/* PowerPC-specific support for 32-bit ELF Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. Written by Ian Lance Taylor, Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ /* This file is based on a preliminary PowerPC ELF ABI. The information may not match the final PowerPC ELF ABI. It includes suggestions from the in-progress Embedded PowerPC ABI, and that information may also not match. */ #include "bfd.h" #include "sysdep.h" #include "bfdlink.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/ppc.h" #include "elf32-ppc.h" #include "elf-vxworks.h" /* RELA relocations are used here. */ static bfd_reloc_status_type ppc_elf_addr16_ha_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type ppc_elf_unhandled_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); /* Branch prediction bit for branch taken relocs. */ #define BRANCH_PREDICT_BIT 0x200000 /* Mask to set RA in memory instructions. */ #define RA_REGISTER_MASK 0x001f0000 /* Value to shift register by to insert RA. */ #define RA_REGISTER_SHIFT 16 /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1" /* For old-style PLT. */ /* The number of single-slot PLT entries (the rest use two slots). */ #define PLT_NUM_SINGLE_ENTRIES 8192 /* For new-style .glink and .plt. */ #define GLINK_PLTRESOLVE 16*4 #define GLINK_ENTRY_SIZE 4*4 /* VxWorks uses its own plt layout, filled in by the static linker. */ /* The standard VxWorks PLT entry. */ #define VXWORKS_PLT_ENTRY_SIZE 32 static const bfd_vma ppc_elf_vxworks_plt_entry [VXWORKS_PLT_ENTRY_SIZE / 4] = { 0x3d800000, /* lis r12,0 */ 0x818c0000, /* lwz r12,0(r12) */ 0x7d8903a6, /* mtctr r12 */ 0x4e800420, /* bctr */ 0x39600000, /* li r11,0 */ 0x48000000, /* b 14 <.PLT0resolve+0x4> */ 0x60000000, /* nop */ 0x60000000, /* nop */ }; static const bfd_vma ppc_elf_vxworks_pic_plt_entry [VXWORKS_PLT_ENTRY_SIZE / 4] = { 0x3d9e0000, /* addis r12,r30,0 */ 0x818c0000, /* lwz r12,0(r12) */ 0x7d8903a6, /* mtctr r12 */ 0x4e800420, /* bctr */ 0x39600000, /* li r11,0 */ 0x48000000, /* b 14 <.PLT0resolve+0x4> 14: R_PPC_REL24 .PLTresolve */ 0x60000000, /* nop */ 0x60000000, /* nop */ }; /* The initial VxWorks PLT entry. */ #define VXWORKS_PLT_INITIAL_ENTRY_SIZE 32 static const bfd_vma ppc_elf_vxworks_plt0_entry [VXWORKS_PLT_INITIAL_ENTRY_SIZE / 4] = { 0x3d800000, /* lis r12,0 */ 0x398c0000, /* addi r12,r12,0 */ 0x800c0008, /* lwz r0,8(r12) */ 0x7c0903a6, /* mtctr r0 */ 0x818c0004, /* lwz r12,4(r12) */ 0x4e800420, /* bctr */ 0x60000000, /* nop */ 0x60000000, /* nop */ }; static const bfd_vma ppc_elf_vxworks_pic_plt0_entry [VXWORKS_PLT_INITIAL_ENTRY_SIZE / 4] = { 0x819e0008, /* lwz r12,8(r30) */ 0x7d8903a6, /* mtctr r12 */ 0x819e0004, /* lwz r12,4(r30) */ 0x4e800420, /* bctr */ 0x60000000, /* nop */ 0x60000000, /* nop */ 0x60000000, /* nop */ 0x60000000, /* nop */ }; /* For executables, we have some additional relocations in .rela.plt.unloaded, for the kernel loader. */ /* The number of non-JMP_SLOT relocations per PLT0 slot. */ #define VXWORKS_PLT_NON_JMP_SLOT_RELOCS 3 /* The number of relocations in the PLTResolve slot. */ #define VXWORKS_PLTRESOLVE_RELOCS 2 /* The number of relocations in the PLTResolve slot when when creating a shared library. */ #define VXWORKS_PLTRESOLVE_RELOCS_SHLIB 0 /* Some instructions. */ #define ADDIS_11_11 0x3d6b0000 #define ADDIS_11_30 0x3d7e0000 #define ADDIS_12_12 0x3d8c0000 #define ADDI_11_11 0x396b0000 #define ADD_0_11_11 0x7c0b5a14 #define ADD_11_0_11 0x7d605a14 #define B 0x48000000 #define BCL_20_31 0x429f0005 #define BCTR 0x4e800420 #define LIS_11 0x3d600000 #define LIS_12 0x3d800000 #define LWZU_0_12 0x840c0000 #define LWZ_0_12 0x800c0000 #define LWZ_11_11 0x816b0000 #define LWZ_11_30 0x817e0000 #define LWZ_12_12 0x818c0000 #define MFLR_0 0x7c0802a6 #define MFLR_12 0x7d8802a6 #define MTCTR_0 0x7c0903a6 #define MTCTR_11 0x7d6903a6 #define MTLR_0 0x7c0803a6 #define NOP 0x60000000 #define SUB_11_11_12 0x7d6c5850 /* Offset of tp and dtp pointers from start of TLS block. */ #define TP_OFFSET 0x7000 #define DTP_OFFSET 0x8000 static reloc_howto_type *ppc_elf_howto_table[R_PPC_max]; static reloc_howto_type ppc_elf_howto_raw[] = { /* This reloc does nothing. */ HOWTO (R_PPC_NONE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_NONE", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* A standard 32 bit relocation. */ HOWTO (R_PPC_ADDR32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_ADDR32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* An absolute 26 bit branch; the lower two bits must be zero. FIXME: we don't check that, we just clear them. */ HOWTO (R_PPC_ADDR24, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_ADDR24", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0x3fffffc, /* dst_mask */ FALSE), /* pcrel_offset */ /* A standard 16 bit relocation. */ HOWTO (R_PPC_ADDR16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_ADDR16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 16 bit relocation without overflow. */ HOWTO (R_PPC_ADDR16_LO, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_ADDR16_LO", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The high order 16 bits of an address. */ HOWTO (R_PPC_ADDR16_HI, /* type */ 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_ADDR16_HI", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The high order 16 bits of an address, plus 1 if the contents of the low 16 bits, treated as a signed number, is negative. */ HOWTO (R_PPC_ADDR16_HA, /* type */ 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_addr16_ha_reloc, /* special_function */ "R_PPC_ADDR16_HA", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* An absolute 16 bit branch; the lower two bits must be zero. FIXME: we don't check that, we just clear them. */ HOWTO (R_PPC_ADDR14, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_ADDR14", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xfffc, /* dst_mask */ FALSE), /* pcrel_offset */ /* An absolute 16 bit branch, for which bit 10 should be set to indicate that the branch is expected to be taken. The lower two bits must be zero. */ HOWTO (R_PPC_ADDR14_BRTAKEN, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_ADDR14_BRTAKEN",/* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xfffc, /* dst_mask */ FALSE), /* pcrel_offset */ /* An absolute 16 bit branch, for which bit 10 should be set to indicate that the branch is not expected to be taken. The lower two bits must be zero. */ HOWTO (R_PPC_ADDR14_BRNTAKEN, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_ADDR14_BRNTAKEN",/* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xfffc, /* dst_mask */ FALSE), /* pcrel_offset */ /* A relative 26 bit branch; the lower two bits must be zero. */ HOWTO (R_PPC_REL24, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_REL24", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0x3fffffc, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative 16 bit branch; the lower two bits must be zero. */ HOWTO (R_PPC_REL14, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_REL14", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xfffc, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative 16 bit branch. Bit 10 should be set to indicate that the branch is expected to be taken. The lower two bits must be zero. */ HOWTO (R_PPC_REL14_BRTAKEN, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_REL14_BRTAKEN", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xfffc, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative 16 bit branch. Bit 10 should be set to indicate that the branch is not expected to be taken. The lower two bits must be zero. */ HOWTO (R_PPC_REL14_BRNTAKEN, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_REL14_BRNTAKEN",/* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xfffc, /* dst_mask */ TRUE), /* pcrel_offset */ /* Like R_PPC_ADDR16, but referring to the GOT table entry for the symbol. */ HOWTO (R_PPC_GOT16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_GOT16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_PPC_ADDR16_LO, but referring to the GOT table entry for the symbol. */ HOWTO (R_PPC_GOT16_LO, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_GOT16_LO", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_PPC_ADDR16_HI, but referring to the GOT table entry for the symbol. */ HOWTO (R_PPC_GOT16_HI, /* type */ 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_GOT16_HI", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_PPC_ADDR16_HA, but referring to the GOT table entry for the symbol. */ HOWTO (R_PPC_GOT16_HA, /* type */ 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ ppc_elf_addr16_ha_reloc, /* special_function */ "R_PPC_GOT16_HA", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_PPC_REL24, but referring to the procedure linkage table entry for the symbol. */ HOWTO (R_PPC_PLTREL24, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_PLTREL24", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0x3fffffc, /* dst_mask */ TRUE), /* pcrel_offset */ /* This is used only by the dynamic linker. The symbol should exist both in the object being run and in some shared library. The dynamic linker copies the data addressed by the symbol from the shared library into the object, because the object being run has to have the data at some particular address. */ HOWTO (R_PPC_COPY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_COPY", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_PPC_ADDR32, but used when setting global offset table entries. */ HOWTO (R_PPC_GLOB_DAT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_GLOB_DAT", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Marks a procedure linkage table entry for a symbol. */ HOWTO (R_PPC_JMP_SLOT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_JMP_SLOT", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* Used only by the dynamic linker. When the object is run, this longword is set to the load address of the object, plus the addend. */ HOWTO (R_PPC_RELATIVE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_RELATIVE", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_PPC_REL24, but uses the value of the symbol within the object rather than the final value. Normally used for _GLOBAL_OFFSET_TABLE_. */ HOWTO (R_PPC_LOCAL24PC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_LOCAL24PC", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0x3fffffc, /* dst_mask */ TRUE), /* pcrel_offset */ /* Like R_PPC_ADDR32, but may be unaligned. */ HOWTO (R_PPC_UADDR32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_UADDR32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_PPC_ADDR16, but may be unaligned. */ HOWTO (R_PPC_UADDR16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_UADDR16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* 32-bit PC relative */ HOWTO (R_PPC_REL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_REL32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* 32-bit relocation to the symbol's procedure linkage table. FIXME: not supported. */ HOWTO (R_PPC_PLT32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_PLT32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* 32-bit PC relative relocation to the symbol's procedure linkage table. FIXME: not supported. */ HOWTO (R_PPC_PLTREL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_PLTREL32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ TRUE), /* pcrel_offset */ /* Like R_PPC_ADDR16_LO, but referring to the PLT table entry for the symbol. */ HOWTO (R_PPC_PLT16_LO, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_PLT16_LO", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_PPC_ADDR16_HI, but referring to the PLT table entry for the symbol. */ HOWTO (R_PPC_PLT16_HI, /* type */ 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_PLT16_HI", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_PPC_ADDR16_HA, but referring to the PLT table entry for the symbol. */ HOWTO (R_PPC_PLT16_HA, /* type */ 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ ppc_elf_addr16_ha_reloc, /* special_function */ "R_PPC_PLT16_HA", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A sign-extended 16 bit value relative to _SDA_BASE_, for use with small data items. */ HOWTO (R_PPC_SDAREL16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_SDAREL16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* 16-bit section relative relocation. */ HOWTO (R_PPC_SECTOFF, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_SECTOFF", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* 16-bit lower half section relative relocation. */ HOWTO (R_PPC_SECTOFF_LO, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_SECTOFF_LO", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* 16-bit upper half section relative relocation. */ HOWTO (R_PPC_SECTOFF_HI, /* type */ 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_SECTOFF_HI", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* 16-bit upper half adjusted section relative relocation. */ HOWTO (R_PPC_SECTOFF_HA, /* type */ 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ ppc_elf_addr16_ha_reloc, /* special_function */ "R_PPC_SECTOFF_HA", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Marker reloc for TLS. */ HOWTO (R_PPC_TLS, 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_TLS", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* Computes the load module index of the load module that contains the definition of its TLS sym. */ HOWTO (R_PPC_DTPMOD32, 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_DTPMOD32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Computes a dtv-relative displacement, the difference between the value of sym+add and the base address of the thread-local storage block that contains the definition of sym, minus 0x8000. */ HOWTO (R_PPC_DTPREL32, 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_DTPREL32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 16 bit dtprel reloc. */ HOWTO (R_PPC_DTPREL16, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_DTPREL16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like DTPREL16, but no overflow. */ HOWTO (R_PPC_DTPREL16_LO, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_DTPREL16_LO", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like DTPREL16_LO, but next higher group of 16 bits. */ HOWTO (R_PPC_DTPREL16_HI, 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_DTPREL16_HI", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like DTPREL16_HI, but adjust for low 16 bits. */ HOWTO (R_PPC_DTPREL16_HA, 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_DTPREL16_HA", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Computes a tp-relative displacement, the difference between the value of sym+add and the value of the thread pointer (r13). */ HOWTO (R_PPC_TPREL32, 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_TPREL32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 16 bit tprel reloc. */ HOWTO (R_PPC_TPREL16, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_TPREL16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like TPREL16, but no overflow. */ HOWTO (R_PPC_TPREL16_LO, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_TPREL16_LO", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like TPREL16_LO, but next higher group of 16 bits. */ HOWTO (R_PPC_TPREL16_HI, 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_TPREL16_HI", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like TPREL16_HI, but adjust for low 16 bits. */ HOWTO (R_PPC_TPREL16_HA, 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_TPREL16_HA", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Allocates two contiguous entries in the GOT to hold a tls_index structure, with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset to the first entry. */ HOWTO (R_PPC_GOT_TLSGD16, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_TLSGD16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like GOT_TLSGD16, but no overflow. */ HOWTO (R_PPC_GOT_TLSGD16_LO, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_TLSGD16_LO", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */ HOWTO (R_PPC_GOT_TLSGD16_HI, 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_TLSGD16_HI", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */ HOWTO (R_PPC_GOT_TLSGD16_HA, 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_TLSGD16_HA", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Allocates two contiguous entries in the GOT to hold a tls_index structure, with values (sym+add)@dtpmod and zero, and computes the offset to the first entry. */ HOWTO (R_PPC_GOT_TLSLD16, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_TLSLD16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like GOT_TLSLD16, but no overflow. */ HOWTO (R_PPC_GOT_TLSLD16_LO, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_TLSLD16_LO", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */ HOWTO (R_PPC_GOT_TLSLD16_HI, 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_TLSLD16_HI", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */ HOWTO (R_PPC_GOT_TLSLD16_HA, 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_TLSLD16_HA", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes the offset to the entry. */ HOWTO (R_PPC_GOT_DTPREL16, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_DTPREL16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like GOT_DTPREL16, but no overflow. */ HOWTO (R_PPC_GOT_DTPREL16_LO, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_DTPREL16_LO", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like GOT_DTPREL16_LO, but next higher group of 16 bits. */ HOWTO (R_PPC_GOT_DTPREL16_HI, 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_DTPREL16_HI", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */ HOWTO (R_PPC_GOT_DTPREL16_HA, 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_DTPREL16_HA", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the offset to the entry. */ HOWTO (R_PPC_GOT_TPREL16, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_TPREL16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like GOT_TPREL16, but no overflow. */ HOWTO (R_PPC_GOT_TPREL16_LO, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_TPREL16_LO", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like GOT_TPREL16_LO, but next higher group of 16 bits. */ HOWTO (R_PPC_GOT_TPREL16_HI, 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_TPREL16_HI", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */ HOWTO (R_PPC_GOT_TPREL16_HA, 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_unhandled_reloc, /* special_function */ "R_PPC_GOT_TPREL16_HA", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The remaining relocs are from the Embedded ELF ABI, and are not in the SVR4 ELF ABI. */ /* 32 bit value resulting from the addend minus the symbol. */ HOWTO (R_PPC_EMB_NADDR32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_EMB_NADDR32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* 16 bit value resulting from the addend minus the symbol. */ HOWTO (R_PPC_EMB_NADDR16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_EMB_NADDR16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* 16 bit value resulting from the addend minus the symbol. */ HOWTO (R_PPC_EMB_NADDR16_LO, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_EMB_ADDR16_LO", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The high order 16 bits of the addend minus the symbol. */ HOWTO (R_PPC_EMB_NADDR16_HI, /* type */ 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_EMB_NADDR16_HI", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The high order 16 bits of the result of the addend minus the address, plus 1 if the contents of the low 16 bits, treated as a signed number, is negative. */ HOWTO (R_PPC_EMB_NADDR16_HA, /* type */ 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_addr16_ha_reloc, /* special_function */ "R_PPC_EMB_NADDR16_HA", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* 16 bit value resulting from allocating a 4 byte word to hold an address in the .sdata section, and returning the offset from _SDA_BASE_ for that relocation. */ HOWTO (R_PPC_EMB_SDAI16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_EMB_SDAI16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* 16 bit value resulting from allocating a 4 byte word to hold an address in the .sdata2 section, and returning the offset from _SDA2_BASE_ for that relocation. */ HOWTO (R_PPC_EMB_SDA2I16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_EMB_SDA2I16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A sign-extended 16 bit value relative to _SDA2_BASE_, for use with small data items. */ HOWTO (R_PPC_EMB_SDA2REL, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_EMB_SDA2REL", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relocate