/* Motorola 68k series support for 32-bit ELF Copyright 1993, 1995, 1996 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "bfd.h" #include "sysdep.h" #include "bfdlink.h" #include "libbfd.h" #include "elf-bfd.h" static reloc_howto_type *reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type)); static void rtype_to_howto PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *)); static void rtype_to_howto_rel PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *)); static boolean elf_m68k_check_relocs PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *)); static boolean elf_m68k_adjust_dynamic_symbol PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); static boolean elf_m68k_size_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static boolean elf_m68k_relocate_section PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); static boolean elf_m68k_finish_dynamic_symbol PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); static boolean elf_m68k_finish_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); /* elf32 m68k code, generated by elf.el */ enum reloc_type { R_68K_NONE = 0, R_68K_32 = 1, R_68K_16 = 2, R_68K_8 = 3, R_68K_PC32 = 4, R_68K_PC16 = 5, R_68K_PC8 = 6, R_68K_GOT32 = 7, R_68K_GOT16 = 8, R_68K_GOT8 = 9, R_68K_GOT32O = 10, R_68K_GOT16O = 11, R_68K_GOT8O = 12, R_68K_PLT32 = 13, R_68K_PLT16 = 14, R_68K_PLT8 = 15, R_68K_PLT32O = 16, R_68K_PLT16O = 17, R_68K_PLT8O = 18, R_68K_COPY = 19, R_68K_GLOB_DAT = 20, R_68K_JMP_SLOT = 21, R_68K_RELATIVE = 22, R_68K__max }; static reloc_howto_type howto_table[] = { HOWTO(R_68K_NONE, 0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", false, 0, 0x00000000,false), HOWTO(R_68K_32, 0, 2,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", false, 0, 0xffffffff,false), HOWTO(R_68K_16, 0, 1,16, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", false, 0, 0x0000ffff,false), HOWTO(R_68K_8, 0, 0, 8, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", false, 0, 0x000000ff,false), HOWTO(R_68K_PC32, 0, 2,32, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC32", false, 0, 0xffffffff,true), HOWTO(R_68K_PC16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", false, 0, 0x0000ffff,true), HOWTO(R_68K_PC8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", false, 0, 0x000000ff,true), HOWTO(R_68K_GOT32, 0, 2,32, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT32", false, 0, 0xffffffff,true), HOWTO(R_68K_GOT16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", false, 0, 0x0000ffff,true), HOWTO(R_68K_GOT8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", false, 0, 0x000000ff,true), HOWTO(R_68K_GOT32O, 0, 2,32, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT32O", false, 0, 0xffffffff,false), HOWTO(R_68K_GOT16O, 0, 1,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", false, 0, 0x0000ffff,false), HOWTO(R_68K_GOT8O, 0, 0, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", false, 0, 0x000000ff,false), HOWTO(R_68K_PLT32, 0, 2,32, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT32", false, 0, 0xffffffff,true), HOWTO(R_68K_PLT16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", false, 0, 0x0000ffff,true), HOWTO(R_68K_PLT8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", false, 0, 0x000000ff,true), HOWTO(R_68K_PLT32O, 0, 2,32, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT32O", false, 0, 0xffffffff,false), HOWTO(R_68K_PLT16O, 0, 1,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", false, 0, 0x0000ffff,false), HOWTO(R_68K_PLT8O, 0, 0, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", false, 0, 0x000000ff,false), HOWTO(R_68K_COPY, 0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", false, 0, 0xffffffff,false), HOWTO(R_68K_GLOB_DAT, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", false, 0, 0xffffffff,false), HOWTO(R_68K_JMP_SLOT, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", false, 0, 0xffffffff,false), HOWTO(R_68K_RELATIVE, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", false, 0, 0xffffffff,false), }; static void rtype_to_howto (abfd, cache_ptr, dst) bfd *abfd; arelent *cache_ptr; Elf_Internal_Rela *dst; { BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K__max); cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)]; } static void rtype_to_howto_rel (abfd, cache_ptr, dst) bfd *abfd; arelent *cache_ptr; Elf_Internal_Rel *dst; { BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K__max); cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)]; } #define