/* V850-specific support for 32-bit ELF Copyright (C) 1996-2019 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ /* XXX FIXME: This code is littered with 32bit int, 16bit short, 8bit char dependencies. As is the gas & simulator code for the v850. */ #include "sysdep.h" #include "bfd.h" #include "bfdlink.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/v850.h" #include "libiberty.h" /* Sign-extend a 17-bit number. */ #define SEXT17(x) ((((x) & 0x1ffff) ^ 0x10000) - 0x10000) /* Sign-extend a 22-bit number. */ #define SEXT22(x) ((((x) & 0x3fffff) ^ 0x200000) - 0x200000) static reloc_howto_type v850_elf_howto_table[]; /* Look through the relocs for a section during the first phase, and allocate space in the global offset table or procedure linkage table. */ static bfd_boolean v850_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { bfd_boolean ret = TRUE; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; unsigned int r_type; int other = 0; const char *common = NULL; if (bfd_link_relocatable (info)) return TRUE; #ifdef DEBUG _bfd_error_handler ("v850_elf_check_relocs called for section %pA in %pB", sec, abfd); #endif symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { unsigned long r_symndx; struct elf_link_hash_entry *h; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } r_type = ELF32_R_TYPE (rel->r_info); switch (r_type) { default: break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_V850_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return FALSE; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_V850_GNU_VTENTRY: if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) return FALSE; break; case R_V850_SDA_16_16_SPLIT_OFFSET: case R_V850_SDA_16_16_OFFSET: case R_V850_SDA_15_16_OFFSET: case R_V810_GPWLO_1: case R_V850_HWLO: case R_V850_HWLO_1: other = V850_OTHER_SDA; common = ".scommon"; goto small_data_common; case R_V850_ZDA_16_16_SPLIT_OFFSET: case R_V850_ZDA_16_16_OFFSET: case R_V850_ZDA_15_16_OFFSET: other = V850_OTHER_ZDA; common = ".zcommon"; goto small_data_common; case R_V850_TDA_4_4_OFFSET: case R_V850_TDA_4_5_OFFSET: case R_V850_TDA_7_7_OFFSET: case R_V850_TDA_6_8_OFFSET: case R_V850_TDA_7_8_OFFSET: case R_V850_TDA_16_16_OFFSET: other = V850_OTHER_TDA; common = ".tcommon"; /* fall through */ #define V850_OTHER_MASK (V850_OTHER_TDA | V850_OTHER_SDA | V850_OTHER_ZDA) small_data_common: if (h) { /* Flag which type of relocation was used. */ h->other |= other; if ((h->other & V850_OTHER_MASK) != (other & V850_OTHER_MASK) && (h->other & V850_OTHER_ERROR) == 0) { const char * msg; static char buff[200]; /* XXX */ switch (h->other & V850_OTHER_MASK) { default: msg = _("variable `%s' cannot occupy in multiple small data regions"); break; case V850_OTHER_SDA | V850_OTHER_ZDA | V850_OTHER_TDA: msg = _("variable `%s' can only be in one of the small, zero, and tiny data regions"); break; case V850_OTHER_SDA | V850_OTHER_ZDA: msg = _("variable `%s' cannot be in both small and zero data regions simultaneously"); break; case V850_OTHER_SDA | V850_OTHER_TDA: msg = _("variable `%s' cannot be in both small and tiny data regions simultaneously"); break; case V850_OTHER_ZDA | V850_OTHER_TDA: msg = _("variable `%s' cannot be in both zero and tiny data regions simultaneously"); break; } sprintf (buff, msg, h->root.root.string); info->callbacks->warning (info, buff, h->root.root.string, abfd, h->root.u.def.section, (bfd_vma) 0); bfd_set_error (bfd_error_bad_value); h->other |= V850_OTHER_ERROR; ret = FALSE; } } if (h && h->root.type == bfd_link_hash_common && h->root.u.c.p && !strcmp (bfd_get_section_name (abfd, h->root.u.c.p->section), "COMMON")) { asection * section; section = h->root.u.c.p->section = bfd_make_section_old_way (abfd, common); section->flags |= SEC_IS_COMMON; } #ifdef DEBUG fprintf (stderr, "v850_elf_check_relocs, found %s relocation for %s%s\n", v850_elf_howto_table[ (int)r_type ].name, (h && h->root.root.string) ? h->root.root.string : "", (h->root.type == bfd_link_hash_common) ? ", symbol is common" : ""); #endif break; } } return ret; } /* In the old version, when an entry was checked out from the table, it was deleted. This produced an error if the entry was needed more than once, as the second attempted retry failed. In the current version, the entry is not deleted, instead we set the field 'found' to TRUE. If a second lookup matches the same entry, then we know that the hi16s reloc has already been updated and does not need to be updated a second time. TODO - TOFIX: If it is possible that we need to restore 2 different addresses from the same table entry, where the first generates an overflow, whilst the second do not, then this code will fail. */ typedef struct hi16s_location { bfd_vma addend; bfd_byte * address; unsigned long counter; bfd_boolean found; struct hi16s_location * next; } hi16s_location; static hi16s_location * previous_hi16s; static hi16s_location * free_hi16s; static unsigned long hi16s_counter; static void remember_hi16s_reloc (bfd *abfd, bfd_vma addend, bfd_byte *address) { hi16s_location * entry = NULL; bfd_size_type amt = sizeof (* free_hi16s); /* Find a free structure. */ if (free_hi16s == NULL) free_hi16s = bfd_zalloc (abfd, amt); entry = free_hi16s; free_hi16s = free_hi16s->next; entry->addend = addend; entry->address = address; entry->counter = hi16s_counter ++; entry->found = FALSE; entry->next = previous_hi16s; previous_hi16s = entry; /* Cope with wrap around of our counter. */ if (hi16s_counter == 0) { /* XXX: Assume that all counter entries differ only in their low 16 bits. */ for (entry = previous_hi16s; entry != NULL; entry = entry->next) entry->counter &= 0xffff; hi16s_counter = 0x10000; } } static bfd_byte * find_remembered_hi16s_reloc (bfd_vma addend, bfd_boolean *already_found) { hi16s_location *match = NULL; hi16s_location *entry; bfd_byte *addr; /* Search the table. Record the most recent entry that matches. */ for (entry = previous_hi16s; entry; entry = entry->next) { if (entry->addend == addend && (match == NULL || match->counter < entry->counter)) { match = entry; } } if (match == NULL) return NULL; /* Extract the address. */ addr = match->address; /* Remember if this entry has already been used before. */ if (already_found) * already_found = match->found; /* Note that this entry has now been used. */ match->found = TRUE; return addr; } /* Calculate the final operand value for a R_V850_LO16 or R_V850_LO16_SPLIT_OFFSET. *INSN is the current operand value and ADDEND is the sum of the relocation symbol and offset. Store the operand value in *INSN and return true on success. The assembler has already done some of this: If the value stored in the instruction has its 15th bit set, (counting from zero) then the assembler will have added 1 to the value stored in the associated HI16S reloc. So for example, these relocations: movhi hi( fred ), r0, r1 movea lo( fred ), r1, r1 will store 0 in the value fields for the MOVHI and MOVEA instructions and addend will be the address of fred, but for these instructions: movhi hi( fred + 0x123456 ), r0, r1 movea lo( fred + 0x123456 ), r1, r1 the value stored in the MOVHI instruction will be 0x12 and the value stored in the MOVEA instruction will be 0x3456. If however the instructions were: movhi hi( fred + 0x10ffff ), r0, r1 movea lo( fred + 0x10ffff ), r1, r1 then the value stored in the MOVHI instruction would be 0x11 (not 0x10) and the value stored in the MOVEA instruction would be 0xffff. Thus (assuming for the moment that the addend is 0), at run time the MOVHI instruction loads 0x110000 into r1, then the MOVEA instruction adds 0xffffffff (sign extension!) producing 0x10ffff. Similarly if the instructions were: movhi hi( fred - 1 ), r0, r1 movea lo( fred - 1 ), r1, r1 then 0 is stored in the MOVHI instruction and -1 is stored in the MOVEA instruction. Overflow can occur if the addition of the value stored in the instruction plus the addend sets the 15th bit when before it was clear. This is because the 15th bit will be sign extended into the high part, thus reducing its value by one, but since the 15th bit was originally clear, the assembler will not have added 1 to the previous HI16S reloc to compensate for this effect. For example: movhi hi( fred + 0x123456 ), r0, r1 movea lo( fred + 0x123456 ), r1, r1 The value stored in HI16S reloc is 0x12, the value stored in the LO16 reloc is 0x3456. If we assume that the address of fred is 0x00007000 then the relocations become: HI16S: 0x0012 + (0x00007000 >> 16) = 0x12 LO16: 0x3456 + (0x00007000 & 0xffff) = 0xa456 but when the instructions are executed, the MOVEA instruction's value is signed extended, so the sum becomes: 0x00120000 + 0xffffa456 ------------ 0x0011a456 but 'fred + 0x123456' = 0x0012a456 Note that if the 15th bit was set in the value stored in the LO16 reloc, then we do not have to do anything: movhi hi( fred + 0x10ffff ), r0, r1 movea lo( fred + 0x10ffff ), r1, r1 HI16S: 0x0011 + (0x00007000 >> 16) = 0x11 LO16: 0xffff + (0x00007000 & 0xffff) = 0x6fff 0x00110000 + 0x00006fff ------------ 0x00116fff = fred + 0x10ffff = 0x7000 + 0x10ffff Overflow can also occur if the computation carries into the 16th bit and it also results in the 15th bit having the same value as the 15th bit of the original value. What happens is that the HI16S reloc will have already examined the 15th bit of the original value and added 1 to the high part if the bit is set. This compensates for the sign extension of 15th bit of the result of the computation. But now there is a carry into the 16th bit, and this has not been allowed for. So, for example if fred is at address 0xf000: movhi hi( fred + 0xffff ), r0, r1 [bit 15 of the offset is set] movea lo( fred + 0xffff ), r1, r1 HI16S: 0x0001 + (0x0000f000 >> 16) = 0x0001 LO16: 0xffff + (0x0000f000 & 0xffff) = 0xefff (carry into bit 16 is lost) 0x00010000 + 0xffffefff ------------ 0x0000efff but 'fred + 0xffff' = 0x0001efff Similarly, if the 15th bit remains clear, but overflow occurs into the 16th bit then (assuming the address of fred is 0xf000): movhi hi( fred + 0x7000 ), r0, r1 [bit 15 of the offset is clear] movea lo( fred + 0x7000 ), r1, r1 HI16S: 0x0000 + (0x0000f000 >> 16) = 0x0000 LO16: 0x7000 + (0x0000f000 & 0xffff) = 0x6fff (carry into bit 16 is lost) 0x00000000 + 0x00006fff ------------ 0x00006fff but 'fred + 0x7000' = 0x00016fff Note - there is no need to change anything if a carry occurs, and the 15th bit changes its value from being set to being clear, as the HI16S reloc will have already added in 1 to the high part for us: movhi hi( fred + 0xffff ), r0, r1 [bit 15 of the offset is set] movea lo( fred + 0xffff ), r1, r1 HI16S: 0x0001 + (0x00007000 >> 16) LO16: 0xffff + (0x00007000 & 0xffff) = 0x6fff (carry into bit 16 is lost) 0x00010000 + 0x00006fff (bit 15 not set, so the top half is zero) ------------ 0x00016fff which is right (assuming that fred is at 0x7000) but if the 15th bit goes from being clear to being set, then we must once again handle overflow: movhi hi( fred + 0x7000 ), r0, r1 [bit 15 of the offset is clear] movea lo( fred + 0x7000 ), r1, r1 HI16S: 0x0000 + (0x0000ffff >> 16) LO16: 0x7000 + (0x0000ffff & 0xffff) = 0x6fff (carry into bit 16) 0x00000000 + 0x00006fff (bit 15 not set, so the top half is zero) ------------ 0x00006fff which is wrong (assuming that fred is at 0xffff). */ static bfd_boolean v850_elf_perform_lo16_relocation (bfd *abfd, unsigned long *insn, unsigned long addend) { #define BIT15_SET(x) ((x) & 0x8000) #define OVERFLOWS(a,i) ((((a) & 0xffff) + (i)) > 0xffff) if ((BIT15_SET (*insn + addend) && ! BIT15_SET (addend)) || (OVERFLOWS (addend, *insn) && ((! BIT15_SET (*insn)) || (BIT15_SET (addend))))) { bfd_boolean already_updated; bfd_byte *hi16s_address = find_remembered_hi16s_reloc (addend, & already_updated); /* Amend the matching HI16_S relocation. */ if (hi16s_address != NULL) { if (! already_updated) { unsigned long hi_insn = bfd_get_16 (abfd, hi16s_address); hi_insn += 1; bfd_put_16 (abfd, hi_insn, hi16s_address); } } else { _bfd_error_handler (_("failed to find previous HI16 reloc")); return FALSE; } } #undef OVERFLOWS #undef BIT15_SET /* Do not complain if value has top bit set, as this has been anticipated. */ *insn = (*insn + addend) & 0xffff; return TRUE; } /* FIXME: The code here probably ought to be removed and the code in reloc.c allowed to do its stuff instead. At least for most of the relocs, anyway. */ static bfd_reloc_status_type v850_elf_perform_relocation (bfd *abfd, unsigned int r_type, bfd_vma addend, bfd_byte *address) { unsigned long insn; unsigned long result; bfd_signed_vma saddend = (bfd_signed_vma) addend; switch (r_type) { default: #ifdef DEBUG _bfd_error_handler ("%pB: unsupported relocation type %#x", abfd, r_type); #endif return bfd_reloc_notsupported; case R_V850_REL32: case R_V850_ABS32: case R_V810_WORD: case R_V850_PC32: bfd_put_32 (abfd, addend, address); return bfd_reloc_ok; case R_V850_WLO23: case R_V850_23: insn = bfd_get_32 (abfd, address); insn &= ~((0x7f << 4) | (0x7fff80 << (16-7))); insn |= ((addend & 0x7f) << 4) | ((addend & 0x7fff80) << (16-7)); bfd_put_32 (abfd, (bfd_vma) insn, address); return bfd_reloc_ok; case R_V850_PCR22: case R_V850_22_PCREL: if (saddend > 0x1fffff || saddend < -0x200000) return bfd_reloc_overflow; if ((addend % 2) != 0) return bfd_reloc_dangerous; insn = bfd_get_32 (abfd, address); insn &= ~0xfffe003f; insn |= (((addend & 0xfffe) << 16) | ((addend & 0x3f0000) >> 16)); bfd_put_32 (abfd, (bfd_vma) insn, address); return bfd_reloc_ok; case R_V850_PC17: case R_V850_17_PCREL: if (saddend > 0xffff || saddend < -0x10000) return bfd_reloc_overflow; if ((addend % 2) != 0) return bfd_reloc_dangerous; insn = bfd_get_32 (abfd, address); insn &= ~ 0xfffe0010; insn |= ((addend & 0xfffe) << 16) | ((addend & 0x10000) >> (16-4)); break; case R_V850_PC16U: case R_V850_16_PCREL: if ((saddend < -0xffff) || (saddend > 0)) return bfd_reloc_overflow; if ((addend % 2) != 0) return bfd_reloc_dangerous; insn = bfd_get_16 (abfd, address); insn &= ~0xfffe; insn |= (-addend & 0xfffe); break; case R_V850_PC9: case R_V850_9_PCREL: if (saddend > 0xff || saddend < -0x100) return bfd_reloc_overflow; if ((addend % 2) != 0) return bfd_reloc_dangerous; insn = bfd_get_16 (abfd, address); insn &= ~ 0xf870; insn |= ((addend & 0x1f0) << 7) | ((addend & 0x0e) << 3); break; case R_V810_WHI: case R_V850_HI16: addend += (bfd_get_16 (abfd, address) << 16); addend = (addend >> 16); insn = addend; break; case R_V810_WHI1: case R_V850_HI16_S: /* Remember where this relocation took place. */ remember_hi16s_reloc (abfd, addend, address); addend += (bfd_get_16 (abfd, address) << 16); addend = (addend >> 16) + ((addend & 0x8000) != 0); /* This relocation cannot overflow. */ if (addend > 0xffff) addend = 0; insn = addend; break; case R_V810_WLO: case R_V850_LO16: insn = bfd_get_16 (abfd, address); if (! v850_elf_perform_lo16_relocation (abfd, &insn, addend)) return bfd_reloc_overflow; break; case R_V810_BYTE: case R_V850_8: addend += (char) bfd_get_8 (abfd, address); saddend = (bfd_signed_vma) addend; if (saddend > 0x7f || saddend < -0x80) return bfd_reloc_overflow; bfd_put_8 (abfd, addend, address); return bfd_reloc_ok; case R_V850_CALLT_16_16_OFFSET: addend += bfd_get_16 (abfd, address); saddend = (bfd_signed_vma) addend; if (saddend > 0xffff || saddend < 0) return bfd_reloc_overflow; insn = addend; break; case R_V850_CALLT_15_16_OFFSET: insn = bfd_get_16 (abfd, address); addend += insn & 0xfffe; saddend = (bfd_signed_vma) addend; if (saddend > 0xffff || saddend < 0) return bfd_reloc_overflow; insn = (0xfffe & addend) | (insn & ~0xfffe); break; case R_V850_CALLT_6_7_OFFSET: insn = bfd_get_16 (abfd, address); addend += ((insn & 0x3f) << 1); saddend = (bfd_signed_vma) addend; if (saddend > 0x7e || saddend < 0) return bfd_reloc_overflow; if (addend & 1) return bfd_reloc_dangerous; insn &= 0xff80; insn |= (addend >> 1); break; case R_V850_16: case R_V810_HWORD: case R_V850_SDA_16_16_OFFSET: case R_V850_ZDA_16_16_OFFSET: case R_V850_TDA_16_16_OFFSET: addend += bfd_get_16 (abfd, address); saddend = (bfd_signed_vma) addend; if (saddend > 0x7fff || saddend < -0x8000) return bfd_reloc_overflow; insn = addend; break; case R_V850_16_S1: case R_V850_SDA_15_16_OFFSET: case R_V850_ZDA_15_16_OFFSET: case R_V810_GPWLO_1: insn = bfd_get_16 (abfd, address); addend += (insn & 0xfffe); saddend = (bfd_signed_vma) addend; if (saddend > 0x7ffe || saddend < -0x8000) return bfd_reloc_overflow; if (addend & 1) return bfd_reloc_dangerous; insn = (addend &~ (bfd_vma) 1) | (insn & 1); break; case R_V850_TDA_6_8_OFFSET: insn = bfd_get_16 (abfd, address); addend += ((insn & 0x7e) << 1); saddend = (bfd_signed_vma) addend; if (saddend > 0xfc || saddend < 0) return bfd_reloc_overflow; if (addend & 3) return bfd_reloc_dangerous; insn &= 0xff81; insn |= (addend >> 1); break; case R_V850_TDA_7_8_OFFSET: insn = bfd_get_16 (abfd, address); addend += ((insn & 0x7f) << 1); saddend = (bfd_signed_vma) addend; if (saddend > 0xfe || saddend < 0) return bfd_reloc_overflow; if (addend & 1) return bfd_reloc_dangerous; insn &= 0xff80; insn |= (addend >> 1); break; case R_V850_TDA_7_7_OFFSET: insn = bfd_get_16 (abfd, address); addend += insn & 0x7f; saddend = (bfd_signed_vma) addend; if (saddend > 0x7f || saddend < 0) return bfd_reloc_overflow; insn &= 0xff80; insn |= addend; break; case R_V850_TDA_4_5_OFFSET: insn = bfd_get_16 (abfd, address); addend += ((insn & 0xf) << 1); saddend = (bfd_signed_vma) addend; if (saddend > 0x1e || saddend < 0) return bfd_reloc_overflow; if (addend & 1) return bfd_reloc_dangerous; insn &= 0xfff0; insn |= (addend >> 1); break; case R_V850_TDA_4_4_OFFSET: insn = bfd_get_16 (abfd, address); addend += insn & 0xf; saddend = (bfd_signed_vma) addend; if (saddend > 0xf || saddend < 0) return bfd_reloc_overflow; insn &= 0xfff0; insn |= addend; break; case R_V810_WLO_1: case R_V850_HWLO: case R_V850_HWLO_1: case R_V850_LO16_S1: insn = bfd_get_16 (abfd, address); result = insn & 0xfffe; if (! v850_elf_perform_lo16_relocation (abfd, &result, addend)) return bfd_reloc_overflow; if (result & 1) return bfd_reloc_overflow; insn = (result & 0xfffe) | (insn & ~0xfffe); bfd_put_16 (abfd, insn, address); return bfd_reloc_ok; case R_V850_BLO: case R_V850_LO16_SPLIT_OFFSET: insn = bfd_get_32 (abfd, address); result = ((insn & 0xfffe0000) >> 16) | ((insn & 0x20) >> 5); if (! v850_elf_perform_lo16_relocation (abfd, &result, addend)) return bfd_reloc_overflow; insn = (((result << 16) & 0xfffe0000) | ((result << 5) & 0x20) | (insn & ~0xfffe0020)); bfd_put_32 (abfd, insn, address); return bfd_reloc_ok; case R_V850_16_SPLIT_OFFSET: case R_V850_SDA_16_16_SPLIT_OFFSET: case R_V850_ZDA_16_16_SPLIT_OFFSET: insn = bfd_get_32 (abfd, address); addend += ((insn & 0xfffe0000) >> 16) + ((insn & 0x20) >> 5); saddend = (bfd_signed_vma) addend; if (saddend > 0x7fff || saddend < -0x8000) return bfd_reloc_overflow; insn &= 0x0001ffdf; insn |= (addend & 1) << 5; insn |= (addend &~ (bfd_vma) 1) << 16; bfd_put_32 (abfd, (bfd_vma) insn, address); return bfd_reloc_ok; case R_V850_GNU_VTINHERIT: case R_V850_GNU_VTENTRY: return bfd_reloc_ok; } bfd_put_16 (abfd, (bfd_vma) insn, address); return bfd_reloc_ok; } /* Insert the addend into the instruction. */ static bfd_reloc_status_type v850_elf_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc, asymbol *symbol, void * data ATTRIBUTE_UNUSED, asection *isection, bfd *obfd, char **err ATTRIBUTE_UNUSED) { long relocation; /* If there is an output BFD, and the symbol is not a section name (which is only defined at final link time), and either we are not putting the addend into the instruction or the addend is zero, so there is nothing to add into the instruction then just fixup the address and return. */ if (obfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! reloc->howto->partial_inplace || reloc->addend == 0)) { reloc->address += isection->output_offset; return bfd_reloc_ok; } /* Catch relocs involving undefined symbols. */ if (bfd_is_und_section (symbol->section) && (symbol->flags & BSF_WEAK) == 0 && obfd == NULL) return bfd_reloc_undefined; /* We handle final linking of some relocs ourselves. */ /* Is the address of the relocation really within the section? */ if (reloc->address > bfd_get_section_limit (abfd, isection)) return bfd_reloc_outofrange; /* Work out which section the relocation is targeted at and the initial relocation command value. */ if (reloc->howto->pc_relative) return bfd_reloc_ok; /* Get symbol value. (Common symbols are special.) */ if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; /* Convert input-section-relative symbol value to absolute + addend. */ relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; relocation += reloc->addend; reloc->addend = relocation; return bfd_reloc_ok; } /* This function is used for relocs which are only used for relaxing, which the linker should otherwise ignore. */ static bfd_reloc_status_type v850_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol ATTRIBUTE_UNUSED, void * data ATTRIBUTE_UNUSED, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { if (output_bfd != NULL) reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Note: It is REQUIRED that the 'type' value of each entry in this array match the index of the entry in the array. SeeAlso: RELOC_NUBMER in include/elf/v850.h. */ static reloc_howto_type v850_elf_howto_table[] = { /* This reloc does nothing. */ HOWTO (R_V850_NONE, /* Type. */ 0, /* Rightshift. */ 3, /* Size (0 = byte, 1 = short, 2 = long). */ 0, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ bfd_elf_generic_reloc, /* Special_function. */ "R_V850_NONE", /* Name. */ FALSE, /* Partial_inplace. */ 0, /* Src_mask. */ 0, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* A PC relative 9 bit branch. */ HOWTO (R_V850_9_PCREL, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 9, /* Bitsize. */ TRUE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_bitfield, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_9_PCREL", /* Name. */ FALSE, /* Partial_inplace. */ 0x00ffffff, /* Src_mask. */ 0x00ffffff, /* Dst_mask. */ TRUE), /* PCrel_offset. */ /* A PC relative 22 bit branch. */ HOWTO (R_V850_22_PCREL, /* Type. */ 0, /* Rightshift. */ 2, /* Size (0 = byte, 1 = short, 2 = long). */ 22, /* Bitsize. */ TRUE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_signed, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_22_PCREL", /* Name. */ FALSE, /* Partial_inplace. */ 0x07ffff80, /* Src_mask. */ 0x07ffff80, /* Dst_mask. */ TRUE), /* PCrel_offset. */ /* High 16 bits of symbol value. */ HOWTO (R_V850_HI16_S, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_HI16_S", /* Name. */ FALSE, /* Partial_inplace. */ 0xffff, /* Src_mask. */ 0xffff, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* High 16 bits of symbol value. */ HOWTO (R_V850_HI16, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_HI16", /* Name. */ FALSE, /* Partial_inplace. */ 0xffff, /* Src_mask. */ 0xffff, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* Low 16 bits of symbol value. */ HOWTO (R_V850_LO16, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_LO16", /* Name. */ FALSE, /* Partial_inplace. */ 0xffff, /* Src_mask. */ 0xffff, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* Simple 32bit reloc. */ HOWTO (R_V850_ABS32, /* Type. */ 0, /* Rightshift. */ 2, /* Size (0 = byte, 1 = short, 2 = long). */ 32, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_ABS32", /* Name. */ FALSE, /* Partial_inplace. */ 0xffffffff, /* Src_mask. */ 0xffffffff, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* Simple 16bit reloc. */ HOWTO (R_V850_16, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ bfd_elf_generic_reloc, /* Special_function. */ "R_V850_16", /* Name. */ FALSE, /* Partial_inplace. */ 0xffff, /* Src_mask. */ 0xffff, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* Simple 8bit reloc. */ HOWTO (R_V850_8, /* Type. */ 0, /* Rightshift. */ 0, /* Size (0 = byte, 1 = short, 2 = long). */ 8, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ bfd_elf_generic_reloc, /* Special_function. */ "R_V850_8", /* Name. */ FALSE, /* Partial_inplace. */ 0xff, /* Src_mask. */ 0xff, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 16 bit offset from the short data area pointer. */ HOWTO (R_V850_SDA_16_16_OFFSET, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_SDA_16_16_OFFSET", /* Name. */ FALSE, /* Partial_inplace. */ 0xffff, /* Src_mask. */ 0xffff, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 15 bit offset from the short data area pointer. */ HOWTO (R_V850_SDA_15_16_OFFSET, /* Type. */ 1, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 1, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_SDA_15_16_OFFSET", /* Name. */ FALSE, /* Partial_inplace. */ 0xfffe, /* Src_mask. */ 0xfffe, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 16 bit offset from the zero data area pointer. */ HOWTO (R_V850_ZDA_16_16_OFFSET, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_ZDA_16_16_OFFSET", /* Name. */ FALSE, /* Partial_inplace. */ 0xffff, /* Src_mask. */ 0xffff, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 15 bit offset from the zero data area pointer. */ HOWTO (R_V850_ZDA_15_16_OFFSET, /* Type. */ 1, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 1, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_ZDA_15_16_OFFSET", /* Name. */ FALSE, /* Partial_inplace. */ 0xfffe, /* Src_mask. */ 0xfffe, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 6 bit offset from the tiny data area pointer. */ HOWTO (R_V850_TDA_6_8_OFFSET, /* Type. */ 2, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 8, /* Bitsize. */ FALSE, /* PC_relative. */ 1, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_TDA_6_8_OFFSET", /* Name. */ FALSE, /* Partial_inplace. */ 0x7e, /* Src_mask. */ 0x7e, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 8 bit offset from the tiny data area pointer. */ HOWTO (R_V850_TDA_7_8_OFFSET, /* Type. */ 1, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 8, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_TDA_7_8_OFFSET", /* Name. */ FALSE, /* Partial_inplace. */ 0x7f, /* Src_mask. */ 0x7f, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 7 bit offset from the tiny data area pointer. */ HOWTO (R_V850_TDA_7_7_OFFSET, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 7, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_TDA_7_7_OFFSET", /* Name. */ FALSE, /* Partial_inplace. */ 0x7f, /* Src_mask. */ 0x7f, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 16 bit offset from the tiny data area pointer! */ HOWTO (R_V850_TDA_16_16_OFFSET, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_TDA_16_16_OFFSET", /* Name. */ FALSE, /* Partial_inplace. */ 0xffff, /* Src_mask. */ 0xfff, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 5 bit offset from the tiny data area pointer. */ HOWTO (R_V850_TDA_4_5_OFFSET, /* Type. */ 1, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 5, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_TDA_4_5_OFFSET", /* Name. */ FALSE, /* Partial_inplace. */ 0x0f, /* Src_mask. */ 0x0f, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 4 bit offset from the tiny data area pointer. */ HOWTO (R_V850_TDA_4_4_OFFSET, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 4, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_TDA_4_4_OFFSET", /* Name. */ FALSE, /* Partial_inplace. */ 0x0f, /* Src_mask. */ 0x0f, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 16 bit offset from the short data area pointer. */ HOWTO (R_V850_SDA_16_16_SPLIT_OFFSET, /* Type. */ 0, /* Rightshift. */ 2, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_SDA_16_16_SPLIT_OFFSET",/* Name. */ FALSE, /* Partial_inplace. */ 0xfffe0020, /* Src_mask. */ 0xfffe0020, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 16 bit offset from the zero data area pointer. */ HOWTO (R_V850_ZDA_16_16_SPLIT_OFFSET, /* Type. */ 0, /* Rightshift. */ 2, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_ZDA_16_16_SPLIT_OFFSET",/* Name. */ FALSE, /* Partial_inplace. */ 0xfffe0020, /* Src_mask. */ 0xfffe0020, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 6 bit offset from the call table base pointer. */ HOWTO (R_V850_CALLT_6_7_OFFSET, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 7, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_CALLT_6_7_OFFSET", /* Name. */ FALSE, /* Partial_inplace. */ 0x3f, /* Src_mask. */ 0x3f, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* 16 bit offset from the call table base pointer. */ HOWTO (R_V850_CALLT_16_16_OFFSET, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_CALLT_16_16_OFFSET", /* Name. */ FALSE, /* Partial_inplace. */ 0xffff, /* Src_mask. */ 0xffff, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* GNU extension to record C++ vtable hierarchy */ HOWTO (R_V850_GNU_VTINHERIT, /* Type. */ 0, /* Rightshift. */ 2, /* Size (0 = byte, 1 = short, 2 = long). */ 0, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ NULL, /* Special_function. */ "R_V850_GNU_VTINHERIT", /* Name. */ FALSE, /* Partial_inplace. */ 0, /* Src_mask. */ 0, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* GNU extension to record C++ vtable member usage. */ HOWTO (R_V850_GNU_VTENTRY, /* Type. */ 0, /* Rightshift. */ 2, /* Size (0 = byte, 1 = short, 2 = long). */ 0, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ _bfd_elf_rel_vtable_reloc_fn, /* Special_function. */ "R_V850_GNU_VTENTRY", /* Name. */ FALSE, /* Partial_inplace. */ 0, /* Src_mask. */ 0, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* Indicates a .longcall pseudo-op. The compiler will generate a .longcall pseudo-op when it finds a function call which can be relaxed. */ HOWTO (R_V850_LONGCALL, /* Type. */ 0, /* Rightshift. */ 2, /* Size (0 = byte, 1 = short, 2 = long). */ 32, /* Bitsize. */ TRUE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_signed, /* Complain_on_overflow. */ v850_elf_ignore_reloc, /* Special_function. */ "R_V850_LONGCALL", /* Name. */ FALSE, /* Partial_inplace. */ 0, /* Src_mask. */ 0, /* Dst_mask. */ TRUE), /* PCrel_offset. */ /* Indicates a .longjump pseudo-op. The compiler will generate a .longjump pseudo-op when it finds a branch which can be relaxed. */ HOWTO (R_V850_LONGJUMP, /* Type. */ 0, /* Rightshift. */ 2, /* Size (0 = byte, 1 = short, 2 = long). */ 32, /* Bitsize. */ TRUE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_signed, /* Complain_on_overflow. */ v850_elf_ignore_reloc, /* Special_function. */ "R_V850_LONGJUMP", /* Name. */ FALSE, /* Partial_inplace. */ 0, /* Src_mask. */ 0, /* Dst_mask. */ TRUE), /* PCrel_offset. */ HOWTO (R_V850_ALIGN, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 0, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_unsigned, /* Complain_on_overflow. */ v850_elf_ignore_reloc, /* Special_function. */ "R_V850_ALIGN", /* Name. */ FALSE, /* Partial_inplace. */ 0, /* Src_mask. */ 0, /* Dst_mask. */ TRUE), /* PCrel_offset. */ /* Simple pc-relative 32bit reloc. */ HOWTO (R_V850_REL32, /* Type. */ 0, /* Rightshift. */ 2, /* Size (0 = byte, 1 = short, 2 = long). */ 32, /* Bitsize. */ TRUE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_REL32", /* Name. */ FALSE, /* Partial_inplace. */ 0xffffffff, /* Src_mask. */ 0xffffffff, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* An ld.bu version of R_V850_LO16. */ HOWTO (R_V850_LO16_SPLIT_OFFSET, /* Type. */ 0, /* Rightshift. */ 2, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_LO16_SPLIT_OFFSET", /* Name. */ FALSE, /* Partial_inplace. */ 0xfffe0020, /* Src_mask. */ 0xfffe0020, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* A unsigned PC relative 16 bit loop. */ HOWTO (R_V850_16_PCREL, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ TRUE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_bitfield, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_16_PCREL", /* Name. */ FALSE, /* Partial_inplace. */ 0xfffe, /* Src_mask. */ 0xfffe, /* Dst_mask. */ TRUE), /* PCrel_offset. */ /* A PC relative 17 bit branch. */ HOWTO (R_V850_17_PCREL, /* Type. */ 0, /* Rightshift. */ 2, /* Size (0 = byte, 1 = short, 2 = long). */ 17, /* Bitsize. */ TRUE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_bitfield, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_17_PCREL", /* Name. */ FALSE, /* Partial_inplace. */ 0x0010fffe, /* Src_mask. */ 0x0010fffe, /* Dst_mask. */ TRUE), /* PCrel_offset. */ /* A 23bit offset ld/st. */ HOWTO (R_V850_23, /* type. */ 0, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long). */ 23, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_dont, /* complain_on_overflow. */ v850_elf_reloc, /* special_function. */ "R_V850_23", /* name. */ FALSE, /* partial_inplace. */ 0xffff07f0, /* src_mask. */ 0xffff07f0, /* dst_mask. */ FALSE), /* pcrel_offset. */ /* A PC relative 32 bit branch. */ HOWTO (R_V850_32_PCREL, /* type. */ 1, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long). */ 32, /* bitsize. */ TRUE, /* pc_relative. */ 1, /* bitpos. */ complain_overflow_signed, /* complain_on_overflow. */ v850_elf_reloc, /* special_function. */ "R_V850_32_PCREL", /* name. */ FALSE, /* partial_inplace. */ 0xfffffffe, /* src_mask. */ 0xfffffffe, /* dst_mask. */ TRUE), /* pcrel_offset. */ /* A absolute 32 bit branch. */ HOWTO (R_V850_32_ABS, /* type. */ 1, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long). */ 32, /* bitsize. */ TRUE, /* pc_relative. */ 1, /* bitpos. */ complain_overflow_signed, /* complain_on_overflow. */ v850_elf_reloc, /* special_function. */ "R_V850_32_ABS", /* name. */ FALSE, /* partial_inplace. */ 0xfffffffe, /* src_mask. */ 0xfffffffe, /* dst_mask. */ FALSE), /* pcrel_offset. */ /* High 16 bits of symbol value. */ HOWTO (R_V850_HI16, /* Type. */ 0, /* Rightshift. */ 1, /* Size (0 = byte, 1 = short, 2 = long). */ 16, /* Bitsize. */ FALSE, /* PC_relative. */ 0, /* Bitpos. */ complain_overflow_dont, /* Complain_on_overflow. */ v850_elf_reloc, /* Special_function. */ "R_V850_HI16", /* Name. */ FALSE, /* Partial_inplace. */ 0xffff, /* Src_mask. */ 0xffff, /* Dst_mask. */ FALSE), /* PCrel_offset. */ /* Low 16 bits of symbol value. */ HOWTO (R_V850_16_S1, /* type. */ 1, /* rightshift. */ 1, /* size (0 = byte, 1 = short, 2 = long). */ 16, /* bitsize. */ FALSE, /* pc_relative. */ 1, /* bitpos. */ complain_overflow_dont, /* complain_on_overflow. */ v850_elf_reloc, /* special_function. */ "R_V850_16_S1", /* name. */ FALSE, /* partial_inplace. */ 0xfffe, /* src_mask. */ 0xfffe, /* dst_mask. */ FALSE), /* pcrel_offset. */ /* Low 16 bits of symbol value. */ HOWTO (R_V850_LO16_S1, /* type. */ 1, /* rightshift. */ 1, /* size (0 = byte, 1 = short, 2 = long). */ 16, /* bitsize. */ FALSE, /* pc_relative. */ 1, /* bitpos. */ complain_overflow_dont, /* complain_on_overflow. */ v850_elf_reloc, /* special_function. */ "R_V850_LO16_S1", /* name. */ FALSE, /* partial_inplace. */ 0xfffe, /* src_mask. */ 0xfffe, /* dst_mask. */ FALSE), /* pcrel_offset. */ /* 16 bit offset from the call table base pointer. */ HOWTO (R_V850_CALLT_15_16_OFFSET, /* type. */ 1, /* rightshift. */ 1, /* size (0 = byte, 1 = short, 2 = long). */ 16, /* bitsize. */ FALSE, /* pc_relative. */ 1, /* bitpos. */ complain_overflow_dont, /* complain_on_overflow. */ v850_elf_reloc, /* special_function. */ "R_V850_CALLT_15_16_OFFSET", /* name. */ FALSE, /* partial_inplace. */ 0xfffe, /* src_mask. */ 0xfffe, /* dst_mask. */ FALSE), /* pcrel_offset. */ /* Like R_V850_32 PCREL, but referring to the GOT table entry for the symbol. */ HOWTO (R_V850_32_GOTPCREL, /* type. */ 0, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long). */ 32, /* bitsize. */ TRUE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_unsigned, /* complain_on_overflow. */ v850_elf_reloc, /* special_function. */ "R_V850_32_GOTPCREL", /* name. */ FALSE, /* partial_inplace. */ 0xffffffff, /* src_mask. */ 0xffffffff, /* dst_mask. */ TRUE), /* pcrel_offset. */ /* Like R_V850_SDA_, but referring to the GOT table entry for the symbol. */ HOWTO (R_V850_16_GOT, /* type. */ 0, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long). */ 16, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_unsigned, /* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_V850_16_GOT", /* name. */ FALSE, /* partial_inplace. */ 0xffff, /* src_mask. */ 0xffff, /* dst_mask. */ FALSE), /* pcrel_offset. */ HOWTO (R_V850_32_GOT, /* type. */ 0, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long). */ 32, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_unsigned, /* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_V850_32_GOT", /* name. */ FALSE, /* partial_inplace. */ 0xffffffff, /* src_mask. */ 0xffffffff, /* dst_mask. */ FALSE), /* pcrel_offset. */ /* Like R_V850_22_PCREL, but referring to the procedure linkage table entry for the symbol. */ HOWTO (R_V850_22_PLT, /* type. */ 1, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long). */ 22, /* bitsize. */ TRUE, /* pc_relative. */ 7, /* bitpos. */ complain_overflow_signed, /* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_V850_22_PLT", /* name. */ FALSE, /* partial_inplace. */ 0x07ffff80, /* src_mask. */ 0x07ffff80, /* dst_mask. */ TRUE), /* pcrel_offset. */ HOWTO (R_V850_32_PLT, /* type. */ 1, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long). */ 32, /* bitsize. */ TRUE, /* pc_relative. */ 1, /* bitpos. */ complain_overflow_signed, /* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_V850_32_PLT", /* name. */ FALSE, /* partial_inplace. */ 0xffffffff, /* src_mask. */ 0xffffffff, /* dst_mask. */ TRUE), /* pcrel_offset. */ /* This is used only by the dynamic linker. The symbol should exist both in the object being run and in some shared library. The dynamic linker copies the data addressed by the symbol from the shared library into the object, because the object being run has to have the data at some particular address. */ HOWTO (R_V850_COPY, /* type. */ 0, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long). */ 32, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_bitfield, /* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_V850_COPY", /* name. */ FALSE, /* partial_inplace. */ 0xffffffff, /* src_mask. */ 0xffffffff, /* dst_mask. */ FALSE), /* pcrel_offset. */ /* Like R_M32R_24, but used when setting global offset table entries. */ HOWTO (R_V850_GLOB_DAT, /* type. */ 0, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_bitfield, /* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_V850_GLOB_DAT", /* name. */ FALSE, /* partial_inplace. */ 0xffffffff, /* src_mask. */ 0xffffffff, /* dst_mask. */ FALSE), /* pcrel_offset. */ /* Marks a procedure linkage table entry for a symbol. */ HOWTO (R_V850_JMP_SLOT, /* type. */ 0, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_bitfield, /* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_V850_JMP_SLOT", /* name. */ FALSE, /* partial_inplace. */ 0xffffffff, /* src_mask. */ 0xffffffff, /* dst_mask. */ FALSE), /* pcrel_offset. */ /* Used only by the dynamic linker. When the object is run, this longword is set to the load address of the object, plus the addend. */ HOWTO (R_V850_RELATIVE, /* type. */ 0, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_bitfield, /* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_V850_RELATIVE", /* name. */ FALSE, /* partial_inplace. */ 0xffffffff, /* src_mask. */ 0xffffffff, /* dst_mask. */ FALSE), /* pcrel_offset. */ HOWTO (R_V850_16_GOTOFF, /* type. */ 0, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_bitfield, /* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_V850_16_GOTOFF", /* name. */ FALSE, /* partial_inplace. */ 0xffff, /* src_mask. */ 0xffff, /* dst_mask. */ FALSE), /* pcrel_offset. */ HOWTO (R_V850_32_GOTOFF, /* type. */ 0, /* rightshift. */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_bitfield, /* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_V850_32_GOTOFF", /* name. */ FALSE, /* partial_inplace. */ 0xffffffff, /* src_mask. */ 0xffffffff, /* dst_mask. */ FALSE), /* pcrel_offset. */ HOWTO (R_V850_CODE, /* type. */ 0, /* rightshift. */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_unsigned, /* complain_on_overflow. */ v850_elf_ignore_reloc, /* special_function. */ "R_V850_CODE", /* name. */ FALSE, /* partial_inplace. */ 0, /* src_mask. */ 0, /* dst_mask. */ TRUE), /* pcrel_offset. */ HOWTO (R_V850_DATA, /* type. */ 0, /* rightshift. */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_unsigned, /* complain_on_overflow. */ v850_elf_ignore_reloc, /* special_function. */ "R_V850_DATA", /* name. */ FALSE, /* partial_inplace. */ 0, /* src_mask. */ 0, /* dst_mask. */ TRUE), /* pcrel_offset. */ }; /* Map BFD reloc types to V850 ELF reloc types. */ struct v850_elf_reloc_map { /* BFD_RELOC_V850_CALLT_16_16_OFFSET is 258, which will not fix in an unsigned char. */ bfd_reloc_code_real_type bfd_reloc_val; unsigned int elf_reloc_val; }; static const struct v850_elf_reloc_map v850_elf_reloc_map[] = { { BFD_RELOC_NONE, R_V850_NONE }, { BFD_RELOC_V850_9_PCREL, R_V850_9_PCREL }, { BFD_RELOC_V850_22_PCREL, R_V850_22_PCREL }, { BFD_RELOC_HI16_S, R_V850_HI16_S }, { BFD_RELOC_HI16, R_V850_HI16 }, { BFD_RELOC_LO16, R_V850_LO16 }, { BFD_RELOC_32, R_V850_ABS32 }, { BFD_RELOC_32_PCREL, R_V850_REL32 }, { BFD_RELOC_16, R_V850_16 }, { BFD_RELOC_8, R_V850_8 }, { BFD_RELOC_V850_SDA_16_16_OFFSET, R_V850_SDA_16_16_OFFSET }, { BFD_RELOC_V850_SDA_15_16_OFFSET, R_V850_SDA_15_16_OFFSET }, { BFD_RELOC_V850_ZDA_16_16_OFFSET, R_V850_ZDA_16_16_OFFSET }, { BFD_RELOC_V850_ZDA_15_16_OFFSET, R_V850_ZDA_15_16_OFFSET }, { BFD_RELOC_V850_TDA_6_8_OFFSET, R_V850_TDA_6_8_OFFSET }, { BFD_RELOC_V850_TDA_7_8_OFFSET, R_V850_TDA_7_8_OFFSET }, { BFD_RELOC_V850_TDA_7_7_OFFSET, R_V850_TDA_7_7_OFFSET }, { BFD_RELOC_V850_TDA_16_16_OFFSET, R_V850_TDA_16_16_OFFSET }, { BFD_RELOC_V850_TDA_4_5_OFFSET, R_V850_TDA_4_5_OFFSET }, { BFD_RELOC_V850_TDA_4_4_OFFSET, R_V850_TDA_4_4_OFFSET }, { BFD_RELOC_V850_LO16_SPLIT_OFFSET, R_V850_LO16_SPLIT_OFFSET }, { BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET, R_V850_SDA_16_16_SPLIT_OFFSET }, { BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET, R_V850_ZDA_16_16_SPLIT_OFFSET }, { BFD_RELOC_V850_CALLT_6_7_OFFSET, R_V850_CALLT_6_7_OFFSET }, { BFD_RELOC_V850_CALLT_16_16_OFFSET, R_V850_CALLT_16_16_OFFSET }, { BFD_RELOC_VTABLE_INHERIT, R_V850_GNU_VTINHERIT }, { BFD_RELOC_VTABLE_ENTRY, R_V850_GNU_VTENTRY }, { BFD_RELOC_V850_LONGCALL, R_V850_LONGCALL }, { BFD_RELOC_V850_LONGJUMP, R_V850_LONGJUMP }, { BFD_RELOC_V850_ALIGN, R_V850_ALIGN }, { BFD_RELOC_V850_16_PCREL, R_V850_16_PCREL }, { BFD_RELOC_V850_17_PCREL, R_V850_17_PCREL }, { BFD_RELOC_V850_23, R_V850_23 }, { BFD_RELOC_V850_32_PCREL, R_V850_32_PCREL }, { BFD_RELOC_V850_32_ABS, R_V850_32_ABS }, { BFD_RELOC_V850_16_SPLIT_OFFSET, R_V850_HI16 }, { BFD_RELOC_V850_16_S1, R_V850_16_S1 }, { BFD_RELOC_V850_LO16_S1, R_V850_LO16_S1 }, { BFD_RELOC_V850_CALLT_15_16_OFFSET, R_V850_CALLT_15_16_OFFSET }, { BFD_RELOC_V850_32_GOTPCREL, R_V850_32_GOTPCREL }, { BFD_RELOC_V850_16_GOT, R_V850_16_GOT }, { BFD_RELOC_V850_32_GOT, R_V850_32_GOT }, { BFD_RELOC_V850_22_PLT_PCREL, R_V850_22_PLT }, { BFD_RELOC_V850_32_PLT_PCREL, R_V850_32_PLT }, { BFD_RELOC_V850_COPY, R_V850_COPY }, { BFD_RELOC_V850_GLOB_DAT, R_V850_GLOB_DAT }, { BFD_RELOC_V850_JMP_SLOT, R_V850_JMP_SLOT }, { BFD_RELOC_V850_RELATIVE, R_V850_RELATIVE }, { BFD_RELOC_V850_16_GOTOFF, R_V850_16_GOTOFF }, { BFD_RELOC_V850_32_GOTOFF, R_V850_32_GOTOFF }, { BFD_RELOC_V850_CODE, R_V850_CODE }, { BFD_RELOC_V850_DATA, R_V850_DATA }, }; #define V800_RELOC(name,sz,bit,shift,complain,pcrel,resolver) \ HOWTO (name, shift, sz, bit, pcrel, 0, complain_overflow_ ## complain, \ bfd_elf_ ## resolver ## _reloc, #name, FALSE, 0, ~0, FALSE) #define V800_EMPTY(name) EMPTY_HOWTO (name - R_V810_NONE) #define bfd_elf_v850_reloc v850_elf_reloc /* Note: It is REQUIRED that the 'type' value (R_V810_...) of each entry in this array match the index of the entry in the array minus 0x30. See: bfd_elf_v850_relocate_section(), v800_elf_reloc_type_lookup() and v800_elf_info_to_howto(). */ static reloc_howto_type v800_elf_howto_table[] = { V800_RELOC (R_V810_NONE, 0, 0, 0, dont, FALSE, generic), /* Type = 0x30 */ V800_RELOC (R_V810_BYTE, 0, 8, 0, dont, FALSE, generic), V800_RELOC (R_V810_HWORD, 1, 16, 0, dont, FALSE, generic), V800_RELOC (R_V810_WORD, 2, 32, 0, dont, FALSE, generic), V800_RELOC (R_V810_WLO, 1, 16, 0, dont, FALSE, generic), V800_RELOC (R_V810_WHI, 1, 16, 0, dont, FALSE, generic), V800_RELOC (R_V810_WHI1, 1, 16, 0, dont, FALSE, generic), V800_RELOC (R_V810_GPBYTE, 0, 8, 0, dont, FALSE, v850), V800_RELOC (R_V810_GPHWORD, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V810_GPWORD, 2, 32, 0, dont, FALSE, v850), V800_RELOC (R_V810_GPWLO, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V810_GPWHI, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V810_GPWHI1, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V850_HWLO, 1, 16, 0, dont, FALSE, generic), V800_EMPTY (R_V810_reserved1), V800_RELOC (R_V850_EP7BIT, 0, 7, 0, unsigned, FALSE, v850), V800_RELOC (R_V850_EPHBYTE, 0, 8, 1, unsigned, FALSE, v850), V800_RELOC (R_V850_EPWBYTE, 0, 8, 2, unsigned, FALSE, v850), V800_RELOC (R_V850_REGHWLO, 1, 16, 0, dont, FALSE, v850), V800_EMPTY (R_V810_reserved2), V800_RELOC (R_V850_GPHWLO, 1, 16, 0, dont, FALSE, v850), V800_EMPTY (R_V810_reserved3), V800_RELOC (R_V850_PCR22, 2, 22, 0, signed, TRUE, generic), V800_RELOC (R_V850_BLO, 2, 24, 0, dont, FALSE, v850), V800_RELOC (R_V850_EP4BIT, 0, 4, 0, unsigned, FALSE, v850), V800_RELOC (R_V850_EP5BIT, 0, 5, 0, unsigned, FALSE, v850), V800_RELOC (R_V850_REGBLO, 2, 24, 0, dont, FALSE, v850), V800_RELOC (R_V850_GPBLO, 2, 24, 0, dont, FALSE, v850), V800_RELOC (R_V810_WLO_1, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V810_GPWLO_1, 1, 16, 0, signed, FALSE, v850), V800_RELOC (R_V850_BLO_1, 2, 16, 0, signed, FALSE, v850), V800_RELOC (R_V850_HWLO_1, 1, 16, 0, signed, FALSE, v850), V800_EMPTY (R_V810_reserved4), V800_RELOC (R_V850_GPBLO_1, 2, 16, 1, signed, FALSE, v850), V800_RELOC (R_V850_GPHWLO_1, 1, 16, 1, signed, FALSE, v850), V800_EMPTY (R_V810_reserved5), V800_RELOC (R_V850_EPBLO, 2, 16, 1, signed, FALSE, v850), V800_RELOC (R_V850_EPHWLO, 1, 16, 1, signed, FALSE, v850), V800_EMPTY (R_V810_reserved6), V800_RELOC (R_V850_EPWLO_N, 1, 16, 1, signed, FALSE, v850), V800_RELOC (R_V850_PC32, 2, 32, 1, signed, TRUE, v850), V800_RELOC (R_V850_W23BIT, 2, 23, 1, signed, FALSE, v850), V800_RELOC (R_V850_GPW23BIT, 2, 23, 1, signed, FALSE, v850), V800_RELOC (R_V850_EPW23BIT, 2, 23, 1, signed, FALSE, v850), V800_RELOC (R_V850_B23BIT, 2, 23, 1, signed, FALSE, v850), V800_RELOC (R_V850_GPB23BIT, 2, 23, 1, signed, FALSE, v850), V800_RELOC (R_V850_EPB23BIT, 2, 23, 1, signed, FALSE, v850), V800_RELOC (R_V850_PC16U, 1, 16, 1, unsigned, TRUE, generic), V800_RELOC (R_V850_PC17, 2, 17, 1, signed, TRUE, generic), V800_RELOC (R_V850_DW8, 2, 8, 2, signed, FALSE, v850), V800_RELOC (R_V850_GPDW8, 2, 8, 2, signed, FALSE, v850), V800_RELOC (R_V850_EPDW8, 2, 8, 2, signed, FALSE, v850), V800_RELOC (R_V850_PC9, 1, 9, 3, signed, TRUE, v850), V800_RELOC (R_V810_REGBYTE, 0, 8, 0, dont, FALSE, v850), V800_RELOC (R_V810_REGHWORD, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V810_REGWORD, 2, 32, 0, dont, FALSE, v850), V800_RELOC (R_V810_REGWLO, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V810_REGWHI, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V810_REGWHI1, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V850_REGW23BIT, 2, 23, 1, signed, FALSE, v850), V800_RELOC (R_V850_REGB23BIT, 2, 23, 1, signed, FALSE, v850), V800_RELOC (R_V850_REGDW8, 2, 8, 2, signed, FALSE, v850), V800_RELOC (R_V810_EPBYTE, 0, 8, 0, dont, FALSE, v850), V800_RELOC (R_V810_EPHWORD, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V810_EPWORD, 2, 32, 0, dont, FALSE, v850), V800_RELOC (R_V850_WLO23, 2, 32, 1, dont, FALSE, v850), V800_RELOC (R_V850_WORD_E, 2, 32, 1, dont, FALSE, v850), V800_RELOC (R_V850_REGWORD_E, 2, 32, 1, dont, FALSE, v850), V800_RELOC (R_V850_WORD, 2, 32, 0, dont, FALSE, v850), V800_RELOC (R_V850_GPWORD, 2, 32, 0, dont, FALSE, v850), V800_RELOC (R_V850_REGWORD, 2, 32, 0, dont, FALSE, v850), V800_RELOC (R_V850_EPWORD, 2, 32, 0, dont, FALSE, v850), V800_RELOC (R_V810_TPBYTE, 0, 8, 0, dont, FALSE, v850), V800_RELOC (R_V810_TPHWORD, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V810_TPWORD, 2, 32, 0, dont, FALSE, v850), V800_RELOC (R_V810_TPWLO, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V810_TPWHI, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V810_TPWHI1, 1, 16, 0, dont, FALSE, v850), V800_RELOC (R_V850_TPHWLO, 1, 16, 1, dont, FALSE, v850), V800_RELOC (R_V850_TPBLO, 2, 24, 0, dont, FALSE, v850), V800_RELOC (R_V810_TPWLO_1, 1, 16, 0, signed, FALSE, v850), V800_RELOC (R_V850_TPBLO_1, 2, 16, 0, signed, FALSE, v850), V800_RELOC (R_V850_TPHWLO_1, 1, 16, 0, signed, FALSE, v850), V800_RELOC (R_V850_TP23BIT, 2, 23, 0, signed, FALSE, v850), V800_RELOC (R_V850_TPW23BIT, 2, 23, 0, signed, FALSE, v850), V800_RELOC (R_V850_TPDW8, 2, 8, 0, signed, FALSE, v850) }; /* Map a bfd relocation into the appropriate howto structure. */ static reloc_howto_type * v850_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { unsigned int i; for (i = ARRAY_SIZE (v850_elf_reloc_map); i --;) if (v850_elf_reloc_map[i].bfd_reloc_val == code) { unsigned int elf_reloc_val = v850_elf_reloc_map[i].elf_reloc_val; BFD_ASSERT (v850_elf_howto_table[elf_reloc_val].type == elf_reloc_val); return v850_elf_howto_table + elf_reloc_val; } return NULL; } static reloc_howto_type * v850_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < sizeof (v850_elf_howto_table) / sizeof (v850_elf_howto_table[0]); i++) if (v850_elf_howto_table[i].name != NULL && strcasecmp (v850_elf_howto_table[i].name, r_name) == 0) return &v850_elf_howto_table[i]; return NULL; } /* Set the howto pointer for an V850 ELF reloc. */ static bfd_boolean v850_elf_info_to_howto_rel (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst) { unsigned int r_type; r_type = ELF32_R_TYPE (dst->r_info); if (r_type >= (unsigned int) R_V850_max) { /* xgettext:c-format */ _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type); bfd_set_error (bfd_error_bad_value); return FALSE; } cache_ptr->howto = &v850_elf_howto_table[r_type]; return TRUE; } /* Set the howto pointer for a V850 ELF reloc (type RELA). */ static bfd_boolean v850_elf_info_to_howto_rela (bfd *abfd, arelent * cache_ptr, Elf_Internal_Rela *dst) { unsigned int r_type; r_type = ELF32_R_TYPE (dst->r_info); if (r_type >= (unsigned int) R_V850_max) { /* xgettext:c-format */ _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type); bfd_set_error (bfd_error_bad_value); return FALSE; } cache_ptr->howto = &v850_elf_howto_table[r_type]; return TRUE; } static bfd_boolean v850_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, const char *name) { return ( (name[0] == '.' && (name[1] == 'L' || name[1] == '.')) || (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')); } static bfd_boolean v850_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) { return v850_elf_is_local_label_name (abfd, sym->name); } /* We overload some of the bfd_reloc error codes for own purposes. */ #define bfd_reloc_gp_not_found bfd_reloc_other #define bfd_reloc_ep_not_found bfd_reloc_continue #define bfd_reloc_ctbp_not_found (bfd_reloc_dangerous + 1) /* Perform a relocation as part of a final link. */ static bfd_reloc_status_type v850_elf_final_link_relocate (reloc_howto_type *howto, bfd *input_bfd, bfd *output_bfd ATTRIBUTE_UNUSED, asection *input_section, bfd_byte *contents, bfd_vma offset, bfd_vma value, bfd_vma addend, struct bfd_link_info *info, asection *sym_sec, int is_local ATTRIBUTE_UNUSED) { unsigned int r_type = howto->type; bfd_byte *hit_data = contents + offset; /* Adjust the value according to the relocation. */ switch (r_type) { case R_V850_PC9: case R_V850_9_PCREL: value -= (input_section->output_section->vma + input_section->output_offset); value -= offset; break; case R_V850_PC16U: case R_V850_16_PCREL: value -= (input_section->output_section->vma + input_section->output_offset + offset); /* If the sign extension will corrupt the value then we have overflowed. */ if ((value & 0xffff0000) != 0xffff0000) return bfd_reloc_overflow; break; case R_V850_PC17: case R_V850_17_PCREL: value -= (input_section->output_section->vma + input_section->output_offset + offset); /* If the sign extension will corrupt the value then we have overflowed. */ if (((value & 0xffff0000) != 0x0) && ((value & 0xffff0000) != 0xffff0000)) return bfd_reloc_overflow; value = SEXT17 (value); break; case R_V850_PCR22: case R_V850_22_PCREL: value -= (input_section->output_section->vma + input_section->output_offset + offset); /* If the sign extension will corrupt the value then we have overflowed. */ if (((value & 0xffe00000) != 0x0) && ((value & 0xffe00000) != 0xffe00000)) return bfd_reloc_overflow; /* Only the bottom 22 bits of the PC are valid. */ value = SEXT22 (value); break; case R_V850_PC32: case R_V850_32_PCREL: value -= (input_section->output_section->vma + input_section->output_offset + offset); break; case R_V850_32_ABS: case R_V850_23: case R_V850_HI16_S: case R_V850_HI16: case R_V850_LO16: case R_V850_LO16_S1: case R_V850_LO16_SPLIT_OFFSET: case R_V850_16: case R_V850_ABS32: case R_V850_8: case R_V810_BYTE: case R_V810_HWORD: case R_V810_WORD: case R_V810_WLO: case R_V810_WHI: case R_V810_WHI1: case R_V810_WLO_1: case R_V850_WLO23: case R_V850_BLO: break; case R_V850_ZDA_15_16_OFFSET: case R_V850_ZDA_16_16_OFFSET: case R_V850_ZDA_16_16_SPLIT_OFFSET: if (sym_sec == NULL) return bfd_reloc_undefined; value -= sym_sec->output_section->vma; break; case R_V850_SDA_15_16_OFFSET: case R_V850_SDA_16_16_OFFSET: case R_V850_SDA_16_16_SPLIT_OFFSET: case R_V810_GPWLO_1: { unsigned long gp; struct bfd_link_hash_entry * h; if (sym_sec == NULL) return bfd_reloc_undefined; /* Get the value of __gp. */ h = bfd_link_hash_lookup (info->hash, "__gp", FALSE, FALSE, TRUE); if (h == NULL || h->type != bfd_link_hash_defined) return bfd_reloc_gp_not_found; gp = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); value -= sym_sec->output_section->vma; value -= (gp - sym_sec->output_section->vma); } break; case R_V850_TDA_4_4_OFFSET: case R_V850_TDA_4_5_OFFSET: case R_V850_TDA_7_7_OFFSET: case R_V850_TDA_7_8_OFFSET: case R_V850_TDA_6_8_OFFSET: case R_V850_TDA_16_16_OFFSET: { unsigned long ep; struct bfd_link_hash_entry * h; /* Get the value of __ep. */ h = bfd_link_hash_lookup (info->hash, "__ep", FALSE, FALSE, TRUE); if (h == NULL || h->type != bfd_link_hash_defined) return bfd_reloc_ep_not_found; ep = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); value -= ep; } break; case R_V850_CALLT_6_7_OFFSET: { unsigned long ctbp; struct bfd_link_hash_entry * h; /* Get the value of __ctbp. */ h = bfd_link_hash_lookup (info->hash, "__ctbp", FALSE, FALSE, TRUE); if (h == NULL || h->type != bfd_link_hash_defined) return bfd_reloc_ctbp_not_found; ctbp = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); value -= ctbp; } break; case R_V850_CALLT_15_16_OFFSET: case R_V850_CALLT_16_16_OFFSET: { unsigned long ctbp; struct bfd_link_hash_entry * h; if (sym_sec == NULL) return bfd_reloc_undefined; /* Get the value of __ctbp. */ h = bfd_link_hash_lookup (info->hash, "__ctbp", FALSE, FALSE, TRUE); if (h == NULL || h->type != bfd_link_hash_defined) return bfd_reloc_ctbp_not_found; ctbp = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); value -= sym_sec->output_section->vma; value -= (ctbp - sym_sec->output_section->vma); } break; case R_V850_NONE: case R_V810_NONE: case R_V850_GNU_VTINHERIT: case R_V850_GNU_VTENTRY: case R_V850_LONGCALL: case R_V850_LONGJUMP: case R_V850_ALIGN: return bfd_reloc_ok; default: #ifdef DEBUG _bfd_error_handler ("%pB: unsupported relocation type %#x", input_bfd, r_type); #endif return bfd_reloc_notsupported; } /* Perform the relocation. */ return v850_elf_perform_relocation (input_bfd, r_type, value + addend, hit_data); } /* Relocate an V850 ELF section. */ static bfd_boolean v850_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); /* Reset the list of remembered HI16S relocs to empty. */ free_hi16s = previous_hi16s; previous_hi16s = NULL; hi16s_counter = 0; rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { unsigned int r_type; reloc_howto_type *howto; unsigned long r_symndx; Elf_Internal_Sym *sym; asection *sec; struct elf_link_hash_entry *h; bfd_vma relocation; bfd_reloc_status_type r; r_symndx = ELF32_R_SYM (rel->r_info); r_type = ELF32_R_TYPE (rel->r_info); if (r_type == R_V850_GNU_VTENTRY || r_type == R_V850_GNU_VTINHERIT) continue; if (bfd_get_arch (input_bfd) == bfd_arch_v850_rh850) howto = v800_elf_howto_table + (r_type - R_V810_NONE); else howto = v850_elf_howto_table + r_type; BFD_ASSERT (r_type == howto->type); h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); } else { bfd_boolean unresolved_reloc, warned, ignored; /* Note - this check is delayed until now as it is possible and valid to have a file without any symbols but with relocs that can be processed. */ if (sym_hashes == NULL) { info->callbacks->warning (info, "no hash table available", NULL, input_bfd, input_section, (bfd_vma) 0); return FALSE; } RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, r_symndx, symtab_hdr, sym_hashes, h, sec, relocation, unresolved_reloc, warned, ignored); } if (sec != NULL && discarded_section (sec)) RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, rel, 1, relend, howto, 0, contents); if (bfd_link_relocatable (info)) continue; /* FIXME: We should use the addend, but the COFF relocations don't. */ r = v850_elf_final_link_relocate (howto, input_bfd, output_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend, info, sec, h == NULL); if (r != bfd_reloc_ok) { const char * name; const char * msg = NULL; if (h != NULL) name = h->root.root.string; else { name = (bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name)); if (name == NULL || *name == '\0') name = bfd_section_name (input_bfd, sec); } switch ((int) r) { case bfd_reloc_overflow: (*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset); break; case bfd_reloc_undefined: (*info->callbacks->undefined_symbol) (info, name, input_bfd, input_section, rel->r_offset, TRUE); break; case bfd_reloc_outofrange: msg = _("internal error: out of range error"); goto common_error; case bfd_reloc_notsupported: msg = _("internal error: unsupported relocation error"); goto common_error; case bfd_reloc_dangerous: msg = _("internal error: dangerous relocation"); goto common_error; case bfd_reloc_gp_not_found: msg = _("could not locate special linker symbol __gp"); goto common_error; case bfd_reloc_ep_not_found: msg = _("could not locate special linker symbol __ep"); goto common_error; case bfd_reloc_ctbp_not_found: msg = _("could not locate special linker symbol __ctbp"); goto common_error; default: msg = _("internal error: unknown error"); /* fall through */ common_error: (*info->callbacks->warning) (info, msg, name, input_bfd, input_section, rel->r_offset); break; } } } return TRUE; } static asection * v850_elf_gc_mark_hook (asection *sec, struct bfd_link_info *info, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { if (h != NULL) switch (ELF32_R_TYPE (rel->r_info)) { case R_V850_GNU_VTINHERIT: case R_V850_GNU_VTENTRY: return NULL; } return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); } static void v850_set_note (bfd * abfd, asection * s, enum v850_notes note, unsigned int val) { bfd_byte * data = s->contents + ((note - 1) * SIZEOF_V850_NOTE); bfd_put_32 (abfd, 4, data + 0); bfd_put_32 (abfd, 4, data + 4); bfd_put_32 (abfd, note, data + 8); memcpy (data + 12, V850_NOTE_NAME, 4); bfd_put_32 (abfd, val, data + 16); } /* Create the note section if not already present. This is done early so that the linker maps the sections to the right place in the output. */ static asection * v850_elf_make_note_section (bfd * abfd) { asection *s; bfd_byte *data; flagword flags; enum v850_notes id; /* Make the note section. */ flags = SEC_READONLY | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_MERGE; s = bfd_make_section_anyway_with_flags (abfd, V850_NOTE_SECNAME, flags); if (s == NULL) return NULL; if (!bfd_set_section_alignment (abfd, s, 2)) return NULL; /* Allocate space for all known notes. */ if (!bfd_set_section_size (abfd, s, NUM_V850_NOTES * SIZEOF_V850_NOTE)) return NULL; data = bfd_zalloc (abfd, NUM_V850_NOTES * SIZEOF_V850_NOTE); if (data == NULL) return NULL; s->contents = data; /* Provide default (= uninitilaised) values for all of the notes. */ for (id = V850_NOTE_ALIGNMENT; id <= NUM_V850_NOTES; id++) v850_set_note (abfd, s, id, 0); return s; } /* Create the note section if not already present. This is done early so that the linker maps the sections to the right place in the output. */ bfd_boolean v850_elf_create_sections (struct bfd_link_info * info) { bfd * ibfd; /* If we already have a note section, do not make another. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) if (bfd_get_section_by_name (ibfd, V850_NOTE_SECNAME) != NULL) return TRUE; return v850_elf_make_note_section (info->input_bfds) != NULL; } bfd_boolean v850_elf_set_note (bfd * abfd, enum v850_notes note, unsigned int val) { asection * notes = bfd_get_section_by_name (abfd, V850_NOTE_SECNAME); if (val > 2) /* At the moment, no known note has a value over 2. */ return FALSE; if (notes == NULL) notes = v850_elf_make_note_section (abfd); if (notes == NULL) return FALSE; v850_set_note (abfd, notes, note, val); return TRUE; } /* Copy a v850 note section from one object module to another. */ static void v850_elf_copy_notes (bfd *ibfd, bfd *obfd) { asection * onotes; asection * inotes; /* If the output bfd does not have a note section, then skip the merge. The normal input to output section copying will take care of everythng for us. */ if ((onotes = bfd_get_section_by_name (obfd, V850_NOTE_SECNAME)) == NULL) return; if ((inotes = bfd_get_section_by_name (ibfd, V850_NOTE_SECNAME)) == NULL) return; if (bfd_section_size (ibfd, inotes) == bfd_section_size (obfd, onotes)) { bfd_byte * icont; bfd_byte * ocont; if ((icont = elf_section_data (inotes)->this_hdr.contents) == NULL) BFD_ASSERT (bfd_malloc_and_get_section (ibfd, inotes, & icont)); if ((ocont = elf_section_data (onotes)->this_hdr.contents) == NULL) /* If the output is being stripped then it is possible for the notes section to disappear. In this case do nothing. */ return; /* Copy/overwrite notes from the input to the output. */ memcpy (ocont, icont, bfd_section_size (obfd, onotes)); } } /* Copy backend specific data from one object module to another. */ static bfd_boolean v850_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd) { v850_elf_copy_notes (ibfd, obfd); return _bfd_elf_copy_private_bfd_data (ibfd, obfd); } #define bfd_elf32_bfd_copy_private_bfd_data v850_elf_copy_private_bfd_data static bfd_boolean v850_elf_merge_notes (bfd * ibfd, bfd *obfd) { asection * onotes; asection * inotes; bfd_boolean result = TRUE; /* If the output bfd does not have a note section, then skip the merge. The normal input to output section copying will take care of everythng for us. */ if ((onotes = bfd_get_section_by_name (obfd, V850_NOTE_SECNAME)) == NULL) return TRUE; if ((inotes = bfd_get_section_by_name (ibfd, V850_NOTE_SECNAME)) != NULL) { enum v850_notes id; bfd_byte * icont; bfd_byte * ocont; BFD_ASSERT (bfd_section_size (ibfd, inotes) == bfd_section_size (obfd, onotes)); if ((icont = elf_section_data (inotes)->this_hdr.contents) == NULL) BFD_ASSERT (bfd_malloc_and_get_section (ibfd, inotes, & icont)); if ((ocont = elf_section_data (onotes)->this_hdr.contents) == NULL) BFD_ASSERT (bfd_malloc_and_get_section (obfd, onotes, & ocont)); for (id = V850_NOTE_ALIGNMENT; id <= NUM_V850_NOTES; id++) { unsigned int ival; unsigned int oval; bfd_byte * idata = icont + ((id - 1) * SIZEOF_V850_NOTE) + 16; bfd_byte * odata = ocont + ((id - 1) * SIZEOF_V850_NOTE) + 16; ival = bfd_get_32 (ibfd, idata); oval = bfd_get_32 (obfd, odata); if (ival == 0 || ival == oval) continue; if (oval == 0) { bfd_put_32 (obfd, ival, odata); v850_set_note (obfd, onotes, id, ival); continue; } /* We have a mismatch. The ABI defines how to handle this siutation on a per note type basis. */ switch (id) { case V850_NOTE_ALIGNMENT: if (oval == EF_RH850_DATA_ALIGN4) { _bfd_error_handler /* xgettext:c-format */ (_("error: %pB needs 8-byte alignment but %pB is set for 4-byte alignment"), ibfd, obfd); result = FALSE; } else /* ibfd uses 4-byte alignment, obfd uses 8-byte alignment. Leave the obfd alignment as it is. */ BFD_ASSERT (oval == EF_RH850_DATA_ALIGN8); break; case V850_NOTE_DATA_SIZE: if (oval == EF_RH850_DOUBLE32) { _bfd_error_handler /* xgettext:c-format */ (_("error: %pB uses 64-bit doubles but " "%pB uses 32-bit doubles"), ibfd, obfd); result = FALSE; } else /* ibfd uses 32-bit doubles, obfd uses 64-bit doubles. This is acceptable. Honest, that is what the ABI says. */ BFD_ASSERT (oval == EF_RH850_DOUBLE64); break; case V850_NOTE_FPU_INFO: if (oval == EF_RH850_FPU20) { _bfd_error_handler /* xgettext:c-format */ (_("error: %pB uses FPU-3.0 but %pB only supports FPU-2.0"), ibfd, obfd); result = FALSE; } else /* ibfd uses FPU-2.0, obfd uses FPU-3.0. Leave obfd as it is. */ BFD_ASSERT (oval == EF_RH850_FPU30); break; default: /* None of the other conflicts matter. Stick with the current output values. */ break; } } /* FIXME: We should also check for conflicts between the notes and the EF flags in the ELF header. */ } return result; } static void print_v850_note (bfd * abfd, FILE * file, bfd_byte * data, enum v850_notes id) { unsigned int value = bfd_get_32 (abfd, data + ((id - 1) * SIZEOF_V850_NOTE) + 16); switch (id) { case V850_NOTE_ALIGNMENT: fprintf (file, _(" alignment of 8-byte entities: ")); switch (value) { case EF_RH850_DATA_ALIGN4: fprintf (file, _("4-byte")); break; case EF_RH850_DATA_ALIGN8: fprintf (file, _("8-byte")); break; case 0: fprintf (file, _("not set")); break; default: fprintf (file, _("unknown: %x"), value); break; } fputc ('\n', file); break; case V850_NOTE_DATA_SIZE: fprintf (file, _(" size of doubles: ")); switch (value) { case EF_RH850_DOUBLE32: fprintf (file, _("4-bytes")); break; case EF_RH850_DOUBLE64: fprintf (file, _("8-bytes")); break; case 0: fprintf (file, _("not set")); break; default: fprintf (file, _("unknown: %x"), value); break; } fputc ('\n', file); break; case V850_NOTE_FPU_INFO: fprintf (file, _(" FPU support required: ")); switch (value) { case EF_RH850_FPU20: fprintf (file, _("FPU-2.0")); break; case EF_RH850_FPU30: fprintf (file, _("FPU-3.0")); break; case 0: fprintf (file, _("none")); break; default: fprintf (file, _("unknown: %x"), value); break; } fputc ('\n', file); break; case V850_NOTE_SIMD_INFO: fprintf (file, _("SIMD use: ")); switch (value) { case EF_RH850_SIMD: fprintf (file, _("yes")); break; case 0: fprintf (file, _("no")); break; default: fprintf (file, _("unknown: %x"), value); break; } fputc ('\n', file); break; case V850_NOTE_CACHE_INFO: fprintf (file, _("CACHE use: ")); switch (value) { case EF_RH850_CACHE: fprintf (file, _("yes")); break; case 0: fprintf (file, _("no")); break; default: fprintf (file, _("unknown: %x"), value); break; } fputc ('\n', file); break; case V850_NOTE_MMU_INFO: fprintf (file, _("MMU use: ")); switch (value) { case EF_RH850_MMU: fprintf (file, _("yes")); break; case 0: fprintf (file, _("no")); break; default: fprintf (file, _("unknown: %x"), value); break; } fputc ('\n', file); break; default: BFD_ASSERT (0); } } static void v850_elf_print_notes (bfd * abfd, FILE * file) { asection * notes = bfd_get_section_by_name (abfd, V850_NOTE_SECNAME); enum v850_notes id; if (notes == NULL || notes->contents == NULL) return; BFD_ASSERT (bfd_section_size (abfd, notes) == NUM_V850_NOTES * SIZEOF_V850_NOTE); for (id = V850_NOTE_ALIGNMENT; id <= NUM_V850_NOTES; id++) print_v850_note (abfd, file, notes->contents, id); } /* Set the right machine number and architecture. */ static bfd_boolean v850_elf_object_p (bfd *abfd) { enum bfd_architecture arch; unsigned long mach; switch (elf_elfheader (abfd)->e_machine) { case EM_V800: arch = bfd_arch_v850_rh850; mach = (elf_elfheader (abfd)->e_flags & EF_V800_850E3) ? bfd_mach_v850e3v5 : bfd_mach_v850e2v3; break; case EM_CYGNUS_V850: case EM_V850: arch = bfd_arch_v850; switch (elf_elfheader (abfd)->e_flags & EF_V850_ARCH) { default: case E_V850_ARCH: mach = bfd_mach_v850; break; case E_V850E_ARCH: mach = bfd_mach_v850e; break; case E_V850E1_ARCH: mach = bfd_mach_v850e1; break; case E_V850E2_ARCH: mach = bfd_mach_v850e2; break; case E_V850E2V3_ARCH: mach = bfd_mach_v850e2v3; break; case E_V850E3V5_ARCH: mach = bfd_mach_v850e3v5; break; } break; default: return FALSE; } return bfd_default_set_arch_mach (abfd, arch, mach); } /* Store the machine number in the flags field. */ static bfd_boolean v850_elf_final_write_processing (bfd *abfd) { unsigned long val; switch (bfd_get_arch (abfd)) { case bfd_arch_v850_rh850: val = EF_RH850_ABI; if (bfd_get_mach (abfd) == bfd_mach_v850e3v5) val |= EF_V800_850E3; elf_elfheader (abfd)->e_flags |= val; break; case bfd_arch_v850: switch (bfd_get_mach (abfd)) { default: case bfd_mach_v850: val = E_V850_ARCH; break; case bfd_mach_v850e: val = E_V850E_ARCH; break; case