against either _SDA_BASE_ or _SDA2_BASE_, filling in the 16 bit signed offset from the appropriate base, and filling in the register field with the appropriate register (0, 2, or 13). */ HOWTO (R_PPC_EMB_SDA21, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_EMB_SDA21", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relocation not handled: R_PPC_EMB_MRKREF */ /* Relocation not handled: R_PPC_EMB_RELSEC16 */ /* Relocation not handled: R_PPC_EMB_RELST_LO */ /* Relocation not handled: R_PPC_EMB_RELST_HI */ /* Relocation not handled: R_PPC_EMB_RELST_HA */ /* Relocation not handled: R_PPC_EMB_BIT_FLD */ /* PC relative relocation against either _SDA_BASE_ or _SDA2_BASE_, filling in the 16 bit signed offset from the appropriate base, and filling in the register field with the appropriate register (0, 2, or 13). */ HOWTO (R_PPC_EMB_RELSDA, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_EMB_RELSDA", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 16 bit relative relocation. */ HOWTO (R_PPC_REL16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_REL16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* A 16 bit relative relocation without overflow. */ HOWTO (R_PPC_REL16_LO, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_REL16_LO", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* The high order 16 bits of a relative address. */ HOWTO (R_PPC_REL16_HI, /* type */ 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_REL16_HI", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* The high order 16 bits of a relative address, plus 1 if the contents of the low 16 bits, treated as a signed number, is negative. */ HOWTO (R_PPC_REL16_HA, /* type */ 16, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ ppc_elf_addr16_ha_reloc, /* special_function */ "R_PPC_REL16_HA", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* GNU extension to record C++ vtable hierarchy. */ HOWTO (R_PPC_GNU_VTINHERIT, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ NULL, /* special_function */ "R_PPC_GNU_VTINHERIT", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* GNU extension to record C++ vtable member usage. */ HOWTO (R_PPC_GNU_VTENTRY, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ NULL, /* special_function */ "R_PPC_GNU_VTENTRY", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* Phony reloc to handle AIX style TOC entries. */ HOWTO (R_PPC_TOC16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_PPC_TOC16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ }; /* Initialize the ppc_elf_howto_table, so that linear accesses can be done. */ static void ppc_elf_howto_init (void) { unsigned int i, type; for (i = 0; i < sizeof (ppc_elf_howto_raw) / sizeof (ppc_elf_howto_raw[0]); i++) { type = ppc_elf_howto_raw[i].type; if (type >= (sizeof (ppc_elf_howto_table) / sizeof (ppc_elf_howto_table[0]))) abort (); ppc_elf_howto_table[type] = &ppc_elf_howto_raw[i]; } } static reloc_howto_type * ppc_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { enum elf_ppc_reloc_type r; /* Initialize howto table if not already done. */ if (!ppc_elf_howto_table[R_PPC_ADDR32]) ppc_elf_howto_init (); switch (code) { default: return NULL; case BFD_RELOC_NONE: r = R_PPC_NONE; break; case BFD_RELOC_32: r = R_PPC_ADDR32; break; case BFD_RELOC_PPC_BA26: r = R_PPC_ADDR24; break; case BFD_RELOC_16: r = R_PPC_ADDR16; break; case BFD_RELOC_LO16: r = R_PPC_ADDR16_LO; break; case BFD_RELOC_HI16: r = R_PPC_ADDR16_HI; break; case BFD_RELOC_HI16_S: r = R_PPC_ADDR16_HA; break; case BFD_RELOC_PPC_BA16: r = R_PPC_ADDR14; break; case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC_ADDR14_BRTAKEN; break; case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC_ADDR14_BRNTAKEN; break; case BFD_RELOC_PPC_B26: r = R_PPC_REL24; break; case BFD_RELOC_PPC_B16: r = R_PPC_REL14; break; case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC_REL14_BRTAKEN; break; case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC_REL14_BRNTAKEN; break; case BFD_RELOC_16_GOTOFF: r = R_PPC_GOT16; break; case BFD_RELOC_LO16_GOTOFF: r = R_PPC_GOT16_LO; break; case BFD_RELOC_HI16_GOTOFF: r = R_PPC_GOT16_HI; break; case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC_GOT16_HA; break; case BFD_RELOC_24_PLT_PCREL: r = R_PPC_PLTREL24; break; case BFD_RELOC_PPC_COPY: r = R_PPC_COPY; break; case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC_GLOB_DAT; break; case BFD_RELOC_PPC_LOCAL24PC: r = R_PPC_LOCAL24PC; break; case BFD_RELOC_32_PCREL: r = R_PPC_REL32; break; case BFD_RELOC_32_PLTOFF: r = R_PPC_PLT32; break; case BFD_RELOC_32_PLT_PCREL: r = R_PPC_PLTREL32; break; case BFD_RELOC_LO16_PLTOFF: r = R_PPC_PLT16_LO; break; case BFD_RELOC_HI16_PLTOFF: r = R_PPC_PLT16_HI; break; case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC_PLT16_HA; break; case BFD_RELOC_GPREL16: r = R_PPC_SDAREL16; break; case BFD_RELOC_16_BASEREL: r = R_PPC_SECTOFF; break; case BFD_RELOC_LO16_BASEREL: r = R_PPC_SECTOFF_LO; break; case BFD_RELOC_HI16_BASEREL: r = R_PPC_SECTOFF_HI; break; case BFD_RELOC_HI16_S_BASEREL: r = R_PPC_SECTOFF_HA; break; case BFD_RELOC_CTOR: r = R_PPC_ADDR32; break; case BFD_RELOC_PPC_TOC16: r = R_PPC_TOC16; break; case BFD_RELOC_PPC_TLS: r = R_PPC_TLS; break; case BFD_RELOC_PPC_DTPMOD: r = R_PPC_DTPMOD32; break; case BFD_RELOC_PPC_TPREL16: r = R_PPC_TPREL16; break; case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC_TPREL16_LO; break; case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC_TPREL16_HI; break; case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC_TPREL16_HA; break; case BFD_RELOC_PPC_TPREL: r = R_PPC_TPREL32; break; case BFD_RELOC_PPC_DTPREL16: r = R_PPC_DTPREL16; break; case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC_DTPREL16_LO; break; case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC_DTPREL16_HI; break; case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC_DTPREL16_HA; break; case BFD_RELOC_PPC_DTPREL: r = R_PPC_DTPREL32; break; case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC_GOT_TLSGD16; break; case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC_GOT_TLSGD16_LO; break; case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC_GOT_TLSGD16_HI; break; case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC_GOT_TLSGD16_HA; break; case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC_GOT_TLSLD16; break; case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC_GOT_TLSLD16_LO; break; case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC_GOT_TLSLD16_HI; break; case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC_GOT_TLSLD16_HA; break; case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC_GOT_TPREL16; break; case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC_GOT_TPREL16_LO; break; case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC_GOT_TPREL16_HI; break; case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC_GOT_TPREL16_HA; break; case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC_GOT_DTPREL16; break; case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC_GOT_DTPREL16_LO; break; case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC_GOT_DTPREL16_HI; break; case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC_GOT_DTPREL16_HA; break; case BFD_RELOC_PPC_EMB_NADDR32: r = R_PPC_EMB_NADDR32; break; case BFD_RELOC_PPC_EMB_NADDR16: r = R_PPC_EMB_NADDR16; break; case BFD_RELOC_PPC_EMB_NADDR16_LO: r = R_PPC_EMB_NADDR16_LO; break; case BFD_RELOC_PPC_EMB_NADDR16_HI: r = R_PPC_EMB_NADDR16_HI; break; case BFD_RELOC_PPC_EMB_NADDR16_HA: r = R_PPC_EMB_NADDR16_HA; break; case BFD_RELOC_PPC_EMB_SDAI16: r = R_PPC_EMB_SDAI16; break; case BFD_RELOC_PPC_EMB_SDA2I16: r = R_PPC_EMB_SDA2I16; break; case BFD_RELOC_PPC_EMB_SDA2REL: r = R_PPC_EMB_SDA2REL; break; case BFD_RELOC_PPC_EMB_SDA21: r = R_PPC_EMB_SDA21; break; case BFD_RELOC_PPC_EMB_MRKREF: r = R_PPC_EMB_MRKREF; break; case BFD_RELOC_PPC_EMB_RELSEC16: r = R_PPC_EMB_RELSEC16; break; case BFD_RELOC_PPC_EMB_RELST_LO: r = R_PPC_EMB_RELST_LO; break; case BFD_RELOC_PPC_EMB_RELST_HI: r = R_PPC_EMB_RELST_HI; break; case BFD_RELOC_PPC_EMB_RELST_HA: r = R_PPC_EMB_RELST_HA; break; case BFD_RELOC_PPC_EMB_BIT_FLD: r = R_PPC_EMB_BIT_FLD; break; case BFD_RELOC_PPC_EMB_RELSDA: r = R_PPC_EMB_RELSDA; break; case BFD_RELOC_16_PCREL: r = R_PPC_REL16; break; case BFD_RELOC_LO16_PCREL: r = R_PPC_REL16_LO; break; case BFD_RELOC_HI16_PCREL: r = R_PPC_REL16_HI; break; case BFD_RELOC_HI16_S_PCREL: r = R_PPC_REL16_HA; break; case BFD_RELOC_VTABLE_INHERIT: r = R_PPC_GNU_VTINHERIT; break; case BFD_RELOC_VTABLE_ENTRY: r = R_PPC_GNU_VTENTRY; break; } return ppc_elf_howto_table[r]; }; /* Set the howto pointer for a PowerPC ELF reloc. */ static void ppc_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, Elf_Internal_Rela *dst) { /* Initialize howto table if not already done. */ if (!ppc_elf_howto_table[R_PPC_ADDR32]) ppc_elf_howto_init (); BFD_ASSERT (ELF32_R_TYPE (dst->r_info) < (unsigned int) R_PPC_max); cache_ptr->howto = ppc_elf_howto_table[ELF32_R_TYPE (dst->r_info)]; } /* Handle the R_PPC_ADDR16_HA and R_PPC_REL16_HA relocs. */ static bfd_reloc_status_type ppc_elf_addr16_ha_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol, void *data ATTRIBUTE_UNUSED, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { bfd_vma relocation; if (output_bfd != NULL) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) return bfd_reloc_outofrange; if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; relocation += reloc_entry->addend; if (reloc_entry->howto->pc_relative) relocation -= reloc_entry->address; reloc_entry->addend += (relocation & 0x8000) << 1; return bfd_reloc_continue; } static bfd_reloc_status_type ppc_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message) { /* If this is a relocatable link (output_bfd test tells us), just call the generic function. Any adjustment will be done at final link time. */ if (output_bfd != NULL) return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); if (error_message != NULL) { static char buf[60]; sprintf (buf, _("generic linker can't handle %s"), reloc_entry->howto->name); *error_message = buf; } return bfd_reloc_dangerous; } /* Sections created by the linker. */ typedef struct elf_linker_section { /* Pointer to the bfd section. */ asection *section; /* Section name. */ const char *name; /* Associated bss section name. */ const char *bss_name; /* Associated symbol name. */ const char *sym_name; /* Associated symbol. */ struct elf_link_hash_entry *sym; } elf_linker_section_t; /* Linked list of allocated pointer entries. This hangs off of the symbol lists, and provides allows us to return different pointers, based on different addend's. */ typedef struct elf_linker_section_pointers { /* next allocated pointer for this symbol */ struct elf_linker_section_pointers *next; /* offset of pointer from beginning of section */ bfd_vma offset; /* addend used */ bfd_vma addend; /* which linker section this is */ elf_linker_section_t *lsect; } elf_linker_section_pointers_t; struct ppc_elf_obj_tdata { struct elf_obj_tdata elf; /* A mapping from local symbols to offsets into the various linker sections added. This is index by the symbol index. */ elf_linker_section_pointers_t **linker_section_pointers; }; #define ppc_elf_tdata(bfd) \ ((struct ppc_elf_obj_tdata *) (bfd)->tdata.any) #define elf_local_ptr_offsets(bfd) \ (ppc_elf_tdata (bfd)->linker_section_pointers) /* Override the generic function because we store some extras. */ static bfd_boolean ppc_elf_mkobject (bfd *abfd) { if (abfd->tdata.any == NULL) { bfd_size_type amt = sizeof (struct ppc_elf_obj_tdata); abfd->tdata.any = bfd_zalloc (abfd, amt); if (abfd->tdata.any == NULL) return FALSE; } return bfd_elf_mkobject (abfd); } /* Fix bad default arch selected for a 32 bit input bfd when the default is 64 bit. */ static bfd_boolean ppc_elf_object_p (bfd *abfd) { if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 64) { Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd); if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS32) { /* Relies on arch after 64 bit default being 32 bit default. */ abfd->arch_info = abfd->arch_info->next; BFD_ASSERT (abfd->arch_info->bits_per_word == 32); } } return TRUE; } /* Function to set whether a module needs the -mrelocatable bit set. */ static bfd_boolean ppc_elf_set_private_flags (bfd *abfd, flagword flags) { BFD_ASSERT (!elf_flags_init (abfd) || elf_elfheader (abfd)->e_flags == flags); elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = TRUE; return TRUE; } /* Support for core dump NOTE sections. */ static bfd_boolean ppc_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) { int offset; unsigned int size; switch (note->descsz) { default: return FALSE; case 268: /* Linux/PPC. */ /* pr_cursig */ elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); /* pr_pid */ elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); /* pr_reg */ offset = 72; size = 192; break; } /* Make a ".reg/999" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", size, note->descpos + offset); } static bfd_boolean ppc_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) { switch (note->descsz) { default: return FALSE; case 128: /* Linux/PPC elf_prpsinfo. */ elf_tdata (abfd)->core_program = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); elf_tdata (abfd)->core_command = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); } /* Note that for some reason, a spurious space is tacked onto the end of the args in some (at least one anyway) implementations, so strip it off if it exists. */ { char *command = elf_tdata (abfd)->core_command; int n = strlen (command); if (0 < n && command[n - 1] == ' ') command[n - 1] = '\0'; } return TRUE; } /* Return address for Ith PLT stub in section PLT, for relocation REL or (bfd_vma) -1 if it should not be included. */ static bfd_vma ppc_elf_plt_sym_val (bfd_vma i ATTRIBUTE_UNUSED, const asection *plt ATTRIBUTE_UNUSED, const arelent *rel) { return rel->address; } /* Handle a PowerPC specific section when reading an object file. This is called when bfd_section_from_shdr finds a section with an unknown type. */ static bfd_boolean ppc_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr, const char *name, int shindex) { asection *newsect; flagword flags; if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) return FALSE; newsect = hdr->bfd_section; flags = bfd_get_section_flags (abfd, newsect); if (hdr->sh_flags & SHF_EXCLUDE) flags |= SEC_EXCLUDE; if (hdr->sh_type == SHT_ORDERED) flags |= SEC_SORT_ENTRIES; bfd_set_section_flags (abfd, newsect, flags); return TRUE; } /* Set up any other section flags and such that may be necessary. */ static bfd_boolean ppc_elf_fake_sections (bfd *abfd ATTRIBUTE_UNUSED, Elf_Internal_Shdr *shdr, asection *asect) { if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE) shdr->sh_flags |= SHF_EXCLUDE; if ((asect->flags & SEC_SORT_ENTRIES) != 0) shdr->sh_type = SHT_ORDERED; return TRUE; } /* If we have .sbss2 or .PPC.EMB.sbss0 output sections, we need to bump up the number of section headers. */ static int ppc_elf_additional_program_headers (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) { asection *s; int ret = 0; s = bfd_get_section_by_name (abfd, ".sbss2"); if (s != NULL && (s->flags & SEC_ALLOC) != 0) ++ret; s = bfd_get_section_by_name (abfd, ".PPC.EMB.sbss0"); if (s != NULL && (s->flags & SEC_ALLOC) != 0) ++ret; return ret; } /* Add extra PPC sections -- Note, for now, make .sbss2 and .PPC.EMB.sbss0 a normal section, and not a bss section so that the linker doesn't crater when trying to make more than 2 sections. */ static const struct bfd_elf_special_section ppc_elf_special_sections[] = { { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, SHF_ALLOC + SHF_EXECINSTR }, { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, { STRING_COMMA_LEN (".sbss2"), -2, SHT_PROGBITS, SHF_ALLOC }, { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, { STRING_COMMA_LEN (".sdata2"), -2, SHT_PROGBITS, SHF_ALLOC }, { STRING_COMMA_LEN (".tags"), 0, SHT_ORDERED, SHF_ALLOC }, { STRING_COMMA_LEN (".PPC.EMB.apuinfo"), 0, SHT_NOTE, 0 }, { STRING_COMMA_LEN (".PPC.EMB.sbss0"), 0, SHT_PROGBITS, SHF_ALLOC }, { STRING_COMMA_LEN (".PPC.EMB.sdata0"), 0, SHT_PROGBITS, SHF_ALLOC }, { NULL, 0, 0, 0, 0 } }; /* This is what we want for new plt/got. */ static struct bfd_elf_special_section ppc_alt_plt = { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC }; static const struct bfd_elf_special_section * ppc_elf_get_sec_type_attr (bfd *abfd ATTRIBUTE_UNUSED, asection *sec) { const struct bfd_elf_special_section *ssect; /* See if this is one of the special sections. */ if (sec->name == NULL) return NULL; ssect = _bfd_elf_get_special_section (sec->name, ppc_elf_special_sections, sec->use_rela_p); if (ssect != NULL) { if (ssect == ppc_elf_special_sections && (sec->flags & SEC_LOAD) != 0) ssect = &ppc_alt_plt; return ssect; } return _bfd_elf_get_sec_type_attr (abfd, sec); } /* Very simple linked list structure for recording apuinfo values. */ typedef struct apuinfo_list { struct apuinfo_list *next; unsigned long value; } apuinfo_list; static apuinfo_list *head; static void apuinfo_list_init (void) { head = NULL; } static void apuinfo_list_add (unsigned long value) { apuinfo_list *entry = head; while (entry != NULL) { if (entry->value == value) return; entry = entry->next; } entry = bfd_malloc (sizeof (* entry)); if (entry == NULL) return; entry->value = value; entry->next = head; head = entry; } static unsigned apuinfo_list_length (void) { apuinfo_list *entry; unsigned long count; for (entry = head, count = 0; entry; entry = entry->next) ++ count; return count; } static inline unsigned long apuinfo_list_element (unsigned long number) { apuinfo_list * entry; for (entry = head; entry && number --; entry = entry->next) ; return entry ? entry->value : 0; } static void apuinfo_list_finish (void) { apuinfo_list *entry; for (entry = head; entry;) { apuinfo_list *next = entry->next; free (entry); entry = next; } head = NULL; } #define APUINFO_SECTION_NAME ".PPC.EMB.apuinfo" #define APUINFO_LABEL "APUinfo" /* Scan the input BFDs and create a linked list of the APUinfo values that will need to be emitted. */ static void ppc_elf_begin_write_processing (bfd *abfd, struct bfd_link_info *link_info) { bfd *ibfd; asection *asec; char *buffer; unsigned num_input_sections; bfd_size_type output_section_size; unsigned i; unsigned num_entries; unsigned long offset; unsigned long length; const char *error_message = NULL; if (link_info == NULL) return; /* Scan the input bfds, looking for apuinfo sections. */ num_input_sections = 0; output_section_size = 0; for (ibfd = link_info->input_bfds; ibfd; ibfd = ibfd->link_next) { asec = bfd_get_section_by_name (ibfd, APUINFO_SECTION_NAME); if (asec) { ++ num_input_sections; output_section_size += asec->size; } } /* We need at least one input sections in order to make merging worthwhile. */ if (num_input_sections < 1) return; /* Just make sure that the output section exists as well. */ asec = bfd_get_section_by_name (abfd, APUINFO_SECTION_NAME); if (asec == NULL) return; /* Allocate a buffer for the contents of the input sections. */ buffer = bfd_malloc (output_section_size); if (buffer == NULL) return; offset = 0; apuinfo_list_init (); /* Read in the input sections contents. */ for (ibfd = link_info->input_bfds; ibfd; ibfd = ibfd->link_next) { unsigned long datum; char *ptr; asec = bfd_get_section_by_name (ibfd, APUINFO_SECTION_NAME); if (asec == NULL) continue; length = asec->size; if (length < 24) { error_message = _("corrupt or empty %s section in %B"); goto fail; } if (bfd_seek (ibfd, asec->filepos, SEEK_SET) != 0 || (bfd_bread (buffer + offset, length, ibfd) != length)) { error_message = _("unable to read in %s section from %B"); goto fail; } /* Process the contents of the section. */ ptr = buffer + offset; error_message = _("corrupt %s section in %B"); /* Verify the contents of the header. Note - we have to extract the values this way in order to allow for a host whose endian-ness is different from the target. */ datum = bfd_get_32 (ibfd, ptr); if (datum != sizeof APUINFO_LABEL) goto fail; datum = bfd_get_32 (ibfd, ptr + 8); if (datum != 0x2) goto fail; if (strcmp (ptr + 12, APUINFO_LABEL) != 0) goto fail; /* Get the number of bytes used for apuinfo entries. */ datum = bfd_get_32 (ibfd, ptr + 4); if (datum + 20 != length) goto fail; /* Make sure that we do not run off the end of the section. */ if (offset + length > output_section_size) goto fail; /* Scan the apuinfo section, building a list of apuinfo numbers. */ for (i = 0; i < datum; i += 4) apuinfo_list_add (bfd_get_32 (ibfd, ptr + 20 + i)); /* Update the offset. */ offset += length; } error_message = NULL; /* Compute the size of the output section. */ num_entries = apuinfo_list_length (); output_section_size = 20 + num_entries * 4; asec = bfd_get_section_by_name (abfd, APUINFO_SECTION_NAME); if (! bfd_set_section_size (abfd, asec, output_section_size)) ibfd = abfd, error_message = _("warning: unable to set size of %s section in %B"); fail: free (buffer); if (error_message) (*_bfd_error_handler) (error_message, ibfd, APUINFO_SECTION_NAME); } /* Prevent the output section from accumulating the input sections' contents. We have already stored this in our linked list structure. */ static bfd_boolean ppc_elf_write_section (bfd *abfd ATTRIBUTE_UNUSED, asection *asec, bfd_byte *contents ATTRIBUTE_UNUSED) { return (apuinfo_list_length () && strcmp (asec->name, APUINFO_SECTION_NAME) == 0); } /* Finally we can generate the output section. */ static void ppc_elf_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED) { bfd_byte *buffer; asection *asec; unsigned i; unsigned num_entries; bfd_size_type length; asec = bfd_get_section_by_name (abfd, APUINFO_SECTION_NAME); if (asec == NULL) return; if (apuinfo_list_length () == 0) return; length = asec->size; if (length < 20) return; buffer = bfd_malloc (length); if (buffer == NULL) { (*_bfd_error_handler) (_("failed to allocate space for new APUinfo section.")); return; } /* Create the apuinfo header. */ num_entries = apuinfo_list_length (); bfd_put_32 (abfd, sizeof APUINFO_LABEL, buffer); bfd_put_32 (abfd, num_entries * 4, buffer + 4); bfd_put_32 (abfd, 0x2, buffer + 8); strcpy ((char *) buffer + 12, APUINFO_LABEL); length = 20; for (i = 0; i < num_entries; i++) { bfd_put_32 (abfd, apuinfo_list_element (i), buffer + length); length += 4; } if (length != asec->size) (*_bfd_error_handler) (_("failed to compute new APUinfo section.")); if (! bfd_set_section_contents (abfd, asec, buffer, (file_ptr) 0, length)) (*_bfd_error_handler) (_("failed to install new APUinfo section.")); free (buffer); apuinfo_list_finish (); } /* The following functions are specific to the ELF linker, while functions above are used generally. They appear in this file more or less in the order in which they are called. eg. ppc_elf_check_relocs is called early in the link process, ppc_elf_finish_dynamic_sections is one of the last functions called. */ /* The PPC linker needs to keep track of the number of relocs that it decides to copy as dynamic relocs in check_relocs for each symbol. This is so that it can later discard them if they are found to be unnecessary. We store the information in a field extending the regular ELF linker hash table. */ struct ppc_elf_dyn_relocs { struct ppc_elf_dyn_relocs *next; /* The input section of the reloc. */ asection *sec; /* Total number of relocs copied for the input section. */ bfd_size_type count; /* Number of pc-relative relocs copied for the input section. */ bfd_size_type pc_count; }; /* Track PLT entries needed for a given symbol. We might need more than one glink entry per symbol. */ struct plt_entry { struct plt_entry *next; /* -fPIC uses multiple GOT sections, one per file, called ".got2". This field stores the offset into .got2 used to initialise the GOT pointer reg. It will always be at least 32768 (and for current gcc this is the only offset used). */ bfd_vma addend; /* The .got2 section. */ asection *sec; /* PLT refcount or offset. */ union { bfd_signed_vma refcount; bfd_vma offset; } plt; /* .glink stub offset. */ bfd_vma glink_offset; }; /* Of those relocs that might be copied as dynamic relocs, this macro selects those that must be copied when linking a shared library, even when the symbol is local. */ #define MUST_BE_DYN_RELOC(RTYPE) \ ((RTYPE) != R_PPC_REL24 \ && (RTYPE) != R_PPC_REL14 \ && (RTYPE) != R_PPC_REL14_BRTAKEN \ && (RTYPE) != R_PPC_REL14_BRNTAKEN \ && (RTYPE) != R_PPC_REL32) /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid copying dynamic variables from a shared lib into an app's dynbss section, and instead use a dynamic relocation to point into the shared lib. */ #define ELIMINATE_COPY_RELOCS 1 /* PPC ELF linker hash entry. */ struct ppc_elf_link_hash_entry { struct elf_link_hash_entry elf; /* If this symbol is used in the linker created sections, the processor specific backend uses this field to map the field into the offset from the beginning of the section. */ elf_linker_section_pointers_t *linker_section_pointer; /* Track dynamic relocs copied for this symbol. */ struct ppc_elf_dyn_relocs *dyn_relocs; /* Contexts in which symbol is used in the GOT (or TOC). TLS_GD .. TLS_TLS bits are or'd into the mask as the corresponding relocs are encountered during check_relocs. tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to indicate the corresponding GOT entry type is not needed. */ #define TLS_GD 1 /* GD reloc. */ #define TLS_LD 2 /* LD reloc. */ #define TLS_TPREL 4 /* TPREL reloc, => IE. */ #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */ #define TLS_TLS 16 /* Any TLS reloc. */ #define TLS_TPRELGD 32 /* TPREL reloc resulting from GD->IE. */ char tls_mask; /* Nonzero if we have seen a small data relocation referring to this symbol. */ unsigned char has_sda_refs; }; #define ppc_elf_hash_entry(ent) ((struct ppc_elf_link_hash_entry *) (ent)) enum ppc_elf_plt_type { PLT_UNSET, PLT_OLD, PLT_NEW, PLT_VXWORKS }; /* PPC ELF linker hash table. */ struct ppc_elf_link_hash_table { struct elf_link_hash_table elf; /* Short-cuts to get to dynamic linker sections. */ asection *got; asection *relgot; asection *glink; asection *plt; asection *relplt; asection *dynbss; asection *relbss; asection *dynsbss; asection *relsbss; elf_linker_section_t sdata[2]; asection *sbss; /* Shortcut to .__tls_get_addr. */ struct elf_link_hash_entry *tls_get_addr; /* TLS local dynamic got entry handling. */ union { bfd_signed_vma refcount; bfd_vma offset; } tlsld_got; /* Offset of PltResolve function in glink. */ bfd_vma glink_pltresolve; /* Size of reserved GOT entries. */ unsigned int got_header_size; /* Non-zero if allocating the header left a gap. */ unsigned int got_gap; /* The type of PLT we have chosen to use. */ enum ppc_elf_plt_type plt_type; /* Whether we can use the new PLT layout. */ unsigned int can_use_new_plt:1; /* Set if we should emit symbols for stubs. */ unsigned int emit_stub_syms:1; /* Small local sym to section mapping cache. */ struct sym_sec_cache sym_sec; /* The (unloaded but important) .rela.plt.unloaded on VxWorks. */ asection *srelplt2; /* The .got.plt section (VxWorks only)*/ asection *sgotplt; /* True if the target system is VxWorks. */ int is_vxworks; /* The size of PLT entries. */ int plt_entry_size; /* The distance between adjacent PLT slots. */ int plt_slot_size; /* The size of the first PLT entry. */ int plt_initial_entry_size; }; /* Get the PPC ELF linker hash table from a link_info structure. */ #define ppc_elf_hash_table(p) \ ((struct ppc_elf_link_hash_table *) (p)->hash) /* Create an entry in a PPC ELF linker hash table. */ static struct bfd_hash_entry * ppc_elf_link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = bfd_hash_allocate (table, sizeof (struct ppc_elf_link_hash_entry)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = _bfd_elf_link_hash_newfunc (entry, table, string); if (entry != NULL) { ppc_elf_hash_entry (entry)->linker_section_pointer = NULL; ppc_elf_hash_entry (entry)->dyn_relocs = NULL; ppc_elf_hash_entry (entry)->tls_mask = 0; } return entry; } /* Create a PPC ELF linker hash table. */ static struct bfd_link_hash_table * ppc_elf_link_hash_table_create (bfd *abfd) { struct ppc_elf_link_hash_table *ret; ret = bfd_zmalloc (sizeof (struct ppc_elf_link_hash_table)); if (ret == NULL) return NULL; if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, ppc_elf_link_hash_newfunc, sizeof (struct ppc_elf_link_hash_entry))) { free (ret); return NULL; } ret->elf.init_plt_refcount.refcount = 0; ret->elf.init_plt_refcount.glist = NULL; ret->elf.init_plt_offset.offset = 0; ret->elf.init_plt_offset.glist = NULL; ret->sdata[0].name = ".sdata"; ret->sdata[0].sym_name = "_SDA_BASE_"; ret->sdata[0].bss_name = ".sbss"; ret->sdata[1].name = ".sdata2"; ret->sdata[1].sym_name = "_SDA2_BASE_"; ret->sdata[1].bss_name = ".sbss2"; ret->plt_entry_size = 12; ret->plt_slot_size = 8; ret->plt_initial_entry_size = 72; ret->is_vxworks = 0; return &ret->elf.root; } /* Create .got and the related sections. */ static bfd_boolean ppc_elf_create_got (bfd *abfd, struct bfd_link_info *info) { struct ppc_elf_link_hash_table *htab; asection *s; flagword flags; if (!_bfd_elf_create_got_section (abfd, info)) return FALSE; htab = ppc_elf_hash_table (info); htab->got = s = bfd_get_section_by_name (abfd, ".got"); if (s == NULL) abort (); if (htab->is_vxworks) { htab->sgotplt = bfd_get_section_by_name (abfd, ".got.plt"); if (!htab->sgotplt) abort (); } else { /* The powerpc .got has a blrl instruction in it. Mark it executable. */ flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); if (!bfd_set_section_flags (abfd, s, flags)) return FALSE; } flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY); htab->relgot = bfd_make_section_with_flags (abfd, ".rela.got", flags); if (!htab->relgot || ! bfd_set_section_alignment (abfd, htab->relgot, 2)) return FALSE; return TRUE; } /* We have to create .dynsbss and .rela.sbss here so that they get mapped to output sections (just like _bfd_elf_create_dynamic_sections has to create .dynbss and .rela.bss). */ static bfd_boolean ppc_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) { struct ppc_elf_link_hash_table *htab; asection *s; flagword flags; htab = ppc_elf_hash_table (info); if (htab->got == NULL && !ppc_elf_create_got (abfd, info)) return FALSE; if (!_bfd_elf_create_dynamic_sections (abfd, info)) return FALSE; flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); s = bfd_make_section_anyway_with_flags (abfd, ".glink", flags | SEC_CODE); htab->glink = s; if (s == NULL || !bfd_set_section_alignment (abfd, s, 4)) return FALSE; htab->dynbss = bfd_get_section_by_name (abfd, ".dynbss"); s = bfd_make_section_with_flags (abfd, ".dynsbss", SEC_ALLOC | SEC_LINKER_CREATED); htab->dynsbss = s; if (s == NULL) return FALSE; if (! info->shared) { htab->relbss = bfd_get_section_by_name (abfd, ".rela.bss"); s = bfd_make_section_with_flags (abfd, ".rela.sbss", flags); htab->relsbss = s; if (s == NULL || ! bfd_set_section_alignment (abfd, s, 2)) return FALSE; } if (htab->is_vxworks && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) return FALSE; htab->relplt = bfd_get_section_by_name (abfd, ".rela.plt"); htab->plt = s = bfd_get_section_by_name (abfd, ".plt"); if (s == NULL) abort (); flags = SEC_ALLOC | SEC_CODE | SEC_LINKER_CREATED; if (htab->plt_type == PLT_VXWORKS) /* The VxWorks PLT is a loaded section with contents. */ flags |= SEC_HAS_CONTENTS | SEC_LOAD | SEC_READONLY; return bfd_set_section_flags (abfd, s, flags); } /* Copy the extra info we tack onto an elf_link_hash_entry. */ static void ppc_elf_copy_indirect_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *dir, struct elf_link_hash_entry *ind) { struct ppc_elf_link_hash_entry *edir, *eind; edir = (struct ppc_elf_link_hash_entry *) dir; eind = (struct ppc_elf_link_hash_entry *) ind; if (eind->dyn_relocs != NULL) { if (edir->dyn_relocs != NULL) { struct ppc_elf_dyn_relocs **pp; struct ppc_elf_dyn_relocs *p; /* Add reloc counts against the indirect sym to the direct sym list. Merge any entries against the same section. */ for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) { struct ppc_elf_dyn_relocs *q; for (q = edir->dyn_relocs; q != NULL; q = q->next) if (q->sec == p->sec) { q->pc_count += p->pc_count; q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->dyn_relocs; } edir->dyn_relocs = eind->dyn_relocs; eind->dyn_relocs = NULL; } edir->tls_mask |= eind->tls_mask; edir->has_sda_refs |= eind->has_sda_refs; /* If called to transfer flags for a weakdef during processing of elf_adjust_dynamic_symbol, don't copy non_got_ref. We clear it ourselves for ELIMINATE_COPY_RELOCS. */ if (!(ELIMINATE_COPY_RELOCS && eind->elf.root.type != bfd_link_hash_indirect && edir->elf.dynamic_adjusted)) edir->elf.non_got_ref |= eind->elf.non_got_ref; edir->elf.ref_dynamic |= eind->elf.ref_dynamic; edir->elf.ref_regular |= eind->elf.ref_regular; edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak; edir->elf.needs_plt |= eind->elf.needs_plt; /* If we were called to copy over info for a weak sym, that's all. */ if (eind->elf.root.type != bfd_link_hash_indirect) return; /* Copy over the GOT refcount entries that we may have already seen to the symbol which just became indirect. */ edir->elf.got.refcount += eind->elf.got.refcount; eind->elf.got.refcount = 0; /* And plt entries. */ if (eind->elf.plt.plist != NULL) { if (edir->elf.plt.plist != NULL) { struct plt_entry **entp; struct plt_entry *ent; for (entp = &eind->elf.plt.plist; (ent = *entp) != NULL; ) { struct plt_entry *dent; for (dent = edir->elf.plt.plist; dent != NULL; dent = dent->next) if (dent->sec == ent->sec && dent->addend == ent->addend) { dent->plt.refcount += ent->plt.refcount; *entp = ent->next; break; } if (dent == NULL) entp = &ent->next; } *entp = edir->elf.plt.plist; } edir->elf.plt.plist = eind->elf.plt.plist; eind->elf.plt.plist = NULL; } if (eind->elf.dynindx != -1) { if (edir->elf.dynindx != -1) _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, edir->elf.dynstr_index); edir->elf.dynindx = eind->elf.dynindx; edir->elf.dynstr_index = eind->elf.dynstr_index; eind->elf.dynindx = -1; eind->elf.dynstr_index = 0; } } /* Return 1 if target is one of ours. */ static bfd_boolean is_ppc_elf_target (const struct bfd_target *targ) { extern const bfd_target bfd_elf32_powerpc_vec; extern const bfd_target bfd_elf32_powerpc_vxworks_vec; extern const bfd_target bfd_elf32_powerpcle_vec; return (targ == &bfd_elf32_powerpc_vec || targ == &bfd_elf32_powerpc_vxworks_vec || targ == &bfd_elf32_powerpcle_vec); } /* Hook called by the linker routine which adds symbols from an object file. We use it to put .comm items in .sbss, and not .bss. */ static bfd_boolean ppc_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym, const char **namep ATTRIBUTE_UNUSED, flagword *flagsp ATTRIBUTE_UNUSED, asection **secp, bfd_vma *valp) { if (sym->st_shndx == SHN_COMMON && !info->relocatable && sym->st_size <= elf_gp_size (abfd) && is_ppc_elf_target (info->hash->creator)) { /* Common symbols less than or equal to -G nn bytes are automatically put into .sbss. */ struct ppc_elf_link_hash_table *htab; htab = ppc_elf_hash_table (info); if (htab->sbss == NULL) { flagword flags = SEC_IS_COMMON | SEC_LINKER_CREATED; if (!htab->elf.dynobj) htab->elf.dynobj = abfd; htab->sbss = bfd_make_section_anyway_with_flags (htab->elf.dynobj, ".sbss", flags); if (htab->sbss == NULL) return FALSE; } *secp = htab->sbss; *valp = sym->st_size; } return TRUE; } static bfd_boolean create_sdata_sym (struct ppc_elf_link_hash_table *htab, elf_linker_section_t *lsect) { lsect->sym = elf_link_hash_lookup (&htab->elf, lsect->sym_name, TRUE, FALSE, TRUE); if (lsect->sym == NULL) return FALSE; if (lsect->sym->root.type == bfd_link_hash_new) lsect->sym->non_elf = 0; lsect->sym->ref_regular = 1; return TRUE; } /* Create a special linker section. */ static bfd_boolean ppc_elf_create_linker_section (bfd *abfd, struct bfd_link_info *info, flagword flags, elf_linker_section_t *lsect) { struct ppc_elf_link_hash_table *htab = ppc_elf_hash_table (info); asection *s; flags |= (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); /* Record the first bfd that needs the special sections. */ if (!htab->elf.dynobj) htab->elf.dynobj = abfd; s = bfd_make_section_anyway_with_flags (htab->elf.dynobj, lsect->name, flags); if (s == NULL || !bfd_set_section_alignment (htab->elf.dynobj, s, 2)) return FALSE; lsect->section = s; return create_sdata_sym (htab, lsect); } /* Find a linker generated pointer with a given addend and type. */ static elf_linker_section_pointers_t * elf_find_pointer_linker_section (elf_linker_section_pointers_t *linker_pointers, bfd_vma addend, elf_linker_section_t *lsect) { for ( ; linker_pointers != NULL; linker_pointers = linker_pointers->next) if (lsect == linker_pointers->lsect && addend == linker_pointers->addend) return linker_pointers; return NULL; } /* Allocate a pointer to live in a linker created section. */ static bfd_boolean elf_create_pointer_linker_section (bfd *abfd, elf_linker_section_t *lsect, struct elf_link_hash_entry *h, const Elf_Internal_Rela *rel) { elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL; elf_linker_section_pointers_t *linker_section_ptr; unsigned long r_symndx = ELF32_R_SYM (rel->r_info); bfd_size_type amt; BFD_ASSERT (lsect != NULL); /* Is this a global symbol? */ if (h != NULL) { struct ppc_elf_link_hash_entry *eh; /* Has this symbol already been allocated? If so, our work is done. */ eh = (struct ppc_elf_link_hash_entry *) h; if (elf_find_pointer_linker_section (eh->linker_section_pointer, rel->r_addend, lsect)) return TRUE; ptr_linker_section_ptr = &eh->linker_section_pointer; } else { /* Allocation of a pointer to a local symbol. */ elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd); /* Allocate a table to hold the local symbols if first time. */ if (!ptr) { unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info; amt = num_symbols; amt *= sizeof (elf_linker_section_pointers_t *); ptr = bfd_zalloc (abfd, amt); if (!ptr) return FALSE; elf_local_ptr_offsets (abfd) = ptr; } /* Has this symbol already been allocated? If so, our work is done. */ if (elf_find_pointer_linker_section (ptr[r_symndx], rel->r_addend, lsect)) return TRUE; ptr_linker_section_ptr = &ptr[r_symndx]; } /* Allocate space for a pointer in the linker section, and allocate a new pointer record from internal memory. */ BFD_ASSERT (ptr_linker_section_ptr != NULL); amt = sizeof (elf_linker_section_pointers_t); linker_section_ptr = bfd_alloc (abfd, amt); if (!linker_section_ptr) return FALSE; linker_section_ptr->next = *ptr_linker_section_ptr; linker_section_ptr->addend = rel->r_addend; linker_section_ptr->lsect = lsect; *ptr_linker_section_ptr = linker_section_ptr; linker_section_ptr->offset = lsect->section->size; lsect->section->size += 4; #ifdef DEBUG fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n", lsect->name, (long) linker_section_ptr->offset, (long) lsect->section->size); #endif return TRUE; } static bfd_boolean update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr, unsigned long r_symndx, int tls_type) { bfd_signed_vma *local_got_refcounts = elf_local_got_refcounts (abfd); char *local_got_tls_masks; if (local_got_refcounts == NULL) { bfd_size_type size = symtab_hdr->sh_info; size *= sizeof (*local_got_refcounts) + sizeof (*local_got_tls_masks); local_got_refcounts = bfd_zalloc (abfd, size); if (local_got_refcounts == NULL) return FALSE; elf_local_got_refcounts (abfd) = local_got_refcounts; } local_got_refcounts[r_symndx] += 1; local_got_tls_masks = (char *) (local_got_refcounts + symtab_hdr->sh_info); local_got_tls_masks[r_symndx] |= tls_type; return TRUE; } static bfd_boolean update_plt_info (bfd *abfd, struct elf_link_hash_entry *h, asection *sec, bfd_vma addend) { struct plt_entry *ent; if (addend < 32768) sec = NULL; for (ent = h->plt.plist; ent != NULL; ent = ent->next) if (ent->sec == sec && ent->addend == addend) break; if (ent == NULL) { bfd_size_type amt = sizeof (*ent); ent = bfd_alloc (abfd, amt); if (ent == NULL) return FALSE; ent->next = h->plt.plist; ent->sec = sec; ent->addend = addend; ent->plt.refcount = 0; h->plt.plist = ent; } ent->plt.refcount += 1; return TRUE; } static struct plt_entry * find_plt_ent (struct elf_link_hash_entry *h, asection *sec, bfd_vma addend) { struct plt_entry *ent; if (addend < 32768) sec = NULL; for (ent = h->plt.plist; ent != NULL; ent = ent->next) if (ent->sec == sec && ent->addend == addend) break; return ent; } static void bad_shared_reloc (bfd *abfd, enum elf_ppc_reloc_type r_type) { (*_bfd_error_handler) (_("%B: relocation %s cannot be used when making a shared object"), abfd, ppc_elf_howto_table[r_type]->name); bfd_set_error (bfd_error_bad_value); } /* Look through the relocs for a section during the first phase, and allocate space in the global offset table or procedure linkage table. */ static bfd_boolean ppc_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { struct ppc_elf_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *got2, *sreloc; if (info->relocatable) return TRUE; /* Don't do anything special with non-loaded, non-alloced sections. In particular, any relocs in such sections should not affect GOT and PLT reference counting (ie. we don't allow them to create GOT or PLT entries), there's no possibility or desire to optimize TLS relocs, and there's not much point in propagating relocs to shared libs that the dynamic linker won't