elf_info_to_howto rtype_to_howto #define elf_info_to_howto_rel rtype_to_howto_rel static const struct { unsigned char bfd_val, elf_val; } reloc_map[] = { { BFD_RELOC_NONE, R_68K_NONE }, { BFD_RELOC_32, R_68K_32 }, { BFD_RELOC_16, R_68K_16 }, { BFD_RELOC_8, R_68K_8 }, { BFD_RELOC_32_PCREL, R_68K_PC32 }, { BFD_RELOC_16_PCREL, R_68K_PC16 }, { BFD_RELOC_8_PCREL, R_68K_PC8 }, { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 }, { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 }, { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 }, { BFD_RELOC_32_GOTOFF, R_68K_GOT32O }, { BFD_RELOC_16_GOTOFF, R_68K_GOT16O }, { BFD_RELOC_8_GOTOFF, R_68K_GOT8O }, { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 }, { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 }, { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 }, { BFD_RELOC_32_PLTOFF, R_68K_PLT32O }, { BFD_RELOC_16_PLTOFF, R_68K_PLT16O }, { BFD_RELOC_8_PLTOFF, R_68K_PLT8O }, { BFD_RELOC_NONE, R_68K_COPY }, { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT }, { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT }, { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE }, { BFD_RELOC_CTOR, R_68K_32 }, }; static reloc_howto_type * reloc_type_lookup (abfd, code) bfd *abfd; bfd_reloc_code_real_type code; { unsigned int i; for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++) { if (reloc_map[i].bfd_val == code) return &howto_table[(int) reloc_map[i].elf_val]; } return 0; } #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup #define ELF_ARCH bfd_arch_m68k /* end code generated by elf.el */ #define USE_RELA /* Functions for the m68k ELF linker. */ /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" /* The size in bytes of an entry in the procedure linkage table. */ #define PLT_ENTRY_SIZE 20 /* The first entry in a procedure linkage table looks like this. See the SVR4 ABI m68k supplement to see how this works. */ static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] = { 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ 0, 0, 0, 0, /* replaced with offset to .got + 4. */ 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */ 0, 0, 0, 0, /* replaced with offset to .got + 8. */ 0, 0, 0, 0 /* pad out to 20 bytes. */ }; /* Subsequent entries in a procedure linkage table look like this. */ static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] = { 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */ 0, 0, 0, 0, /* replaced with offset to symbol's .got entry. */ 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 0, 0, 0, 0, /* replaced with offset into relocation table. */ 0x60, 0xff, /* bra.l .plt */ 0, 0, 0, 0 /* replaced with offset to start of .plt. */ }; /* Look through the relocs for a section during the first phase, and allocate space in the global offset table or procedure linkage table. */ static boolean elf_m68k_check_relocs (abfd, info, sec, relocs) bfd *abfd; struct bfd_link_info *info; asection *sec; const Elf_Internal_Rela *relocs; { bfd *dynobj; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_vma *local_got_offsets; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *sgot; asection *srelgot; asection *sreloc; if (info->relocateable) return true; dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_offsets = elf_local_got_offsets (abfd); sgot = NULL; srelgot = NULL; sreloc = NULL; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { unsigned long r_symndx; struct elf_link_hash_entry *h; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else h = sym_hashes[r_symndx - symtab_hdr->sh_info]; switch (ELF32_R_TYPE (rel->r_info)) { case R_68K_GOT8: case R_68K_GOT16: case R_68K_GOT32: if (h != NULL && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) break; /* Fall through. */ case R_68K_GOT8O: case R_68K_GOT16O: case R_68K_GOT32O: /* This symbol requires a global offset table entry. */ if (dynobj == NULL) { /* Create the .got section. */ elf_hash_table (info)->dynobj = dynobj = abfd; if (!