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
HOWTO (R_AARCH64_MOVW_UABS_G2_NC, /* type */
32, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_MOVW_UABS_G2_NC", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* MOVZ: ((S+A) >> 48) & 0xffff */
HOWTO (R_AARCH64_MOVW_UABS_G3, /* type */
48, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_MOVW_UABS_G3", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Group relocations to create high part of a 16, 32, 48 or 64 bit
signed data or abs address inline. Will change instruction
to MOVN or MOVZ depending on sign of calculated value. */
/* MOV[ZN]: ((S+A) >> 0) & 0xffff */
HOWTO (R_AARCH64_MOVW_SABS_G0, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_MOVW_SABS_G0", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* MOV[ZN]: ((S+A) >> 16) & 0xffff */
HOWTO (R_AARCH64_MOVW_SABS_G1, /* type */
16, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_MOVW_SABS_G1", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* MOV[ZN]: ((S+A) >> 32) & 0xffff */
HOWTO (R_AARCH64_MOVW_SABS_G2, /* type */
32, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_MOVW_SABS_G2", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Relocations to generate 19, 21 and 33 bit PC-relative load/store
addresses: PG(x) is (x & ~0xfff). */
/* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
HOWTO (R_AARCH64_LD_PREL_LO19, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
19, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_LD_PREL_LO19", /* name */
FALSE, /* partial_inplace */
0x7ffff, /* src_mask */
0x7ffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* ADR: (S+A-P) & 0x1fffff */
HOWTO (R_AARCH64_ADR_PREL_LO21, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
21, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_ADR_PREL_LO21", /* name */
FALSE, /* partial_inplace */
0x1fffff, /* src_mask */
0x1fffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
HOWTO (R_AARCH64_ADR_PREL_PG_HI21, /* type */
12, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
21, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_ADR_PREL_PG_HI21", /* name */
FALSE, /* partial_inplace */
0x1fffff, /* src_mask */
0x1fffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
HOWTO (R_AARCH64_ADR_PREL_PG_HI21_NC, /* type */
12, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
21, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_ADR_PREL_PG_HI21_NC", /* name */
FALSE, /* partial_inplace */
0x1fffff, /* src_mask */
0x1fffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* ADD: (S+A) & 0xfff [no overflow check] */
HOWTO (R_AARCH64_ADD_ABS_LO12_NC, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
10, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_ADD_ABS_LO12_NC", /* name */
FALSE, /* partial_inplace */
0x3ffc00, /* src_mask */
0x3ffc00, /* dst_mask */
FALSE), /* pcrel_offset */
/* LD/ST8: (S+A) & 0xfff */
HOWTO (R_AARCH64_LDST8_ABS_LO12_NC, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_LDST8_ABS_LO12_NC", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Relocations for control-flow instructions. */
/* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
HOWTO (R_AARCH64_TSTBR14, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
14, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TSTBR14", /* name */
FALSE, /* partial_inplace */
0x3fff, /* src_mask */
0x3fff, /* dst_mask */
TRUE), /* pcrel_offset */
/* B.cond: ((S+A-P) >> 2) & 0x7ffff */
HOWTO (R_AARCH64_CONDBR19, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
19, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_CONDBR19", /* name */
FALSE, /* partial_inplace */
0x7ffff, /* src_mask */
0x7ffff, /* dst_mask */
TRUE), /* pcrel_offset */
EMPTY_HOWTO (281),
/* B: ((S+A-P) >> 2) & 0x3ffffff */
HOWTO (R_AARCH64_JUMP26, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
26, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_JUMP26", /* name */
FALSE, /* partial_inplace */
0x3ffffff, /* src_mask */
0x3ffffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* BL: ((S+A-P) >> 2) & 0x3ffffff */
HOWTO (R_AARCH64_CALL26, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
26, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_CALL26", /* name */
FALSE, /* partial_inplace */
0x3ffffff, /* src_mask */
0x3ffffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* LD/ST16: (S+A) & 0xffe */
HOWTO (R_AARCH64_LDST16_ABS_LO12_NC, /* type */
1, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_LDST16_ABS_LO12_NC", /* name */
FALSE, /* partial_inplace */
0xffe, /* src_mask */
0xffe, /* dst_mask */
FALSE), /* pcrel_offset */
/* LD/ST32: (S+A) & 0xffc */
HOWTO (R_AARCH64_LDST32_ABS_LO12_NC, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_LDST32_ABS_LO12_NC", /* name */
FALSE, /* partial_inplace */
0xffc, /* src_mask */
0xffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* LD/ST64: (S+A) & 0xff8 */
HOWTO (R_AARCH64_LDST64_ABS_LO12_NC, /* type */
3, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_LDST64_ABS_LO12_NC", /* name */
FALSE, /* partial_inplace */
0xff8, /* src_mask */
0xff8, /* dst_mask */
FALSE), /* pcrel_offset */
EMPTY_HOWTO (287),
EMPTY_HOWTO (288),
EMPTY_HOWTO (289),
EMPTY_HOWTO (290),
EMPTY_HOWTO (291),
EMPTY_HOWTO (292),
EMPTY_HOWTO (293),
EMPTY_HOWTO (294),
EMPTY_HOWTO (295),
EMPTY_HOWTO (296),
EMPTY_HOWTO (297),
EMPTY_HOWTO (298),
/* LD/ST128: (S+A) & 0xff0 */
HOWTO (R_AARCH64_LDST128_ABS_LO12_NC, /* type */
4, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_LDST128_ABS_LO12_NC", /* name */
FALSE, /* partial_inplace */
0xff0, /* src_mask */
0xff0, /* dst_mask */
FALSE), /* pcrel_offset */
EMPTY_HOWTO (300),
EMPTY_HOWTO (301),
EMPTY_HOWTO (302),
EMPTY_HOWTO (303),
EMPTY_HOWTO (304),
EMPTY_HOWTO (305),
EMPTY_HOWTO (306),
EMPTY_HOWTO (307),
EMPTY_HOWTO (308),
/* Set a load-literal immediate field to bits
0x1FFFFC of G(S)-P */
HOWTO (R_AARCH64_GOT_LD_PREL19, /* type */
2, /* rightshift */
2, /* size (0 = byte,1 = short,2 = long) */
19, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_GOT_LD_PREL19", /* name */
FALSE, /* partial_inplace */
0xffffe0, /* src_mask */
0xffffe0, /* dst_mask */
TRUE), /* pcrel_offset */
EMPTY_HOWTO (310),
/* Get to the page for the GOT entry for the symbol
(G(S) - P) using an ADRP instruction. */
HOWTO (R_AARCH64_ADR_GOT_PAGE, /* type */
12, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
21, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_ADR_GOT_PAGE", /* name */
FALSE, /* partial_inplace */
0x1fffff, /* src_mask */
0x1fffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* LD64: GOT offset G(S) & 0xff8 */
HOWTO (R_AARCH64_LD64_GOT_LO12_NC, /* type */
3, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_LD64_GOT_LO12_NC", /* name */
FALSE, /* partial_inplace */
0xff8, /* src_mask */
0xff8, /* dst_mask */
FALSE) /* pcrel_offset */
};
static reloc_howto_type elf64_aarch64_tls_howto_table[] =
{
EMPTY_HOWTO (512),
/* Get to the page for the GOT entry for the symbol
(G(S) - P) using an ADRP instruction. */
HOWTO (R_AARCH64_TLSGD_ADR_PAGE21, /* type */
12, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
21, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSGD_ADR_PAGE21", /* name */
FALSE, /* partial_inplace */
0x1fffff, /* src_mask */
0x1fffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
HOWTO (R_AARCH64_TLSGD_ADD_LO12_NC, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSGD_ADD_LO12_NC", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
EMPTY_HOWTO (515),
EMPTY_HOWTO (516),
EMPTY_HOWTO (517),
EMPTY_HOWTO (518),
EMPTY_HOWTO (519),
EMPTY_HOWTO (520),
EMPTY_HOWTO (521),
EMPTY_HOWTO (522),
EMPTY_HOWTO (523),
EMPTY_HOWTO (524),
EMPTY_HOWTO (525),
EMPTY_HOWTO (526),
EMPTY_HOWTO (527),
EMPTY_HOWTO (528),
EMPTY_HOWTO (529),
EMPTY_HOWTO (530),
EMPTY_HOWTO (531),
EMPTY_HOWTO (532),
EMPTY_HOWTO (533),
EMPTY_HOWTO (534),
EMPTY_HOWTO (535),
EMPTY_HOWTO (536),
EMPTY_HOWTO (537),
EMPTY_HOWTO (538),
HOWTO (R_AARCH64_TLSIE_MOVW_GOTTPREL_G1, /* type */
16, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSIE_MOVW_GOTTPREL_G1", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, /* type */
12, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
21, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21", /* name */
FALSE, /* partial_inplace */
0x1fffff, /* src_mask */
0x1fffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, /* type */
3, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC", /* name */
FALSE, /* partial_inplace */
0xff8, /* src_mask */
0xff8, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSIE_LD_GOTTPREL_PREL19, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
21, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSIE_LD_GOTTPREL_PREL19", /* name */
FALSE, /* partial_inplace */
0x1ffffc, /* src_mask */
0x1ffffc, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G2, /* type */
32, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSLE_MOVW_TPREL_G2", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G1, /* type */
16, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSLE_MOVW_TPREL_G1", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G1_NC, /* type */
16, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSLE_MOVW_TPREL_G1_NC", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G0, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSLE_MOVW_TPREL_G0", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSLE_MOVW_TPREL_G0_NC, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSLE_MOVW_TPREL_G0_NC", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSLE_ADD_TPREL_HI12, /* type */
12, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSLE_ADD_TPREL_HI12", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSLE_ADD_TPREL_LO12, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSLE_ADD_TPREL_LO12", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSLE_ADD_TPREL_LO12_NC, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSLE_ADD_TPREL_LO12_NC", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
};
static reloc_howto_type elf64_aarch64_tlsdesc_howto_table[] =
{
HOWTO (R_AARCH64_TLSDESC_LD64_PREL19, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
21, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSDESC_LD64_PREL19", /* name */
FALSE, /* partial_inplace */
0x1ffffc, /* src_mask */
0x1ffffc, /* dst_mask */
TRUE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSDESC_ADR_PREL21, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
21, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSDESC_ADR_PREL21", /* name */
FALSE, /* partial_inplace */
0x1fffff, /* src_mask */
0x1fffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* Get to the page for the GOT entry for the symbol
(G(S) - P) using an ADRP instruction. */
HOWTO (R_AARCH64_TLSDESC_ADR_PAGE, /* type */
12, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
21, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSDESC_ADR_PAGE", /* name */
FALSE, /* partial_inplace */
0x1fffff, /* src_mask */
0x1fffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* LD64: GOT offset G(S) & 0xfff. */
HOWTO (R_AARCH64_TLSDESC_LD64_LO12_NC, /* type */
3, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSDESC_LD64_LO12_NC", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
/* ADD: GOT offset G(S) & 0xfff. */
HOWTO (R_AARCH64_TLSDESC_ADD_LO12_NC, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSDESC_ADD_LO12_NC", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSDESC_OFF_G1, /* type */
16, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSDESC_OFF_G1", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSDESC_OFF_G0_NC, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSDESC_OFF_G0_NC", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSDESC_LDR, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSDESC_LDR", /* name */
FALSE, /* partial_inplace */
0x0, /* src_mask */
0x0, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSDESC_ADD, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSDESC_ADD", /* name */
FALSE, /* partial_inplace */
0x0, /* src_mask */
0x0, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_AARCH64_TLSDESC_CALL, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_AARCH64_TLSDESC_CALL", /* name */
FALSE, /* partial_inplace */
0x0, /* src_mask */
0x0, /* dst_mask */
FALSE), /* pcrel_offset */
};
static reloc_howto_type *
elf64_aarch64_howto_from_type (unsigned int r_type)
{
if (r_type >= R_AARCH64_static_min && r_type < R_AARCH64_static_max)
return &elf64_aarch64_howto_table[r_type - R_AARCH64_static_min];
if (r_type >= R_AARCH64_tls_min && r_type < R_AARCH64_tls_max)
return &elf64_aarch64_tls_howto_table[r_type - R_AARCH64_tls_min];
if (r_type >= R_AARCH64_tlsdesc_min && r_type < R_AARCH64_tlsdesc_max)
return &elf64_aarch64_tlsdesc_howto_table[r_type - R_AARCH64_tlsdesc_min];
if (r_type >= R_AARCH64_dyn_min && r_type < R_AARCH64_dyn_max)
return &elf64_aarch64_howto_dynrelocs[r_type - R_AARCH64_dyn_min];
switch (r_type)
{
case R_AARCH64_NONE:
return &elf64_aarch64_howto_none;
}
bfd_set_error (bfd_error_bad_value);
return NULL;
}
static void
elf64_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
Elf_Internal_Rela *elf_reloc)
{
unsigned int r_type;
r_type = ELF64_R_TYPE (elf_reloc->r_info);
bfd_reloc->howto = elf64_aarch64_howto_from_type (r_type);
}
struct elf64_aarch64_reloc_map
{
bfd_reloc_code_real_type bfd_reloc_val;
unsigned int elf_reloc_val;
};
/* All entries in this list must also be present in
elf64_aarch64_howto_table. */
static const struct elf64_aarch64_reloc_map elf64_aarch64_reloc_map[] =
{
{BFD_RELOC_NONE, R_AARCH64_NONE},
/* Basic data relocations. */
{BFD_RELOC_CTOR, R_AARCH64_ABS64},
{BFD_RELOC_64, R_AARCH64_ABS64},
{BFD_RELOC_32, R_AARCH64_ABS32},
{BFD_RELOC_16, R_AARCH64_ABS16},
{BFD_RELOC_64_PCREL, R_AARCH64_PREL64},
{BFD_RELOC_32_PCREL, R_AARCH64_PREL32},
{BFD_RELOC_16_PCREL, R_AARCH64_PREL16},
/* Group relocations to low order bits of a 16, 32, 48 or 64 bit
value inline. */
{BFD_RELOC_AARCH64_MOVW_G0_NC, R_AARCH64_MOVW_UABS_G0_NC},
{BFD_RELOC_AARCH64_MOVW_G1_NC, R_AARCH64_MOVW_UABS_G1_NC},
{BFD_RELOC_AARCH64_MOVW_G2_NC, R_AARCH64_MOVW_UABS_G2_NC},
/* Group relocations to create high bits of a 16, 32, 48 or 64 bit
signed value inline. */
{BFD_RELOC_AARCH64_MOVW_G0_S, R_AARCH64_MOVW_SABS_G0},
{BFD_RELOC_AARCH64_MOVW_G1_S, R_AARCH64_MOVW_SABS_G1},
{BFD_RELOC_AARCH64_MOVW_G2_S, R_AARCH64_MOVW_SABS_G2},
/* Group relocations to create high bits of a 16, 32, 48 or 64 bit
unsigned value inline. */
{BFD_RELOC_AARCH64_MOVW_G0, R_AARCH64_MOVW_UABS_G0},
{BFD_RELOC_AARCH64_MOVW_G1, R_AARCH64_MOVW_UABS_G1},
{BFD_RELOC_AARCH64_MOVW_G2, R_AARCH64_MOVW_UABS_G2},
{BFD_RELOC_AARCH64_MOVW_G3, R_AARCH64_MOVW_UABS_G3},
/* Relocations to generate 19, 21 and 33 bit PC-relative load/store. */
{BFD_RELOC_AARCH64_LD_LO19_PCREL, R_AARCH64_LD_PREL_LO19},
{BFD_RELOC_AARCH64_ADR_LO21_PCREL, R_AARCH64_ADR_PREL_LO21},
{BFD_RELOC_AARCH64_ADR_HI21_PCREL, R_AARCH64_ADR_PREL_PG_HI21},
{BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL, R_AARCH64_ADR_PREL_PG_HI21_NC},
{BFD_RELOC_AARCH64_ADD_LO12, R_AARCH64_ADD_ABS_LO12_NC},
{BFD_RELOC_AARCH64_LDST8_LO12, R_AARCH64_LDST8_ABS_LO12_NC},
{BFD_RELOC_AARCH64_LDST16_LO12, R_AARCH64_LDST16_ABS_LO12_NC},
{BFD_RELOC_AARCH64_LDST32_LO12, R_AARCH64_LDST32_ABS_LO12_NC},
{BFD_RELOC_AARCH64_LDST64_LO12, R_AARCH64_LDST64_ABS_LO12_NC},
{BFD_RELOC_AARCH64_LDST128_LO12, R_AARCH64_LDST128_ABS_LO12_NC},
/* Relocations for control-flow instructions. */
{BFD_RELOC_AARCH64_TSTBR14, R_AARCH64_TSTBR14},
{BFD_RELOC_AARCH64_BRANCH19, R_AARCH64_CONDBR19},
{BFD_RELOC_AARCH64_JUMP26, R_AARCH64_JUMP26},
{BFD_RELOC_AARCH64_CALL26, R_AARCH64_CALL26},
/* Relocations for PIC. */
{BFD_RELOC_AARCH64_GOT_LD_PREL19, R_AARCH64_GOT_LD_PREL19},
{BFD_RELOC_AARCH64_ADR_GOT_PAGE, R_AARCH64_ADR_GOT_PAGE},
{BFD_RELOC_AARCH64_LD64_GOT_LO12_NC, R_AARCH64_LD64_GOT_LO12_NC},
/* Relocations for TLS. */
{BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21, R_AARCH64_TLSGD_ADR_PAGE21},
{BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC, R_AARCH64_TLSGD_ADD_LO12_NC},
{BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
R_AARCH64_TLSIE_MOVW_GOTTPREL_G1},
{BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC},
{BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21},
{BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC,
R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC},
{BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19,
R_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
{BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2, R_AARCH64_TLSLE_MOVW_TPREL_G2},
{BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1, R_AARCH64_TLSLE_MOVW_TPREL_G1},
{BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
R_AARCH64_TLSLE_MOVW_TPREL_G1_NC},
{BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0, R_AARCH64_TLSLE_MOVW_TPREL_G0},
{BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
R_AARCH64_TLSLE_MOVW_TPREL_G0_NC},
{BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12, R_AARCH64_TLSLE_ADD_TPREL_LO12},
{BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12, R_AARCH64_TLSLE_ADD_TPREL_HI12},
{BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
R_AARCH64_TLSLE_ADD_TPREL_LO12_NC},
{BFD_RELOC_AARCH64_TLSDESC_LD64_PREL19, R_AARCH64_TLSDESC_LD64_PREL19},
{BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, R_AARCH64_TLSDESC_ADR_PREL21},
{BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE, R_AARCH64_TLSDESC_ADR_PAGE},
{BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC, R_AARCH64_TLSDESC_ADD_LO12_NC},
{BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC, R_AARCH64_TLSDESC_LD64_LO12_NC},
{BFD_RELOC_AARCH64_TLSDESC_OFF_G1, R_AARCH64_TLSDESC_OFF_G1},
{BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC, R_AARCH64_TLSDESC_OFF_G0_NC},
{BFD_RELOC_AARCH64_TLSDESC_LDR, R_AARCH64_TLSDESC_LDR},
{BFD_RELOC_AARCH64_TLSDESC_ADD, R_AARCH64_TLSDESC_ADD},
{BFD_RELOC_AARCH64_TLSDESC_CALL, R_AARCH64_TLSDESC_CALL},
{BFD_RELOC_AARCH64_TLS_DTPMOD64, R_AARCH64_TLS_DTPMOD64},
{BFD_RELOC_AARCH64_TLS_DTPREL64, R_AARCH64_TLS_DTPREL64},
{BFD_RELOC_AARCH64_TLS_TPREL64, R_AARCH64_TLS_TPREL64},
{BFD_RELOC_AARCH64_TLSDESC, R_AARCH64_TLSDESC},
};
static reloc_howto_type *
elf64_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
bfd_reloc_code_real_type code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE (elf64_aarch64_reloc_map); i++)
if (elf64_aarch64_reloc_map[i].bfd_reloc_val == code)
return elf64_aarch64_howto_from_type
(elf64_aarch64_reloc_map[i].elf_reloc_val);
bfd_set_error (bfd_error_bad_value);
return NULL;
}
static reloc_howto_type *
elf64_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
const char *r_name)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE (elf64_aarch64_howto_table); i++)
if (elf64_aarch64_howto_table[i].name != NULL
&& strcasecmp (elf64_aarch64_howto_table[i].name, r_name) == 0)
return &elf64_aarch64_howto_table[i];
return NULL;
}
/* Support for core dump NOTE sections. */
static bfd_boolean
elf64_aarch64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
int offset;
size_t size;
switch (note->descsz)
{
default:
return FALSE;
case 408: /* sizeof(struct elf_prstatus) on Linux/arm64. */
/* pr_cursig */
elf_tdata (abfd)->core->signal
= bfd_get_16 (abfd, note->descdata + 12);
/* pr_pid */
elf_tdata (abfd)->core->lwpid
= bfd_get_32 (abfd, note->descdata + 32);
/* pr_reg */
offset = 112;
size = 272;
break;
}
/* Make a ".reg/999" section. */
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
size, note->descpos + offset);
}
#define TARGET_LITTLE_SYM bfd_elf64_littleaarch64_vec
#define TARGET_LITTLE_NAME "elf64-littleaarch64"
#define TARGET_BIG_SYM bfd_elf64_bigaarch64_vec
#define TARGET_BIG_NAME "elf64-bigaarch64"
#define elf_backend_grok_prstatus elf64_aarch64_grok_prstatus
typedef unsigned long int insn32;
/* The linker script knows the section names for placement.