relocate. */ if ((sec->flags & SEC_ALLOC) == 0) return TRUE; #ifdef DEBUG _bfd_error_handler ("ppc_elf_check_relocs called for section %A in %B", sec, abfd); #endif /* Initialize howto table if not already done. */ if (!ppc_elf_howto_table[R_PPC_ADDR32]) ppc_elf_howto_init (); htab = ppc_elf_hash_table (info); symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); got2 = bfd_get_section_by_name (abfd, ".got2"); sreloc = NULL; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { unsigned long r_symndx; enum elf_ppc_reloc_type r_type; struct elf_link_hash_entry *h; int tls_type = 0; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got. This shows up in particular in an R_PPC_ADDR32 in the eabi startup code. */ if (h != NULL && htab->got == NULL && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) { if (htab->elf.dynobj == NULL) htab->elf.dynobj = abfd; if (!ppc_elf_create_got (htab->elf.dynobj, info)) return FALSE; BFD_ASSERT (h == htab->elf.hgot); } r_type = ELF32_R_TYPE (rel->r_info); switch (r_type) { case R_PPC_GOT_TLSLD16: case R_PPC_GOT_TLSLD16_LO: case R_PPC_GOT_TLSLD16_HI: case R_PPC_GOT_TLSLD16_HA: htab->tlsld_got.refcount += 1; tls_type = TLS_TLS | TLS_LD; goto dogottls; case R_PPC_GOT_TLSGD16: case R_PPC_GOT_TLSGD16_LO: case R_PPC_GOT_TLSGD16_HI: case R_PPC_GOT_TLSGD16_HA: tls_type = TLS_TLS | TLS_GD; goto dogottls; case R_PPC_GOT_TPREL16: case R_PPC_GOT_TPREL16_LO: case R_PPC_GOT_TPREL16_HI: case R_PPC_GOT_TPREL16_HA: if (info->shared) info->flags |= DF_STATIC_TLS; tls_type = TLS_TLS | TLS_TPREL; goto dogottls; case R_PPC_GOT_DTPREL16: case R_PPC_GOT_DTPREL16_LO: case R_PPC_GOT_DTPREL16_HI: case R_PPC_GOT_DTPREL16_HA: tls_type = TLS_TLS | TLS_DTPREL; dogottls: sec->has_tls_reloc = 1; /* Fall thru */ /* GOT16 relocations */ case R_PPC_GOT16: case R_PPC_GOT16_LO: case R_PPC_GOT16_HI: case R_PPC_GOT16_HA: /* This symbol requires a global offset table entry. */ if (htab->got == NULL) { if (htab->elf.dynobj == NULL) htab->elf.dynobj = abfd; if (!ppc_elf_create_got (htab->elf.dynobj, info)) return FALSE; } if (h != NULL) { h->got.refcount += 1; ppc_elf_hash_entry (h)->tls_mask |= tls_type; } else /* This is a global offset table entry for a local symbol. */ if (!update_local_sym_info (abfd, symtab_hdr, r_symndx, tls_type)) return FALSE; break; /* Indirect .sdata relocation. */ case R_PPC_EMB_SDAI16: if (info->shared) { bad_shared_reloc (abfd, r_type); return FALSE; } if (htab->sdata[0].section == NULL && !ppc_elf_create_linker_section (abfd, info, 0, &htab->sdata[0])) return FALSE; if (!elf_create_pointer_linker_section (abfd, &htab->sdata[0], h, rel)) return FALSE; if (h != NULL) { ppc_elf_hash_entry (h)->has_sda_refs = TRUE; h->non_got_ref = TRUE; } break; /* Indirect .sdata2 relocation. */ case R_PPC_EMB_SDA2I16: if (info->shared) { bad_shared_reloc (abfd, r_type); return FALSE; } if (htab->sdata[1].section == NULL && !ppc_elf_create_linker_section (abfd, info, SEC_READONLY, &htab->sdata[1])) return FALSE; if (!elf_create_pointer_linker_section (abfd, &htab->sdata[1], h, rel)) return FALSE; if (h != NULL) { ppc_elf_hash_entry (h)->has_sda_refs = TRUE; h->non_got_ref = TRUE; } break; case R_PPC_SDAREL16: if (info->shared) { bad_shared_reloc (abfd, r_type); return FALSE; } if (htab->sdata[0].sym == NULL && !create_sdata_sym (htab, &htab->sdata[0])) return FALSE; if (h != NULL) { ppc_elf_hash_entry (h)->has_sda_refs = TRUE; h->non_got_ref = TRUE; } break; case R_PPC_EMB_SDA2REL: if (info->shared) { bad_shared_reloc (abfd, r_type); return FALSE; } if (htab->sdata[1].sym == NULL && !create_sdata_sym (htab, &htab->sdata[1])) return FALSE; if (h != NULL) { ppc_elf_hash_entry (h)->has_sda_refs = TRUE; h->non_got_ref = TRUE; } break; case R_PPC_EMB_SDA21: case R_PPC_EMB_RELSDA: if (info->shared) { bad_shared_reloc (abfd, r_type); return FALSE; } if (htab->sdata[0].sym == NULL && !create_sdata_sym (htab, &htab->sdata[0])) return FALSE; if (htab->sdata[1].sym == NULL && !create_sdata_sym (htab, &htab->sdata[1])) return FALSE; if (h != NULL) { ppc_elf_hash_entry (h)->has_sda_refs = TRUE; h->non_got_ref = TRUE; } break; case R_PPC_EMB_NADDR32: case R_PPC_EMB_NADDR16: case R_PPC_EMB_NADDR16_LO: case R_PPC_EMB_NADDR16_HI: case R_PPC_EMB_NADDR16_HA: if (info->shared) { bad_shared_reloc (abfd, r_type); return FALSE; } if (h != NULL) h->non_got_ref = TRUE; break; case R_PPC_PLT32: case R_PPC_PLTREL24: case R_PPC_PLTREL32: case R_PPC_PLT16_LO: case R_PPC_PLT16_HI: case R_PPC_PLT16_HA: #ifdef DEBUG fprintf (stderr, "Reloc requires a PLT entry\n"); #endif /* This symbol requires a procedure linkage table entry. We actually build the entry in finish_dynamic_symbol, because this might be a case of linking PIC code without linking in any dynamic objects, in which case we don't need to generate a procedure linkage table after all. */ if (h == NULL) { /* It does not make sense to have a procedure linkage table entry for a local symbol. */ (*_bfd_error_handler) (_("%B(%A+0x%lx): %s reloc against " "local symbol"), abfd, sec, (long) rel->r_offset, ppc_elf_howto_table[r_type]->name); bfd_set_error (bfd_error_bad_value); return FALSE; } else { bfd_vma addend = r_type == R_PPC_PLTREL24 ? rel->r_addend : 0; h->needs_plt = 1; if (!update_plt_info (abfd, h, got2, addend)) return FALSE; } break; /* The following relocations don't need to propagate the relocation if linking a shared object since they are section relative. */ case R_PPC_SECTOFF: case R_PPC_SECTOFF_LO: case R_PPC_SECTOFF_HI: case R_PPC_SECTOFF_HA: case R_PPC_DTPREL16: case R_PPC_DTPREL16_LO: case R_PPC_DTPREL16_HI: case R_PPC_DTPREL16_HA: case R_PPC_TOC16: break; case R_PPC_REL16: case R_PPC_REL16_LO: case R_PPC_REL16_HI: case R_PPC_REL16_HA: htab->can_use_new_plt = 1; break; /* These are just markers. */ case R_PPC_TLS: case R_PPC_EMB_MRKREF: case R_PPC_NONE: case R_PPC_max: break; /* These should only appear in dynamic objects. */ case R_PPC_COPY: case R_PPC_GLOB_DAT: case R_PPC_JMP_SLOT: case R_PPC_RELATIVE: break; /* These aren't handled yet. We'll report an error later. */ case R_PPC_ADDR30: case R_PPC_EMB_RELSEC16: case R_PPC_EMB_RELST_LO: case R_PPC_EMB_RELST_HI: case R_PPC_EMB_RELST_HA: case R_PPC_EMB_BIT_FLD: break; /* This refers only to functions defined in the shared library. */ case R_PPC_LOCAL24PC: if (h && h == htab->elf.hgot && htab->plt_type == PLT_UNSET) htab->plt_type = PLT_OLD; break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_PPC_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return FALSE; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_PPC_GNU_VTENTRY: if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) return FALSE; break; /* We shouldn't really be seeing these. */ case R_PPC_TPREL32: if (info->shared) info->flags |= DF_STATIC_TLS; goto dodyn; /* Nor these. */ case R_PPC_DTPMOD32: case R_PPC_DTPREL32: goto dodyn; case R_PPC_TPREL16: case R_PPC_TPREL16_LO: case R_PPC_TPREL16_HI: case R_PPC_TPREL16_HA: if (info->shared) info->flags |= DF_STATIC_TLS; goto dodyn; case R_PPC_REL32: if (h == NULL && got2 != NULL && (sec->flags & SEC_CODE) != 0 && (info->shared || info->pie) && htab->plt_type == PLT_UNSET) { /* Old -fPIC gcc code has .long LCTOC1-LCFx just before the start of a function, which assembles to a REL32 reference to .got2. If we detect one of these, then force the old PLT layout because the linker cannot reliably deduce the GOT pointer value needed for PLT call stubs. */ asection *s; s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec, r_symndx); if (s == got2) htab->plt_type = PLT_OLD; } if (h == NULL || h == htab->elf.hgot) break; goto dodyn1; case R_PPC_REL24: case R_PPC_REL14: case R_PPC_REL14_BRTAKEN: case R_PPC_REL14_BRNTAKEN: if (h == NULL) break; if (h == htab->elf.hgot) { if (htab->plt_type == PLT_UNSET) htab->plt_type = PLT_OLD; break; } /* fall through */ case R_PPC_ADDR32: case R_PPC_ADDR24: case R_PPC_ADDR16: case R_PPC_ADDR16_LO: case R_PPC_ADDR16_HI: case R_PPC_ADDR16_HA: case R_PPC_ADDR14: case R_PPC_ADDR14_BRTAKEN: case R_PPC_ADDR14_BRNTAKEN: case R_PPC_UADDR32: case R_PPC_UADDR16: dodyn1: if (h != NULL && !info->shared) { /* We may need a plt entry if the symbol turns out to be a function defined in a dynamic object. */ if (!update_plt_info (abfd, h, NULL, 0)) return FALSE; /* We may need a copy reloc too. */ h->non_got_ref = 1; } dodyn: /* If we are creating a shared library, and this is a reloc against a global symbol, or a non PC relative reloc against a local symbol, then we need to copy the reloc into the shared library. However, if we are linking with -Bsymbolic, we do not need to copy a reloc against a global symbol which is defined in an object we are including in the link (i.e., DEF_REGULAR is set). At this point we have not seen all the input files, so it is possible that DEF_REGULAR is not set now but will be set later (it is never cleared). In case of a weak definition, DEF_REGULAR may be cleared later by a strong definition in a shared library. We account for that possibility below by storing information in the dyn_relocs field of the hash table entry. A similar situation occurs when creating shared libraries and symbol visibility changes render the symbol local. If on the other hand, we are creating an executable, we may need to keep relocations for symbols satisfied by a dynamic library if we manage to avoid copy relocs for the symbol. */ if ((info->shared && (MUST_BE_DYN_RELOC (r_type) || (h != NULL && (! info->symbolic || h->root.type == bfd_link_hash_defweak || !h->def_regular)))) || (ELIMINATE_COPY_RELOCS && !info->shared && h != NULL && (h->root.type == bfd_link_hash_defweak || !h->def_regular))) { struct ppc_elf_dyn_relocs *p; struct ppc_elf_dyn_relocs **head; #ifdef DEBUG fprintf (stderr, "ppc_elf_check_relocs needs to " "create relocation for %s\n", (h && h->root.root.string ? h->root.root.string : "")); #endif if (sreloc == NULL) { const char *name; name = (bfd_elf_string_from_elf_section (abfd, elf_elfheader (abfd)->e_shstrndx, elf_section_data (sec)->rel_hdr.sh_name)); if (name == NULL) return FALSE; BFD_ASSERT (CONST_STRNEQ (name, ".rela") && strcmp (bfd_get_section_name (abfd, sec), name + 5) == 0); if (htab->elf.dynobj == NULL) htab->elf.dynobj = abfd; sreloc = bfd_get_section_by_name (htab->elf.dynobj, name); if (sreloc == NULL) { flagword flags; flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_ALLOC | SEC_LOAD); sreloc = bfd_make_section_with_flags (htab->elf.dynobj, name, flags); if (sreloc == NULL || ! bfd_set_section_alignment (htab->elf.dynobj, sreloc, 2)) return FALSE; } elf_section_data (sec)->sreloc = sreloc; } /* If this is a global symbol, we count the number of relocations we need for this symbol. */ if (h != NULL) { head = &ppc_elf_hash_entry (h)->dyn_relocs; } else { /* Track dynamic relocs needed for local syms too. We really need local syms available to do this easily. Oh well. */ asection *s; void *vpp; s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec, r_symndx); if (s == NULL) return FALSE; vpp = &elf_section_data (s)->local_dynrel; head = (struct ppc_elf_dyn_relocs **) vpp; } p = *head; if (p == NULL || p->sec != sec) { p = bfd_alloc (htab->elf.dynobj, sizeof *p); if (p == NULL) return FALSE; p->next = *head; *head = p; p->sec = sec; p->count = 0; p->pc_count = 0; } p->count += 1; if (!MUST_BE_DYN_RELOC (r_type)) p->pc_count += 1; } break; } } return TRUE; } /* Merge backend specific data from an object file to the output object file when linking. */ static bfd_boolean ppc_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) { flagword old_flags; flagword new_flags; bfd_boolean error; if (!is_ppc_elf_target (ibfd->xvec) || !is_ppc_elf_target (obfd->xvec)) return TRUE; /* Check if we have the same endianess. */ if (! _bfd_generic_verify_endian_match (ibfd, obfd)) return FALSE; new_flags = elf_elfheader (ibfd)->e_flags; old_flags = elf_elfheader (obfd)->e_flags; if (!elf_flags_init (obfd)) { /* First call, no flags set. */ elf_flags_init (obfd) = TRUE; elf_elfheader (obfd)->e_flags = new_flags; } /* Compatible flags are ok. */ else if (new_flags == old_flags) ; /* Incompatible flags. */ else { /* Warn about -mrelocatable mismatch. Allow -mrelocatable-lib to be linked with either. */ error = FALSE; if ((new_flags & EF_PPC_RELOCATABLE) != 0 && (old_flags & (EF_PPC_RELOCATABLE | EF_PPC_RELOCATABLE_LIB)) == 0) { error = TRUE; (*_bfd_error_handler) (_("%B: compiled with -mrelocatable and linked with " "modules compiled normally"), ibfd); } else if ((new_flags & (EF_PPC_RELOCATABLE | EF_PPC_RELOCATABLE_LIB)) == 0 && (old_flags & EF_PPC_RELOCATABLE) != 0) { error = TRUE; (*_bfd_error_handler) (_("%B: compiled normally and linked with " "modules compiled with -mrelocatable"), ibfd); } /* The output is -mrelocatable-lib iff both the input files are. */ if (! (new_flags & EF_PPC_RELOCATABLE_LIB)) elf_elfheader (obfd)->e_flags &= ~EF_PPC_RELOCATABLE_LIB; /* The output is -mrelocatable iff it can't be -mrelocatable-lib, but each input file is either -mrelocatable or -mrelocatable-lib. */ if (! (elf_elfheader (obfd)->e_flags & EF_PPC_RELOCATABLE_LIB) && (new_flags & (EF_PPC_RELOCATABLE_LIB | EF_PPC_RELOCATABLE)) && (old_flags & (EF_PPC_RELOCATABLE_LIB | EF_PPC_RELOCATABLE))) elf_elfheader (obfd)->e_flags |= EF_PPC_RELOCATABLE; /* Do not warn about eabi vs. V.4 mismatch, just or in the bit if any module uses it. */ elf_elfheader (obfd)->e_flags |= (new_flags & EF_PPC_EMB); new_flags &= ~(EF_PPC_RELOCATABLE | EF_PPC_RELOCATABLE_LIB | EF_PPC_EMB); old_flags &= ~(EF_PPC_RELOCATABLE | EF_PPC_RELOCATABLE_LIB | EF_PPC_EMB); /* Warn about any other mismatches. */ if (new_flags != old_flags) { error = TRUE; (*_bfd_error_handler) (_("%B: uses different e_flags (0x%lx) fields " "than previous modules (0x%lx)"), ibfd, (long) new_flags, (long) old_flags); } if (error) { bfd_set_error (bfd_error_bad_value); return FALSE; } } return TRUE; } /* Choose which PLT scheme to use, and set .plt flags appropriately. Returns -1 on error, 0 for old PLT, 1 for new PLT. */ int ppc_elf_select_plt_layout (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info, int force_old_plt, int emit_stub_syms) { struct ppc_elf_link_hash_table *htab; flagword flags; htab = ppc_elf_hash_table (info); if (htab->plt_type == PLT_UNSET) htab->plt_type = (force_old_plt || !htab->can_use_new_plt ? PLT_OLD : PLT_NEW); htab->emit_stub_syms = emit_stub_syms; BFD_ASSERT (htab->plt_type != PLT_VXWORKS); if (htab->plt_type == PLT_NEW) { flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); /* The new PLT is a loaded section. */ if (htab->plt != NULL && !bfd_set_section_flags (htab->elf.dynobj, htab->plt, flags)) return -1; /* The new GOT is not executable. */ if (htab->got != NULL && !bfd_set_section_flags (htab->elf.dynobj, htab->got, flags)) return -1; } else { /* Stop an unused .glink section from affecting .text alignment. */ if (htab->glink != NULL && !bfd_set_section_alignment (htab->elf.dynobj, htab->glink, 0)) return -1; } return htab->plt_type == PLT_NEW; } /* Return the section that should be marked against GC for a given relocation. */ static asection * ppc_elf_gc_mark_hook (asection *sec, struct bfd_link_info *info, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { if (h != NULL) switch (ELF32_R_TYPE (rel->r_info)) { case R_PPC_GNU_VTINHERIT: case R_PPC_GNU_VTENTRY: return NULL; } return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); } /* Update the got, plt and dynamic reloc reference counts for the section being removed. */ static bfd_boolean ppc_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { struct ppc_elf_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel, *relend; asection *got2; if ((sec->flags & SEC_ALLOC) == 0) return TRUE; elf_section_data (sec)->local_dynrel = NULL; htab = ppc_elf_hash_table (info); symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); got2 = bfd_get_section_by_name (abfd, ".got2"); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) { unsigned long r_symndx; enum elf_ppc_reloc_type r_type; struct elf_link_hash_entry *h = NULL; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { struct ppc_elf_dyn_relocs **pp, *p; struct ppc_elf_link_hash_entry *eh; h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; eh = (struct ppc_elf_link_hash_entry *) h; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) if (p->sec == sec) { /* Everything must go for SEC. */ *pp = p->next; break; } } r_type = ELF32_R_TYPE (rel->r_info); switch (r_type) { case R_PPC_GOT_TLSLD16: case R_PPC_GOT_TLSLD16_LO: case R_PPC_GOT_TLSLD16_HI: case R_PPC_GOT_TLSLD16_HA: htab->tlsld_got.refcount -= 1; /* Fall thru */ case R_PPC_GOT_TLSGD16: case R_PPC_GOT_TLSGD16_LO: case R_PPC_GOT_TLSGD16_HI: case R_PPC_GOT_TLSGD16_HA: case R_PPC_GOT_TPREL16: case R_PPC_GOT_TPREL16_LO: case R_PPC_GOT_TPREL16_HI: case R_PPC_GOT_TPREL16_HA: case R_PPC_GOT_DTPREL16: case R_PPC_GOT_DTPREL16_LO: case R_PPC_GOT_DTPREL16_HI: case R_PPC_GOT_DTPREL16_HA: case R_PPC_GOT16: case R_PPC_GOT16_LO: case R_PPC_GOT16_HI: case R_PPC_GOT16_HA: if (h != NULL) { if (h->got.refcount > 0) h->got.refcount--; } else if (local_got_refcounts != NULL) { if (local_got_refcounts[r_symndx] > 0) local_got_refcounts[r_symndx]--; } break; case R_PPC_REL24: case R_PPC_REL14: case R_PPC_REL14_BRTAKEN: case R_PPC_REL14_BRNTAKEN: case R_PPC_REL32: if (h == NULL || h == htab->elf.hgot) break; /* Fall thru */ case R_PPC_ADDR32: case R_PPC_ADDR24: case R_PPC_ADDR16: case R_PPC_ADDR16_LO: case R_PPC_ADDR16_HI: case R_PPC_ADDR16_HA: case R_PPC_ADDR14: case R_PPC_ADDR14_BRTAKEN: case R_PPC_ADDR14_BRNTAKEN: case R_PPC_UADDR32: case R_PPC_UADDR16: if (info->shared) break; case R_PPC_PLT32: case R_PPC_PLTREL24: case R_PPC_PLTREL32: case R_PPC_PLT16_LO: case R_PPC_PLT16_HI: case R_PPC_PLT16_HA: if (h != NULL) { bfd_vma addend = r_type == R_PPC_PLTREL24 ? rel->r_addend : 0; struct plt_entry *ent = find_plt_ent (h, got2, addend); if (ent->plt.refcount > 0) ent->plt.refcount -= 1; } break; default: break; } } return TRUE; } /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */ asection * ppc_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) { struct ppc_elf_link_hash_table *htab; htab = ppc_elf_hash_table (info); if (htab->plt_type == PLT_NEW && htab->plt != NULL && htab->plt->output_section != NULL) { elf_section_type (htab->plt->output_section) = SHT_PROGBITS; elf_section_flags (htab->plt->output_section) = SHF_ALLOC + SHF_WRITE; } htab->tls_get_addr = elf_link_hash_lookup (&htab->elf, "__tls_get_addr", FALSE, FALSE, TRUE); return _bfd_elf_tls_setup (obfd, info); } /* Run through all the TLS relocs looking for optimization opportunities. */ bfd_boolean ppc_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { bfd *ibfd; asection *sec; struct ppc_elf_link_hash_table *htab; if (info->relocatable || info->shared) return TRUE; htab = ppc_elf_hash_table (info); for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { Elf_Internal_Sym *locsyms = NULL; Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; for (sec = ibfd->sections; sec != NULL; sec = sec->next) if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section)) { Elf_Internal_Rela *relstart, *rel, *relend; int expecting_tls_get_addr; /* Read the relocations. */ relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, info->keep_memory); if (relstart == NULL) return FALSE; expecting_tls_get_addr = 0; relend = relstart + sec->reloc_count; for (rel = relstart; rel < relend; rel++) { enum elf_ppc_reloc_type r_type; unsigned long r_symndx; struct elf_link_hash_entry *h = NULL; char *tls_mask; char tls_set, tls_clear; bfd_boolean is_local; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { struct elf_link_hash_entry **sym_hashes; sym_hashes = elf_sym_hashes (ibfd); h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } is_local = FALSE; if (h == NULL || !h->def_dynamic) is_local = TRUE; r_type = ELF32_R_TYPE (rel->r_info); switch (r_type) { case R_PPC_GOT_TLSLD16: case R_PPC_GOT_TLSLD16_LO: case R_PPC_GOT_TLSLD16_HI: case R_PPC_GOT_TLSLD16_HA: /* These relocs should never be against a symbol defined in a shared lib. Leave them alone if that turns out to be the case. */ expecting_tls_get_addr = 0; htab->tlsld_got.refcount -= 1; if (!is_local) continue; /* LD -> LE */ tls_set = 0; tls_clear = TLS_LD; expecting_tls_get_addr = 1; break; case R_PPC_GOT_TLSGD16: case R_PPC_GOT_TLSGD16_LO: case R_PPC_GOT_TLSGD16_HI: case R_PPC_GOT_TLSGD16_HA: if (is_local) /* GD -> LE */ tls_set = 0; else /* GD -> IE */ tls_set = TLS_TLS | TLS_TPRELGD; tls_clear = TLS_GD; expecting_tls_get_addr = 1; break; case R_PPC_GOT_TPREL16: case R_PPC_GOT_TPREL16_LO: case R_PPC_GOT_TPREL16_HI: case R_PPC_GOT_TPREL16_HA: expecting_tls_get_addr = 0; if (is_local) { /* IE -> LE */ tls_set = 0; tls_clear = TLS_TPREL; break; } else continue; case R_PPC_REL14: case R_PPC_REL14_BRTAKEN: case R_PPC_REL14_BRNTAKEN: case R_PPC_REL24: if (expecting_tls_get_addr && h != NULL && h == htab->tls_get_addr) { struct plt_entry *ent = find_plt_ent (h, NULL, 0); if (ent != NULL && ent->plt.refcount > 0) ent->plt.refcount -= 1; } expecting_tls_get_addr = 0; continue; default: expecting_tls_get_addr = 0; continue; } if (h != NULL) { if (tls_set == 0) { /* We managed to get rid of a got entry. */ if (h->got.refcount > 0) h->got.refcount -= 1; } tls_mask = &ppc_elf_hash_entry (h)->tls_mask; } else { Elf_Internal_Sym *sym; bfd_signed_vma *lgot_refs; char *lgot_masks; if (locsyms == NULL) { locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; if (locsyms == NULL) locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (locsyms == NULL) { if (elf_section_data (sec)->relocs != relstart) free (relstart); return FALSE; } } sym = locsyms + r_symndx; lgot_refs = elf_local_got_refcounts (ibfd); if (lgot_refs == NULL) abort (); if (tls_set == 0) { /* We managed to get rid of a got entry. */ if (lgot_refs[r_symndx] > 0) lgot_refs[r_symndx] -= 1; } lgot_masks = (char *) (lgot_refs + symtab_hdr->sh_info); tls_mask = &lgot_masks[r_symndx]; } *tls_mask |= tls_set; *tls_mask &= ~tls_clear; } if (elf_section_data (sec)->relocs != relstart) free (relstart); } if (locsyms != NULL && (symtab_hdr->contents != (unsigned char *) locsyms)) { if (!info->keep_memory) free (locsyms); else symtab_hdr->contents = (unsigned char *) locsyms; } } return TRUE; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bfd_boolean ppc_elf_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { struct ppc_elf_link_hash_table *htab; asection *s; unsigned int power_of_two; #ifdef DEBUG fprintf (stderr, "ppc_elf_adjust_dynamic_symbol called for %s\n", h->root.root.string); #endif /* Make sure we know what is going on here. */ htab = ppc_elf_hash_table (info); BFD_ASSERT (htab->elf.dynobj != NULL && (h->needs_plt || h->u.weakdef != NULL || (h->def_dynamic && h->ref_regular && !h->def_regular))); /* Deal with function syms. */ if (h->type == STT_FUNC || h->needs_plt) { /* Clear procedure linkage table information for any symbol that won't need a .plt entry. */ struct plt_entry *ent; for (ent = h->plt.plist; ent != NULL; ent = ent->next) if (ent->plt.refcount > 0) break; if (ent == NULL || SYMBOL_CALLS_LOCAL (info, h) || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT && h->root.type == bfd_link_hash_undefweak)) { /* A PLT entry is not required/allowed when: 1. We are not using ld.so; because then the PLT entry can't be set up, so we can't use one. In this case, ppc_elf_adjust_dynamic_symbol won't even be called. 