_bfd_elf_create_got_section (dynobj, info)) return false; } if (sgot == NULL) { sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); } if (srelgot == NULL && (h != NULL || info->shared)) { srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); if (srelgot == NULL) { srelgot = bfd_make_section (dynobj, ".rela.got"); if (srelgot == NULL || !bfd_set_section_flags (dynobj, srelgot, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)) || !bfd_set_section_alignment (dynobj, srelgot, 2)) return false; } } if (h != NULL) { if (h->got_offset != (bfd_vma) -1) { /* We have already allocated space in the .got. */ break; } h->got_offset = sgot->_raw_size; /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1) { if (!bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } srelgot->_raw_size += sizeof (Elf32_External_Rela); } else { /* This is a global offset table entry for a local symbol. */ if (local_got_offsets == NULL) { size_t size; register unsigned int i; size = symtab_hdr->sh_info * sizeof (bfd_vma); local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size); if (local_got_offsets == NULL) return false; elf_local_got_offsets (abfd) = local_got_offsets; for (i = 0; i < symtab_hdr->sh_info; i++) local_got_offsets[i] = (bfd_vma) -1; } if (local_got_offsets[r_symndx] != (bfd_vma) -1) { /* We have already allocated space in the .got. */ break; } local_got_offsets[r_symndx] = sgot->_raw_size; if (info->shared) { /* If we are generating a shared object, we need to output a R_68K_RELATIVE reloc so that the dynamic linker can adjust this GOT entry. */ srelgot->_raw_size += sizeof (Elf32_External_Rela); } } sgot->_raw_size += 4; break; case R_68K_PLT8: case R_68K_PLT16: case R_68K_PLT32: /* This symbol requires a procedure linkage table entry. We actually build the entry in adjust_dynamic_symbol, because this might be a case of linking PIC code which is never referenced by a dynamic object, in which case we don't need to generate a procedure linkage table entry after all. */ /* If this is a local symbol, we resolve it directly without creating a procedure linkage table entry. */ if (h == NULL) continue; h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; break; case R_68K_PLT8O: case R_68K_PLT16O: case R_68K_PLT32O: /* This symbol requires a procedure linkage table entry. */ if (h == NULL) { /* It does not make sense to have this relocation for a local symbol. FIXME: does it? How to handle it if it does make sense? */ bfd_set_error (bfd_error_bad_value); return false; } /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1) { if (!bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; break; case R_68K_PC8: case R_68K_PC16: case R_68K_PC32: if (h == NULL) break; /* Fall through. */ case R_68K_8: case R_68K_16: case R_68K_32: if (info->shared && (sec->flags & SEC_ALLOC) != 0 && ((ELF32_R_TYPE (rel->r_info) != R_68K_PC8 && ELF32_R_TYPE (rel->r_info) != R_68K_PC16 && ELF32_R_TYPE (rel->r_info) != R_68K_PC32) || (!info->symbolic || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))) { /* When creating a shared object, we must copy these reloc types into the output file. We create a reloc section in dynobj and make room for this reloc. */ if (sreloc == NULL) { const char *name; name = (bfd_elf_string_from_elf_section (abfd, elf_elfheader (abfd)->e_shstrndx, elf_section_data (sec)->rel_hdr.sh_name)); if (name == NULL) return false; BFD_ASSERT (strncmp (name, ".rela", 5) == 0 && strcmp (bfd_get_section_name (abfd, sec), name + 5) == 0); sreloc = bfd_get_section_by_name (dynobj, name); if (sreloc == NULL) { sreloc = bfd_make_section (dynobj, name); if (sreloc == NULL || !bfd_set_section_flags (dynobj, sreloc, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)) || !bfd_set_section_alignment (dynobj, sreloc, 2)) return false; } } sreloc->_raw_size += sizeof (Elf32_External_Rela); } break; default: break; } } return true; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static boolean elf_m68k_adjust_dynamic_symbol (info, h) struct bfd_link_info *info; struct elf_link_hash_entry *h; { bfd *dynobj; asection *s; unsigned int power_of_two; dynobj = elf_hash_table (info)->dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) || h->weakdef != NULL || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))); /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later, when we know the address of the .got section. */ if (h->type == STT_FUNC || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) { if (! info->shared && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0 /* We must always create the plt entry if it was referenced by a PLTxxO relocation. In this case we already recorded it as a dynamic symbol. */ && h->dynindx == -1) { /* This case can occur if we saw a PLTxx reloc in an input file, but the symbol was never referred to by a dynamic object. In such a case, we don't actually need to build a procedure