The entry_names are used to do simple name mangling on the stubs.
Given a function name, and its type, the stub can be found. The
name can be changed. The only requirement is the %s be present. */
#define STUB_ENTRY_NAME "__%s_veneer"
/* The name of the dynamic interpreter. This is put in the .interp
section. */
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
#define AARCH64_MAX_FWD_BRANCH_OFFSET \
(((1 << 25) - 1) << 2)
#define AARCH64_MAX_BWD_BRANCH_OFFSET \
(-((1 << 25) << 2))
#define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
#define AARCH64_MIN_ADRP_IMM (-(1 << 20))
static int
aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
{
bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
}
static int
aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
{
bfd_signed_vma offset = (bfd_signed_vma) (value - place);
return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
&& offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
}
static const uint32_t aarch64_adrp_branch_stub [] =
{
0x90000010, /* adrp ip0, X */
/* R_AARCH64_ADR_HI21_PCREL(X) */
0x91000210, /* add ip0, ip0, :lo12:X */
/* R_AARCH64_ADD_ABS_LO12_NC(X) */
0xd61f0200, /* br ip0 */
};
static const uint32_t aarch64_long_branch_stub[] =
{
0x58000090, /* ldr ip0, 1f */
0x10000011, /* adr ip1, #0 */
0x8b110210, /* add ip0, ip0, ip1 */
0xd61f0200, /* br ip0 */
0x00000000, /* 1: .xword
R_AARCH64_PREL64(X) + 12
*/
0x00000000,
};
/* Section name for stubs is the associated section name plus this
string. */
#define STUB_SUFFIX ".stub"
enum elf64_aarch64_stub_type
{
aarch64_stub_none,
aarch64_stub_adrp_branch,
aarch64_stub_long_branch,
};
struct elf64_aarch64_stub_hash_entry
{
/* Base hash table entry structure. */
struct bfd_hash_entry root;
/* The stub section. */
asection *stub_sec;
/* Offset within stub_sec of the beginning of this stub. */
bfd_vma stub_offset;
/* Given the symbol's value and its section we can determine its final
value when building the stubs (so the stub knows where to jump). */
bfd_vma target_value;
asection *target_section;
enum elf64_aarch64_stub_type stub_type;
/* The symbol table entry, if any, that this was derived from. */
struct elf64_aarch64_link_hash_entry *h;
/* Destination symbol type */
unsigned char st_type;
/* Where this stub is being called from, or, in the case of combined
stub sections, the first input section in the group. */
asection *id_sec;
/* The name for the local symbol at the start of this stub. The
stub name in the hash table has to be unique; this does not, so
it can be friendlier. */
char *output_name;
};
/* Used to build a map of a section. This is required for mixed-endian
code/data. */
typedef struct elf64_elf_section_map
{
bfd_vma vma;
char type;
}
elf64_aarch64_section_map;
typedef struct _aarch64_elf_section_data
{
struct bfd_elf_section_data elf;
unsigned int mapcount;
unsigned int mapsize;
elf64_aarch64_section_map *map;
}
_aarch64_elf_section_data;
#define elf64_aarch64_section_data(sec) \
((_aarch64_elf_section_data *) elf_section_data (sec))
/* The size of the thread control block. */
#define TCB_SIZE 16
struct elf_aarch64_local_symbol
{
unsigned int got_type;
bfd_signed_vma got_refcount;
bfd_vma got_offset;
/* Offset of the GOTPLT entry reserved for the TLS descriptor. The
offset is from the end of the jump table and reserved entries
within the PLTGOT.
The magic value (bfd_vma) -1 indicates that an offset has not be
allocated. */
bfd_vma tlsdesc_got_jump_table_offset;
};
struct elf_aarch64_obj_tdata
{
struct elf_obj_tdata root;
/* local symbol descriptors */
struct elf_aarch64_local_symbol *locals;
/* Zero to warn when linking objects with incompatible enum sizes. */
int no_enum_size_warning;
/* Zero to warn when linking objects with incompatible wchar_t sizes. */
int no_wchar_size_warning;
};
#define elf_aarch64_tdata(bfd) \
((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
#define elf64_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
#define is_aarch64_elf(bfd) \
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \
&& elf_tdata (bfd) != NULL \
&& elf_object_id (bfd) == AARCH64_ELF_DATA)
static bfd_boolean
elf64_aarch64_mkobject (bfd *abfd)
{
return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
AARCH64_ELF_DATA);
}
/* The AArch64 linker needs to keep track of the number of relocs that it
decides to copy in check_relocs for each symbol. This is so that
it can discard PC relative relocs if it doesn't need them when
linking with -Bsymbolic. We store the information in a field
extending the regular ELF linker hash table. */
/* This structure keeps track of the number of relocs we have copied
for a given symbol. */
struct elf64_aarch64_relocs_copied
{
/* Next section. */
struct elf64_aarch64_relocs_copied *next;
/* A section in dynobj. */
asection *section;
/* Number of relocs copied in this section. */
bfd_size_type count;
/* Number of PC-relative relocs copied in this section. */
bfd_size_type pc_count;
};
#define elf64_aarch64_hash_entry(ent) \
((struct elf64_aarch64_link_hash_entry *)(ent))
#define GOT_UNKNOWN 0
#define GOT_NORMAL 1
#define GOT_TLS_GD 2
#define GOT_TLS_IE 4
#define GOT_TLSDESC_GD 8
#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
/* AArch64 ELF linker hash entry. */
struct elf64_aarch64_link_hash_entry
{
struct elf_link_hash_entry root;
/* Track dynamic relocs copied for this symbol. */
struct elf_dyn_relocs *dyn_relocs;
/* Number of PC relative relocs copied for this symbol. */
struct elf64_aarch64_relocs_copied *relocs_copied;
/* Since PLT entries have variable size, we need to record the
index into .got.plt instead of recomputing it from the PLT
offset. */
bfd_signed_vma plt_got_offset;
/* Bit mask representing the type of GOT entry(s) if any required by
this symbol. */
unsigned int got_type;
/* A pointer to the most recently used stub hash entry against this
symbol. */
struct elf64_aarch64_stub_hash_entry *stub_cache;
/* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
is from the end of the jump table and reserved entries within the PLTGOT.
The magic value (bfd_vma) -1 indicates that an offset has not
be allocated. */
bfd_vma tlsdesc_got_jump_table_offset;
};
static unsigned int
elf64_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
bfd *abfd,
unsigned long r_symndx)
{
if (h)
return elf64_aarch64_hash_entry (h)->got_type;
if (! elf64_aarch64_locals (abfd))
return GOT_UNKNOWN;
return elf64_aarch64_locals (abfd)[r_symndx].got_type;
}
/* Traverse an AArch64 ELF linker hash table. */
#define elf64_aarch64_link_hash_traverse(table, func, info) \
(elf_link_hash_traverse \
(&(table)->root, \
(bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
(info)))
/* Get the AArch64 elf linker hash table from a link_info structure. */
#define elf64_aarch64_hash_table(info) \
((struct elf64_aarch64_link_hash_table *) ((info)->hash))
#define aarch64_stub_hash_lookup(table, string, create, copy) \
((struct elf64_aarch64_stub_hash_entry *) \
bfd_hash_lookup ((table), (string), (create), (copy)))
/* AArch64 ELF linker hash table. */
struct elf64_aarch64_link_hash_table
{
/* The main hash table. */
struct elf_link_hash_table root;
/* Nonzero to force PIC branch veneers. */
int pic_veneer;
/* The number of bytes in the initial entry in the PLT. */
bfd_size_type plt_header_size;
/* The number of bytes in the subsequent PLT etries. */
bfd_size_type plt_entry_size;
/* Short-cuts to get to dynamic linker sections. */
asection *sdynbss;
asection *srelbss;
/* Small local sym cache. */
struct sym_cache sym_cache;
/* For convenience in allocate_dynrelocs. */
bfd *obfd;
/* The amount of space used by the reserved portion of the sgotplt
section, plus whatever space is used by the jump slots. */
bfd_vma sgotplt_jump_table_size;
/* The stub hash table. */
struct bfd_hash_table stub_hash_table;
/* Linker stub bfd. */
bfd *stub_bfd;
/* Linker call-backs. */
asection *(*add_stub_section) (const char *, asection *);
void (*layout_sections_again) (void);
/* Array to keep track of which stub sections have been created, and
information on stub grouping. */
struct map_stub
{
/* This is the section to which stubs in the group will be
attached. */
asection *link_sec;
/* The stub section. */
asection *stub_sec;
} *stub_group;
/* Assorted information used by elf64_aarch64_size_stubs. */
unsigned int bfd_count;
int top_index;
asection **input_list;
/* The offset into splt of the PLT entry for the TLS descriptor
resolver. Special values are 0, if not necessary (or not found
to be necessary yet), and -1 if needed but not determined
yet. */
bfd_vma tlsdesc_plt;
/* The GOT offset for the lazy trampoline. Communicated to the
loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
indicates an offset is not allocated. */
bfd_vma dt_tlsdesc_got;
};
/* Return non-zero if the indicated VALUE has overflowed the maximum
range expressible by a unsigned number with the indicated number of
BITS. */
static bfd_reloc_status_type
aarch64_unsigned_overflow (bfd_vma value, unsigned int bits)
{
bfd_vma lim;
if (bits >= sizeof (bfd_vma) * 8)
return bfd_reloc_ok;
lim = (bfd_vma) 1 << bits;
if (value >= lim)
return bfd_reloc_overflow;
return bfd_reloc_ok;
}
/* Return non-zero if the indicated VALUE has overflowed the maximum
range expressible by an signed number with the indicated number of
BITS. */
static bfd_reloc_status_type
aarch64_signed_overflow (bfd_vma value, unsigned int bits)
{
bfd_signed_vma svalue = (bfd_signed_vma) value;
bfd_signed_vma lim;
if (bits >= sizeof (bfd_vma) * 8)
return bfd_reloc_ok;
lim = (bfd_signed_vma) 1 << (bits - 1);
if (svalue < -lim || svalue >= lim)
return bfd_reloc_overflow;
return bfd_reloc_ok;
}
/* Create an entry in an AArch64 ELF linker hash table. */
static struct bfd_hash_entry *
elf64_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
struct elf64_aarch64_link_hash_entry *ret =
(struct elf64_aarch64_link_hash_entry *) entry;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (ret == NULL)
ret = bfd_hash_allocate (table,
sizeof (struct elf64_aarch64_link_hash_entry));
if (ret == NULL)
return (struct bfd_hash_entry *) ret;
/* Call the allocation method of the superclass. */
ret = ((struct elf64_aarch64_link_hash_entry *)
_bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
table, string));
if (ret != NULL)
{
ret->dyn_relocs = NULL;
ret->relocs_copied = NULL;
ret->got_type = GOT_UNKNOWN;
ret->plt_got_offset = (bfd_vma) - 1;
ret->stub_cache = NULL;
ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
}
return (struct bfd_hash_entry *) ret;
}
/* Initialize an entry in the stub hash table. */
static struct bfd_hash_entry *
stub_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table, const char *string)
{
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table,
sizeof (struct
elf64_aarch64_stub_hash_entry));
if (entry == NULL)
return entry;
}
/* Call the allocation method of the superclass. */
entry = bfd_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct elf64_aarch64_stub_hash_entry *eh;
/* Initialize the local fields. */
eh = (struct elf64_aarch64_stub_hash_entry *) entry;
eh->stub_sec = NULL;
eh->stub_offset = 0;
eh->target_value = 0;
eh->target_section = NULL;
eh->stub_type = aarch64_stub_none;
eh->h = NULL;
eh->id_sec = NULL;
}
return entry;
}
/* Copy the extra info we tack onto an elf_link_hash_entry. */
static void
elf64_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *dir,
struct elf_link_hash_entry *ind)
{
struct elf64_aarch64_link_hash_entry *edir, *eind;
edir = (struct elf64_aarch64_link_hash_entry *) dir;
eind = (struct elf64_aarch64_link_hash_entry *) ind;
if (eind->dyn_relocs != NULL)
{
if (edir->dyn_relocs != NULL)
{
struct elf_dyn_relocs **pp;
struct elf_dyn_relocs *p;
/* Add reloc counts against the indirect sym to the direct sym
list. Merge any entries against the same section. */
for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
{
struct elf_dyn_relocs *q;
for (q = edir->dyn_relocs; q != NULL; q = q->next)
if (q->sec == p->sec)
{
q->pc_count += p->pc_count;
q->count += p->count;
*pp = p->next;
break;
}
if (q == NULL)
pp = &p->next;
}
*pp = edir->dyn_relocs;
}
edir->dyn_relocs = eind->dyn_relocs;
eind->dyn_relocs = NULL;
}
if (eind->relocs_copied != NULL)
{
if (edir->relocs_copied != NULL)
{
struct elf64_aarch64_relocs_copied **pp;
struct elf64_aarch64_relocs_copied *p;
/* Add reloc counts against the indirect sym to the direct sym
list. Merge any entries against the same section. */
for (pp = &eind->relocs_copied; (p = *pp) != NULL;)
{
struct elf64_aarch64_relocs_copied *q;
for (q = edir->relocs_copied; q != NULL; q = q->next)
if (q->section == p->section)
{
q->pc_count += p->pc_count;
q->count += p->count;
*pp = p->next;
break;
}
if (q == NULL)
pp = &p->next;
}
*pp = edir->relocs_copied;
}
edir->relocs_copied = eind->relocs_copied;
eind->relocs_copied = NULL;
}
if (ind->root.type == bfd_link_hash_indirect)
{
/* Copy over PLT info. */
if (dir->got.refcount <= 0)
{
edir->got_type = eind->got_type;
eind->got_type = GOT_UNKNOWN;
}
}
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
}
/* Create an AArch64 elf linker hash table. */
static struct bfd_link_hash_table *
elf64_aarch64_link_hash_table_create (bfd *abfd)
{
struct elf64_aarch64_link_hash_table *ret;
bfd_size_type amt = sizeof (struct elf64_aarch64_link_hash_table);
ret = bfd_zmalloc (amt);
if (ret == NULL)
return NULL;
if (!_bfd_elf_link_hash_table_init
(&ret->root, abfd, elf64_aarch64_link_hash_newfunc,
sizeof (struct elf64_aarch64_link_hash_entry), AARCH64_ELF_DATA))
{
free (ret);
return NULL;
}
ret->plt_header_size = PLT_ENTRY_SIZE;
ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
ret->obfd = abfd;
ret->dt_tlsdesc_got = (bfd_vma) - 1;
if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
sizeof (struct elf64_aarch64_stub_hash_entry)))
{
free (ret);
return NULL;
}
return &ret->root.root;
}
/* Free the derived linker hash table. */
static void
elf64_aarch64_hash_table_free (struct bfd_link_hash_table *hash)
{
struct elf64_aarch64_link_hash_table *ret
= (struct elf64_aarch64_link_hash_table *) hash;
bfd_hash_table_free (&ret->stub_hash_table);
_bfd_elf_link_hash_table_free (hash);
}
static bfd_vma
aarch64_resolve_relocation (unsigned int r_type, bfd_vma place, bfd_vma value,
bfd_vma addend, bfd_boolean weak_undef_p)
{
switch (r_type)
{
case R_AARCH64_TLSDESC_CALL:
case R_AARCH64_NONE:
case R_AARCH64_NULL:
break;
case R_AARCH64_ADR_PREL_LO21:
case R_AARCH64_CONDBR19:
case R_AARCH64_LD_PREL_LO19:
case R_AARCH64_PREL16:
case R_AARCH64_PREL32:
case R_AARCH64_PREL64:
case R_AARCH64_TSTBR14:
if (weak_undef_p)
value = place;
value = value + addend - place;
break;
case R_AARCH64_CALL26:
case R_AARCH64_JUMP26:
value = value + addend - place;
break;
case R_AARCH64_ABS16:
case R_AARCH64_ABS32:
case R_AARCH64_MOVW_SABS_G0:
case R_AARCH64_MOVW_SABS_G1:
case R_AARCH64_MOVW_SABS_G2:
case R_AARCH64_MOVW_UABS_G0:
case R_AARCH64_MOVW_UABS_G0_NC:
case R_AARCH64_MOVW_UABS_G1:
case R_AARCH64_MOVW_UABS_G1_NC:
case R_AARCH64_MOVW_UABS_G2:
case R_AARCH64_MOVW_UABS_G2_NC:
case R_AARCH64_MOVW_UABS_G3:
value = value + addend;
break;
case R_AARCH64_ADR_PREL_PG_HI21:
case R_AARCH64_ADR_PREL_PG_HI21_NC:
if (weak_undef_p)
value = PG (place);
value = PG (value + addend) - PG (place);
break;
case R_AARCH64_GOT_LD_PREL19:
value = value + addend - place;
break;
case R_AARCH64_ADR_GOT_PAGE:
case R_AARCH64_TLSDESC_ADR_PAGE:
case R_AARCH64_TLSGD_ADR_PAGE21:
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
value = PG (value + addend) - PG (place);
break;
case R_AARCH64_ADD_ABS_LO12_NC:
case R_AARCH64_LD64_GOT_LO12_NC:
case R_AARCH64_LDST8_ABS_LO12_NC:
case R_AARCH64_LDST16_ABS_LO12_NC:
case R_AARCH64_LDST32_ABS_LO12_NC:
case R_AARCH64_LDST64_ABS_LO12_NC:
case R_AARCH64_LDST128_ABS_LO12_NC:
case R_AARCH64_TLSDESC_ADD_LO12_NC:
case R_AARCH64_TLSDESC_ADD:
case R_AARCH64_TLSDESC_LD64_LO12_NC:
case R_AARCH64_TLSDESC_LDR:
case R_AARCH64_TLSGD_ADD_LO12_NC:
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
case R_AARCH64_TLSLE_ADD_TPREL_LO12:
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
value = PG_OFFSET (value + addend);
break;
case R_AARCH64_TLSLE_MOVW_TPREL_G1:
case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
value = (value + addend) & (bfd_vma) 0xffff0000;
break;
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
value = (value + addend) & (bfd_vma) 0xfff000;
break;
case R_AARCH64_TLSLE_MOVW_TPREL_G0:
case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
value = (value + addend) & (bfd_vma) 0xffff;
break;
case R_AARCH64_TLSLE_MOVW_TPREL_G2:
value = (value + addend) & ~(bfd_vma) 0xffffffff;
value -= place & ~(bfd_vma) 0xffffffff;
break;
}
return value;
}
static bfd_boolean
aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
bfd_vma offset, bfd_vma value)
{
reloc_howto_type *howto;
bfd_vma place;
howto = elf64_aarch64_howto_from_type (r_type);
place = (input_section->output_section->vma + input_section->output_offset
+ offset);
value = aarch64_resolve_relocation (r_type, place, value, 0, FALSE);
return bfd_elf_aarch64_put_addend (input_bfd,
input_section->contents + offset,
howto, value);
}
static enum elf64_aarch64_stub_type
aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
{
if (aarch64_valid_for_adrp_p (value, place))
return aarch64_stub_adrp_branch;
return aarch64_stub_long_branch;
}
/* Determine the type of stub needed, if any, for a call. */
static enum elf64_aarch64_stub_type
aarch64_type_of_stub (struct bfd_link_info *info,
asection *input_sec,
const Elf_Internal_Rela *rel,
unsigned char st_type,
struct elf64_aarch64_link_hash_entry *hash,
bfd_vma destination)
{
bfd_vma location;
bfd_signed_vma branch_offset;
unsigned int r_type;
struct elf64_aarch64_link_hash_table *globals;
enum elf64_aarch64_stub_type stub_type = aarch64_stub_none;
bfd_boolean via_plt_p;
if (st_type != STT_FUNC)
return stub_type;
globals = elf64_aarch64_hash_table (info);
via_plt_p = (globals->root.splt != NULL && hash != NULL
&& hash->root.plt.offset != (bfd_vma) - 1);
if (via_plt_p)
return stub_type;
/* Determine where the call point is. */
location = (input_sec->output_offset
+ input_sec->output_section->vma + rel->r_offset);
branch_offset = (bfd_signed_vma) (destination - location);
r_type = ELF64_R_TYPE (rel->r_info);
/* We don't want to redirect any old unconditional jump in this way,
only one which is being used for a sibcall, where it is
acceptable for the IP0 and IP1 registers to be clobbered. */
if ((r_type == R_AARCH64_CALL26 || r_type == R_AARCH64_JUMP26)
&& (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
|| branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
{
stub_type = aarch64_stub_long_branch;
}
return stub_type;
}
/* Build a name for an entry in the stub hash table. */
static char *
elf64_aarch64_stub_name (const asection *input_section,
const asection *sym_sec,
const struct elf64_aarch64_link_hash_entry *hash,
const Elf_Internal_Rela *rel)
{
char *stub_name;
bfd_size_type len;
if (hash)
{
len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
stub_name = bfd_malloc (len);
if (stub_name != NULL)
snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
(unsigned int) input_section->id,
hash->root.root.root.string,
rel->r_addend);
}
else
{
len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
stub_name = bfd_malloc (len);
if (stub_name != NULL)
snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
(unsigned int) input_section->id,
(unsigned int) sym_sec->id,
(unsigned int) ELF64_R_SYM (rel->r_info),
rel->r_addend);
}
return stub_name;
}
/* Look up an entry in the stub hash. Stub entries are cached because
creating the stub name takes a bit of time. */
static struct elf64_aarch64_stub_hash_entry *
elf64_aarch64_get_stub_entry (const asection *input_section,
const asection *sym_sec,
struct elf_link_hash_entry *hash,
const Elf_Internal_Rela *rel,
struct elf64_aarch64_link_hash_table *htab)
{
struct elf64_aarch64_stub_hash_entry *stub_entry;
struct elf64_aarch64_link_hash_entry *h =
(struct elf64_aarch64_link_hash_entry *) hash;
const asection *id_sec;
if ((input_section->flags & SEC_CODE) == 0)
return NULL;
/* If this input section is part of a group of sections sharing one
stub section, then use the id of the first section in the group.
