/* MIPS-specific support for 32-bit ELF Copyright 1993, 94, 95, 96, 97, 98, 1999 Free Software Foundation, Inc. Most of the information added by Ian Lance Taylor, Cygnus Support, . N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly different MIPS ELF from other targets. This matters when linking. This file supports both, switching at runtime. */ #include "bfd.h" #include "sysdep.h" #include "libbfd.h" #include "bfdlink.h" #include "genlink.h" #include "elf-bfd.h" #include "elf/mips.h" /* Get the ECOFF swapping routines. */ #include "coff/sym.h" #include "coff/symconst.h" #include "coff/internal.h" #include "coff/ecoff.h" #include "coff/mips.h" #define ECOFF_32 #include "ecoffswap.h" /* This structure is used to hold .got information when linking. It is stored in the tdata field of the bfd_elf_section_data structure. */ struct mips_got_info { /* The global symbol in the GOT with the lowest index in the dynamic symbol table. */ struct elf_link_hash_entry *global_gotsym; /* The number of global .got entries. */ unsigned int global_gotno; /* The number of local .got entries. */ unsigned int local_gotno; /* The number of local .got entries we have used. */ unsigned int assigned_gotno; }; /* The MIPS ELF linker needs additional information for each symbol in the global hash table. */ struct mips_elf_link_hash_entry { struct elf_link_hash_entry root; /* External symbol information. */ EXTR esym; /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against this symbol. */ unsigned int possibly_dynamic_relocs; /* The index of the first dynamic relocation (in the .rel.dyn section) against this symbol. */ unsigned int min_dyn_reloc_index; /* If there is a stub that 32 bit functions should use to call this 16 bit function, this points to the section containing the stub. */ asection *fn_stub; /* Whether we need the fn_stub; this is set if this symbol appears in any relocs other than a 16 bit call. */ boolean need_fn_stub; /* If there is a stub that 16 bit functions should use to call this 32 bit function, this points to the section containing the stub. */ asection *call_stub; /* This is like the call_stub field, but it is used if the function being called returns a floating point value. */ asection *call_fp_stub; }; static bfd_reloc_status_type mips32_64bit_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type)); static reloc_howto_type *mips_rtype_to_howto PARAMS ((unsigned int)); static void mips_info_to_howto_rel PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *)); static void mips_info_to_howto_rela PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *)); static void bfd_mips_elf32_swap_gptab_in PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *)); static void bfd_mips_elf32_swap_gptab_out PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *)); #if 0 static void bfd_mips_elf_swap_msym_in PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *)); #endif static void bfd_mips_elf_swap_msym_out PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *)); static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *)); static boolean mips_elf_create_procedure_table PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *, struct ecoff_debug_info *)); static INLINE int elf_mips_isa PARAMS ((flagword)); static INLINE int elf_mips_mach PARAMS ((flagword)); static INLINE char* elf_mips_abi_name PARAMS ((bfd *)); static boolean mips_elf_is_local_label_name PARAMS ((bfd *, const char *)); static struct bfd_hash_entry *mips_elf_link_hash_newfunc PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); static int gptab_compare PARAMS ((const void *, const void *)); static bfd_reloc_status_type mips16_jump_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type mips16_gprel_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static boolean mips_elf_create_compact_rel_section PARAMS ((bfd *, struct bfd_link_info *)); static boolean mips_elf_create_got_section PARAMS ((bfd *, struct bfd_link_info *)); static bfd_reloc_status_type mips_elf_final_gp PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *)); static bfd_byte *elf32_mips_get_relocated_section_contents PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *, boolean, asymbol **)); static asection *mips_elf_create_msym_section PARAMS ((bfd *)); static void mips_elf_irix6_finish_dynamic_symbol PARAMS ((bfd *, const char *, Elf_Internal_Sym *)); static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int)); static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int)); static bfd_vma mips_elf_high PARAMS ((bfd_vma)); static bfd_vma mips_elf_higher PARAMS ((bfd_vma)); static bfd_vma mips_elf_highest PARAMS ((bfd_vma)); static bfd_vma mips_elf_global_got_index PARAMS ((bfd *, struct elf_link_hash_entry *)); static bfd_vma mips_elf_local_got_index PARAMS ((bfd *, struct bfd_link_info *, bfd_vma)); static bfd_vma mips_elf_got_offset_from_index PARAMS ((bfd *, bfd *, bfd_vma)); static boolean mips_elf_record_global_got_symbol PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *, struct mips_got_info *)); static bfd_vma mips_elf_got_page PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *)); static const Elf_Internal_Rela *mips_elf_next_relocation PARAMS ((unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *)); static bfd_reloc_status_type mips_elf_calculate_relocation PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *, const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *, Elf_Internal_Sym *, asection **, bfd_vma *, const char **, boolean *)); static bfd_vma mips_elf_obtain_contents PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *)); static boolean mips_elf_perform_relocation PARAMS ((struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *, boolean)); static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *)); static boolean mips_elf_sort_hash_table_f PARAMS ((struct mips_elf_link_hash_entry *, PTR)); static boolean mips_elf_sort_hash_table PARAMS ((struct bfd_link_info *, unsigned long)); static asection * mips_elf_got_section PARAMS ((bfd *)); static struct mips_got_info *mips_elf_got_info PARAMS ((bfd *, asection **)); static boolean mips_elf_local_relocation_p PARAMS ((bfd *, const Elf_Internal_Rela *, asection **)); static bfd_vma mips_elf_create_local_got_entry PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma)); static bfd_vma mips_elf_got16_entry PARAMS ((bfd *, struct bfd_link_info *, bfd_vma)); static boolean mips_elf_create_dynamic_relocation PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, struct mips_elf_link_hash_entry *, asection *, bfd_vma, bfd_vma *, asection *)); static void mips_elf_allocate_dynamic_relocations PARAMS ((bfd *, unsigned int)); static boolean mips_elf_stub_section_p PARAMS ((bfd *, asection *)); /* The level of IRIX compatibility we're striving for. */ typedef enum { ict_none, ict_irix5, ict_irix6 } irix_compat_t; /* Nonzero if ABFD is using the N32 ABI. */ #define ABI_N32_P(abfd) \ ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) /* Nonzero if ABFD is using the 64-bit ABI. FIXME: This is never true, yet. */ #define ABI_64_P(abfd) \ ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0) /* What version of Irix we are trying to be compatible with. FIXME: At the moment, we never generate "normal" MIPS ELF ABI executables; we always use some version of Irix. */ #define IRIX_COMPAT(abfd) \ ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5) /* Whether we are trying to be compatible with IRIX at all. */ #define SGI_COMPAT(abfd) \ (IRIX_COMPAT (abfd) != ict_none) /* The name of the msym section. */ #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym" /* The name of the srdata section. */ #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata" /* The name of the options section. */ #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options") /* The name of the stub section. */ #define MIPS_ELF_STUB_SECTION_NAME(abfd) \ (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub") /* The name of the dynamic relocation section. */ #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn" /* The size of an external REL relocation. */ #define MIPS_ELF_REL_SIZE(abfd) \ (get_elf_backend_data (abfd)->s->sizeof_rel) /* The size of an external dynamic table entry. */ #define MIPS_ELF_DYN_SIZE(abfd) \ (get_elf_backend_data (abfd)->s->sizeof_dyn) /* The size of a GOT entry. */ #define MIPS_ELF_GOT_SIZE(abfd) \ (get_elf_backend_data (abfd)->s->arch_size / 8) /* The size of a symbol-table entry. */ #define MIPS_ELF_SYM_SIZE(abfd) \ (get_elf_backend_data (abfd)->s->sizeof_sym) /* The default alignment for sections, as a power of two. */ #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2) /* Get word-sized data. */ #define MIPS_ELF_GET_WORD(abfd, ptr) \ (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) /* Put out word-sized data. */ #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ (ABI_64_P (abfd) \ ? bfd_put_64 (abfd, val, ptr) \ : bfd_put_32 (abfd, val, ptr)) /* Add a dynamic symbol table-entry. */ #ifdef BFD64 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ (ABI_64_P (elf_hash_table (info)->dynobj) \ ? bfd_elf64_add_dynamic_entry (info, tag, val) \ : bfd_elf32_add_dynamic_entry (info, tag, val)) #else #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ (ABI_64_P (elf_hash_table (info)->dynobj) \ ? (abort (), false) \ : bfd_elf32_add_dynamic_entry (info, tag, val)) #endif /* The number of local .got entries we reserve. */ #define MIPS_RESERVED_GOTNO (2) /* Instructions which appear in a stub. For some reason the stub is slightly different on an SGI system. */ #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000) #define STUB_LW(abfd) \ (SGI_COMPAT (abfd) \ ? (ABI_64_P (abfd) \ ? 0xdf998010 /* ld t9,0x8010(gp) */ \ : 0x8f998010) /* lw t9,0x8010(gp) */ \ : 0x8f998000) /* lw t9,0x8000(gp) */ #define STUB_MOVE 0x03e07825 /* move t7,ra */ #define STUB_JALR 0x0320f809 /* jal t9 */ #define STUB_LI16 0x34180000 /* ori t8,zero,0 */ #define MIPS_FUNCTION_STUB_SIZE (16) #if 0 /* We no longer try to identify particular sections for the .dynsym section. When we do, we wind up crashing if there are other random sections with relocations. */ /* Names of sections which appear in the .dynsym section in an Irix 5 executable. */ static const char * const mips_elf_dynsym_sec_names[] = { ".text", ".init", ".fini", ".data", ".rodata", ".sdata", ".sbss", ".bss", NULL }; #define SIZEOF_MIPS_DYNSYM_SECNAMES \ (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0]) /* The number of entries in mips_elf_dynsym_sec_names which go in the text segment. */ #define MIPS_TEXT_DYNSYM_SECNO (3) #endif /* 0 */ /* The names of the runtime procedure table symbols used on Irix 5. */ static const char * const mips_elf_dynsym_rtproc_names[] = { "_procedure_table", "_procedure_string_table", "_procedure_table_size", NULL }; /* These structures are used to generate the .compact_rel section on Irix 5. */ typedef struct { unsigned long id1; /* Always one? */ unsigned long num; /* Number of compact relocation entries. */ unsigned long id2; /* Always two? */ unsigned long offset; /* The file offset of the first relocation. */ unsigned long reserved0; /* Zero? */ unsigned long reserved1; /* Zero? */ } Elf32_compact_rel; typedef struct { bfd_byte id1[4]; bfd_byte num[4]; bfd_byte id2[4]; bfd_byte offset[4]; bfd_byte reserved0[4]; bfd_byte reserved1[4]; } Elf32_External_compact_rel; typedef struct { unsigned int ctype : 1; /* 1: long 0: short format. See below. */ unsigned int rtype : 4; /* Relocation types. See below. */ unsigned int dist2to : 8; unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ unsigned long konst; /* KONST field. See below. */ unsigned long vaddr; /* VADDR to be relocated. */ } Elf32_crinfo; typedef struct { unsigned int ctype : 1; /* 1: long 0: short format. See below. */ unsigned int rtype : 4; /* Relocation types. See below. */ unsigned int dist2to : 8; unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ unsigned long konst; /* KONST field. See below. */ } Elf32_crinfo2; typedef struct { bfd_byte info[4]; bfd_byte konst[4]; bfd_byte vaddr[4]; } Elf32_External_crinfo; typedef struct { bfd_byte info[4]; bfd_byte konst[4]; } Elf32_External_crinfo2; /* These are the constants used to swap the bitfields in a crinfo. */ #define CRINFO_CTYPE (0x1) #define CRINFO_CTYPE_SH (31) #define CRINFO_RTYPE (0xf) #define CRINFO_RTYPE_SH (27) #define CRINFO_DIST2TO (0xff) #define CRINFO_DIST2TO_SH (19) #define CRINFO_RELVADDR (0x7ffff) #define CRINFO_RELVADDR_SH (0) /* A compact relocation info has long (3 words) or short (2 words) formats. A short format doesn't have VADDR field and relvaddr fields contains ((VADDR - vaddr of the previous entry) >> 2). */ #define CRF_MIPS_LONG 1 #define CRF_MIPS_SHORT 0 /* There are 4 types of compact relocation at least. The value KONST has different meaning for each type: (type) (konst) CT_MIPS_REL32 Address in data CT_MIPS_WORD Address in word (XXX) CT_MIPS_GPHI_LO GP - vaddr CT_MIPS_JMPAD Address to jump */ #define CRT_MIPS_REL32 0xa #define CRT_MIPS_WORD 0xb #define CRT_MIPS_GPHI_LO 0xc #define CRT_MIPS_JMPAD 0xd #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) static void bfd_elf32_swap_compact_rel_out PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *)); static void bfd_elf32_swap_crinfo_out PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *)); #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */ /* In case we're on a 32-bit machine, construct a 64-bit "-1" value from smaller values. Start with zero, widen, *then* decrement. */ #define MINUS_ONE (((bfd_vma)0) - 1) static reloc_howto_type elf_mips_howto_table[] = { /* No relocation. */ HOWTO (R_MIPS_NONE, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_NONE", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ false), /* pcrel_offset */ /* 16 bit relocation. */ HOWTO (R_MIPS_16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* 32 bit relocation. */ HOWTO (R_MIPS_32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_32", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* 32 bit symbol relative relocation. */ HOWTO (R_MIPS_REL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_REL32", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* 26 bit branch address. */ HOWTO (R_MIPS_26, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ /* This needs complex overflow detection, because the upper four bits must match the PC. */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_26", /* name */ true, /* partial_inplace */ 0x3ffffff, /* src_mask */ 0x3ffffff, /* dst_mask */ false), /* pcrel_offset */ /* High 16 bits of symbol value. */ HOWTO (R_MIPS_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_mips_elf_hi16_reloc, /* special_function */ "R_MIPS_HI16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* Low 16 bits of symbol value. */ HOWTO (R_MIPS_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_mips_elf_lo16_reloc, /* special_function */ "R_MIPS_LO16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* GP relative reference. */ HOWTO (R_MIPS_GPREL16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ _bfd_mips_elf_gprel16_reloc, /* special_function */ "R_MIPS_GPREL16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* Reference to literal section. */ HOWTO (R_MIPS_LITERAL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ _bfd_mips_elf_gprel16_reloc, /* special_function */ "R_MIPS_LITERAL", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* Reference to global offset table. */ HOWTO (R_MIPS_GOT16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ _bfd_mips_elf_got16_reloc, /* special_function */ "R_MIPS_GOT16", /* name */ false, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* 16 bit PC relative reference. */ HOWTO (R_MIPS_PC16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_PC16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ true), /* pcrel_offset */ /* 16 bit call through global offset table. */ HOWTO (R_MIPS_CALL16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_CALL16", /* name */ false, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* 32 bit GP relative reference. */ HOWTO (R_MIPS_GPREL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ _bfd_mips_elf_gprel32_reloc, /* special_function */ "R_MIPS_GPREL32", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* The remaining relocs are defined on Irix 5, although they are not defined by the ABI. */ EMPTY_HOWTO (13), EMPTY_HOWTO (14), EMPTY_HOWTO (15), /* A 5 bit shift field. */ HOWTO (R_MIPS_SHIFT5, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 5, /* bitsize */ false, /* pc_relative */ 6, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_SHIFT5", /* name */ true, /* partial_inplace */ 0x000007c0, /* src_mask */ 0x000007c0, /* dst_mask */ false), /* pcrel_offset */ /* A 6 bit shift field. */ /* FIXME: This is not handled correctly; a special function is needed to put the most significant bit in the right place. */ HOWTO (R_MIPS_SHIFT6, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 6, /* bitsize */ false, /* pc_relative */ 6, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_SHIFT6", /* name */ true, /* partial_inplace */ 0x000007c4, /* src_mask */ 0x000007c4, /* dst_mask */ false), /* pcrel_offset */ /* A 64 bit relocation. */ HOWTO (R_MIPS_64, /* type */ 0, /* rightshift */ 4, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ mips32_64bit_reloc, /* special_function */ "R_MIPS_64", /* name */ true, /* partial_inplace */ MINUS_ONE, /* src_mask */ MINUS_ONE, /* dst_mask */ false), /* pcrel_offset */ /* Displacement in the global offset table. */ HOWTO (R_MIPS_GOT_DISP, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_DISP", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Displacement to page pointer in the global offset table. */ HOWTO (R_MIPS_GOT_PAGE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_PAGE", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Offset from page pointer in the global offset table. */ HOWTO (R_MIPS_GOT_OFST, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_OFST", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* High 16 bits of displacement in global offset table. */ HOWTO (R_MIPS_GOT_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_HI16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Low 16 bits of displacement in global offset table. */ HOWTO (R_MIPS_GOT_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_LO16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* 64 bit subtraction. Used in the N32 ABI. */ HOWTO (R_MIPS_SUB, /* type */ 0, /* rightshift */ 4, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_SUB", /* name */ true, /* partial_inplace */ MINUS_ONE, /* src_mask */ MINUS_ONE, /* dst_mask */ false), /* pcrel_offset */ /* Used to cause the linker to insert and delete instructions? */ EMPTY_HOWTO (R_MIPS_INSERT_A), EMPTY_HOWTO (R_MIPS_INSERT_B), EMPTY_HOWTO (R_MIPS_DELETE), /* Get the higher value of a 64 bit addend. */ HOWTO (R_MIPS_HIGHER, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_HIGHER", /* name */ true, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* Get the highest value of a 64 bit addend. */ HOWTO (R_MIPS_HIGHEST, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_HIGHEST", /* name */ true, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* High 16 bits of displacement in global offset table. */ HOWTO (R_MIPS_CALL_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_CALL_HI16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Low 16 bits of displacement in global offset table. */ HOWTO (R_MIPS_CALL_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_CALL_LO16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Section displacement. */ HOWTO (R_MIPS_SCN_DISP, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_SCN_DISP", /* name */ false, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ EMPTY_HOWTO (R_MIPS_REL16), EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE), EMPTY_HOWTO (R_MIPS_PJUMP), EMPTY_HOWTO (R_MIPS_RELGOT), /* Protected jump conversion. This is an optimization hint. No relocation is required for correctness. */ HOWTO (R_MIPS_JALR, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_JALR", /* name */ false, /* partial_inplace */ 0x00000000, /* src_mask */ 0x00000000, /* dst_mask */ false), /* pcrel_offset */ }; /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This is a hack to make the linker think that we need 64 bit values. */ static reloc_howto_type elf_mips_ctor64_howto = HOWTO (R_MIPS_64, /* type */ 0, /* rightshift */ 4, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ mips32_64bit_reloc, /* special_function */ "R_MIPS_64", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false); /* pcrel_offset */ /* The reloc used for the mips16 jump instruction. */ static reloc_howto_type elf_mips16_jump_howto = HOWTO (R_MIPS16_26, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ /* This needs complex overflow detection, because the upper four bits must match the PC. */ mips16_jump_reloc, /* special_function */ "R_MIPS16_26", /* name */ true, /* partial_inplace */ 0x3ffffff, /* src_mask */ 0x3ffffff, /* dst_mask */ false); /* pcrel_offset */ /* The reloc used for the mips16 gprel instruction. */ static reloc_howto_type elf_mips16_gprel_howto = HOWTO (R_MIPS16_GPREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ mips16_gprel_reloc, /* special_function */ "R_MIPS16_GPREL", /* name */ true, /* partial_inplace */ 0x07ff001f, /* src_mask */ 0x07ff001f, /* dst_mask */ false); /* pcrel_offset */ /* GNU extensions for embedded-pic. */ /* High 16 bits of symbol value, pc-relative. */ static reloc_howto_type elf_mips_gnu_rel_hi16 = HOWTO (R_MIPS_GNU_REL_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_mips_elf_hi16_reloc, /* special_function */ "R_MIPS_GNU_REL_HI16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ true); /* pcrel_offset */ /* Low 16 bits of symbol value, pc-relative. */ static reloc_howto_type elf_mips_gnu_rel_lo16 = HOWTO (R_MIPS_GNU_REL_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_mips_elf_lo16_reloc, /* special_function */ "R_MIPS_GNU_REL_LO16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ true); /* pcrel_offset */ /* 16 bit offset for pc-relative branches. */ static reloc_howto_type elf_mips_gnu_rel16_s2 = HOWTO (R_MIPS_GNU_REL16_S2, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GNU_REL16_S2", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ true); /* pcrel_offset */ /* 64 bit pc-relative. */ static reloc_howto_type elf_mips_gnu_pcrel64 = HOWTO (R_MIPS_PC64, /* type */ 0, /* rightshift */ 4, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_PC64", /* name */ true, /* partial_inplace */ MINUS_ONE, /* src_mask */ MINUS_ONE, /* dst_mask */ true); /* pcrel_offset */ /* 32 bit pc-relative. */ static reloc_howto_type elf_mips_gnu_pcrel32 = HOWTO (R_MIPS_PC32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_PC32", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ true); /* pcrel_offset */ /* GNU extension to record C++ vtable hierarchy */ static reloc_howto_type elf_mips_gnu_vtinherit_howto = HOWTO (R_MIPS_GNU_VTINHERIT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ NULL, /* special_function */ "R_MIPS_GNU_VTINHERIT", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ false); /* pcrel_offset */ /* GNU extension to record C++ vtable member usage */ static reloc_howto_type elf_mips_gnu_vtentry_howto = HOWTO (R_MIPS_GNU_VTENTRY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_elf_rel_vtable_reloc_fn, /* special_function */ "R_MIPS_GNU_VTENTRY", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ false); /* pcrel_offset */ /* Do a R_MIPS_HI16 relocation. This has to be done in combination with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to the HI16. Here we just save the information we need; we do the actual relocation when we see the LO16. MIPS ELF requires that the LO16 immediately follow the HI16. As a GNU extension, we permit an arbitrary number of HI16 relocs to be associated with a single LO16 reloc. This extension permits gcc to output the HI and LO relocs itself. */ struct mips_hi16 { struct mips_hi16 *next; bfd_byte *addr; bfd_vma addend; }; /* FIXME: This should not be a static variable. */ static struct mips_hi16 *mips_hi16_list; bfd_reloc_status_type _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd ATTRIBUTE_UNUSED; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { bfd_reloc_status_type ret; bfd_vma relocation; struct mips_hi16 *n; /* If we're relocating, and this an external symbol, we don't want to change anything. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } ret = bfd_reloc_ok; if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0) { boolean relocateable; bfd_vma gp; if (ret == bfd_reloc_undefined) abort (); if (output_bfd != NULL) relocateable = true; else { relocateable = false; output_bfd = symbol->section->output_section->owner; } ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, &gp); if (ret != bfd_reloc_ok) return ret; relocation = gp - reloc_entry->address; } else { if (bfd_is_und_section (symbol->section) && output_bfd == (bfd *) NULL) ret = bfd_reloc_undefined; if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; } relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; relocation += reloc_entry->addend; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; /* Save the information, and let LO16 do the actual relocation. */ n = (struct mips_hi16 *) bfd_malloc (sizeof *n); if (n == NULL) return bfd_reloc_outofrange; n->addr = (bfd_byte *) data + reloc_entry->address; n->addend = relocation; n->next = mips_hi16_list; mips_hi16_list = n; if (output_bfd != (bfd *) NULL) reloc_entry->address += input_section->output_offset; return ret; } /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit inplace relocation; this function exists in order to do the R_MIPS_HI16 relocation described above. */ bfd_reloc_status_type _bfd_mips_elf_lo16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { arelent gp_disp_relent; if (mips_hi16_list != NULL) { struct mips_hi16 *l; l = mips_hi16_list; while (l != NULL) { unsigned long insn; unsigned long val; unsigned long vallo; struct mips_hi16 *next; /* Do the HI16 relocation. Note that we actually don't need to know anything about the LO16 itself, except where to find the low 16 bits of the addend needed by the LO16. */ insn = bfd_get_32 (abfd, l->addr); vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address) & 0xffff); val = ((insn & 0xffff) << 16) + vallo; val += l->addend; /* The low order 16 bits are always treated as a signed value. Therefore, a negative value in the low order bits requires an adjustment in the high order bits. We need to make this adjustment in two ways: once for the bits we took from the data, and once for the bits we are putting back in to the data. */ if ((vallo & 0x8000) != 0) val -= 0x10000; if ((val & 0x8000) != 0) val += 0x10000; insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff); bfd_put_32 (abfd, insn, l->addr); if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0) { gp_disp_relent = *reloc_entry; reloc_entry = &gp_disp_relent; reloc_entry->addend = l->addend; } next = l->next; free (l); l = next; } mips_hi16_list = NULL; } else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0) { bfd_reloc_status_type ret; bfd_vma gp, relocation; /* FIXME: Does this case ever occur? */ ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp); if (ret != bfd_reloc_ok) return ret; relocation = gp - reloc_entry->address; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; relocation += reloc_entry->addend; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; gp_disp_relent = *reloc_entry; reloc_entry = &gp_disp_relent; reloc_entry->addend = relocation - 4; } /* Now do the LO16 reloc in the usual way. */ return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); } /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset table used for PIC code. If the symbol is an external symbol, the instruction is modified to contain the offset of the appropriate entry in the global offset table. If the symbol is a section symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit addends are combined to form the real addend against the section symbol; the GOT16 is modified to contain the offset of an entry in the global offset table, and the LO16 is modified to offset it appropriately. Thus an offset larger than 16 bits requires a modified value in the global offset table. This implementation suffices for the assembler, but the linker does not yet know how to create global offset tables. */ bfd_reloc_status_type _bfd_mips_elf_got16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { /* If we're relocating, and this an external symbol, we don't want to change anything. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* If we're relocating, and this is a local symbol, we can handle it just like HI16. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) != 0) return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); abort (); } /* Set the GP value for OUTPUT_BFD. Returns false if this is a dangerous relocation. */ static boolean mips_elf_assign_gp (output_bfd, pgp) bfd *output_bfd; bfd_vma *pgp; { unsigned int count; asymbol **sym; unsigned int i; /* If we've already figured out what GP will be, just return it. */ *pgp = _bfd_get_gp_value (output_bfd); if (*pgp) return true; count = bfd_get_symcount (output_bfd); sym = bfd_get_outsymbols (output_bfd); /* The linker script will have created a symbol named `_gp' with the appropriate value. */ if (sym == (asymbol **) NULL) i = count; else { for (i = 0; i < count; i++, sym++) { register CONST char *name; name = bfd_asymbol_name (*sym); if (*name == '_' && strcmp (name, "_gp") == 0) { *pgp = bfd_asymbol_value (*sym); _bfd_set_gp_value (output_bfd, *pgp); break; } } } if (i >= count) { /* Only get the error once. */ *pgp = 4; _bfd_set_gp_value (output_bfd, *pgp); return false; } return true; } /* We have to figure out the gp value, so that we can adjust the symbol value correctly. We look up the symbol _gp in the output BFD. If we can't find it, we're stuck. We cache it in the ELF target data. We don't need to adjust the symbol value for an external symbol if we are producing relocateable output. */ static bfd_reloc_status_type mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp) bfd *output_bfd; asymbol *symbol; boolean relocateable; char **error_message; bfd_vma *pgp; { if (bfd_is_und_section (symbol->section) && ! relocateable) { *pgp = 0; return bfd_reloc_undefined; } *pgp = _bfd_get_gp_value (output_bfd); if (*pgp == 0 && (! relocateable || (symbol->flags & BSF_SECTION_SYM) != 0)) { if (relocateable) { /* Make up a value. */ *pgp = symbol->section->output_section->vma + 0x4000; _bfd_set_gp_value (output_bfd, *pgp); } else if (!mips_elf_assign_gp (output_bfd, pgp)) { *error_message = (char *) _("GP relative relocation when _gp not defined"); return bfd_reloc_dangerous; } } return bfd_reloc_ok; } /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must become the offset from the gp register. This function also handles R_MIPS_LITERAL relocations, although those can be handled more cleverly because the entries in the .lit8 and .lit4 sections can be merged. */ static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *, arelent *, asection *, boolean, PTR, bfd_vma)); bfd_reloc_status_type _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { boolean relocateable; bfd_reloc_status_type ret; bfd_vma gp; /* If we're relocating, and this is an external symbol with no addend, we don't want to change anything. We will only have an addend if this is a newly created reloc, not read from an ELF file. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != (bfd *) NULL) relocateable = true; else { relocateable = false; output_bfd = symbol->section->output_section->owner; } ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, &gp); if (ret != bfd_reloc_ok) return ret; return gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data, gp); } static bfd_reloc_status_type gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data, gp) bfd *abfd; asymbol *symbol; arelent *reloc_entry; asection *input_section; boolean relocateable; PTR data; bfd_vma gp; { bfd_vma relocation; unsigned long insn; unsigned long val; if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); /* Set val to the offset into the section or symbol. */ if (reloc_entry->howto->src_mask == 0) { /* This case occurs with the 64-bit MIPS ELF ABI. */ val = reloc_entry->addend; } else { val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff; if (val & 0x8000) val -= 0x10000; } /* Adjust val for the final section location and GP value. If we are producing relocateable output, we don't want to do this for an external symbol. */ if (! relocateable || (symbol->flags & BSF_SECTION_SYM) != 0) val += relocation - gp; insn = (insn &~ 0xffff) | (val & 0xffff); bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); if (relocateable) reloc_entry->address += input_section->output_offset; /* Make sure it fit in 16 bits. */ if ((long) val >= 0x8000 || (long) val < -0x8000) return bfd_reloc_overflow; return bfd_reloc_ok; } /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset from the gp register? XXX */ static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *, arelent *, asection *, boolean, PTR, bfd_vma)); bfd_reloc_status_type _bfd_mips_elf_gprel32_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { boolean relocateable; bfd_reloc_status_type ret; bfd_vma gp; /* If we're relocating, and this is an external symbol with no addend, we don't want to change anything. We will only have an addend if this is a newly created reloc, not read from an ELF file. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { *error_message = (char *) _("32bits gp relative relocation occurs for an external symbol"); return bfd_reloc_outofrange; } if (output_bfd != (bfd *) NULL) { relocateable = true; gp = _bfd_get_gp_value (output_bfd); } else { relocateable = false; output_bfd = symbol->section->output_section->owner; ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, &gp); if (ret != bfd_reloc_ok) return ret; } return gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data, gp); } static bfd_reloc_status_type gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data, gp) bfd *abfd; asymbol *symbol; arelent *reloc_entry; asection *input_section; boolean relocateable; PTR data; bfd_vma gp; { bfd_vma relocation; unsigned long val; if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; if (reloc_entry->howto->src_mask == 0) { /* This case arises with the 64-bit MIPS ELF ABI. */ val = 0; } else val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); /* Set val to the offset into the section or symbol. */ val += reloc_entry->addend; /* Adjust val for the final section location and GP value. If we are producing relocateable output, we don't want to do this for an external symbol. */ if (! relocateable || (symbol->flags & BSF_SECTION_SYM) != 0) val += relocation - gp; bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address); if (relocateable) reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are generated when addreses are 64 bits. The upper 32 bits are a simle sign extension. */ static bfd_reloc_status_type mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { bfd_reloc_status_type r; arelent reloc32; unsigned long val; bfd_size_type addr; r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); if (r != bfd_reloc_continue) return r; /* Do a normal 32 bit relocation on the lower 32 bits. */ reloc32 = *reloc_entry; if (bfd_big_endian (abfd)) reloc32.address += 4; reloc32.howto = &elf_mips_howto_table[R_MIPS_32]; r = bfd_perform_relocation (abfd, &reloc32, data, input_section, output_bfd, error_message); /* Sign extend into the upper 32 bits. */ val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address); if ((val & 0x80000000) != 0) val = 0xffffffff; else val = 0; addr = reloc_entry->address; if (bfd_little_endian (abfd)) addr += 4; bfd_put_32 (abfd, val, (bfd_byte *) data + addr); return r; } /* Handle a mips16 jump. */ static bfd_reloc_status_type mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd ATTRIBUTE_UNUSED; arelent *reloc_entry; asymbol *symbol; PTR data ATTRIBUTE_UNUSED; asection *input_section; bfd *output_bfd; char **error_message ATTRIBUTE_UNUSED; { if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* FIXME. */ { static boolean warned; if (! warned) (*_bfd_error_handler) (_("Linking mips16 objects into %s format is not supported"), bfd_get_target (input_section->output_section->owner)); warned = true; } return bfd_reloc_undefined; } /* Handle a mips16 GP relative reloc. */ static bfd_reloc_status_type mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { boolean relocateable; bfd_reloc_status_type ret; bfd_vma gp; unsigned short extend, insn; unsigned long final; /* If we're relocating, and this is an external symbol with no addend, we don't want to change anything. We will only have an addend if this is a newly created reloc, not read from an ELF file. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) relocateable = true; else { relocateable = false; output_bfd = symbol->section->output_section->owner; } ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, &gp); if (ret != bfd_reloc_ok) return ret; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; /* Pick up the mips16 extend instruction and the real instruction. */ extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address); insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2); /* Stuff the current addend back as a 32 bit value, do the usual relocation, and then clean up. */ bfd_put_32 (abfd, (((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f)), (bfd_byte *) data + reloc_entry->address); ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data, gp); final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); bfd_put_16 (abfd, ((extend & 0xf800) | ((final >> 11) & 0x1f) | (final & 0x7e0)), (bfd_byte *) data + reloc_entry->address); bfd_put_16 (abfd, ((insn & 0xffe0) | (final & 0x1f)), (bfd_byte *) data + reloc_entry->address + 2); return ret; } /* Return the ISA for a MIPS e_flags value. */ static INLINE int elf_mips_isa (flags) flagword flags; { switch (flags & EF_MIPS_ARCH) { case E_MIPS_ARCH_1: return 1; case E_MIPS_ARCH_2: return 2; case E_MIPS_ARCH_3: return 3; case E_MIPS_ARCH_4: return 4; } return 4; } /* Return the MACH for a MIPS e_flags value. */ static INLINE int elf_mips_mach (flags) flagword flags; { switch (flags & EF_MIPS_MACH) { case E_MIPS_MACH_3900: return bfd_mach_mips3900; case E_MIPS_MACH_4010: return bfd_mach_mips4010; case E_MIPS_MACH_4100: return bfd_mach_mips4100; case E_MIPS_MACH_4111: return bfd_mach_mips4111; case E_MIPS_MACH_4650: return bfd_mach_mips4650; default: switch (flags & EF_MIPS_ARCH) { default: case E_MIPS_ARCH_1: return bfd_mach_mips3000; break; case E_MIPS_ARCH_2: return bfd_mach_mips6000; break; case E_MIPS_ARCH_3: return bfd_mach_mips4000; break; case E_MIPS_ARCH_4: return bfd_mach_mips8000; break; } } return 0; } /* Return printable name for ABI. */ static INLINE char* elf_mips_abi_name (abfd) bfd *abfd; { flagword flags; if (ABI_N32_P (abfd)) return "N32"; else if (ABI_64_P (abfd)) return "64"; flags = elf_elfheader (abfd)->e_flags; switch (flags & EF_MIPS_ABI) { case 0: return "none"; case E_MIPS_ABI_O32: return "O32"; case E_MIPS_ABI_O64: return "O64"; case E_MIPS_ABI_EABI32: return "EABI32"; case E_MIPS_ABI_EABI64: return "EABI64"; default: return "unknown abi"; } } /* A mapping from BFD reloc types to MIPS ELF reloc types. */ struct elf_reloc_map { bfd_reloc_code_real_type bfd_reloc_val; enum elf_mips_reloc_type elf_reloc_val; }; static CONST struct elf_reloc_map mips_reloc_map[] = { { BFD_RELOC_NONE, R_MIPS_NONE, }, { BFD_RELOC_16, R_MIPS_16 }, { BFD_RELOC_32, R_MIPS_32 }, { BFD_RELOC_64, R_MIPS_64 }, { BFD_RELOC_MIPS_JMP, R_MIPS_26 }, { BFD_RELOC_HI16_S, R_MIPS_HI16 }, { BFD_RELOC_LO16, R_MIPS_LO16 }, { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 }, { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL }, { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 }, { BFD_RELOC_16_PCREL, R_MIPS_PC16 }, { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 }, { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 }, { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 }, { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 }, { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 }, { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 }, { BFD_RELOC_MIPS_SUB, R_MIPS_SUB }, { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE }, { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST }, { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP } }; /* Given a BFD reloc type, return a howto structure. */ static reloc_howto_type * bfd_elf32_bfd_reloc_type_lookup (abfd, code) bfd *abfd; bfd_reloc_code_real_type code; { unsigned int i; for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++) { if (mips_reloc_map[i].bfd_reloc_val == code) return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val]; } switch (code) { default: bfd_set_error (bfd_error_bad_value); return NULL; case BFD_RELOC_CTOR: /* We need to handle BFD_RELOC_CTOR specially. Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the size of addresses on this architecture. */ if (bfd_arch_bits_per_address (abfd) == 32) return &elf_mips_howto_table[(int) R_MIPS_32]; else return &elf_mips_ctor64_howto; case BFD_RELOC_MIPS16_JMP: return &elf_mips16_jump_howto; case BFD_RELOC_MIPS16_GPREL: return &elf_mips16_gprel_howto; case BFD_RELOC_VTABLE_INHERIT: return &elf_mips_gnu_vtinherit_howto; case BFD_RELOC_VTABLE_ENTRY: return &elf_mips_gnu_vtentry_howto; case BFD_RELOC_PCREL_HI16_S: return &elf_mips_gnu_rel_hi16; case BFD_RELOC_PCREL_LO16: return &elf_mips_gnu_rel_lo16; case BFD_RELOC_16_PCREL_S2: return &elf_mips_gnu_rel16_s2; case BFD_RELOC_64_PCREL: return &elf_mips_gnu_pcrel64; case BFD_RELOC_32_PCREL: return &elf_mips_gnu_pcrel32; } } /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */ static reloc_howto_type * mips_rtype_to_howto (r_type) unsigned int r_type; { switch (r_type) { case R_MIPS16_26: return &elf_mips16_jump_howto; break; case R_MIPS16_GPREL: return &elf_mips16_gprel_howto; break; case R_MIPS_GNU_VTINHERIT: return &elf_mips_gnu_vtinherit_howto; break; case R_MIPS_GNU_VTENTRY: return &elf_mips_gnu_vtentry_howto; break; case R_MIPS_GNU_REL_HI16: return &elf_mips_gnu_rel_hi16; break; case R_MIPS_GNU_REL_LO16: return &elf_mips_gnu_rel_lo16; break; case R_MIPS_GNU_REL16_S2: return &elf_mips_gnu_rel16_s2; break; case R_MIPS_PC64: return &elf_mips_gnu_pcrel64; break; case R_MIPS_PC32: return &elf_mips_gnu_pcrel32; break; default: BFD_ASSERT (r_type < (unsigned int) R_MIPS_max); return &elf_mips_howto_table[r_type]; break; } } /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */ static void mips_info_to_howto_rel (abfd, cache_ptr, dst) bfd *abfd; arelent *cache_ptr; Elf32_Internal_Rel *dst; { unsigned int r_type; r_type = ELF32_R_TYPE (dst->r_info); cache_ptr->howto = mips_rtype_to_howto (r_type); /* The addend for a GPREL16 or LITERAL relocation comes from the GP value for the object file. We get the addend now, rather than when we do the relocation, because the symbol manipulations done by the linker may cause us to lose track of the input BFD. */ if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0 && (r_type == (unsigned int) R_MIPS_GPREL16 || r_type == (unsigned int) R_MIPS_LITERAL)) cache_ptr->addend = elf_gp (abfd); } /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */ static void mips_info_to_howto_rela (abfd, cache_ptr, dst) bfd *abfd; arelent *cache_ptr; Elf32_Internal_Rela *dst; { /* Since an Elf32_Internal_Rel is an initial prefix of an Elf32_Internal_Rela, we can just use mips_info_to_howto_rel above. */ mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst); /* If we ever need to do any extra processing with dst->r_addend (the field omitted in an Elf32_Internal_Rel) we can do it here. */ } /* A .reginfo section holds a single Elf32_RegInfo structure. These routines swap this structure in and out. They are used outside of BFD, so they are globally visible. */ void bfd_mips_elf32_swap_reginfo_in (abfd, ex, in) bfd *abfd; const Elf32_External_RegInfo *ex; Elf32_RegInfo *in; { in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask); in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]); in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]); in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]); in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]); in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value); } void bfd_mips_elf32_swap_reginfo_out (abfd, in, ex) bfd *abfd; const Elf32_RegInfo *in; Elf32_External_RegInfo *ex; { bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask, (bfd_byte *) ex->ri_gprmask); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0], (bfd_byte *) ex->ri_cprmask[0]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1], (bfd_byte *) ex->ri_cprmask[1]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2], (bfd_byte *) ex->ri_cprmask[2]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3], (bfd_byte *) ex->ri_cprmask[3]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value, (bfd_byte *) ex->ri_gp_value); } /* In the 64 bit ABI, the .MIPS.options section holds register information in an Elf64_Reginfo structure. These routines swap them in and out. They are globally visible because they are used outside of BFD. These routines are here so that gas can call them without worrying about whether the 64 bit ABI has been included. */ void bfd_mips_elf64_swap_reginfo_in (abfd, ex, in) bfd *abfd; const Elf64_External_RegInfo *ex; Elf64_Internal_RegInfo *in; { in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask); in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad); in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]); in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]); in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]); in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]); in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value); } void bfd_mips_elf64_swap_reginfo_out (abfd, in, ex) bfd *abfd; const Elf64_Internal_RegInfo *in; Elf64_External_RegInfo *ex; { bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask, (bfd_byte *) ex->ri_gprmask); bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad, (bfd_byte *) ex->ri_pad); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0], (bfd_byte *) ex->ri_cprmask[0]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1], (bfd_byte *) ex->ri_cprmask[1]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2], (bfd_byte *) ex->ri_cprmask[2]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3], (bfd_byte *) ex->ri_cprmask[3]); bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value, (bfd_byte *) ex->ri_gp_value); } /* Swap an entry in a .gptab section. Note that these routines rely on the equivalence of the two elements of the union. */ static void bfd_mips_elf32_swap_gptab_in (abfd, ex, in) bfd *abfd; const Elf32_External_gptab *ex; Elf32_gptab *in; { in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value); in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes); } static void bfd_mips_elf32_swap_gptab_out (abfd, in, ex) bfd *abfd; const Elf32_gptab *in; Elf32_External_gptab *ex; { bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); } static void bfd_elf32_swap_compact_rel_out (abfd, in, ex) bfd *abfd; const Elf32_compact_rel *in; Elf32_External_compact_rel *ex; { bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1); bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num); bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2); bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset); bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0); bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1); } static void bfd_elf32_swap_crinfo_out (abfd, in, ex) bfd *abfd; const Elf32_crinfo *in; Elf32_External_crinfo *ex; { unsigned long l; l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); bfd_h_put_32 (abfd, (bfd_vma) l, ex->info); bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst); bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr); } /* Swap in an options header. */ void bfd_mips_elf_swap_options_in (abfd, ex, in) bfd *abfd; const Elf_External_Options *ex; Elf_Internal_Options *in; { in->kind = bfd_h_get_8 (abfd, ex->kind); in->size = bfd_h_get_8 (abfd, ex->size); in->section = bfd_h_get_16 (abfd, ex->section); in->info = bfd_h_get_32 (abfd, ex->info); } /* Swap out an options header. */ void bfd_mips_elf_swap_options_out (abfd, in, ex) bfd *abfd; const Elf_Internal_Options *in; Elf_External_Options *ex; { bfd_h_put_8 (abfd, in->kind, ex->kind); bfd_h_put_8 (abfd, in->size, ex->size); bfd_h_put_16 (abfd, in->section, ex->section); bfd_h_put_32 (abfd, in->info, ex->info); } #if 0 /* Swap in an MSYM entry. */ static void bfd_mips_elf_swap_msym_in (abfd, ex, in) bfd *abfd; const Elf32_External_Msym *ex; Elf32_Internal_Msym *in; { in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value); in->ms_info = bfd_h_get_32 (abfd, ex->ms_info); } #endif /* Swap out an MSYM entry. */ static void bfd_mips_elf_swap_msym_out (abfd, in, ex) bfd *abfd; const Elf32_Internal_Msym *in; Elf32_External_Msym *ex; { bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value); bfd_h_put_32 (abfd, in->ms_info, ex->ms_info); } /* Determine whether a symbol is global for the purposes of splitting the symbol table into global symbols and local symbols. At least on Irix 5, this split must be between section symbols and all other symbols. On most ELF targets the split is between static symbols and externally visible symbols. */ /*ARGSUSED*/ static boolean mips_elf_sym_is_global (abfd, sym) bfd *abfd ATTRIBUTE_UNUSED; asymbol *sym; { return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false; } /* Set the right machine number for a MIPS ELF file. This is used for both the 32-bit and the 64-bit ABI. */ boolean _bfd_mips_elf_object_p (abfd) bfd *abfd; { /* Irix 5 and 6 is broken. Object file symbol tables are not always sorted correctly such that local symbols precede global symbols, and the sh_info field in the symbol table is not always right. */ elf_bad_symtab (abfd) = true; bfd_default_set_arch_mach (abfd, bfd_arch_mips, elf_mips_mach (elf_elfheader (abfd)->e_flags)); return true; } /* The final processing done just before writing out a MIPS ELF object file. This gets the MIPS architecture right based on the machine number. This is used by both the 32-bit and the 64-bit ABI. */ /*ARGSUSED*/ void _bfd_mips_elf_final_write_processing (abfd, linker) bfd *abfd; boolean linker ATTRIBUTE_UNUSED; { unsigned long val; unsigned int i; Elf_Internal_Shdr **hdrpp; const char *name; asection *sec; switch (bfd_get_mach (abfd)) { default: case bfd_mach_mips3000: val = E_MIPS_ARCH_1; break; case bfd_mach_mips3900: val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; break; case bfd_mach_mips6000: val = E_MIPS_ARCH_2; break; case bfd_mach_mips4000: case bfd_mach_mips4300: val = E_MIPS_ARCH_3; break; case bfd_mach_mips4010: val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; break; case bfd_mach_mips4100: val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; break; case bfd_mach_mips4111: val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; break; case bfd_mach_mips4650: val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; break; case bfd_mach_mips8000: val = E_MIPS_ARCH_4; break; } elf_elfheader (abfd)->e_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH); elf_elfheader (abfd)->e_flags |= val; /* Set the sh_info field for .gptab sections and other appropriate info for each special section. */ for (i = 1, hdrpp = elf_elfsections (abfd) + 1; i < elf_elfheader (abfd)->e_shnum; i++, hdrpp++) { switch ((*hdrpp)->sh_type) { case SHT_MIPS_MSYM: case SHT_MIPS_LIBLIST: sec = bfd_get_section_by_name (abfd, ".dynstr"); if (sec != NULL) (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; break; case SHT_MIPS_GPTAB: BFD_ASSERT ((*hdrpp)->bfd_section != NULL); name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); BFD_ASSERT (name != NULL && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0); sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); BFD_ASSERT (sec != NULL); (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; break; case SHT_MIPS_CONTENT: BFD_ASSERT ((*hdrpp)->bfd_section != NULL); name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); BFD_ASSERT (name != NULL && strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) == 0); sec = bfd_get_section_by_name (abfd, name + sizeof ".MIPS.content" - 1); BFD_ASSERT (sec != NULL); (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; break; case SHT_MIPS_SYMBOL_LIB: sec = bfd_get_section_by_name (abfd, ".dynsym"); if (sec != NULL) (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; sec = bfd_get_section_by_name (abfd, ".liblist"); if (sec != NULL) (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; break; case SHT_MIPS_EVENTS: BFD_ASSERT ((*hdrpp)->bfd_section != NULL); name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); BFD_ASSERT (name != NULL); if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0) sec = bfd_get_section_by_name (abfd, name + sizeof ".MIPS.events" - 1); else { BFD_ASSERT (strncmp (name, ".MIPS.post_rel", sizeof ".MIPS.post_rel" - 1) == 0); sec = bfd_get_section_by_name (abfd, (name + sizeof ".MIPS.post_rel" - 1)); } BFD_ASSERT (sec != NULL); (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; break; } } } /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ boolean _bfd_mips_elf_set_private_flags (abfd, flags) bfd *abfd; flagword flags; { BFD_ASSERT (!elf_flags_init (abfd) || elf_elfheader (abfd)->e_flags == flags); elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = true; return true; } /* Copy backend specific data from one object module to another */ boolean _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd) bfd *ibfd; bfd *obfd; { if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return true; BFD_ASSERT (!elf_flags_init (obfd) || (elf_elfheader (obfd)->e_flags == elf_elfheader (ibfd)->e_flags)); elf_gp (obfd) = elf_gp (ibfd); elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; elf_flags_init (obfd) = true; return true; } /* Merge backend specific data from an object file to the output object file when linking. */ boolean _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd) bfd *ibfd; bfd *obfd; { flagword old_flags; flagword new_flags; boolean ok; /* Check if we have the same endianess */ if (_bfd_generic_verify_endian_match (ibfd, obfd) == false) return false; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return true; new_flags = elf_elfheader (ibfd)->e_flags; elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; old_flags = elf_elfheader (obfd)->e_flags; if (! elf_flags_init (obfd)) { elf_flags_init (obfd) = true; elf_elfheader (obfd)->e_flags = new_flags; elf_elfheader (obfd)->e_ident[EI_CLASS] = elf_elfheader (ibfd)->e_ident[EI_CLASS]; if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) && bfd_get_arch_info (obfd)->the_default) { if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd))) return false; } return true; } /* Check flag compatibility. */ new_flags &= ~EF_MIPS_NOREORDER; old_flags &= ~EF_MIPS_NOREORDER; if (new_flags == old_flags) return true; ok = true; if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC)) { new_flags &= ~EF_MIPS_PIC; old_flags &= ~EF_MIPS_PIC; (*_bfd_error_handler) (_("%s: linking PIC files with non-PIC files"), bfd_get_filename (ibfd)); ok = false; } if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC)) { new_flags &= ~EF_MIPS_CPIC; old_flags &= ~EF_MIPS_CPIC; (*_bfd_error_handler) (_("%s: linking abicalls files with non-abicalls files"), bfd_get_filename (ibfd)); ok = false; } /* Compare the ISA's. */ if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)) != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))) { int new_mach = new_flags & EF_MIPS_MACH; int old_mach = old_flags & EF_MIPS_MACH; int new_isa = elf_mips_isa (new_flags); int old_isa = elf_mips_isa (old_flags); /* If either has no machine specified, just compare the general isa's. Some combinations of machines are ok, if the isa's match. */ if (! new_mach || ! old_mach || new_mach == old_mach ) { /* Don't warn about mixing -mips1 and -mips2 code, or mixing -mips3 and -mips4 code. They will normally use the same data sizes and calling conventions. */ if ((new_isa == 1 || new_isa == 2) ? (old_isa != 1 && old_isa != 2) : (old_isa == 1 || old_isa == 2)) { (*_bfd_error_handler) (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"), bfd_get_filename (ibfd), new_isa, old_isa); ok = false; } } else { (*_bfd_error_handler) (_("%s: ISA mismatch (%d) with previous modules (%d)"), bfd_get_filename (ibfd), elf_mips_mach (new_flags), elf_mips_mach (old_flags)); ok = false; } new_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH); old_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH); } /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it does set EI_CLASS differently from any 32-bit ABI. */ if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) || (elf_elfheader (ibfd)->e_ident[EI_CLASS] != elf_elfheader (obfd)->e_ident[EI_CLASS])) { /* Only error if both are set (to different values). */ if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) || (elf_elfheader (ibfd)->e_ident[EI_CLASS] != elf_elfheader (obfd)->e_ident[EI_CLASS])) { (*_bfd_error_handler) (_("%s: ABI mismatch: linking %s module with previous %s modules"), bfd_get_filename (ibfd), elf_mips_abi_name (ibfd), elf_mips_abi_name (obfd)); ok = false; } new_flags &= ~EF_MIPS_ABI; old_flags &= ~EF_MIPS_ABI; } /* Warn about any other mismatches */ if (new_flags != old_flags) { (*_bfd_error_handler) (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), bfd_get_filename (ibfd), (unsigned long) new_flags, (unsigned long) old_flags); ok = false; } if (! ok) { bfd_set_error (bfd_error_bad_value); return false; } return true; } boolean _bfd_mips_elf_print_private_bfd_data (abfd, ptr) bfd *abfd; PTR ptr; { FILE *file = (FILE *) ptr; BFD_ASSERT (abfd != NULL && ptr != NULL); /* Print normal ELF private data. */ _bfd_elf_print_private_bfd_data (abfd, ptr); /* xgettext:c-format */ fprintf (file, _ ("private flags = %lx:"), elf_elfheader (abfd)->e_flags); if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) fprintf (file, _ (" [abi=O32]")); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) fprintf (file, _ (" [abi=O64]")); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) fprintf (file, _ (" [abi=EABI32]")); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) fprintf (file, _ (" [abi=EABI64]")); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) fprintf (file, _ (" [abi unknown]")); else if (ABI_N32_P (abfd)) fprintf (file, _ (" [abi=N32]")); else if (ABI_64_P (abfd)) fprintf (file, _ (" [abi=64]")); else fprintf (file, _ (" [no abi set]")); if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) fprintf (file, _ (" [mips1]")); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) fprintf (file, _ (" [mips2]")); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) fprintf (file, _ (" [mips3]")); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) fprintf (file, _ (" [mips4]")); else fprintf (file, _ (" [unknown ISA]")); if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) fprintf (file, _ (" [32bitmode]")); else fprintf (file, _ (" [not 32bitmode]")); fputc ('\n', file); return true; } /* Handle a MIPS specific section when reading an object file. This is called when elfcode.h finds a section with an unknown type. This routine supports both the 32-bit and 64-bit ELF ABI. FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure how to. */ boolean _bfd_mips_elf_section_from_shdr (abfd, hdr, name) bfd *abfd; Elf_Internal_Shdr *hdr; char *name; { flagword flags = 0; /* There ought to be a place to keep ELF backend specific flags, but at the moment there isn't one. We just keep track of the sections by their name, instead. Fortunately, the ABI gives suggested names for all the MIPS specific sections, so we will probably get away with this. */ switch (hdr->sh_type) { case SHT_MIPS_LIBLIST: if (strcmp (name, ".liblist") != 0) return false; break; case SHT_MIPS_MSYM: if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0) return false; break; case SHT_MIPS_CONFLICT: if (strcmp (name, ".conflict") != 0) return false; break; case SHT_MIPS_GPTAB: if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0) return false; break; case SHT_MIPS_UCODE: if (strcmp (name, ".ucode") != 0) return false; break; case SHT_MIPS_DEBUG: if (strcmp (name, ".mdebug") != 0) return false; flags = SEC_DEBUGGING; break; case SHT_MIPS_REGINFO: if (strcmp (name, ".reginfo") != 0 || hdr->sh_size != sizeof (Elf32_External_RegInfo)) return false; flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); break; case SHT_MIPS_IFACE: if (strcmp (name, ".MIPS.interfaces") != 0) return false; break; case SHT_MIPS_CONTENT: if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0) return false; break; case SHT_MIPS_OPTIONS: if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0) return false; break; case SHT_MIPS_DWARF: if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0) return false; break; case SHT_MIPS_SYMBOL_LIB: if (strcmp (name, ".MIPS.symlib") != 0) return false; break; case SHT_MIPS_EVENTS: if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0 && strncmp (name, ".MIPS.post_rel", sizeof ".MIPS.post_rel" - 1) != 0) return false; break; default: return false; } if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) return false; if (flags) { if (! bfd_set_section_flags (abfd, hdr->bfd_section, (bfd_get_section_flags (abfd, hdr->bfd_section) | flags))) return false; } /* FIXME: We should record sh_info for a .gptab section. */ /* For a .reginfo section, set the gp value in the tdata information from the contents of this section. We need the gp value while processing relocs, so we just get it now. The .reginfo section is not used in the 64-bit MIPS ELF ABI. */ if (hdr->sh_type == SHT_MIPS_REGINFO) { Elf32_External_RegInfo ext; Elf32_RegInfo s; if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext, (file_ptr) 0, sizeof ext)) return false; bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); elf_gp (abfd) = s.ri_gp_value; } /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set the gp value based on what we find. We may see both SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree. */ if (hdr->sh_type == SHT_MIPS_OPTIONS) { bfd_byte *contents, *l, *lend; contents = (bfd_byte *) bfd_malloc (hdr->sh_size); if (contents == NULL) return false; if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, (file_ptr) 0, hdr->sh_size)) { free (contents); return false; } l = contents; lend = contents + hdr->sh_size; while (l + sizeof (Elf_External_Options) <= lend) { Elf_Internal_Options intopt; bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, &intopt); if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) { Elf64_Internal_RegInfo intreg; bfd_mips_elf64_swap_reginfo_in (abfd, ((Elf64_External_RegInfo *) (l + sizeof (Elf_External_Options))), &intreg); elf_gp (abfd) = intreg.ri_gp_value; } else if (intopt.kind == ODK_REGINFO) { Elf32_RegInfo intreg; bfd_mips_elf32_swap_reginfo_in (abfd, ((Elf32_External_RegInfo *) (l + sizeof (Elf_External_Options))), &intreg); elf_gp (abfd) = intreg.ri_gp_value; } l += intopt.size; } free (contents); } return true; } /* Set the correct type for a MIPS ELF section. We do this by the section name, which is a hack, but ought to work. This routine is used by both the 32-bit and the 64-bit ABI. */ boolean _bfd_mips_elf_fake_sections (abfd, hdr, sec) bfd *abfd; Elf32_Internal_Shdr *hdr; asection *sec; { register const char *name; name = bfd_get_section_name (abfd, sec); if (strcmp (name, ".liblist") == 0) { hdr->sh_type = SHT_MIPS_LIBLIST; hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib); /* The sh_link field is set in final_write_processing. */ } else if (strcmp (name, ".conflict") == 0) hdr->sh_type = SHT_MIPS_CONFLICT; else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0) { hdr->sh_type = SHT_MIPS_GPTAB; hdr->sh_entsize = sizeof (Elf32_External_gptab); /* The sh_info field is set in final_write_processing. */ } else if (strcmp (name, ".ucode") == 0) hdr->sh_type = SHT_MIPS_UCODE; else if (strcmp (name, ".mdebug") == 0) { hdr->sh_type = SHT_MIPS_DEBUG; /* In a shared object on Irix 5.3, the .mdebug section has an entsize of 0. FIXME: Does this matter? */ if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) hdr->sh_entsize = 0; else hdr->sh_entsize = 1; } else if (strcmp (name, ".reginfo") == 0) { hdr->sh_type = SHT_MIPS_REGINFO; /* In a shared object on Irix 5.3, the .reginfo section has an entsize of 0x18. FIXME: Does this matter? */ if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) hdr->sh_entsize = sizeof (Elf32_External_RegInfo); else hdr->sh_entsize = 1; } else if (SGI_COMPAT (abfd) && (strcmp (name, ".hash") == 0 || strcmp (name, ".dynamic") == 0 || strcmp (name, ".dynstr") == 0)) { hdr->sh_entsize = 0; #if 0 /* This isn't how the Irix 6 linker behaves. */ hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; #endif } else if (strcmp (name, ".got") == 0 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0 || strcmp (name, ".sdata") == 0 || strcmp (name, ".sbss") == 0 || strcmp (name, ".lit4") == 0 || strcmp (name, ".lit8") == 0) hdr->sh_flags |= SHF_MIPS_GPREL; else if (strcmp (name, ".MIPS.interfaces") == 0) { hdr->sh_type = SHT_MIPS_IFACE; hdr->sh_flags |= SHF_MIPS_NOSTRIP; } else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0) { hdr->sh_type = SHT_MIPS_CONTENT; hdr->sh_flags |= SHF_MIPS_NOSTRIP; /* The sh_info field is set in final_write_processing. */ } else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) { hdr->sh_type = SHT_MIPS_OPTIONS; hdr->sh_entsize = 1; hdr->sh_flags |= SHF_MIPS_NOSTRIP; } else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0) hdr->sh_type = SHT_MIPS_DWARF; else if (strcmp (name, ".MIPS.symlib") == 0) { hdr->sh_type = SHT_MIPS_SYMBOL_LIB; /* The sh_link and sh_info fields are set in final_write_processing. */ } else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0 || strncmp (name, ".MIPS.post_rel", sizeof ".MIPS.post_rel" - 1) == 0) { hdr->sh_type = SHT_MIPS_EVENTS; hdr->sh_flags |= SHF_MIPS_NOSTRIP; /* The sh_link field is set in final_write_processing. */ } else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0) { hdr->sh_type = SHT_MIPS_MSYM; hdr->sh_flags |= SHF_ALLOC; hdr->sh_entsize = 8; } /* The generic elf_fake_sections will set up REL_HDR using the default kind of relocations. But, we may actually need both kinds of relocations, so we set up the second header here. */ if ((sec->flags & SEC_RELOC) != 0) { struct bfd_elf_section_data *esd; esd = elf_section_data (sec); BFD_ASSERT (esd->rel_hdr2 == NULL); esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr)); if (!esd->rel_hdr2) return false; _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec, !elf_section_data (sec)->use_rela_p); } return true; } /* Given a BFD section, try to locate the corresponding ELF section index. This is used by both the 32-bit and the 64-bit ABI. Actually, it's not clear to me that the 64-bit ABI supports these, but for non-PIC objects we will certainly want support for at least the .scommon section. */ boolean _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval) bfd *abfd ATTRIBUTE_UNUSED; Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED; asection *sec; int *retval; { if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) { *retval = SHN_MIPS_SCOMMON; return true; } if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) { *retval = SHN_MIPS_ACOMMON; return true; } return false; } /* When are writing out the .options or .MIPS.options section, remember the bytes we are writing out, so that we can install the GP value in the section_processing routine. */ boolean _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count) bfd *abfd; sec_ptr section; PTR location; file_ptr offset; bfd_size_type count; { if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) { bfd_byte *c; if (elf_section_data (section) == NULL) { section->used_by_bfd = (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data)); if (elf_section_data (section) == NULL) return false; } c = (bfd_byte *) elf_section_data (section)->tdata; if (c == NULL) { bfd_size_type size; if (section->_cooked_size != 0) size = section->_cooked_size; else size = section->_raw_size; c = (bfd_byte *) bfd_zalloc (abfd, size); if (c == NULL) return false; elf_section_data (section)->tdata = (PTR) c; } memcpy (c + offset, location, count); } return _bfd_elf_set_section_contents (abfd, section, location, offset, count); } /* Work over a section just before writing it out. This routine is used by both the 32-bit and the 64-bit ABI. FIXME: We recognize sections that need the SHF_MIPS_GPREL flag by name; there has to be a better way. */ boolean _bfd_mips_elf_section_processing (abfd, hdr) bfd *abfd; Elf_Internal_Shdr *hdr; { if (hdr->sh_type == SHT_MIPS_REGINFO && hdr->sh_size > 0) { bfd_byte buf[4]; BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); BFD_ASSERT (hdr->contents == NULL); if (bfd_seek (abfd, hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, SEEK_SET) == -1) return false; bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf); if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4) return false; } if (hdr->sh_type == SHT_MIPS_OPTIONS && hdr->bfd_section != NULL && elf_section_data (hdr->bfd_section) != NULL && elf_section_data (hdr->bfd_section)->tdata != NULL) { bfd_byte *contents, *l, *lend; /* We stored the section contents in the elf_section_data tdata field in the set_section_contents routine. We save the section contents so that we don't have to read them again. At this point we know that elf_gp is set, so we can look through the section contents to see if there is an ODK_REGINFO structure. */ contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata; l = contents; lend = contents + hdr->sh_size; while (l + sizeof (Elf_External_Options) <= lend) { Elf_Internal_Options intopt; bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, &intopt); if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) { bfd_byte buf[8]; if (bfd_seek (abfd, (hdr->sh_offset + (l - contents) + sizeof (Elf_External_Options) + (sizeof (Elf64_External_RegInfo) - 8)), SEEK_SET) == -1) return false; bfd_h_put_64 (abfd, elf_gp (abfd), buf); if (bfd_write (buf, 1, 8, abfd) != 8) return false; } else if (intopt.kind == ODK_REGINFO) { bfd_byte buf[4]; if (bfd_seek (abfd, (hdr->sh_offset + (l - contents) + sizeof (Elf_External_Options) + (sizeof (Elf32_External_RegInfo) - 4)), SEEK_SET) == -1) return false; bfd_h_put_32 (abfd, elf_gp (abfd), buf); if (bfd_write (buf, 1, 4, abfd) != 4) return false; } l += intopt.size; } } if (hdr->bfd_section != NULL) { const char *name = bfd_get_section_name (abfd, hdr->bfd_section); if (strcmp (name, ".sdata") == 0 || strcmp (name, ".lit8") == 0 || strcmp (name, ".lit4") == 0) { hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; hdr->sh_type = SHT_PROGBITS; } else if (strcmp (name, ".sbss") == 0) { hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; hdr->sh_type = SHT_NOBITS; } else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0) { hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; hdr->sh_type = SHT_PROGBITS; } else if (strcmp (name, ".compact_rel") == 0) { hdr->sh_flags = 0; hdr->sh_type = SHT_PROGBITS; } else if (strcmp (name, ".rtproc") == 0) { if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) { unsigned int adjust; adjust = hdr->sh_size % hdr->sh_addralign; if (adjust != 0) hdr->sh_size += hdr->sh_addralign - adjust; } } } return true; } /* MIPS ELF uses two common sections. One is the usual one, and the other is for small objects. All the small objects are kept together, and then referenced via the gp pointer, which yields faster assembler code. This is what we use for the small common section. This approach is copied from ecoff.c. */ static asection mips_elf_scom_section; static asymbol mips_elf_scom_symbol; static asymbol *mips_elf_scom_symbol_ptr; /* MIPS ELF also uses an acommon section, which represents an allocated common symbol which may be overridden by a definition in a shared library. */ static asection mips_elf_acom_section; static asymbol mips_elf_acom_symbol; static asymbol *mips_elf_acom_symbol_ptr; /* The Irix 5 support uses two virtual sections, which represent text/data symbols defined in dynamic objects. */ static asection mips_elf_text_section; static asection *mips_elf_text_section_ptr; static asymbol mips_elf_text_symbol; static asymbol *mips_elf_text_symbol_ptr; static asection mips_elf_data_section; static asection *mips_elf_data_section_ptr; static asymbol mips_elf_data_symbol; static asymbol *mips_elf_data_symbol_ptr; /* Handle the special MIPS section numbers that a symbol may use. This is used for both the 32-bit and the 64-bit ABI. */ void _bfd_mips_elf_symbol_processing (abfd, asym) bfd *abfd; asymbol *asym; { elf_symbol_type *elfsym; elfsym = (elf_symbol_type *) asym; switch (elfsym->internal_elf_sym.st_shndx) { case SHN_MIPS_ACOMMON: /* This section is used in a dynamically linked executable file. It is an allocated common section. The dynamic linker can either resolve these symbols to something in a shared library, or it can just leave them here. For our purposes, we can consider these symbols to be in a new section. */ if (mips_elf_acom_section.name == NULL) { /* Initialize the acommon section. */ mips_elf_acom_section.name = ".acommon"; mips_elf_acom_section.flags = SEC_ALLOC; mips_elf_acom_section.output_section = &mips_elf_acom_section; mips_elf_acom_section.symbol = &mips_elf_acom_symbol; mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; mips_elf_acom_symbol.name = ".acommon"; mips_elf_acom_symbol.flags = BSF_SECTION_SYM; mips_elf_acom_symbol.section = &mips_elf_acom_section; mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; } asym->section = &mips_elf_acom_section; break; case SHN_COMMON: /* Common symbols less than the GP size are automatically treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ if (asym->value > elf_gp_size (abfd) || IRIX_COMPAT (abfd) == ict_irix6) break; /* Fall through. */ case SHN_MIPS_SCOMMON: if (mips_elf_scom_section.name == NULL) { /* Initialize the small common section. */ mips_elf_scom_section.name = ".scommon"; mips_elf_scom_section.flags = SEC_IS_COMMON; mips_elf_scom_section.output_section = &mips_elf_scom_section; mips_elf_scom_section.symbol = &mips_elf_scom_symbol; mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; mips_elf_scom_symbol.name = ".scommon"; mips_elf_scom_symbol.flags = BSF_SECTION_SYM; mips_elf_scom_symbol.section = &mips_elf_scom_section; mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; } asym->section = &mips_elf_scom_section; asym->value = elfsym->internal_elf_sym.st_size; break; case SHN_MIPS_SUNDEFINED: asym->section = bfd_und_section_ptr; break; #if 0 /* for SGI_COMPAT */ case SHN_MIPS_TEXT: asym->section = mips_elf_text_section_ptr; break; case SHN_MIPS_DATA: asym->section = mips_elf_data_section_ptr; break; #endif } } /* When creating an Irix 5 executable, we need REGINFO and RTPROC segments. */ int _bfd_mips_elf_additional_program_headers (abfd) bfd *abfd; { asection *s; int ret = 0; if (!SGI_COMPAT (abfd)) return 0; /* See if we need a PT_MIPS_REGINFO segment. */ s = bfd_get_section_by_name (abfd, ".reginfo"); if (s && (s->flags & SEC_LOAD)) ++ret; /* See if we need a PT_MIPS_OPTIONS segment. */ if (IRIX_COMPAT (abfd) == ict_irix6 && bfd_get_section_by_name (abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) ++ret; /* See if we need a PT_MIPS_RTPROC segment. */ if (IRIX_COMPAT (abfd) == ict_irix5 && bfd_get_section_by_name (abfd, ".dynamic") && bfd_get_section_by_name (abfd, ".mdebug")) ++ret; return ret; } /* Modify the segment map for an Irix 5 executable. */ boolean _bfd_mips_elf_modify_segment_map (abfd) bfd *abfd; { asection *s; struct elf_segment_map *m, **pm; if (! SGI_COMPAT (abfd)) return true; /* If there is a .reginfo section, we need a PT_MIPS_REGINFO segment. */ s = bfd_get_section_by_name (abfd, ".reginfo"); if (s != NULL && (s->flags & SEC_LOAD) != 0) { for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) if (m->p_type == PT_MIPS_REGINFO) break; if (m == NULL) { m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m); if (m == NULL) return false; m->p_type = PT_MIPS_REGINFO; m->count = 1; m->sections[0] = s; /* We want to put it after the PHDR and INTERP segments. */ pm = &elf_tdata (abfd)->segment_map; while (*pm != NULL && ((*pm)->p_type == PT_PHDR || (*pm)->p_type == PT_INTERP)) pm = &(*pm)->next; m->next = *pm; *pm = m; } } /* For IRIX 6, we don't have .mdebug sections, nor does anything but .dynamic end up in PT_DYNAMIC. However, we do have to insert a PT_OPTIONS segement immediately following the program header table. */ if (IRIX_COMPAT (abfd) == ict_irix6) { asection *s; for (s = abfd->sections; s; s = s->next) if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) break; if (s) { struct elf_segment_map *options_segment; /* Usually, there's a program header table. But, sometimes there's not (like when running the `ld' testsuite). So, if there's no program header table, we just put the options segement at the end. */ for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next) if ((*pm)->p_type == PT_PHDR) break; options_segment = bfd_zalloc (abfd, sizeof (struct elf_segment_map)); options_segment->next = *pm; options_segment->p_type = PT_MIPS_OPTIONS; options_segment->p_flags = PF_R; options_segment->p_flags_valid = true; options_segment->count = 1; options_segment->sections[0] = s; *pm = options_segment; } } else { /* If there are .dynamic and .mdebug sections, we make a room for the RTPROC header. FIXME: Rewrite without section names. */ if (bfd_get_section_by_name (abfd, ".interp") == NULL && bfd_get_section_by_name (abfd, ".dynamic") != NULL && bfd_get_section_by_name (abfd, ".mdebug") != NULL) { for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) if (m->p_type == PT_MIPS_RTPROC) break; if (m == NULL) { m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m); if (m == NULL) return false; m->p_type = PT_MIPS_RTPROC; s = bfd_get_section_by_name (abfd, ".rtproc"); if (s == NULL) { m->count = 0; m->p_flags = 0; m->p_flags_valid = 1; } else { m->count = 1; m->sections[0] = s; } /* We want to put it after the DYNAMIC segment. */ pm = &elf_tdata (abfd)->segment_map; while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) pm = &(*pm)->next; if (*pm != NULL) pm = &(*pm)->next; m->next = *pm; *pm = m; } } /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic, .dynstr, .dynsym, and .hash sections, and everything in between. */ for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next) if ((*pm)->p_type == PT_DYNAMIC) break; m = *pm; if (m != NULL && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0) { static const char *sec_names[] = { ".dynamic", ".dynstr", ".dynsym", ".hash" }; bfd_vma low, high; unsigned int i, c; struct elf_segment_map *n; low = 0xffffffff; high = 0; for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) { s = bfd_get_section_by_name (abfd, sec_names[i]); if (s != NULL && (s->flags & SEC_LOAD) != 0) { bfd_size_type sz; if (low > s->vma) low = s->vma; sz = s->_cooked_size; if (sz == 0) sz = s->_raw_size; if (high < s->vma + sz) high = s->vma + sz; } } c = 0; for (s = abfd->sections; s != NULL; s = s->next) if ((s->flags & SEC_LOAD) != 0 && s->vma >= low && ((s->vma + (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size)) <= high)) ++c; n = ((struct elf_segment_map *) bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *))); if (n == NULL) return false; *n = *m; n->count = c; i = 0; for (s = abfd->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LOAD) != 0 && s->vma >= low && ((s->vma + (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size)) <= high)) { n->sections[i] = s; ++i; } } *pm = n; } } return true; } /* The structure of the runtime procedure descriptor created by the loader for use by the static exception system. */ typedef struct runtime_pdr { bfd_vma adr; /* memory address of start of procedure */ long regmask; /* save register mask */ long regoffset; /* save register offset */ long fregmask; /* save floating point register mask */ long fregoffset; /* save floating point register offset */ long frameoffset; /* frame size */ short framereg; /* frame pointer register */ short pcreg; /* offset or reg of return pc */ long irpss; /* index into the runtime string table */ long reserved; struct exception_info *exception_info;/* pointer to exception array */ } RPDR, *pRPDR; #define cbRPDR sizeof(RPDR) #define rpdNil ((pRPDR) 0) /* Swap RPDR (runtime procedure table entry) for output. */ static void ecoff_swap_rpdr_out PARAMS ((bfd *, const RPDR *, struct rpdr_ext *)); static void ecoff_swap_rpdr_out (abfd, in, ex) bfd *abfd; const RPDR *in; struct rpdr_ext *ex; { /* ecoff_put_off was defined in ecoffswap.h. */ ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr); bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask); bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset); bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask); bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset); bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset); bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg); bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg); bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss); #if 0 /* FIXME */ ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info); #endif } /* Read ECOFF debugging information from a .mdebug section into a ecoff_debug_info structure. */ boolean _bfd_mips_elf_read_ecoff_info (abfd, section, debug) bfd *abfd; asection *section; struct ecoff_debug_info *debug; { HDRR *symhdr; const struct ecoff_debug_swap *swap; char *ext_hdr = NULL; swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; memset (debug, 0, sizeof(*debug)); ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size); if (ext_hdr == NULL && swap->external_hdr_size != 0) goto error_return; if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0, swap->external_hdr_size) == false) goto error_return; symhdr = &debug->symbolic_header; (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); /* The symbolic header contains absolute file offsets and sizes to read. */ #define READ(ptr, offset, count, size, type) \ if (symhdr->count == 0) \ debug->ptr = NULL; \ else \ { \ debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \ if (debug->ptr == NULL) \ goto error_return; \ if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \ || (bfd_read (debug->ptr, size, symhdr->count, \ abfd) != size * symhdr->count)) \ goto error_return; \ } READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR); READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR); READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR); READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR); READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), union aux_ext *); READ (ss, cbSsOffset, issMax, sizeof (char), char *); READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR); READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR); READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR); #undef READ debug->fdr = NULL; debug->adjust = NULL; return true; error_return: if (ext_hdr != NULL) free (ext_hdr); if (debug->line != NULL) free (debug->line); if (debug->external_dnr != NULL) free (debug->external_dnr); if (debug->external_pdr != NULL) free (debug->external_pdr); if (debug->external_sym != NULL) free (debug->external_sym); if (debug->external_opt != NULL) free (debug->external_opt); if (debug->external_aux != NULL) free (debug->external_aux); if (debug->ss != NULL) free (debug->ss); if (debug->ssext != NULL) free (debug->ssext); if (debug->external_fdr != NULL) free (debug->external_fdr); if (debug->external_rfd != NULL) free (debug->external_rfd); if (debug->external_ext != NULL) free (debug->external_ext); return false; } /* MIPS ELF local labels start with '$', not 'L'. */ /*ARGSUSED*/ static boolean mips_elf_is_local_label_name (abfd, name) bfd *abfd; const char *name; { if (name[0] == '$') return true; /* On Irix 6, the labels go back to starting with '.', so we accept the generic ELF local label syntax as well. */ return _bfd_elf_is_local_label_name (abfd, name); } /* MIPS ELF uses a special find_nearest_line routine in order the handle the ECOFF debugging information. */ struct mips_elf_find_line { struct ecoff_debug_info d; struct ecoff_find_line i; }; boolean _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr) bfd *abfd; asection *section; asymbol **symbols; bfd_vma offset; const char **filename_ptr; const char **functionname_ptr; unsigned int *line_ptr; { asection *msec; if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)) return true; if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr, ABI_64_P (abfd) ? 