2. GC has rendered the entry unused. 3. We know for certain that a call to this symbol will go to this object, or will remain undefined. */ h->plt.plist = NULL; h->needs_plt = 0; } return TRUE; } else h->plt.plist = NULL; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->u.weakdef != NULL) { BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined || h->u.weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->u.weakdef->root.u.def.section; h->root.u.def.value = h->u.weakdef->root.u.def.value; if (ELIMINATE_COPY_RELOCS) h->non_got_ref = h->u.weakdef->non_got_ref; return TRUE; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return TRUE; /* If there are no references to this symbol that do not use the GOT, we don't need to generate a copy reloc. */ if (!h->non_got_ref) return TRUE; /* If we didn't find any dynamic relocs in read-only sections, then we'll be keeping the dynamic relocs and avoiding the copy reloc. We can't do this if there are any small data relocations. */ if (ELIMINATE_COPY_RELOCS && !ppc_elf_hash_entry (h)->has_sda_refs) { struct ppc_elf_dyn_relocs *p; for (p = ppc_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next) { s = p->sec->output_section; if (s != NULL && (s->flags & SEC_READONLY) != 0) break; } if (p == NULL) { h->non_got_ref = 0; return TRUE; } } if (h->size == 0) { (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), h->root.root.string); return TRUE; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. Of course, if the symbol is referenced using SDAREL relocs, we must instead allocate it in .sbss. */ if (ppc_elf_hash_entry (h)->has_sda_refs) s = htab->dynsbss; else s = htab->dynbss; BFD_ASSERT (s != NULL); /* We must generate a R_PPC_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. We need to remember the offset into the .rela.bss section we are going to use. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { asection *srel; if (ppc_elf_hash_entry (h)->has_sda_refs) srel = htab->relsbss; else srel = htab->relbss; BFD_ASSERT (srel != NULL); srel->size += sizeof (Elf32_External_Rela); h->needs_copy = 1; } /* We need to figure out the alignment required for this symbol. I have no idea how ELF linkers handle this. */ power_of_two = bfd_log2 (h->size); if (power_of_two > 4) power_of_two = 4; /* Apply the required alignment. */ s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two)); if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s)) { if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two)) return FALSE; } /* Define the symbol as being at this point in the section. */ h->root.u.def.section = s; h->root.u.def.value = s->size; /* Increment the section size to make room for the symbol. */ s->size += h->size; return TRUE; } /* Generate a symbol to mark plt call stubs. For non-PIC code the sym is xxxxxxxx.plt_call32. where xxxxxxxx is a hex number, usually 0, specifying the addend on the plt relocation. For -fpic code, the sym is xxxxxxxx.plt_pic32., and for -fPIC xxxxxxxx.got2.plt_pic32.. */ static bfd_boolean add_stub_sym (struct plt_entry *ent, struct elf_link_hash_entry *h, struct bfd_link_info *info) { struct elf_link_hash_entry *sh; size_t len1, len2, len3; char *name; const char *stub; struct ppc_elf_link_hash_table *htab = ppc_elf_hash_table (info); if (info->shared || info->pie) stub = ".plt_pic32."; else stub = ".plt_call32."; len1 = strlen (h->root.root.string); len2 = strlen (stub); len3 = 0; if (ent->sec) len3 = strlen (ent->sec->name); name = bfd_malloc (len1 + len2 + len3 + 9); if (name == NULL) return FALSE; sprintf (name, "%08x", (unsigned) ent->addend & 0xffffffff); if (ent->sec) memcpy (name + 8, ent->sec->name, len3); memcpy (name + 8 + len3, stub, len2); memcpy (name + 8 + len3 + len2, h->root.root.string, len1 + 1); sh = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE); if (sh == NULL) return FALSE; if (sh->root.type == bfd_link_hash_new) { sh->root.type = bfd_link_hash_defined; sh->root.u.def.section = htab->glink; sh->root.u.def.value = ent->glink_offset; sh->ref_regular = 1; sh->def_regular = 1; sh->ref_regular_nonweak = 1; sh->forced_local = 1; sh->non_elf = 0; } return TRUE; } /* Allocate NEED contiguous space in .got, and return the offset. Handles allocation of the got header when crossing 32k. */ static bfd_vma allocate_got (struct ppc_elf_link_hash_table *htab, unsigned int need) { bfd_vma where; unsigned int max_before_header; if (htab->plt_type == PLT_VXWORKS) { where = htab->got->size; htab->got->size += need; } else { max_before_header = htab->plt_type == PLT_NEW ? 32768 : 32764; if (need <= htab->got_gap) { where = max_before_header - htab->got_gap; htab->got_gap -= need; } else { if (htab->got->size + need > max_before_header && htab->got->size <= max_before_header) { htab->got_gap = max_before_header - htab->got->size; htab->got->size = max_before_header + htab->got_header_size; } where = htab->got->size; htab->got->size += need; } } return where; } /* Allocate space in associated reloc sections for dynamic relocs. */ static bfd_boolean allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) { struct bfd_link_info *info = inf; struct ppc_elf_link_hash_entry *eh; struct ppc_elf_link_hash_table *htab; struct ppc_elf_dyn_relocs *p; if (h->root.type == bfd_link_hash_indirect) return TRUE; if (h->root.type == bfd_link_hash_warning) /* When warning symbols are created, they **replace** the "real" entry in the hash table, thus we never get to see the real symbol in a hash traversal. So look at it now. */ h = (struct elf_link_hash_entry *) h->root.u.i.link; htab = ppc_elf_hash_table (info); if (htab->elf.dynamic_sections_created) { struct plt_entry *ent; bfd_boolean doneone = FALSE; bfd_vma plt_offset = 0, glink_offset = 0; for (ent = h->plt.plist; ent != NULL; ent = ent->next) if (ent->plt.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) { asection *s = htab->plt; if (htab->plt_type == PLT_NEW) { if (!doneone) { plt_offset = s->size; s->size += 4; } ent->plt.offset = plt_offset; s = htab->glink; if (!doneone || info->shared || info->pie) { glink_offset = s->size; s->size += GLINK_ENTRY_SIZE; } if (!doneone && !info->shared && !h->def_regular) { h->root.u.def.section = s; h->root.u.def.value = glink_offset; } ent->glink_offset = glink_offset; if (htab->emit_stub_syms && !add_stub_sym (ent, h, info)) return FALSE; } else { if (!doneone) { /* If this is the first .plt entry, make room for the special first entry. */ if (s->size == 0) s->size += htab->plt_initial_entry_size; /* The PowerPC PLT is actually composed of two parts, the first part is 2 words (for a load and a jump), and then there is a remaining word available at the end. */ plt_offset = (htab->plt_initial_entry_size + (htab->plt_slot_size * ((s->size - htab->plt_initial_entry_size) / htab->plt_entry_size))); /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (! info->shared && !h->def_regular) { h->root.u.def.section = s; h->root.u.def.value = plt_offset; } /* Make room for this entry. */ s->size += htab->plt_entry_size; /* After the 8192nd entry, room for two entries is allocated. */ if (htab->plt_type == PLT_OLD && (s->size - htab->plt_initial_entry_size) / htab->plt_entry_size > PLT_NUM_SINGLE_ENTRIES) s->size += htab->plt_entry_size; } ent->plt.offset = plt_offset; } /* We also need to make an entry in the .rela.plt section. */ if (!doneone) { htab->relplt->size += sizeof (Elf32_External_Rela); if (htab->plt_type == PLT_VXWORKS) { /* Allocate space for the unloaded relocations. */ if (!info->shared) { if (ent->plt.offset == (bfd_vma) htab->plt_initial_entry_size) { htab->srelplt2->size += sizeof (Elf32_External_Rela) * VXWORKS_PLTRESOLVE_RELOCS; } htab->srelplt2->size += sizeof (Elf32_External_Rela) * VXWORKS_PLT_NON_JMP_SLOT_RELOCS; } /* Every PLT entry has an associated GOT entry in .got.plt. */ htab->sgotplt->size += 4; } doneone = TRUE; } } else ent->plt.offset = (bfd_vma) -1; if (!doneone) { h->plt.plist = NULL; h->needs_plt = 0; } } } else { h->plt.plist = NULL; h->needs_plt = 0; } eh = (struct ppc_elf_link_hash_entry *) h; if (eh->elf.got.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. */ if (eh->elf.dynindx == -1 && !eh->elf.forced_local) { if (!bfd_elf_link_record_dynamic_symbol (info, &eh->elf)) return FALSE; } if (eh->tls_mask == (TLS_TLS | TLS_LD) && !eh->elf.def_dynamic) /* If just an LD reloc, we'll just use htab->tlsld_got.offset. */ eh->elf.got.offset = (bfd_vma) -1; else { bfd_boolean dyn; unsigned int need = 0; if ((eh->tls_mask & TLS_TLS) != 0) { if ((eh->tls_mask & TLS_LD) != 0) need += 8; if ((eh->tls_mask & TLS_GD) != 0) need += 8; if ((eh->tls_mask & (TLS_TPREL | TLS_TPRELGD)) != 0) need += 4; if ((eh->tls_mask & TLS_DTPREL) != 0) need += 4; } else need += 4; eh->elf.got.offset = allocate_got (htab, need); dyn = htab->elf.dynamic_sections_created; if ((info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, &eh->elf)) && (ELF_ST_VISIBILITY (eh->elf.other) == STV_DEFAULT || eh->elf.root.type != bfd_link_hash_undefweak)) { /* All the entries we allocated need relocs. Except LD only needs one. */ if ((eh->tls_mask & TLS_LD) != 0) need -= 4; htab->relgot->size += need * (sizeof (Elf32_External_Rela) / 4); } } } else eh->elf.got.offset = (bfd_vma) -1; if (eh->dyn_relocs == NULL) return TRUE; /* In the shared -Bsymbolic case, discard space allocated for dynamic pc-relative relocs against symbols which turn out to be defined in regular objects. For the normal shared case, discard space for relocs that have become local due to symbol visibility changes. */ if (info->shared) { /* Relocs that use pc_count are those that appear on a call insn, or certain REL relocs (see MUST_BE_DYN_RELOC) that can be generated via assembly. We want calls to protected symbols to resolve directly to the function rather than going via the plt. If people want function pointer comparisons to work as expected then they should avoid writing weird assembly. */ if (SYMBOL_CALLS_LOCAL (info, h)) { struct ppc_elf_dyn_relocs **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) { p->count -= p->pc_count; p->pc_count = 0; if (p->count == 0) *pp = p->next; else pp = &p->next; } } /* Also discard relocs on undefined weak syms with non-default visibility. */ if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak) { if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) eh->dyn_relocs = NULL; /* Make sure undefined weak symbols are output as a dynamic symbol in PIEs. */ else if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } } } else if (ELIMINATE_COPY_RELOCS) { /* For the non-shared case, discard space for relocs against symbols which turn out to need copy relocs or are not dynamic. */ if (!h->non_got_ref && h->def_dynamic && !h->def_regular) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } /* If that succeeded, we know we'll be keeping all the relocs. */ if (h->dynindx != -1) goto keep; } eh->dyn_relocs = NULL; keep: ; } /* Finally, allocate space. */ for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *sreloc = elf_section_data (p->sec)->sreloc; sreloc->size += p->count * sizeof (Elf32_External_Rela); } return TRUE; } /* Find any dynamic relocs that apply to read-only sections. */ static bfd_boolean readonly_dynrelocs (struct elf_link_hash_entry *h, void *info) { struct ppc_elf_dyn_relocs *p; if (h->root.type == bfd_link_hash_indirect) return TRUE; if (h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; for (p = ppc_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next) { asection *s = p->sec->output_section; if (s != NULL && ((s->flags & (SEC_READONLY | SEC_ALLOC)) == (SEC_READONLY | SEC_ALLOC))) { ((struct bfd_link_info *) info)->flags |= DF_TEXTREL; /* Not an error, just cut short the traversal. */ return FALSE; } } return TRUE; } /* Set the sizes of the dynamic sections. */ static bfd_boolean ppc_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { struct ppc_elf_link_hash_table *htab; asection *s; bfd_boolean relocs; bfd *ibfd; #ifdef DEBUG fprintf (stderr, "ppc_elf_size_dynamic_sections called\n"); #endif htab = ppc_elf_hash_table (info); BFD_ASSERT (htab->elf.dynobj != NULL); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (info->executable) { s = bfd_get_section_by_name (htab->elf.dynobj, ".interp"); BFD_ASSERT (s != NULL); s->size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } if (htab->plt_type == PLT_OLD) htab->got_header_size = 16; else if (htab->plt_type == PLT_NEW) htab->got_header_size = 12; /* Set up .got offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { bfd_signed_vma *local_got; bfd_signed_vma *end_local_got; char *lgot_masks; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; if (!is_ppc_elf_target (ibfd->xvec)) continue; for (s = ibfd->sections; s != NULL; s = s->next) { struct ppc_elf_dyn_relocs *p; for (p = ((struct ppc_elf_dyn_relocs *) elf_section_data (s)->local_dynrel); p != NULL; p = p->next) { if (!bfd_is_abs_section (p->sec) && bfd_is_abs_section (p->sec->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (p->count != 0) { elf_section_data (p->sec)->sreloc->size += p->count * sizeof (Elf32_External_Rela); if ((p->sec->output_section->flags & (SEC_READONLY | SEC_ALLOC)) == (SEC_READONLY | SEC_ALLOC)) info->flags |= DF_TEXTREL; } } } local_got = elf_local_got_refcounts (ibfd); if (!local_got) continue; symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; locsymcount = symtab_hdr->sh_info; end_local_got = local_got + locsymcount; lgot_masks = (char *) end_local_got; for (; local_got < end_local_got; ++local_got, ++lgot_masks) if (*local_got > 0) { if (*lgot_masks == (TLS_TLS | TLS_LD)) { /* If just an LD reloc, we'll just use htab->tlsld_got.offset. */ htab->tlsld_got.refcount += 1; *local_got = (bfd_vma) -1; } else { unsigned int need = 0; if ((*lgot_masks & TLS_TLS) != 0) { if ((*lgot_masks & TLS_GD) != 0) need += 8; if ((*lgot_masks & (TLS_TPREL | TLS_TPRELGD)) != 0) need += 4; if ((*lgot_masks & TLS_DTPREL) != 0) need += 4; } else need += 4; *local_got = allocate_got (htab, need); if (info->shared) htab->relgot->size += (need * (sizeof (Elf32_External_Rela) / 4)); } } else *local_got = (bfd_vma) -1; } if (htab->tlsld_got.refcount > 0) { htab->tlsld_got.offset = allocate_got (htab, 8); if (info->shared) htab->relgot->size += sizeof (Elf32_External_Rela); } else htab->tlsld_got.offset = (bfd_vma) -1; /* Allocate space for global sym dynamic relocs. */ elf_link_hash_traverse (elf_hash_table (info), allocate_dynrelocs, info); if (htab->got != NULL && htab->plt_type != PLT_VXWORKS) { unsigned int g_o_t = 32768; /* If we haven't allocated the header, do so now. When we get here, for old plt/got the got size will be 0 to 32764 (not allocated), or 32780 to 65536 (header allocated). For new plt/got, the corresponding ranges are 0 to 32768 and 32780 to 65536. */ if (htab->got->size <= 32768) { g_o_t = htab->got->size; if (htab->plt_type == PLT_OLD) g_o_t += 4; htab->got->size += htab->got_header_size; } htab->elf.hgot->root.u.def.value = g_o_t; } if (htab->glink != NULL && htab->glink->size != 0) { htab->glink_pltresolve = htab->glink->size; /* Space for the branch table. */ htab->glink->size += htab->glink->size / (GLINK_ENTRY_SIZE / 4) - 4; /* Pad out to align the start of PLTresolve. */ htab->glink->size += -htab->glink->size & 15; htab->glink->size += GLINK_PLTRESOLVE; if (htab->emit_stub_syms) { struct elf_link_hash_entry *sh; sh = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE); if (sh == NULL) return FALSE; if (sh->root.type == bfd_link_hash_new) { sh->root.type = bfd_link_hash_defined; sh->root.u.def.section = htab->glink; sh->root.u.def.value = htab->glink_pltresolve; sh->ref_regular = 1; sh->def_regular = 1; sh->ref_regular_nonweak = 1; sh->forced_local = 1; sh->non_elf = 0; } sh = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve", TRUE, FALSE, FALSE); if (sh == NULL) return FALSE; if (sh->root.type == bfd_link_hash_new) { sh->root.type = bfd_link_hash_defined; sh->root.u.def.section = htab->glink; sh->root.u.def.value = htab->glink->size - GLINK_PLTRESOLVE; sh->ref_regular = 1; sh->def_regular = 1; sh->ref_regular_nonweak = 1; sh->forced_local = 1; sh->non_elf = 0; } } } /* We've now determined the sizes of the various dynamic sections. Allocate memory for them. */ relocs = FALSE; for (s = htab->elf.dynobj->sections; s != NULL; s = s->next) { bfd_boolean strip_section = TRUE; if ((s->flags & SEC_LINKER_CREATED) == 0) continue; if (s == htab->plt || s == htab->glink || s == htab->got || s == htab->sgotplt || s == htab->sbss || s == htab->dynbss || s == htab->dynsbss) { /* We'd like to strip these sections if they aren't needed, but if we've exported dynamic symbols from them we must leave them. It's too late to tell BFD to get rid of the symbols. */ if ((s == htab->plt || s == htab->got) && htab->elf.hplt != NULL) strip_section = FALSE; /* Strip this section if we don't need it; see the comment below. */ } else if (s == htab->sdata[0].section || s == htab->sdata[1].section) { /* Strip these too. */ } else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela")) { if (s->size != 0) { /* Remember whether there are any relocation sections. */ relocs = TRUE; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } } else { /* It's not one of our sections, so don't allocate space. */ continue; } if (s->size == 0 && strip_section) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rela.bss and .rela.