Stub names need to include a section id, as there may well be
more than one stub used to reach say, printf, and we need to
distinguish between them. */
id_sec = htab->stub_group[input_section->id].link_sec;
if (h != NULL && h->stub_cache != NULL
&& h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
{
stub_entry = h->stub_cache;
}
else
{
char *stub_name;
stub_name = elf64_aarch64_stub_name (id_sec, sym_sec, h, rel);
if (stub_name == NULL)
return NULL;
stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
stub_name, FALSE, FALSE);
if (h != NULL)
h->stub_cache = stub_entry;
free (stub_name);
}
return stub_entry;
}
/* Add a new stub entry to the stub hash. Not all fields of the new
stub entry are initialised. */
static struct elf64_aarch64_stub_hash_entry *
elf64_aarch64_add_stub (const char *stub_name,
asection *section,
struct elf64_aarch64_link_hash_table *htab)
{
asection *link_sec;
asection *stub_sec;
struct elf64_aarch64_stub_hash_entry *stub_entry;
link_sec = htab->stub_group[section->id].link_sec;
stub_sec = htab->stub_group[section->id].stub_sec;
if (stub_sec == NULL)
{
stub_sec = htab->stub_group[link_sec->id].stub_sec;
if (stub_sec == NULL)
{
size_t namelen;
bfd_size_type len;
char *s_name;
namelen = strlen (link_sec->name);
len = namelen + sizeof (STUB_SUFFIX);
s_name = bfd_alloc (htab->stub_bfd, len);
if (s_name == NULL)
return NULL;
memcpy (s_name, link_sec->name, namelen);
memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
stub_sec = (*htab->add_stub_section) (s_name, link_sec);
if (stub_sec == NULL)
return NULL;
htab->stub_group[link_sec->id].stub_sec = stub_sec;
}
htab->stub_group[section->id].stub_sec = stub_sec;
}
/* Enter this entry into the linker stub hash table. */
stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
TRUE, FALSE);
if (stub_entry == NULL)
{
(*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
section->owner, stub_name);
return NULL;
}
stub_entry->stub_sec = stub_sec;
stub_entry->stub_offset = 0;
stub_entry->id_sec = link_sec;
return stub_entry;
}
static bfd_boolean
aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
void *in_arg ATTRIBUTE_UNUSED)
{
struct elf64_aarch64_stub_hash_entry *stub_entry;
asection *stub_sec;
bfd *stub_bfd;
bfd_byte *loc;
bfd_vma sym_value;
unsigned int template_size;
const uint32_t *template;
unsigned int i;
/* Massage our args to the form they really have. */
stub_entry = (struct elf64_aarch64_stub_hash_entry *) gen_entry;
stub_sec = stub_entry->stub_sec;
/* Make a note of the offset within the stubs for this entry. */
stub_entry->stub_offset = stub_sec->size;
loc = stub_sec->contents + stub_entry->stub_offset;
stub_bfd = stub_sec->owner;
/* This is the address of the stub destination. */
sym_value = (stub_entry->target_value
+ stub_entry->target_section->output_offset
+ stub_entry->target_section->output_section->vma);
if (stub_entry->stub_type == aarch64_stub_long_branch)
{
bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
+ stub_sec->output_offset);
/* See if we can relax the stub. */
if (aarch64_valid_for_adrp_p (sym_value, place))
stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
}
switch (stub_entry->stub_type)
{
case aarch64_stub_adrp_branch:
template = aarch64_adrp_branch_stub;
template_size = sizeof (aarch64_adrp_branch_stub);
break;
case aarch64_stub_long_branch:
template = aarch64_long_branch_stub;
template_size = sizeof (aarch64_long_branch_stub);
break;
default:
BFD_FAIL ();
return FALSE;
}
for (i = 0; i < (template_size / sizeof template[0]); i++)
{
bfd_putl32 (template[i], loc);
loc += 4;
}
template_size = (template_size + 7) & ~7;
stub_sec->size += template_size;
switch (stub_entry->stub_type)
{
case aarch64_stub_adrp_branch:
if (aarch64_relocate (R_AARCH64_ADR_PREL_PG_HI21, stub_bfd, stub_sec,
stub_entry->stub_offset, sym_value))
/* The stub would not have been relaxed if the offset was out
of range. */
BFD_FAIL ();
_bfd_final_link_relocate
(elf64_aarch64_howto_from_type (R_AARCH64_ADD_ABS_LO12_NC),
stub_bfd,
stub_sec,
stub_sec->contents,
stub_entry->stub_offset + 4,
sym_value,
0);
break;
case aarch64_stub_long_branch:
/* We want the value relative to the address 12 bytes back from the
value itself. */
_bfd_final_link_relocate (elf64_aarch64_howto_from_type
(R_AARCH64_PREL64), stub_bfd, stub_sec,
stub_sec->contents,
stub_entry->stub_offset + 16,
sym_value + 12, 0);
break;
default:
break;
}
return TRUE;
}
/* As above, but don't actually build the stub. Just bump offset so
we know stub section sizes. */
static bfd_boolean
aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
void *in_arg ATTRIBUTE_UNUSED)
{
struct elf64_aarch64_stub_hash_entry *stub_entry;
int size;
/* Massage our args to the form they really have. */
stub_entry = (struct elf64_aarch64_stub_hash_entry *) gen_entry;
switch (stub_entry->stub_type)
{
case aarch64_stub_adrp_branch:
size = sizeof (aarch64_adrp_branch_stub);
break;
case aarch64_stub_long_branch:
size = sizeof (aarch64_long_branch_stub);
break;
default:
BFD_FAIL ();
return FALSE;
break;
}
size = (size + 7) & ~7;
stub_entry->stub_sec->size += size;
return TRUE;
}
/* External entry points for sizing and building linker stubs. */
/* Set up various things so that we can make a list of input sections
for each output section included in the link. Returns -1 on error,
0 when no stubs will be needed, and 1 on success. */
int
elf64_aarch64_setup_section_lists (bfd *output_bfd,
struct bfd_link_info *info)
{
bfd *input_bfd;
unsigned int bfd_count;
int top_id, top_index;
asection *section;
asection **input_list, **list;
bfd_size_type amt;
struct elf64_aarch64_link_hash_table *htab =
elf64_aarch64_hash_table (info);
if (!is_elf_hash_table (htab))
return 0;
/* Count the number of input BFDs and find the top input section id. */
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
input_bfd != NULL; input_bfd = input_bfd->link_next)
{
bfd_count += 1;
for (section = input_bfd->sections;
section != NULL; section = section->next)
{
if (top_id < section->id)
top_id = section->id;
}
}
htab->bfd_count = bfd_count;
amt = sizeof (struct map_stub) * (top_id + 1);
htab->stub_group = bfd_zmalloc (amt);
if (htab->stub_group == NULL)
return -1;
/* We can't use output_bfd->section_count here to find the top output
section index as some sections may have been removed, and
_bfd_strip_section_from_output doesn't renumber the indices. */
for (section = output_bfd->sections, top_index = 0;
section != NULL; section = section->next)
{
if (top_index < section->index)
top_index = section->index;
}
htab->top_index = top_index;
amt = sizeof (asection *) * (top_index + 1);
input_list = bfd_malloc (amt);
htab->input_list = input_list;
if (input_list == NULL)
return -1;
/* For sections we aren't interested in, mark their entries with a
value we can check later. */
list = input_list + top_index;
do
*list = bfd_abs_section_ptr;
while (list-- != input_list);
for (section = output_bfd->sections;
section != NULL; section = section->next)
{
if ((section->flags & SEC_CODE) != 0)
input_list[section->index] = NULL;
}
return 1;
}
/* Used by elf64_aarch64_next_input_section and group_sections. */
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
/* The linker repeatedly calls this function for each input section,
in the order that input sections are linked into output sections.
Build lists of input sections to determine groupings between which
we may insert linker stubs. */
void
elf64_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
{
struct elf64_aarch64_link_hash_table *htab =
elf64_aarch64_hash_table (info);
if (isec->output_section->index <= htab->top_index)
{
asection **list = htab->input_list + isec->output_section->index;
if (*list != bfd_abs_section_ptr)
{
/* Steal the link_sec pointer for our list. */
/* This happens to make the list in reverse order,
which is what we want. */
PREV_SEC (isec) = *list;
*list = isec;
}
}
}
/* See whether we can group stub sections together. Grouping stub
sections may result in fewer stubs. More importantly, we need to
put all .init* and .fini* stubs at the beginning of the .init or
.fini output sections respectively, because glibc splits the
_init and _fini functions into multiple parts. Putting a stub in
the middle of a function is not a good idea. */
static void
group_sections (struct elf64_aarch64_link_hash_table *htab,
bfd_size_type stub_group_size,
bfd_boolean stubs_always_before_branch)
{
asection **list = htab->input_list + htab->top_index;
do
{
asection *tail = *list;
if (tail == bfd_abs_section_ptr)
continue;
while (tail != NULL)
{
asection *curr;
asection *prev;
bfd_size_type total;
curr = tail;
total = tail->size;
while ((prev = PREV_SEC (curr)) != NULL
&& ((total += curr->output_offset - prev->output_offset)
< stub_group_size))
curr = prev;
/* OK, the size from the start of CURR to the end is less
than stub_group_size and thus can be handled by one stub
section. (Or the tail section is itself larger than
stub_group_size, in which case we may be toast.)
We should really be keeping track of the total size of
stubs added here, as stubs contribute to the final output
section size. */
do
{
prev = PREV_SEC (tail);
/* Set up this stub group. */
htab->stub_group[tail->id].link_sec = curr;
}
while (tail != curr && (tail = prev) != NULL);
/* But wait, there's more! Input sections up to stub_group_size
bytes before the stub section can be handled by it too. */
if (!stubs_always_before_branch)
{
total = 0;
while (prev != NULL
&& ((total += tail->output_offset - prev->output_offset)
< stub_group_size))
{
tail = prev;
prev = PREV_SEC (tail);
htab->stub_group[tail->id].link_sec = curr;
}
}
tail = prev;
}
}
while (list-- != htab->input_list);
free (htab->input_list);
}
#undef PREV_SEC
/* Determine and set the size of the stub section for a final link.
The basic idea here is to examine all the relocations looking for
PC-relative calls to a target that is unreachable with a "bl"
instruction. */
bfd_boolean
elf64_aarch64_size_stubs (bfd *output_bfd,
bfd *stub_bfd,
struct bfd_link_info *info,
bfd_signed_vma group_size,
asection * (*add_stub_section) (const char *,
asection *),
void (*layout_sections_again) (void))
{
bfd_size_type stub_group_size;
bfd_boolean stubs_always_before_branch;
bfd_boolean stub_changed = 0;
struct elf64_aarch64_link_hash_table *htab = elf64_aarch64_hash_table (info);
/* Propagate mach to stub bfd, because it may not have been
finalized when we created stub_bfd. */
bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
bfd_get_mach (output_bfd));
/* Stash our params away. */
htab->stub_bfd = stub_bfd;
htab->add_stub_section = add_stub_section;
htab->layout_sections_again = layout_sections_again;
stubs_always_before_branch = group_size < 0;
if (group_size < 0)
stub_group_size = -group_size;
else
stub_group_size = group_size;
if (stub_group_size == 1)
{
/* Default values. */
/* Aarch64 branch range is +-128MB. The value used is 1MB less. */
stub_group_size = 127 * 1024 * 1024;
}
group_sections (htab, stub_group_size, stubs_always_before_branch);
while (1)
{
bfd *input_bfd;
unsigned int bfd_indx;
asection *stub_sec;
for (input_bfd = info->input_bfds, bfd_indx = 0;
input_bfd != NULL; input_bfd = input_bfd->link_next, bfd_indx++)
{
Elf_Internal_Shdr *symtab_hdr;
asection *section;
Elf_Internal_Sym *local_syms = NULL;
/* We'll need the symbol table in a second. */
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
if (symtab_hdr->sh_info == 0)
continue;
/* Walk over each section attached to the input bfd. */
for (section = input_bfd->sections;
section != NULL; section = section->next)
{
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
/* If there aren't any relocs, then there's nothing more
to do. */
if ((section->flags & SEC_RELOC) == 0
|| section->reloc_count == 0
|| (section->flags & SEC_CODE) == 0)
continue;
/* If this section is a link-once section that will be
discarded, then don't create any stubs. */
if (section->output_section == NULL
|| section->output_section->owner != output_bfd)
continue;
/* Get the relocs. */
internal_relocs
= _bfd_elf_link_read_relocs (input_bfd, section, NULL,
NULL, info->keep_memory);
if (internal_relocs == NULL)
goto error_ret_free_local;
/* Now examine each relocation. */
irela = internal_relocs;
irelaend = irela + section->reloc_count;
for (; irela < irelaend; irela++)
{
unsigned int r_type, r_indx;
enum elf64_aarch64_stub_type stub_type;
struct elf64_aarch64_stub_hash_entry *stub_entry;
asection *sym_sec;
bfd_vma sym_value;
bfd_vma destination;
struct elf64_aarch64_link_hash_entry *hash;
const char *sym_name;
char *stub_name;
const asection *id_sec;
unsigned char st_type;
bfd_size_type len;
r_type = ELF64_R_TYPE (irela->r_info);
r_indx = ELF64_R_SYM (irela->r_info);
if (r_type >= (unsigned int) R_AARCH64_end)
{
bfd_set_error (bfd_error_bad_value);
error_ret_free_internal:
if (elf_section_data (section)->relocs == NULL)
free (internal_relocs);
goto error_ret_free_local;
}
/* Only look for stubs on unconditional branch and
branch and link instructions. */
if (r_type != (unsigned int) R_AARCH64_CALL26
&& r_type != (unsigned int) R_AARCH64_JUMP26)
continue;
/* Now determine the call target, its name, value,
section. */
sym_sec = NULL;
sym_value = 0;
destination = 0;
hash = NULL;
sym_name = NULL;
if (r_indx < symtab_hdr->sh_info)
{
/* It's a local symbol. */
Elf_Internal_Sym *sym;
Elf_Internal_Shdr *hdr;
if (local_syms == NULL)
{
local_syms
= (Elf_Internal_Sym *) symtab_hdr->contents;
if (local_syms == NULL)
local_syms
= bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
symtab_hdr->sh_info, 0,
NULL, NULL, NULL);
if (local_syms == NULL)
goto error_ret_free_internal;
}
sym = local_syms + r_indx;
hdr = elf_elfsections (input_bfd)[sym->st_shndx];
sym_sec = hdr->bfd_section;
if (!sym_sec)
/* This is an undefined symbol. It can never
be resolved. */
continue;
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
sym_value = sym->st_value;
destination = (sym_value + irela->r_addend
+ sym_sec->output_offset
+ sym_sec->output_section->vma);
st_type = ELF_ST_TYPE (sym->st_info);
sym_name
= bfd_elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
sym->st_name);
}
else
{
int e_indx;
e_indx = r_indx - symtab_hdr->sh_info;
hash = ((struct elf64_aarch64_link_hash_entry *)
elf_sym_hashes (input_bfd)[e_indx]);
while (hash->root.root.type == bfd_link_hash_indirect
|| hash->root.root.type == bfd_link_hash_warning)
hash = ((struct elf64_aarch64_link_hash_entry *)
hash->root.root.u.i.link);
if (hash->root.root.type == bfd_link_hash_defined
|| hash->root.root.type == bfd_link_hash_defweak)
{
struct elf64_aarch64_link_hash_table *globals =
elf64_aarch64_hash_table (info);
sym_sec = hash->root.root.u.def.section;
sym_value = hash->root.root.u.def.value;
/* For a destination in a shared library,
use the PLT stub as target address to
decide whether a branch stub is
needed. */
if (globals->root.splt != NULL && hash != NULL
&& hash->root.plt.offset != (bfd_vma) - 1)
{
sym_sec = globals->root.splt;
sym_value = hash->root.plt.offset;
if (sym_sec->output_section != NULL)
destination = (sym_value
+ sym_sec->output_offset
+
sym_sec->output_section->vma);
}
else if (sym_sec->output_section != NULL)
destination = (sym_value + irela->r_addend
+ sym_sec->output_offset
+ sym_sec->output_section->vma);
}
else if (hash->root.root.type == bfd_link_hash_undefined
|| (hash->root.root.type
== bfd_link_hash_undefweak))
{
/* For a shared library, use the PLT stub as
target address to decide whether a long
branch stub is needed.
