/* MeP-specific support for 32-bit ELF. Copyright (C) 2001-2016 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/mep.h" #include "libiberty.h" /* Forward declarations. */ /* Private relocation functions. */ #define MEPREL(type, size, bits, right, left, pcrel, overflow, mask) \ {(unsigned)type, right, size, bits, pcrel, left, overflow, bfd_elf_generic_reloc, #type, FALSE, 0, mask, 0 } #define N complain_overflow_dont #define S complain_overflow_signed #define U complain_overflow_unsigned static reloc_howto_type mep_elf_howto_table [] = { /* type, size, bits, leftshift, rightshift, pcrel, OD/OS/OU, mask. */ MEPREL (R_MEP_NONE, 3, 0, 0, 0, 0, N, 0), MEPREL (R_RELC, 0, 0, 0, 0, 0, N, 0), /* MEPRELOC:HOWTO */ /* This section generated from bfd/mep-relocs.pl from include/elf/mep.h. */ MEPREL (R_MEP_8, 0, 8, 0, 0, 0, U, 0xff), MEPREL (R_MEP_16, 1, 16, 0, 0, 0, U, 0xffff), MEPREL (R_MEP_32, 2, 32, 0, 0, 0, U, 0xffffffff), MEPREL (R_MEP_PCREL8A2, 1, 8, 1, 1, 1, S, 0x00fe), MEPREL (R_MEP_PCREL12A2,1, 12, 1, 1, 1, S, 0x0ffe), MEPREL (R_MEP_PCREL17A2,2, 17, 0, 1, 1, S, 0x0000ffff), MEPREL (R_MEP_PCREL24A2,2, 24, 0, 1, 1, S, 0x07f0ffff), MEPREL (R_MEP_PCABS24A2,2, 24, 0, 1, 0, U, 0x07f0ffff), MEPREL (R_MEP_LOW16, 2, 16, 0, 0, 0, N, 0x0000ffff), MEPREL (R_MEP_HI16U, 2, 32, 0,16, 0, N, 0x0000ffff), MEPREL (R_MEP_HI16S, 2, 32, 0,16, 0, N, 0x0000ffff), MEPREL (R_MEP_GPREL, 2, 16, 0, 0, 0, S, 0x0000ffff), MEPREL (R_MEP_TPREL, 2, 16, 0, 0, 0, S, 0x0000ffff), MEPREL (R_MEP_TPREL7, 1, 7, 0, 0, 0, U, 0x007f), MEPREL (R_MEP_TPREL7A2, 1, 7, 1, 1, 0, U, 0x007e), MEPREL (R_MEP_TPREL7A4, 1, 7, 2, 2, 0, U, 0x007c), MEPREL (R_MEP_UIMM24, 2, 24, 0, 0, 0, U, 0x00ffffff), MEPREL (R_MEP_ADDR24A4, 2, 24, 0, 2, 0, U, 0x00fcffff), MEPREL (R_MEP_GNU_VTINHERIT,1, 0,16,32, 0, N, 0x0000), MEPREL (R_MEP_GNU_VTENTRY,1, 0,16,32, 0, N, 0x0000), /* MEPRELOC:END */ }; #define VALID_MEP_RELOC(N) ((N) >= 0 \ && (N) < ARRAY_SIZE (mep_elf_howto_table) #undef N #undef S #undef U #define BFD_RELOC_MEP_NONE BFD_RELOC_NONE #if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE) #define MAP(n) case BFD_RELOC_MEP_##n: type = R_MEP_##n; break #else #define MAP(n) case BFD_RELOC_MEP_/**/n: type = R_MEP_/**/n; break #endif static reloc_howto_type * mep_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { unsigned int type = 0; switch (code) { MAP(NONE); case BFD_RELOC_8: type = R_MEP_8; break; case BFD_RELOC_16: type = R_MEP_16; break; case BFD_RELOC_32: type = R_MEP_32; break; case BFD_RELOC_VTABLE_ENTRY: type = R_MEP_GNU_VTENTRY; break; case BFD_RELOC_VTABLE_INHERIT: type = R_MEP_GNU_VTINHERIT; break; case BFD_RELOC_RELC: type = R_RELC; break; /* MEPRELOC:MAP */ /* This section generated from bfd/mep-relocs.pl from include/elf/mep.h. */ MAP(8); MAP(16); MAP(32); MAP(PCREL8A2); MAP(PCREL12A2); MAP(PCREL17A2); MAP(PCREL24A2); MAP(PCABS24A2); MAP(LOW16); MAP(HI16U); MAP(HI16S); MAP(GPREL); MAP(TPREL); MAP(TPREL7); MAP(TPREL7A2); MAP(TPREL7A4); MAP(UIMM24); MAP(ADDR24A4); MAP(GNU_VTINHERIT); MAP(GNU_VTENTRY); /* MEPRELOC:END */ default: /* Pacify gcc -Wall. */ _bfd_error_handler (_("mep: no reloc for code %d"), code); return NULL; } if (mep_elf_howto_table[type].type != type) { _bfd_error_handler (_("MeP: howto %d has type %d"), type, mep_elf_howto_table[type].type); abort (); } return mep_elf_howto_table + type; } #undef MAP static reloc_howto_type * mep_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < sizeof (mep_elf_howto_table) / sizeof (mep_elf_howto_table[0]); i++) if (mep_elf_howto_table[i].name != NULL && strcasecmp (mep_elf_howto_table[i].name, r_name) == 0) return &mep_elf_howto_table[i]; return NULL; } /* Perform a single relocation. */ static struct bfd_link_info *mep_info; static int warn_tp = 0, warn_sda = 0; static bfd_vma mep_lookup_global (char * name, bfd_vma ofs, bfd_vma * cache, int * warn) { struct bfd_link_hash_entry *h; if (*cache || *warn) return *cache; h = bfd_link_hash_lookup (mep_info->hash, name, FALSE, FALSE, TRUE); if (h == 0 || h->type != bfd_link_hash_defined) { *warn = ofs + 1; return 0; } *cache = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); return *cache; } static bfd_vma mep_tpoff_base (bfd_vma ofs) { static bfd_vma cache = 0; return mep_lookup_global ("__tpbase", ofs, &cache, &warn_tp); } static bfd_vma mep_sdaoff_base (bfd_vma ofs) { static bfd_vma cache = 0; return mep_lookup_global ("__sdabase", ofs, &cache, &warn_sda); } static bfd_reloc_status_type mep_final_link_relocate (reloc_howto_type * howto, bfd * input_bfd, asection * input_section, bfd_byte * contents, Elf_Internal_Rela * rel, bfd_vma relocation) { unsigned long u; long s; unsigned char *byte; bfd_vma pc; bfd_reloc_status_type r = bfd_reloc_ok; int e2, e4; if (bfd_big_endian (input_bfd)) { e2 = 0; e4 = 0; } else { e2 = 1; e4 = 3; } pc = (input_section->output_section->vma + input_section->output_offset + rel->r_offset); s = relocation + rel->r_addend; byte = (unsigned char *)contents + rel->r_offset; if (howto->type == R_MEP_PCREL24A2 && s == 0 && pc >= 0x800000) { /* This is an unreachable branch to an undefined weak function. Silently ignore it, since the opcode can't do that but should never be executed anyway. */ return bfd_reloc_ok; } if (howto->pc_relative) s -= pc; u = (unsigned long) s; switch (howto->type) { /* MEPRELOC:APPLY */ /* This section generated from bfd/mep-relocs.pl from include/elf/mep.h. */ case R_MEP_8: /* 76543210 */ if (u > 255) r = bfd_reloc_overflow; byte[0] = (u & 0xff); break; case R_MEP_16: /* fedcba9876543210 */ if (u > 65535) r = bfd_reloc_overflow; byte[0^e2] = ((u >> 8) & 0xff); byte[1^e2] = (u & 0xff); break; case R_MEP_32: /* vutsrqponmlkjihgfedcba9876543210 */ byte[0^e4] = ((u >> 24) & 0xff); byte[1^e4] = ((u >> 16) & 0xff); byte[2^e4] = ((u >> 8) & 0xff); byte[3^e4] = (u & 0xff); break; case R_MEP_PCREL8A2: /* --------7654321- */ if (-128 > s || s > 127) r = bfd_reloc_overflow; byte[1^e2] = (byte[1^e2] & 0x01) | (s & 0xfe); break; case R_MEP_PCREL12A2: /* ----ba987654321- */ if (-2048 > s || s > 2047) r = bfd_reloc_overflow; byte[0^e2] = (byte[0^e2] & 0xf0) | ((s >> 8) & 