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ s->flags |= SEC_EXCLUDE; continue; } if ((s->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. */ s->contents = bfd_zalloc (htab->elf.dynobj, s->size); if (s->contents == NULL) return FALSE; } if (htab->elf.dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in ppc_elf_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ #define add_dynamic_entry(TAG, VAL) \ _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (info->executable) { if (!add_dynamic_entry (DT_DEBUG, 0)) return FALSE; } if (htab->plt != NULL && htab->plt->size != 0) { if (!add_dynamic_entry (DT_PLTGOT, 0) || !add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, DT_RELA) || !add_dynamic_entry (DT_JMPREL, 0)) return FALSE; } if (htab->glink != NULL && htab->glink->size != 0) { if (!add_dynamic_entry (DT_PPC_GOT, 0)) return FALSE; } if (relocs) { if (!add_dynamic_entry (DT_RELA, 0) || !add_dynamic_entry (DT_RELASZ, 0) || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) return FALSE; } /* If any dynamic relocs apply to a read-only section, then we need a DT_TEXTREL entry. */ if ((info->flags & DF_TEXTREL) == 0) elf_link_hash_traverse (elf_hash_table (info), readonly_dynrelocs, info); if ((info->flags & DF_TEXTREL) != 0) { if (!add_dynamic_entry (DT_TEXTREL, 0)) return FALSE; } } #undef add_dynamic_entry return TRUE; } #define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0])) static const int shared_stub_entry[] = { 0x7c0802a6, /* mflr 0 */ 0x429f0005, /* bcl 20, 31, .Lxxx */ 0x7d6802a6, /* mflr 11 */ 0x3d6b0000, /* addis 11, 11, (xxx-.Lxxx)@ha */ 0x396b0018, /* addi 11, 11, (xxx-.Lxxx)@l */ 0x7c0803a6, /* mtlr 0 */ 0x7d6903a6, /* mtctr 11 */ 0x4e800420, /* bctr */ }; static const int stub_entry[] = { 0x3d600000, /* lis 11,xxx@ha */ 0x396b0000, /* addi 11,11,xxx@l */ 0x7d6903a6, /* mtctr 11 */ 0x4e800420, /* bctr */ }; static bfd_boolean ppc_elf_relax_section (bfd *abfd, asection *isec, struct bfd_link_info *link_info, bfd_boolean *again) { struct one_fixup { struct one_fixup *next; asection *tsec; bfd_vma toff; bfd_vma trampoff; }; Elf_Internal_Shdr *symtab_hdr; bfd_byte *contents = NULL; Elf_Internal_Sym *isymbuf = NULL; Elf_Internal_Rela *internal_relocs = NULL; Elf_Internal_Rela *irel, *irelend; struct one_fixup *fixups = NULL; bfd_boolean changed; struct ppc_elf_link_hash_table *htab; bfd_size_type trampoff; asection *got2; *again = FALSE; /* Nothing to do if there are no relocations, and no need to do anything with non-alloc sections. */ if ((isec->flags & SEC_ALLOC) == 0 || (isec->flags & SEC_RELOC) == 0 || isec->reloc_count == 0) return TRUE; trampoff = (isec->size + 3) & (bfd_vma) -4; /* Space for a branch around any trampolines. */ trampoff += 4; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; /* Get a copy of the native relocations. */ internal_relocs = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, link_info->keep_memory); if (internal_relocs == NULL) goto error_return; htab = ppc_elf_hash_table (link_info); got2 = bfd_get_section_by_name (abfd, ".got2"); irelend = internal_relocs + isec->reloc_count; for (irel = internal_relocs; irel < irelend; irel++) { unsigned long r_type = ELF32_R_TYPE (irel->r_info); bfd_vma symaddr, reladdr, toff, roff; asection *tsec; struct one_fixup *f; size_t insn_offset = 0; bfd_vma max_branch_offset, val; bfd_byte *hit_addr; unsigned long t0; unsigned char sym_type; switch (r_type) { case R_PPC_REL24: case R_PPC_LOCAL24PC: case R_PPC_PLTREL24: max_branch_offset = 1 << 25; break; case R_PPC_REL14: case R_PPC_REL14_BRTAKEN: case R_PPC_REL14_BRNTAKEN: max_branch_offset = 1 << 15; break; default: continue; } /* Get the value of the symbol referred to by the reloc. */ if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) { /* A local symbol. */ Elf_Internal_Sym *isym; /* Read this BFD's local symbols. */ if (isymbuf == NULL) { isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; if (isymbuf == NULL) isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (isymbuf == 0) goto error_return; } isym = isymbuf + ELF32_R_SYM (irel->r_info); if (isym->st_shndx == SHN_UNDEF) continue; /* We can't do anything with undefined symbols. */ else if (isym->st_shndx == SHN_ABS) tsec = bfd_abs_section_ptr; else if (isym->st_shndx == SHN_COMMON) tsec = bfd_com_section_ptr; else tsec = bfd_section_from_elf_index (abfd, isym->st_shndx); toff = isym->st_value; sym_type = ELF_ST_TYPE (isym->st_info); } else { /* Global symbol handling. */ unsigned long indx; struct elf_link_hash_entry *h; indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[indx]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; tsec = NULL; toff = 0; if (r_type == R_PPC_PLTREL24 && htab->plt != NULL) { struct plt_entry *ent = find_plt_ent (h, got2, irel->r_addend); if (ent != NULL) { if (htab->plt_type == PLT_NEW) { tsec = htab->glink; toff = ent->glink_offset; } else { tsec = htab->plt; toff = ent->plt.offset; } } } if (tsec != NULL) ; else if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { tsec = h->root.u.def.section; toff = h->root.u.def.value; } else continue; sym_type = h->type; } /* If the branch and target are in the same section, you have no hope of adding stubs. We'll error out later should the branch overflow. */ if (tsec == isec) continue; /* There probably isn't any reason to handle symbols in SEC_MERGE sections; SEC_MERGE doesn't seem a likely attribute for a code section, and we are only looking at branches. However, implement it correctly here as a reference for other target relax_section functions. */ if (0 && tsec->sec_info_type == ELF_INFO_TYPE_MERGE) { /* At this stage in linking, no SEC_MERGE symbol has been adjusted, so all references to such symbols need to be passed through _bfd_merged_section_offset. (Later, in relocate_section, all SEC_MERGE symbols *except* for section symbols have been adjusted.) gas may reduce relocations against symbols in SEC_MERGE sections to a relocation against the section symbol when the original addend was zero. When the reloc is against a section symbol we should include the addend in the offset passed to _bfd_merged_section_offset, since the location of interest is the original symbol. On the other hand, an access to "sym+addend" where "sym" is not a section symbol should not include the addend; Such an access is presumed to be an offset from "sym"; The location of interest is just "sym". */ if (sym_type == STT_SECTION) toff += irel->r_addend; toff = _bfd_merged_section_offset (abfd, &tsec, elf_section_data (tsec)->sec_info, toff); if (sym_type != STT_SECTION) toff += irel->r_addend; } /* PLTREL24 addends are special. */ else if (r_type != R_PPC_PLTREL24) toff += irel->r_addend; /* Attempted -shared link of non-pic code loses. */ if (tsec->output_section == NULL) continue; symaddr = tsec->output_section->vma + tsec->output_offset + toff; roff = irel->r_offset; reladdr = isec->output_section->vma + isec->output_offset + roff; /* If the branch is in range, no need to do anything. */ if (symaddr - reladdr + max_branch_offset < 2 * max_branch_offset) continue; /* Look for an existing fixup to this address. */ for (f = fixups; f ; f = f->next) if (f->tsec == tsec && f->toff == toff) break; if (f == NULL) { size_t size; unsigned long stub_rtype; val = trampoff - roff; if (val >= max_branch_offset) /* Oh dear, we can't reach a trampoline. Don't try to add one. We'll report an error later. */ continue; if (link_info->shared) { size = 4 * ARRAY_SIZE (shared_stub_entry); insn_offset = 12; stub_rtype = R_PPC_RELAX32PC; } else { size = 4 * ARRAY_SIZE (stub_entry); insn_offset = 0; stub_rtype = R_PPC_RELAX32; } if (R_PPC_RELAX32_PLT - R_PPC_RELAX32 != R_PPC_RELAX32PC_PLT - R_PPC_RELAX32PC) abort (); if (tsec == htab->plt || tsec == htab->glink) stub_rtype += R_PPC_RELAX32_PLT - R_PPC_RELAX32; /* Hijack the old relocation. Since we need two relocations for this use a "composite" reloc. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), stub_rtype); irel->r_offset = trampoff + insn_offset; /* Record the fixup so we don't do it again this section. */ f = bfd_malloc (sizeof (*f)); f->next = fixups; f->tsec = tsec; f->toff = toff; f->trampoff = trampoff; fixups = f; trampoff += size; } else { val = f->trampoff - roff; if (val >= max_branch_offset) continue; /* Nop out the reloc, since we're finalizing things here. */ irel->r_info = ELF32_R_INFO (0, R_PPC_NONE); } /* Get the section contents. */ if (contents == NULL) { /* Get cached copy if it exists. */ if (elf_section_data (isec)->this_hdr.contents != NULL) contents = elf_section_data (isec)->this_hdr.contents; else { /* Go get them off disk. */ if (!bfd_malloc_and_get_section (abfd, isec, &contents)) goto error_return; } } /* Fix up the existing branch to hit the trampoline. */ hit_addr = contents + roff; switch (r_type) { case R_PPC_REL24: case R_PPC_LOCAL24PC: case R_PPC_PLTREL24: t0 = bfd_get_32 (abfd, hit_addr); t0 &= ~0x3fffffc; t0 |= val & 0x3fffffc; bfd_put_32 (abfd, t0, hit_addr); break; case R_PPC_REL14: case R_PPC_REL14_BRTAKEN: case R_PPC_REL14_BRNTAKEN: t0 = bfd_get_32 (abfd, hit_addr); t0 &= ~0xfffc; t0 |= val & 0xfffc; bfd_put_32 (abfd, t0, hit_addr); break; } } /* Write out the trampolines. */ changed = fixups != NULL; if (fixups != NULL) { const int *stub; bfd_byte *dest; bfd_vma val; int i, size; do { struct one_fixup *f = fixups; fixups = fixups->next; free (f); } while (fixups); contents = bfd_realloc (contents, trampoff); if (contents == NULL) goto error_return; isec->size = (isec->size + 3) & (bfd_vma) -4; /* Branch around the trampolines. */ val = trampoff - isec->size + 0x48000000; dest = contents + isec->size; isec->size = trampoff; bfd_put_32 (abfd, val, dest); dest += 4; if (link_info->shared) { stub = shared_stub_entry; size = ARRAY_SIZE (shared_stub_entry); } else { stub = stub_entry; size = ARRAY_SIZE (stub_entry); } i = 0; while (dest < contents + trampoff) { bfd_put_32 (abfd, stub[i], dest); i++; if (i == size) i = 0; dest += 4; } BFD_ASSERT (i == 0); } if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) { if (! link_info->keep_memory) free (isymbuf); else { /* Cache the symbols for elf_link_input_bfd. */ symtab_hdr->contents = (unsigned char *) isymbuf; } } if (contents != NULL && elf_section_data (isec)->this_hdr.contents != contents) { if (!changed && !link_info->keep_memory) free (contents); else { /* Cache the section contents for elf_link_input_bfd. */ elf_section_data (isec)->this_hdr.contents = contents; } } if (elf_section_data (isec)->relocs != internal_relocs) { if (!changed) free (internal_relocs); else elf_section_data (isec)->relocs = internal_relocs; } *again = changed; return TRUE; error_return: if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) free (isymbuf); if (contents != NULL && elf_section_data (isec)->this_hdr.contents != contents) free (contents); if (internal_relocs != NULL && elf_section_data (isec)->relocs != internal_relocs) free (internal_relocs); return FALSE; } /* What to do when ld finds relocations against symbols defined in discarded sections. */ static unsigned int ppc_elf_action_discarded (asection *sec) { if (strcmp (".fixup", sec->name) == 0) return 0; if (strcmp (".got2", sec->name) == 0) return 0; return _bfd_elf_default_action_discarded (sec); } /* Fill in the address for a pointer generated in a linker section. */ static bfd_vma elf_finish_pointer_linker_section (bfd *input_bfd, elf_linker_section_t *lsect, struct elf_link_hash_entry *h, bfd_vma relocation, const Elf_Internal_Rela *rel) { elf_linker_section_pointers_t *linker_section_ptr; BFD_ASSERT (lsect != NULL); if (h != NULL) { /* Handle global symbol. */ struct ppc_elf_link_hash_entry *eh; eh = (struct ppc_elf_link_hash_entry *) h; BFD_ASSERT (eh->elf.def_regular); linker_section_ptr = eh->linker_section_pointer; } else { /* Handle local symbol. */ unsigned long r_symndx = ELF32_R_SYM (rel->r_info); BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL); linker_section_ptr = elf_local_ptr_offsets (input_bfd)[r_symndx]; } linker_section_ptr = elf_find_pointer_linker_section (linker_section_ptr, rel->r_addend, lsect); BFD_ASSERT (linker_section_ptr != NULL); /* Offset will always be a multiple of four, so use the bottom bit as a "written" flag. */ if ((linker_section_ptr->offset & 1) == 0) { bfd_put_32 (lsect->section->owner, relocation + linker_section_ptr->addend, lsect->section->contents + linker_section_ptr->offset); linker_section_ptr->offset += 1; } relocation = (lsect->section->output_offset + linker_section_ptr->offset - 1 - 0x8000); #ifdef DEBUG fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n", lsect->name, (long) relocation, (long) relocation); #endif /* Subtract out the addend, because it will get added back in by the normal processing. */ return relocation - linker_section_ptr->addend; } /* The RELOCATE_SECTION function is called by the ELF backend linker to handle the relocations for a section. The relocs are always passed as Rela structures; if the section actually uses Rel structures, the r_addend field will always be zero. This function is responsible for adjust the section contents as necessary, and (if using Rela relocs and generating a relocatable output file) adjusting the reloc addend as necessary. This function does not have to worry about setting the reloc address or the reloc symbol index. LOCAL_SYMS is a pointer to the swapped in local symbols. LOCAL_SECTIONS is an array giving the section in the input file corresponding to the st_shndx field of each local symbol. The global hash table entry for the global symbols can be found via elf_sym_hashes (input_bfd). When generating relocatable output, this function must handle STB_LOCAL/STT_SECTION symbols specially. The output symbol is going to be the section symbol corresponding to the output section, which means that the addend must be adjusted accordingly. */ static bfd_boolean ppc_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; struct ppc_elf_link_hash_table *htab; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; Elf_Internal_Rela outrel; bfd_byte *loc; asection *got2, *sreloc = NULL; bfd_vma *local_got_offsets; bfd_boolean ret = TRUE; #ifdef DEBUG _bfd_error_handler ("ppc_elf_relocate_section called for %B section %A, " "%ld relocations%s", input_bfd, input_section, (long) input_section->reloc_count, (info->relocatable) ? " (relocatable)" : ""); #endif got2 = bfd_get_section_by_name (input_bfd, ".got2"); if (info->relocatable) { if (got2 == NULL) return TRUE; rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { enum elf_ppc_reloc_type r_type; r_type = ELF32_R_TYPE (rel->r_info); if (r_type == R_PPC_PLTREL24 && rel->r_addend >= 32768) { /* R_PPC_PLTREL24 is rather special. If non-zero, the addend specifies the GOT pointer offset within .got2. */ rel->r_addend += got2->output_offset; } } return TRUE; } /* Initialize howto table if not already done. */ if (!ppc_elf_howto_table[R_PPC_ADDR32]) ppc_elf_howto_init (); htab = ppc_elf_hash_table (info); local_got_offsets = elf_local_got_offsets (input_bfd); symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { enum elf_ppc_reloc_type r_type; bfd_vma addend; bfd_reloc_status_type r; Elf_Internal_Sym *sym; asection *sec; struct elf_link_hash_entry *h; const char *sym_name; reloc_howto_type *howto; unsigned long r_symndx; bfd_vma relocation; bfd_vma branch_bit, insn, from; bfd_boolean unresolved_reloc; bfd_boolean warned; unsigned int tls_type, tls_mask, tls_gd; r_type = ELF32_R_TYPE (rel->r_info); sym = NULL; sec = NULL; h = NULL; unresolved_reloc = FALSE; warned = FALSE; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec); relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); } else { RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, r_symndx, symtab_hdr, sym_hashes, h, sec, relocation, unresolved_reloc, warned); sym_name = h->root.root.string; } /* TLS optimizations. Replace instruction sequences and relocs based on information we collected in tls_optimize. We edit RELOCS so that --emit-relocs will output something sensible for the final instruction stream. */ tls_mask = 0; tls_gd = 0; if (IS_PPC_TLS_RELOC (r_type)) { if (h != NULL) tls_mask = ((struct ppc_elf_link_hash_entry *) h)->tls_mask; else if (local_got_offsets != NULL) { char *lgot_masks; lgot_masks = (char *) (local_got_offsets + symtab_hdr->sh_info); tls_mask = lgot_masks[r_symndx]; } } /* Ensure reloc mapping code below stays sane. */ if ((R_PPC_GOT_TLSLD16 & 3) != (R_PPC_GOT_TLSGD16 & 3) || (R_PPC_GOT_TLSLD16_LO & 3) != (R_PPC_GOT_TLSGD16_LO & 3) || (R_PPC_GOT_TLSLD16_HI & 3) != (R_PPC_GOT_TLSGD16_HI & 3) || (R_PPC_GOT_TLSLD16_HA & 3) != (R_PPC_GOT_TLSGD16_HA & 3) || (R_PPC_GOT_TLSLD16 & 3) != (R_PPC_GOT_TPREL16 & 3) || (R_PPC_GOT_TLSLD16_LO & 3) != (R_PPC_GOT_TPREL16_LO & 3) || (R_PPC_GOT_TLSLD16_HI & 3) != (R_PPC_GOT_TPREL16_HI & 3) || (R_PPC_GOT_TLSLD16_HA & 3) != (R_PPC_GOT_TPREL16_HA & 3)) abort (); switch (r_type) { default: break; case R_PPC_GOT_TPREL16: case R_PPC_GOT_TPREL16_LO: if (tls_mask != 0 && (tls_mask & TLS_TPREL) == 0) { bfd_vma insn; insn = bfd_get_32 (output_bfd, contents + rel->r_offset - 2); insn &= 31 << 21; insn |= 0x3c020000; /* addis 0,2,0 */ bfd_put_32 (output_bfd, insn, contents + rel->r_offset - 2); r_type = R_PPC_TPREL16_HA; rel->r_info = ELF32_R_INFO (r_symndx, r_type); } break; case R_PPC_TLS: if (tls_mask != 0 && (tls_mask & TLS_TPREL) == 0) { bfd_vma insn, rtra; insn = bfd_get_32 (output_bfd, contents + rel->r_offset); if ((insn & ((31 << 26) | (31 << 11))) == ((31 << 26) | (2 << 11))) rtra = insn & ((1 << 26) - (1 << 16)); else if ((insn & ((31 << 26) | (31 << 16))) == ((31 << 26) | (2 << 16))) rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5); else abort (); if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1) /* add -> addi. */ insn = 14 << 26; else if ((insn & (31 << 1)) == 23 << 1 && ((insn & (31 << 6)) < 14 << 6 || ((insn & (31 << 6)) >= 16 << 6 && (insn & (31 << 6)) < 24 << 6))) /* load and store indexed -> dform. */ insn = (32 | ((insn >> 6) & 31)) << 26; else if ((insn & (31 << 1)) == 21 << 1 && (insn & (0x1a << 6)) == 0) /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */ insn = (((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1)); else if ((insn & (31 << 1)) == 21 << 1 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1) /* lwax -> lwa. */ insn = (58 << 26) | 2; else abort (); insn |= rtra; bfd_put_32 (output_bfd, insn, contents + rel->r_offset); r_type = R_PPC_TPREL16_LO; rel->r_info = ELF32_R_INFO (r_symndx, r_type); /* Was PPC_TLS which sits on insn boundary, now PPC_TPREL16_LO which is at insn+2. */ rel->r_offset += 2; } break; case R_PPC_GOT_TLSGD16_HI: case R_PPC_GOT_TLSGD16_HA: tls_gd = TLS_TPRELGD; if (tls_mask != 0 && (tls_mask & TLS_GD) == 0) goto tls_gdld_hi; break; case R_PPC_GOT_TLSLD16_HI: case R_PPC_GOT_TLSLD16_HA: if (tls_mask != 0 && (tls_mask & TLS_LD) == 0) { tls_gdld_hi: if ((tls_mask & tls_gd) != 0) r_type = (((r_type - (R_PPC_GOT_TLSGD16 & 3)) & 3) + R_PPC_GOT_TPREL16); else { bfd_put_32 (output_bfd, NOP, contents + rel->r_offset); rel->r_offset -= 2; r_type = R_PPC_NONE; } rel->r_info = ELF32_R_INFO (r_symndx, r_type); } break; case R_PPC_GOT_TLSGD16: case R_PPC_GOT_TLSGD16_LO: tls_gd = TLS_TPRELGD; if (tls_mask != 0 && (tls_mask & TLS_GD) == 0) goto tls_get_addr_check; break; case R_PPC_GOT_TLSLD16: case R_PPC_GOT_TLSLD16_LO: if (tls_mask != 0 && (tls_mask & TLS_LD) == 0) { tls_get_addr_check: if (rel + 1 < relend) { enum elf_ppc_reloc_type r_type2; unsigned long r_symndx2; struct elf_link_hash_entry *h2; bfd_vma insn1, insn2; bfd_vma offset; /* The next instruction should be a call to __tls_get_addr. Peek at the reloc to be sure. */ r_type2 = ELF32_R_TYPE (rel[1].r_info); r_symndx2 = ELF32_R_SYM (rel[1].r_info); if (r_symndx2 < symtab_hdr->sh_info || (r_type2 != R_PPC_REL14 && r_type2 != R_PPC_REL14_BRTAKEN && r_type2 != R_PPC_REL14_BRNTAKEN && r_type2 != R_PPC_REL24 && r_type2 != R_PPC_PLTREL24)) break; h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info]; while (h2->root.type == bfd_link_hash_indirect || h2->root.type == bfd_link_hash_warning) h2 = (struct elf_link_hash_entry *) h2->root.u.i.link; if (h2 == NULL || h2 != htab->tls_get_addr) break; /* OK, it checks out. Replace the call. */ offset = rel[1].r_offset; insn1 = bfd_get_32 (output_bfd, contents + rel->r_offset - 2); if ((tls_mask & tls_gd) != 0) { /* IE */ insn1 &= (1 << 26) - 1; insn1 |= 32 << 26; /* lwz */ insn2 = 0x7c631214; /* add 3,3,2 */ rel[1].r_info = ELF32_R_INFO (r_symndx2, R_PPC_NONE); rel[1].r_addend = 0; r_type = (((r_type - (R_PPC_GOT_TLSGD16 & 3)) & 3) + R_PPC_GOT_TPREL16); rel->r_info = ELF32_R_INFO (r_symndx, r_type); } else { /* LE */ insn1 = 0x3c620000; /* addis 3,2,0 */ insn2 = 0x38630000; /* addi 3,3,0 */ if (tls_gd == 0) { /* Was an LD reloc. */ r_symndx = 0; rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET; } r_type = R_PPC_TPREL16_HA; rel->r_info = ELF32_R_INFO (r_symndx, r_type); rel[1].r_info = ELF32_R_INFO (r_symndx, R_PPC_TPREL16_LO); rel[1].r_offset += 2; rel[1].r_addend = rel->r_addend; } bfd_put_32 (output_bfd, insn1, contents + rel->r_offset - 2); bfd_put_32 (output_bfd, insn2, contents + offset); if (tls_gd == 0) { /* We changed the symbol on an LD reloc. Start over in order to get h, sym, sec etc. right. */ rel--; continue; } } } break; } /* Handle other relocations that tweak non-addend part of insn. */ branch_bit = 0; switch (r_type) { default: break; /* Branch taken prediction relocations. */ case R_PPC_ADDR14_BRTAKEN: case R_PPC_REL14_BRTAKEN: branch_bit = BRANCH_PREDICT_BIT; /* Fall thru */ /* Branch