linkage table, and we can just do a PCxx reloc instead. */ BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0); return true; } /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1) { if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } s = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (s != NULL); /* If this is the first .plt entry, make room for the special first entry. */ if (s->_raw_size == 0) s->_raw_size += PLT_ENTRY_SIZE; /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (!info->shared && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) { h->root.u.def.section = s; h->root.u.def.value = s->_raw_size; } h->plt_offset = s->_raw_size; /* Make room for this entry. */ s->_raw_size += PLT_ENTRY_SIZE; /* We also need to make an entry in the .got.plt section, which will be placed in the .got section by the linker script. */ s = bfd_get_section_by_name (dynobj, ".got.plt"); BFD_ASSERT (s != NULL); s->_raw_size += 4; /* We also need to make an entry in the .rela.plt section. */ s = bfd_get_section_by_name (dynobj, ".rela.plt"); BFD_ASSERT (s != NULL); s->_raw_size += sizeof (Elf32_External_Rela); return true; } /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->weakdef != NULL) { BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined || h->weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->weakdef->root.u.def.section; h->root.u.def.value = h->weakdef->root.u.def.value; return true; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return true; /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ s = bfd_get_section_by_name (dynobj, ".dynbss"); BFD_ASSERT (s != NULL); /* If the symbol is currently defined in the .bss section of the dynamic object, then it is OK to simply initialize it to zero. If the symbol is in some other section, we must generate a R_68K_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. We need to remember the offset into the .rela.bss section we are going to use. */ if ((h->root.u.def.section->flags & SEC_LOAD) != 0) { asection *srel; srel = bfd_get_section_by_name (dynobj, ".rela.bss"); BFD_ASSERT (srel != NULL); srel->_raw_size += sizeof (Elf32_External_Rela); h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY; } /* We need to figure out the alignment required for this symbol. I have no idea how ELF linkers handle this. */ power_of_two = bfd_log2 (h->size); if (power_of_two > 3) power_of_two = 3; /* Apply the required alignment. */ s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two)); if (power_of_two > bfd_get_section_alignment (dynobj, s)) { if (!bfd_set_section_alignment (dynobj, s, power_of_two)) return false; } /* Define the symbol as being at this point in the section. */ h->root.u.def.section = s; h->root.u.def.value = s->_raw_size; /* Increment the section size to make room for the symbol. */ s->_raw_size += h->size; return true; } /* Set the sizes of the dynamic sections. */ static boolean elf_m68k_size_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *s; boolean plt; boolean relocs; boolean reltext; dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (!info->shared) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } else { /* We may have created entries in the .rela.got section. However, if we are not creating the dynamic sections, we will not actually use these entries. Reset the size of .rela.got, which will cause it to get stripped from the output file below. */ s = bfd_get_section_by_name (dynobj, ".rela.got"); if (s != NULL) s->_raw_size = 0; } /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ plt = false; relocs = false; reltext = false; for (s = dynobj->sections; s != NULL; s = s->next) { const char *name; boolean strip; if ((s->flags & SEC_LINKER_CREATED) == 0) continue; /* It's OK to base decisions on the section name, because none of the dynobj section names depend upon the input files. */ name = bfd_get_section_name (dynobj, s); strip = false; if (strcmp (name, ".plt") == 0) { if (s->_raw_size == 0) { /* Strip this section if we don't need it; see the comment below. */ strip = true; } else { /* Remember whether there is a PLT. */ plt = true; } } else if (strncmp (name, ".rela", 5) == 0) { if (s->_raw_size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rela.bss and .rela.