For absolute code, they cannot be handled. */
struct elf64_aarch64_link_hash_table *globals =
elf64_aarch64_hash_table (info);
if (globals->root.splt != NULL && hash != NULL
&& hash->root.plt.offset != (bfd_vma) - 1)
{
sym_sec = globals->root.splt;
sym_value = hash->root.plt.offset;
if (sym_sec->output_section != NULL)
destination = (sym_value
+ sym_sec->output_offset
+
sym_sec->output_section->vma);
}
else
continue;
}
else
{
bfd_set_error (bfd_error_bad_value);
goto error_ret_free_internal;
}
st_type = ELF_ST_TYPE (hash->root.type);
sym_name = hash->root.root.root.string;
}
/* Determine what (if any) linker stub is needed. */
stub_type = aarch64_type_of_stub
(info, section, irela, st_type, hash, destination);
if (stub_type == aarch64_stub_none)
continue;
/* Support for grouping stub sections. */
id_sec = htab->stub_group[section->id].link_sec;
/* Get the name of this stub. */
stub_name = elf64_aarch64_stub_name (id_sec, sym_sec, hash,
irela);
if (!stub_name)
goto error_ret_free_internal;
stub_entry =
aarch64_stub_hash_lookup (&htab->stub_hash_table,
stub_name, FALSE, FALSE);
if (stub_entry != NULL)
{
/* The proper stub has already been created. */
free (stub_name);
continue;
}
stub_entry = elf64_aarch64_add_stub (stub_name, section,
htab);
if (stub_entry == NULL)
{
free (stub_name);
goto error_ret_free_internal;
}
stub_entry->target_value = sym_value;
stub_entry->target_section = sym_sec;
stub_entry->stub_type = stub_type;
stub_entry->h = hash;
stub_entry->st_type = st_type;
if (sym_name == NULL)
sym_name = "unnamed";
len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
if (stub_entry->output_name == NULL)
{
free (stub_name);
goto error_ret_free_internal;
}
snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
sym_name);
stub_changed = TRUE;
}
/* We're done with the internal relocs, free them. */
if (elf_section_data (section)->relocs == NULL)
free (internal_relocs);
}
}
if (!stub_changed)
break;
/* OK, we've added some stubs. Find out the new size of the
stub sections. */
for (stub_sec = htab->stub_bfd->sections;
stub_sec != NULL; stub_sec = stub_sec->next)
stub_sec->size = 0;
bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
/* Ask the linker to do its stuff. */
(*htab->layout_sections_again) ();
stub_changed = FALSE;
}
return TRUE;
error_ret_free_local:
return FALSE;
}
/* Build all the stubs associated with the current output file. The
stubs are kept in a hash table attached to the main linker hash
table. We also set up the .plt entries for statically linked PIC
functions here. This function is called via aarch64_elf_finish in the
linker. */
bfd_boolean
elf64_aarch64_build_stubs (struct bfd_link_info *info)
{
asection *stub_sec;
struct bfd_hash_table *table;
struct elf64_aarch64_link_hash_table *htab;
htab = elf64_aarch64_hash_table (info);
for (stub_sec = htab->stub_bfd->sections;
stub_sec != NULL; stub_sec = stub_sec->next)
{
bfd_size_type size;
/* Ignore non-stub sections. */
if (!strstr (stub_sec->name, STUB_SUFFIX))
continue;
/* Allocate memory to hold the linker stubs. */
size = stub_sec->size;
stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
if (stub_sec->contents == NULL && size != 0)
return FALSE;
stub_sec->size = 0;
}
/* Build the stubs as directed by the stub hash table. */
table = &htab->stub_hash_table;
bfd_hash_traverse (table, aarch64_build_one_stub, info);
return TRUE;
}
/* Add an entry to the code/data map for section SEC. */
static void
elf64_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
{
struct _aarch64_elf_section_data *sec_data =
elf64_aarch64_section_data (sec);
unsigned int newidx;
if (sec_data->map == NULL)
{
sec_data->map = bfd_malloc (sizeof (elf64_aarch64_section_map));
sec_data->mapcount = 0;
sec_data->mapsize = 1;
}
newidx = sec_data->mapcount++;
if (sec_data->mapcount > sec_data->mapsize)
{
sec_data->mapsize *= 2;
sec_data->map = bfd_realloc_or_free
(sec_data->map, sec_data->mapsize * sizeof (elf64_aarch64_section_map));
}
if (sec_data->map)
{
sec_data->map[newidx].vma = vma;
sec_data->map[newidx].type = type;
}
}
/* Initialise maps of insn/data for input BFDs. */
void
bfd_elf64_aarch64_init_maps (bfd *abfd)
{
Elf_Internal_Sym *isymbuf;
Elf_Internal_Shdr *hdr;
unsigned int i, localsyms;
/* Make sure that we are dealing with an AArch64 elf binary. */
if (!is_aarch64_elf (abfd))
return;
if ((abfd->flags & DYNAMIC) != 0)
return;
hdr = &elf_symtab_hdr (abfd);
localsyms = hdr->sh_info;
/* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
should contain the number of local symbols, which should come before any
global symbols. Mapping symbols are always local. */
isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
/* No internal symbols read? Skip this BFD. */
if (isymbuf == NULL)
return;
for (i = 0; i < localsyms; i++)
{
Elf_Internal_Sym *isym = &isymbuf[i];
asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
const char *name;
if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
{
name = bfd_elf_string_from_elf_section (abfd,
hdr->sh_link,
isym->st_name);
if (bfd_is_aarch64_special_symbol_name
(name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
elf64_aarch64_section_map_add (sec, name[1], isym->st_value);
}
}
}
/* Set option values needed during linking. */
void
bfd_elf64_aarch64_set_options (struct bfd *output_bfd,
struct bfd_link_info *link_info,
int no_enum_warn,
int no_wchar_warn, int pic_veneer)
{
struct elf64_aarch64_link_hash_table *globals;
globals = elf64_aarch64_hash_table (link_info);
globals->pic_veneer = pic_veneer;
BFD_ASSERT (is_aarch64_elf (output_bfd));
elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
}
#define MASK(n) ((1u << (n)) - 1)
/* Decode the 26-bit offset of unconditional branch. */
static inline uint32_t
decode_branch_ofs_26 (uint32_t insn)
{
return insn & MASK (26);
}
/* Decode the 19-bit offset of conditional branch and compare & branch. */
static inline uint32_t
decode_cond_branch_ofs_19 (uint32_t insn)
{
return (insn >> 5) & MASK (19);
}
/* Decode the 19-bit offset of load literal. */
static inline uint32_t
decode_ld_lit_ofs_19 (uint32_t insn)
{
return (insn >> 5) & MASK (19);
}
/* Decode the 14-bit offset of test & branch. */
static inline uint32_t
decode_tst_branch_ofs_14 (uint32_t insn)
{
return (insn >> 5) & MASK (14);
}
/* Decode the 16-bit imm of move wide. */
static inline uint32_t
decode_movw_imm (uint32_t insn)
{
return (insn >> 5) & MASK (16);
}
/* Decode the 21-bit imm of adr. */
static inline uint32_t
decode_adr_imm (uint32_t insn)
{
return ((insn >> 29) & MASK (2)) | ((insn >> 3) & (MASK (19) << 2));
}
/* Decode the 12-bit imm of add immediate. */
static inline uint32_t
decode_add_imm (uint32_t insn)
{
return (insn >> 10) & MASK (12);
}
/* Encode the 26-bit offset of unconditional branch. */
static inline uint32_t
reencode_branch_ofs_26 (uint32_t insn, uint32_t ofs)
{
return (insn & ~MASK (26)) | (ofs & MASK (26));
}
/* Encode the 19-bit offset of conditional branch and compare & branch. */
static inline uint32_t
reencode_cond_branch_ofs_19 (uint32_t insn, uint32_t ofs)
{
return (insn & ~(MASK (19) << 5)) | ((ofs & MASK (19)) << 5);
}
/* Decode the 19-bit offset of load literal. */
static inline uint32_t
reencode_ld_lit_ofs_19 (uint32_t insn, uint32_t ofs)
{
return (insn & ~(MASK (19) << 5)) | ((ofs & MASK (19)) << 5);
}
/* Encode the 14-bit offset of test & branch. */
static inline uint32_t
reencode_tst_branch_ofs_14 (uint32_t insn, uint32_t ofs)
{
return (insn & ~(MASK (14) << 5)) | ((ofs & MASK (14)) << 5);
}
/* Reencode the imm field of move wide. */
static inline uint32_t
reencode_movw_imm (uint32_t insn, uint32_t imm)
{
return (insn & ~(MASK (16) << 5)) | ((imm & MASK (16)) << 5);
}
/* Reencode the imm field of adr. */
static inline uint32_t
reencode_adr_imm (uint32_t insn, uint32_t imm)
{
return (insn & ~((MASK (2) << 29) | (MASK (19) << 5)))
| ((imm & MASK (2)) << 29) | ((imm & (MASK (19) << 2)) << 3);
}
/* Reencode the imm field of ld/st pos immediate. */
static inline uint32_t
reencode_ldst_pos_imm (uint32_t insn, uint32_t imm)
{
return (insn & ~(MASK (12) << 10)) | ((imm & MASK (12)) << 10);
}
/* Reencode the imm field of add immediate. */
static inline uint32_t
reencode_add_imm (uint32_t insn, uint32_t imm)
{
return (insn & ~(MASK (12) << 10)) | ((imm & MASK (12)) << 10);
}
/* Reencode mov[zn] to movz. */
static inline uint32_t
reencode_movzn_to_movz (uint32_t opcode)
{
return opcode | (1 << 30);
}
/* Reencode mov[zn] to movn. */
static inline uint32_t
reencode_movzn_to_movn (uint32_t opcode)
{
return opcode & ~(1 << 30);
}
/* Insert the addend/value into the instruction or data object being
relocated. */
static bfd_reloc_status_type
bfd_elf_aarch64_put_addend (bfd *abfd,
bfd_byte *address,
reloc_howto_type *howto, bfd_signed_vma addend)
{
bfd_reloc_status_type status = bfd_reloc_ok;
bfd_signed_vma old_addend = addend;
bfd_vma contents;
int size;
size = bfd_get_reloc_size (howto);
switch (size)
{
case 2:
contents = bfd_get_16 (abfd, address);
break;
case 4:
if (howto->src_mask != 0xffffffff)
/* Must be 32-bit instruction, always little-endian. */
contents = bfd_getl32 (address);
else
/* Must be 32-bit data (endianness dependent). */
contents = bfd_get_32 (abfd, address);
break;
case 8:
contents = bfd_get_64 (abfd, address);
break;
default:
abort ();
}
switch (howto->complain_on_overflow)
{
case complain_overflow_dont:
break;
case complain_overflow_signed:
status = aarch64_signed_overflow (addend,
howto->bitsize + howto->rightshift);
break;
case complain_overflow_unsigned:
status = aarch64_unsigned_overflow (addend,
howto->bitsize + howto->rightshift);
break;
case complain_overflow_bitfield:
default:
abort ();
}
addend >>= howto->rightshift;
switch (howto->type)
{
case R_AARCH64_JUMP26:
case R_AARCH64_CALL26:
contents = reencode_branch_ofs_26 (contents, addend);
break;
case R_AARCH64_CONDBR19:
contents = reencode_cond_branch_ofs_19 (contents, addend);
break;
case R_AARCH64_TSTBR14:
contents = reencode_tst_branch_ofs_14 (contents, addend);
break;
case R_AARCH64_LD_PREL_LO19:
case R_AARCH64_GOT_LD_PREL19:
if (old_addend & ((1 << howto->rightshift) - 1))
return bfd_reloc_overflow;
contents = reencode_ld_lit_ofs_19 (contents, addend);
break;
case R_AARCH64_TLSDESC_CALL:
break;
case R_AARCH64_TLSGD_ADR_PAGE21:
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
case R_AARCH64_TLSDESC_ADR_PAGE:
case R_AARCH64_ADR_GOT_PAGE:
case R_AARCH64_ADR_PREL_LO21:
case R_AARCH64_ADR_PREL_PG_HI21:
case R_AARCH64_ADR_PREL_PG_HI21_NC:
contents = reencode_adr_imm (contents, addend);
break;
case R_AARCH64_TLSGD_ADD_LO12_NC:
case R_AARCH64_TLSLE_ADD_TPREL_LO12:
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
case R_AARCH64_TLSDESC_ADD_LO12_NC:
case R_AARCH64_ADD_ABS_LO12_NC:
/* Corresponds to: add rd, rn, #uimm12 to provide the low order
12 bits of the page offset following
R_AARCH64_ADR_PREL_PG_HI21 which computes the
(pc-relative) page base. */
contents = reencode_add_imm (contents, addend);
break;
case R_AARCH64_LDST8_ABS_LO12_NC:
case R_AARCH64_LDST16_ABS_LO12_NC:
case R_AARCH64_LDST32_ABS_LO12_NC:
case R_AARCH64_LDST64_ABS_LO12_NC:
case R_AARCH64_LDST128_ABS_LO12_NC:
case R_AARCH64_TLSDESC_LD64_LO12_NC:
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
case R_AARCH64_LD64_GOT_LO12_NC:
if (old_addend & ((1 << howto->rightshift) - 1))
return bfd_reloc_overflow;
/* Used for ldr*|str* rt, [rn, #uimm12] to provide the low order
12 bits of the page offset following R_AARCH64_ADR_PREL_PG_HI21
which computes the (pc-relative) page base. */
contents = reencode_ldst_pos_imm (contents, addend);
break;
/* Group relocations to create high bits of a 16, 32, 48 or 64
bit signed data or abs address inline. Will change
instruction to MOVN or MOVZ depending on sign of calculated
value. */
case R_AARCH64_TLSLE_MOVW_TPREL_G2:
case R_AARCH64_TLSLE_MOVW_TPREL_G1:
case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G0:
case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
case R_AARCH64_MOVW_SABS_G0:
case R_AARCH64_MOVW_SABS_G1:
case R_AARCH64_MOVW_SABS_G2:
/* NOTE: We can only come here with movz or movn. */
if (addend < 0)
{
/* Force use of MOVN. */
addend = ~addend;
contents = reencode_movzn_to_movn (contents);
}
else
{
/* Force use of MOVZ. */
contents = reencode_movzn_to_movz (contents);
}
/* fall through */
/* Group relocations to create a 16, 32, 48 or 64 bit unsigned
data or abs address inline. */
case R_AARCH64_MOVW_UABS_G0:
case R_AARCH64_MOVW_UABS_G0_NC:
case R_AARCH64_MOVW_UABS_G1:
case R_AARCH64_MOVW_UABS_G1_NC:
case R_AARCH64_MOVW_UABS_G2:
case R_AARCH64_MOVW_UABS_G2_NC:
case R_AARCH64_MOVW_UABS_G3:
contents = reencode_movw_imm (contents, addend);
break;
default:
/* Repack simple data */
if (howto->dst_mask & (howto->dst_mask + 1))
return bfd_reloc_notsupported;
contents = ((contents & ~howto->dst_mask) | (addend & howto->dst_mask));
break;
}
switch (size)
{
case 2:
bfd_put_16 (abfd, contents, address);
break;
case 4:
if (howto->dst_mask != 0xffffffff)
/* must be 32-bit instruction, always little-endian */
bfd_putl32 (contents, address);
else
/* must be 32-bit data (endianness dependent) */
bfd_put_32 (abfd, contents, address);
break;
case 8:
bfd_put_64 (abfd, contents, address);
break;
default:
abort ();
}
return status;
}
static bfd_vma
aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
struct elf64_aarch64_link_hash_table
*globals, struct bfd_link_info *info,
bfd_vma value, bfd *output_bfd,
bfd_boolean *unresolved_reloc_p)
{
bfd_vma off = (bfd_vma) - 1;
asection *basegot = globals->root.sgot;
bfd_boolean dyn = globals->root.dynamic_sections_created;
if (h != NULL)
{
off = h->got.offset;
BFD_ASSERT (off != (bfd_vma) - 1);
if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
|| (info->shared
&& SYMBOL_REFERENCES_LOCAL (info, h))
|| (ELF_ST_VISIBILITY (h->other)
&& h->root.type == bfd_link_hash_undefweak))
{
/* This is actually a static link, or it is a -Bsymbolic link
and the symbol is defined locally. We must initialize this
entry in the global offset table. Since the offset must
always be a multiple of 8, we use the least significant bit
to record whether we have initialized it already.
When doing a dynamic link, we create a .rel(a).got relocation
entry to initialize the value. This is done in the
finish_dynamic_symbol routine. */
if ((off & 1) != 0)
off &= ~1;
else
{
bfd_put_64 (output_bfd, value, basegot->contents + off);
h->got.offset |= 1;
}
}
else
*unresolved_reloc_p = FALSE;
off = off + basegot->output_section->vma + basegot->output_offset;
}
return off;
}
/* Change R_TYPE to a more efficient access model where possible,
return the new reloc type. */
static unsigned int
aarch64_tls_transition_without_check (unsigned int r_type,
struct elf_link_hash_entry *h)
{
bfd_boolean is_local = h == NULL;
switch (r_type)
{
case R_AARCH64_TLSGD_ADR_PAGE21:
case R_AARCH64_TLSDESC_ADR_PAGE:
return is_local
? R_AARCH64_TLSLE_MOVW_TPREL_G1 : R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21;
case R_AARCH64_TLSGD_ADD_LO12_NC:
case R_AARCH64_TLSDESC_LD64_LO12_NC:
return is_local
? R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
: R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC;
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
return is_local ? R_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
return is_local ? R_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
case R_AARCH64_TLSDESC_ADD_LO12_NC:
case R_AARCH64_TLSDESC_CALL:
/* Instructions with these relocations will become NOPs. */
return R_AARCH64_NONE;
}
return r_type;
}
static unsigned int
aarch64_reloc_got_type (unsigned int r_type)
{
switch (r_type)
{
case R_AARCH64_LD64_GOT_LO12_NC:
case R_AARCH64_ADR_GOT_PAGE:
case R_AARCH64_GOT_LD_PREL19:
return GOT_NORMAL;
case R_AARCH64_TLSGD_ADR_PAGE21:
case R_AARCH64_TLSGD_ADD_LO12_NC:
return GOT_TLS_GD;
case R_AARCH64_TLSDESC_ADD_LO12_NC:
case R_AARCH64_TLSDESC_ADR_PAGE:
case R_AARCH64_TLSDESC_CALL:
case R_AARCH64_TLSDESC_LD64_LO12_NC:
return GOT_TLSDESC_GD;
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
return GOT_TLS_IE;
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
case R_AARCH64_TLSLE_ADD_TPREL_LO12:
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G0:
case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G1:
case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G2:
return GOT_UNKNOWN;
}
return GOT_UNKNOWN;
}
static bfd_boolean
aarch64_can_relax_tls (bfd *input_bfd,
struct bfd_link_info *info,
unsigned int r_type,
struct elf_link_hash_entry *h,
unsigned long r_symndx)
{
unsigned int symbol_got_type;
unsigned int reloc_got_type;
if (! IS_AARCH64_TLS_RELOC (r_type))
return FALSE;
symbol_got_type = elf64_aarch64_symbol_got_type (h, input_bfd, r_symndx);
reloc_got_type = aarch64_reloc_got_type (r_type);
if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
return TRUE;
if (info->shared)
return FALSE;
if (h && h->root.type == bfd_link_hash_undefweak)
return FALSE;
return TRUE;
}
static unsigned int
aarch64_tls_transition (bfd *input_bfd,
struct bfd_link_info *info,
unsigned int r_type,
struct elf_link_hash_entry *h,
unsigned long r_symndx)
{
if (! aarch64_can_relax_tls (input_bfd, info, r_type, h, r_symndx))
return r_type;
return aarch64_tls_transition_without_check (r_type, h);
}
/* Return the base VMA address which should be subtracted from real addresses
when resolving R_AARCH64_TLS_DTPREL64 relocation. */
static bfd_vma
dtpoff_base (struct bfd_link_info *info)
{
/* If tls_sec is NULL, we should have signalled an error already. */
BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
return elf_hash_table (info)->tls_sec->vma;
}
/* Return the base VMA address which should be subtracted from real addresses
when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
static bfd_vma
tpoff_base (struct bfd_link_info *info)
{
struct elf_link_hash_table *htab = elf_hash_table (info);
/* If tls_sec is NULL, we should have signalled an error already. */
if (htab->tls_sec == NULL)
return 0;
bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
htab->tls_sec->alignment_power);
return htab->tls_sec->vma - base;
}
static bfd_vma *
symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
unsigned long r_symndx)
{
/* Calculate the address of the GOT entry for symbol
referred to in h. */
if (h != NULL)
return &h->got.offset;
else
{
/* local symbol */
struct elf_aarch64_local_symbol *l;
l = elf64_aarch64_locals (input_bfd);
return &l[r_symndx].got_offset;
}
}
static void
symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
unsigned long r_symndx)
{
bfd_vma *p;
p = symbol_got_offset_ref (input_bfd, h, r_symndx);
*p |= 1;
}
static int
symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
unsigned long r_symndx)
{
bfd_vma value;
value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
return value & 1;
}
static bfd_vma
symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
unsigned long r_symndx)
{
bfd_vma value;
value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
value &= ~1;
return value;
}
static bfd_vma *
symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
unsigned long r_symndx)
{
/* Calculate the address of the GOT entry for symbol
referred to in h. */
if (h != NULL)
{
struct elf64_aarch64_link_hash_entry *eh;
eh = (struct elf64_aarch64_link_hash_entry *) h;
return &eh->tlsdesc_got_jump_table_offset;
}
else
{
/* local symbol */
struct elf_aarch64_local_symbol *l;
l = elf64_aarch64_locals (input_bfd);
return &l[r_symndx].tlsdesc_got_jump_table_offset;
}
}
static void
symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
unsigned long r_symndx)
{
bfd_vma *p;
p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
*p |= 1;
}
static int
symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
struct elf_link_hash_entry *h,
unsigned long r_symndx)
{
bfd_vma value;
value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
return value & 1;
}
static bfd_vma
symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
unsigned long r_symndx)
{
bfd_vma value;
value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
value &= ~1;
return value;
}
/* Perform a relocation as part of a final link. */
static bfd_reloc_status_type
elf64_aarch64_final_link_relocate (reloc_howto_type *howto,
bfd *input_bfd,
bfd *output_bfd,
asection *input_section,
bfd_byte *contents,
Elf_Internal_Rela *rel,
bfd_vma value,
struct bfd_link_info *info,
asection *sym_sec,
struct elf_link_hash_entry *h,
bfd_boolean *unresolved_reloc_p,
bfd_boolean save_addend,
bfd_vma *saved_addend)
{
unsigned int r_type = howto->type;
unsigned long r_symndx;
bfd_byte *hit_data = contents + rel->r_offset;
bfd_vma place;
bfd_signed_vma signed_addend;
struct elf64_aarch64_link_hash_table *globals;
bfd_boolean weak_undef_p;
globals = elf64_aarch64_hash_table (info);
BFD_ASSERT (is_aarch64_elf (input_bfd));
r_symndx = ELF64_R_SYM (rel->r_info);
/* It is possible to have linker relaxations on some TLS access
models. Update our information here. */
r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
if (r_type != howto->type)
howto = elf64_aarch64_howto_from_type (r_type);
place = input_section->output_section->vma
+ input_section->output_offset + rel->r_offset;
/* Get addend, accumulating the addend for consecutive relocs
which refer to the same offset. */
signed_addend = saved_addend ? *saved_addend : 0;
signed_addend += rel->r_addend;
weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
: bfd_is_und_section (sym_sec));
switch (r_type)
{
case R_AARCH64_NONE:
case R_AARCH64_NULL:
case R_AARCH64_TLSDESC_CALL:
*unresolved_reloc_p = FALSE;
return bfd_reloc_ok;
case R_AARCH64_ABS64:
/* When generating a shared object or relocatable executable, these
relocations are copied into the output file to be resolved at
run time. */
if (((info->shared == TRUE) || globals->root.is_relocatable_executable)
&& (input_section->flags & SEC_ALLOC)
&& (h == NULL
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|| h->root.type != bfd_link_hash_undefweak))
{
Elf_Internal_Rela outrel;
bfd_byte *loc;
bfd_boolean skip, relocate;
asection *sreloc;
*unresolved_reloc_p = FALSE;
sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd,
input_section, 1);
if (sreloc == NULL)
return bfd_reloc_notsupported;
skip = FALSE;
relocate = FALSE;
outrel.r_addend = signed_addend;
outrel.r_offset =
_bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset);
if (outrel.r_offset == (bfd_vma) - 1)
skip = TRUE;
else if (outrel.r_offset == (bfd_vma) - 2)
{
skip = TRUE;
relocate = TRUE;
}
outrel.r_offset += (input_section->output_section->vma
+ input_section->output_offset);
if (skip)
memset (&outrel, 0, sizeof outrel);
else if (h != NULL
&& h->dynindx != -1
&& (!info->shared || !info->symbolic || !h->def_regular))
outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
else
{
int symbol;
/* On SVR4-ish systems, the dynamic loader cannot
relocate the text and data segments independently,
so the symbol does not matter. */
symbol = 0;
outrel.r_info = ELF64_R_INFO (symbol, R_AARCH64_RELATIVE);
outrel.r_addend += value;
}
loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (htab);
bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
{
/* Sanity to check that we have previously allocated
sufficient space in the relocation section for the
number of relocations we actually want to emit. */
abort ();
}
/* If this reloc is against an external symbol, we do not want to
fiddle with the addend. Otherwise, we need to include the symbol
value so that it becomes an addend for the dynamic reloc. */
if (!relocate)
return bfd_reloc_ok;
return _bfd_final_link_relocate (howto, input_bfd, input_section,
contents, rel->r_offset, value,
signed_addend);
}
else
value += signed_addend;
break;
case R_AARCH64_JUMP26:
case R_AARCH64_CALL26:
{
asection *splt = globals->root.splt;
bfd_boolean via_plt_p =
splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
/* A call to an undefined weak symbol is converted to a jump to
the next instruction unless a PLT entry will be created.