not taken prediction relocations. */ case R_PPC_ADDR14_BRNTAKEN: case R_PPC_REL14_BRNTAKEN: insn = bfd_get_32 (output_bfd, contents + rel->r_offset); insn &= ~BRANCH_PREDICT_BIT; insn |= branch_bit; from = (rel->r_offset + input_section->output_offset + input_section->output_section->vma); /* Invert 'y' bit if not the default. */ if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0) insn ^= BRANCH_PREDICT_BIT; bfd_put_32 (output_bfd, insn, contents + rel->r_offset); break; } addend = rel->r_addend; tls_type = 0; howto = NULL; if (r_type < R_PPC_max) howto = ppc_elf_howto_table[r_type]; switch (r_type) { default: (*_bfd_error_handler) (_("%B: unknown relocation type %d for symbol %s"), input_bfd, (int) r_type, sym_name); bfd_set_error (bfd_error_bad_value); ret = FALSE; continue; case R_PPC_NONE: case R_PPC_TLS: case R_PPC_EMB_MRKREF: case R_PPC_GNU_VTINHERIT: case R_PPC_GNU_VTENTRY: continue; /* GOT16 relocations. Like an ADDR16 using the symbol's address in the GOT as relocation value instead of the symbol's value itself. Also, create a GOT entry for the symbol and put the symbol value there. */ case R_PPC_GOT_TLSGD16: case R_PPC_GOT_TLSGD16_LO: case R_PPC_GOT_TLSGD16_HI: case R_PPC_GOT_TLSGD16_HA: tls_type = TLS_TLS | TLS_GD; goto dogot; case R_PPC_GOT_TLSLD16: case R_PPC_GOT_TLSLD16_LO: case R_PPC_GOT_TLSLD16_HI: case R_PPC_GOT_TLSLD16_HA: tls_type = TLS_TLS | TLS_LD; goto dogot; case R_PPC_GOT_TPREL16: case R_PPC_GOT_TPREL16_LO: case R_PPC_GOT_TPREL16_HI: case R_PPC_GOT_TPREL16_HA: tls_type = TLS_TLS | TLS_TPREL; goto dogot; case R_PPC_GOT_DTPREL16: case R_PPC_GOT_DTPREL16_LO: case R_PPC_GOT_DTPREL16_HI: case R_PPC_GOT_DTPREL16_HA: tls_type = TLS_TLS | TLS_DTPREL; goto dogot; case R_PPC_GOT16: case R_PPC_GOT16_LO: case R_PPC_GOT16_HI: case R_PPC_GOT16_HA: dogot: { /* Relocation is to the entry for this symbol in the global offset table. */ bfd_vma off; bfd_vma *offp; unsigned long indx; if (htab->got == NULL) abort (); indx = 0; if (tls_type == (TLS_TLS | TLS_LD) && (h == NULL || !h->def_dynamic)) offp = &htab->tlsld_got.offset; else if (h != NULL) { bfd_boolean dyn; dyn = htab->elf.dynamic_sections_created; if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) || (info->shared && SYMBOL_REFERENCES_LOCAL (info, h))) /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally, or the symbol was forced to be local because of a version file. */ ; else { indx = h->dynindx; unresolved_reloc = FALSE; } offp = &h->got.offset; } else { if (local_got_offsets == NULL) abort (); offp = &local_got_offsets[r_symndx]; } /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already processed this entry. */ off = *offp; if ((off & 1) != 0) off &= ~1; else { unsigned int tls_m = (tls_mask & (TLS_LD | TLS_GD | TLS_DTPREL | TLS_TPREL | TLS_TPRELGD)); if (offp == &htab->tlsld_got.offset) tls_m = TLS_LD; else if (h == NULL || !h->def_dynamic) tls_m &= ~TLS_LD; /* We might have multiple got entries for this sym. Initialize them all. */ do { int tls_ty = 0; if ((tls_m & TLS_LD) != 0) { tls_ty = TLS_TLS | TLS_LD; tls_m &= ~TLS_LD; } else if ((tls_m & TLS_GD) != 0) { tls_ty = TLS_TLS | TLS_GD; tls_m &= ~TLS_GD; } else if ((tls_m & TLS_DTPREL) != 0) { tls_ty = TLS_TLS | TLS_DTPREL; tls_m &= ~TLS_DTPREL; } else if ((tls_m & (TLS_TPREL | TLS_TPRELGD)) != 0) { tls_ty = TLS_TLS | TLS_TPREL; tls_m = 0; } /* Generate relocs for the dynamic linker. */ if ((info->shared || indx != 0) && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) { outrel.r_offset = (htab->got->output_section->vma + htab->got->output_offset + off); outrel.r_addend = 0; if (tls_ty & (TLS_LD | TLS_GD)) { outrel.r_info = ELF32_R_INFO (indx, R_PPC_DTPMOD32); if (tls_ty == (TLS_TLS | TLS_GD)) { loc = htab->relgot->contents; loc += (htab->relgot->reloc_count++ * sizeof (Elf32_External_Rela)); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); outrel.r_offset += 4; outrel.r_info = ELF32_R_INFO (indx, R_PPC_DTPREL32); } } else if (tls_ty == (TLS_TLS | TLS_DTPREL)) outrel.r_info = ELF32_R_INFO (indx, R_PPC_DTPREL32); else if (tls_ty == (TLS_TLS | TLS_TPREL)) outrel.r_info = ELF32_R_INFO (indx, R_PPC_TPREL32); else if (indx == 0) outrel.r_info = ELF32_R_INFO (indx, R_PPC_RELATIVE); else outrel.r_info = ELF32_R_INFO (indx, R_PPC_GLOB_DAT); if (indx == 0) { outrel.r_addend += relocation; if (tls_ty & (TLS_GD | TLS_DTPREL | TLS_TPREL)) outrel.r_addend -= htab->elf.tls_sec->vma; } loc = htab->relgot->contents; loc += (htab->relgot->reloc_count++ * sizeof (Elf32_External_Rela)); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); } /* Init the .got section contents if we're not emitting a reloc. */ else { bfd_vma value = relocation; if (tls_ty == (TLS_TLS | TLS_LD)) value = 1; else if (tls_ty != 0) { value -= htab->elf.tls_sec->vma + DTP_OFFSET; if (tls_ty == (TLS_TLS | TLS_TPREL)) value += DTP_OFFSET - TP_OFFSET; if (tls_ty == (TLS_TLS | TLS_GD)) { bfd_put_32 (output_bfd, value, htab->got->contents + off + 4); value = 1; } } bfd_put_32 (output_bfd, value, htab->got->contents + off); } off += 4; if (tls_ty & (TLS_LD | TLS_GD)) off += 4; } while (tls_m != 0); off = *offp; *offp = off | 1; } if (off >= (bfd_vma) -2) abort (); if ((tls_type & TLS_TLS) != 0) { if (tls_type != (TLS_TLS | TLS_LD)) { if ((tls_mask & TLS_LD) != 0 && !(h == NULL || !h->def_dynamic)) off += 8; if (tls_type != (TLS_TLS | TLS_GD)) { if ((tls_mask & TLS_GD) != 0) off += 8; if (tls_type != (TLS_TLS | TLS_DTPREL)) { if ((tls_mask & TLS_DTPREL) != 0) off += 4; } } } } relocation = htab->got->output_offset + off; relocation -= htab->elf.hgot->root.u.def.value; /* Addends on got relocations don't make much sense. x+off@got is actually x@got+off, and since the got is generated by a hash table traversal, the value in the got at entry m+n bears little relation to the entry m. */ if (addend != 0) (*_bfd_error_handler) (_("%B(%A+0x%lx): non-zero addend on %s reloc against `%s'"), input_bfd, input_section, (long) rel->r_offset, howto->name, sym_name); } break; /* Relocations that need no special processing. */ case R_PPC_LOCAL24PC: /* It makes no sense to point a local relocation at a symbol not in this object. */ if (unresolved_reloc) { if (! (*info->callbacks->undefined_symbol) (info, h->root.root.string, input_bfd, input_section, rel->r_offset, TRUE)) return FALSE; continue; } break; case R_PPC_DTPREL16: case R_PPC_DTPREL16_LO: case R_PPC_DTPREL16_HI: case R_PPC_DTPREL16_HA: addend -= htab->elf.tls_sec->vma + DTP_OFFSET; break; /* Relocations that may need to be propagated if this is a shared object. */ case R_PPC_TPREL16: case R_PPC_TPREL16_LO: case R_PPC_TPREL16_HI: case R_PPC_TPREL16_HA: addend -= htab->elf.tls_sec->vma + TP_OFFSET; /* The TPREL16 relocs shouldn't really be used in shared libs as they will result in DT_TEXTREL being set, but support them anyway. */ goto dodyn; case R_PPC_TPREL32: addend -= htab->elf.tls_sec->vma + TP_OFFSET; goto dodyn; case R_PPC_DTPREL32: addend -= htab->elf.tls_sec->vma + DTP_OFFSET; goto dodyn; case R_PPC_DTPMOD32: relocation = 1; addend = 0; goto dodyn; case R_PPC_REL16: case R_PPC_REL16_LO: case R_PPC_REL16_HI: case R_PPC_REL16_HA: break; case R_PPC_REL24: case R_PPC_REL32: case R_PPC_REL14: case R_PPC_REL14_BRTAKEN: case R_PPC_REL14_BRNTAKEN: /* If these relocations are not to a named symbol, they can be handled right here, no need to bother the dynamic linker. */ if (SYMBOL_REFERENCES_LOCAL (info, h) || h == htab->elf.hgot) break; /* fall through */ /* Relocations that always need to be propagated if this is a shared object. */ case R_PPC_ADDR32: case R_PPC_ADDR24: case R_PPC_ADDR16: case R_PPC_ADDR16_LO: case R_PPC_ADDR16_HI: case R_PPC_ADDR16_HA: case R_PPC_ADDR14: case R_PPC_ADDR14_BRTAKEN: case R_PPC_ADDR14_BRNTAKEN: case R_PPC_UADDR32: case R_PPC_UADDR16: /* r_symndx will be zero only for relocs against symbols from removed linkonce sections, or sections discarded by a linker script. */ dodyn: if (r_symndx == 0) { _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); break; } /* Fall thru. */ if ((input_section->flags & SEC_ALLOC) == 0) break; /* Fall thru. */ if ((info->shared && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && (MUST_BE_DYN_RELOC (r_type) || !SYMBOL_CALLS_LOCAL (info, h))) || (ELIMINATE_COPY_RELOCS && !info->shared && h != NULL && h->dynindx != -1 && !h->non_got_ref && h->def_dynamic && !h->def_regular)) { int skip; #ifdef DEBUG fprintf (stderr, "ppc_elf_relocate_section needs to " "create relocation for %s\n", (h && h->root.root.string ? h->root.root.string : "")); #endif /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ if (sreloc == NULL) { const char *name; name = (bfd_elf_string_from_elf_section (input_bfd, elf_elfheader (input_bfd)->e_shstrndx, elf_section_data (input_section)->rel_hdr.sh_name)); if (name == NULL) return FALSE; BFD_ASSERT (CONST_STRNEQ (name, ".rela") && strcmp (bfd_get_section_name (input_bfd, input_section), name + 5) == 0); sreloc = bfd_get_section_by_name (htab->elf.dynobj, name); BFD_ASSERT (sreloc != NULL); } skip = 0; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) -1 || outrel.r_offset == (bfd_vma) -2) skip = (int) outrel.r_offset; outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); if (skip) memset (&outrel, 0, sizeof outrel); else if (!SYMBOL_REFERENCES_LOCAL (info, h)) { unresolved_reloc = FALSE; outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); outrel.r_addend = rel->r_addend; } else { outrel.r_addend = relocation + rel->r_addend; if (r_type == R_PPC_ADDR32) outrel.r_info = ELF32_R_INFO (0, R_PPC_RELATIVE); else { long indx; if (bfd_is_abs_section (sec)) indx = 0; else if (sec == NULL || sec->owner == NULL) { bfd_set_error (bfd_error_bad_value); return FALSE; } else { asection *osec; /* We are turning this relocation into one against a section symbol. It would be proper to subtract the symbol's value, osec->vma, from the emitted reloc addend, but ld.so expects buggy relocs. */ osec = sec->output_section; indx = elf_section_data (osec)->dynindx; if (indx == 0) { osec = htab->elf.text_index_section; indx = elf_section_data (osec)->dynindx; } BFD_ASSERT (indx != 0); #ifdef DEBUG if (indx == 0) printf ("indx=%ld section=%s flags=%08x name=%s\n", indx, osec->name, osec->flags, h->root.root.string); #endif } outrel.r_info = ELF32_R_INFO (indx, r_type); } } loc = sreloc->contents; loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); if (skip == -1) continue; /* This reloc will be computed at runtime. We clear the memory so that it contains predictable value. */ if (! skip && ((input_section->flags & SEC_ALLOC) != 0 || ELF32_R_TYPE (outrel.r_info) != R_PPC_RELATIVE)) { relocation = howto->pc_relative ? outrel.r_offset : 0; addend = 0; break; } } break; case R_PPC_RELAX32PC_PLT: case R_PPC_RELAX32_PLT: { struct plt_entry *ent = find_plt_ent (h, got2, addend); if (htab->plt_type == PLT_NEW) relocation = (htab->glink->output_section->vma + htab->glink->output_offset + ent->glink_offset); else relocation = (htab->plt->output_section->vma + htab->plt->output_offset + ent->plt.offset); addend = 0; } if (r_type == R_PPC_RELAX32_PLT) goto relax32; /* Fall thru */ case R_PPC_RELAX32PC: relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset - 4); /* Fall thru */ case R_PPC_RELAX32: relax32: { unsigned long t0; unsigned long t1; t0 = bfd_get_32 (output_bfd, contents + rel->r_offset); t1 = bfd_get_32 (output_bfd, contents + rel->r_offset + 4); /* We're clearing the bits for R_PPC_ADDR16_HA and R_PPC_ADDR16_LO here. */ t0 &= ~0xffff; t1 &= ~0xffff; /* t0 is HA, t1 is LO */ relocation += addend; t0 |= ((relocation + 0x8000) >> 16) & 0xffff; t1 |= relocation & 0xffff; bfd_put_32 (output_bfd, t0, contents + rel->r_offset); bfd_put_32 (output_bfd, t1, contents + rel->r_offset + 4); } continue; /* Indirect .sdata relocation. */ case R_PPC_EMB_SDAI16: BFD_ASSERT (htab->sdata[0].section != NULL); relocation = elf_finish_pointer_linker_section (input_bfd, &htab->sdata[0], h, relocation, rel); break; /* Indirect .sdata2 relocation. */ case R_PPC_EMB_SDA2I16: BFD_ASSERT (htab->sdata[1].section != NULL); relocation = elf_finish_pointer_linker_section (input_bfd, &htab->sdata[1], h, relocation, rel); break; /* Handle the TOC16 reloc. We want to use the offset within the .got section, not the actual VMA. This is appropriate when generating an embedded ELF object, for which the .got section acts like the AIX .toc section. */ case R_PPC_TOC16: /* phony GOT16 relocations */ BFD_ASSERT (sec != NULL); BFD_ASSERT (bfd_is_und_section (sec) || strcmp (bfd_get_section_name (abfd, sec), ".got") == 0 || strcmp (bfd_get_section_name (abfd, sec), ".cgot") == 0); addend -= sec->output_section->vma + sec->output_offset + 0x8000; break; case R_PPC_PLTREL24: /* Relocation is to the entry for this symbol in the procedure linkage table. */ { struct plt_entry *ent = find_plt_ent (h, got2, addend); addend = 0; if (ent == NULL || htab->plt == NULL) { /* We didn't make a PLT entry for this symbol. This happens when statically linking PIC code, or when using -Bsymbolic. */ break; } unresolved_reloc = FALSE; if (htab->plt_type == PLT_NEW) relocation = (htab->glink->output_section->vma + htab->glink->output_offset + ent->glink_offset); else relocation = (htab->plt->output_section->vma + htab->plt->output_offset + ent->plt.offset); } break; /* Relocate against _SDA_BASE_. */ case R_PPC_SDAREL16: { const char *name; struct elf_link_hash_entry *sh; BFD_ASSERT (sec != NULL); name = bfd_get_section_name (abfd, sec->output_section); if (! ((CONST_STRNEQ (name, ".sdata") && (name[6] == 0 || name[6] == '.')) || (CONST_STRNEQ (name, ".sbss") && (name[5] == 0 || name[5] == '.')))) { (*_bfd_error_handler) (_("%B: the target (%s) of a %s relocation is " "in the wrong output section (%s)"), input_bfd, sym_name, howto->name, name); } sh = htab->sdata[0].sym; addend -= (sh->root.u.def.value + sh->root.u.def.section->output_offset + sh->root.u.def.section->output_section->vma); } break; /* Relocate against _SDA2_BASE_. */ case R_PPC_EMB_SDA2REL: { const char *name; struct elf_link_hash_entry *sh; BFD_ASSERT (sec != NULL); name = bfd_get_section_name (abfd, sec->output_section); if (! (CONST_STRNEQ (name, ".sdata2") || CONST_STRNEQ (name, ".sbss2"))) { (*_bfd_error_handler) (_("%B: the target (%s) of a %s relocation is " "in the wrong output section (%s)"), input_bfd, sym_name, howto->name, name); bfd_set_error (bfd_error_bad_value); ret = FALSE; continue; } sh = htab->sdata[1].sym; addend -= (sh->root.u.def.value + sh->root.u.def.section->output_offset + sh->root.u.def.section->output_section->vma); } break; /* Relocate against either _SDA_BASE_, _SDA2_BASE_, or 0. */ case R_PPC_EMB_SDA21: case R_PPC_EMB_RELSDA: { const char *name; int reg; struct elf_link_hash_entry *sh; BFD_ASSERT (sec != NULL); name = bfd_get_section_name (abfd, sec->output_section); if (((CONST_STRNEQ (name, ".sdata") && (name[6] == 0 || name[6] == '.')) || (CONST_STRNEQ (name, ".sbss") && (name[5] == 0 || name[5] == '.')))) { reg = 13; sh = htab->sdata[0].sym; addend -= (sh->root.u.def.value + sh->root.u.def.section->output_offset + sh->root.u.def.section->output_section->vma); } else if (CONST_STRNEQ (name, ".sdata2") || CONST_STRNEQ (name, ".sbss2")) { reg = 2; sh = htab->sdata[1].sym; addend -= (sh->root.u.def.value + sh->root.u.def.section->output_offset + sh->root.u.def.section->output_section->vma); } else if (strcmp (name, ".PPC.EMB.sdata0") == 0 || strcmp (name, ".PPC.EMB.sbss0") == 0) { reg = 0; } else { (*_bfd_error_handler) (_("%B: the target (%s) of a %s relocation is " "in the wrong output section (%s)"), input_bfd, sym_name, howto->name, name); bfd_set_error (bfd_error_bad_value); ret = FALSE; continue; } if (r_type == R_PPC_EMB_SDA21) { /* fill in register field */ insn = bfd_get_32 (output_bfd, contents + rel->r_offset); insn = (insn & ~RA_REGISTER_MASK) | (reg << RA_REGISTER_SHIFT); bfd_put_32 (output_bfd, insn, contents + rel->r_offset); } } break; /* Relocate against the beginning of the section. */ case R_PPC_SECTOFF: case R_PPC_SECTOFF_LO: case R_PPC_SECTOFF_HI: case R_PPC_SECTOFF_HA: BFD_ASSERT (sec != NULL); addend -= sec->output_section->vma; break; /* Negative relocations. */ case R_PPC_EMB_NADDR32: case R_PPC_EMB_NADDR16: case R_PPC_EMB_NADDR16_LO: case R_PPC_EMB_NADDR16_HI: case R_PPC_EMB_NADDR16_HA: addend -= 2 * relocation; break; case R_PPC_COPY: case R_PPC_GLOB_DAT: case R_PPC_JMP_SLOT: case R_PPC_RELATIVE: case R_PPC_PLT32: case R_PPC_PLTREL32: case R_PPC_PLT16_LO: case R_PPC_PLT16_HI: case R_PPC_PLT16_HA: case R_PPC_ADDR30: case R_PPC_EMB_RELSEC16: case R_PPC_EMB_RELST_LO: case R_PPC_EMB_RELST_HI: case R_PPC_EMB_RELST_HA: case R_PPC_EMB_BIT_FLD: (*_bfd_error_handler) (_("%B: relocation %s is not yet supported for symbol %s."), input_bfd, howto->name, sym_name); bfd_set_error (bfd_error_invalid_operation); ret = FALSE; continue; } /* Do any further special processing. */ switch (r_type) { default: break; case R_PPC_ADDR16_HA: case R_PPC_REL16_HA: case R_PPC_SECTOFF_HA: case R_PPC_TPREL16_HA: case R_PPC_DTPREL16_HA: case R_PPC_EMB_NADDR16_HA: case R_PPC_EMB_RELST_HA: /* It's just possible that this symbol is a weak symbol that's not actually defined anywhere. In that case, 'sec' would be NULL, and we should leave the symbol alone (it will be set to zero elsewhere in the link). */ if (sec == NULL) break; /* Fall thru */ case R_PPC_PLT16_HA: case R_PPC_GOT16_HA: case R_PPC_GOT_TLSGD16_HA: case R_PPC_GOT_TLSLD16_HA: case R_PPC_GOT_TPREL16_HA: case R_PPC_GOT_DTPREL16_HA: /* Add 0x10000 if sign bit in 0:15 is set. Bits 0:15 are not used. */ addend += 0x8000; break; } #ifdef DEBUG fprintf (stderr, "\ttype = %s (%d), name = %s, symbol index = %ld, " "offset = %ld, addend = %ld\n", howto->name, (int) r_type, sym_name, r_symndx, (long) rel->r_offset, (long) addend); #endif if (unresolved_reloc && !