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ strip = true; } else { asection *target; /* Remember whether there are any reloc sections other than .rela.plt. */ if (strcmp (name, ".rela.plt") != 0) { relocs = true; /* If this relocation section applies to a read only section, then we probably need a DT_TEXTREL entry. .rela.plt is actually associated with .got.plt, which is never readonly. */ target = bfd_get_section_by_name (output_bfd, name + 5); if (target != NULL && (target->flags & SEC_READONLY) != 0) reltext = true; } /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } } else if (strncmp (name, ".got", 4) != 0) { /* It's not one of our sections, so don't allocate space. */ continue; } if (strip) { asection **spp; for (spp = &s->output_section->owner->sections; *spp != s->output_section; spp = &(*spp)->next) ; *spp = s->output_section->next; --s->output_section->owner->section_count; continue; } /* Allocate memory for the section contents. */ s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); if (s->contents == NULL && s->_raw_size != 0) return false; } if (elf_hash_table (info)->dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in elf_m68k_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ if (!info->shared) { if (!bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0)) return false; } if (plt) { if (!bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0) || !bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0) || !bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA) || !bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0)) return false; } if (relocs) { if (!bfd_elf32_add_dynamic_entry (info, DT_RELA, 0) || !bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0) || !bfd_elf32_add_dynamic_entry (info, DT_RELAENT, sizeof (Elf32_External_Rela))) return false; } if (reltext) { if (!bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0)) return false; } } return true; } /* Relocate an M68K ELF section. */ static boolean elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section, contents, relocs, local_syms, local_sections) bfd *output_bfd; struct bfd_link_info *info; bfd *input_bfd; asection *input_section; bfd_byte *contents; Elf_Internal_Rela *relocs; Elf_Internal_Sym *local_syms; asection **local_sections; { bfd *dynobj; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_vma *local_got_offsets; asection *sgot; asection *splt; asection *sreloc; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); local_got_offsets = elf_local_got_offsets (input_bfd); sgot = NULL; splt = NULL; sreloc = NULL; rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { int r_type; reloc_howto_type *howto; unsigned long r_symndx; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; asection *sec; bfd_vma relocation; bfd_reloc_status_type r; r_type = ELF32_R_TYPE (rel->r_info); if (r_type < 0 || r_type >= (int) R_68K__max) { bfd_set_error (bfd_error_bad_value); return false; } howto = howto_table + r_type; r_symndx = ELF32_R_SYM (rel->r_info); if (info->relocateable) { /* This is a relocateable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) { sec = local_sections[r_symndx]; rel->r_addend += sec->output_offset + sym->st_value; } } continue; } /* This is a final link. */ h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; relocation = (sec->output_section->vma + sec->output_offset + sym->st_value); } else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { sec = h->root.u.def.section; if (((r_type == R_68K_PLT8 || r_type == R_68K_PLT16 || r_type == R_68K_PLT32 || r_type == R_68K_PLT8O || r_type == R_68K_PLT16O || r_type == R_68K_PLT32O) && h->plt_offset != (bfd_vma) -1) || ((r_type == R_68K_GOT8O || r_type == R_68K_GOT16O || r_type == R_68K_GOT32O || ((r_type == R_68K_GOT8 || r_type == R_68K_GOT16 || r_type == R_68K_GOT32) && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") != 0)) && elf_hash_table (info)->dynamic_sections_created && (! info->shared || ! info->symbolic || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) || (info->shared && (! info->symbolic || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) && (input_section->flags & SEC_ALLOC) != 0 && (r_type == R_68K_8 || r_type == R_68K_16 || r_type == R_68K_32 || r_type == R_68K_PC8 || r_type == R_68K_PC16 || r_type == R_68K_PC32))) { /* In these cases, we don't need the relocation value. We check specially because in some obscure cases sec->output_section will be NULL. */ relocation = 0; } else relocation = (h->root.u.def.value + sec->output_section->vma + sec->output_offset); } else if (h->root.type == bfd_link_hash_undefweak) relocation = 0; else if (info->shared && !info->symbolic) relocation = 0; else { if (!