The jump to the next instruction is optimized as a NOP.
Do the same for local undefined symbols. */
if (weak_undef_p && ! via_plt_p)
{
bfd_putl32 (INSN_NOP, hit_data);
return bfd_reloc_ok;
}
/* If the call goes through a PLT entry, make sure to
check distance to the right destination address. */
if (via_plt_p)
{
value = (splt->output_section->vma
+ splt->output_offset + h->plt.offset);
*unresolved_reloc_p = FALSE;
}
/* If the target symbol is global and marked as a function the
relocation applies a function call or a tail call. In this
situation we can veneer out of range branches. The veneers
use IP0 and IP1 hence cannot be used arbitrary out of range
branches that occur within the body of a function. */
if (h && h->type == STT_FUNC)
{
/* Check if a stub has to be inserted because the destination
is too far away. */
if (! aarch64_valid_branch_p (value, place))
{
/* The target is out of reach, so redirect the branch to
the local stub for this function. */
struct elf64_aarch64_stub_hash_entry *stub_entry;
stub_entry = elf64_aarch64_get_stub_entry (input_section,
sym_sec, h,
rel, globals);
if (stub_entry != NULL)
value = (stub_entry->stub_offset
+ stub_entry->stub_sec->output_offset
+ stub_entry->stub_sec->output_section->vma);
}
}
}
value = aarch64_resolve_relocation (r_type, place, value,
signed_addend, weak_undef_p);
break;
case R_AARCH64_ABS16:
case R_AARCH64_ABS32:
case R_AARCH64_ADD_ABS_LO12_NC:
case R_AARCH64_ADR_PREL_LO21:
case R_AARCH64_ADR_PREL_PG_HI21:
case R_AARCH64_ADR_PREL_PG_HI21_NC:
case R_AARCH64_CONDBR19:
case R_AARCH64_LD_PREL_LO19:
case R_AARCH64_LDST8_ABS_LO12_NC:
case R_AARCH64_LDST16_ABS_LO12_NC:
case R_AARCH64_LDST32_ABS_LO12_NC:
case R_AARCH64_LDST64_ABS_LO12_NC:
case R_AARCH64_LDST128_ABS_LO12_NC:
case R_AARCH64_MOVW_SABS_G0:
case R_AARCH64_MOVW_SABS_G1:
case R_AARCH64_MOVW_SABS_G2:
case R_AARCH64_MOVW_UABS_G0:
case R_AARCH64_MOVW_UABS_G0_NC:
case R_AARCH64_MOVW_UABS_G1:
case R_AARCH64_MOVW_UABS_G1_NC:
case R_AARCH64_MOVW_UABS_G2:
case R_AARCH64_MOVW_UABS_G2_NC:
case R_AARCH64_MOVW_UABS_G3:
case R_AARCH64_PREL16:
case R_AARCH64_PREL32:
case R_AARCH64_PREL64:
case R_AARCH64_TSTBR14:
value = aarch64_resolve_relocation (r_type, place, value,
signed_addend, weak_undef_p);
break;
case R_AARCH64_LD64_GOT_LO12_NC:
case R_AARCH64_ADR_GOT_PAGE:
case R_AARCH64_GOT_LD_PREL19:
if (globals->root.sgot == NULL)
BFD_ASSERT (h != NULL);
if (h != NULL)
{
value = aarch64_calculate_got_entry_vma (h, globals, info, value,
output_bfd,
unresolved_reloc_p);
value = aarch64_resolve_relocation (r_type, place, value,
0, weak_undef_p);
}
break;
case R_AARCH64_TLSGD_ADR_PAGE21:
case R_AARCH64_TLSGD_ADD_LO12_NC:
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
if (globals->root.sgot == NULL)
return bfd_reloc_notsupported;
value = (symbol_got_offset (input_bfd, h, r_symndx)
+ globals->root.sgot->output_section->vma
+ globals->root.sgot->output_section->output_offset);
value = aarch64_resolve_relocation (r_type, place, value,
0, weak_undef_p);
*unresolved_reloc_p = FALSE;
break;
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
case R_AARCH64_TLSLE_ADD_TPREL_LO12:
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G0:
case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G1:
case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G2:
value = aarch64_resolve_relocation (r_type, place, value,
signed_addend - tpoff_base (info), weak_undef_p);
*unresolved_reloc_p = FALSE;
break;
case R_AARCH64_TLSDESC_ADR_PAGE:
case R_AARCH64_TLSDESC_LD64_LO12_NC:
case R_AARCH64_TLSDESC_ADD_LO12_NC:
case R_AARCH64_TLSDESC_ADD:
case R_AARCH64_TLSDESC_LDR:
if (globals->root.sgot == NULL)
return bfd_reloc_notsupported;
value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
+ globals->root.sgotplt->output_section->vma
+ globals->root.sgotplt->output_section->output_offset
+ globals->sgotplt_jump_table_size);
value = aarch64_resolve_relocation (r_type, place, value,
0, weak_undef_p);
*unresolved_reloc_p = FALSE;
break;
default:
return bfd_reloc_notsupported;
}
if (saved_addend)
*saved_addend = value;
/* Only apply the final relocation in a sequence. */
if (save_addend)
return bfd_reloc_continue;
return bfd_elf_aarch64_put_addend (input_bfd, hit_data, howto, value);
}
/* Handle TLS relaxations. Relaxing is possible for symbols that use
R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
link.
Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
is to then call final_link_relocate. Return other values in the
case of error. */
static bfd_reloc_status_type
elf64_aarch64_tls_relax (struct elf64_aarch64_link_hash_table *globals,
bfd *input_bfd, bfd_byte *contents,
Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
{
bfd_boolean is_local = h == NULL;
unsigned int r_type = ELF64_R_TYPE (rel->r_info);
unsigned long insn;
BFD_ASSERT (globals && input_bfd && contents && rel);
switch (r_type)
{
case R_AARCH64_TLSGD_ADR_PAGE21:
case R_AARCH64_TLSDESC_ADR_PAGE:
if (is_local)
{
/* GD->LE relaxation:
adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
or
adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
*/
bfd_putl32 (0xd2a00000, contents + rel->r_offset);
return bfd_reloc_continue;
}
else
{
/* GD->IE relaxation:
adrp x0, :tlsgd:var => adrp x0, :gottprel:var
or
adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
*/
insn = bfd_getl32 (contents + rel->r_offset);
return bfd_reloc_continue;
}
case R_AARCH64_TLSDESC_LD64_LO12_NC:
if (is_local)
{
/* GD->LE relaxation:
ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
*/
bfd_putl32 (0xf2800000, contents + rel->r_offset);
return bfd_reloc_continue;
}
else
{
/* GD->IE relaxation:
ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
*/
insn = bfd_getl32 (contents + rel->r_offset);
insn &= 0xfffffff0;
bfd_putl32 (insn, contents + rel->r_offset);
return bfd_reloc_continue;
}
case R_AARCH64_TLSGD_ADD_LO12_NC:
if (is_local)
{
/* GD->LE relaxation
add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
bl __tls_get_addr => mrs x1, tpidr_el0
nop => add x0, x1, x0
*/
/* First kill the tls_get_addr reloc on the bl instruction. */
BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_AARCH64_NONE);
bfd_putl32 (0xf2800000, contents + rel->r_offset);
bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
return bfd_reloc_continue;
}
else
{
/* GD->IE relaxation
ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
BL __tls_get_addr => mrs x1, tpidr_el0
R_AARCH64_CALL26
NOP => add x0, x1, x0
*/
BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_AARCH64_CALL26);
/* Remove the relocation on the BL instruction. */
rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_AARCH64_NONE);
bfd_putl32 (0xf9400000, contents + rel->r_offset);
/* We choose to fixup the BL and NOP instructions using the
offset from the second relocation to allow flexibility in
scheduling instructions between the ADD and BL. */
bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
return bfd_reloc_continue;
}
case R_AARCH64_TLSDESC_ADD_LO12_NC:
case R_AARCH64_TLSDESC_CALL:
/* GD->IE/LE relaxation:
add x0, x0, #:tlsdesc_lo12:var => nop
blr xd => nop
*/
bfd_putl32 (INSN_NOP, contents + rel->r_offset);
return bfd_reloc_ok;
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
/* IE->LE relaxation:
adrp xd, :gottprel:var => movz xd, :tprel_g1:var
*/
if (is_local)
{
insn = bfd_getl32 (contents + rel->r_offset);
bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
}
return bfd_reloc_continue;
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
/* IE->LE relaxation:
ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
*/
if (is_local)
{
insn = bfd_getl32 (contents + rel->r_offset);
bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
}
return bfd_reloc_continue;
default:
return bfd_reloc_continue;
}
return bfd_reloc_ok;
}
/* Relocate an AArch64 ELF section. */
static bfd_boolean
elf64_aarch64_relocate_section (bfd *output_bfd,
struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
Elf_Internal_Rela *relocs,
Elf_Internal_Sym *local_syms,
asection **local_sections)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
Elf_Internal_Rela *rel;
Elf_Internal_Rela *relend;
const char *name;
struct elf64_aarch64_link_hash_table *globals;
bfd_boolean save_addend = FALSE;
bfd_vma addend = 0;
globals = elf64_aarch64_hash_table (info);
symtab_hdr = &elf_symtab_hdr (input_bfd);
sym_hashes = elf_sym_hashes (input_bfd);
rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++)
{
unsigned int r_type;
unsigned int relaxed_r_type;
reloc_howto_type *howto;
unsigned long r_symndx;
Elf_Internal_Sym *sym;
asection *sec;
struct elf_link_hash_entry *h;
bfd_vma relocation;
bfd_reloc_status_type r;
arelent bfd_reloc;
char sym_type;
bfd_boolean unresolved_reloc = FALSE;
char *error_message = NULL;
r_symndx = ELF64_R_SYM (rel->r_info);
r_type = ELF64_R_TYPE (rel->r_info);
bfd_reloc.howto = elf64_aarch64_howto_from_type (r_type);
howto = bfd_reloc.howto;
h = NULL;
sym = NULL;
sec = NULL;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sym_type = ELF64_ST_TYPE (sym->st_info);
sec = local_sections[r_symndx];
/* An object file might have a reference to a local
undefined symbol. This is a daft object file, but we
should at least do something about it. */
if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
&& bfd_is_und_section (sec)
&& ELF_ST_BIND (sym->st_info) != STB_WEAK)
{
if (!info->callbacks->undefined_symbol
(info, bfd_elf_string_from_elf_section
(input_bfd, symtab_hdr->sh_link, sym->st_name),
input_bfd, input_section, rel->r_offset, TRUE))
return FALSE;
}
if (r_type >= R_AARCH64_dyn_max)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
}
else
{
bfd_boolean warned;
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
r_symndx, symtab_hdr, sym_hashes,
h, sec, relocation,
unresolved_reloc, warned);
sym_type = h->type;
}
if (sec != NULL && discarded_section (sec))
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
rel, 1, relend, howto, 0, contents);
if (info->relocatable)
{
/* This is a relocatable link. We don't have to change
anything, unless the reloc is against a section symbol,
in which case we have to adjust according to where the
section symbol winds up in the output section. */
if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
rel->r_addend += sec->output_offset;
continue;
}
if (h != NULL)
name = h->root.root.string;
else
{
name = (bfd_elf_string_from_elf_section
(input_bfd, symtab_hdr->sh_link, sym->st_name));
if (name == NULL || *name == '\0')
name = bfd_section_name (input_bfd, sec);
}
if (r_symndx != 0
&& r_type != R_AARCH64_NONE
&& r_type != R_AARCH64_NULL
&& (h == NULL
|| h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& IS_AARCH64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
{
(*_bfd_error_handler)
((sym_type == STT_TLS
? _("%B(%A+0x%lx): %s used with TLS symbol %s")
: _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
input_bfd,
input_section, (long) rel->r_offset, howto->name, name);
}
/* We relax only if we can see that there can be a valid transition
from a reloc type to another.
We call elf64_aarch64_final_link_relocate unless we're completely
done, i.e., the relaxation produced the final output we want. */
relaxed_r_type = aarch64_tls_transition (input_bfd, info, r_type,
h, r_symndx);
if (relaxed_r_type != r_type)
{
r_type = relaxed_r_type;
howto = elf64_aarch64_howto_from_type (r_type);
r = elf64_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
unresolved_reloc = 0;
}
else
r = bfd_reloc_continue;
/* There may be multiple consecutive relocations for the
same offset. In that case we are supposed to treat the
output of each relocation as the addend for the next. */
if (rel + 1 < relend
&& rel->r_offset == rel[1].r_offset
&& ELF64_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
&& ELF64_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
save_addend = TRUE;
else
save_addend = FALSE;
if (r == bfd_reloc_continue)
r = elf64_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
input_section, contents, rel,
relocation, info, sec,
h, &unresolved_reloc,
save_addend, &addend);
switch (r_type)
{
case R_AARCH64_TLSGD_ADR_PAGE21:
case R_AARCH64_TLSGD_ADD_LO12_NC:
if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
{
bfd_boolean need_relocs = FALSE;
bfd_byte *loc;
int indx;
bfd_vma off;
off = symbol_got_offset (input_bfd, h, r_symndx);
indx = h && h->dynindx != -1 ? h->dynindx : 0;
need_relocs =
(info->shared || indx != 0) &&
(h == NULL
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|| h->root.type != bfd_link_hash_undefweak);
BFD_ASSERT (globals->root.srelgot != NULL);
if (need_relocs)
{
Elf_Internal_Rela rela;
rela.r_info = ELF64_R_INFO (indx, R_AARCH64_TLS_DTPMOD64);
rela.r_addend = 0;
rela.r_offset = globals->root.sgot->output_section->vma +
globals->root.sgot->output_offset + off;
loc = globals->root.srelgot->contents;
loc += globals->root.srelgot->reloc_count++
* RELOC_SIZE (htab);
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
if (indx == 0)
{
bfd_put_64 (output_bfd,
relocation - dtpoff_base (info),
globals->root.sgot->contents + off
+ GOT_ENTRY_SIZE);
}
else
{
/* This TLS symbol is global. We emit a
relocation to fixup the tls offset at load
time. */
rela.r_info =
ELF64_R_INFO (indx, R_AARCH64_TLS_DTPREL64);
rela.r_addend = 0;
rela.r_offset =
(globals->root.sgot->output_section->vma
+ globals->root.sgot->output_offset + off
+ GOT_ENTRY_SIZE);
loc = globals->root.srelgot->contents;
loc += globals->root.srelgot->reloc_count++
* RELOC_SIZE (globals);
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
bfd_put_64 (output_bfd, (bfd_vma) 0,
globals->root.sgot->contents + off
+ GOT_ENTRY_SIZE);
}
}
else
{
bfd_put_64 (output_bfd, (bfd_vma) 1,
globals->root.sgot->contents + off);
bfd_put_64 (output_bfd,
relocation - dtpoff_base (info),
globals->root.sgot->contents + off
+ GOT_ENTRY_SIZE);
}
symbol_got_offset_mark (input_bfd, h, r_symndx);
}
break;
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
{
bfd_boolean need_relocs = FALSE;
bfd_byte *loc;
int indx;
bfd_vma off;
off = symbol_got_offset (input_bfd, h, r_symndx);
indx = h && h->dynindx != -1 ? h->dynindx : 0;
need_relocs =
(info->shared || indx != 0) &&
(h == NULL
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|| h->root.type != bfd_link_hash_undefweak);
BFD_ASSERT (globals->root.srelgot != NULL);
if (need_relocs)
{
Elf_Internal_Rela rela;
if (indx == 0)
rela.r_addend = relocation - dtpoff_base (info);
else
rela.r_addend = 0;
rela.r_info = ELF64_R_INFO (indx, R_AARCH64_TLS_TPREL64);
rela.r_offset = globals->root.sgot->output_section->vma +
globals->root.sgot->output_offset + off;
loc = globals->root.srelgot->contents;
loc += globals->root.srelgot->reloc_count++
* RELOC_SIZE (htab);
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
bfd_put_64 (output_bfd, rela.r_addend,
globals->root.sgot->contents + off);
}
else
bfd_put_64 (output_bfd, relocation - tpoff_base (info),
globals->root.sgot->contents + off);
symbol_got_offset_mark (input_bfd, h, r_symndx);
}
break;
case R_AARCH64_TLSLE_ADD_TPREL_LO12:
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G2:
case R_AARCH64_TLSLE_MOVW_TPREL_G1:
case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G0:
case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
break;
case R_AARCH64_TLSDESC_ADR_PAGE:
case R_AARCH64_TLSDESC_LD64_LO12_NC:
case R_AARCH64_TLSDESC_ADD_LO12_NC:
if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
{
bfd_boolean need_relocs = FALSE;
int indx = h && h->dynindx != -1 ? h->dynindx : 0;
bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
need_relocs = (h == NULL
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|| h->root.type != bfd_link_hash_undefweak);
BFD_ASSERT (globals->root.srelgot != NULL);
BFD_ASSERT (globals->root.sgot != NULL);
if (need_relocs)
{
bfd_byte *loc;
Elf_Internal_Rela rela;
rela.r_info = ELF64_R_INFO (indx, R_AARCH64_TLSDESC);
rela.r_addend = 0;
rela.r_offset = (globals->root.sgotplt->output_section->vma
+ globals->root.sgotplt->output_offset
+ off + globals->sgotplt_jump_table_size);
if (indx == 0)
rela.r_addend = relocation - dtpoff_base (info);
/* Allocate the next available slot in the PLT reloc
section to hold our R_AARCH64_TLSDESC, the next
available slot is determined from reloc_count,
which we step. But note, reloc_count was
artifically moved down while allocating slots for
real PLT relocs such that all of the PLT relocs
will fit above the initial reloc_count and the
extra stuff will fit below. */
loc = globals->root.srelplt->contents;
loc += globals->root.srelplt->reloc_count++
* RELOC_SIZE (globals);
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
bfd_put_64 (output_bfd, (bfd_vma) 0,
globals->root.sgotplt->contents + off +
globals->sgotplt_jump_table_size);
bfd_put_64 (output_bfd, (bfd_vma) 0,
globals->root.sgotplt->contents + off +
globals->sgotplt_jump_table_size +
GOT_ENTRY_SIZE);
}
symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
}
break;
}
if (!save_addend)
addend = 0;
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
because such sections are not SEC_ALLOC and thus ld.so will
not process them. */
if (unresolved_reloc
&& !((input_section->flags & SEC_DEBUGGING) != 0
&& h->def_dynamic)
&& _bfd_elf_section_offset (output_bfd, info, input_section,
+rel->r_offset) != (bfd_vma) - 1)
{
(*_bfd_error_handler)
(_
("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
input_bfd, input_section, (long) rel->r_offset, howto->name,
h->root.root.string);
return FALSE;
}
if (r != bfd_reloc_ok && r != bfd_reloc_continue)
{
switch (r)
{
case bfd_reloc_overflow:
/* If the overflowing reloc was to an undefined symbol,
we have already printed one error message and there
is no point complaining again. */
if ((!h ||
h->root.type != bfd_link_hash_undefined)
&& (!((*info->callbacks->reloc_overflow)
(info, (h ? &h->root : NULL), name, howto->name,
(bfd_vma) 0, input_bfd, input_section,
rel->r_offset))))
return FALSE;
break;
case bfd_reloc_undefined:
if (!((*info->callbacks->undefined_symbol)
(info, name, input_bfd, input_section,
rel->r_offset, TRUE)))
return FALSE;
break;
case bfd_reloc_outofrange:
error_message = _("out of range");
goto common_error;
case bfd_reloc_notsupported:
error_message = _("unsupported relocation");
goto common_error;
case bfd_reloc_dangerous:
/* error_message should already be set. */
goto common_error;
default:
error_message = _("unknown error");
/* Fall through. */
common_error:
BFD_ASSERT (error_message != NULL);
if (!((*info->callbacks->reloc_dangerous)
(info, error_message, input_bfd, input_section,
rel->r_offset)))
return FALSE;
break;
}
}
}
return TRUE;
}
/* Set the right machine number. */
static bfd_boolean
elf64_aarch64_object_p (bfd *abfd)
{
bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
return TRUE;
}
/* Function to keep AArch64 specific flags in the ELF header. */
static bfd_boolean
elf64_aarch64_set_private_flags (bfd *abfd, flagword flags)
{
if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
{
}
else
{
elf_elfheader (abfd)->e_flags = flags;
elf_flags_init (abfd) = TRUE;
}
return TRUE;
}
/* Copy backend specific data from one object module to another. */
static bfd_boolean
elf64_aarch64_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
{
flagword in_flags;
if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
return TRUE;
in_flags = elf_elfheader (ibfd)->e_flags;
elf_elfheader (obfd)->e_flags = in_flags;
elf_flags_init (obfd) = TRUE;
/* Also copy the EI_OSABI field. */
elf_elfheader (obfd)->e_ident[EI_OSABI] =
elf_elfheader (ibfd)->e_ident[EI_OSABI];
/* Copy object attributes. */
_bfd_elf_copy_obj_attributes (ibfd, obfd);
return TRUE;
}
/* Merge backend specific data from an object file to the output
object file when linking. */
static bfd_boolean
elf64_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
{
flagword out_flags;
flagword in_flags;
bfd_boolean flags_compatible = TRUE;
asection *sec;
/* Check if we have the same endianess. */
if (!_bfd_generic_verify_endian_match (ibfd, obfd))
return FALSE;
if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
return TRUE;
/* The input BFD must have had its flags initialised. */
/* The following seems bogus to me -- The flags are initialized in
the assembler but I don't think an elf_flags_init field is
written into the object. */
/* BFD_ASSERT (elf_flags_init (ibfd)); */
in_flags = elf_elfheader (ibfd)->e_flags;
out_flags = elf_elfheader (obfd)->e_flags;
if (!elf_flags_init (obfd))
{
/* If the input is the default architecture and had the default
flags then do not bother setting the flags for the output
architecture, instead allow future merges to do this. If no
future merges ever set these flags then they will retain their
uninitialised values, which surprise surprise, correspond
to the default values. */
if (bfd_get_arch_info (ibfd)->the_default
&& elf_elfheader (ibfd)->e_flags == 0)
return TRUE;
elf_flags_init (obfd) = TRUE;
elf_elfheader (obfd)->e_flags = in_flags;
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
&& bfd_get_arch_info (obfd)->the_default)
return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
bfd_get_mach (ibfd));
return TRUE;
}
/* Identical flags must be compatible. */
if (in_flags == out_flags)
return TRUE;
/* Check to see if the input BFD actually contains any sections. If
not, its flags may not have been initialised either, but it
cannot actually cause any incompatiblity. Do not short-circuit
dynamic objects; their section list may be emptied by
elf_link_add_object_symbols.