8 : 0)) return true; msec = bfd_get_section_by_name (abfd, ".mdebug"); if (msec != NULL) { flagword origflags; struct mips_elf_find_line *fi; const struct ecoff_debug_swap * const swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; /* If we are called during a link, mips_elf_final_link may have cleared the SEC_HAS_CONTENTS field. We force it back on here if appropriate (which it normally will be). */ origflags = msec->flags; if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) msec->flags |= SEC_HAS_CONTENTS; fi = elf_tdata (abfd)->find_line_info; if (fi == NULL) { bfd_size_type external_fdr_size; char *fraw_src; char *fraw_end; struct fdr *fdr_ptr; fi = ((struct mips_elf_find_line *) bfd_zalloc (abfd, sizeof (struct mips_elf_find_line))); if (fi == NULL) { msec->flags = origflags; return false; } if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) { msec->flags = origflags; return false; } /* Swap in the FDR information. */ fi->d.fdr = ((struct fdr *) bfd_alloc (abfd, (fi->d.symbolic_header.ifdMax * sizeof (struct fdr)))); if (fi->d.fdr == NULL) { msec->flags = origflags; return false; } external_fdr_size = swap->external_fdr_size; fdr_ptr = fi->d.fdr; fraw_src = (char *) fi->d.external_fdr; fraw_end = (fraw_src + fi->d.symbolic_header.ifdMax * external_fdr_size); for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr); elf_tdata (abfd)->find_line_info = fi; /* Note that we don't bother to ever free this information. find_nearest_line is either called all the time, as in objdump -l, so the information should be saved, or it is rarely called, as in ld error messages, so the memory wasted is unimportant. Still, it would probably be a good idea for free_cached_info to throw it away. */ } if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, &fi->i, filename_ptr, functionname_ptr, line_ptr)) { msec->flags = origflags; return true; } msec->flags = origflags; } /* Fall back on the generic ELF find_nearest_line routine. */ return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr); } /* The mips16 compiler uses a couple of special sections to handle floating point arguments. Section names that look like .mips16.fn.FNNAME contain stubs that copy floating point arguments from the fp regs to the gp regs and then jump to FNNAME. If any 32 bit function calls FNNAME, the call should be redirected to the stub instead. If no 32 bit function calls FNNAME, the stub should be discarded. We need to consider any reference to the function, not just a call, because if the address of the function is taken we will need the stub, since the address might be passed to a 32 bit function. Section names that look like .mips16.call.FNNAME contain stubs that copy floating point arguments from the gp regs to the fp regs and then jump to FNNAME. If FNNAME is a 32 bit function, then any 16 bit function that calls FNNAME should be redirected to the stub instead. If FNNAME is not a 32 bit function, the stub should be discarded. .mips16.call.fp.FNNAME sections are similar, but contain stubs which call FNNAME and then copy the return value from the fp regs to the gp regs. These stubs store the return value in $18 while calling FNNAME; any function which might call one of these stubs must arrange to save $18 around the call. (This case is not needed for 32 bit functions that call 16 bit functions, because 16 bit functions always return floating point values in both $f0/$f1 and $2/$3.) Note that in all cases FNNAME might be defined statically. Therefore, FNNAME is not used literally. Instead, the relocation information will indicate which symbol the section is for. We record any stubs that we find in the symbol table. */ #define FN_STUB ".mips16.fn." #define CALL_STUB ".mips16.call." #define CALL_FP_STUB ".mips16.call.fp." /* MIPS ELF linker hash table. */ struct mips_elf_link_hash_table { struct elf_link_hash_table root; #if 0 /* We no longer use this. */ /* String section indices for the dynamic section symbols. */ bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; #endif /* The number of .rtproc entries. */ bfd_size_type procedure_count; /* The size of the .compact_rel section (if SGI_COMPAT). */ bfd_size_type compact_rel_size; /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry is set to the address of __rld_obj_head as in Irix 5. */ boolean use_rld_obj_head; /* This is the value of the __rld_map or __rld_obj_head symbol. */ bfd_vma rld_value; /* This is set if we see any mips16 stub sections. */ boolean mips16_stubs_seen; }; /* Look up an entry in a MIPS ELF linker hash table. */ #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ ((struct mips_elf_link_hash_entry *) \ elf_link_hash_lookup (&(table)->root, (string), (create), \ (copy), (follow))) /* Traverse a MIPS ELF linker hash table. */ #define mips_elf_link_hash_traverse(table, func, info) \ (elf_link_hash_traverse \ (&(table)->root, \ (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \ (info))) /* Get the MIPS ELF linker hash table from a link_info structure. */ #define mips_elf_hash_table(p) \ ((struct mips_elf_link_hash_table *) ((p)->hash)) static boolean mips_elf_output_extsym PARAMS ((struct mips_elf_link_hash_entry *, PTR)); /* Create an entry in a MIPS ELF linker hash table. */ static struct bfd_hash_entry * mips_elf_link_hash_newfunc (entry, table, string) struct bfd_hash_entry *entry; struct bfd_hash_table *table; const char *string; { struct mips_elf_link_hash_entry *ret = (struct mips_elf_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == (struct mips_elf_link_hash_entry *) NULL) ret = ((struct mips_elf_link_hash_entry *) bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry))); if (ret == (struct mips_elf_link_hash_entry *) NULL) return (struct bfd_hash_entry *) ret; /* Call the allocation method of the superclass. */ ret = ((struct mips_elf_link_hash_entry *) _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret != (struct mips_elf_link_hash_entry *) NULL) { /* Set local fields. */ memset (&ret->esym, 0, sizeof (EXTR)); /* We use -2 as a marker to indicate that the information has not been set. -1 means there is no associated ifd. */ ret->esym.ifd = -2; ret->possibly_dynamic_relocs = 0; ret->min_dyn_reloc_index = 0; ret->fn_stub = NULL; ret->need_fn_stub = false; ret->call_stub = NULL; ret->call_fp_stub = NULL; } return (struct bfd_hash_entry *) ret; } /* Create a MIPS ELF linker hash table. */ struct bfd_link_hash_table * _bfd_mips_elf_link_hash_table_create (abfd) bfd *abfd; { struct mips_elf_link_hash_table *ret; ret = ((struct mips_elf_link_hash_table *) bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table))); if (ret == (struct mips_elf_link_hash_table *) NULL) return NULL; if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, mips_elf_link_hash_newfunc)) { bfd_release (abfd, ret); return NULL; } #if 0 /* We no longer use this. */ for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; #endif ret->procedure_count = 0; ret->compact_rel_size = 0; ret->use_rld_obj_head = false; ret->rld_value = 0; ret->mips16_stubs_seen = false; return &ret->root.root; } /* Hook called by the linker routine which adds symbols from an object file. We must handle the special MIPS section numbers here. */ /*ARGSUSED*/ boolean _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) bfd *abfd; struct bfd_link_info *info; const Elf_Internal_Sym *sym; const char **namep; flagword *flagsp ATTRIBUTE_UNUSED; asection **secp; bfd_vma *valp; { if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0 && strcmp (*namep, "_rld_new_interface") == 0) { /* Skip Irix 5 rld entry name. */ *namep = NULL; return true; } switch (sym->st_shndx) { case SHN_COMMON: /* Common symbols less than the GP size are automatically treated as SHN_MIPS_SCOMMON symbols. */ if (sym->st_size > elf_gp_size (abfd) || IRIX_COMPAT (abfd) == ict_irix6) break; /* Fall through. */ case SHN_MIPS_SCOMMON: *secp = bfd_make_section_old_way (abfd, ".scommon"); (*secp)->flags |= SEC_IS_COMMON; *valp = sym->st_size; break; case SHN_MIPS_TEXT: /* This section is used in a shared object. */ if (mips_elf_text_section_ptr == NULL) { /* Initialize the section. */ mips_elf_text_section.name = ".text"; mips_elf_text_section.flags = SEC_NO_FLAGS; mips_elf_text_section.output_section = NULL; mips_elf_text_section.symbol = &mips_elf_text_symbol; mips_elf_text_section.symbol_ptr_ptr = &mips_elf_text_symbol_ptr; mips_elf_text_symbol.name = ".text"; mips_elf_text_symbol.flags = BSF_SECTION_SYM | BSF_DYNAMIC; mips_elf_text_symbol.section = &mips_elf_text_section; mips_elf_text_symbol_ptr = &mips_elf_text_symbol; mips_elf_text_section_ptr = &mips_elf_text_section; } /* This code used to do *secp = bfd_und_section_ptr if info->shared. I don't know why, and that doesn't make sense, so I took it out. */ *secp = mips_elf_text_section_ptr; break; case SHN_MIPS_ACOMMON: /* Fall through. XXX Can we treat this as allocated data? */ case SHN_MIPS_DATA: /* This section is used in a shared object. */ if (mips_elf_data_section_ptr == NULL) { /* Initialize the section. */ mips_elf_data_section.name = ".data"; mips_elf_data_section.flags = SEC_NO_FLAGS; mips_elf_data_section.output_section = NULL; mips_elf_data_section.symbol = &mips_elf_data_symbol; mips_elf_data_section.symbol_ptr_ptr = &mips_elf_data_symbol_ptr; mips_elf_data_symbol.name = ".data"; mips_elf_data_symbol.flags = BSF_SECTION_SYM | BSF_DYNAMIC; mips_elf_data_symbol.section = &mips_elf_data_section; mips_elf_data_symbol_ptr = &mips_elf_data_symbol; mips_elf_data_section_ptr = &mips_elf_data_section; } /* This code used to do *secp = bfd_und_section_ptr if info->shared. I don't know why, and that doesn't make sense, so I took it out. */ *secp = mips_elf_data_section_ptr; break; case SHN_MIPS_SUNDEFINED: *secp = bfd_und_section_ptr; break; } if (SGI_COMPAT (abfd) && ! info->shared && info->hash->creator == abfd->xvec && strcmp (*namep, "__rld_obj_head") == 0) { struct elf_link_hash_entry *h; /* Mark __rld_obj_head as dynamic. */ h = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, *namep, BSF_GLOBAL, *secp, (bfd_vma) *valp, (const char *) NULL, false, get_elf_backend_data (abfd)->collect, (struct bfd_link_hash_entry **) &h))) return false; h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_OBJECT; if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; mips_elf_hash_table (info)->use_rld_obj_head = true; } /* If this is a mips16 text symbol, add 1 to the value to make it odd. This will cause something like .word SYM to come up with the right value when it is loaded into the PC. */ if (sym->st_other == STO_MIPS16) ++*valp; return true; } /* Structure used to pass information to mips_elf_output_extsym. */ struct extsym_info { bfd *abfd; struct bfd_link_info *info; struct ecoff_debug_info *debug; const struct ecoff_debug_swap *swap; boolean failed; }; /* This routine is used to write out ECOFF debugging external symbol information. It is called via mips_elf_link_hash_traverse. The ECOFF external symbol information must match the ELF external symbol information. Unfortunately, at this point we don't know whether a symbol is required by reloc information, so the two tables may wind up being different. We must sort out the external symbol information before we can set the final size of the .mdebug section, and we must set the size of the .mdebug section before we can relocate any sections, and we can't know which symbols are required by relocation until we relocate the sections. Fortunately, it is relatively unlikely that any symbol will be stripped but required by a reloc. In particular, it can not happen when generating a final executable. */ static boolean mips_elf_output_extsym (h, data) struct mips_elf_link_hash_entry *h; PTR data; { struct extsym_info *einfo = (struct extsym_info *) data; boolean strip; asection *sec, *output_section; if (h->root.indx == -2) strip = false; else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) strip = true; else if (einfo->info->strip == strip_all || (einfo->info->strip == strip_some && bfd_hash_lookup (einfo->info->keep_hash, h->root.root.root.string, false, false) == NULL)) strip = true; else strip = false; if (strip) return true; if (h->esym.ifd == -2) { h->esym.jmptbl = 0; h->esym.cobol_main = 0; h->esym.weakext = 0; h->esym.reserved = 0; h->esym.ifd = ifdNil; h->esym.asym.value = 0; h->esym.asym.st = stGlobal; if (SGI_COMPAT (einfo->abfd) && (h->root.root.type == bfd_link_hash_undefined || h->root.root.type == bfd_link_hash_undefweak)) { const char *name; /* Use undefined class. Also, set class and type for some special symbols. */ name = h->root.root.root.string; if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) { h->esym.asym.sc = scData; h->esym.asym.st = stLabel; h->esym.asym.value = 0; } else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) { h->esym.asym.sc = scAbs; h->esym.asym.st = stLabel; h->esym.asym.value = mips_elf_hash_table (einfo->info)->procedure_count; } else if (strcmp (name, "_gp_disp") == 0) { h->esym.asym.sc = scAbs; h->esym.asym.st = stLabel; h->esym.asym.value = elf_gp (einfo->abfd); } else h->esym.asym.sc = scUndefined; } else if (h->root.root.type != bfd_link_hash_defined && h->root.root.type != bfd_link_hash_defweak) h->esym.asym.sc = scAbs; else { const char *name; sec = h->root.root.u.def.section; output_section = sec->output_section; /* When making a shared library and symbol h is the one from the another shared library, OUTPUT_SECTION may be null. */ if (output_section == NULL) h->esym.asym.sc = scUndefined; else { name = bfd_section_name (output_section->owner, output_section); if (strcmp (name, ".text") == 0) h->esym.asym.sc = scText; else if (strcmp (name, ".data") == 0) h->esym.asym.sc = scData; else if (strcmp (name, ".sdata") == 0) h->esym.asym.sc = scSData; else if (strcmp (name, ".rodata") == 0 || strcmp (name, ".rdata") == 0) h->esym.asym.sc = scRData; else if (strcmp (name, ".bss") == 0) h->esym.asym.sc = scBss; else if (strcmp (name, ".sbss") == 0) h->esym.asym.sc = scSBss; else if (strcmp (name, ".init") == 0) h->esym.asym.sc = scInit; else if (strcmp (name, ".fini") == 0) h->esym.asym.sc = scFini; else h->esym.asym.sc = scAbs; } } h->esym.asym.reserved = 0; h->esym.asym.index = indexNil; } if (h->root.root.type == bfd_link_hash_common) h->esym.asym.value = h->root.root.u.c.size; else if (h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak) { if (h->esym.asym.sc == scCommon) h->esym.asym.sc = scBss; else if (h->esym.asym.sc == scSCommon) h->esym.asym.sc = scSBss; sec = h->root.root.u.def.section; output_section = sec->output_section; if (output_section != NULL) h->esym.asym.value = (h->root.root.u.def.value + sec->output_offset + output_section->vma); else h->esym.asym.value = 0; } else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) { /* Set type and value for a symbol with a function stub. */ h->esym.asym.st = stProc; sec = h->root.root.u.def.section; if (sec == NULL) h->esym.asym.value = 0; else { output_section = sec->output_section; if (output_section != NULL) h->esym.asym.value = (h->root.plt.offset + sec->output_offset + output_section->vma); else h->esym.asym.value = 0; } #if 0 /* FIXME? */ h->esym.ifd = 0; #endif } if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, h->root.root.root.string, &h->esym)) { einfo->failed = true; return false; } return true; } /* Create a runtime procedure table from the .mdebug section. */ static boolean mips_elf_create_procedure_table (handle, abfd, info, s, debug) PTR handle; bfd *abfd; struct bfd_link_info *info; asection *s; struct ecoff_debug_info *debug; { const struct ecoff_debug_swap *swap; HDRR *hdr = &debug->symbolic_header; RPDR *rpdr, *rp; struct rpdr_ext *erp; PTR rtproc; struct pdr_ext *epdr; struct sym_ext *esym; char *ss, **sv; char *str; unsigned long size, count; unsigned long sindex; unsigned long i; PDR pdr; SYMR sym; const char *no_name_func = _("static procedure (no name)"); epdr = NULL; rpdr = NULL; esym = NULL; ss = NULL; sv = NULL; swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; sindex = strlen (no_name_func) + 1; count = hdr->ipdMax; if (count > 0) { size = swap->external_pdr_size; epdr = (struct pdr_ext *) bfd_malloc (size * count); if (epdr == NULL) goto error_return; if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr)) goto error_return; size = sizeof (RPDR); rp = rpdr = (RPDR *) bfd_malloc (size * count); if (rpdr == NULL) goto error_return; sv = (char **) bfd_malloc (sizeof (char *) * count); if (sv == NULL) goto error_return; count = hdr->isymMax; size = swap->external_sym_size; esym = (struct sym_ext *) bfd_malloc (size * count); if (esym == NULL) goto error_return; if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym)) goto error_return; count = hdr->issMax; ss = (char *) bfd_malloc (count); if (ss == NULL) goto error_return; if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss)) goto error_return; count = hdr->ipdMax; for (i = 0; i < count; i++, rp++) { (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr); (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym); rp->adr = sym.value; rp->regmask = pdr.regmask; rp->regoffset = pdr.regoffset; rp->fregmask = pdr.fregmask; rp->fregoffset = pdr.fregoffset; rp->frameoffset = pdr.frameoffset; rp->framereg = pdr.framereg; rp->pcreg = pdr.pcreg; rp->irpss = sindex; sv[i] = ss + sym.iss; sindex += strlen (sv[i]) + 1; } } size = sizeof (struct rpdr_ext) * (count + 2) + sindex; size = BFD_ALIGN (size, 16); rtproc = (PTR) bfd_alloc (abfd, size); if (rtproc == NULL) { mips_elf_hash_table (info)->procedure_count = 0; goto error_return; } mips_elf_hash_table (info)->procedure_count = count + 2; erp = (struct rpdr_ext *) rtproc; memset (erp, 0, sizeof (struct rpdr_ext)); erp++; str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); strcpy (str, no_name_func); str += strlen (no_name_func) + 1; for (i = 0; i < count; i++) { ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); strcpy (str, sv[i]); str += strlen (sv[i]) + 1; } ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr); /* Set the size and contents of .rtproc section. */ s->_raw_size = size; s->contents = (bfd_byte *) rtproc; /* Skip this section later on (I don't think this currently matters, but someday it might). */ s->link_order_head = (struct bfd_link_order *) NULL; if (epdr != NULL) free (epdr); if (rpdr != NULL) free (rpdr); if (esym != NULL) free (esym); if (ss != NULL) free (ss); if (sv != NULL) free (sv); return true; error_return: if (epdr != NULL) free (epdr); if (rpdr != NULL) free (rpdr); if (esym != NULL) free (esym); if (ss != NULL) free (ss); if (sv != NULL) free (sv); return false; } /* A comparison routine used to sort .gptab entries. */ static int gptab_compare (p1, p2) const PTR p1; const PTR p2; { const Elf32_gptab *a1 = (const Elf32_gptab *) p1; const Elf32_gptab *a2 = (const Elf32_gptab *) p2; return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; } /* We need to use a special link routine to handle the .reginfo and the .mdebug sections. We need to merge all instances of these sections together, not write them all out sequentially. */ boolean _bfd_mips_elf_final_link (abfd, info) bfd *abfd; struct bfd_link_info *info; { asection **secpp; asection *o; struct bfd_link_order *p; asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; asection *rtproc_sec; Elf32_RegInfo reginfo; struct ecoff_debug_info debug; const struct ecoff_debug_swap *swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; HDRR *symhdr = &debug.symbolic_header; PTR mdebug_handle = NULL; /* If all the things we linked together were PIC, but we're producing an executable (rather than a shared object), then the resulting file is CPIC (i.e., it calls PIC code.) */ if (!info->shared && !info->relocateable && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) { elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC; elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC; } /* We'd carefully arranged the dynamic symbol indices, and then the generic size_dynamic_sections renumbered them out from under us. Rather than trying somehow to prevent the renumbering, just do the sort again. */ if (elf_hash_table (info)->dynamic_sections_created) { bfd *dynobj; asection *got; struct mips_got_info *g; /* When we resort, we must tell mips_elf_sort_hash_table what the lowest index it may use is. That's the number of section symbols we're going to add. The generic ELF linker only adds these symbols when building a shared object. Note that we count the sections after (possibly) removing the .options section above. */ if (!mips_elf_sort_hash_table (info, (info->shared ? bfd_count_sections (abfd) + 1 : 1))) return false; /* Make sure we didn't grow the global .got region. */ dynobj = elf_hash_table (info)->dynobj; got = bfd_get_section_by_name (dynobj, ".got"); g = (struct mips_got_info *) elf_section_data (got)->tdata; if (g->global_gotsym != NULL) BFD_ASSERT ((elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx) <= g->global_gotno); } /* On IRIX5, we omit the .options section. On IRIX6, however, we include it, even though we don't process it quite right. (Some entries are supposed to be merged.) Empirically, we seem to be better off including it then not. */ if (IRIX_COMPAT (abfd) == ict_irix5) for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next) { if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) { for (p = (*secpp)->link_order_head; p != NULL; p = p->next) if (p->type == bfd_indirect_link_order) p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS; (*secpp)->link_order_head = NULL; *secpp = (*secpp)->next; --abfd->section_count; break; } } /* Get a value for the GP register. */ if (elf_gp (abfd) == 0) { struct bfd_link_hash_entry *h; h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true); if (h != (struct bfd_link_hash_entry *) NULL && h->type == bfd_link_hash_defined) elf_gp (abfd) = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); else if (info->relocateable) { bfd_vma lo; /* Find the GP-relative section with the lowest offset. */ lo = (bfd_vma) -1; for (o = abfd->sections; o != (asection *) NULL; o = o->next) if (o->vma < lo && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) lo = o->vma; /* And calculate GP relative to that. */ elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd); } else { /* If the relocate_section function needs to do a reloc involving the GP value, it should make a reloc_dangerous callback to warn that GP is not defined. */ } } /* Go through the sections and collect the .reginfo and .mdebug information. */ reginfo_sec = NULL; mdebug_sec = NULL; gptab_data_sec = NULL; gptab_bss_sec = NULL; for (o = abfd->sections; o != (asection *) NULL; o = o->next) { if (strcmp (o->name, ".reginfo") == 0) { memset (®info, 0, sizeof reginfo); /* We have found the .reginfo section in the output file. Look through all the link_orders comprising it and merge the information together. */ for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { asection *input_section; bfd *input_bfd; Elf32_External_RegInfo ext; Elf32_RegInfo sub; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_fill_link_order) continue; abort (); } input_section = p->u.indirect.section; input_bfd = input_section->owner; /* The linker emulation code has probably clobbered the size to be zero bytes. */ if (input_section->_raw_size == 0) input_section->_raw_size = sizeof (Elf32_External_RegInfo); if (! bfd_get_section_contents (input_bfd, input_section, (PTR) &ext, (file_ptr) 0, sizeof ext)) return false; bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); reginfo.ri_gprmask |= sub.ri_gprmask; reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; /* ri_gp_value is set by the function mips_elf32_section_processing when the section is finally written out. */ /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &=~ SEC_HAS_CONTENTS; } /* Size has been set in mips_elf_always_size_sections */ BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo)); /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->link_order_head = (struct bfd_link_order *) NULL; reginfo_sec = o; } if (strcmp (o->name, ".mdebug") == 0) { struct extsym_info einfo; /* We have found the .mdebug section in the output file. Look through all the link_orders comprising it and merge the information together. */ symhdr->magic = swap->sym_magic; /* FIXME: What should the version stamp be? */ symhdr->vstamp = 0; symhdr->ilineMax = 0; symhdr->cbLine = 0; symhdr->idnMax = 0; symhdr->ipdMax = 0; symhdr->isymMax = 0; symhdr->ioptMax = 0; symhdr->iauxMax = 0; symhdr->issMax = 0; symhdr->issExtMax = 0; symhdr->ifdMax = 0; symhdr->crfd = 0; symhdr->iextMax = 0; /* We accumulate the debugging information itself in the debug_info structure. */ debug.line = NULL; debug.external_dnr = NULL; debug.external_pdr = NULL; debug.external_sym = NULL; debug.external_opt = NULL; debug.external_aux = NULL; debug.ss = NULL; debug.ssext = debug.ssext_end = NULL; debug.external_fdr = NULL; debug.external_rfd = NULL; debug.external_ext = debug.external_ext_end = NULL; mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); if (mdebug_handle == (PTR) NULL) return false; if (SGI_COMPAT (abfd)) { asection *s; EXTR esym; bfd_vma last; unsigned int i; static const char * const name[] = { ".text", ".init", ".fini", ".data", ".rodata", ".sdata", ".sbss", ".bss" }; static const int sc[] = { scText, scInit, scFini, scData, scRData, scSData, scSBss, scBss }; esym.jmptbl = 0; esym.cobol_main = 0; esym.weakext = 0; esym.reserved = 0; esym.ifd = ifdNil; esym.asym.iss = issNil; esym.asym.st = stLocal; esym.asym.reserved = 0; esym.asym.index = indexNil; last = 0; for (i = 0; i < 8; i++) { esym.asym.sc = sc[i]; s = bfd_get_section_by_name (abfd, name[i]); if (s != NULL) { esym.asym.value = s->vma; last = s->vma + s->_raw_size; } else esym.asym.value = last; if (! bfd_ecoff_debug_one_external (abfd, &debug, swap, name[i], &esym)) return false; } } for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { asection *input_section; bfd *input_bfd; const struct ecoff_debug_swap *input_swap; struct ecoff_debug_info input_debug; char *eraw_src; char *eraw_end; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_fill_link_order) continue; abort (); } input_section = p->u.indirect.section; input_bfd = input_section->owner; if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour || (get_elf_backend_data (input_bfd) ->elf_backend_ecoff_debug_swap) == NULL) { /* I don't know what a non MIPS ELF bfd would be doing with a .mdebug section, but I don't really want to deal with it. */ continue; } input_swap = (get_elf_backend_data (input_bfd) ->elf_backend_ecoff_debug_swap); BFD_ASSERT (p->size == input_section->_raw_size); /* The ECOFF linking code expects that we have already read in the debugging information and set up an ecoff_debug_info structure, so we do that now. */ if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, &input_debug)) return false; if (! (bfd_ecoff_debug_accumulate (mdebug_handle, abfd, &debug, swap, input_bfd, &input_debug, input_swap, info))) return false; /* Loop through the external symbols. For each one with interesting information, try to find the symbol in the linker global hash table and save the information for the output external symbols. */ eraw_src = input_debug.external_ext; eraw_end = (eraw_src + (input_debug.symbolic_header.iextMax * input_swap->external_ext_size)); for (; eraw_src < eraw_end; eraw_src += input_swap->external_ext_size) { EXTR ext; const char *name; struct mips_elf_link_hash_entry *h; (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext); if (ext.asym.sc == scNil || ext.asym.sc == scUndefined || ext.asym.sc == scSUndefined) continue; name = input_debug.ssext + ext.asym.iss; h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), name, false, false, true); if (h == NULL || h->esym.ifd != -2) continue; if (ext.ifd != -1) { BFD_ASSERT (ext.ifd < input_debug.symbolic_header.ifdMax); ext.ifd = input_debug.ifdmap[ext.ifd]; } h->esym = ext; } /* Free up the information we just read. */ free (input_debug.line); free (input_debug.external_dnr); free (input_debug.external_pdr); free (input_debug.external_sym); free (input_debug.external_opt); free (input_debug.external_aux); free (input_debug.ss); free (input_debug.ssext); free (input_debug.external_fdr); free (input_debug.external_rfd); free (input_debug.external_ext); /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &=~ SEC_HAS_CONTENTS; } if (SGI_COMPAT (abfd) && info->shared) { /* Create .rtproc section. */ rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); if (rtproc_sec == NULL) { flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY); rtproc_sec = bfd_make_section (abfd, ".rtproc"); if (rtproc_sec == NULL || ! bfd_set_section_flags (abfd, rtproc_sec, flags) || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) return false; } if (! mips_elf_create_procedure_table (mdebug_handle, abfd, info, rtproc_sec, &debug)) return false; } /* Build the external symbol information. */ einfo.abfd = abfd; einfo.info = info; einfo.debug = &debug; einfo.swap = swap; einfo.failed = false; mips_elf_link_hash_traverse (mips_elf_hash_table (info), mips_elf_output_extsym, (PTR) &einfo); if (einfo.failed) return false; /* Set the size of the .mdebug section. */ o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap); /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->link_order_head = (struct bfd_link_order *) NULL; mdebug_sec = o; } if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0) { const char *subname; unsigned int c; Elf32_gptab *tab; Elf32_External_gptab *ext_tab; unsigned int i; /* The .gptab.sdata and .gptab.sbss sections hold information describing how the small data area would change depending upon the -G switch. These sections not used in executables files. */ if (! info->relocateable) { asection **secpp; for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { asection *input_section; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_fill_link_order) continue; abort (); } input_section = p->u.indirect.section; /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &=~ SEC_HAS_CONTENTS; } /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->link_order_head = (struct bfd_link_order *) NULL; /* Really remove the section. */ for (secpp = &abfd->sections; *secpp != o; secpp = &(*secpp)->next) ; *secpp = (*secpp)->next; --abfd->section_count; continue; } /* There is one gptab for initialized data, and one for uninitialized data. */ if (strcmp (o->name, ".gptab.sdata") == 0) gptab_data_sec = o; else if (strcmp (o->name, ".gptab.sbss") == 0) gptab_bss_sec = o; else { (*_bfd_error_handler) (_("%s: illegal section name `%s'"), bfd_get_filename (abfd), o->name); bfd_set_error (bfd_error_nonrepresentable_section); return false; } /* The linker script always combines .gptab.data and .gptab.sdata into .gptab.sdata, and likewise for .gptab.bss and .gptab.sbss. It is possible that there is no .sdata or .sbss section in the output file, in which case we must change the name of the output section. */ subname = o->name + sizeof ".gptab" - 1; if (bfd_get_section_by_name (abfd, subname) == NULL) { if (o == gptab_data_sec) o->name = ".gptab.data"; else o->name = ".gptab.bss"; subname = o->name + sizeof ".gptab" - 1; BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); } /* Set up the first entry. */ c = 1; tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab)); if (tab == NULL) return false; tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); tab[0].gt_header.gt_unused = 0; /* Combine the input sections. */ for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { asection *input_section; bfd *input_bfd; bfd_size_type size; unsigned long last; bfd_size_type gpentry; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_fill_link_order) continue; abort (); } input_section = p->u.indirect.section; input_bfd = input_section->owner; /* Combine the gptab entries for this input section one by one. We know that the input gptab entries are sorted by ascending -G value. */ size = bfd_section_size (input_bfd, input_section); last = 0; for (gpentry = sizeof (Elf32_External_gptab); gpentry < size; gpentry += sizeof (Elf32_External_gptab)) { Elf32_External_gptab ext_gptab; Elf32_gptab int_gptab; unsigned long val; unsigned long add; boolean exact; unsigned int look; if (! (bfd_get_section_contents (input_bfd, input_section, (PTR) &ext_gptab, gpentry, sizeof (Elf32_External_gptab)))) { free (tab); return false; } bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, &int_gptab); val = int_gptab.gt_entry.gt_g_value; add = int_gptab.gt_entry.gt_bytes - last; exact = false; for (look = 1; look < c; look++) { if (tab[look].gt_entry.gt_g_value >= val) tab[look].gt_entry.gt_bytes += add; if (tab[look].gt_entry.gt_g_value == val) exact = true; } if (! exact) { Elf32_gptab *new_tab; unsigned int max; /* We need a new table entry. */ new_tab = ((Elf32_gptab *) bfd_realloc ((PTR) tab, (c + 1) * sizeof (Elf32_gptab))); if (new_tab == NULL) { free (tab); return false; } tab = new_tab; tab[c].gt_entry.gt_g_value = val; tab[c].gt_entry.gt_bytes = add; /* Merge in the size for the next smallest -G value, since that will be implied by this new value. */ max = 0; for (look = 1; look < c; look++) { if (tab[look].gt_entry.gt_g_value < val && (max == 0 || (tab[look].gt_entry.gt_g_value > tab[max].gt_entry.gt_g_value))) max = look; } if (max != 0) tab[c].gt_entry.gt_bytes += tab[max].gt_entry.gt_bytes; ++c; } last = int_gptab.gt_entry.gt_bytes; } /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &=~ SEC_HAS_CONTENTS; } /* The table must be sorted by -G value. */ if (c > 2) qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); /* Swap out the table. */ ext_tab = ((Elf32_External_gptab *) bfd_alloc (abfd, c * sizeof (Elf32_External_gptab))); if (ext_tab == NULL) { free (tab); return false; } for (i = 0; i < c; i++) bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i); free (tab); o->_raw_size = c * sizeof (Elf32_External_gptab); o->contents = (bfd_byte *) ext_tab; /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->link_order_head = (struct bfd_link_order *) NULL; } } /* Invoke the regular ELF backend linker to do all the work. */ if (ABI_64_P (abfd)) { #ifdef BFD64 if (!bfd_elf64_bfd_final_link (abfd, info)) return false; #else abort (); return false; #endif /* BFD64 */ } else if (!bfd_elf32_bfd_final_link (abfd, info)) return false; /* Now write out the computed sections. */ if (reginfo_sec != (asection *) NULL) { Elf32_External_RegInfo ext; bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext, (file_ptr) 0, sizeof ext)) return false; } if (mdebug_sec != (asection *) NULL) { BFD_ASSERT (abfd->output_has_begun); if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, swap, info, mdebug_sec->filepos)) return false; bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); } if (gptab_data_sec != (asection *) NULL) { if (! bfd_set_section_contents (abfd, gptab_data_sec, gptab_data_sec->contents, (file_ptr) 0, gptab_data_sec->_raw_size)) return false; } if (gptab_bss_sec != (asection *) NULL) { if (! bfd_set_section_contents (abfd, gptab_bss_sec, gptab_bss_sec->contents, (file_ptr) 0, gptab_bss_sec->_raw_size)) return false; } if (SGI_COMPAT (abfd)) { rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); if (rtproc_sec != NULL) { if (! bfd_set_section_contents (abfd, rtproc_sec, rtproc_sec->contents, (file_ptr) 0, rtproc_sec->_raw_size)) return false; } } return true; } /* Returns the GOT section for ABFD. */ static asection * mips_elf_got_section (abfd) bfd *abfd; { return bfd_get_section_by_name (abfd, ".got"); } /* Returns the GOT information associated with the link indicated by INFO. If SGOTP is non-NULL, it is filled in with the GOT section. */ static struct mips_got_info * mips_elf_got_info (abfd, sgotp) bfd *abfd; asection **sgotp; { asection *sgot; struct mips_got_info *g; sgot = mips_elf_got_section (abfd); BFD_ASSERT (sgot != NULL); BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); if (sgotp) *sgotp = sgot; return g; } /* Return whether a relocation is against a local symbol. */ static boolean mips_elf_local_relocation_p (input_bfd, relocation, local_sections) bfd *input_bfd; const Elf_Internal_Rela *relocation; asection **local_sections; { unsigned long r_symndx; Elf_Internal_Shdr *symtab_hdr; r_symndx = ELF32_R_SYM (relocation->r_info); symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; if (! elf_bad_symtab (input_bfd)) return r_symndx < symtab_hdr->sh_info; else { /* The symbol table does not follow the rule that local symbols must come before globals. */ return local_sections[r_symndx] != NULL; } } /* Sign-extend VALUE, which has the indicated number of BITS. */ static bfd_vma mips_elf_sign_extend (value, bits) bfd_vma value; int bits; { if (value & ((bfd_vma)1 << (bits - 1))) /* VALUE is negative. */ value |= ((bfd_vma) - 1) << bits; return value; } /* Return non-zero if the indicated VALUE has overflowed the maximum range expressable by a signed number with the indicated number of BITS. */ static boolean mips_elf_overflow_p (value, bits) bfd_vma value; int bits; { bfd_signed_vma svalue = (bfd_signed_vma) value; if (svalue > (1 << (bits - 1)) - 1) /* The value is too big. */ return true; else if (svalue < -(1 << (bits - 1))) /* The value is too small. */ return true; /* All is well. */ return false; } /* Calculate the %high function. */ static bfd_vma mips_elf_high (value) bfd_vma value; { return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; } /* Calculate the %higher function. */ static bfd_vma mips_elf_higher (value) bfd_vma value ATTRIBUTE_UNUSED; { #ifdef BFD64 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; #else abort (); return (bfd_vma) -1; #endif } /* Calculate the %highest function. */ static bfd_vma mips_elf_highest (value) bfd_vma value ATTRIBUTE_UNUSED; { #ifdef BFD64 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff; #else abort (); return (bfd_vma) -1; #endif } /* Returns the GOT index for the global symbol indicated by H. */ static bfd_vma mips_elf_global_got_index (abfd, h) bfd *abfd; struct elf_link_hash_entry *h; { bfd_vma index; asection *sgot; struct mips_got_info *g; g = mips_elf_got_info (abfd, &sgot); /* Once we determine the global GOT entry with the lowest dynamic symbol table index, we must put all dynamic symbols with greater indices into the GOT. That makes it easy to calculate the GOT offset. */ BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx); index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno) * MIPS_ELF_GOT_SIZE (abfd)); BFD_ASSERT (index < sgot->_raw_size); return index; } /* Returns the offset for the entry at the INDEXth position in the GOT. */ static bfd_vma mips_elf_got_offset_from_index (dynobj, output_bfd, index) bfd *dynobj; bfd *output_bfd; bfd_vma index; { asection *sgot; bfd_vma gp; sgot = mips_elf_got_section (dynobj); gp = _bfd_get_gp_value (output_bfd); return (sgot->output_section->vma + sgot->output_offset + index - gp); } /* If H is a symbol that needs a global GOT entry, but has a dynamic symbol table index lower than any we've seen to date, record it for posterity. */ static boolean mips_elf_record_global_got_symbol (h, info, g) struct elf_link_hash_entry *h; struct bfd_link_info *info; struct mips_got_info *g ATTRIBUTE_UNUSED; { /* A global symbol in the GOT must also be in the dynamic symbol table. */ if (h->dynindx == -1 && !bfd_elf32_link_record_dynamic_symbol (info, h)) return false; /* If we've already marked this entry as need GOT space, we don't need to do it again. */ if (h->got.offset != (bfd_vma) - 1) return true; /* By setting this to a value other than -1, we are indicating that there needs to be a GOT entry for H. */ h->got.offset = 0; return true; } /* This structure is passed to mips_elf_sort_hash_table_f when sorting the dynamic symbols. */ struct mips_elf_hash_sort_data { /* The symbol in the global GOT with the lowest dynamic symbol table index. */ struct elf_link_hash_entry *low; /* The least dynamic symbol table index corresponding to a symbol with a GOT entry. */ long min_got_dynindx; /* The greatest dynamic symbol table index not corresponding to a symbol without a GOT entry. */ long max_non_got_dynindx; }; /* If H needs a GOT entry, assign it the highest available dynamic index. Otherwise, assign it the lowest available dynamic index. */ static boolean mips_elf_sort_hash_table_f (h, data) struct mips_elf_link_hash_entry *h; PTR data; { struct mips_elf_hash_sort_data *hsd = (struct mips_elf_hash_sort_data *) data; /* Symbols without dynamic symbol table entries aren't interesting at all. */ if (h->root.dynindx == -1) return true; if (h->root.got.offset != 0) h->root.dynindx = hsd->max_non_got_dynindx++; else { h->root.dynindx = --hsd->min_got_dynindx; hsd->low = (struct elf_link_hash_entry *) h; } return true; } /* Sort the dynamic symbol table so that symbols that need GOT entries appear towards the end. This reduces the amount of GOT space required. MAX_LOCAL is used to set the number of local symbols known to be in the dynamic symbol table. During mips_elf_size_dynamic_sections, this value is 1. Afterward, the section symbols are added and the count is higher. */ static boolean mips_elf_sort_hash_table (info, max_local) struct bfd_link_info *info; unsigned long max_local; { struct mips_elf_hash_sort_data hsd; struct mips_got_info *g; bfd *dynobj; dynobj = elf_hash_table (info)->dynobj; hsd.low = NULL; hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount; hsd.max_non_got_dynindx = max_local; mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) elf_hash_table (info)), mips_elf_sort_hash_table_f, &hsd); /* There shoud have been enough room in the symbol table to accomodate both the GOT and non-GOT symbols. */ BFD_ASSERT (hsd.min_got_dynindx == hsd.max_non_got_dynindx); /* Now we know which dynamic symbol has the lowest dynamic symbol table index in the GOT. */ g = mips_elf_got_info (dynobj, NULL); g->global_gotsym = hsd.low; return true; } /* Create a local GOT entry for VALUE. Return the index of the entry, or -1 if it could not be created. */ static bfd_vma mips_elf_create_local_got_entry (abfd, g, sgot, value) bfd *abfd; struct mips_got_info *g; asection *sgot; bfd_vma value; { if (g->assigned_gotno >= g->local_gotno) { /* We didn't allocate enough space in the GOT. */ (*_bfd_error_handler) (_("not enough GOT space for local GOT entries")); bfd_set_error (bfd_error_bad_value); return (bfd_vma) -1; } MIPS_ELF_PUT_WORD (abfd, value, (sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno)); return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; } /* Returns the GOT offset at which the indicated address can be found. If there is not yet a GOT entry for this value, create one. Returns -1 if no satisfactory GOT offset can be found. */ static bfd_vma mips_elf_local_got_index (abfd, info, value) bfd *abfd; struct bfd_link_info *info; bfd_vma value; { asection *sgot; struct mips_got_info *g; bfd_byte *entry; g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); /* Look to see if we already have an appropriate entry. */ for (entry = (sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO); entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno; entry += MIPS_ELF_GOT_SIZE (abfd)) { bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry); if (address == value) return entry - sgot->contents; } return mips_elf_create_local_got_entry (abfd, g, sgot, value); } /* Find a GOT entry that is within 32KB of the VALUE. These entries are supposed to be placed at small offsets in the GOT, i.e., within 32KB of GP. Return the index into the GOT for this page, and store the offset from this entry to the desired address in OFFSETP, if it is non-NULL. */ static bfd_vma mips_elf_got_page (abfd, info, value, offsetp) bfd *abfd; struct bfd_link_info *info; bfd_vma value; bfd_vma *offsetp; { asection *sgot; struct mips_got_info *g; bfd_byte *entry; bfd_byte *last_entry; bfd_vma index = 0; bfd_vma address; g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); /* Look to see if we aleady have an appropriate entry. */ last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno; for (entry = (sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO); entry != last_entry; entry += MIPS_ELF_GOT_SIZE (abfd)) { address = MIPS_ELF_GET_WORD (abfd, entry); if (!mips_elf_overflow_p (value - address, 16)) { /* This entry will serve as the page pointer. We can add a 16-bit number to it to get the actual address. */ index = entry - sgot->contents; break; } } /* If we didn't have an appropriate entry, we create one now. */ if (entry == last_entry) index = mips_elf_create_local_got_entry (abfd, g, sgot, value); if (offsetp) { address = MIPS_ELF_GET_WORD (abfd, entry); *offsetp = value - address; } return index; } /* Find a GOT entry whose higher-order 16 bits are the same as those for value. Return the index into the GOT for this entry. */ static bfd_vma mips_elf_got16_entry (abfd, info, value) bfd *abfd; struct bfd_link_info *info; bfd_vma value; { asection *sgot; struct mips_got_info *g; bfd_byte *entry; bfd_byte *last_entry; bfd_vma index = 0; bfd_vma address; /* Although the ABI says that it is "the high-order 16 bits" that we want, it is really the %high value. The complete value is calculated with a `addiu' of a LO16 relocation, just as with a HI16/LO16 pair. */ value = mips_elf_high (value) << 16; g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); /* Look to see if we already have an appropriate entry. */ last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno; for (entry = (sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO); entry != last_entry; entry += MIPS_ELF_GOT_SIZE (abfd)) { address = MIPS_ELF_GET_WORD (abfd, entry); if ((address & 0xffff0000) == value) { /* This entry has the right high-order 16 bits. */ index = entry - sgot->contents; break; } } /* If we didn't have an appropriate entry, we create one now. */ if (entry == last_entry) index = mips_elf_create_local_got_entry (abfd, g, sgot, value); return index; } /* Returns the first relocation of type r_type found, beginning with RELOCATION. RELEND is one-past-the-end of the relocation table. */ static const Elf_Internal_Rela * mips_elf_next_relocation (r_type, relocation, relend) unsigned int r_type; const Elf_Internal_Rela *relocation; const Elf_Internal_Rela *relend; { /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be immediately following. However, for the IRIX6 ABI, the next relocation may be a composed relocation consisting of several relocations for the same address. In that case, the R_MIPS_LO16 relocation may occur as one of these. We permit a similar extension in general, as that is useful for GCC. */ while (relocation < relend) { if (ELF32_R_TYPE (relocation->r_info) == r_type) return relocation; ++relocation; } /* We didn't find it. */ bfd_set_error (bfd_error_bad_value); return NULL; } /* Create a rel.dyn relocation for the dynamic linker to resolve. REL is the original relocation, which is now being transformed into a dyanmic relocation. The ADDENDP is adjusted if necessary; the caller should store the result in place of the original addend. */ static boolean mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec, symbol, addendp, input_section) bfd *output_bfd; struct bfd_link_info *info; const Elf_Internal_Rela *rel; struct mips_elf_link_hash_entry *h; asection *sec; bfd_vma symbol; bfd_vma *addendp; asection *input_section; { Elf_Internal_Rel outrel; boolean skip; asection *sreloc; bfd *dynobj; int r_type; r_type = ELF32_R_TYPE (rel->r_info); dynobj = elf_hash_table (info)->dynobj; sreloc = bfd_get_section_by_name (dynobj, MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)); BFD_ASSERT (sreloc != NULL); skip = false; /* We begin by assuming that the offset for the dynamic relocation is the same as for the original relocation. We'll adjust this later to reflect the correct output offsets. */ if (elf_section_data (input_section)->stab_info == NULL) outrel.r_offset = rel->r_offset; else { /* Except that in a stab section things are more complex. Because we compress stab information, the offset given in the relocation may not be the one we want; we must let the stabs machinery tell us the offset. */ outrel.r_offset = (_bfd_stab_section_offset (output_bfd, &elf_hash_table (info)->stab_info, input_section, &elf_section_data (input_section)->stab_info, rel->r_offset)); /* If we didn't need the relocation at all, this value will be -1. */ if (outrel.r_offset == (bfd_vma) -1) skip = true; } /* If we've decided to skip this relocation, just output an emtpy record. Note that R_MIPS_NONE == 0, so that this call to memset is a way of setting R_TYPE to R_MIPS_NONE. */ if (skip) memset (&outrel, 0, sizeof (outrel)); else { long indx; bfd_vma section_offset; /* We must now calculate the dynamic symbol table index to use in the relocation. */ if (h != NULL && (! info->symbolic || (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) { indx = h->root.dynindx; BFD_ASSERT (indx != -1); } else { if (sec != NULL && bfd_is_abs_section (sec)) indx = 0; else if (sec == NULL || sec->owner == NULL) { bfd_set_error (bfd_error_bad_value); return false; } else { indx = elf_section_data (sec->output_section)->dynindx; if (indx == 0) abort (); } /* Figure out how far the target of the relocation is from the beginning of its section. */ section_offset = symbol - sec->output_section->vma; /* The relocation we're building is section-relative. Therefore, the original addend must be adjusted by the section offset. */ *addendp += symbol - sec->output_section->vma; /* Now, the relocation is just against the section. */ symbol = sec->output_section->vma; } /* If the relocation was previously an absolute relocation, we must adjust it by the value we give it in the dynamic symbol table. */ if (r_type != R_MIPS_REL32) *addendp += symbol; /* The relocation is always an REL32 relocation because we don't know where the shared library will wind up at load-time. */ outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32); /* Adjust the output offset of the relocation to reference the correct location in the output file. */ outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); } /* Put the relocation back out. We have to use the special relocation outputter in the 64-bit case since the 64-bit relocation format is non-standard. */ if (ABI_64_P (output_bfd)) { (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) (output_bfd, &outrel, (sreloc->contents + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); } else bfd_elf32_swap_reloc_out (output_bfd, &outrel, (((Elf32_External_Rel *) sreloc->contents) + sreloc->reloc_count)); /* Record the index of the first relocation referencing H. This information is later emitted in the .msym section. */ if (h != NULL && (h->min_dyn_reloc_index == 0 || sreloc->reloc_count < h->min_dyn_reloc_index)) h->min_dyn_reloc_index = sreloc->reloc_count; /* We've now added another relocation. */ ++sreloc->reloc_count; /* Make sure the output section is writable. The dynamic linker will be writing to it. */ elf_section_data (input_section->output_section)->this_hdr.sh_flags |= SHF_WRITE; /* On IRIX5, make an entry of compact relocation info. */ if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5) { asection* scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); bfd_byte *cr; if (scpt) { Elf32_crinfo cptrel; mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); cptrel.vaddr = (rel->r_offset + input_section->output_section->vma + input_section->output_offset); if (r_type == R_MIPS_REL32) mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); else mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); mips_elf_set_cr_dist2to (cptrel, 0); cptrel.konst = *addendp; cr = (scpt->contents + sizeof (Elf32_External_compact_rel)); bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, ((Elf32_External_crinfo *) cr + scpt->reloc_count)); ++scpt->reloc_count; } } return true; } /* Calculate the value produced by the RELOCATION (which comes from the INPUT_BFD). The ADDEND is the addend to use for this RELOCATION; RELOCATION->R_ADDEND is ignored. The result of the relocation calculation is stored in VALUEP. REQUIRE_JALXP indicates whether or not the opcode used with this relocation must be JALX. This function returns bfd_reloc_continue if the caller need take no further action regarding this relocation, bfd_reloc_notsupported if something goes dramatically wrong, bfd_reloc_overflow if an overflow occurs, and bfd_reloc_ok to indicate success. */ static bfd_reloc_status_type mips_elf_calculate_relocation (abfd, input_bfd, input_section, info, relocation, addend, howto, local_syms, local_sections, valuep, namep, require_jalxp) bfd *abfd; bfd *input_bfd; asection *input_section; struct bfd_link_info *info; const Elf_Internal_Rela *relocation; bfd_vma addend; reloc_howto_type *howto; Elf_Internal_Sym *local_syms; asection **local_sections; bfd_vma *valuep; const char **namep; boolean *require_jalxp; { /* The eventual value we will return. */ bfd_vma value; /* The address of the symbol against which the relocation is occurring. */ bfd_vma symbol = 0; /* The final GP value to be used for the relocatable, executable, or shared object file being produced. */ bfd_vma gp = (bfd_vma) - 1; /* The place (section offset or address) of the storage unit being relocated. */ bfd_vma p; /* The value of GP used to create the relocatable object. */ bfd_vma gp0 = (bfd_vma) - 1; /* The offset into the global offset table at which the address of the relocation entry symbol, adjusted by the addend, resides during execution. */ bfd_vma g = (bfd_vma) - 1; /* The section in which the symbol referenced by the relocation is located. */ asection *sec = NULL; struct mips_elf_link_hash_entry* h = NULL; /* True if the symbol referred to by this relocation is a local symbol. */ boolean local_p; /* True if the symbol referred to by this relocation is "_gp_disp". */ boolean gp_disp_p = false; Elf_Internal_Shdr *symtab_hdr; size_t extsymoff; unsigned long r_symndx; int r_type; /* True if overflow occurred during the calculation of the relocation value. */ boolean overflowed_p; /* True if this relocation refers to a MIPS16 function. */ boolean target_is_16_bit_code_p = false; /* Parse the relocation. */ r_symndx = ELF32_R_SYM (relocation->r_info); r_type = ELF32_R_TYPE (relocation->r_info); p = (input_section->output_section->vma + input_section->output_offset + relocation->r_offset); /* Assume that there will be no overflow. */ overflowed_p = false; /* Figure out whether or not the symbol is local, and get the offset used in the array of hash table entries. */ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; local_p = mips_elf_local_relocation_p (input_bfd, relocation, local_sections); if (! elf_bad_symtab (input_bfd)) extsymoff = symtab_hdr->sh_info; else { /* The symbol table does not follow the rule that local symbols must come before globals. */ extsymoff = 0; } /* Figure out the value of the symbol. */ if (local_p) { Elf_Internal_Sym *sym; sym = local_syms + r_symndx; sec = local_sections[r_symndx]; symbol = sec->output_section->vma + sec->output_offset; if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) symbol += sym->st_value; /* MIPS16 text labels should be treated as odd. */ if (sym->st_other == STO_MIPS16) ++symbol; /* Record the name of this symbol, for our caller. */ *namep = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (*namep == '\0') *namep = bfd_section_name (input_bfd, sec); target_is_16_bit_code_p = (sym->st_other == STO_MIPS16); } else { /* For global symbols we look up the symbol in the hash-table. */ h = ((struct mips_elf_link_hash_entry *) elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); /* Find the real hash-table entry for this symbol. */ while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; /* Record the name of this symbol, for our caller. */ *namep = h->root.root.root.string; /* See if this is the special _gp_disp symbol. Note that such a symbol must always be a global symbol. */ if (strcmp (h->root.root.root.string, "_gp_disp") == 0) { /* Relocations against _gp_disp are permitted only with R_MIPS_HI16 and R_MIPS_LO16 relocations. */ if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16) return bfd_reloc_notsupported; gp_disp_p = true; } /* If this symbol is defined, calculate its address. Note that _gp_disp is a magic symbol, always implicitly defined by the linker, so it's inappropriate to check to see whether or not its defined. */ else if ((h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak) && h->root.root.u.def.section) { sec = h->root.root.u.def.section; if (sec->output_section) symbol = (h->root.root.u.def.value + sec->output_section->vma + sec->output_offset); else symbol = h->root.root.u.def.value; } else if (h->root.root.type == bfd_link_hash_undefweak) /* We allow relocations against undefined weak symbols, giving it the value zero, so that you can undefined weak functions and check to see if they exist by looking at their addresses. */ symbol = 0; else if (info->shared && !info->symbolic && !info->no_undefined) symbol = 0; else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0) { /* If this is a dynamic link, we should have created a _DYNAMIC_LINK symbol in mips_elf_create_dynamic_sections. Otherwise, we should define the symbol with a value of 0. FIXME: It should probably get into the symbol table somehow as well. */ BFD_ASSERT (! info->shared); BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); symbol = 0; } else { if (! ((*info->callbacks->undefined_symbol) (info, h->root.root.root.string, input_bfd, input_section, relocation->r_offset, (!info->shared || info->no_undefined)))) return bfd_reloc_undefined; symbol = 0; } target_is_16_bit_code_p = (h->root.other == STO_MIPS16); } /* If this is a 32-bit call to a 16-bit function with a stub, we need to redirect the call to the stub, unless we're already *in* a stub. */ if (r_type != R_MIPS16_26 && !info->relocateable && ((h != NULL && h->fn_stub != NULL) || (local_p && elf_tdata (input_bfd)->local_stubs != NULL && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) && !mips_elf_stub_section_p (input_bfd, input_section)) { /* This is a 32-bit call to a 16-bit function. We should have already noticed that we were going to need the stub. */ if (local_p) sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; else { BFD_ASSERT (h->need_fn_stub); sec = h->fn_stub; } symbol = sec->output_section->vma + sec->output_offset; } /* If this is a 16-bit call to a 32-bit function with a stub, we need to redirect the call to the stub. */ else if (r_type == R_MIPS16_26 && !info->relocateable && h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL) && !target_is_16_bit_code_p) { /* If both call_stub and call_fp_stub are defined, we can figure out which one to use by seeing which one appears in the input file. */ if (h->call_stub != NULL && h->call_fp_stub != NULL) { asection *o; sec = NULL; for (o = input_bfd->sections; o != NULL; o = o->next) { if (strncmp (bfd_get_section_name (input_bfd, o), CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) { sec = h->call_fp_stub; break; } } if (sec == NULL) sec = h->call_stub; } else if (h->call_stub != NULL) sec = h->call_stub; else sec = h->call_fp_stub; BFD_ASSERT (sec->_raw_size > 0); symbol = sec->output_section->vma + sec->output_offset; } /* Calls from 16-bit code to 32-bit code and vice versa require the special jalx instruction. */ *require_jalxp = (!info->relocateable && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p)); /* If we haven't already determined the GOT offset, or the GP value, and we're going to need it, get it now. */ switch (r_type) { case R_MIPS_CALL16: case R_MIPS_GOT16: case R_MIPS_GOT_DISP: case R_MIPS_GOT_HI16: case R_MIPS_CALL_HI16: case R_MIPS_GOT_LO16: case R_MIPS_CALL_LO16: /* Find the index into the GOT where this value is located. */ if (!local_p) { BFD_ASSERT (addend == 0); g = mips_elf_global_got_index (elf_hash_table (info)->dynobj, (struct elf_link_hash_entry*) h); } else if (r_type == R_MIPS_GOT16) /* There's no need to create a local GOT entry here; the calculation for a local GOT16 entry does not involve G. */ break; else { g = mips_elf_local_got_index (abfd, info, symbol + addend); if (g == (bfd_vma) -1) return false; } /* Convert GOT indices to actual offsets. */ g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, abfd, g); break; case R_MIPS_HI16: case R_MIPS_LO16: case R_MIPS_GPREL16: case R_MIPS_GPREL32: case R_MIPS_LITERAL: gp0 = _bfd_get_gp_value (input_bfd); gp = _bfd_get_gp_value (abfd); break; default: break; } /* Figure out what kind of relocation is being performed. */ switch (r_type) { case R_MIPS_NONE: return bfd_reloc_continue; case R_MIPS_16: value = symbol + mips_elf_sign_extend (addend, 16); overflowed_p = mips_elf_overflow_p (value, 16); break; case R_MIPS_32: case R_MIPS_REL32: case R_MIPS_64: if ((info->shared || (elf_hash_table (info)->dynamic_sections_created && h != NULL && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))) && (input_section->flags & SEC_ALLOC) != 0) { /* If we're creating a shared library, or this relocation is against a symbol in a shared library, then we can't know where the symbol will end up. So, we create a relocation record in the output, and leave the job up to the dynamic linker. */ value = addend; if (!mips_elf_create_dynamic_relocation (abfd, info, relocation, h, sec, symbol, &value, input_section)) return false; } else { if (r_type != R_MIPS_REL32) value = symbol + addend; else value = addend; } value &= howto->dst_mask; break; case R_MIPS_PC32: case R_MIPS_PC64: case R_MIPS_GNU_REL_LO16: value = symbol + addend - p; value &= howto->dst_mask; break; case R_MIPS_GNU_REL16_S2: value = symbol + mips_elf_sign_extend (addend << 2, 18) - p; overflowed_p = mips_elf_overflow_p (value, 18); value = (value >> 2) & howto->dst_mask; break; case R_MIPS_GNU_REL_HI16: value = mips_elf_high (addend + symbol - p); value &= howto->dst_mask; break; case R_MIPS16_26: /* The calculation for R_MIPS_26 is just the same as for an R_MIPS_26. It's only the storage of the relocated field into the output file that's different. That's handled in mips_elf_perform_relocation. So, we just fall through to the R_MIPS_26 case here. */ case R_MIPS_26: if (local_p) value = (((addend << 2) | (p & 0xf0000000)) + symbol) >> 2; else value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2; value &= howto->dst_mask; break; case R_MIPS_HI16: if (!gp_disp_p) { value = mips_elf_high (addend + symbol); value &= howto->dst_mask; } else { value = mips_elf_high (addend + gp - p); overflowed_p = mips_elf_overflow_p (value, 16); } break; case R_MIPS_LO16: if (!gp_disp_p) value = (symbol + addend) & howto->dst_mask; else { value = addend + gp - p + 4; /* The MIPS ABI requires checking the R_MIPS_LO16 relocation for overflow. But, on, say, Irix 5, relocations against _gp_disp are normally generated from the .cpload pseudo-op. It generates code that normally looks like this: lui $gp,%hi(_gp_disp) addiu $gp,$gp,%lo(_gp_disp) addu $gp,$gp,$t9 Here $t9 holds the address of the function being called, as required by the MIPS ELF ABI. The R_MIPS_LO16 relocation can easily overflow in this situation, but the R_MIPS_HI16 relocation will handle the overflow. Therefore, we consider this a bug in the MIPS ABI, and do not check for overflow here. */ } break; case R_MIPS_LITERAL: /* Because we don't merge literal sections, we can handle this just like R_MIPS_GPREL16. In the long run, we should merge shared literals, and then we will need to additional work here. */ /* Fall through. */ case R_MIPS16_GPREL: /* The R_MIPS16_GPREL performs the same calculation as R_MIPS_GPREL16, but stores the relocated bits in a different order. We don't need to do anything special here; the differences are handled in mips_elf_perform_relocation. */ case R_MIPS_GPREL16: if (local_p) value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp; else value = mips_elf_sign_extend (addend, 16) + symbol - gp; overflowed_p = mips_elf_overflow_p (value, 16); break; case R_MIPS_GOT16: if (local_p) { value = mips_elf_got16_entry (abfd, info, symbol + addend); if (value == (bfd_vma) -1) return false; value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, abfd, value); overflowed_p = mips_elf_overflow_p (value, 16); break; } /* Fall through. */ case R_MIPS_CALL16: case R_MIPS_GOT_DISP: value = g; overflowed_p = mips_elf_overflow_p (value, 16); break; case R_MIPS_GPREL32: value = (addend + symbol + gp0 - gp) & howto->dst_mask; break; case R_MIPS_PC16: value = mips_elf_sign_extend (addend, 16) + symbol - p; value = (bfd_vma) ((bfd_signed_vma) value / 4); overflowed_p = mips_elf_overflow_p (value, 16); break; case R_MIPS_GOT_HI16: case R_MIPS_CALL_HI16: /* We're allowed to handle these two relocations identically. The dynamic linker is allowed to handle the CALL relocations differently by creating a lazy evaluation stub. */ value = g; value = mips_elf_high (value); value &= howto->dst_mask; break; case R_MIPS_GOT_LO16: case R_MIPS_CALL_LO16: value = g & howto->dst_mask; break; case R_MIPS_GOT_PAGE: value = mips_elf_got_page (abfd, info, symbol + addend, NULL); if (value == (bfd_vma) -1) return false; value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, abfd, value); overflowed_p = mips_elf_overflow_p (value, 16); break; case R_MIPS_GOT_OFST: mips_elf_got_page (abfd, info, symbol + addend, &value); overflowed_p = mips_elf_overflow_p (value, 16); break; case R_MIPS_SUB: value = symbol - addend; value &= howto->dst_mask; break; case R_MIPS_HIGHER: value = mips_elf_higher (addend + symbol); value &= howto->dst_mask; break; case R_MIPS_HIGHEST: value = mips_elf_highest (addend + symbol); value &= howto->dst_mask; break; case R_MIPS_SCN_DISP: value = symbol + addend - sec->output_offset; value &= howto->dst_mask; break; case R_MIPS_PJUMP: case R_MIPS_JALR: /* Both of these may be ignored. R_MIPS_JALR is an optimization hint; we could improve performance by honoring that hint. */ return bfd_reloc_continue; case R_MIPS_GNU_VTINHERIT: case R_MIPS_GNU_VTENTRY: /* We don't do anything with these at present. */ return bfd_reloc_continue; default: /* An unrecognized relocation type. */ return bfd_reloc_notsupported; } /* Store the VALUE for our caller. */ *valuep = value; return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; } /* Obtain the field relocated by RELOCATION. */ static bfd_vma mips_elf_obtain_contents (howto, relocation, input_bfd, contents) reloc_howto_type *howto; const Elf_Internal_Rela *relocation; bfd *input_bfd; bfd_byte *contents; { bfd_vma x; bfd_byte *location = contents + relocation->r_offset; /* Obtain the bytes. */ x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location); if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL) && bfd_little_endian (input_bfd)) /* The two 16-bit words will be reversed on a little-endian system. See mips_elf_perform_relocation for more details. */ x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16)); return x; } /* It has been determined that the result of the RELOCATION is the VALUE. Use HOWTO to place VALUE into the output file at the appropriate position. The SECTION is the section to which the relocation applies. If REQUIRE_JALX is true, then the opcode used for the relocation must be either JAL or JALX, and it is unconditionally converted to JALX. Returns false if anything goes wrong. */ static boolean mips_elf_perform_relocation (info, howto, relocation, value, input_bfd, input_section, contents, require_jalx) struct bfd_link_info *info; reloc_howto_type *howto; const Elf_Internal_Rela *relocation; bfd_vma value; bfd *input_bfd; asection *input_section; bfd_byte *contents; boolean require_jalx; { bfd_vma x; bfd_byte *location; int r_type = ELF32_R_TYPE (relocation->r_info); /* Figure out where the relocation is occurring. */ location = contents + relocation->r_offset; /* Obtain the current value. */ x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); /* Clear the field we are setting. */ x &= ~howto->dst_mask; /* If this is the R_MIPS16_26 relocation, we must store the value in a funny way. */ if (r_type == R_MIPS16_26) { /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. Most mips16 instructions are 16 bits, but these instructions are 32 bits. The format of these instructions is: +--------------+--------------------------------+ ! JALX ! X! Imm 20:16 ! Imm 25:21 ! +--------------+--------------------------------+ ! Immediate 15:0 ! +-----------------------------------------------+ JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. Note that the immediate value in the first word is swapped. When producing a relocateable object file, R_MIPS16_26 is handled mostly like R_MIPS_26. In particular, the addend is stored as a straight 26-bit value in a 32-bit instruction. (gas makes life simpler for itself by never adjusting a R_MIPS16_26 reloc to be against a section, so the addend is always zero). However, the 32 bit instruction is stored as 2 16-bit values, rather than a single 32-bit value. In a big-endian file, the result is the same; in a little-endian file, the two 16-bit halves of the 32 bit value are swapped. This is so that a disassembler can recognize the jal instruction. When doing a final link, R_MIPS16_26 is treated as a 32 bit instruction stored as two 16-bit values. The addend A is the contents of the targ26 field. The calculation is the same as R_MIPS_26. When storing the calculated value, reorder the immediate value as shown above, and don't forget to store the value as two 16-bit values. To put it in MIPS ABI terms, the relocation field is T-targ26-16, defined as big-endian: +--------+----------------------+ | | | | | targ26-16 | |31 26|25 0| +--------+----------------------+ little-endian: +----------+------+-------------+ | | | | | sub1 | | sub2 | |0 9|10 15|16 31| +----------+--------------------+ where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is ((sub1 << 16) | sub2)). When producing a relocateable object file, the calculation is (((A < 2) | (P & 0xf0000000) + S) >> 2) When producing a fully linked file, the calculation is let R = (((A < 2) | (P & 0xf0000000) + S) >> 2) ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */ if (!info->relocateable) /* Shuffle the bits according to the formula above. */ value = (((value & 0x1f0000) << 5) | ((value & 0x3e00000) >> 5) | (value & 0xffff)); } else if (r_type == R_MIPS16_GPREL) { /* R_MIPS16_GPREL is used for GP-relative addressing in mips16 mode. A typical instruction will have a format like this: +--------------+--------------------------------+ ! EXTEND ! Imm 10:5 ! Imm 15:11 ! +--------------+--------------------------------+ ! Major ! rx ! ry ! Imm 4:0 ! +--------------+--------------------------------+ EXTEND is the five bit value 11110. Major is the instruction opcode. This is handled exactly like R_MIPS_GPREL16, except that the addend is retrieved and stored as shown in this diagram; that is, the Imm fields above replace the V-rel16 field. All we need to do here is shuffle the bits appropriately. As above, the two 16-bit halves must be swapped on a little-endian system. */ value = (((value & 0x7e0) << 16) | ((value & 0xf800) << 5) | (value & 0x1f)); } /* Set the field. */ x |= (value & howto->dst_mask); /* If required, turn JAL into JALX. */ if (require_jalx) { boolean ok; bfd_vma opcode = x >> 26; bfd_vma jalx_opcode; /* Check to see if the opcode is already JAL or JALX. */ if (r_type == R_MIPS16_26) { ok = ((opcode == 0x6) || (opcode == 0x7)); jalx_opcode = 0x7; } else { ok = ((opcode == 0x3) || (opcode == 0x1d)); jalx_opcode = 0x1d; } /* If the opcode is not JAL or JALX, there's a problem. */ if (!ok) { (*_bfd_error_handler) (_("%s: %s+0x%lx: jump to stub routine which is not jal"), bfd_get_filename (input_bfd), input_section->name, (unsigned long) relocation->r_offset); bfd_set_error (bfd_error_bad_value); return false; } /* Make this the JALX opcode. */ x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); } /* Swap the high- and low-order 16 bits on little-endian systems when doing a MIPS16 relocation. */ if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26) && bfd_little_endian (input_bfd)) x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16)); /* Put the value into the output. */ bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); return true; } /* Returns true if SECTION is a MIPS16 stub section. */ static boolean mips_elf_stub_section_p (abfd, section) bfd *abfd ATTRIBUTE_UNUSED; asection *section; { const char *name = bfd_get_section_name (abfd, section); return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0); } /* Relocate a MIPS ELF section. */ boolean _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section, contents, relocs, local_syms, local_sections) bfd *output_bfd; struct bfd_link_info *info; bfd *input_bfd; asection *input_section; bfd_byte *contents; Elf_Internal_Rela *relocs; Elf_Internal_Sym *local_syms; asection **local_sections; { Elf_Internal_Rela *rel; const Elf_Internal_Rela *relend; bfd_vma addend = 0; boolean use_saved_addend_p = false; struct elf_backend_data *bed; bed = get_elf_backend_data (output_bfd); relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; for (rel = relocs; rel < relend; ++rel) { const char *name; bfd_vma value; reloc_howto_type *howto; boolean require_jalx; /* True if the relocation is a RELA relocation, rather than a REL relocation. */ boolean rela_relocation_p = true; int r_type = ELF32_R_TYPE (rel->r_info); /* Find the relocation howto for this relocation. */ if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)) { /* Some 32-bit code uses R_MIPS_64. In particular, people use 64-bit code, but make sure all their addresses are in the lowermost or uppermost 32-bit section of the 64-bit address space. Thus, when they use an R_MIPS_64 they mean what is usually meant by R_MIPS_32, with the exception that the stored value is sign-extended to 64 bits. */ howto = elf_mips_howto_table + R_MIPS_32; /* On big-endian systems, we need to lie about the position of the reloc. */ if (bfd_big_endian (input_bfd)) rel->r_offset += 4; } else howto = mips_rtype_to_howto (r_type); if (!use_saved_addend_p) { Elf_Internal_Shdr *rel_hdr; /* If these relocations were originally of the REL variety, we must pull the addend out of the field that will be relocated. Otherwise, we simply use the contents of the RELA relocation. To determine which flavor or relocation this is, we depend on the fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */ rel_hdr = &elf_section_data (input_section)->rel_hdr; if ((size_t) (rel - relocs) >= (rel_hdr->sh_size / rel_hdr->sh_entsize * bed->s->int_rels_per_ext_rel)) rel_hdr = elf_section_data (input_section)->rel_hdr2; if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd)) { /* Note that this is a REL relocation. */ rela_relocation_p = false; /* Get the addend, which is stored in the input file. */ addend = mips_elf_obtain_contents (howto, rel, input_bfd, contents); addend &= howto->src_mask; /* For some kinds of relocations, the ADDEND is a combination of the addend stored in two different relocations. */ if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GNU_REL_HI16 || (r_type == R_MIPS_GOT16 && mips_elf_local_relocation_p (input_bfd, rel, local_sections))) { bfd_vma l; const Elf_Internal_Rela *lo16_relocation; reloc_howto_type *lo16_howto; int lo; /* The combined value is the sum of the HI16 addend, left-shifted by sixteen bits, and the LO16 addend, sign extended. (Usually, the code does a `lui' of the HI16 value, and then an `addiu' of the LO16 value.) Scan ahead to find a matching LO16 relocation. */ if (r_type == R_MIPS_GNU_REL_HI16) lo = R_MIPS_GNU_REL_LO16; else lo = R_MIPS_LO16; lo16_relocation = mips_elf_next_relocation (lo, rel, relend); if (lo16_relocation == NULL) return false; /* Obtain the addend kept there. */ lo16_howto = mips_rtype_to_howto (lo); l = mips_elf_obtain_contents (lo16_howto, lo16_relocation, input_bfd, contents); l &= lo16_howto->src_mask; l = mips_elf_sign_extend (l, 16); addend <<= 16; /* Compute the combined addend. */ addend += l; } else if (r_type == R_MIPS16_GPREL) { /* The addend is scrambled in the object file. See mips_elf_perform_relocation for details on the format. */ addend = (((addend & 0x1f0000) >> 5) | ((addend & 0x7e00000) >> 16) | (addend & 0x1f)); } } else addend = rel->r_addend; } if (info->relocateable) { Elf_Internal_Sym *sym; unsigned long r_symndx; if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd) && bfd_big_endian (input_bfd)) rel->r_offset -= 4; /* Since we're just relocating, all we need to do is copy the relocations back out to the object file, unless they're against a section symbol, in which case we need to adjust by the section offset, or unless they're GP relative in which case we need to adjust by the amount that we're adjusting GP in this relocateable object. */ if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections)) /* There's nothing to do for non-local relocations. */ continue; if (r_type == R_MIPS16_GPREL || r_type == R_MIPS_GPREL16 || r_type == R_MIPS_GPREL32 || r_type == R_MIPS_LITERAL) addend -= (_bfd_get_gp_value (output_bfd) - _bfd_get_gp_value (input_bfd)); else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26 || r_type == R_MIPS_GNU_REL16_S2) /* The addend is stored without its two least significant bits (which are always zero.) In a non-relocateable link, calculate_relocation will do this shift; here, we must do it ourselves. */ addend <<= 2; r_symndx = ELF32_R_SYM (rel->r_info); sym = local_syms + r_symndx; if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) /* Adjust the addend appropriately. */ addend += local_sections[r_symndx]->output_offset; /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16, then we only want to write out the high-order 16 bits. The subsequent R_MIPS_LO16 will handle the low-order bits. */ if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16 || r_type == R_MIPS_GNU_REL_HI16) addend = mips_elf_high (addend); /* If the relocation is for an R_MIPS_26 relocation, then the two low-order bits are not stored in the object file; they are implicitly zero. */ else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26 || r_type == R_MIPS_GNU_REL16_S2) addend >>= 2; if (rela_relocation_p) /* If this is a RELA relocation, just update the addend. We have to cast away constness for REL. */ rel->r_addend = addend; else { /* Otherwise, we have to write the value back out. Note that we use the source mask, rather than the destination mask because the place to which we are writing will be source of the addend in the final link. */ addend &= howto->src_mask; if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)) /* See