(info->callbacks->undefined_symbol (info, h->root.root.string, input_bfd, input_section, rel->r_offset))) return false; relocation = 0; } } switch (r_type) { case R_68K_GOT8: case R_68K_GOT16: case R_68K_GOT32: /* Relocation is to the address of the entry for this symbol in the global offset table. */ if (h != NULL && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) break; /* Fall through. */ case R_68K_GOT8O: case R_68K_GOT16O: case R_68K_GOT32O: /* Relocation is the offset of the entry for this symbol in the global offset table. */ { bfd_vma off; if (sgot == NULL) { sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); } if (h != NULL) { off = h->got_offset; BFD_ASSERT (off != (bfd_vma) -1); if (!elf_hash_table (info)->dynamic_sections_created || (info->shared && info->symbolic && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally. We must initialize this entry in the global offset table. Since the offset must always be a multiple of 4, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a .rela.got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); h->got_offset |= 1; } } } else { BFD_ASSERT (local_got_offsets != NULL && local_got_offsets[r_symndx] != (bfd_vma) -1); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already generated the necessary reloc. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); if (info->shared) { asection *srelgot; Elf_Internal_Rela outrel; srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); BFD_ASSERT (srelgot != NULL); outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); outrel.r_addend = relocation; bfd_elf32_swap_reloca_out (output_bfd, &outrel, (((Elf32_External_Rela *) srelgot->contents) + srelgot->reloc_count)); ++srelgot->reloc_count; } local_got_offsets[r_symndx] |= 1; } } relocation = sgot->output_offset + off; if (r_type == R_68K_GOT8O || r_type == R_68K_GOT16O || r_type == R_68K_GOT32O) { /* This relocation does not use the addend. */ rel->r_addend = 0; } else relocation += sgot->output_section->vma; } break; case R_68K_PLT8: case R_68K_PLT16: case R_68K_PLT32: /* Relocation is to the entry for this symbol in the procedure linkage table. */ /* Resolve a PLTxx reloc against a local symbol directly, without using the procedure linkage table. */ if (h == NULL) break; if (h->plt_offset == (bfd_vma) -1) { /* We didn't make a PLT entry for this symbol. This happens when statically linking PIC code, or when using -Bsymbolic. */ break; } if (splt == NULL) { splt = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (splt != NULL); } relocation = (splt->output_section->vma + splt->output_offset + h->plt_offset); break; case R_68K_PLT8O: case R_68K_PLT16O: case R_68K_PLT32O: /* Relocation is the offset of the entry for this symbol in the procedure linkage table. */ BFD_ASSERT (h != NULL && h->plt_offset == (bfd_vma) -1); if (splt == NULL) { splt = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (splt != NULL); } relocation = h->plt_offset; /* This relocation does not use the addend. */ rel->r_addend = 0; break; case R_68K_PC8: case R_68K_PC16: case R_68K_PC32: if (h == NULL) break; /* Fall through. */ case R_68K_8: case R_68K_16: case R_68K_32: if (info->shared && (input_section->flags & SEC_ALLOC) != 0 && ((r_type != R_68K_PC8 && r_type != R_68K_PC16 && r_type != R_68K_PC32) || (!info->symbolic || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))) { Elf_Internal_Rela outrel; int relocate; /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ if (sreloc == NULL) { const char *name; name = (bfd_elf_string_from_elf_section (input_bfd, elf_elfheader (input_bfd)->e_shstrndx, elf_section_data (input_section)->rel_hdr.sh_name)); if (name == NULL) return false; BFD_ASSERT (strncmp (name, ".rela", 5) == 0 && strcmp (bfd_get_section_name (input_bfd, input_section), name + 5) == 0); sreloc = bfd_get_section_by_name (dynobj, name); BFD_ASSERT (sreloc != NULL); } outrel.r_offset = (rel->r_offset + input_section->output_section->vma + input_section->output_offset); if (h != NULL && (! info->symbolic || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) { BFD_ASSERT (h->dynindx != -1); relocate = false; outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); outrel.r_addend = relocation + rel->r_addend; } else { if (r_type == R_68K_32) { relocate = true; outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); outrel.r_addend = relocation + rel->r_addend; } else { long indx; if (h == NULL) sec = local_sections[r_symndx]; else { BFD_ASSERT (h->root.type == bfd_link_hash_defined || (h->root.type == bfd_link_hash_defweak)); sec = h->root.u.def.section; } if (sec != NULL && bfd_is_abs_section (sec)) indx = 0; else if (sec == NULL || sec->owner == NULL) { bfd_set_error (bfd_error_bad_value); return false; } else { asection *osec; osec = sec->output_section; indx = elf_section_data (osec)->dynindx; if (indx == 0) abort (); } relocate = false; outrel.r_info = ELF32_R_INFO (indx, r_type); outrel.r_addend = relocation + rel->r_addend; } } bfd_elf32_swap_reloca_out (output_bfd, &outrel, (((Elf32_External_Rela *) sreloc->contents) + sreloc->reloc_count)); ++sreloc->reloc_count; /* This reloc will be computed at runtime, so there's no need to do anything now, except for R_68K_32 relocations that have been turned into R_68K_RELATIVE. */ if (!relocate) continue; } break; default: break; } r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); if (r != bfd_reloc_ok) { switch (r) { default: case bfd_reloc_outofrange: abort (); case bfd_reloc_overflow: { const char *name; if (h != NULL) name = h->root.root.string; else { name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (name == NULL) return false; if (*name == '\0') name = bfd_section_name (input_bfd, sec); } if (!(info->callbacks->reloc_overflow (info, name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return false; } break; } } } return true; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static boolean elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym) bfd *output_bfd; struct bfd_link_info *info; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { bfd *dynobj; dynobj = elf_hash_table (info)->dynobj; if (h->plt_offset != (bfd_vma) -1) { asection *splt; asection *sgot; asection *srela; bfd_vma plt_index; bfd_vma got_offset; Elf_Internal_Rela rela; /* This symbol has an entry in the procedure linkage table. Set it up. */ BFD_ASSERT (h->dynindx != -1); splt = bfd_get_section_by_name (dynobj, ".plt"); sgot = bfd_get_section_by_name (dynobj, ".got.plt"); srela = bfd_get_section_by_name (dynobj, ".rela.plt"); BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL); /* Get the index in the procedure linkage table which corresponds to this symbol. This is the index of this symbol in all the symbols for which we are making plt entries. The first entry in the procedure linkage table is reserved. */ plt_index = h->plt_offset / PLT_ENTRY_SIZE - 1; /* Get the offset into the .got table of the entry that corresponds to this function. Each .got entry is 4 bytes. The first three are reserved. */ got_offset = (plt_index + 3) * 4; /* Fill in the entry in the procedure linkage table. */ memcpy (splt->contents + h->plt_offset, elf_m68k_plt_entry, PLT_ENTRY_SIZE); /* The offset is relative to the first extension word. */ bfd_put_32 (output_bfd, (sgot->output_section->vma + sgot->output_offset + got_offset - (splt->output_section->vma + h->plt_offset + 2)), splt->contents + h->plt_offset + 4); bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela), splt->contents + h->plt_offset + 10); bfd_put_32 (output_bfd, - (h->plt_offset + 16), splt->contents + h->plt_offset + 16); /* Fill in the entry in the global offset table. */ bfd_put_32 (output_bfd, (splt->output_section->vma + splt->output_offset + h->plt_offset + 8), sgot->contents + got_offset); /* Fill in the entry in the .rela.plt section. */ rela.r_offset = (sgot->output_section->vma + sgot->output_offset + got_offset); rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT); rela.r_addend = 0; bfd_elf32_swap_reloca_out (output_bfd, &rela, ((Elf32_External_Rela *) srela->contents + plt_index)); if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; } } if (h->got_offset != (bfd_vma) -1) { asection *sgot; asection *srela; Elf_Internal_Rela rela; /* This symbol has an entry in the global offset table. Set it up. */ BFD_ASSERT (h->dynindx != -1); sgot = bfd_get_section_by_name (dynobj, ".got"); srela = bfd_get_section_by_name (dynobj, ".rela.got"); BFD_ASSERT (sgot != NULL && srela != NULL); rela.r_offset = (sgot->output_section->vma + sgot->output_offset + (h->got_offset &~ 1)); /* If this is a -Bsymbolic link, and the symbol is defined locally, we just want to emit a RELATIVE reloc. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (info->shared && info->symbolic && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)) { rela.