Also check to see if there are no code sections in the input.
In this case there is no need to check for code specific flags.
XXX - do we need to worry about floating-point format compatability
in data sections ? */
if (!(ibfd->flags & DYNAMIC))
{
bfd_boolean null_input_bfd = TRUE;
bfd_boolean only_data_sections = TRUE;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
if ((bfd_get_section_flags (ibfd, sec)
& (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
== (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
only_data_sections = FALSE;
null_input_bfd = FALSE;
break;
}
if (null_input_bfd || only_data_sections)
return TRUE;
}
return flags_compatible;
}
/* Display the flags field. */
static bfd_boolean
elf64_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
{
FILE *file = (FILE *) ptr;
unsigned long flags;
BFD_ASSERT (abfd != NULL && ptr != NULL);
/* Print normal ELF private data. */
_bfd_elf_print_private_bfd_data (abfd, ptr);
flags = elf_elfheader (abfd)->e_flags;
/* Ignore init flag - it may not be set, despite the flags field
containing valid data. */
/* xgettext:c-format */
fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
if (flags)
fprintf (file, _(""));
fputc ('\n', file);
return TRUE;
}
/* Update the got entry reference counts for the section being removed. */
static bfd_boolean
elf64_aarch64_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info ATTRIBUTE_UNUSED,
asection *sec ATTRIBUTE_UNUSED,
const Elf_Internal_Rela *
relocs ATTRIBUTE_UNUSED)
{
struct elf64_aarch64_link_hash_table *htab;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
bfd_signed_vma *local_got_refcounts;
const Elf_Internal_Rela *rel, *relend;
if (info->relocatable)
return TRUE;
htab = elf64_aarch64_hash_table (info);
if (htab == NULL)
return FALSE;
elf_section_data (sec)->local_dynrel = NULL;
symtab_hdr = &elf_symtab_hdr (abfd);
sym_hashes = elf_sym_hashes (abfd);
local_got_refcounts = elf_local_got_refcounts (abfd);
relend = relocs + sec->reloc_count;
for (rel = relocs; rel < relend; rel++)
{
unsigned long r_symndx;
unsigned int r_type;
struct elf_link_hash_entry *h = NULL;
r_symndx = ELF64_R_SYM (rel->r_info);
if (r_symndx >= symtab_hdr->sh_info)
{
struct elf64_aarch64_link_hash_entry *eh;
struct elf_dyn_relocs **pp;
struct elf_dyn_relocs *p;
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
eh = (struct elf64_aarch64_link_hash_entry *) h;
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
{
if (p->sec == sec)
{
/* Everything must go for SEC. */
*pp = p->next;
break;
}
}
}
else
{
Elf_Internal_Sym *isym;
/* A local symbol. */
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
abfd, r_symndx);
if (isym == NULL)
return FALSE;
}
r_type = ELF64_R_TYPE (rel->r_info);
r_type = aarch64_tls_transition (abfd,info, r_type, h ,r_symndx);
switch (r_type)
{
case R_AARCH64_LD64_GOT_LO12_NC:
case R_AARCH64_GOT_LD_PREL19:
case R_AARCH64_ADR_GOT_PAGE:
case R_AARCH64_TLSGD_ADR_PAGE21:
case R_AARCH64_TLSGD_ADD_LO12_NC:
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
case R_AARCH64_TLSLE_ADD_TPREL_LO12:
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G2:
case R_AARCH64_TLSLE_MOVW_TPREL_G1:
case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G0:
case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
case R_AARCH64_TLSDESC_ADR_PAGE:
case R_AARCH64_TLSDESC_ADD_LO12_NC:
case R_AARCH64_TLSDESC_LD64_LO12_NC:
if (h != NULL)
{
if (h->got.refcount > 0)
h->got.refcount -= 1;
}
else if (local_got_refcounts != NULL)
{
if (local_got_refcounts[r_symndx] > 0)
local_got_refcounts[r_symndx] -= 1;
}
break;
case R_AARCH64_ADR_PREL_PG_HI21_NC:
case R_AARCH64_ADR_PREL_PG_HI21:
case R_AARCH64_ADR_PREL_LO21:
if (h != NULL && info->executable)
{
if (h->plt.refcount > 0)
h->plt.refcount -= 1;
}
break;
case R_AARCH64_CALL26:
case R_AARCH64_JUMP26:
/* If this is a local symbol then we resolve it
directly without creating a PLT entry. */
if (h == NULL)
continue;
if (h->plt.refcount > 0)
h->plt.refcount -= 1;
break;
case R_AARCH64_ABS64:
if (h != NULL && info->executable)
{
if (h->plt.refcount > 0)
h->plt.refcount -= 1;
}
break;
default:
break;
}
}
return TRUE;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
static bfd_boolean
elf64_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *h)
{
struct elf64_aarch64_link_hash_table *htab;
asection *s;
/* If this is a function, put it in the procedure linkage table. We
will fill in the contents of the procedure linkage table later,
when we know the address of the .got section. */
if (h->type == STT_FUNC || h->needs_plt)
{
if (h->plt.refcount <= 0
|| SYMBOL_CALLS_LOCAL (info, h)
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
&& h->root.type == bfd_link_hash_undefweak))
{
/* This case can occur if we saw a CALL26 reloc in
an input file, but the symbol wasn't referred to
by a dynamic object or all references were
garbage collected. In which case we can end up
resolving. */
h->plt.offset = (bfd_vma) - 1;
h->needs_plt = 0;
}
return TRUE;
}
else
/* It's possible that we incorrectly decided a .plt reloc was
needed for an R_X86_64_PC32 reloc to a non-function sym in
check_relocs. We can't decide accurately between function and
non-function syms in check-relocs; Objects loaded later in
the link may change h->type. So fix it now. */
h->plt.offset = (bfd_vma) - 1;
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->u.weakdef != NULL)
{
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
h->root.u.def.section = h->u.weakdef->root.u.def.section;
h->root.u.def.value = h->u.weakdef->root.u.def.value;
if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
h->non_got_ref = h->u.weakdef->non_got_ref;
return TRUE;
}
/* If we are creating a shared library, we must presume that the
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (info->shared)
return TRUE;
/* If there are no references to this symbol that do not use the
GOT, we don't need to generate a copy reloc. */
if (!h->non_got_ref)
return TRUE;
/* If -z nocopyreloc was given, we won't generate them either. */
if (info->nocopyreloc)
{
h->non_got_ref = 0;
return TRUE;
}
/* We must allocate the symbol in our .dynbss section, which will
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable. */
htab = elf64_aarch64_hash_table (info);
/* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
to copy the initial value out of the dynamic object and into the
runtime process image. */
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
{
htab->srelbss->size += RELOC_SIZE (htab);
h->needs_copy = 1;
}
s = htab->sdynbss;
return _bfd_elf_adjust_dynamic_copy (h, s);
}
static bfd_boolean
elf64_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
{
struct elf_aarch64_local_symbol *locals;
locals = elf64_aarch64_locals (abfd);
if (locals == NULL)
{
locals = (struct elf_aarch64_local_symbol *)
bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
if (locals == NULL)
return FALSE;
elf64_aarch64_locals (abfd) = locals;
}
return TRUE;
}
/* Look through the relocs for a section during the first phase. */
static bfd_boolean
elf64_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
asection *sec, const Elf_Internal_Rela *relocs)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
asection *sreloc;
struct elf64_aarch64_link_hash_table *htab;
unsigned long nsyms;
if (info->relocatable)
return TRUE;
BFD_ASSERT (is_aarch64_elf (abfd));
htab = elf64_aarch64_hash_table (info);
sreloc = NULL;
symtab_hdr = &elf_symtab_hdr (abfd);
sym_hashes = elf_sym_hashes (abfd);
nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
struct elf_link_hash_entry *h;
unsigned long r_symndx;
unsigned int r_type;
r_symndx = ELF64_R_SYM (rel->r_info);
r_type = ELF64_R_TYPE (rel->r_info);
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
{
(*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
r_symndx);
return FALSE;
}
if (r_symndx >= nsyms
/* PR 9934: It is possible to have relocations that do not
refer to symbols, thus it is also possible to have an
object file containing relocations but no symbol table. */
&& (r_symndx > 0 || nsyms > 0))
{
(*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
r_symndx);
return FALSE;
}
if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
h = NULL;
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
}
/* Could be done earlier, if h were already available. */
r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
switch (r_type)
{
case R_AARCH64_ABS64:
/* We don't need to handle relocs into sections not going into
the "real" output. */
if ((sec->flags & SEC_ALLOC) == 0)
break;
if (h != NULL)
{
if (!info->shared)
h->non_got_ref = 1;
h->plt.refcount += 1;
h->pointer_equality_needed = 1;
}
/* No need to do anything if we're not creating a shared
object. */
if (! info->shared)
break;
{
struct elf_dyn_relocs *p;
struct elf_dyn_relocs **head;
/* We must copy these reloc types into the output file.
Create a reloc section in dynobj and make room for
this reloc. */
if (sreloc == NULL)
{
if (htab->root.dynobj == NULL)
htab->root.dynobj = abfd;
sreloc = _bfd_elf_make_dynamic_reloc_section
(sec, htab->root.dynobj, 3, abfd, /*rela? */ TRUE);
if (sreloc == NULL)
return FALSE;
}
/* If this is a global symbol, we count the number of
relocations we need for this symbol. */
if (h != NULL)
{
struct elf64_aarch64_link_hash_entry *eh;
eh = (struct elf64_aarch64_link_hash_entry *) h;
head = &eh->dyn_relocs;
}
else
{
/* Track dynamic relocs needed for local syms too.
We really need local syms available to do this
easily. Oh well. */
asection *s;
void **vpp;
Elf_Internal_Sym *isym;
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
abfd, r_symndx);
if (isym == NULL)
return FALSE;
s = bfd_section_from_elf_index (abfd, isym->st_shndx);
if (s == NULL)
s = sec;
/* Beware of type punned pointers vs strict aliasing
rules. */
vpp = &(elf_section_data (s)->local_dynrel);
head = (struct elf_dyn_relocs **) vpp;
}
p = *head;
if (p == NULL || p->sec != sec)
{
bfd_size_type amt = sizeof *p;
p = ((struct elf_dyn_relocs *)
bfd_zalloc (htab->root.dynobj, amt));
if (p == NULL)
return FALSE;
p->next = *head;
*head = p;
p->sec = sec;
}
p->count += 1;
}
break;
/* RR: We probably want to keep a consistency check that
there are no dangling GOT_PAGE relocs. */
case R_AARCH64_LD64_GOT_LO12_NC:
case R_AARCH64_GOT_LD_PREL19:
case R_AARCH64_ADR_GOT_PAGE:
case R_AARCH64_TLSGD_ADR_PAGE21:
case R_AARCH64_TLSGD_ADD_LO12_NC:
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
case R_AARCH64_TLSLE_ADD_TPREL_LO12:
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G2:
case R_AARCH64_TLSLE_MOVW_TPREL_G1:
case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G0:
case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
case R_AARCH64_TLSDESC_ADR_PAGE:
case R_AARCH64_TLSDESC_ADD_LO12_NC:
case R_AARCH64_TLSDESC_LD64_LO12_NC:
{
unsigned got_type;
unsigned old_got_type;
got_type = aarch64_reloc_got_type (r_type);
if (h)
{
h->got.refcount += 1;
old_got_type = elf64_aarch64_hash_entry (h)->got_type;
}
else
{
struct elf_aarch64_local_symbol *locals;
if (!elf64_aarch64_allocate_local_symbols
(abfd, symtab_hdr->sh_info))
return FALSE;
locals = elf64_aarch64_locals (abfd);
BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
locals[r_symndx].got_refcount += 1;
old_got_type = locals[r_symndx].got_type;
}
/* If a variable is accessed with both general dynamic TLS
methods, two slots may be created. */
if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
got_type |= old_got_type;
/* We will already have issued an error message if there
is a TLS/non-TLS mismatch, based on the symbol type.
So just combine any TLS types needed. */
if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
&& got_type != GOT_NORMAL)
got_type |= old_got_type;
/* If the symbol is accessed by both IE and GD methods, we
are able to relax. Turn off the GD flag, without
messing up with any other kind of TLS types that may be
involved. */
if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
if (old_got_type != got_type)
{
if (h != NULL)
elf64_aarch64_hash_entry (h)->got_type = got_type;
else
{
struct elf_aarch64_local_symbol *locals;
locals = elf64_aarch64_locals (abfd);
BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
locals[r_symndx].got_type = got_type;
}
}
if (htab->root.sgot == NULL)
{
if (htab->root.dynobj == NULL)
htab->root.dynobj = abfd;
if (!_bfd_elf_create_got_section (htab->root.dynobj, info))
return FALSE;
}
break;
}
case R_AARCH64_ADR_PREL_PG_HI21_NC:
case R_AARCH64_ADR_PREL_PG_HI21:
case R_AARCH64_ADR_PREL_LO21:
if (h != NULL && info->executable)
{
/* If this reloc is in a read-only section, we might
need a copy reloc. We can't check reliably at this
stage whether the section is read-only, as input
sections have not yet been mapped to output sections.