((input_section->flags & SEC_DEBUGGING) != 0 && h->def_dynamic)) { (*_bfd_error_handler) (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), input_bfd, input_section, (long) rel->r_offset, howto->name, sym_name); ret = FALSE; } r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, addend); if (r != bfd_reloc_ok) { if (r == bfd_reloc_overflow) { if (warned) continue; if (h != NULL && h->root.type == bfd_link_hash_undefweak && howto->pc_relative) { /* Assume this is a call protected by other code that detect the symbol is undefined. If this is the case, we can safely ignore the overflow. If not, the program is hosed anyway, and a little warning isn't going to help. */ continue; } if (! (*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), sym_name, howto->name, rel->r_addend, input_bfd, input_section, rel->r_offset)) return FALSE; } else { (*_bfd_error_handler) (_("%B(%A+0x%lx): %s reloc against `%s': error %d"), input_bfd, input_section, (long) rel->r_offset, howto->name, sym_name, (int) r); ret = FALSE; } } } #ifdef DEBUG fprintf (stderr, "\n"); #endif return ret; } #define PPC_LO(v) ((v) & 0xffff) #define PPC_HI(v) (((v) >> 16) & 0xffff) #define PPC_HA(v) PPC_HI ((v) + 0x8000) /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static bfd_boolean ppc_elf_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { struct ppc_elf_link_hash_table *htab; struct plt_entry *ent; bfd_boolean doneone; #ifdef DEBUG fprintf (stderr, "ppc_elf_finish_dynamic_symbol called for %s", h->root.root.string); #endif htab = ppc_elf_hash_table (info); BFD_ASSERT (htab->elf.dynobj != NULL); doneone = FALSE; for (ent = h->plt.plist; ent != NULL; ent = ent->next) if (ent->plt.offset != (bfd_vma) -1) { if (!doneone) { Elf_Internal_Rela rela; bfd_byte *loc; bfd_vma reloc_index; if (htab->plt_type == PLT_NEW) reloc_index = ent->plt.offset / 4; else { reloc_index = ((ent->plt.offset - htab->plt_initial_entry_size) / htab->plt_slot_size); if (reloc_index > PLT_NUM_SINGLE_ENTRIES && htab->plt_type == PLT_OLD) reloc_index -= (reloc_index - PLT_NUM_SINGLE_ENTRIES) / 2; } /* This symbol has an entry in the procedure linkage table. Set it up. */ if (htab->plt_type == PLT_VXWORKS) { bfd_vma got_offset; const bfd_vma *plt_entry; /* The first three entries in .got.plt are reserved. */ got_offset = (reloc_index + 3) * 4; /* Use the right PLT. */ plt_entry = info->shared ? ppc_elf_vxworks_pic_plt_entry : ppc_elf_vxworks_plt_entry; /* Fill in the .plt on VxWorks. */ if (info->shared) { bfd_vma got_offset_hi = (got_offset >> 16) + ((got_offset & 0x8000) >> 15); bfd_put_32 (output_bfd, plt_entry[0] | (got_offset_hi & 0xffff), htab->plt->contents + ent->plt.offset + 0); bfd_put_32 (output_bfd, plt_entry[1] | (got_offset & 0xffff), htab->plt->contents + ent->plt.offset + 4); } else { bfd_vma got_loc = (got_offset + htab->elf.hgot->root.u.def.value + htab->elf.hgot->root.u.def.section->output_offset + htab->elf.hgot->root.u.def.section->output_section->vma); bfd_vma got_loc_hi = (got_loc >> 16) + ((got_loc & 0x8000) >> 15); bfd_put_32 (output_bfd, plt_entry[0] | (got_loc_hi & 0xffff), htab->plt->contents + ent->plt.offset + 0); bfd_put_32 (output_bfd, plt_entry[1] | (got_loc & 0xffff), htab->plt->contents + ent->plt.offset + 4); } bfd_put_32 (output_bfd, plt_entry[2], htab->plt->contents + ent->plt.offset + 8); bfd_put_32 (output_bfd, plt_entry[3], htab->plt->contents + ent->plt.offset + 12); /* This instruction is an immediate load. The value loaded is the byte offset of the R_PPC_JMP_SLOT relocation from the start of the .rela.plt section. The value is stored in the low-order 16 bits of the load instruction. */ /* NOTE: It appears that this is now an index rather than a prescaled offset. */ bfd_put_32 (output_bfd, plt_entry[4] | reloc_index, htab->plt->contents + ent->plt.offset + 16); /* This instruction is a PC-relative branch whose target is the start of the PLT section. The address of this branch instruction is 20 bytes beyond the start of this PLT entry. The address is encoded in bits 6-29, inclusive. The value stored is right-shifted by two bits, permitting a 26-bit offset. */ bfd_put_32 (output_bfd, (plt_entry[5] | (-(ent->plt.offset + 20) & 0x03fffffc)), htab->plt->contents + ent->plt.offset + 20); bfd_put_32 (output_bfd, plt_entry[6], htab->plt->contents + ent->plt.offset + 24); bfd_put_32 (output_bfd, plt_entry[7], htab->plt->contents + ent->plt.offset + 28); /* Fill in the GOT entry corresponding to this PLT slot with the address immediately after the the "bctr" instruction in this PLT entry. */ bfd_put_32 (output_bfd, (htab->plt->output_section->vma + htab->plt->output_offset + ent->plt.offset + 16), htab->sgotplt->contents + got_offset); if (!info->shared) { /* Fill in a couple of entries in .rela.plt.unloaded. */ loc = htab->srelplt2->contents + ((VXWORKS_PLTRESOLVE_RELOCS + reloc_index * VXWORKS_PLT_NON_JMP_SLOT_RELOCS) * sizeof (Elf32_External_Rela)); /* Provide the @ha relocation for the first instruction. */ rela.r_offset = (htab->plt->output_section->vma + htab->plt->output_offset + ent->plt.offset + 2); rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_PPC_ADDR16_HA); rela.r_addend = got_offset; bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); loc += sizeof (Elf32_External_Rela); /* Provide the @l relocation for the second instruction. */ rela.r_offset = (htab->plt->output_section->vma + htab->plt->output_offset + ent->plt.offset + 6); rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_PPC_ADDR16_LO); rela.r_addend = got_offset; bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); loc += sizeof (Elf32_External_Rela); /* Provide a relocation for the GOT entry corresponding to this PLT slot. Point it at the middle of the .plt entry. */ rela.r_offset = (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + got_offset); rela.r_info = ELF32_R_INFO (htab->elf.hplt->indx, R_PPC_ADDR32); rela.r_addend = ent->plt.offset + 16; bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); } /* VxWorks uses non-standard semantics for R_PPC_JMP_SLOT. In particular, the offset for the relocation is not the address of the PLT entry for this function, as specified by the ABI. Instead, the offset is set to the address of the GOT slot for this function. See EABI 4.4.4.1. */ rela.r_offset = (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + got_offset); } else { rela.r_offset = (htab->plt->output_section->vma + htab->plt->output_offset + ent->plt.offset); if (htab->plt_type == PLT_OLD) { /* We don't need to fill in the .plt. The ppc dynamic linker will fill it in. */ } else { bfd_vma val = (htab->glink_pltresolve + ent->plt.offset + htab->glink->output_section->vma + htab->glink->output_offset); bfd_put_32 (output_bfd, val, htab->plt->contents + ent->plt.offset); } } /* Fill in the entry in the .rela.plt section. */ rela.r_info = ELF32_R_INFO (h->dynindx, R_PPC_JMP_SLOT); rela.r_addend = 0; loc = (htab->relplt->contents + reloc_index * sizeof (Elf32_External_Rela)); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); if (!h->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; /* If the symbol is weak, we do need to clear the value. Otherwise, the PLT entry would provide a definition for the symbol even if the symbol wasn't defined anywhere, and so the symbol would never be NULL. */ if (!h->ref_regular_nonweak) sym->st_value = 0; } doneone = TRUE; } if (htab->plt_type == PLT_NEW) { bfd_vma plt; unsigned char *p; plt = (ent->plt.offset + htab->plt->output_section->vma + htab->plt->output_offset); p = (unsigned char *) htab->glink->contents + ent->glink_offset; if (info->shared || info->pie) { bfd_vma got = 0; if (ent->addend >= 32768) got = (ent->addend + ent->sec->output_section->vma + ent->sec->output_offset); else if (htab->elf.hgot != NULL) got = (htab->elf.hgot->root.u.def.value + htab->elf.hgot->root.u.def.section->output_section->vma + htab->elf.hgot->root.u.def.section->output_offset); plt -= got; if (plt + 0x8000 < 0x10000) { bfd_put_32 (output_bfd, LWZ_11_30 + PPC_LO (plt), p); p += 4; bfd_put_32 (output_bfd, MTCTR_11, p); p += 4; bfd_put_32 (output_bfd, BCTR, p); p += 4; bfd_put_32 (output_bfd, NOP, p); p += 4; } else { bfd_put_32 (output_bfd, ADDIS_11_30 + PPC_HA (plt), p); p += 4; bfd_put_32 (output_bfd, LWZ_11_11 + PPC_LO (plt), p); p += 4; bfd_put_32 (output_bfd, MTCTR_11, p); p += 4; bfd_put_32 (output_bfd, BCTR, p); p += 4; } } else { bfd_put_32 (output_bfd, LIS_11 + PPC_HA (plt), p); p += 4; bfd_put_32 (output_bfd, LWZ_11_11 + PPC_LO (plt), p); p += 4; bfd_put_32 (output_bfd, MTCTR_11, p); p += 4; bfd_put_32 (output_bfd, BCTR, p); p += 4; /* We only need one non-PIC glink stub. */ break; } } else break; } if (h->needs_copy) { asection *s; Elf_Internal_Rela rela; bfd_byte *loc; /* This symbols needs a copy reloc. Set it up. */ #ifdef DEBUG fprintf (stderr, ", copy"); #endif BFD_ASSERT (h->dynindx != -1); if (ppc_elf_hash_entry (h)->has_sda_refs) s = htab->relsbss; else s = htab->relbss; BFD_ASSERT (s != NULL); rela.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rela.r_info = ELF32_R_INFO (h->dynindx, R_PPC_COPY); rela.r_addend = 0; loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); } #ifdef DEBUG fprintf (stderr, "\n"); #endif /* Mark some specially defined symbols as absolute. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || (!htab->is_vxworks && (h == htab->elf.hgot || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0))) sym->st_shndx = SHN_ABS; return TRUE; } static enum elf_reloc_type_class ppc_elf_reloc_type_class (const Elf_Internal_Rela *rela) { switch (ELF32_R_TYPE (rela->r_info)) { case R_PPC_RELATIVE: return reloc_class_relative; case R_PPC_REL24: case R_PPC_ADDR24: case R_PPC_JMP_SLOT: return reloc_class_plt; case R_PPC_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* Finish up the dynamic sections. */ static bfd_boolean ppc_elf_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { asection *sdyn; asection *splt; struct ppc_elf_link_hash_table *htab; bfd_vma got; bfd * dynobj; #ifdef DEBUG fprintf (stderr, "ppc_elf_finish_dynamic_sections called\n"); #endif htab = ppc_elf_hash_table (info); dynobj = elf_hash_table (info)->dynobj; sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (htab->is_vxworks) splt = bfd_get_section_by_name (dynobj, ".plt"); else splt = NULL; got = 0; if (htab->elf.hgot != NULL) got = (htab->elf.hgot->root.u.def.value + htab->elf.hgot->root.u.def.section->output_section->vma + htab->elf.hgot->root.u.def.section->output_offset); if (htab->elf.dynamic_sections_created) { Elf32_External_Dyn *dyncon, *dynconend; BFD_ASSERT (htab->plt != NULL && sdyn != NULL); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; asection *s; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { case DT_PLTGOT: if (htab->is_vxworks) s = htab->sgotplt; else s = htab->plt; dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; break; case DT_PLTRELSZ: dyn.d_un.d_val = htab->relplt->size; break; case DT_JMPREL: s = htab->relplt; dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; break; case DT_PPC_GOT: dyn.d_un.d_ptr = got; break; case DT_RELASZ: if (htab->is_vxworks) { if (htab->relplt) dyn.d_un.d_ptr -= htab->relplt->size; break; } continue; default: continue; } bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); } } /* Add a blrl instruction at _GLOBAL_OFFSET_TABLE_-4 so that a function can easily find the address of the _GLOBAL_OFFSET_TABLE_. */ if (htab->got != NULL) { unsigned char *p = htab->got->contents; bfd_vma val; p += htab->elf.hgot->root.u.def.value; if (htab->plt_type == PLT_OLD) bfd_put_32 (output_bfd, 0x4e800021 /* blrl */, p - 4); val = 0; if (sdyn != NULL) val = sdyn->output_section->vma + sdyn->output_offset; bfd_put_32 (output_bfd, val, p); elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 4; } /* Fill in the first entry in the VxWorks procedure linkage table. */ if (splt && splt->size > 0) { /* Use the right PLT. */ static const bfd_vma *plt_entry = NULL; plt_entry = info->shared ? ppc_elf_vxworks_pic_plt0_entry : ppc_elf_vxworks_plt0_entry; if (!info->shared) { bfd_vma got_value = (htab->elf.hgot->root.u.def.section->output_section->vma + htab->elf.hgot->root.u.def.section->output_offset + htab->elf.hgot->root.u.def.value); bfd_vma got_hi = (got_value >> 16) + ((got_value & 0x8000) >> 15); bfd_put_32 (output_bfd, plt_entry[0] | (got_hi & 0xffff), splt->contents + 0); bfd_put_32 (output_bfd, plt_entry[1] | (got_value & 0xffff), splt->contents + 4); } else { bfd_put_32 (output_bfd, plt_entry[0], splt->contents + 0); bfd_put_32 (output_bfd, plt_entry[1], splt->contents + 4); } bfd_put_32 (output_bfd, plt_entry[2], splt->contents + 8); bfd_put_32 (output_bfd, plt_entry[3], splt->contents + 12); bfd_put_32 (output_bfd, plt_entry[4], splt->contents + 16); bfd_put_32 (output_bfd, plt_entry[5], splt->contents + 20); bfd_put_32 (output_bfd, plt_entry[6], splt->contents + 24); bfd_put_32 (output_bfd, plt_entry[7], splt->contents + 28); if (! info->shared) { Elf_Internal_Rela rela; bfd_byte *loc; loc = htab->srelplt2->contents; /* Output the @ha relocation for the first instruction. */ rela.r_offset = (htab->plt->output_section->vma + htab->plt->output_offset + 2); rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_PPC_ADDR16_HA); rela.r_addend = 0; bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); loc += sizeof (Elf32_External_Rela); /* Output the @l relocation for the second instruction. */ rela.r_offset = (htab->plt->output_section->vma + htab->plt->output_offset + 6); rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_PPC_ADDR16_LO); rela.r_addend = 0; bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); loc += sizeof (Elf32_External_Rela); /* Fix up the remaining relocations. They may have the wrong symbol index for _G_O_T_ or _P_L_T_ depending on the order in which symbols were output. */ while (loc < htab->srelplt2->contents + htab->srelplt2->size) { Elf_Internal_Rela rel; bfd_elf32_swap_reloc_in (output_bfd, loc, &rel); rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_PPC_ADDR16_HA); bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); loc += sizeof (Elf32_External_Rela); bfd_elf32_swap_reloc_in (output_bfd, loc, &rel); rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_PPC_ADDR16_LO); bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); loc += sizeof (Elf32_External_Rela); bfd_elf32_swap_reloc_in (output_bfd, loc, &rel); rel.r_info = ELF32_R_INFO (htab->elf.hplt->indx, R_PPC_ADDR32); bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); loc += sizeof (Elf32_External_Rela); } } } if (htab->glink != NULL && htab->glink->contents != NULL) { unsigned char *p; unsigned char *endp; bfd_vma res0; unsigned int i; /* * PIC glink code is the following: * * # ith PLT code stub. * addis 11,30,(plt+(i-1)*4-got)@ha * lwz 11,(plt+(i-1)*4-got)@l(11) * mtctr 11 * bctr * * # A table of branches, one for each plt entry. * # The idea is that the plt call stub loads ctr (and r11) with these * # addresses, so (r11 - res_0) gives the plt index * 4. * res_0: b PLTresolve * res_1: b PLTresolve * . * # Some number of entries towards the end can be nops * res_n_m3: nop * res_n_m2: nop * res_n_m1: * * PLTresolve: * addis 11,11,(1f-res_0)@ha * mflr 0 * bcl 20,31,1f * 1: addi 11,11,(1b-res_0)@l * mflr 12 * mtlr 0 * sub 11,11,12 # r11 = index * 4 * addis 12,12,(got+4-1b)@ha * lwz 0,(got+4-1b)@l(12) # got[1] address of dl_runtime_resolve * lwz 12,(got+8-1b)@l(12) # got[2] contains the map address * mtctr 0 * add 0,11,11 * add 11,0,11 # r11 = index * 12 = reloc offset. * bctr */ static const unsigned int pic_plt_resolve[] = { ADDIS_11_11, MFLR_0, BCL_20_31, ADDI_11_11, MFLR_12, MTLR_0, SUB_11_11_12, ADDIS_12_12, LWZ_0_12, LWZ_12_12, MTCTR_0, ADD_0_11_11, ADD_11_0_11, BCTR, NOP, NOP }; static const unsigned int plt_resolve[] = { LIS_12, ADDIS_11_11, LWZ_0_12, ADDI_11_11, MTCTR_0, ADD_0_11_11, LWZ_12_12, ADD_11_0_11, BCTR, NOP, NOP, NOP, NOP, NOP, NOP, NOP }; if (ARRAY_SIZE (pic_plt_resolve) != GLINK_PLTRESOLVE / 4) abort (); if (ARRAY_SIZE (plt_resolve) != GLINK_PLTRESOLVE / 4) abort (); /* Build the branch table, one for each plt entry (less one), and perhaps some padding. */ p = htab->glink->contents; p += htab->glink_pltresolve; endp = htab->glink->contents; endp += htab->glink->size - GLINK_PLTRESOLVE; while (p < endp - 8 * 4) { bfd_put_32 (output_bfd, B + endp - p, p); p += 4; } while (p < endp) { bfd_put_32 (output_bfd, NOP, p); p += 4; } res0 = (htab->glink_pltresolve + htab->glink->output_section->vma + htab->glink->output_offset); /* Last comes the PLTresolve stub. */ if (info->shared || info->pie) { bfd_vma bcl; for (i = 0; i < ARRAY_SIZE (pic_plt_resolve); i++) { bfd_put_32 (output_bfd, pic_plt_resolve[i], p); p += 4; } p -= 4 * ARRAY_SIZE (pic_plt_resolve); bcl = (htab->glink->size - GLINK_PLTRESOLVE + 3*4 + htab->glink->output_section->vma + htab->glink->output_offset); bfd_put_32 (output_bfd, ADDIS_11_11 + PPC_HA (bcl - res0), p + 0*4); bfd_put_32 (output_bfd, ADDI_11_11 + PPC_LO (bcl - res0), p + 3*4); bfd_put_32 (output_bfd, ADDIS_12_12 + PPC_HA (got + 4 - bcl), p + 7*4); if (PPC_HA (got + 4 - bcl) == PPC_HA (got + 8 - bcl)) { bfd_put_32 (output_bfd, LWZ_0_12 + PPC_LO (got + 4 - bcl), p + 8*4); bfd_put_32 (output_bfd, LWZ_12_12 + PPC_LO (got + 8 - bcl), p + 9*4); } else { bfd_put_32 (output_bfd, LWZU_0_12 + PPC_LO (got + 4 - bcl), p + 8*4); bfd_put_32 (output_bfd, LWZ_12_12 + 4, p + 9*4); } } else { for (i = 0; i < ARRAY_SIZE (plt_resolve); i++) { bfd_put_32 (output_bfd, plt_resolve[i], p); p += 4; } p -= 4 * ARRAY_SIZE (plt_resolve); bfd_put_32 (output_bfd, LIS_12 + PPC_HA (got + 4), p + 0*4); bfd_put_32 (output_bfd, ADDIS_11_11 + PPC_HA (-res0), p + 1*4); bfd_put_32 (output_bfd, ADDI_11_11 + PPC_LO (-res0), p + 3*4); if (PPC_HA (got + 4) == PPC_HA (got + 8)) { bfd_put_32 (output_bfd, LWZ_0_12 + PPC_LO (got + 4), p + 2*4); bfd_put_32 (output_bfd, LWZ_12_12 + PPC_LO (got + 8), p + 6*4); } else { bfd_put_32 (output_bfd, LWZU_0_12 + PPC_LO (got + 4), p + 2*4); bfd_put_32 (output_bfd, LWZ_12_12 + 4, p + 6*4); } } } return TRUE; } #define TARGET_LITTLE_SYM bfd_elf32_powerpcle_vec #define TARGET_LITTLE_NAME "elf32-powerpcle" #define TARGET_BIG_SYM bfd_elf32_powerpc_vec #define TARGET_BIG_NAME "elf32-powerpc" #define ELF_ARCH bfd_arch_powerpc #define ELF_MACHINE_CODE EM_PPC #ifdef __QNXTARGET__ #define ELF_MAXPAGESIZE 0x1000 #else #define ELF_MAXPAGESIZE 0x10000 #endif #define ELF_MINPAGESIZE 0x1000 #define ELF_COMMONPAGESIZE 0x1000 #define elf_info_to_howto ppc_elf_info_to_howto #ifdef EM_CYGNUS_POWERPC #define ELF_MACHINE_ALT1 EM_CYGNUS_POWERPC #endif #ifdef EM_PPC_OLD #define ELF_MACHINE_ALT2 EM_PPC_OLD #endif #define elf_backend_plt_not_loaded 1 #define elf_backend_can_gc_sections 1 #define elf_backend_can_refcount 1 #define elf_backend_rela_normal 1 #define bfd_elf32_mkobject ppc_elf_mkobject #define bfd_elf32_bfd_merge_private_bfd_data ppc_elf_merge_private_bfd_data #define bfd_elf32_bfd_relax_section ppc_elf_relax_section #define bfd_elf32_bfd_reloc_type_lookup ppc_elf_reloc_type_lookup #define bfd_elf32_bfd_set_private_flags ppc_elf_set_private_flags #define bfd_elf32_bfd_link_hash_table_create ppc_elf_link_hash_table_create #define elf_backend_object_p ppc_elf_object_p #define elf_backend_gc_mark_hook ppc_elf_gc_mark_hook #define elf_backend_gc_sweep_hook ppc_elf_gc_sweep_hook #define elf_backend_section_from_shdr ppc_elf_section_from_shdr #define elf_backend_relocate_section ppc_elf_relocate_section #define elf_backend_create_dynamic_sections ppc_elf_create_dynamic_sections #define elf_backend_check_relocs ppc_elf_check_relocs #define elf_backend_copy_indirect_symbol ppc_elf_copy_indirect_symbol #define elf_backend_adjust_dynamic_symbol ppc_elf_adjust_dynamic_symbol #define elf_backend_add_symbol_hook ppc_elf_add_symbol_hook #define elf_backend_size_dynamic_sections ppc_elf_size_dynamic_sections #define elf_backend_finish_dynamic_symbol ppc_elf_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections ppc_elf_finish_dynamic_sections #define elf_backend_fake_sections ppc_elf_fake_sections #define elf_backend_additional_program_headers ppc_elf_additional_program_headers #define elf_backend_grok_prstatus ppc_elf_grok_prstatus #define elf_backend_grok_psinfo ppc_elf_grok_psinfo #define elf_backend_reloc_type_class ppc_elf_reloc_type_class #define elf_backend_begin_write_processing ppc_elf_begin_write_processing #define elf_backend_final_write_processing ppc_elf_final_write_processing #define elf_backend_write_section ppc_elf_write_section #define elf_backend_get_sec_type_attr ppc_elf_get_sec_type_attr #define elf_backend_plt_sym_val ppc_elf_plt_sym_val #define elf_backend_action_discarded ppc_elf_action_discarded #define elf_backend_init_index_section _bfd_elf_init_1_index_section #include "elf32-target.h" /* VxWorks Target */ #undef TARGET_LITTLE_SYM #undef TARGET_LITTLE_NAME #undef TARGET_BIG_SYM #define TARGET_BIG_SYM bfd_elf32_powerpc_vxworks_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-powerpc-vxworks" /* VxWorks uses the elf default section flags for .plt. */ static const struct bfd_elf_special_section * ppc_elf_vxworks_get_sec_type_attr (bfd *abfd ATTRIBUTE_UNUSED, asection *sec) { if (sec->name == NULL) return NULL; if (strcmp (sec->name, ".plt") == 0) return _bfd_elf_get_sec_type_attr (abfd, sec); return ppc_elf_get_sec_type_attr (abfd, sec); } /* Like ppc_elf_link_hash_table_create, but overrides appropriately for VxWorks. */ static struct bfd_link_hash_table * ppc_elf_vxworks_link_hash_table_create (bfd *abfd) { struct bfd_link_hash_table *ret; ret = ppc_elf_link_hash_table_create (abfd); if (ret) { struct ppc_elf_link_hash_table *htab = (struct ppc_elf_link_hash_table *)ret; htab->is_vxworks = 1; htab->plt_type = PLT_VXWORKS; htab->plt_entry_size = VXWORKS_PLT_ENTRY_SIZE; htab->plt_slot_size = VXWORKS_PLT_ENTRY_SIZE; htab->plt_initial_entry_size = VXWORKS_PLT_INITIAL_ENTRY_SIZE; } return ret; } /* Tweak magic VxWorks symbols as they are loaded. */ static bfd_boolean ppc_elf_vxworks_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym, const char **namep ATTRIBUTE_UNUSED, flagword *flagsp ATTRIBUTE_UNUSED, asection **secp, bfd_vma *valp) { if (!elf_vxworks_add_symbol_hook(abfd, info, sym,namep, flagsp, secp, valp)) return FALSE; return ppc_elf_add_symbol_hook(abfd, info, sym,namep, flagsp, secp, valp); } static void ppc_elf_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker) { ppc_elf_final_write_processing(abfd, linker); elf_vxworks_final_write_processing(abfd, linker); } /* On VxWorks, we emit relocations against _PROCEDURE_LINKAGE_TABLE_, so define it. */ #undef elf_backend_want_plt_sym #define elf_backend_want_plt_sym 1 #undef elf_backend_want_got_plt #define elf_backend_want_got_plt 1 #undef elf_backend_got_symbol_offset #define elf_backend_got_symbol_offset 0 #undef elf_backend_plt_not_loaded #define elf_backend_plt_not_loaded 0 #undef elf_backend_plt_readonly #define elf_backend_plt_readonly 1 #undef elf_backend_got_header_size #define elf_backend_got_header_size 12 #undef bfd_elf32_bfd_link_hash_table_create #define bfd_elf32_bfd_link_hash_table_create \ ppc_elf_vxworks_link_hash_table_create #undef elf_backend_add_symbol_hook #define elf_backend_add_symbol_hook \ ppc_elf_vxworks_add_symbol_hook #undef elf_backend_link_output_symbol_hook #define elf_backend_link_output_symbol_hook \ elf_vxworks_link_output_symbol_hook #undef elf_backend_final_write_processing #define elf_backend_final_write_processing \ ppc_elf_vxworks_final_write_processing #undef elf_backend_get_sec_type_attr #define elf_backend_get_sec_type_attr \ ppc_elf_vxworks_get_sec_type_attr #undef elf_backend_emit_relocs #define elf_backend_emit_relocs \ elf_vxworks_emit_relocs #undef elf32_bed #define elf32_bed ppc_elf_vxworks_bed #include "elf32-target.h"