0x0f); byte[1^e2] = (byte[1^e2] & 0x01) | (s & 0xfe); break; case R_MEP_PCREL17A2: /* ----------------gfedcba987654321 */ if (-65536 > s || s > 65535) r = bfd_reloc_overflow; byte[2^e2] = ((s >> 9) & 0xff); byte[3^e2] = ((s >> 1) & 0xff); break; case R_MEP_PCREL24A2: /* -----7654321----nmlkjihgfedcba98 */ if (-8388608 > s || s > 8388607) r = bfd_reloc_overflow; byte[0^e2] = (byte[0^e2] & 0xf8) | ((s >> 5) & 0x07); byte[1^e2] = (byte[1^e2] & 0x0f) | ((s << 3) & 0xf0); byte[2^e2] = ((s >> 16) & 0xff); byte[3^e2] = ((s >> 8) & 0xff); break; case R_MEP_PCABS24A2: /* -----7654321----nmlkjihgfedcba98 */ if (u > 16777215) r = bfd_reloc_overflow; byte[0^e2] = (byte[0^e2] & 0xf8) | ((u >> 5) & 0x07); byte[1^e2] = (byte[1^e2] & 0x0f) | ((u << 3) & 0xf0); byte[2^e2] = ((u >> 16) & 0xff); byte[3^e2] = ((u >> 8) & 0xff); break; case R_MEP_LOW16: /* ----------------fedcba9876543210 */ byte[2^e2] = ((u >> 8) & 0xff); byte[3^e2] = (u & 0xff); break; case R_MEP_HI16U: /* ----------------vutsrqponmlkjihg */ byte[2^e2] = ((u >> 24) & 0xff); byte[3^e2] = ((u >> 16) & 0xff); break; case R_MEP_HI16S: /* ----------------vutsrqponmlkjihg */ if (s & 0x8000) s += 0x10000; byte[2^e2] = ((s >> 24) & 0xff); byte[3^e2] = ((s >> 16) & 0xff); break; case R_MEP_GPREL: /* ----------------fedcba9876543210 */ s -= mep_sdaoff_base(rel->r_offset); if (-32768 > s || s > 32767) r = bfd_reloc_overflow; byte[2^e2] = ((s >> 8) & 0xff); byte[3^e2] = (s & 0xff); break; case R_MEP_TPREL: /* ----------------fedcba9876543210 */ s -= mep_tpoff_base(rel->r_offset); if (-32768 > s || s > 32767) r = bfd_reloc_overflow; byte[2^e2] = ((s >> 8) & 0xff); byte[3^e2] = (s & 0xff); break; case R_MEP_TPREL7: /* ---------6543210 */ u -= mep_tpoff_base(rel->r_offset); if (u > 127) r = bfd_reloc_overflow; byte[1^e2] = (byte[1^e2] & 0x80) | (u & 0x7f); break; case R_MEP_TPREL7A2: /* ---------654321- */ u -= mep_tpoff_base(rel->r_offset); if (u > 127) r = bfd_reloc_overflow; byte[1^e2] = (byte[1^e2] & 0x81) | (u & 0x7e); break; case R_MEP_TPREL7A4: /* ---------65432-- */ u -= mep_tpoff_base(rel->r_offset); if (u > 127) r = bfd_reloc_overflow; byte[1^e2] = (byte[1^e2] & 0x83) | (u & 0x7c); break; case R_MEP_UIMM24: /* --------76543210nmlkjihgfedcba98 */ if (u > 16777215) r = bfd_reloc_overflow; byte[1^e2] = (u & 0xff); byte[2^e2] = ((u >> 16) & 0xff); byte[3^e2] = ((u >> 8) & 0xff); break; case R_MEP_ADDR24A4: /* --------765432--nmlkjihgfedcba98 */ if (u > 16777215) r = bfd_reloc_overflow; byte[1^e2] = (byte[1^e2] & 0x03) | (u & 0xfc); byte[2^e2] = ((u >> 16) & 0xff); byte[3^e2] = ((u >> 8) & 0xff); break; case R_MEP_GNU_VTINHERIT: /* ---------------- */ break; case R_MEP_GNU_VTENTRY: /* ---------------- */ break; /* MEPRELOC:END */ default: abort (); } return r; } /* Set the howto pointer for a MEP ELF reloc. */ static void mep_info_to_howto_rela (bfd * abfd ATTRIBUTE_UNUSED, arelent * cache_ptr, Elf_Internal_Rela * dst) { unsigned int r_type; r_type = ELF32_R_TYPE (dst->r_info); if (r_type >= R_MEP_max) { _bfd_error_handler (_("%B: invalid MEP reloc