Tentatively set the flag for now, and correct in
adjust_dynamic_symbol. */
h->non_got_ref = 1;
h->plt.refcount += 1;
h->pointer_equality_needed = 1;
}
/* FIXME:: RR need to handle these in shared libraries
and essentially bomb out as these being non-PIC
relocations in shared libraries. */
break;
case R_AARCH64_CALL26:
case R_AARCH64_JUMP26:
/* If this is a local symbol then we resolve it
directly without creating a PLT entry. */
if (h == NULL)
continue;
h->needs_plt = 1;
h->plt.refcount += 1;
break;
}
}
return TRUE;
}
/* Treat mapping symbols as special target symbols. */
static bfd_boolean
elf64_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
asymbol *sym)
{
return bfd_is_aarch64_special_symbol_name (sym->name,
BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
}
/* This is a copy of elf_find_function () from elf.c except that
AArch64 mapping symbols are ignored when looking for function names. */
static bfd_boolean
aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
asection *section,
asymbol **symbols,
bfd_vma offset,
const char **filename_ptr,
const char **functionname_ptr)
{
const char *filename = NULL;
asymbol *func = NULL;
bfd_vma low_func = 0;
asymbol **p;
for (p = symbols; *p != NULL; p++)
{
elf_symbol_type *q;
q = (elf_symbol_type *) * p;
switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
{
default:
break;
case STT_FILE:
filename = bfd_asymbol_name (&q->symbol);
break;
case STT_FUNC:
case STT_NOTYPE:
/* Skip mapping symbols. */
if ((q->symbol.flags & BSF_LOCAL)
&& (bfd_is_aarch64_special_symbol_name
(q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
continue;
/* Fall through. */
if (bfd_get_section (&q->symbol) == section
&& q->symbol.value >= low_func && q->symbol.value <= offset)
{
func = (asymbol *) q;
low_func = q->symbol.value;
}
break;
}
}
if (func == NULL)
return FALSE;
if (filename_ptr)
*filename_ptr = filename;
if (functionname_ptr)
*functionname_ptr = bfd_asymbol_name (func);
return TRUE;
}
/* Find the nearest line to a particular section and offset, for error
reporting. This code is a duplicate of the code in elf.c, except
that it uses aarch64_elf_find_function. */
static bfd_boolean
elf64_aarch64_find_nearest_line (bfd *abfd,
asection *section,
asymbol **symbols,
bfd_vma offset,
const char **filename_ptr,
const char **functionname_ptr,
unsigned int *line_ptr)
{
bfd_boolean found = FALSE;
/* We skip _bfd_dwarf1_find_nearest_line since no known AArch64
toolchain uses it. */
if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
section, symbols, offset,
filename_ptr, functionname_ptr,
line_ptr, NULL, 0,
&elf_tdata (abfd)->dwarf2_find_line_info))
{
if (!*functionname_ptr)
aarch64_elf_find_function (abfd, section, symbols, offset,
*filename_ptr ? NULL : filename_ptr,
functionname_ptr);
return TRUE;
}
if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
&found, filename_ptr,
functionname_ptr, line_ptr,
&elf_tdata (abfd)->line_info))
return FALSE;
if (found && (*functionname_ptr || *line_ptr))
return TRUE;
if (symbols == NULL)
return FALSE;
if (!aarch64_elf_find_function (abfd, section, symbols, offset,
filename_ptr, functionname_ptr))
return FALSE;
*line_ptr = 0;
return TRUE;
}
static bfd_boolean
elf64_aarch64_find_inliner_info (bfd *abfd,
const char **filename_ptr,
const char **functionname_ptr,
unsigned int *line_ptr)
{
bfd_boolean found;
found = _bfd_dwarf2_find_inliner_info
(abfd, filename_ptr,
functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
return found;
}
static void
elf64_aarch64_post_process_headers (bfd *abfd,
struct bfd_link_info *link_info
ATTRIBUTE_UNUSED)
{
Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
i_ehdrp = elf_elfheader (abfd);
i_ehdrp->e_ident[EI_OSABI] = 0;
i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
}
static enum elf_reloc_type_class
elf64_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
const asection *rel_sec ATTRIBUTE_UNUSED,
const Elf_Internal_Rela *rela)
{
switch ((int) ELF64_R_TYPE (rela->r_info))
{
case R_AARCH64_RELATIVE:
return reloc_class_relative;
case R_AARCH64_JUMP_SLOT:
return reloc_class_plt;
case R_AARCH64_COPY:
return reloc_class_copy;
default:
return reloc_class_normal;
}
}
/* Set the right machine number for an AArch64 ELF file. */
static bfd_boolean
elf64_aarch64_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
{
if (hdr->sh_type == SHT_NOTE)
*flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
return TRUE;
}
/* Handle an AArch64 specific section when reading an object file. This is
called when bfd_section_from_shdr finds a section with an unknown
type. */
static bfd_boolean
elf64_aarch64_section_from_shdr (bfd *abfd,
Elf_Internal_Shdr *hdr,
const char *name, int shindex)
{
/* There ought to be a place to keep ELF backend specific flags, but
at the moment there isn't one. We just keep track of the
sections by their name, instead. Fortunately, the ABI gives
names for all the AArch64 specific sections, so we will probably get
away with this. */
switch (hdr->sh_type)
{
case SHT_AARCH64_ATTRIBUTES:
break;
default:
return FALSE;
}
if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
return FALSE;
return TRUE;
}
/* A structure used to record a list of sections, independently
of the next and prev fields in the asection structure. */
typedef struct section_list
{
asection *sec;
struct section_list *next;
struct section_list *prev;
}
section_list;
/* Unfortunately we need to keep a list of sections for which
an _aarch64_elf_section_data structure has been allocated. This
is because it is possible for functions like elf64_aarch64_write_section
to be called on a section which has had an elf_data_structure
allocated for it (and so the used_by_bfd field is valid) but
for which the AArch64 extended version of this structure - the
_aarch64_elf_section_data structure - has not been allocated. */
static section_list *sections_with_aarch64_elf_section_data = NULL;
static void
record_section_with_aarch64_elf_section_data (asection *sec)
{
struct section_list *entry;
entry = bfd_malloc (sizeof (*entry));
if (entry == NULL)
return;
entry->sec = sec;
entry->next = sections_with_aarch64_elf_section_data;
entry->prev = NULL;
if (entry->next != NULL)
entry->next->prev = entry;
sections_with_aarch64_elf_section_data = entry;
}
static struct section_list *
find_aarch64_elf_section_entry (asection *sec)
{
struct section_list *entry;
static struct section_list *last_entry = NULL;
/* This is a short cut for the typical case where the sections are added
to the sections_with_aarch64_elf_section_data list in forward order and
then looked up here in backwards order. This makes a real difference
to the ld-srec/sec64k.exp linker test. */
entry = sections_with_aarch64_elf_section_data;
if (last_entry != NULL)
{
if (last_entry->sec == sec)
entry = last_entry;
else if (last_entry->next != NULL && last_entry->next->sec == sec)
entry = last_entry->next;
}
for (; entry; entry = entry->next)
if (entry->sec == sec)
break;
if (entry)
/* Record the entry prior to this one - it is the entry we are
most likely to want to locate next time. Also this way if we
have been called from
unrecord_section_with_aarch64_elf_section_data () we will not
be caching a pointer that is about to be freed. */
last_entry = entry->prev;
return entry;
}
static void
unrecord_section_with_aarch64_elf_section_data (asection *sec)
{
struct section_list *entry;
entry = find_aarch64_elf_section_entry (sec);
if (entry)
{
if (entry->prev != NULL)
entry->prev->next = entry->next;
if (entry->next != NULL)
entry->next->prev = entry->prev;
if (entry == sections_with_aarch64_elf_section_data)
sections_with_aarch64_elf_section_data = entry->next;
free (entry);
}
}
typedef struct
{
void *finfo;
struct bfd_link_info *info;
asection *sec;
int sec_shndx;
int (*func) (void *, const char *, Elf_Internal_Sym *,
asection *, struct elf_link_hash_entry *);
} output_arch_syminfo;
enum map_symbol_type
{
AARCH64_MAP_INSN,
AARCH64_MAP_DATA
};
/* Output a single mapping symbol. */
static bfd_boolean
elf64_aarch64_output_map_sym (output_arch_syminfo *osi,
enum map_symbol_type type, bfd_vma offset)
{
static const char *names[2] = { "$x", "$d" };
Elf_Internal_Sym sym;
sym.st_value = (osi->sec->output_section->vma
+ osi->sec->output_offset + offset);
sym.st_size = 0;
sym.st_other = 0;
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
sym.st_shndx = osi->sec_shndx;
return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
}
/* Output mapping symbols for PLT entries associated with H. */
static bfd_boolean
elf64_aarch64_output_plt_map (struct elf_link_hash_entry *h, void *inf)
{
output_arch_syminfo *osi = (output_arch_syminfo *) inf;
bfd_vma addr;
if (h->root.type == bfd_link_hash_indirect)
return TRUE;
if (h->root.type == bfd_link_hash_warning)
/* When warning symbols are created, they **replace** the "real"
entry in the hash table, thus we never get to see the real
symbol in a hash traversal. So look at it now. */
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h->plt.offset == (bfd_vma) - 1)
return TRUE;
addr = h->plt.offset;
if (addr == 32)
{
if (!elf64_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
return FALSE;
}
return TRUE;
}
/* Output a single local symbol for a generated stub. */
static bfd_boolean
elf64_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
bfd_vma offset, bfd_vma size)
{
Elf_Internal_Sym sym;
sym.st_value = (osi->sec->output_section->vma
+ osi->sec->output_offset + offset);
sym.st_size = size;
sym.st_other = 0;
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
sym.st_shndx = osi->sec_shndx;
return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
}
static bfd_boolean
aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
{
struct elf64_aarch64_stub_hash_entry *stub_entry;
asection *stub_sec;
bfd_vma addr;
char *stub_name;
output_arch_syminfo *osi;
/* Massage our args to the form they really have. */
stub_entry = (struct elf64_aarch64_stub_hash_entry *) gen_entry;
osi = (output_arch_syminfo *) in_arg;
stub_sec = stub_entry->stub_sec;
/* Ensure this stub is attached to the current section being
processed. */
if (stub_sec != osi->sec)
return TRUE;
addr = (bfd_vma) stub_entry->stub_offset;
stub_name = stub_entry->output_name;
switch (stub_entry->stub_type)
{
case aarch64_stub_adrp_branch:
if (!elf64_aarch64_output_stub_sym (osi, stub_name, addr,
sizeof (aarch64_adrp_branch_stub)))
return FALSE;
if (!elf64_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
return FALSE;
break;
case aarch64_stub_long_branch:
if (!elf64_aarch64_output_stub_sym
(osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
return FALSE;
if (!elf64_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
return FALSE;
if (!elf64_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
return FALSE;
break;
default:
BFD_FAIL ();
}
return TRUE;
}
/* Output mapping symbols for linker generated sections. */
static bfd_boolean
elf64_aarch64_output_arch_local_syms (bfd *output_bfd,
struct bfd_link_info *info,
void *finfo,
int (*func) (void *, const char *,
Elf_Internal_Sym *,
asection *,
struct elf_link_hash_entry
*))
{
output_arch_syminfo osi;
struct elf64_aarch64_link_hash_table *htab;
htab = elf64_aarch64_hash_table (info);
osi.finfo = finfo;
osi.info = info;
osi.func = func;
/* Long calls stubs. */
if (htab->stub_bfd && htab->stub_bfd->sections)
{
asection *stub_sec;
for (stub_sec = htab->stub_bfd->sections;
stub_sec != NULL; stub_sec = stub_sec->next)
{
/* Ignore non-stub sections. */
if (!strstr (stub_sec->name, STUB_SUFFIX))
continue;
osi.sec = stub_sec;
osi.sec_shndx = _bfd_elf_section_from_bfd_section
(output_bfd, osi.sec->output_section);
bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
&osi);
}
}
/* Finally, output mapping symbols for the PLT. */
if (!htab->root.splt || htab->root.splt->size == 0)
return TRUE;
/* For now live without mapping symbols for the plt. */
osi.sec_shndx = _bfd_elf_section_from_bfd_section
(output_bfd, htab->root.splt->output_section);
osi.sec = htab->root.splt;
elf_link_hash_traverse (&htab->root, elf64_aarch64_output_plt_map,
(void *) &osi);
return TRUE;
}
/* Allocate target specific section data. */
static bfd_boolean
elf64_aarch64_new_section_hook (bfd *abfd, asection *sec)
{
if (!sec->used_by_bfd)
{
_aarch64_elf_section_data *sdata;
bfd_size_type amt = sizeof (*sdata);
sdata = bfd_zalloc (abfd, amt);
if (sdata == NULL)
return FALSE;
sec->used_by_bfd = sdata;
}
record_section_with_aarch64_elf_section_data (sec);
return _bfd_elf_new_section_hook (abfd, sec);
}
static void
unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
asection *sec,
void *ignore ATTRIBUTE_UNUSED)
{
unrecord_section_with_aarch64_elf_section_data (sec);
}
static bfd_boolean
elf64_aarch64_close_and_cleanup (bfd *abfd)
{
if (abfd->sections)
bfd_map_over_sections (abfd,
unrecord_section_via_map_over_sections, NULL);
return _bfd_elf_close_and_cleanup (abfd);
}
static bfd_boolean
elf64_aarch64_bfd_free_cached_info (bfd *abfd)
{
if (abfd->sections)
bfd_map_over_sections (abfd,
unrecord_section_via_map_over_sections, NULL);
return _bfd_free_cached_info (abfd);
}
static bfd_boolean
elf64_aarch64_is_function_type (unsigned int type)
{
return type == STT_FUNC;
}
/* Create dynamic sections. This is different from the ARM backend in that
the got, plt, gotplt and their relocation sections are all created in the
standard part of the bfd elf backend. */
static bfd_boolean
elf64_aarch64_create_dynamic_sections (bfd *dynobj,
struct bfd_link_info *info)
{
struct elf64_aarch64_link_hash_table *htab;
struct elf_link_hash_entry *h;
if (!_bfd_elf_create_dynamic_sections (dynobj, info))
return FALSE;
htab = elf64_aarch64_hash_table (info);
htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
if (!info->shared)
htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
if (!htab->sdynbss || (!info->shared && !htab->srelbss))
abort ();
/* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the
dynobj's .got section. We don't do this in the linker script
because we don't want to define the symbol if we are not creating
a global offset table. */
h = _bfd_elf_define_linkage_sym (dynobj, info,
htab->root.sgot, "_GLOBAL_OFFSET_TABLE_");
elf_hash_table (info)->hgot = h;
if (h == NULL)
return FALSE;
return TRUE;
}
/* Allocate space in .plt, .got and associated reloc sections for
dynamic relocs. */
static bfd_boolean
elf64_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
{
struct bfd_link_info *info;
struct elf64_aarch64_link_hash_table *htab;
struct elf64_aarch64_link_hash_entry *eh;
struct elf_dyn_relocs *p;
/* An example of a bfd_link_hash_indirect symbol is versioned
symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
-> __gxx_personality_v0(bfd_link_hash_defined)
There is no need to process bfd_link_hash_indirect symbols here
because we will also be presented with the concrete instance of
the symbol and elf64_aarch64_copy_indirect_symbol () will have been
called to copy all relevant data from the generic to the concrete
symbol instance.
*/
if (h->root.type == bfd_link_hash_indirect)
return TRUE;
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
info = (struct bfd_link_info *) inf;
htab = elf64_aarch64_hash_table (info);
if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
{
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (h->dynindx == -1 && !h->forced_local)
{
if (!bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
}
if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
{
asection *s = htab->root.splt;
/* If this is the first .plt entry, make room for the special
first entry. */
if (s->size == 0)
s->size += htab->plt_header_size;
h->plt.offset = s->size;
/* If this symbol is not defined in a regular file, and we are
not generating a shared library, then set the symbol to this
location in the .plt. This is required to make function
pointers compare as equal between the normal executable and
the shared library. */
if (!info->shared && !h->def_regular)
{
h->root.u.def.section = s;
h->root.u.def.value = h->plt.offset;
}
/* Make room for this entry. For now we only create the
small model PLT entries. We later need to find a way
of relaxing into these from the large model PLT entries. */
s->size += PLT_SMALL_ENTRY_SIZE;
/* We also need to make an entry in the .got.plt section, which
will be placed in the .got section by the linker script. */
htab->root.sgotplt->size += GOT_ENTRY_SIZE;
/* We also need to make an entry in the .rela.plt section. */
htab->root.srelplt->size += RELOC_SIZE (htab);
/* We need to ensure that all GOT entries that serve the PLT
are consecutive with the special GOT slots [0] [1] and
[2]. Any addtional relocations, such as
R_AARCH64_TLSDESC, must be placed after the PLT related
entries. We abuse the reloc_count such that during
sizing we adjust reloc_count to indicate the number of
PLT related reserved entries. In subsequent phases when
filling in the contents of the reloc entries, PLT related
entries are placed by computing their PLT index (0
.. reloc_count). While other none PLT relocs are placed
at the slot indicated by reloc_count and reloc_count is
updated. */
htab->root.srelplt->reloc_count++;
}
else
{
h->plt.offset = (bfd_vma) - 1;
h->needs_plt = 0;
}
}
else
{
h->plt.offset = (bfd_vma) - 1;
h->needs_plt = 0;
}
eh = (struct elf64_aarch64_link_hash_entry *) h;
eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
if (h->got.refcount > 0)
{
bfd_boolean dyn;
unsigned got_type = elf64_aarch64_hash_entry (h)->got_type;
h->got.offset = (bfd_vma) - 1;
dyn = htab->root.dynamic_sections_created;
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (dyn && h->dynindx == -1 && !h->forced_local)
{
if (!bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
}
if (got_type == GOT_UNKNOWN)
{
}
else if (got_type == GOT_NORMAL)
{
h->got.offset = htab->root.sgot->size;
htab->root.sgot->size += GOT_ENTRY_SIZE;
if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|| h->root.type != bfd_link_hash_undefweak)
&& (info->shared
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
{
htab->root.srelgot->size += RELOC_SIZE (htab);
}
}
else
{
int indx;
if (got_type & GOT_TLSDESC_GD)
{
eh->tlsdesc_got_jump_table_offset =
(htab->root.sgotplt->size
- aarch64_compute_jump_table_size (htab));
htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
h->got.offset = (bfd_vma) - 2;
}
if (got_type & GOT_TLS_GD)
{
h->got.offset = htab->root.sgot->size;
htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
}
if (got_type & GOT_TLS_IE)
{
h->got.offset = htab->root.sgot->size;
htab->root.sgot->size += GOT_ENTRY_SIZE;
}
indx = h && h->dynindx != -1 ? h->dynindx : 0;
if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|| h->root.type != bfd_link_hash_undefweak)
&& (info->shared
|| indx != 0
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
{
if (got_type & GOT_TLSDESC_GD)
{
htab->root.srelplt->size += RELOC_SIZE (htab);
/* Note reloc_count not incremented here! We have
already adjusted reloc_count for this relocation
type. */
/* TLSDESC PLT is now needed, but not yet determined. */
htab->tlsdesc_plt = (bfd_vma) - 1;
}
if (got_type & GOT_TLS_GD)
htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
if (got_type & GOT_TLS_IE)
htab->root.srelgot->size += RELOC_SIZE (htab);
}
}
}
else
{
h->got.offset = (bfd_vma) - 1;
}
if (eh->dyn_relocs == NULL)
return TRUE;
/* In the shared -Bsymbolic case, discard space allocated for
dynamic pc-relative relocs against symbols which turn out to be
defined in regular objects. For the normal shared case, discard
space for pc-relative relocs that have become local due to symbol
visibility changes. */
if (info->shared)
{
/* Relocs that use pc_count are those that appear on a call
insn, or certain REL relocs that can generated via assembly.
We want calls to protected symbols to resolve directly to the
function rather than going via the plt. If people want
function pointer comparisons to work as expected then they
should avoid writing weird assembly. */
if (SYMBOL_CALLS_LOCAL (info, h))
{
struct elf_dyn_relocs **pp;
for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
{
p->count -= p->pc_count;
p->pc_count = 0;
if (p->count == 0)
*pp = p->next;
else
pp = &p->next;
}
}
/* Also discard relocs on undefined weak syms with non-default
visibility. */
if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
{
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
eh->dyn_relocs = NULL;
/* Make sure undefined weak symbols are output as a dynamic
symbol in PIEs. */
else if (h->dynindx == -1
&& !h->forced_local
&& !bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
}
}
else if (ELIMINATE_COPY_RELOCS)
{
/* For the non-shared case, discard space for relocs against
symbols which turn out to need copy relocs or are not
dynamic. */
if (!h->non_got_ref
&& ((h->def_dynamic
&& !h->def_regular)
|| (htab->root.dynamic_sections_created
&& (h->root.type == bfd_link_hash_undefweak
|| h->root.type == bfd_link_hash_undefined))))
{
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (h->dynindx == -1
&& !h->forced_local
&& !bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
/* If that succeeded, we know we'll be keeping all the
relocs. */
if (h->dynindx != -1)
goto keep;
}
eh->dyn_relocs = NULL;
keep:;
}
/* Finally, allocate space. */
for (p = eh->dyn_relocs; p != NULL; p = p->next)
{
asection *sreloc;
sreloc = elf_section_data (p->sec)->sreloc;
BFD_ASSERT (sreloc != NULL);
sreloc->size += p->count * RELOC_SIZE (htab);
}
return TRUE;
}
/* This is the most important function of all . Innocuosly named
though ! */
static bfd_boolean
elf64_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info)
{
struct elf64_aarch64_link_hash_table *htab;
bfd *dynobj;
asection *s;
bfd_boolean relocs;
bfd *ibfd;
htab = elf64_aarch64_hash_table ((info));
dynobj = htab->root.dynobj;
BFD_ASSERT (dynobj != NULL);
if (htab->root.dynamic_sections_created)
{
if (info->executable)
{
s = bfd_get_linker_section (dynobj, ".interp");
if (s == NULL)
abort ();
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
}
}
/* Set up .got offsets for local syms, and space for local dynamic
relocs. */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
struct elf_aarch64_local_symbol *locals = NULL;
Elf_Internal_Shdr *symtab_hdr;
asection *srel;
unsigned int i;
if (!is_aarch64_elf (ibfd))
continue;
for (s = ibfd->sections; s != NULL; s = s->next)
{
struct elf_dyn_relocs *p;
for (p = (struct elf_dyn_relocs *)
(elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
{
if (!bfd_is_abs_section (p->sec)
&& bfd_is_abs_section (p->sec->output_section))
{
/* Input section has been discarded, either because
it is a copy of a linkonce section or due to
linker script /DISCARD/, so we'll be discarding
the relocs too. */
}
else if (p->count != 0)
{
srel = elf_section_data (p->sec)->sreloc;
srel->size += p->count * RELOC_SIZE (htab);
if ((p->sec->output_section->flags & SEC_READONLY) != 0)
info->flags |= DF_TEXTREL;
}
}
}
locals = elf64_aarch64_locals (ibfd);
if (!locals)
continue;
symtab_hdr = &elf_symtab_hdr (ibfd);
srel = htab->root.srelgot;
for (i = 0; i < symtab_hdr->sh_info; i++)
{
locals[i].got_offset = (bfd_vma) - 1;
locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
if (locals[i].got_refcount > 0)
{
unsigned got_type = locals[i].got_type;
if (got_type & GOT_TLSDESC_GD)
{
locals[i].tlsdesc_got_jump_table_offset =
(htab->root.sgotplt->size
- aarch64_compute_jump_table_size (htab));
htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
locals[i].got_offset = (bfd_vma) - 2;
}
if (got_type & GOT_TLS_GD)
{
locals[i].got_offset = htab->root.sgot->size;
htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
}
if (got_type & GOT_TLS_IE)
{
locals[i].got_offset = htab->root.sgot->size;
htab->root.sgot->size += GOT_ENTRY_SIZE;
}
if (got_type == GOT_UNKNOWN)
{
}
if (got_type == GOT_NORMAL)
{
}
if (info->shared)
{
if (got_type & GOT_TLSDESC_GD)
{
htab->root.srelplt->size += RELOC_SIZE (htab);
/* Note RELOC_COUNT not incremented here! */
htab->tlsdesc_plt = (bfd_vma) - 1;
}
if (got_type & GOT_TLS_GD)
htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
if (got_type & GOT_TLS_IE)
htab->root.srelgot->size += RELOC_SIZE (htab);
}
}
else
{
locals[i].got_refcount = (bfd_vma) - 1;
}
}
}
/* Allocate global sym .plt and .got entries, and space for global
sym dynamic relocs. */
elf_link_hash_traverse (&htab->root, elf64_aarch64_allocate_dynrelocs,
info);
/* For every jump slot reserved in the sgotplt, reloc_count is
incremented. However, when we reserve space for TLS descriptors,
it's not incremented, so in order to compute the space reserved
for them, it suffices to multiply the reloc count by the jump
slot size. */
if (htab->root.srelplt)
htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
if (htab->tlsdesc_plt)
{
if (htab->root.splt->size == 0)
htab->root.splt->size += PLT_ENTRY_SIZE;
htab->tlsdesc_plt = htab->root.splt->size;
htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
/* If we're not using lazy TLS relocations, don't generate the
GOT entry required. */
if (!(info->flags & DF_BIND_NOW))
{
htab->dt_tlsdesc_got = htab->root.sgot->size;
htab->root.sgot->size += GOT_ENTRY_SIZE;
}
}
/* We now have determined the sizes of the various dynamic sections.