bfd_mach_v850e1: val = E_V850E1_ARCH; break; case bfd_mach_v850e2: val = E_V850E2_ARCH; break; case bfd_mach_v850e2v3: val = E_V850E2V3_ARCH; break; case bfd_mach_v850e3v5: val = E_V850E3V5_ARCH; break; } elf_elfheader (abfd)->e_flags &=~ EF_V850_ARCH; elf_elfheader (abfd)->e_flags |= val; break; default: break; } return _bfd_elf_final_write_processing (abfd); } /* Function to keep V850 specific file flags. */ static bfd_boolean v850_elf_set_private_flags (bfd *abfd, flagword flags) { BFD_ASSERT (!elf_flags_init (abfd) || elf_elfheader (abfd)->e_flags == flags); elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = TRUE; return TRUE; } /* Merge backend specific data from an object file to the output object file when linking. */ static bfd_boolean v850_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) { bfd *obfd = info->output_bfd; flagword out_flags; flagword in_flags; bfd_boolean result = TRUE; if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return TRUE; result &= v850_elf_merge_notes (ibfd, obfd); in_flags = elf_elfheader (ibfd)->e_flags; out_flags = elf_elfheader (obfd)->e_flags; if (! elf_flags_init (obfd)) { /* If the input is the default architecture then do not bother setting the flags for the output architecture, instead allow future merges to do this. If no future merges ever set these flags then they will retain their unitialised values, which surprise surprise, correspond to the default values. */ if (bfd_get_arch_info (ibfd)->the_default) return TRUE; elf_flags_init (obfd) = TRUE; elf_elfheader (obfd)->e_flags = in_flags; if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) && bfd_get_arch_info (obfd)->the_default) result &= bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd)); return result; } /* Check flag compatibility. */ if (in_flags == out_flags) return result; if (bfd_get_arch (obfd) == bfd_arch_v850_rh850) { if ((in_flags & EF_V800_850E3) != (out_flags & EF_V800_850E3)) { _bfd_error_handler (_("%pB: architecture mismatch with previous modules"), ibfd); elf_elfheader (obfd)->e_flags |= EF_V800_850E3; } return result; } if ((in_flags & EF_V850_ARCH) != (out_flags & EF_V850_ARCH) && (in_flags & EF_V850_ARCH) != E_V850_ARCH) { /* Allow earlier architecture binaries to be linked with later binaries. Set the output binary to the later architecture, except for v850e1, which we set to v850e. */ if ( (in_flags & EF_V850_ARCH) == E_V850E1_ARCH && (out_flags & EF_V850_ARCH) == E_V850E_ARCH) return result; if ( (in_flags & EF_V850_ARCH) == E_V850_ARCH && (out_flags & EF_V850_ARCH) == E_V850E_ARCH) { elf_elfheader (obfd)->e_flags = ((out_flags & ~ EF_V850_ARCH) | E_V850E_ARCH); return result; } if (( (in_flags & EF_V850_ARCH) == E_V850_ARCH || (in_flags & EF_V850_ARCH) == E_V850E_ARCH) && (out_flags & EF_V850_ARCH) == E_V850E2_ARCH) { elf_elfheader (obfd)->e_flags = ((out_flags & ~ EF_V850_ARCH) | E_V850E2_ARCH); return result; } if (( (in_flags & EF_V850_ARCH) == E_V850_ARCH || (in_flags & EF_V850_ARCH) == E_V850E_ARCH || (in_flags & EF_V850_ARCH) == E_V850E2_ARCH) && (out_flags & EF_V850_ARCH) == E_V850E2V3_ARCH) { elf_elfheader (obfd)->e_flags = ((out_flags & ~ EF_V850_ARCH) | E_V850E2V3_ARCH); return result; } if (( (in_flags & EF_V850_ARCH) == E_V850_ARCH || (in_flags & EF_V850_ARCH) == E_V850E_ARCH || (in_flags & EF_V850_ARCH) == E_V850E2_ARCH || (in_flags & EF_V850_ARCH) == E_V850E2V3_ARCH) && (out_flags & EF_V850_ARCH) == E_V850E3V5_ARCH) { elf_elfheader (obfd)->e_flags = ((out_flags & ~ EF_V850_ARCH) | E_V850E3V5_ARCH); return result; } _bfd_error_handler (_("%pB: architecture mismatch with previous modules"), ibfd); } return result; } /* Display the flags field. */ static bfd_boolean v850_elf_print_private_bfd_data (bfd *abfd, void * ptr) { FILE * file = (FILE *) ptr; BFD_ASSERT (abfd != NULL && ptr != NULL); _bfd_elf_print_private_bfd_data (abfd, ptr); /* xgettext:c-format. */ fprintf (file, _("private flags = %lx: "), elf_elfheader (abfd)->e_flags); if (bfd_get_arch (abfd) == bfd_arch_v850_rh850) { if ((elf_elfheader (abfd)->e_flags & EF_RH850_ABI) != EF_RH850_ABI) fprintf (file, _("unknown v850 architecture")); else if (elf_elfheader (abfd)->e_flags & EF_V800_850E3) fprintf (file, _("v850 E3 architecture")); else fprintf (file, _("v850 architecture")); } else { switch (elf_elfheader (abfd)->e_flags & EF_V850_ARCH) { default: case E_V850_ARCH: fprintf (file, _("v850 architecture")); break; case E_V850E_ARCH: fprintf (file, _("v850e architecture")); break; case E_V850E1_ARCH: fprintf (file, _("v850e1 architecture")); break; case E_V850E2_ARCH: fprintf (file, _("v850e2 architecture")); break; case E_V850E2V3_ARCH: fprintf (file, _("v850e2v3 architecture")); break; case E_V850E3V5_ARCH: fprintf (file, _("v850e3v5 architecture")); break; } } fputc ('\n', file); v850_elf_print_notes (abfd, file); return TRUE; } /* V850 ELF uses four common sections. One is the usual one, and the others are for (small) objects in one of the special data areas: small, tiny and zero. All the objects are kept together, and then referenced via the gp register, the ep register or the r0 register respectively, which yields smaller, faster assembler code. This approach is copied from elf32-mips.c. */ static asection v850_elf_scom_section; static asymbol v850_elf_scom_symbol; static asymbol * v850_elf_scom_symbol_ptr; static asection v850_elf_tcom_section; static asymbol v850_elf_tcom_symbol; static asymbol * v850_elf_tcom_symbol_ptr; static asection v850_elf_zcom_section; static asymbol v850_elf_zcom_symbol; static asymbol * v850_elf_zcom_symbol_ptr; /* Given a BFD section, try to locate the corresponding ELF section index. */ static bfd_boolean v850_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, int *retval) { if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) *retval = SHN_V850_SCOMMON; else if (strcmp (bfd_get_section_name (abfd, sec), ".tcommon") == 0) *retval = SHN_V850_TCOMMON; else if (strcmp (bfd_get_section_name (abfd, sec), ".zcommon") == 0) *retval = SHN_V850_ZCOMMON; else return FALSE; return TRUE; } /* Handle the special V850 section numbers that a symbol may use. */ static void v850_elf_symbol_processing (bfd *abfd, asymbol *asym) { elf_symbol_type * elfsym = (elf_symbol_type *) asym; unsigned int indx; indx = elfsym->internal_elf_sym.st_shndx; /* If the section index is an "ordinary" index, then it may refer to a v850 specific section created by the assembler. Check the section's type and change the index it matches. FIXME: Should we alter the st_shndx field as well ? */ if (indx < elf_numsections (abfd)) switch (elf_elfsections (abfd)[indx]->sh_type) { case SHT_V850_SCOMMON: indx = SHN_V850_SCOMMON; break; case SHT_V850_TCOMMON: indx = SHN_V850_TCOMMON; break; case SHT_V850_ZCOMMON: indx = SHN_V850_ZCOMMON; break; default: break; } switch (indx) { case SHN_V850_SCOMMON: if (v850_elf_scom_section.name == NULL) { /* Initialize the small common section. */ v850_elf_scom_section.name = ".scommon"; v850_elf_scom_section.flags = SEC_IS_COMMON | SEC_ALLOC | SEC_DATA; v850_elf_scom_section.output_section = & v850_elf_scom_section; v850_elf_scom_section.symbol = & v850_elf_scom_symbol; v850_elf_scom_section.symbol_ptr_ptr = & v850_elf_scom_symbol_ptr; v850_elf_scom_symbol.name = ".scommon"; v850_elf_scom_symbol.flags = BSF_SECTION_SYM; v850_elf_scom_symbol.section = & v850_elf_scom_section; v850_elf_scom_symbol_ptr = & v850_elf_scom_symbol; } asym->section = & v850_elf_scom_section; asym->value = elfsym->internal_elf_sym.st_size; break; case SHN_V850_TCOMMON: if (v850_elf_tcom_section.name == NULL) { /* Initialize the tcommon section. */ v850_elf_tcom_section.name = ".tcommon"; v850_elf_tcom_section.flags = SEC_IS_COMMON; v850_elf_tcom_section.output_section = & v850_elf_tcom_section; v850_elf_tcom_section.symbol = & v850_elf_tcom_symbol; v850_elf_tcom_section.symbol_ptr_ptr = & v850_elf_tcom_symbol_ptr; v850_elf_tcom_symbol.name = ".tcommon"; v850_elf_tcom_symbol.flags = BSF_SECTION_SYM; v850_elf_tcom_symbol.section = & v850_elf_tcom_section; v850_elf_tcom_symbol_ptr = & v850_elf_tcom_symbol; } asym->section = & v850_elf_tcom_section; asym->value = elfsym->internal_elf_sym.st_size; break; case SHN_V850_ZCOMMON: if (v850_elf_zcom_section.name == NULL) { /* Initialize the zcommon section. */ v850_elf_zcom_section.name = ".zcommon"; v850_elf_zcom_section.flags = SEC_IS_COMMON; v850_elf_zcom_section.output_section = & v850_elf_zcom_section; v850_elf_zcom_section.symbol = & v850_elf_zcom_symbol; v850_elf_zcom_section.symbol_ptr_ptr = & v850_elf_zcom_symbol_ptr; v850_elf_zcom_symbol.name = ".zcommon"; v850_elf_zcom_symbol.flags = BSF_SECTION_SYM; v850_elf_zcom_symbol.section = & v850_elf_zcom_section; v850_elf_zcom_symbol_ptr = & v850_elf_zcom_symbol; } asym->section = & v850_elf_zcom_section; asym->value = elfsym->internal_elf_sym.st_size; break; } } /* Hook called by the linker routine which adds symbols from an object file. We must handle the special v850 section numbers here. */ static bfd_boolean v850_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, const char **namep ATTRIBUTE_UNUSED, flagword *flagsp ATTRIBUTE_UNUSED, asection **secp, bfd_vma *valp) { unsigned int indx = sym->st_shndx; /* If the section index is an "ordinary" index, then it may refer to a v850 specific section created by the assembler. Check the section's type and change the index it matches. FIXME: Should we alter the st_shndx field as well ? */ if (indx < elf_numsections (abfd)) switch (elf_elfsections (abfd)[indx]->sh_type) { case SHT_V850_SCOMMON: indx = SHN_V850_SCOMMON; break; case SHT_V850_TCOMMON: indx = SHN_V850_TCOMMON; break; case SHT_V850_ZCOMMON: indx = SHN_V850_ZCOMMON; break; default: break; } switch (indx) { case SHN_V850_SCOMMON: *secp = bfd_make_section_old_way (abfd, ".scommon"); (*secp)->flags |= SEC_IS_COMMON; *valp = sym->st_size; break; case SHN_V850_TCOMMON: *secp = bfd_make_section_old_way (abfd, ".tcommon"); (*secp)->flags |= SEC_IS_COMMON; *valp = sym->st_size; break; case SHN_V850_ZCOMMON: *secp = bfd_make_section_old_way (abfd, ".zcommon"); (*secp)->flags |= SEC_IS_COMMON; *valp = sym->st_size; break; } return TRUE; } static int v850_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED, const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) { /* If we see a common symbol, which implies a relocatable link, then if a symbol was in a special common section in an input file, mark it as a special common in the output file. */ if (sym->st_shndx == SHN_COMMON) { if (strcmp (input_sec->name, ".scommon") == 0) sym->st_shndx = SHN_V850_SCOMMON; else if (strcmp (input_sec->name, ".tcommon") == 0) sym->st_shndx = SHN_V850_TCOMMON; else if (strcmp (input_sec->name, ".zcommon") == 0) sym->st_shndx = SHN_V850_ZCOMMON; } /* The price we pay for using h->other unused bits as flags in the linker is cleaning up after ourselves. */ sym->st_other &= ~(V850_OTHER_SDA | V850_OTHER_ZDA | V850_OTHER_TDA | V850_OTHER_ERROR); return 1; } static bfd_boolean v850_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr, const char *name, int shindex) { /* There ought to be a place to keep ELF backend specific flags, but at the moment there isn't one. We just keep track of the sections by their name, instead. */ if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) return FALSE; switch (hdr->sh_type) { case SHT_V850_SCOMMON: case SHT_V850_TCOMMON: case SHT_V850_ZCOMMON: if (! bfd_set_section_flags (abfd, hdr->bfd_section, (bfd_get_section_flags (abfd, hdr->bfd_section) | SEC_IS_COMMON))) return FALSE; } return TRUE; } /* Set the correct type for a V850 ELF section. We do this by the section name, which is a hack, but ought to work. */ static bfd_boolean v850_elf_fake_sections (bfd *abfd ATTRIBUTE_UNUSED, Elf_Internal_Shdr *hdr, asection *sec) { const char * name; name = bfd_get_section_name (abfd, sec); if (strcmp (name, ".scommon") == 0) hdr->sh_type = SHT_V850_SCOMMON; else if (strcmp (name, ".tcommon") == 0) hdr->sh_type = SHT_V850_TCOMMON; else if (strcmp (name, ".zcommon") == 0) hdr->sh_type = SHT_V850_ZCOMMON; /* Tweak the section type of .note.renesas. */ else if (strcmp (name, V850_NOTE_SECNAME) == 0) { hdr->sh_type = SHT_RENESAS_INFO; hdr->sh_entsize = SIZEOF_V850_NOTE; } return TRUE; } /* Delete some bytes from a section while relaxing. */ static bfd_boolean v850_elf_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, bfd_vma toaddr, int count) { Elf_Internal_Shdr *symtab_hdr; Elf32_External_Sym *extsyms; Elf32_External_Sym *esym; Elf32_External_Sym *esymend; int sym_index; unsigned int sec_shndx; bfd_byte *contents; Elf_Internal_Rela *irel; Elf_Internal_Rela *irelend; struct elf_link_hash_entry *sym_hash; Elf_External_Sym_Shndx *shndx; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; extsyms = (Elf32_External_Sym *) symtab_hdr->contents; sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); contents = elf_section_data (sec)->this_hdr.contents; /* The deletion must stop at the next ALIGN reloc for an alignment power larger than the number of bytes we are deleting. */ /* Actually delete the bytes. */ #if (DEBUG_RELAX & 2) fprintf (stderr, "relax_delete: contents: sec: %s %p .. %p %x\n", sec->name, addr, toaddr, count ); #endif memmove (contents + addr, contents + addr + count, toaddr - addr - count); memset (contents + toaddr-count, 0, count); /* Adjust all the relocs. */ irel = elf_section_data (sec)->relocs; irelend = irel + sec->reloc_count; if (elf_symtab_shndx_list (abfd)) { Elf_Internal_Shdr *shndx_hdr; shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; shndx = (Elf_External_Sym_Shndx *) shndx_hdr->contents; } else { shndx = NULL; } for (; irel < irelend; irel++) { bfd_vma raddr, paddr, symval; Elf_Internal_Sym isym; /* Get the new reloc address. */ raddr = irel->r_offset; if ((raddr >= (addr + count) && raddr < toaddr)) irel->r_offset -= count; if (raddr >= addr && raddr < addr + count) { irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), (int) R_V850_NONE); continue; } if (ELF32_R_TYPE (irel->r_info) == (int) R_V850_ALIGN) continue; bfd_elf32_swap_symbol_in (abfd, extsyms + ELF32_R_SYM (irel->r_info), shndx ? shndx + ELF32_R_SYM (irel->r_info) : NULL, & isym); if (isym.st_shndx != sec_shndx) continue; /* Get the value of the symbol referred to by the reloc. */ if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) { symval = isym.st_value; #if (DEBUG_RELAX & 2) { char * name = bfd_elf_string_from_elf_section (abfd, symtab_hdr->sh_link, isym.st_name); fprintf (stderr, "relax_delete: local: sec: %s, sym: %s (%d), value: %x + %x + %x addend %x\n", sec->name, name, isym.st_name, sec->output_section->vma, sec->output_offset, isym.st_value, irel->r_addend); } #endif } else { unsigned long indx; struct elf_link_hash_entry * h; /* An external symbol. */ indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd) [indx]; BFD_ASSERT (h != NULL); symval = h->root.u.def.value; #if (DEBUG_RELAX & 2) fprintf (stderr, "relax_delete: defined: sec: %s, name: %s, value: %x + %x + %x addend %x\n", sec->name, h->root.root.string, h->root.u.def.value, sec->output_section->vma, sec->output_offset, irel->r_addend); #endif } paddr = symval + irel->r_addend; if ( (symval >= addr + count && symval < toaddr) && (paddr < addr + count || paddr >= toaddr)) irel->r_addend += count; else if ( (symval < addr + count || symval >= toaddr) && (paddr >= addr + count && paddr < toaddr)) irel->r_addend -= count; } /* Adjust the local symbols defined in this section. */ esym = extsyms; esymend = esym + symtab_hdr->sh_info; for (; esym < esymend; esym++, shndx = (shndx ? shndx + 1 : NULL)) { Elf_Internal_Sym isym; bfd_elf32_swap_symbol_in (abfd, esym, shndx, & isym); if (isym.st_shndx == sec_shndx && isym.st_value >= addr + count && isym.st_value < toaddr) { isym.st_value -= count; if (isym.st_value + isym.st_size >= toaddr) isym.st_size += count; bfd_elf32_swap_symbol_out (abfd, & isym, esym, shndx); } else if (isym.st_shndx == sec_shndx && isym.st_value < addr + count) { if (isym.st_value+isym.st_size >= addr + count && isym.st_value+isym.st_size < toaddr) isym.st_size -= count; if (isym.st_value >= addr && isym.st_value < addr + count) isym.st_value = addr; bfd_elf32_swap_symbol_out (abfd, & isym, esym, shndx); } } /* Now adjust the global symbols defined in this section. */ esym = extsyms + symtab_hdr->sh_info; esymend = extsyms + (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)); for (sym_index = 0; esym < esymend; esym ++, sym_index ++) { Elf_Internal_Sym isym; bfd_elf32_swap_symbol_in (abfd, esym, shndx, & isym); sym_hash = elf_sym_hashes (abfd) [sym_index]; if (isym.st_shndx == sec_shndx && ((sym_hash)->root.type == bfd_link_hash_defined || (sym_hash)->root.type == bfd_link_hash_defweak) && (sym_hash)->root.u.def.section == sec && (sym_hash)->root.u.def.value >= addr + count && (sym_hash)->root.u.def.value < toaddr) { if ((sym_hash)->root.u.def.value + isym.st_size >= toaddr) { isym.st_size += count; bfd_elf32_swap_symbol_out (abfd, & isym, esym, shndx); } (sym_hash)->root.u.def.value -= count; } else if (isym.st_shndx == sec_shndx && ((sym_hash)->root.type == bfd_link_hash_defined || (sym_hash)->root.type == bfd_link_hash_defweak) && (sym_hash)->root.u.def.section == sec && (sym_hash)->root.u.def.value < addr + count) { if ((sym_hash)->root.u.def.value+isym.st_size >= addr + count && (sym_hash)->root.u.def.value+isym.st_size < toaddr) isym.st_size -= count; if ((sym_hash)->root.u.def.value >= addr && (sym_hash)->root.u.def.value < addr + count) (sym_hash)->root.u.def.value = addr; bfd_elf32_swap_symbol_out (abfd, & isym, esym, shndx); } if (shndx) ++ shndx; } return TRUE; } #define NOP_OPCODE (0x0000) #define MOVHI 0x0640 /* 4byte. */ #define MOVHI_MASK 0x07e0 #define MOVHI_R1(insn) ((insn) & 0x1f) /* 4byte. */ #define MOVHI_R2(insn) ((insn) >> 11) #define MOVEA 0x0620 /* 2byte. */ #define MOVEA_MASK 0x07e0 #define MOVEA_R1(insn) ((insn) & 0x1f) #define MOVEA_R2(insn) ((insn) >> 11) #define JARL_4 0x00040780 /* 4byte. */ #define JARL_4_MASK 0xFFFF07FF #define JARL_R2(insn) (int)(((insn) & (~JARL_4_MASK)) >> 11) #define ADD_I 0x0240 /* 2byte. */ #define ADD_I_MASK 0x07e0 #define ADD_I5(insn) ((((insn) & 0x001f) << 11) >> 11) /* 2byte. */ #define ADD_R2(insn) ((insn) >> 11) #define JMP_R 0x0060 /* 2byte. */ #define JMP_R_MASK 0xFFE0 #define JMP_R1(insn) ((insn) & 0x1f) static bfd_boolean v850_elf_relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info, bfd_boolean *again) { Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Rela *internal_relocs; Elf_Internal_Rela *irel; Elf_Internal_Rela *irelend; Elf_Internal_Rela *irelalign = NULL; Elf_Internal_Sym *isymbuf = NULL; bfd_byte *contents = NULL; bfd_vma addr = 0; bfd_vma toaddr; int align_pad_size = 0; bfd_boolean result = TRUE; *again = FALSE; if (bfd_link_relocatable (link_info) || (sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0) return TRUE; symtab_hdr = & elf_tdata (abfd)->symtab_hdr; internal_relocs = (_bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, link_info->keep_memory)); if (internal_relocs == NULL) goto error_return; irelend = internal_relocs + sec->reloc_count; while (addr < sec->size) { toaddr = sec->size; for (irel = internal_relocs; irel < irelend; irel ++) if (ELF32_R_TYPE (irel->r_info) == (int) R_V850_ALIGN && irel->r_offset > addr && irel->r_offset < toaddr) toaddr = irel->r_offset; #ifdef DEBUG_RELAX fprintf (stderr, "relax region 0x%x to 0x%x align pad %d\n", addr, toaddr, align_pad_size); #endif if (irelalign) { bfd_vma alignto; bfd_vma alignmoveto; alignmoveto = BFD_ALIGN (addr - align_pad_size, 1 << irelalign->r_addend); alignto = BFD_ALIGN (addr, 1 << irelalign->r_addend); if (alignmoveto < alignto) { bfd_vma i; align_pad_size = alignto - alignmoveto; #ifdef DEBUG_RELAX fprintf (stderr, "relax move region 0x%x to 0x%x delete size 0x%x\n", alignmoveto, toaddr, align_pad_size); #endif if (!v850_elf_relax_delete_bytes (abfd, sec, alignmoveto, toaddr, align_pad_size)) goto error_return; for (i = BFD_ALIGN (toaddr - align_pad_size, 1); (i + 1) < toaddr; i += 2) bfd_put_16 (abfd, NOP_OPCODE, contents + i); addr = alignmoveto; } else align_pad_size = 0; } for (irel = internal_relocs; irel < irelend; irel++) { bfd_vma laddr; bfd_vma addend; bfd_vma symval; int insn[5]; int no_match = -1; Elf_Internal_Rela *hi_irelfn; Elf_Internal_Rela *lo_irelfn; Elf_Internal_Rela *irelcall; bfd_signed_vma foff; unsigned int r_type; if (! (irel->r_offset >= addr && irel->r_offset < toaddr && (ELF32_R_TYPE (irel->r_info) == (int) R_V850_LONGCALL || ELF32_R_TYPE (irel->r_info) == (int) R_V850_LONGJUMP))) continue; #ifdef DEBUG_RELAX fprintf (stderr, "relax check r_info 0x%x r_offset 0x%x r_addend 0x%x\n", irel->r_info, irel->r_offset, irel->r_addend ); #endif /* Get the section contents. */ if (contents == NULL) { if (elf_section_data (sec)->this_hdr.contents != NULL) contents = elf_section_data (sec)->this_hdr.contents; else { if (! bfd_malloc_and_get_section (abfd, sec, &contents)) goto error_return; } } /* Read this BFD's local symbols if we haven't done so already. */ if (isymbuf == NULL && symtab_hdr->sh_info != 0) { isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; if (isymbuf == NULL) isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (isymbuf == NULL) goto error_return; } laddr = irel->r_offset; if (ELF32_R_TYPE (irel->r_info) == (int) R_V850_LONGCALL) { /* Check code for -mlong-calls output. */ if (laddr + 16 <= (bfd_vma) sec->size) { insn[0] = bfd_get_16 (abfd, contents + laddr); insn[1] = bfd_get_16 (abfd, contents + laddr + 4); insn[2] = bfd_get_32 (abfd, contents + laddr + 8); insn[3] = bfd_get_16 (abfd, contents + laddr + 12); insn[4] = bfd_get_16 (abfd, contents + laddr + 14); if ((insn[0] & MOVHI_MASK) != MOVHI || MOVHI_R1 (insn[0]) != 0) no_match = 0; if (no_match < 0 && ((insn[1] & MOVEA_MASK) != MOVEA || MOVHI_R2 (insn[0]) != MOVEA_R1 (insn[1]))) no_match = 1; if (no_match < 0 && (insn[2] & JARL_4_MASK) != JARL_4) no_match = 2; if (no_match < 0 && ((insn[3] & ADD_I_MASK) != ADD_I || ADD_I5 (insn[3]) != 4 || JARL_R2 (insn[2]) != ADD_R2 (insn[3]))) no_match = 3; if (no_match < 0 && ((insn[4] & JMP_R_MASK) != JMP_R || MOVEA_R2 (insn[1]) != JMP_R1 (insn[4]))) no_match = 4; } else { _bfd_error_handler /* xgettext:c-format */ (_("%pB: %#" PRIx64 ": warning: %s points to " "unrecognized insns"), abfd, (uint64_t) irel->r_offset, "R_V850_LONGCALL"); continue; } if (no_match >= 0) { _bfd_error_handler /* xgettext:c-format */ (_("%pB: %#" PRIx64 ": warning: %s points to " "unrecognized insn %#x"), abfd, (uint64_t) (irel->r_offset + no_match), "R_V850_LONGCALL", insn[no_match]); continue; } /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ for (hi_irelfn = internal_relocs; hi_irelfn < irelend; hi_irelfn ++) { r_type = ELF32_R_TYPE (hi_irelfn->r_info); if (hi_irelfn->r_offset == laddr + 2 && (r_type == (int) R_V850_HI16_S || r_type == (int) R_V810_WHI1)) break; } for (lo_irelfn = internal_relocs; lo_irelfn < irelend; lo_irelfn ++) { r_type = ELF32_R_TYPE (lo_irelfn->r_info); if (lo_irelfn->r_offset == laddr + 6 && (r_type == (int) R_V850_LO16 || r_type == (int) R_V810_WLO)) break; } for (irelcall = internal_relocs; irelcall < irelend; irelcall ++) { r_type = ELF32_R_TYPE (irelcall->r_info); if (irelcall->r_offset == laddr + 8 && (r_type == (int) R_V850_22_PCREL || r_type == (int) R_V850_PCR22)) break; } if ( hi_irelfn == irelend || lo_irelfn == irelend || irelcall == irelend) { _bfd_error_handler /* xgettext:c-format */ (_("%pB: %#" PRIx64 ": warning: %s points to " "unrecognized reloc"), abfd, (uint64_t) irel->r_offset, "R_V850_LONGCALL"); continue; } if (ELF32_R_SYM (irelcall->r_info) < symtab_hdr->sh_info) { Elf_Internal_Sym * isym; /* A local symbol. */ isym = isymbuf + ELF32_R_SYM (irelcall->r_info); symval = isym->st_value; } else { unsigned long indx; struct elf_link_hash_entry * h; /* An external symbol. */ indx = ELF32_R_SYM (irelcall->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[indx]; BFD_ASSERT (h != NULL); if ( h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) /* This appears to be a reference to an undefined symbol. Just ignore it--it will be caught by the regular reloc processing. */ continue; symval = h->root.u.def.value; } if (symval + irelcall->r_addend != irelcall->r_offset + 4) { _bfd_error_handler /* xgettext:c-format */ (_("%pB: %#" PRIx64 ": warning: %s points to " "unrecognized reloc %#" PRIx64), abfd, (uint64_t) irel->r_offset, "R_V850_LONGCALL", (uint64_t) irelcall->r_offset); continue; } /* Get the value of the symbol referred to by the reloc. */ if (ELF32_R_SYM (hi_irelfn->r_info) < symtab_hdr->sh_info) { Elf_Internal_Sym *isym; asection *sym_sec; /* A local symbol. */ isym = isymbuf + ELF32_R_SYM (hi_irelfn->r_info); if (isym->st_shndx == SHN_UNDEF) sym_sec = bfd_und_section_ptr; else if (isym->st_shndx == SHN_ABS) sym_sec = bfd_abs_section_ptr; else if (isym->st_shndx == SHN_COMMON) sym_sec = bfd_com_section_ptr; else sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); symval = (isym->st_value + sym_sec->output_section->vma + sym_sec->output_offset); } else { unsigned long indx; struct elf_link_hash_entry *h; /* An external symbol. */ indx = ELF32_R_SYM (hi_irelfn->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[indx]; BFD_ASSERT (h != NULL); if ( h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) /* This appears to be a reference to an undefined symbol. Just ignore it--it will be caught by the regular reloc processing. */ continue; symval = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } addend = irel->r_addend; foff = (symval + addend - (irel->r_offset + sec->output_section->vma + sec->output_offset + 4)); #ifdef DEBUG_RELAX fprintf (stderr, "relax longcall r_offset 0x%x ptr 0x%x symbol 0x%x addend 0x%x distance 0x%x\n", irel->r_offset, (irel->r_offset + sec->output_section->vma + sec->output_offset), symval, addend, foff); #endif if (foff < -0x100000 || foff >= 0x100000) /* After all that work, we can't shorten this function call. */ continue; /* For simplicity of coding, we are going to modify the section contents, the section relocs, and the BFD symbol table. We must tell the rest of the code not to free up this information. It would be possible to instead create a table of changes which have to be made, as is done in coff-mips.c; that would be more work, but would require less memory when the linker is run. */ elf_section_data (sec)->relocs = internal_relocs; elf_section_data (sec)->this_hdr.contents = contents; symtab_hdr->contents = (bfd_byte *) isymbuf; /* Replace the long call with a jarl. */ if (bfd_get_arch (abfd) == bfd_arch_v850_rh850) irel->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_V850_PCR22); else irel->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_V850_22_PCREL); addend = 0; if (ELF32_R_SYM (hi_irelfn->r_info) < symtab_hdr->sh_info) /* If this needs to be changed because of future relaxing, it will be handled here like other internal IND12W relocs. */ bfd_put_32 (abfd, 0x00000780 | (JARL_R2 (insn[2])<<11) | ((addend << 16) & 0xffff) | ((addend >> 16) & 0xf), contents + irel->r_offset); else /* We can't fully resolve this yet, because the external symbol value may be changed by future relaxing. We let the final link phase handle it. */ bfd_put_32 (abfd, 0x00000780 | (JARL_R2 (insn[2])<<11), contents + irel->r_offset); hi_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_V850_NONE); lo_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (lo_irelfn->r_info), R_V850_NONE); irelcall->r_info = ELF32_R_INFO (ELF32_R_SYM (irelcall->r_info), R_V850_NONE); if (! v850_elf_relax_delete_bytes (abfd, sec, irel->r_offset + 4, toaddr, 12)) goto error_return; align_pad_size += 12; } else if (ELF32_R_TYPE (irel->r_info) == (int) R_V850_LONGJUMP) { /* Check code for -mlong-jumps output. */ if (laddr + 10 <= (bfd_vma) sec->size) { insn[0] = bfd_get_16 (abfd, contents + laddr); insn[1] = bfd_get_16 (abfd, contents + laddr + 4); insn[2] = bfd_get_16 (abfd, contents + laddr + 8); if ((insn[0] & MOVHI_MASK) != MOVHI || MOVHI_R1 (insn[0]) != 0) no_match = 0; if (no_match < 0 && ((insn[1] & MOVEA_MASK) != MOVEA || MOVHI_R2 (insn[0]) != MOVEA_R1 (insn[1]))) no_match = 1; if (no_match < 0 && ((insn[2] & JMP_R_MASK) != JMP_R || MOVEA_R2 (insn[1]) != JMP_R1 (insn[2]))) no_match = 4; } else { _bfd_error_handler /* xgettext:c-format */ (_("%pB: %#" PRIx64 ": warning: %s points to " "unrecognized insns"), abfd, (uint64_t) irel->r_offset, "R_V850_LONGJUMP"); continue; } if (no_match >= 0) { _bfd_error_handler /* xgettext:c-format */ (_("%pB: %#" PRIx64 ": warning: %s points to " "unrecognized insn %#x"), abfd, (uint64_t) (irel->r_offset + no_match), "R_V850_LONGJUMP", insn[no_match]); continue; } /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ for (hi_irelfn = internal_relocs; hi_irelfn < irelend; hi_irelfn ++) { r_type = ELF32_R_TYPE (hi_irelfn->r_info); if (hi_irelfn->r_offset == laddr + 2 && ((r_type == (int) R_V850_HI16_S) || r_type == (int) R_V810_WHI1)) break; } for (lo_irelfn = internal_relocs; lo_irelfn < irelend; lo_irelfn ++) { r_type = ELF32_R_TYPE (lo_irelfn->r_info); if (lo_irelfn->r_offset == laddr + 6 && (r_type == (int) R_V850_LO16 || r_type == (int) R_V810_WLO)) break; } if ( hi_irelfn == irelend || lo_irelfn == irelend) { _bfd_error_handler /* xgettext:c-format */ (_("%pB: %#" PRIx64 ": warning: %s points to " "unrecognized reloc"), abfd, (uint64_t) irel->r_offset, "R_V850_LONGJUMP"); continue; } /* Get the value of the symbol referred to by the reloc. */ if (ELF32_R_SYM (hi_irelfn->r_info) < symtab_hdr->sh_info) { Elf_Internal_Sym * isym; asection * sym_sec; /* A local symbol. */ isym = isymbuf + ELF32_R_SYM (hi_irelfn->r_info); if (isym->st_shndx == SHN_UNDEF) sym_sec = bfd_und_section_ptr; else if (isym->st_shndx == SHN_ABS) sym_sec = bfd_abs_section_ptr; else if (isym->st_shndx == SHN_COMMON) sym_sec = bfd_com_section_ptr; else sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); symval = (isym->st_value + sym_sec->output_section->vma + sym_sec->output_offset); #ifdef DEBUG_RELAX { char * name = bfd_elf_string_from_elf_section (abfd, symtab_hdr->sh_link, isym->st_name); fprintf (stderr, "relax long jump local: sec: %s, sym: %s (%d), value: %x + %x + %x addend %x\n", sym_sec->name, name, isym->st_name, sym_sec->output_section->vma, sym_sec->output_offset, isym->st_value, irel->r_addend); } #endif } else { unsigned long indx; struct elf_link_hash_entry * h; /* An external symbol. */ indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[indx]; BFD_ASSERT (h != NULL); if ( h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) /* This appears to be a reference to an undefined symbol. Just ignore it--it will be caught by the regular reloc processing. */ continue; symval = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); #ifdef DEBUG_RELAX fprintf (stderr, "relax longjump defined: sec: %s, name: %s, value: %x + %x + %x addend %x\n", sec->name, h->root.root.string, h->root.u.def.value, sec->output_section->vma, sec->output_offset, irel->r_addend); #endif } addend = irel->r_addend; foff = (symval + addend - (irel->r_offset + sec->output_section->vma + sec->output_offset + 4)); #ifdef DEBUG_RELAX fprintf (stderr, "relax longjump r_offset 0x%x ptr 0x%x symbol 0x%x addend 0x%x distance 0x%x\n", irel->r_offset, (irel->r_offset + sec->output_section->vma + sec->output_offset), symval, addend, foff); #endif if (foff < -0x100000 || foff >= 0x100000) /* After all that work, we can't shorten this function call. */ continue; /* For simplicity of coding, we are going to modify the section contents, the section relocs, and the BFD symbol table. We must tell the rest of the code not to free up this information. It would be possible to instead create a table of changes which have to be made, as is done in coff-mips.c; that would be more work, but would require less memory when the linker is run. */ elf_section_data (sec)->relocs = internal_relocs; elf_section_data (sec)->this_hdr.contents = contents; symtab_hdr->contents = (bfd_byte *) isymbuf; if (foff < -0x100 || foff >= 0x100) { /* Replace the long jump with a jr. */ if (bfd_get_arch (abfd) == bfd_arch_v850_rh850) irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_V850_PCR22); else irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_V850_22_PCREL); irel->r_addend = addend; addend = 0; if (ELF32_R_SYM (hi_irelfn->r_info) < symtab_hdr->sh_info) /* If this needs to be changed because of future relaxing, it will be handled here like other internal IND12W relocs. */ bfd_put_32 (abfd, 0x00000780 | ((addend << 15) & 0xffff0000) | ((addend >> 17) & 0xf), contents + irel->r_offset); else /* We can't fully resolve this yet, because the external symbol value may be changed by future relaxing. We let the final link phase handle it. */ bfd_put_32 (abfd, 0x00000780, contents + irel->r_offset); hi_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_V850_NONE); lo_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (lo_irelfn->r_info), R_V850_NONE); if (!v850_elf_relax_delete_bytes (abfd, sec, irel->r_offset + 4, toaddr, 6)) goto error_return; align_pad_size += 6; } else { /* Replace the long jump with a br. */ if (bfd_get_arch (abfd) == bfd_arch_v850_rh850) irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_V850_PC9); else irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_V850_9_PCREL); irel->r_addend = addend; addend = 0; if (ELF32_R_SYM (hi_irelfn->r_info) < symtab_hdr->sh_info) /* If this needs to be changed because of future relaxing, it will be handled here like other internal IND12W relocs. */ bfd_put_16 (abfd, 0x0585 | ((addend << 10) & 0xf800) | ((addend << 3) & 0x0070), contents + irel->r_offset); else /* We can't fully resolve this yet, because the external symbol value may be changed by future relaxing. We let the final link phase handle it. */ bfd_put_16 (abfd, 0x0585, contents + irel->r_offset); hi_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_V850_NONE); lo_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (lo_irelfn->r_info), R_V850_NONE); if (!v850_elf_relax_delete_bytes (abfd, sec, irel->r_offset + 2, toaddr, 8)) goto error_return; align_pad_size += 8; } } } irelalign = NULL; for (irel = internal_relocs; irel < irelend; irel++) { if (ELF32_R_TYPE (irel->r_info) == (int) R_V850_ALIGN && irel->r_offset == toaddr) { irel->r_offset -= align_pad_size; if (irelalign == NULL || irelalign->r_addend > irel->r_addend) irelalign = irel; } } addr = toaddr; } if (!irelalign) { #ifdef DEBUG_RELAX fprintf (stderr, "relax pad %d shorten %d -> %d\n", align_pad_size, sec->size, sec->size - align_pad_size); #endif sec->size -= align_pad_size; } finish: if (internal_relocs != NULL && elf_section_data (sec)->relocs != internal_relocs) free (internal_relocs); if (contents != NULL && elf_section_data (sec)->this_hdr.contents != (unsigned char *) contents) free (contents); if (isymbuf != NULL && symtab_hdr->contents != (bfd_byte *) isymbuf) free (isymbuf); return result; error_return: result = FALSE; goto finish; } static const struct bfd_elf_special_section v850_elf_special_sections[] = { { STRING_COMMA_LEN (".call_table_data"), 0, SHT_PROGBITS, (SHF_ALLOC + SHF_WRITE) }, { STRING_COMMA_LEN (".call_table_text"), 0, SHT_PROGBITS, (SHF_ALLOC + SHF_WRITE + SHF_EXECINSTR) }, { STRING_COMMA_LEN (".rosdata"), -2, SHT_PROGBITS, (SHF_ALLOC + SHF_V850_GPREL) }, { STRING_COMMA_LEN (".rozdata"), -2, SHT_PROGBITS, (SHF_ALLOC + SHF_V850_R0REL) }, { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, (SHF_ALLOC + SHF_WRITE + SHF_V850_GPREL) }, { STRING_COMMA_LEN (".scommon"), -2, SHT_V850_SCOMMON, (SHF_ALLOC + SHF_WRITE + SHF_V850_GPREL) }, { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, (SHF_ALLOC + SHF_WRITE + SHF_V850_GPREL) }, { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, (SHF_ALLOC + SHF_WRITE + SHF_V850_EPREL) }, { STRING_COMMA_LEN (".tcommon"), -2, SHT_V850_TCOMMON, (SHF_ALLOC + SHF_WRITE + SHF_V850_R0REL) }, { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, (SHF_ALLOC + SHF_WRITE + SHF_V850_EPREL) }, { STRING_COMMA_LEN (".zbss"), -2, SHT_NOBITS, (SHF_ALLOC + SHF_WRITE + SHF_V850_R0REL) }, { STRING_COMMA_LEN (".zcommon"), -2, SHT_V850_ZCOMMON, (SHF_ALLOC + SHF_WRITE + SHF_V850_R0REL) }, { STRING_COMMA_LEN (".zdata"), -2, SHT_PROGBITS, (SHF_ALLOC + SHF_WRITE + SHF_V850_R0REL) }, { NULL, 0, 0, 0, 0 } }; #define TARGET_LITTLE_SYM v850_elf32_vec #define TARGET_LITTLE_NAME "elf32-v850" #define ELF_ARCH bfd_arch_v850 #define ELF_MACHINE_CODE EM_V850 #define ELF_MACHINE_ALT1 EM_CYGNUS_V850 #define ELF_MAXPAGESIZE 0x1000 #define elf_info_to_howto v850_elf_info_to_howto_rela #define elf_info_to_howto_rel v850_elf_info_to_howto_rel #define elf_backend_check_relocs v850_elf_check_relocs #define elf_backend_relocate_section v850_elf_relocate_section #define elf_backend_object_p v850_elf_object_p #define elf_backend_final_write_processing v850_elf_final_write_processing #define elf_backend_section_from_bfd_section v850_elf_section_from_bfd_section #define elf_backend_symbol_processing v850_elf_symbol_processing #define elf_backend_add_symbol_hook v850_elf_add_symbol_hook #define elf_backend_link_output_symbol_hook v850_elf_link_output_symbol_hook #define elf_backend_section_from_shdr v850_elf_section_from_shdr #define elf_backend_fake_sections v850_elf_fake_sections #define elf_backend_gc_mark_hook v850_elf_gc_mark_hook #define elf_backend_special_sections v850_elf_special_sections #define elf_backend_can_gc_sections 1 #define elf_backend_rela_normal 1 #define bfd_elf32_bfd_is_local_label_name v850_elf_is_local_label_name #define bfd_elf32_bfd_is_target_special_symbol v850_elf_is_target_special_symbol #define bfd_elf32_bfd_reloc_type_lookup v850_elf_reloc_type_lookup #define bfd_elf32_bfd_reloc_name_lookup v850_elf_reloc_name_lookup #define bfd_elf32_bfd_merge_private_bfd_data v850_elf_merge_private_bfd_data #define bfd_elf32_bfd_set_private_flags v850_elf_set_private_flags #define bfd_elf32_bfd_print_private_bfd_data v850_elf_print_private_bfd_data #define bfd_elf32_bfd_relax_section v850_elf_relax_section #define elf_symbol_leading_char '_' #undef elf32_bed #define elf32_bed elf32_v850_bed #include "elf32-target.h" /* Map BFD reloc types to V800 ELF reloc types. */ static const struct v850_elf_reloc_map v800_elf_reloc_map[] = { { BFD_RELOC_NONE, R_V810_NONE }, { BFD_RELOC_8, R_V810_BYTE }, { BFD_RELOC_16, R_V810_HWORD }, { BFD_RELOC_32, R_V810_WORD }, { BFD_RELOC_LO16, R_V810_WLO }, { BFD_RELOC_HI16, R_V810_WHI }, { BFD_RELOC_HI16_S, R_V810_WHI1 }, { BFD_RELOC_V850_32_PCREL, R_V850_PC32 }, { BFD_RELOC_V850_22_PCREL, R_V850_PCR22 }, { BFD_RELOC_V850_17_PCREL, R_V850_PC17 }, { BFD_RELOC_V850_16_PCREL, R_V850_PC16U }, { BFD_RELOC_V850_9_PCREL, R_V850_PC9 }, { BFD_RELOC_V850_LO16_S1, R_V810_WLO_1 }, /* Or R_V850_HWLO or R_V850_HWLO_1. */ { BFD_RELOC_V850_23, R_V850_WLO23 }, { BFD_RELOC_V850_LO16_SPLIT_OFFSET, R_V850_BLO }, { BFD_RELOC_V850_ZDA_16_16_OFFSET, R_V810_HWORD }, { BFD_RELOC_V850_TDA_16_16_OFFSET, R_V810_HWORD }, { BFD_RELOC_V850_SDA_16_16_OFFSET, R_V810_HWORD }, { BFD_RELOC_V850_SDA_15_16_OFFSET, R_V810_GPWLO_1 } }; /* Map a bfd relocation into the appropriate howto structure. */ static reloc_howto_type * v800_elf_reloc_type_lookup (bfd * abfd, bfd_reloc_code_real_type code) { unsigned int i; BFD_ASSERT (bfd_get_arch (abfd) == bfd_arch_v850_rh850); for (i = ARRAY_SIZE (v800_elf_reloc_map); i --;) if (v800_elf_reloc_map[i].bfd_reloc_val == code) { unsigned int elf_reloc_val = v800_elf_reloc_map[i].elf_reloc_val; unsigned int idx = elf_reloc_val - R_V810_NONE; BFD_ASSERT (v800_elf_howto_table[idx].type == elf_reloc_val); return v800_elf_howto_table + idx; } #ifdef DEBUG fprintf (stderr, "failed to find v800 equiv of bfd reloc code %d\n", code); #endif return NULL; } static reloc_howto_type * v800_elf_reloc_name_lookup (bfd * abfd, const char * r_name) { unsigned int i; BFD_ASSERT (bfd_get_arch (abfd) == bfd_arch_v850_rh850); for (i = ARRAY_SIZE (v800_elf_howto_table); i--;) if (v800_elf_howto_table[i].name != NULL && strcasecmp (v800_elf_howto_table[i].name, r_name) == 0) return v800_elf_howto_table + i; return NULL; } /* Set the howto pointer in CACHE_PTR for a V800 ELF reloc. */ static bfd_boolean v800_elf_info_to_howto (bfd * abfd, arelent * cache_ptr, Elf_Internal_Rela * dst) { unsigned int r_type = ELF32_R_TYPE (dst->r_info); if (r_type == R_V800_NONE) r_type = R_V810_NONE; if (bfd_get_arch (abfd) != bfd_arch_v850_rh850 || r_type >= (unsigned int) R_V800_max || r_type < (unsigned int) R_V810_NONE || (r_type - R_V810_NONE) >= ARRAY_SIZE (v800_elf_howto_table)) { /* xgettext:c-format */ _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type); bfd_set_error (bfd_error_bad_value); return FALSE; } cache_ptr->howto = v800_elf_howto_table + (r_type - R_V810_NONE); return TRUE; } #undef TARGET_LITTLE_SYM #define TARGET_LITTLE_SYM v800_elf32_vec #undef TARGET_LITTLE_NAME #define TARGET_LITTLE_NAME "elf32-v850-rh850" #undef ELF_ARCH #define ELF_ARCH bfd_arch_v850_rh850 #undef ELF_MACHINE_CODE #define ELF_MACHINE_CODE EM_V800 #undef ELF_MACHINE_ALT1 #undef elf32_bed #define elf32_bed elf32_v850_rh850_bed #undef elf_info_to_howto #define elf_info_to_howto v800_elf_info_to_howto #undef elf_info_to_howto_rel #define elf_info_to_howto_rel NULL #undef bfd_elf32_bfd_reloc_type_lookup #define bfd_elf32_bfd_reloc_type_lookup v800_elf_reloc_type_lookup #undef bfd_elf32_bfd_reloc_name_lookup #define bfd_elf32_bfd_reloc_name_lookup v800_elf_reloc_name_lookup #include "elf32-target.h"