the comment above about using R_MIPS_64 in the 32-bit ABI. Here, we need to update the addend. It would be possible to get away with just using the R_MIPS_32 reloc but for endianness. */ { bfd_vma sign_bits; bfd_vma low_bits; bfd_vma high_bits; if (addend & ((bfd_vma) 1 << 31)) sign_bits = ((bfd_vma) 1 << 32) - 1; else sign_bits = 0; /* If we don't know that we have a 64-bit type, do two separate stores. */ if (bfd_big_endian (input_bfd)) { /* Store the sign-bits (which are most significant) first. */ low_bits = sign_bits; high_bits = addend; } else { low_bits = addend; high_bits = sign_bits; } bfd_put_32 (input_bfd, low_bits, contents + rel->r_offset); bfd_put_32 (input_bfd, high_bits, contents + rel->r_offset + 4); continue; } if (!mips_elf_perform_relocation (info, howto, rel, addend, input_bfd, input_section, contents, false)) return false; } /* Go on to the next relocation. */ continue; } /* In the N32 and 64-bit ABIs there may be multiple consecutive relocations for the same offset. In that case we are supposed to treat the output of each relocation as the addend for the next. */ if (rel + 1 < relend && rel->r_offset == rel[1].r_offset && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE) use_saved_addend_p = true; else use_saved_addend_p = false; /* Figure out what value we are supposed to relocate. */ switch (mips_elf_calculate_relocation (output_bfd, input_bfd, input_section, info, rel, addend, howto, local_syms, local_sections, &value, &name, &require_jalx)) { case bfd_reloc_continue: /* There's nothing to do. */ continue; case bfd_reloc_undefined: /* mips_elf_calculate_relocation already called the undefined_symbol callback. There's no real point in trying to perform the relocation at this point, so we just skip ahead to the next relocation. */ continue; case bfd_reloc_notsupported: abort (); break; case bfd_reloc_overflow: if (use_saved_addend_p) /* Ignore overflow until we reach the last relocation for a given location. */ ; else { BFD_ASSERT (name != NULL); if (! ((*info->callbacks->reloc_overflow) (info, name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return false; } break; case bfd_reloc_ok: break; default: abort (); break; } /* If we've got another relocation for the address, keep going until we reach the last one. */ if (use_saved_addend_p) { addend = value; continue; } if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)) /* See the comment above about using R_MIPS_64 in the 32-bit ABI. Until now, we've been using the HOWTO for R_MIPS_32; that calculated the right value. Now, however, we sign-extend the 32-bit result to 64-bits, and store it as a 64-bit value. We are especially generous here in that we go to extreme lengths to support this usage on systems with only a 32-bit VMA. */ { bfd_vma sign_bits; bfd_vma low_bits; bfd_vma high_bits; if (value & ((bfd_vma) 1 << 31)) sign_bits = ((bfd_vma) 1 << 32) - 1; else sign_bits = 0; /* If we don't know that we have a 64-bit type, do two separate stores. */ if (bfd_big_endian (input_bfd)) { /* Undo what we did above. */ rel->r_offset -= 4; /* Store the sign-bits (which are most significant) first. */ low_bits = sign_bits; high_bits = value; } else { low_bits = value; high_bits = sign_bits; } bfd_put_32 (input_bfd, low_bits, contents + rel->r_offset); bfd_put_32 (input_bfd, high_bits, contents + rel->r_offset + 4); continue; } /* Actually perform the relocation. */ if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd, input_section, contents, require_jalx)) return false; } return true; } /* This hook function is called before the linker writes out a global symbol. We mark symbols as small common if appropriate. This is also where we undo the increment of the value for a mips16 symbol. */ /*ARGSIGNORED*/ boolean _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec) bfd *abfd ATTRIBUTE_UNUSED; struct bfd_link_info *info ATTRIBUTE_UNUSED; const char *name ATTRIBUTE_UNUSED; Elf_Internal_Sym *sym; asection *input_sec; { /* If we see a common symbol, which implies a relocatable link, then if a symbol was small common in an input file, mark it as small common in the output file. */ if (sym->st_shndx == SHN_COMMON && strcmp (input_sec->name, ".scommon") == 0) sym->st_shndx = SHN_MIPS_SCOMMON; if (sym->st_other == STO_MIPS16 && (sym->st_value & 1) != 0) --sym->st_value; return true; } /* Functions for the dynamic linker. */ /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER(abfd) \ (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ : "/usr/lib/libc.so.1") /* Create dynamic sections when linking against a dynamic object. */ boolean _bfd_mips_elf_create_dynamic_sections (abfd, info) bfd *abfd; struct bfd_link_info *info; { struct elf_link_hash_entry *h; flagword flags; register asection *s; const char * const *namep; flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY); /* Mips ABI requests the .dynamic section to be read only. */ s = bfd_get_section_by_name (abfd, ".dynamic"); if (s != NULL) { if (! bfd_set_section_flags (abfd, s, flags)) return false; } /* We need to create .got section. */ if (! mips_elf_create_got_section (abfd, info)) return false; /* Create the .msym section on IRIX6. It is used by the dynamic linker to speed up dynamic relocations, and to avoid computing the ELF hash for symbols. */ if (IRIX_COMPAT (abfd) == ict_irix6 && !mips_elf_create_msym_section (abfd)) return false; /* Create .stub section. */ if (bfd_get_section_by_name (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL) { s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd)); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE) || ! bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) return false; } if (IRIX_COMPAT (abfd) == ict_irix5 && !info->shared && bfd_get_section_by_name (abfd, ".rld_map") == NULL) { s = bfd_make_section (abfd, ".rld_map"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY) || ! bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) return false; } /* On IRIX5, we adjust add some additional symbols and change the alignments of several sections. There is no ABI documentation indicating that this is necessary on IRIX6, nor any evidence that the linker takes such action. */ if (IRIX_COMPAT (abfd) == ict_irix5) { for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) { h = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, (bfd_vma) 0, (const char *) NULL, false, get_elf_backend_data (abfd)->collect, (struct bfd_link_hash_entry **) &h))) return false; h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_SECTION; if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } /* We need to create a .compact_rel section. */ if (! mips_elf_create_compact_rel_section (abfd, info)) return false; /* Change aligments of some sections. */ s = bfd_get_section_by_name (abfd, ".hash"); if (s != NULL) bfd_set_section_alignment (abfd, s, 4); s = bfd_get_section_by_name (abfd, ".dynsym"); if (s != NULL) bfd_set_section_alignment (abfd, s, 4); s = bfd_get_section_by_name (abfd, ".dynstr"); if (s != NULL) bfd_set_section_alignment (abfd, s, 4); s = bfd_get_section_by_name (abfd, ".reginfo"); if (s != NULL) bfd_set_section_alignment (abfd, s, 4); s = bfd_get_section_by_name (abfd, ".dynamic"); if (s != NULL) bfd_set_section_alignment (abfd, s, 4); } if (!info->shared) { h = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false, get_elf_backend_data (abfd)->collect, (struct bfd_link_hash_entry **) &h))) return false; h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_SECTION; if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; if (! mips_elf_hash_table (info)->use_rld_obj_head) { /* __rld_map is a four byte word located in the .data section and is filled in by the rtld to contain a pointer to the _r_debug structure. Its symbol value will be set in mips_elf_finish_dynamic_symbol. */ s = bfd_get_section_by_name (abfd, ".rld_map"); BFD_ASSERT (s != NULL); h = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, "__rld_map", BSF_GLOBAL, s, (bfd_vma) 0, (const char *) NULL, false, get_elf_backend_data (abfd)->collect, (struct bfd_link_hash_entry **) &h))) return false; h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_OBJECT; if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } } return true; } /* Create the .compact_rel section. */ static boolean mips_elf_create_compact_rel_section (abfd, info) bfd *abfd; struct bfd_link_info *info ATTRIBUTE_UNUSED; { flagword flags; register asection *s; if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) { flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY); s = bfd_make_section (abfd, ".compact_rel"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags) || ! bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) return false; s->_raw_size = sizeof (Elf32_External_compact_rel); } return true; } /* Create the .got section to hold the global offset table. */ static boolean mips_elf_create_got_section (abfd, info) bfd *abfd; struct bfd_link_info *info; { flagword flags; register asection *s; struct elf_link_hash_entry *h; struct mips_got_info *g; /* This function may be called more than once. */ if (mips_elf_got_section (abfd)) return true; flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); s = bfd_make_section (abfd, ".got"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags) || ! bfd_set_section_alignment (abfd, s, 4)) return false; /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the linker script because we don't want to define the symbol if we are not creating a global offset table. */ h = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, (bfd_vma) 0, (const char *) NULL, false, get_elf_backend_data (abfd)->collect, (struct bfd_link_hash_entry **) &h))) return false; h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_OBJECT; if (info->shared && ! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; /* The first several global offset table entries are reserved. */ s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd); g = (struct mips_got_info *) bfd_alloc (abfd, sizeof (struct mips_got_info)); if (g == NULL) return false; g->global_gotsym = NULL; g->local_gotno = MIPS_RESERVED_GOTNO; g->assigned_gotno = MIPS_RESERVED_GOTNO; if (elf_section_data (s) == NULL) { s->used_by_bfd = (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data)); if (elf_section_data (s) == NULL) return false; } elf_section_data (s)->tdata = (PTR) g; elf_section_data (s)->this_hdr.sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; return true; } /* Returns the .msym section for ABFD, creating it if it does not already exist. Returns NULL to indicate error. */ static asection * mips_elf_create_msym_section (abfd) bfd *abfd; { asection *s; s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd)); if (!s) { s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd)); if (!s || !bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED | SEC_READONLY) || !bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) return NULL; } return s; } /* Add room for N relocations to the .rel.dyn section in ABFD. */ static void mips_elf_allocate_dynamic_relocations (abfd, n) bfd *abfd; unsigned int n; { asection *s; s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd)); BFD_ASSERT (s != NULL); if (s->_raw_size == 0) { /* Make room for a null element. */ s->_raw_size += MIPS_ELF_REL_SIZE (abfd); ++s->reloc_count; } s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd); } /* Look through the relocs for a section during the first phase, and allocate space in the global offset table. */ boolean _bfd_mips_elf_check_relocs (abfd, info, sec, relocs) bfd *abfd; struct bfd_link_info *info; asection *sec; const Elf_Internal_Rela *relocs; { const char *name; bfd *dynobj; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; struct mips_got_info *g; size_t extsymoff; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *sgot; asection *sreloc; struct elf_backend_data *bed; if (info->relocateable) return true; dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; /* Check for the mips16 stub sections. */ name = bfd_get_section_name (abfd, sec); if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0) { unsigned long r_symndx; /* Look at the relocation information to figure out which symbol this is for. */ r_symndx = ELF32_R_SYM (relocs->r_info); if (r_symndx < extsymoff || sym_hashes[r_symndx - extsymoff] == NULL) { asection *o; /* This stub is for a local symbol. This stub will only be needed if there is some relocation in this BFD, other than a 16 bit function call, which refers to this symbol. */ for (o = abfd->sections; o != NULL; o = o->next) { Elf_Internal_Rela *sec_relocs; const Elf_Internal_Rela *r, *rend; /* We can ignore stub sections when looking for relocs. */ if ((o->flags & SEC_RELOC) == 0 || o->reloc_count == 0 || strncmp (bfd_get_section_name (abfd, o), FN_STUB, sizeof FN_STUB - 1) == 0 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB, sizeof CALL_STUB - 1) == 0 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) continue; sec_relocs = (_bfd_elf32_link_read_relocs (abfd, o, (PTR) NULL, (Elf_Internal_Rela *) NULL, info->keep_memory)); if (sec_relocs == NULL) return false; rend = sec_relocs + o->reloc_count; for (r = sec_relocs; r < rend; r++) if (ELF32_R_SYM (r->r_info) == r_symndx && ELF32_R_TYPE (r->r_info) != R_MIPS16_26) break; if (! info->keep_memory) free (sec_relocs); if (r < rend) break; } if (o == NULL) { /* There is no non-call reloc for this stub, so we do not need it. Since this function is called before the linker maps input sections to output sections, we can easily discard it by setting the SEC_EXCLUDE flag. */ sec->flags |= SEC_EXCLUDE; return true; } /* Record this stub in an array of local symbol stubs for this BFD. */ if (elf_tdata (abfd)->local_stubs == NULL) { unsigned long symcount; asection **n; if (elf_bad_symtab (abfd)) symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize; else symcount = symtab_hdr->sh_info; n = (asection **) bfd_zalloc (abfd, symcount * sizeof (asection *)); if (n == NULL) return false; elf_tdata (abfd)->local_stubs = n; } elf_tdata (abfd)->local_stubs[r_symndx] = sec; /* We don't need to set mips16_stubs_seen in this case. That flag is used to see whether we need to look through the global symbol table for stubs. We don't need to set it here, because we just have a local stub. */ } else { struct mips_elf_link_hash_entry *h; h = ((struct mips_elf_link_hash_entry *) sym_hashes[r_symndx - extsymoff]); /* H is the symbol this stub is for. */ h->fn_stub = sec; mips_elf_hash_table (info)->mips16_stubs_seen = true; } } else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) { unsigned long r_symndx; struct mips_elf_link_hash_entry *h; asection **loc; /* Look at the relocation information to figure out which symbol this is for. */ r_symndx = ELF32_R_SYM (relocs->r_info); if (r_symndx < extsymoff || sym_hashes[r_symndx - extsymoff] == NULL) { /* This stub was actually built for a static symbol defined in the same file. We assume that all static symbols in mips16 code are themselves mips16, so we can simply discard this stub. Since this function is called before the linker maps input sections to output sections, we can easily discard it by setting the SEC_EXCLUDE flag. */ sec->flags |= SEC_EXCLUDE; return true; } h = ((struct mips_elf_link_hash_entry *) sym_hashes[r_symndx - extsymoff]); /* H is the symbol this stub is for. */ if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) loc = &h->call_fp_stub; else loc = &h->call_stub; /* If we already have an appropriate stub for this function, we don't need another one, so we can discard this one. Since this function is called before the linker maps input sections to output sections, we can easily discard it by setting the SEC_EXCLUDE flag. We can also discard this section if we happen to already know that this is a mips16 function; it is not necessary to check this here, as it is checked later, but it is slightly faster to check now. */ if (*loc != NULL || h->root.other == STO_MIPS16) { sec->flags |= SEC_EXCLUDE; return true; } *loc = sec; mips_elf_hash_table (info)->mips16_stubs_seen = true; } if (dynobj == NULL) { sgot = NULL; g = NULL; } else { sgot = mips_elf_got_section (dynobj); if (sgot == NULL) g = NULL; else { BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); } } sreloc = NULL; bed = get_elf_backend_data (abfd); rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; for (rel = relocs; rel < rel_end; ++rel) { unsigned long r_symndx; int r_type; struct elf_link_hash_entry *h; r_symndx = ELF32_R_SYM (rel->r_info); r_type = ELF32_R_TYPE (rel->r_info); if (r_symndx < extsymoff) h = NULL; else { h = sym_hashes[r_symndx - extsymoff]; /* This may be an indirect symbol created because of a version. */ if (h != NULL) { while (h->root.type == bfd_link_hash_indirect) h = (struct elf_link_hash_entry *) h->root.u.i.link; } } /* Some relocs require a global offset table. */ if (dynobj == NULL || sgot == NULL) { switch (r_type) { case R_MIPS_GOT16: case R_MIPS_CALL16: case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: case R_MIPS_GOT_HI16: case R_MIPS_GOT_LO16: case R_MIPS_GOT_PAGE: case R_MIPS_GOT_OFST: case R_MIPS_GOT_DISP: if (dynobj == NULL) elf_hash_table (info)->dynobj = dynobj = abfd; if (! mips_elf_create_got_section (dynobj, info)) return false; g = mips_elf_got_info (dynobj, &sgot); break; case R_MIPS_32: case R_MIPS_REL32: case R_MIPS_64: if (dynobj == NULL && (info->shared || h != NULL) && (sec->flags & SEC_ALLOC) != 0) elf_hash_table (info)->dynobj = dynobj = abfd; break; default: break; } } if (!h && (r_type == R_MIPS_CALL_LO16 || r_type == R_MIPS_GOT_LO16 || r_type == R_MIPS_GOT_DISP)) { /* We may need a local GOT entry for this relocation. We don't count R_MIPS_GOT_PAGE because we can estimate the maximum number of pages needed by looking at the size of the segment. Similar comments apply to R_MIPS_GOT16. We don't count R_MIPS_GOT_HI16, or R_MIPS_CALL_HI16 because these are always followed by an R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. This estimation is very conservative since we can merge duplicate entries in the GOT. In order to be less conservative, we could actually build the GOT here, rather than in relocate_section. */ g->local_gotno++; sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj); } switch (r_type) { case R_MIPS_CALL16: if (h == NULL) { (*_bfd_error_handler) (_("%s: CALL16 reloc at 0x%lx not against global symbol"), bfd_get_filename (abfd), (unsigned long) rel->r_offset); bfd_set_error (bfd_error_bad_value); return false; } /* Fall through. */ case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: if (h != NULL) { /* This symbol requires a global offset table entry. */ if (!mips_elf_record_global_got_symbol (h, info, g)) return false; /* We need a stub, not a plt entry for the undefined function. But we record it as if it needs plt. See elf_adjust_dynamic_symbol in elflink.h. */ h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; h->type = STT_FUNC; } break; case R_MIPS_GOT16: case R_MIPS_GOT_HI16: case R_MIPS_GOT_LO16: case R_MIPS_GOT_DISP: /* This symbol requires a global offset table entry. */ if (h && !mips_elf_record_global_got_symbol (h, info, g)) return false; break; case R_MIPS_32: case R_MIPS_REL32: case R_MIPS_64: if ((info->shared || h != NULL) && (sec->flags & SEC_ALLOC) != 0) { if (sreloc == NULL) { const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj); sreloc = bfd_get_section_by_name (dynobj, name); if (sreloc == NULL) { sreloc = bfd_make_section (dynobj, name); if (sreloc == NULL || ! bfd_set_section_flags (dynobj, sreloc, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)) || ! bfd_set_section_alignment (dynobj, sreloc, 4)) return false; } } if (info->shared) /* When creating a shared object, we must copy these reloc types into the output file as R_MIPS_REL32 relocs. We make room for this reloc in the .rel.dyn reloc section. */ mips_elf_allocate_dynamic_relocations (dynobj, 1); else { struct mips_elf_link_hash_entry *hmips; /* We only need to copy this reloc if the symbol is defined in a dynamic object. */ hmips = (struct mips_elf_link_hash_entry *) h; ++hmips->possibly_dynamic_relocs; } /* Even though we don't directly need a GOT entry for this symbol, a symbol must have a dynamic symbol table index greater that DT_MIPS_GOTSYM if there are dynamic relocations against it. */ if (h != NULL && !mips_elf_record_global_got_symbol (h, info, g)) return false; } if (SGI_COMPAT (dynobj)) mips_elf_hash_table (info)->compact_rel_size += sizeof (Elf32_External_crinfo); break; case R_MIPS_26: case R_MIPS_GPREL16: case R_MIPS_LITERAL: case R_MIPS_GPREL32: if (SGI_COMPAT (dynobj)) mips_elf_hash_table (info)->compact_rel_size += sizeof (Elf32_External_crinfo); break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_MIPS_GNU_VTINHERIT: if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return false; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_MIPS_GNU_VTENTRY: if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset)) return false; break; default: break; } /* If this reloc is not a 16 bit call, and it has a global symbol, then we will need the fn_stub if there is one. References from a stub section do not count. */ if (h != NULL && r_type != R_MIPS16_26 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB, sizeof FN_STUB - 1) != 0 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB, sizeof CALL_STUB - 1) != 0 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB, sizeof CALL_FP_STUB - 1) != 0) { struct mips_elf_link_hash_entry *mh; mh = (struct mips_elf_link_hash_entry *) h; mh->need_fn_stub = true; } } return true; } /* Return the section that should be marked against GC for a given relocation. */ asection * _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym) bfd *abfd; struct bfd_link_info *info ATTRIBUTE_UNUSED; Elf_Internal_Rela *rel; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { /* ??? Do mips16 stub sections need to be handled special? */ if (h != NULL) { switch (ELF32_R_TYPE (rel->r_info)) { case R_MIPS_GNU_VTINHERIT: case R_MIPS_GNU_VTENTRY: break; default: switch (h->root.type) { case bfd_link_hash_defined: case bfd_link_hash_defweak: return h->root.u.def.section; case bfd_link_hash_common: return h->root.u.c.p->section; default: break; } } } else { if (!(elf_bad_symtab (abfd) && ELF_ST_BIND (sym->st_info) != STB_LOCAL) && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE) && sym->st_shndx != SHN_COMMON)) { return bfd_section_from_elf_index (abfd, sym->st_shndx); } } return NULL; } /* Update the got entry reference counts for the section being removed. */ boolean _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs) bfd *abfd ATTRIBUTE_UNUSED; struct bfd_link_info *info ATTRIBUTE_UNUSED; asection *sec ATTRIBUTE_UNUSED; const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED; { #if 0 Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel, *relend; unsigned long r_symndx; struct elf_link_hash_entry *h; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) switch (ELF32_R_TYPE (rel->r_info)) { case R_MIPS_GOT16: case R_MIPS_CALL16: case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: case R_MIPS_GOT_HI16: case R_MIPS_GOT_LO16: /* ??? It would seem that the existing MIPS code does no sort of reference counting or whatnot on its GOT and PLT entries, so it is not possible to garbage collect them at this time. */ break; default: break; } #endif return true; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ boolean _bfd_mips_elf_adjust_dynamic_symbol (info, h) struct bfd_link_info *info; struct elf_link_hash_entry *h; { bfd *dynobj; struct mips_elf_link_hash_entry *hmips; asection *s; dynobj = elf_hash_table (info)->dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) || h->weakdef != NULL || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))); /* If this symbol is defined in a dynamic object, we need to copy any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output file. */ hmips = (struct mips_elf_link_hash_entry *) h; if (! info->relocateable && hmips->possibly_dynamic_relocs != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) mips_elf_allocate_dynamic_relocations (dynobj, hmips->possibly_dynamic_relocs); /* For a function, create a stub, if needed. */ if (h->type == STT_FUNC || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) { if (! elf_hash_table (info)->dynamic_sections_created) return true; /* If this symbol is not defined in a regular file, then set the symbol to the stub location. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) { /* We need .stub section. */ s = bfd_get_section_by_name (dynobj, MIPS_ELF_STUB_SECTION_NAME (dynobj)); BFD_ASSERT (s != NULL); h->root.u.def.section = s; h->root.u.def.value = s->_raw_size; /* XXX Write this stub address somewhere. */ h->plt.offset = s->_raw_size; /* Make room for this stub code. */ s->_raw_size += MIPS_FUNCTION_STUB_SIZE; /* The last half word of the stub will be filled with the index of this symbol in .dynsym section. */ return true; } } /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->weakdef != NULL) { BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined || h->weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->weakdef->root.u.def.section; h->root.u.def.value = h->weakdef->root.u.def.value; return true; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ return true; } /* This function is called after all the input files have been read, and the input sections have been assigned to output sections. We check for any mips16 stub sections that we can discard. */ static boolean mips_elf_check_mips16_stubs PARAMS ((struct mips_elf_link_hash_entry *, PTR)); boolean _bfd_mips_elf_always_size_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { asection *ri; /* The .reginfo section has a fixed size. */ ri = bfd_get_section_by_name (output_bfd, ".reginfo"); if (ri != NULL) bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo)); if (info->relocateable || ! mips_elf_hash_table (info)->mips16_stubs_seen) return true; mips_elf_link_hash_traverse (mips_elf_hash_table (info), mips_elf_check_mips16_stubs, (PTR) NULL); return true; } /* Check the mips16 stubs for a particular symbol, and see if we can discard them. */ /*ARGSUSED*/ static boolean mips_elf_check_mips16_stubs (h, data) struct mips_elf_link_hash_entry *h; PTR data ATTRIBUTE_UNUSED; { if (h->fn_stub != NULL && ! h->need_fn_stub) { /* We don't need the fn_stub; the only references to this symbol are 16 bit calls. Clobber the size to 0 to prevent it from being included in the link. */ h->fn_stub->_raw_size = 0; h->fn_stub->_cooked_size = 0; h->fn_stub->flags &= ~ SEC_RELOC; h->fn_stub->reloc_count = 0; h->fn_stub->flags |= SEC_EXCLUDE; } if (h->call_stub != NULL && h->root.other == STO_MIPS16) { /* We don't need the call_stub; this is a 16 bit function, so calls from other 16 bit functions are OK. Clobber the size to 0 to prevent it from being included in the link. */ h->call_stub->_raw_size = 0; h->call_stub->_cooked_size = 0; h->call_stub->flags &= ~ SEC_RELOC; h->call_stub->reloc_count = 0; h->call_stub->flags |= SEC_EXCLUDE; } if (h->call_fp_stub != NULL && h->root.other == STO_MIPS16) { /* We don't need the call_stub; this is a 16 bit function, so calls from other 16 bit functions are OK. Clobber the size to 0 to prevent it from being included in the link. */ h->call_fp_stub->_raw_size = 0; h->call_fp_stub->_cooked_size = 0; h->call_fp_stub->flags &= ~ SEC_RELOC; h->call_fp_stub->reloc_count = 0; h->call_fp_stub->flags |= SEC_EXCLUDE; } return true; } /* Set the sizes of the dynamic sections. */ boolean _bfd_mips_elf_size_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *s; boolean reltext; struct mips_got_info *g = NULL; dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (! info->shared) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->_raw_size = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; s->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); } } /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ reltext = false; for (s = dynobj->sections; s != NULL; s = s->next) { const char *name; boolean strip; /* It's OK to base decisions on the section name, because none of the dynobj section names depend upon the input files. */ name = bfd_get_section_name (dynobj, s); if ((s->flags & SEC_LINKER_CREATED) == 0) continue; strip = false; if (strncmp (name, ".rel", 4) == 0) { if (s->_raw_size == 0) { /* We only strip the section if the output section name has the same name. Otherwise, there might be several input sections for this output section. FIXME: This code is probably not needed these days anyhow, since the linker now does not create empty output sections. */ if (s->output_section != NULL && strcmp (name, bfd_get_section_name (s->output_section->owner, s->output_section)) == 0) strip = true; } else { const char *outname; asection *target; /* If this relocation section applies to a read only section, then we probably need a DT_TEXTREL entry. If the relocation section is .rel.dyn, we always assert a DT_TEXTREL entry rather than testing whether there exists a relocation to a read only section or not. */ outname = bfd_get_section_name (output_bfd, s->output_section); target = bfd_get_section_by_name (output_bfd, outname + 4); if ((target != NULL && (target->flags & SEC_READONLY) != 0 && (target->flags & SEC_ALLOC) != 0) || strcmp (outname, MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0) reltext = true; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ if (strcmp (name, MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0) s->reloc_count = 0; } } else if (strncmp (name, ".got", 4) == 0) { int i; bfd_size_type loadable_size = 0; bfd_size_type local_gotno; struct _bfd *sub; BFD_ASSERT (elf_section_data (s) != NULL); g = (struct mips_got_info *) elf_section_data (s)->tdata; BFD_ASSERT (g != NULL); /* Calculate the total loadable size of the output. That will give us the maximum number of GOT_PAGE entries required. */ for (sub = info->input_bfds; sub; sub = sub->link_next) { asection *subsection; for (subsection = sub->sections; subsection; subsection = subsection->next) { if ((subsection->flags & SEC_ALLOC) == 0) continue; loadable_size += (subsection->_raw_size + 0xf) & ~0xf; } } loadable_size += MIPS_FUNCTION_STUB_SIZE; /* Assume there are two loadable segments consisting of contiguous sections. Is 5 enough? */ local_gotno = (loadable_size >> 16) + 5; if (IRIX_COMPAT (output_bfd) == ict_irix6) /* It's possible we will need GOT_PAGE entries as well as GOT16 entries. Often, these will be able to share GOT entries, but not always. */ local_gotno *= 2; g->local_gotno += local_gotno; s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj); /* There has to be a global GOT entry for every symbol with a dynamic symbol table index of DT_MIPS_GOTSYM or higher. Therefore, it make sense to put those symbols that need GOT entries at the end of the symbol table. We do that here. */ if (!mips_elf_sort_hash_table (info, 1)) return false; if (g->global_gotsym != NULL) i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx; else /* If there are no global symbols, or none requiring relocations, then GLOBAL_GOTSYM will be NULL. */ i = 0; g->global_gotno = i; s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj); } else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0) { /* Irix rld assumes that the function stub isn't at the end of .text section. So put a dummy. XXX */ s->_raw_size += MIPS_FUNCTION_STUB_SIZE; } else if (! info->shared && ! mips_elf_hash_table (info)->use_rld_obj_head && strncmp (name, ".rld_map", 8) == 0) { /* We add a room for __rld_map. It will be filled in by the rtld to contain a pointer to the _r_debug structure. */ s->_raw_size += 4; } else if (SGI_COMPAT (output_bfd) && strncmp (name, ".compact_rel", 12) == 0) s->_raw_size += mips_elf_hash_table (info)->compact_rel_size; else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)) == 0) s->_raw_size = (sizeof (Elf32_External_Msym) * (elf_hash_table (info)->dynsymcount + bfd_count_sections (output_bfd))); else if (strncmp (name, ".init", 5) != 0) { /* It's not one of our sections, so don't allocate space. */ continue; } if (strip) { _bfd_strip_section_from_output (info, s); continue; } /* Allocate memory for the section contents. */ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size); if (s->contents == NULL && s->_raw_size != 0) { bfd_set_error (bfd_error_no_memory); return false; } } if (elf_hash_table (info)->dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in elf_mips_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ if (! info->shared) { if (SGI_COMPAT (output_bfd)) { /* SGI object has the equivalence of DT_DEBUG in the DT_MIPS_RLD_MAP entry. */ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) return false; } else if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) return false; } if (reltext) { if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) return false; } if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) return false; if (bfd_get_section_by_name (dynobj, MIPS_ELF_REL_DYN_SECTION_NAME (dynobj))) { if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) return false; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) return false; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) return false; } if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0)) return false; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0)) return false; if (bfd_get_section_by_name (dynobj, ".conflict") != NULL) { if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0)) return false; s = bfd_get_section_by_name (dynobj, ".liblist"); BFD_ASSERT (s != NULL); if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0)) return false; } if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) return false; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) return false; #if 0 /* Time stamps in executable files are a bad idea. */ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0)) return false; #endif #if 0 /* FIXME */ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0)) return false; #endif #if 0 /* FIXME */ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0)) return false; #endif if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) return false; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) return false; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) return false; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) return false; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) return false; if (IRIX_COMPAT (dynobj) == ict_irix5 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) return false; if (IRIX_COMPAT (dynobj) == ict_irix6 && (bfd_get_section_by_name (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) return false; if (bfd_get_section_by_name (dynobj, MIPS_ELF_MSYM_SECTION_NAME (dynobj)) && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0)) return false; } return true; } /* If NAME is one of the special IRIX6 symbols defined by the linker, adjust it appropriately now. */ static void mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym) bfd *abfd ATTRIBUTE_UNUSED; const char *name; Elf_Internal_Sym *sym; { /* The linker script takes care of providing names and values for these, but we must place them into the right sections. */ static const char* const text_section_symbols[] = { "_ftext", "_etext", "__dso_displacement", "__elf_header", "__program_header_table", NULL }; static const char* const data_section_symbols[] = { "_fdata", "_edata", "_end", "_fbss", NULL }; const char* const *p; int i; for (i = 0; i < 2; ++i) for (p = (i == 0) ? text_section_symbols : data_section_symbols; *p; ++p) if (strcmp (*p, name) == 0) { /* All of these symbols are given type STT_SECTION by the IRIX6 linker. */ sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); /* The IRIX linker puts these symbols in special sections. */ if (i == 0) sym->st_shndx = SHN_MIPS_TEXT; else sym->st_shndx = SHN_MIPS_DATA; break; } } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ boolean _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym) bfd *output_bfd; struct bfd_link_info *info; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { bfd *dynobj; bfd_vma gval; asection *sgot; asection *smsym; struct mips_got_info *g; const char *name; struct mips_elf_link_hash_entry *mh; dynobj = elf_hash_table (info)->dynobj; gval = sym->st_value; mh = (struct mips_elf_link_hash_entry *) h; if (h->plt.offset != (bfd_vma) -1) { asection *s; bfd_byte *p; bfd_byte stub[MIPS_FUNCTION_STUB_SIZE]; /* This symbol has a stub. Set it up. */ BFD_ASSERT (h->dynindx != -1); s = bfd_get_section_by_name (dynobj, MIPS_ELF_STUB_SECTION_NAME (dynobj)); BFD_ASSERT (s != NULL); /* Fill the stub. */ p = stub; bfd_put_32 (output_bfd, STUB_LW(output_bfd), p); p += 4; bfd_put_32 (output_bfd, STUB_MOVE, p); p += 4; /* FIXME: Can h->dynindex be more than 64K? */ if (h->dynindx & 0xffff0000) return false; bfd_put_32 (output_bfd, STUB_JALR, p); p += 4; bfd_put_32 (output_bfd, STUB_LI16 + h->dynindx, p); BFD_ASSERT (h->plt.offset <= s->_raw_size); memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE); /* Mark the symbol as undefined. plt.offset != -1 occurs only for the referenced symbol. */ sym->st_shndx = SHN_UNDEF; /* The run-time linker uses the st_value field of the symbol to reset the global offset table entry for this external to its stub address when unlinking a shared object. */ gval = s->output_section->vma + s->output_offset + h->plt.offset; sym->st_value = gval; } BFD_ASSERT (h->dynindx != -1); sgot = mips_elf_got_section (dynobj); BFD_ASSERT (sgot != NULL); BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); /* Run through the global symbol table, creating GOT entries for all the symbols that need them. */ if (g->global_gotsym != NULL && h->dynindx >= g->global_gotsym->dynindx) { bfd_vma offset; bfd_vma value; if (sym->st_value) value = sym->st_value; else /* For an entity defined in a shared object, this will be NULL. (For functions in shared objects for which we have created stubs, ST_VALUE will be non-NULL. That's because such the functions are now no longer defined in a shared object.) */ value = h->root.u.def.value; offset = mips_elf_global_got_index (dynobj, h); MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); } /* Create a .msym entry, if appropriate. */ smsym = bfd_get_section_by_name (dynobj, MIPS_ELF_MSYM_SECTION_NAME (dynobj)); if (smsym) { Elf32_Internal_Msym msym; msym.ms_hash_value = bfd_elf_hash (h->root.root.string); /* It is undocumented what the `1' indicates, but IRIX6 uses this value. */ msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1); bfd_mips_elf_swap_msym_out (dynobj, &msym, ((Elf32_External_Msym *) smsym->contents) + h->dynindx); } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ name = h->root.root.string; if (strcmp (name, "_DYNAMIC") == 0 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0) sym->st_shndx = SHN_ABS; else if (strcmp (name, "_DYNAMIC_LINK") == 0) { sym->st_shndx = SHN_ABS; sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_value = 1; } else if (SGI_COMPAT (output_bfd)) { if (strcmp (name, "_gp_disp") == 0) { sym->st_shndx = SHN_ABS; sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_value = elf_gp (output_bfd); } else if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) { sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_other = STO_PROTECTED; sym->st_value = 0; sym->st_shndx = SHN_MIPS_DATA; } else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) { sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_other = STO_PROTECTED; sym->st_value = mips_elf_hash_table (info)->procedure_count; sym->st_shndx = SHN_ABS; } else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) { if (h->type == STT_FUNC) sym->st_shndx = SHN_MIPS_TEXT; else if (h->type == STT_OBJECT) sym->st_shndx = SHN_MIPS_DATA; } } /* Handle the IRIX6-specific symbols. */ if (IRIX_COMPAT (output_bfd) == ict_irix6) mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); if (SGI_COMPAT (output_bfd) && ! info->shared) { if (! mips_elf_hash_table (info)->use_rld_obj_head && strcmp (name, "__rld_map") == 0) { asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); BFD_ASSERT (s != NULL); sym->st_value = s->output_section->vma + s->output_offset; bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents); if (mips_elf_hash_table (info)->rld_value == 0) mips_elf_hash_table (info)->rld_value = sym->st_value; } else if (mips_elf_hash_table (info)->use_rld_obj_head && strcmp (name, "__rld_obj_head") == 0) { /* IRIX6 does not use a .rld_map section. */ if (IRIX_COMPAT (output_bfd) == ict_irix5) BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") != NULL); mips_elf_hash_table (info)->rld_value = sym->st_value; } } /* If this is a mips16 symbol, force the value to be even. */ if (sym->st_other == STO_MIPS16 && (sym->st_value & 1) != 0) --sym->st_value; return true; } /* Finish up the dynamic sections. */ boolean _bfd_mips_elf_finish_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *sdyn; asection *sgot; struct mips_got_info *g; dynobj = elf_hash_table (info)->dynobj; sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); sgot = mips_elf_got_section (dynobj); if (sgot == NULL) g = NULL; else { BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); } if (elf_hash_table (info)->dynamic_sections_created) { bfd_byte *b; BFD_ASSERT (sdyn != NULL); BFD_ASSERT (g != NULL); for (b = sdyn->contents; b < sdyn->contents + sdyn->_raw_size; b += MIPS_ELF_DYN_SIZE (dynobj)) { Elf_Internal_Dyn dyn; const char *name; size_t elemsize; asection *s; boolean swap_out_p; /* Read in the current dynamic entry. */ (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); /* Assume that we're going to modify it and write it out. */ swap_out_p = true; switch (dyn.d_tag) { case DT_RELENT: s = (bfd_get_section_by_name (dynobj, MIPS_ELF_REL_DYN_SECTION_NAME (dynobj))); BFD_ASSERT (s != NULL); dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); break; case DT_STRSZ: /* Rewrite DT_STRSZ. */ dyn.d_un.d_val = _bfd_stringtab_size (elf_hash_table (info)->dynstr); break; case DT_PLTGOT: name = ".got"; goto get_vma; case DT_MIPS_CONFLICT: name = ".conflict"; goto get_vma; case DT_MIPS_LIBLIST: name = ".liblist"; get_vma: s = bfd_get_section_by_name (output_bfd, name); BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->vma; break; case DT_MIPS_RLD_VERSION: dyn.d_un.d_val = 1; /* XXX */ break; case DT_MIPS_FLAGS: dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ break; case DT_MIPS_CONFLICTNO: name = ".conflict"; elemsize = sizeof (Elf32_Conflict); goto set_elemno; case DT_MIPS_LIBLISTNO: name = ".liblist"; elemsize = sizeof (Elf32_Lib); set_elemno: s = bfd_get_section_by_name (output_bfd, name); if (s != NULL) { if (s->_cooked_size != 0) dyn.d_un.d_val = s->_cooked_size / elemsize; else dyn.d_un.d_val = s->_raw_size / elemsize; } else dyn.d_un.d_val = 0; break; case DT_MIPS_TIME_STAMP: time ((time_t *) &dyn.d_un.d_val); break; case DT_MIPS_ICHECKSUM: /* XXX FIXME: */ swap_out_p = false; break; case DT_MIPS_IVERSION: /* XXX FIXME: */ swap_out_p = false; break; case DT_MIPS_BASE_ADDRESS: s = output_bfd->sections; BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->vma & ~(0xffff); break; case DT_MIPS_LOCAL_GOTNO: dyn.d_un.d_val = g->local_gotno; break; case DT_MIPS_UNREFEXTNO: /* The index into the dynamic symbol table which is the entry of the first external symbol that is not referenced within the same object. */ dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; break; case DT_MIPS_GOTSYM: if (g->global_gotsym) { dyn.d_un.d_val = g->global_gotsym->dynindx; break; } /* In case if we don't have global got symbols we default to setting DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO, so we just fall through. */ case DT_MIPS_SYMTABNO: name = ".dynsym"; elemsize = MIPS_ELF_SYM_SIZE (output_bfd); s = bfd_get_section_by_name (output_bfd, name); BFD_ASSERT (s != NULL); if (s->_cooked_size != 0) dyn.d_un.d_val = s->_cooked_size / elemsize; else dyn.d_un.d_val = s->_raw_size / elemsize; break; case DT_MIPS_HIPAGENO: dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO; break; case DT_MIPS_RLD_MAP: dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; break; case DT_MIPS_OPTIONS: s = (bfd_get_section_by_name (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); dyn.d_un.d_ptr = s->vma; break; case DT_MIPS_MSYM: s = (bfd_get_section_by_name (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))); dyn.d_un.d_ptr = s->vma; break; default: swap_out_p = false; break; } if (swap_out_p) (*get_elf_backend_data (dynobj)->s->swap_dyn_out) (dynobj, &dyn, b); } } /* The first entry of the global offset table will be filled at runtime. The second entry will be used by some runtime loaders. This isn't the case of Irix rld. */ if (sgot != NULL && sgot->_raw_size > 0) { MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); } if (sgot != NULL) elf_section_data (sgot->output_section)->this_hdr.sh_entsize = MIPS_ELF_GOT_SIZE (output_bfd); { asection *smsym; asection *s; Elf32_compact_rel cpt; /* ??? The section symbols for the output sections were set up in _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these symbols. Should we do so? */ smsym = bfd_get_section_by_name (dynobj, MIPS_ELF_MSYM_SECTION_NAME (dynobj)); if (smsym != NULL) { Elf32_Internal_Msym msym; msym.ms_hash_value = 0; msym.ms_info = ELF32_MS_INFO (0, 1); for (s = output_bfd->sections; s != NULL; s = s->next) { long dynindx = elf_section_data (s)->dynindx; bfd_mips_elf_swap_msym_out (output_bfd, &msym, (((Elf32_External_Msym *) smsym->contents) + dynindx)); } } if (SGI_COMPAT (output_bfd)) { /* Write .compact_rel section out. */ s = bfd_get_section_by_name (dynobj, ".compact_rel"); if (s != NULL) { cpt.id1 = 1; cpt.num = s->reloc_count; cpt.id2 = 2; cpt.offset = (s->output_section->filepos + sizeof (Elf32_External_compact_rel)); cpt.reserved0 = 0; cpt.reserved1 = 0; bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, ((Elf32_External_compact_rel *) s->contents)); /* Clean up a dummy stub function entry in .text. */ s = bfd_get_section_by_name (dynobj, MIPS_ELF_STUB_SECTION_NAME (dynobj)); if (s != NULL) { file_ptr dummy_offset; BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE); dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE; memset (s->contents + dummy_offset, 0, MIPS_FUNCTION_STUB_SIZE); } } } /* Clean up a first relocation in .rel.dyn. */ s = bfd_get_section_by_name (dynobj, MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)); if (s != NULL && s->_raw_size > 0) memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj)); } return true; } /* This is almost identical to bfd_generic_get_... except that some MIPS relocations need to be handled specially. Sigh. */ static bfd_byte * elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data, relocateable, symbols) bfd *abfd; struct bfd_link_info *link_info; struct bfd_link_order *link_order; bfd_byte *data; boolean relocateable; asymbol **symbols; { /* Get enough memory to hold the stuff */ bfd *input_bfd = link_order->u.indirect.section->owner; asection *input_section = link_order->u.indirect.section; long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); arelent **reloc_vector = NULL; long reloc_count; if (reloc_size < 0) goto error_return; reloc_vector = (arelent **) bfd_malloc (reloc_size); if (reloc_vector == NULL && reloc_size != 0) goto error_return; /* read in the section */ if (!bfd_get_section_contents (input_bfd, input_section, (PTR) data, 0, input_section->_raw_size)) goto error_return; /* We're not relaxing the section, so just copy the size info */ input_section->_cooked_size = input_section->_raw_size; input_section->reloc_done = true; reloc_count = bfd_canonicalize_reloc (input_bfd, input_section, reloc_vector, symbols); if (reloc_count < 0) goto error_return; if (reloc_count > 0) { arelent **parent; /* for mips */ int gp_found; bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ { struct bfd_hash_entry *h; struct bfd_link_hash_entry *lh; /* Skip all this stuff if we aren't mixing formats. */ if (abfd && input_bfd && abfd->xvec == input_bfd->xvec) lh = 0; else { h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false); lh = (struct bfd_link_hash_entry *) h; } lookup: if (lh) { switch (lh->type) { case bfd_link_hash_undefined: case bfd_link_hash_undefweak: case bfd_link_hash_common: gp_found = 0; break; case bfd_link_hash_defined: case bfd_link_hash_defweak: gp_found = 1; gp = lh->u.def.value; break; case bfd_link_hash_indirect: case bfd_link_hash_warning: lh = lh->u.i.link; /* @@FIXME ignoring warning for now */ goto lookup; case bfd_link_hash_new: default: abort (); } } else gp_found = 0; } /* end mips */ for (parent = reloc_vector; *parent != (arelent *) NULL; parent++) { char *error_message = (char *) NULL; bfd_reloc_status_type r; /* Specific to MIPS: Deal with relocation types that require knowing the gp of the output bfd. */ asymbol *sym = *(*parent)->sym_ptr_ptr; if (bfd_is_abs_section (sym->section) && abfd) { /* The special_function wouldn't get called anyways. */ } else if (!gp_found) { /* The gp isn't there; let the special function code fall over on its own. */ } else if ((*parent)->howto->special_function == _bfd_mips_elf_gprel16_reloc) { /* bypass special_function call */ r = gprel16_with_gp (input_bfd, sym, *parent, input_section, relocateable, (PTR) data, gp); goto skip_bfd_perform_relocation; } /* end mips specific stuff */ r = bfd_perform_relocation (input_bfd, *parent, (PTR) data, input_section, relocateable ? abfd : (bfd *) NULL, &error_message); skip_bfd_perform_relocation: if (relocateable) { asection *os = input_section->output_section; /* A partial link, so keep the relocs */ os->orelocation[os->reloc_count] = *parent; os->reloc_count++; } if (r != bfd_reloc_ok) { switch (r) { case bfd_reloc_undefined: if (!((*link_info->callbacks->undefined_symbol) (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), input_bfd, input_section, (*parent)->address, true))) goto error_return; break; case bfd_reloc_dangerous: BFD_ASSERT (error_message != (char *) NULL); if (!((*link_info->callbacks->reloc_dangerous) (link_info, error_message, input_bfd, input_section, (*parent)->address))) goto error_return; break; case bfd_reloc_overflow: if (!((*link_info->callbacks->reloc_overflow) (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), (*parent)->howto->name, (*parent)->addend, input_bfd, input_section, (*parent)->address))) goto error_return; break; case bfd_reloc_outofrange: default: abort (); break; } } } } if (reloc_vector != NULL) free (reloc_vector); return data; error_return: if (reloc_vector != NULL) free (reloc_vector); return NULL; } #define bfd_elf32_bfd_get_relocated_section_contents \ elf32_mips_get_relocated_section_contents /* ECOFF swapping routines. These are used when dealing with the .mdebug section, which is in the ECOFF debugging format. */ static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = { /* Symbol table magic number. */ magicSym, /* Alignment of debugging information. E.g., 4. */ 4, /* Sizes of external symbolic information. */ sizeof (struct hdr_ext), sizeof (struct dnr_ext), sizeof (struct pdr_ext), sizeof (struct sym_ext), sizeof (struct opt_ext), sizeof (struct fdr_ext), sizeof (struct rfd_ext), sizeof (struct ext_ext), /* Functions to swap in external symbolic data. */ ecoff_swap_hdr_in, ecoff_swap_dnr_in, ecoff_swap_pdr_in, ecoff_swap_sym_in, ecoff_swap_opt_in, ecoff_swap_fdr_in, ecoff_swap_rfd_in, ecoff_swap_ext_in, _bfd_ecoff_swap_tir_in, _bfd_ecoff_swap_rndx_in, /* Functions to swap out external symbolic data. */ ecoff_swap_hdr_out, ecoff_swap_dnr_out, ecoff_swap_pdr_out, ecoff_swap_sym_out, ecoff_swap_opt_out, ecoff_swap_fdr_out, ecoff_swap_rfd_out, ecoff_swap_ext_out, _bfd_ecoff_swap_tir_out, _bfd_ecoff_swap_rndx_out, /* Function to read in symbolic data. */ _bfd_mips_elf_read_ecoff_info }; #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec #define TARGET_LITTLE_NAME "elf32-littlemips" #define TARGET_BIG_SYM bfd_elf32_bigmips_vec #define TARGET_BIG_NAME "elf32-bigmips" #define ELF_ARCH bfd_arch_mips #define ELF_MACHINE_CODE EM_MIPS /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses a value of 0x1000, and we are compatible. */ #define ELF_MAXPAGESIZE 0x1000 #define elf_backend_collect true #define elf_backend_type_change_ok true #define elf_backend_can_gc_sections true #define elf_backend_sign_extend_vma true #define elf_info_to_howto mips_info_to_howto_rela #define elf_info_to_howto_rel mips_info_to_howto_rel #define elf_backend_sym_is_global mips_elf_sym_is_global #define elf_backend_object_p _bfd_mips_elf_object_p #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr #define elf_backend_fake_sections _bfd_mips_elf_fake_sections #define elf_backend_section_from_bfd_section \ _bfd_mips_elf_section_from_bfd_section #define elf_backend_section_processing _bfd_mips_elf_section_processing #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing #define elf_backend_additional_program_headers \ _bfd_mips_elf_additional_program_headers #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map #define elf_backend_final_write_processing \ _bfd_mips_elf_final_write_processing #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook #define elf_backend_create_dynamic_sections \ _bfd_mips_elf_create_dynamic_sections #define elf_backend_check_relocs _bfd_mips_elf_check_relocs #define elf_backend_adjust_dynamic_symbol \ _bfd_mips_elf_adjust_dynamic_symbol #define elf_backend_always_size_sections \ _bfd_mips_elf_always_size_sections #define elf_backend_size_dynamic_sections \ _bfd_mips_elf_size_dynamic_sections #define elf_backend_relocate_section _bfd_mips_elf_relocate_section #define elf_backend_link_output_symbol_hook \ _bfd_mips_elf_link_output_symbol_hook #define elf_backend_finish_dynamic_symbol \ _bfd_mips_elf_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections \ _bfd_mips_elf_finish_dynamic_sections #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO) #define elf_backend_plt_header_size 0 #define bfd_elf32_bfd_is_local_label_name \ mips_elf_is_local_label_name #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents #define bfd_elf32_bfd_link_hash_table_create \ _bfd_mips_elf_link_hash_table_create #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link #define bfd_elf32_bfd_copy_private_bfd_data \ _bfd_mips_elf_copy_private_bfd_data #define bfd_elf32_bfd_merge_private_bfd_data \ _bfd_mips_elf_merge_private_bfd_data #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags #define bfd_elf32_bfd_print_private_bfd_data \ _bfd_mips_elf_print_private_bfd_data #include "elf32-target.h"