Allocate memory for them. */
relocs = FALSE;
for (s = dynobj->sections; s != NULL; s = s->next)
{
if ((s->flags & SEC_LINKER_CREATED) == 0)
continue;
if (s == htab->root.splt
|| s == htab->root.sgot
|| s == htab->root.sgotplt
|| s == htab->root.iplt
|| s == htab->root.igotplt || s == htab->sdynbss)
{
/* Strip this section if we don't need it; see the
comment below. */
}
else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
{
if (s->size != 0 && s != htab->root.srelplt)
relocs = TRUE;
/* We use the reloc_count field as a counter if we need
to copy relocs into the output file. */
if (s != htab->root.srelplt)
s->reloc_count = 0;
}
else
{
/* It's not one of our sections, so don't allocate space. */
continue;
}
if (s->size == 0)
{
/* If we don't need this section, strip it from the
output file. This is mostly to handle .rela.bss and
.rela.plt. We must create both sections in
create_dynamic_sections, because they must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
s->flags |= SEC_EXCLUDE;
continue;
}
if ((s->flags & SEC_HAS_CONTENTS) == 0)
continue;
/* Allocate memory for the section contents. We use bfd_zalloc
here in case unused entries are not reclaimed before the
section's contents are written out. This should not happen,
but this way if it does, we get a R_AARCH64_NONE reloc instead
of garbage. */
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
if (s->contents == NULL)
return FALSE;
}
if (htab->root.dynamic_sections_created)
{
/* Add some entries to the .dynamic section. We fill in the
values later, in elf64_aarch64_finish_dynamic_sections, but we
must add the entries now so that we get the correct size for
the .dynamic section. The DT_DEBUG entry is filled in by the
dynamic linker and used by the debugger. */
#define add_dynamic_entry(TAG, VAL) \
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
if (info->executable)
{
if (!add_dynamic_entry (DT_DEBUG, 0))
return FALSE;
}
if (htab->root.splt->size != 0)
{
if (!add_dynamic_entry (DT_PLTGOT, 0)
|| !add_dynamic_entry (DT_PLTRELSZ, 0)
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|| !add_dynamic_entry (DT_JMPREL, 0))
return FALSE;
if (htab->tlsdesc_plt
&& (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
|| !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
return FALSE;
}
if (relocs)
{
if (!add_dynamic_entry (DT_RELA, 0)
|| !add_dynamic_entry (DT_RELASZ, 0)
|| !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
return FALSE;
/* If any dynamic relocs apply to a read-only section,
then we need a DT_TEXTREL entry. */
if ((info->flags & DF_TEXTREL) != 0)
{
if (!add_dynamic_entry (DT_TEXTREL, 0))
return FALSE;
}
}
}
#undef add_dynamic_entry
return TRUE;
}
static inline void
elf64_aarch64_update_plt_entry (bfd *output_bfd,
unsigned int r_type,
bfd_byte *plt_entry, bfd_vma value)
{
reloc_howto_type *howto;
howto = elf64_aarch64_howto_from_type (r_type);
bfd_elf_aarch64_put_addend (output_bfd, plt_entry, howto, value);
}
static void
elf64_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
struct elf64_aarch64_link_hash_table
*htab, bfd *output_bfd)
{
bfd_byte *plt_entry;
bfd_vma plt_index;
bfd_vma got_offset;
bfd_vma gotplt_entry_address;
bfd_vma plt_entry_address;
Elf_Internal_Rela rela;
bfd_byte *loc;
plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
/* Offset in the GOT is PLT index plus got GOT headers(3)
times 8. */
got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
plt_entry = htab->root.splt->contents + h->plt.offset;
plt_entry_address = htab->root.splt->output_section->vma
+ htab->root.splt->output_section->output_offset + h->plt.offset;
gotplt_entry_address = htab->root.sgotplt->output_section->vma +
htab->root.sgotplt->output_offset + got_offset;
/* Copy in the boiler-plate for the PLTn entry. */
memcpy (plt_entry, elf64_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
/* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
elf64_aarch64_update_plt_entry (output_bfd, R_AARCH64_ADR_PREL_PG_HI21,
plt_entry,
PG (gotplt_entry_address) -
PG (plt_entry_address));
/* Fill in the lo12 bits for the load from the pltgot. */
elf64_aarch64_update_plt_entry (output_bfd, R_AARCH64_LDST64_ABS_LO12_NC,
plt_entry + 4,
PG_OFFSET (gotplt_entry_address));
/* Fill in the the lo12 bits for the add from the pltgot entry. */
elf64_aarch64_update_plt_entry (output_bfd, R_AARCH64_ADD_ABS_LO12_NC,
plt_entry + 8,
PG_OFFSET (gotplt_entry_address));
/* All the GOTPLT Entries are essentially initialized to PLT0. */
bfd_put_64 (output_bfd,
(htab->root.splt->output_section->vma
+ htab->root.splt->output_offset),
htab->root.sgotplt->contents + got_offset);
/* Fill in the entry in the .rela.plt section. */
rela.r_offset = gotplt_entry_address;
rela.r_info = ELF64_R_INFO (h->dynindx, R_AARCH64_JUMP_SLOT);
rela.r_addend = 0;
/* Compute the relocation entry to used based on PLT index and do
not adjust reloc_count. The reloc_count has already been adjusted
to account for this entry. */
loc = htab->root.srelplt->contents + plt_index * RELOC_SIZE (htab);
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
}
/* Size sections even though they're not dynamic. We use it to setup
_TLS_MODULE_BASE_, if needed. */
static bfd_boolean
elf64_aarch64_always_size_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
asection *tls_sec;
if (info->relocatable)
return TRUE;
tls_sec = elf_hash_table (info)->tls_sec;
if (tls_sec)
{
struct elf_link_hash_entry *tlsbase;
tlsbase = elf_link_hash_lookup (elf_hash_table (info),
"_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
if (tlsbase)
{
struct bfd_link_hash_entry *h = NULL;
const struct elf_backend_data *bed =
get_elf_backend_data (output_bfd);
if (!(_bfd_generic_link_add_one_symbol
(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
tls_sec, 0, NULL, FALSE, bed->collect, &h)))
return FALSE;
tlsbase->type = STT_TLS;
tlsbase = (struct elf_link_hash_entry *) h;
tlsbase->def_regular = 1;
tlsbase->other = STV_HIDDEN;
(*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
}
}
return TRUE;
}
/* Finish up dynamic symbol handling. We set the contents of various
dynamic sections here. */
static bfd_boolean
elf64_aarch64_finish_dynamic_symbol (bfd *output_bfd,
struct bfd_link_info *info,
struct elf_link_hash_entry *h,
Elf_Internal_Sym *sym)
{
struct elf64_aarch64_link_hash_table *htab;
htab = elf64_aarch64_hash_table (info);
if (h->plt.offset != (bfd_vma) - 1)
{
/* This symbol has an entry in the procedure linkage table. Set
it up. */
if (h->dynindx == -1
|| htab->root.splt == NULL
|| htab->root.sgotplt == NULL || htab->root.srelplt == NULL)
abort ();
elf64_aarch64_create_small_pltn_entry (h, htab, output_bfd);
if (!h->def_regular)
{
/* Mark the symbol as undefined, rather than as defined in
the .plt section. Leave the value alone. This is a clue
for the dynamic linker, to make function pointer
comparisons work between an application and shared
library. */
sym->st_shndx = SHN_UNDEF;
}
}
if (h->got.offset != (bfd_vma) - 1
&& elf64_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
{
Elf_Internal_Rela rela;
bfd_byte *loc;
/* This symbol has an entry in the global offset table. Set it
up. */
if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
abort ();
rela.r_offset = (htab->root.sgot->output_section->vma
+ htab->root.sgot->output_offset
+ (h->got.offset & ~(bfd_vma) 1));
if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h))
{
if (!h->def_regular)
return FALSE;
BFD_ASSERT ((h->got.offset & 1) != 0);
rela.r_info = ELF64_R_INFO (0, R_AARCH64_RELATIVE);
rela.r_addend = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
else
{
BFD_ASSERT ((h->got.offset & 1) == 0);
bfd_put_64 (output_bfd, (bfd_vma) 0,
htab->root.sgot->contents + h->got.offset);
rela.r_info = ELF64_R_INFO (h->dynindx, R_AARCH64_GLOB_DAT);
rela.r_addend = 0;
}
loc = htab->root.srelgot->contents;
loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
}
if (h->needs_copy)
{
Elf_Internal_Rela rela;
bfd_byte *loc;
/* This symbol needs a copy reloc. Set it up. */
if (h->dynindx == -1
|| (h->root.type != bfd_link_hash_defined
&& h->root.type != bfd_link_hash_defweak)
|| htab->srelbss == NULL)
abort ();
rela.r_offset = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
rela.r_info = ELF64_R_INFO (h->dynindx, R_AARCH64_COPY);
rela.r_addend = 0;
loc = htab->srelbss->contents;
loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
}
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
be NULL for local symbols. */
if (sym != NULL
&& (h == elf_hash_table (info)->hdynamic
|| h == elf_hash_table (info)->hgot))
sym->st_shndx = SHN_ABS;
return TRUE;
}
static void
elf64_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
struct elf64_aarch64_link_hash_table
*htab)
{
/* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
small and large plts and at the minute just generates
the small PLT. */
/* PLT0 of the small PLT looks like this -
stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
// symbol resolver
add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
// GOTPLT entry for this.
br x17
*/
bfd_vma plt_got_base;
bfd_vma plt_base;
memcpy (htab->root.splt->contents, elf64_aarch64_small_plt0_entry,
PLT_ENTRY_SIZE);
elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
PLT_ENTRY_SIZE;
plt_got_base = (htab->root.sgotplt->output_section->vma
+ htab->root.sgotplt->output_offset);
plt_base = htab->root.splt->output_section->vma +
htab->root.splt->output_section->output_offset;
/* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
elf64_aarch64_update_plt_entry (output_bfd, R_AARCH64_ADR_PREL_PG_HI21,
htab->root.splt->contents + 4,
PG (plt_got_base + 16) - PG (plt_base + 4));
elf64_aarch64_update_plt_entry (output_bfd, R_AARCH64_LDST64_ABS_LO12_NC,
htab->root.splt->contents + 8,
PG_OFFSET (plt_got_base + 16));
elf64_aarch64_update_plt_entry (output_bfd, R_AARCH64_ADD_ABS_LO12_NC,
htab->root.splt->contents + 12,
PG_OFFSET (plt_got_base + 16));
}
static bfd_boolean
elf64_aarch64_finish_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
struct elf64_aarch64_link_hash_table *htab;
bfd *dynobj;
asection *sdyn;
htab = elf64_aarch64_hash_table (info);
dynobj = htab->root.dynobj;
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
if (htab->root.dynamic_sections_created)
{
Elf64_External_Dyn *dyncon, *dynconend;
if (sdyn == NULL || htab->root.sgot == NULL)
abort ();
dyncon = (Elf64_External_Dyn *) sdyn->contents;
dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
asection *s;
bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
default:
continue;
case DT_PLTGOT:
s = htab->root.sgotplt;
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
break;
case DT_JMPREL:
dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
break;
case DT_PLTRELSZ:
s = htab->root.srelplt->output_section;
dyn.d_un.d_val = s->size;
break;
case DT_RELASZ:
/* The procedure linkage table relocs (DT_JMPREL) should
not be included in the overall relocs (DT_RELA).
Therefore, we override the DT_RELASZ entry here to
make it not include the JMPREL relocs. Since the
linker script arranges for .rela.plt to follow all
other relocation sections, we don't have to worry
about changing the DT_RELA entry. */
if (htab->root.srelplt != NULL)
{
s = htab->root.srelplt->output_section;
dyn.d_un.d_val -= s->size;
}
break;
case DT_TLSDESC_PLT:
s = htab->root.splt;
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
+ htab->tlsdesc_plt;
break;
case DT_TLSDESC_GOT:
s = htab->root.sgot;
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
+ htab->dt_tlsdesc_got;
break;
}
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
}
}
/* Fill in the special first entry in the procedure linkage table. */
if (htab->root.splt && htab->root.splt->size > 0)
{
elf64_aarch64_init_small_plt0_entry (output_bfd, htab);
elf_section_data (htab->root.splt->output_section)->
this_hdr.sh_entsize = htab->plt_entry_size;
if (htab->tlsdesc_plt)
{
bfd_put_64 (output_bfd, (bfd_vma) 0,
htab->root.sgot->contents + htab->dt_tlsdesc_got);
memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
elf64_aarch64_tlsdesc_small_plt_entry,
sizeof (elf64_aarch64_tlsdesc_small_plt_entry));
{
bfd_vma adrp1_addr =
htab->root.splt->output_section->vma
+ htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
bfd_vma adrp2_addr =
htab->root.splt->output_section->vma
+ htab->root.splt->output_offset + htab->tlsdesc_plt + 8;
bfd_vma got_addr =
htab->root.sgot->output_section->vma
+ htab->root.sgot->output_offset;
bfd_vma pltgot_addr =
htab->root.sgotplt->output_section->vma
+ htab->root.sgotplt->output_offset;
bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
bfd_vma opcode;
/* adrp x2, DT_TLSDESC_GOT */
opcode = bfd_get_32 (output_bfd,
htab->root.splt->contents
+ htab->tlsdesc_plt + 4);
opcode = reencode_adr_imm
(opcode, (PG (dt_tlsdesc_got) - PG (adrp1_addr)) >> 12);
bfd_put_32 (output_bfd, opcode,
htab->root.splt->contents + htab->tlsdesc_plt + 4);
/* adrp x3, 0 */
opcode = bfd_get_32 (output_bfd,
htab->root.splt->contents
+ htab->tlsdesc_plt + 8);
opcode = reencode_adr_imm
(opcode, (PG (pltgot_addr) - PG (adrp2_addr)) >> 12);
bfd_put_32 (output_bfd, opcode,
htab->root.splt->contents + htab->tlsdesc_plt + 8);
/* ldr x2, [x2, #0] */
opcode = bfd_get_32 (output_bfd,
htab->root.splt->contents
+ htab->tlsdesc_plt + 12);
opcode = reencode_ldst_pos_imm (opcode,
PG_OFFSET (dt_tlsdesc_got) >> 3);
bfd_put_32 (output_bfd, opcode,
htab->root.splt->contents + htab->tlsdesc_plt + 12);
/* add x3, x3, 0 */
opcode = bfd_get_32 (output_bfd,
htab->root.splt->contents
+ htab->tlsdesc_plt + 16);
opcode = reencode_add_imm (opcode, PG_OFFSET (pltgot_addr));
bfd_put_32 (output_bfd, opcode,
htab->root.splt->contents + htab->tlsdesc_plt + 16);
}
}
}
if (htab->root.sgotplt)
{
if (bfd_is_abs_section (htab->root.sgotplt->output_section))
{
(*_bfd_error_handler)
(_("discarded output section: `%A'"), htab->root.sgotplt);
return FALSE;
}
/* Fill in the first three entries in the global offset table. */
if (htab->root.sgotplt->size > 0)
{
/* Set the first entry in the global offset table to the address of
the dynamic section. */
if (sdyn == NULL)
bfd_put_64 (output_bfd, (bfd_vma) 0,
htab->root.sgotplt->contents);
else
bfd_put_64 (output_bfd,
sdyn->output_section->vma + sdyn->output_offset,
htab->root.sgotplt->contents);
/* Write GOT[1] and GOT[2], needed for the dynamic linker. */
bfd_put_64 (output_bfd,
(bfd_vma) 0,
htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
bfd_put_64 (output_bfd,
(bfd_vma) 0,
htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
}
elf_section_data (htab->root.sgotplt->output_section)->
this_hdr.sh_entsize = GOT_ENTRY_SIZE;
}
if (htab->root.sgot && htab->root.sgot->size > 0)
elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
= GOT_ENTRY_SIZE;
return TRUE;
}
/* Return address for Ith PLT stub in section PLT, for relocation REL
or (bfd_vma) -1 if it should not be included. */
static bfd_vma
elf64_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
const arelent *rel ATTRIBUTE_UNUSED)
{
return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
}
/* We use this so we can override certain functions
(though currently we don't). */
const struct elf_size_info elf64_aarch64_size_info =
{
sizeof (Elf64_External_Ehdr),
sizeof (Elf64_External_Phdr),
sizeof (Elf64_External_Shdr),
sizeof (Elf64_External_Rel),
sizeof (Elf64_External_Rela),
sizeof (Elf64_External_Sym),
sizeof (Elf64_External_Dyn),
sizeof (Elf_External_Note),
4, /* Hash table entry size. */
1, /* Internal relocs per external relocs. */
64, /* Arch size. */
3, /* Log_file_align. */
ELFCLASS64, EV_CURRENT,
bfd_elf64_write_out_phdrs,
bfd_elf64_write_shdrs_and_ehdr,
bfd_elf64_checksum_contents,
bfd_elf64_write_relocs,
bfd_elf64_swap_symbol_in,
bfd_elf64_swap_symbol_out,
bfd_elf64_slurp_reloc_table,
bfd_elf64_slurp_symbol_table,
bfd_elf64_swap_dyn_in,
bfd_elf64_swap_dyn_out,
bfd_elf64_swap_reloc_in,
bfd_elf64_swap_reloc_out,
bfd_elf64_swap_reloca_in,
bfd_elf64_swap_reloca_out
};
#define ELF_ARCH bfd_arch_aarch64
#define ELF_MACHINE_CODE EM_AARCH64
#define ELF_MAXPAGESIZE 0x10000
#define ELF_MINPAGESIZE 0x1000
#define ELF_COMMONPAGESIZE 0x1000
#define bfd_elf64_close_and_cleanup \
elf64_aarch64_close_and_cleanup
#define bfd_elf64_bfd_copy_private_bfd_data \
elf64_aarch64_copy_private_bfd_data
#define bfd_elf64_bfd_free_cached_info \
elf64_aarch64_bfd_free_cached_info
#define bfd_elf64_bfd_is_target_special_symbol \
elf64_aarch64_is_target_special_symbol
#define bfd_elf64_bfd_link_hash_table_create \
elf64_aarch64_link_hash_table_create
#define bfd_elf64_bfd_link_hash_table_free \
elf64_aarch64_hash_table_free
#define bfd_elf64_bfd_merge_private_bfd_data \
elf64_aarch64_merge_private_bfd_data
#define bfd_elf64_bfd_print_private_bfd_data \
elf64_aarch64_print_private_bfd_data
#define bfd_elf64_bfd_reloc_type_lookup \
elf64_aarch64_reloc_type_lookup
#define bfd_elf64_bfd_reloc_name_lookup \
elf64_aarch64_reloc_name_lookup
#define bfd_elf64_bfd_set_private_flags \
elf64_aarch64_set_private_flags
#define bfd_elf64_find_inliner_info \
elf64_aarch64_find_inliner_info
#define bfd_elf64_find_nearest_line \
elf64_aarch64_find_nearest_line
#define bfd_elf64_mkobject \
elf64_aarch64_mkobject
#define bfd_elf64_new_section_hook \
elf64_aarch64_new_section_hook
#define elf_backend_adjust_dynamic_symbol \
elf64_aarch64_adjust_dynamic_symbol
#define elf_backend_always_size_sections \
elf64_aarch64_always_size_sections
#define elf_backend_check_relocs \
elf64_aarch64_check_relocs
#define elf_backend_copy_indirect_symbol \
elf64_aarch64_copy_indirect_symbol
/* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
to them in our hash. */
#define elf_backend_create_dynamic_sections \
elf64_aarch64_create_dynamic_sections
#define elf_backend_init_index_section \
_bfd_elf_init_2_index_sections
#define elf_backend_is_function_type \
elf64_aarch64_is_function_type
#define elf_backend_finish_dynamic_sections \
elf64_aarch64_finish_dynamic_sections
#define elf_backend_finish_dynamic_symbol \
elf64_aarch64_finish_dynamic_symbol
#define elf_backend_gc_sweep_hook \
elf64_aarch64_gc_sweep_hook
#define elf_backend_object_p \
elf64_aarch64_object_p
#define elf_backend_output_arch_local_syms \
elf64_aarch64_output_arch_local_syms
#define elf_backend_plt_sym_val \
elf64_aarch64_plt_sym_val
#define elf_backend_post_process_headers \
elf64_aarch64_post_process_headers
#define elf_backend_relocate_section \
elf64_aarch64_relocate_section
#define elf_backend_reloc_type_class \
elf64_aarch64_reloc_type_class
#define elf_backend_section_flags \
elf64_aarch64_section_flags
#define elf_backend_section_from_shdr \
elf64_aarch64_section_from_shdr
#define elf_backend_size_dynamic_sections \
elf64_aarch64_size_dynamic_sections
#define elf_backend_size_info \
elf64_aarch64_size_info
#define elf_backend_can_refcount 1
#define elf_backend_can_gc_sections 1
#define elf_backend_plt_readonly 1
#define elf_backend_want_got_plt 1
#define elf_backend_want_plt_sym 0
#define elf_backend_may_use_rel_p 0
#define elf_backend_may_use_rela_p 1
#define elf_backend_default_use_rela_p 1
#define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
#undef elf_backend_obj_attrs_section
#define elf_backend_obj_attrs_section ".ARM.attributes"
#include "elf64-target.h"