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); rela.r_addend = bfd_get_32 (output_bfd, sgot->contents + (h->got_offset & ~1)); } else { bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + (h->got_offset & ~1)); rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT); rela.r_addend = 0; } bfd_elf32_swap_reloca_out (output_bfd, &rela, ((Elf32_External_Rela *) srela->contents + srela->reloc_count)); ++srela->reloc_count; } if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0) { asection *s; Elf_Internal_Rela rela; /* This symbol needs a copy reloc. Set it up. */ BFD_ASSERT (h->dynindx != -1 && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)); s = bfd_get_section_by_name (h->root.u.def.section->owner, ".rela.bss"); BFD_ASSERT (s != NULL); rela.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY); rela.r_addend = 0; bfd_elf32_swap_reloca_out (output_bfd, &rela, ((Elf32_External_Rela *) s->contents + s->reloc_count)); ++s->reloc_count; } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) sym->st_shndx = SHN_ABS; return true; } /* Finish up the dynamic sections. */ static boolean elf_m68k_finish_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *sgot; asection *sdyn; dynobj = elf_hash_table (info)->dynobj; sgot = bfd_get_section_by_name (dynobj, ".got.plt"); BFD_ASSERT (sgot != NULL); sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (elf_hash_table (info)->dynamic_sections_created) { asection *splt; Elf32_External_Dyn *dyncon, *dynconend; splt = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (splt != NULL && sdyn != NULL); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; const char *name; asection *s; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: break; case DT_PLTGOT: name = ".got"; goto get_vma; case DT_JMPREL: name = ".rela.plt"; get_vma: s = bfd_get_section_by_name (output_bfd, name); BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->vma; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_PLTRELSZ: s = bfd_get_section_by_name (output_bfd, ".rela.plt"); BFD_ASSERT (s != NULL); if (s->_cooked_size != 0) dyn.d_un.d_val = s->_cooked_size; else dyn.d_un.d_val = s->_raw_size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_RELASZ: /* The procedure linkage table relocs (DT_JMPREL) should not be included in the overall relocs (DT_RELA). Therefore, we override the DT_RELASZ entry here to make it not include the JMPREL relocs. Since the linker script arranges for .rela.plt to follow all other relocation sections, we don't have to worry about changing the DT_RELA entry. */ s = bfd_get_section_by_name (output_bfd, ".rela.plt"); if (s != NULL) { if (s->_cooked_size != 0) dyn.d_un.d_val -= s->_cooked_size; else dyn.d_un.d_val -= s->_raw_size; } bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; } } /* Fill in the first entry in the procedure linkage table. */ if (splt->_raw_size > 0) { memcpy (splt->contents, elf_m68k_plt0_entry, PLT_ENTRY_SIZE); bfd_put_32 (output_bfd, (sgot->output_section->vma + sgot->output_offset + 4 - (splt->output_section->vma + 2)), splt->contents + 4); bfd_put_32 (output_bfd, (sgot->output_section->vma + sgot->output_offset + 8 - (splt->output_section->vma + 10)), splt->contents + 12); } elf_section_data (splt->output_section)->this_hdr.sh_entsize = PLT_ENTRY_SIZE; } /* Fill in the first three entries in the global offset table. */ if (sgot->_raw_size > 0) { if (sdyn == NULL) bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); else bfd_put_32 (output_bfd, sdyn->output_section->vma + sdyn->output_offset, sgot->contents); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); } elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; return true; } #define TARGET_BIG_SYM bfd_elf32_m68k_vec #define TARGET_BIG_NAME "elf32-m68k" #define ELF_MACHINE_CODE EM_68K #define ELF_MAXPAGESIZE 0x2000 #define elf_backend_create_dynamic_sections \ _bfd_elf_create_dynamic_sections #define elf_backend_check_relocs elf_m68k_check_relocs #define elf_backend_adjust_dynamic_symbol \ elf_m68k_adjust_dynamic_symbol #define elf_backend_size_dynamic_sections \ elf_m68k_size_dynamic_sections #define elf_backend_relocate_section elf_m68k_relocate_section #define elf_backend_finish_dynamic_symbol \ elf_m68k_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections \ elf_m68k_finish_dynamic_sections #define elf_backend_want_got_plt 1 #define elf_backend_plt_readonly 1 #define elf_backend_want_plt_sym 0 #include "elf32-target.h"