number: %d"), abfd, r_type); r_type = 0; } cache_ptr->howto = & mep_elf_howto_table [r_type]; } /* Relocate a MEP ELF section. There is some attempt to make this function usable for many architectures, both USE_REL and USE_RELA ['twould be nice if such a critter existed], if only to serve as a learning tool. The RELOCATE_SECTION function is called by the new ELF backend linker to handle the relocations for a section. The relocs are always passed as Rela structures; if the section actually uses Rel structures, the r_addend field will always be zero. This function is responsible for adjusting the section contents as necessary, and (if using Rela relocs and generating a relocatable output file) adjusting the reloc addend as necessary. This function does not have to worry about setting the reloc address or the reloc symbol index. LOCAL_SYMS is a pointer to the swapped in local symbols. LOCAL_SECTIONS is an array giving the section in the input file corresponding to the st_shndx field of each local symbol. The global hash table entry for the global symbols can be found via elf_sym_hashes (input_bfd). When generating relocatable output, this function must handle STB_LOCAL/STT_SECTION symbols specially. The output symbol is going to be the section symbol corresponding to the output section, which means that the addend must be adjusted accordingly. */ static bfd_boolean mep_elf_relocate_section (bfd * output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info * info, bfd * input_bfd, asection * input_section, bfd_byte * contents, Elf_Internal_Rela * relocs, Elf_Internal_Sym * local_syms, asection ** local_sections) { Elf_Internal_Shdr * symtab_hdr; struct elf_link_hash_entry ** sym_hashes; Elf_Internal_Rela * rel; Elf_Internal_Rela * relend; symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); relend = relocs + input_section->reloc_count; mep_info = info; for (rel = relocs; rel < relend; rel ++) { reloc_howto_type * howto; unsigned long r_symndx; Elf_Internal_Sym * sym; asection * sec; struct elf_link_hash_entry * h; bfd_vma relocation; bfd_reloc_status_type r; const char * name = NULL; int r_type; r_type = ELF32_R_TYPE (rel->r_info); r_symndx = ELF32_R_SYM (rel->r_info); howto = mep_elf_howto_table + ELF32_R_TYPE (rel->r_info); h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections [r_symndx]; relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name; } else { bfd_boolean warned, unresolved_reloc, ignored; RELOC_FOR_GLOBAL_SYMBOL(info, input_bfd, input_section, rel, r_symndx, symtab_hdr, sym_hashes, h, sec, relocation, unresolved_reloc, warned, ignored); name = h->root.root.string; } if (sec != NULL && discarded_section (sec)) RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, rel, 1, relend, howto, 0, contents); if (bfd_link_relocatable (info)) continue; if (r_type == R_RELC) r = bfd_elf_perform_complex_relocation (input_bfd, input_section, contents, rel, relocation); else r = mep_final_link_relocate (howto, input_bfd, input_section, contents, rel, relocation); if (r != bfd_reloc_ok) { const char * msg = (const char *) NULL; switch (r) { case bfd_reloc_overflow: (*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset); break; case bfd_reloc_undefined: (*info->callbacks->undefined_symbol) (info, name, input_bfd, input_section, rel->r_offset, TRUE); break; case bfd_reloc_outofrange: msg = _("internal error: out of range error"); break; case bfd_reloc_notsupported: msg = _("internal error: unsupported relocation error"); break; case bfd_reloc_dangerous: msg = _("internal error: dangerous relocation"); break; default: msg = _("internal error: unknown error"); break; } if (msg) (*info->callbacks->warning) (info, msg, name, input_bfd, input_section, rel->r_offset); } } if (warn_tp) info->callbacks->undefined_symbol (info, "__tpbase", input_bfd, input_section, warn_tp-1, TRUE); if (warn_sda) info->callbacks->undefined_symbol (info, "__sdabase", input_bfd, input_section, warn_sda-1, TRUE); if (warn_sda || warn_tp) return FALSE; return TRUE; } /* Function to set the ELF flag bits. */ static bfd_boolean mep_elf_set_private_flags (bfd * abfd, flagword flags) { elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = TRUE; return TRUE; } /* Merge backend specific data from an object file to the output object file when linking. */ static bfd_boolean mep_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) { bfd *obfd = info->output_bfd; static bfd *last_ibfd = 0; flagword old_flags, new_flags; flagword old_partial, new_partial; /* Check if we have the same endianness. */ if (!_bfd_generic_verify_endian_match (ibfd, info)) return FALSE; new_flags = elf_elfheader (ibfd)->e_flags; old_flags = elf_elfheader (obfd)->e_flags; #ifdef DEBUG _bfd_error_handler ("%B: old_flags = 0x%.8lx, new_flags = 0x%.8lx, init = %s", ibfd, old_flags, new_flags, elf_flags_init (obfd) ? "yes" : "no"); #endif /* First call, no flags set. */ if (!elf_flags_init (obfd)) { elf_flags_init (obfd) = TRUE; old_flags = new_flags; } else if ((new_flags | old_flags) & EF_MEP_LIBRARY) { /* Non-library flags trump library flags. The choice doesn't really matter if both OLD_FLAGS and NEW_FLAGS have EF_MEP_LIBRARY set. */ if (old_flags & EF_MEP_LIBRARY) old_flags = new_flags; } else { /* Make sure they're for the same mach. Allow upgrade from the "mep" mach. */ new_partial = (new_flags & EF_MEP_CPU_MASK); old_partial = (old_flags & EF_MEP_CPU_MASK); if (new_partial == old_partial) ; else if (new_partial == EF_MEP_CPU_MEP) ; else if (old_partial == EF_MEP_CPU_MEP) old_flags = (old_flags & ~EF_MEP_CPU_MASK) | new_partial; else { _bfd_error_handler (_("%B and %B are for different cores"), last_ibfd, ibfd); bfd_set_error (bfd_error_invalid_target); return FALSE; } /* Make sure they're for the same me_module. Allow basic config to mix with any other. */ new_partial = (new_flags & EF_MEP_INDEX_MASK); old_partial = (old_flags & EF_MEP_INDEX_MASK); if (new_partial == old_partial) ; else if (new_partial == 0) ; else if (old_partial == 0) old_flags = (old_flags & ~EF_MEP_INDEX_MASK) | new_partial; else { _bfd_error_handler (_("%B and %B are for different configurations"), last_ibfd, ibfd); bfd_set_error (bfd_error_invalid_target); return FALSE; } } elf_elfheader (obfd)->e_flags = old_flags; last_ibfd = ibfd; return TRUE; } /* This will be edited by the MeP configration tool. */ static const char * config_names[] = { "basic" /* start-mepcfgtool */ ,"default" /* end-mepcfgtool */ }; static const char * core_names[] = { "MeP", "MeP-c2", "MeP-c3", "MeP-h1" }; static bfd_boolean mep_elf_print_private_bfd_data (bfd * abfd, void * ptr) { FILE * file = (FILE *) ptr; flagword flags, partial_flags; BFD_ASSERT (abfd != NULL && ptr != NULL); /* Print normal ELF private data. */ _bfd_elf_print_private_bfd_data (abfd, ptr); flags = elf_elfheader (abfd)->e_flags; fprintf (file, _("private flags = 0x%lx"), (unsigned long) flags); partial_flags = (flags & EF_MEP_CPU_MASK) >> 24; if (partial_flags < ARRAY_SIZE (core_names)) fprintf (file, " core: %s", core_names[(long)partial_flags]); partial_flags = flags & EF_MEP_INDEX_MASK; if (partial_flags < ARRAY_SIZE (config_names)) fprintf (file, " me_module: %s", config_names[(long)partial_flags]); fputc ('\n', file); return TRUE; } /* Return the machine subcode from the ELF e_flags header. */ static int elf32_mep_machine (bfd * abfd) { switch (elf_elfheader (abfd)->e_flags & EF_MEP_CPU_MASK) { default: break; case EF_MEP_CPU_C2: return bfd_mach_mep; case EF_MEP_CPU_C3: return bfd_mach_mep; case EF_MEP_CPU_C4: return bfd_mach_mep; case EF_MEP_CPU_C5: return bfd_mach_mep_c5; case EF_MEP_CPU_H1: return bfd_mach_mep_h1; } return bfd_mach_mep; } static bfd_boolean mep_elf_object_p (bfd * abfd) { bfd_default_set_arch_mach (abfd, bfd_arch_mep, elf32_mep_machine (abfd)); return TRUE; } static bfd_boolean mep_elf_section_flags (flagword * flags, const Elf_Internal_Shdr * hdr) { if (hdr->sh_flags & SHF_MEP_VLIW) * flags |= SEC_MEP_VLIW; return TRUE; } static bfd_boolean mep_elf_fake_sections (bfd * abfd ATTRIBUTE_UNUSED, Elf_Internal_Shdr * hdr, asection * sec) { if (sec->flags & SEC_MEP_VLIW) hdr->sh_flags |= SHF_MEP_VLIW; return TRUE; } #define ELF_ARCH bfd_arch_mep #define ELF_MACHINE_CODE EM_CYGNUS_MEP #define ELF_MAXPAGESIZE 0x1000 #define TARGET_BIG_SYM mep_elf32_vec #define TARGET_BIG_NAME "elf32-mep" #define TARGET_LITTLE_SYM mep_elf32_le_vec #define TARGET_LITTLE_NAME "elf32-mep-little" #define elf_info_to_howto_rel NULL #define elf_info_to_howto mep_info_to_howto_rela #define elf_backend_relocate_section mep_elf_relocate_section #define elf_backend_object_p mep_elf_object_p #define elf_backend_section_flags mep_elf_section_flags #define elf_backend_fake_sections mep_elf_fake_sections #define bfd_elf32_bfd_reloc_type_lookup mep_reloc_type_lookup #define bfd_elf32_bfd_reloc_name_lookup mep_reloc_name_lookup #define bfd_elf32_bfd_set_private_flags mep_elf_set_private_flags #define bfd_elf32_bfd_merge_private_bfd_data mep_elf_merge_private_bfd_data #define bfd_elf32_bfd_print_private_bfd_data mep_elf_print_private_bfd_data #define elf_backend_rela_normal 1 #include "elf32-target.h"