/* M32R-specific support for 32-bit ELF. Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "bfd.h" #include "sysdep.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/m32r.h" #define NOP_INSN 0x7000 #define MAKE_PARALLEL(insn) ((insn) | 0x8000) /* Use REL instead of RELA to save space. This only saves space in libraries and object files, but perhaps relocs will be put in ROM? All in all though, REL relocs are a pain to work with. */ /* #define USE_REL 1 #ifndef USE_REL #define USE_REL 0 #endif */ /* Use RELA. But use REL to link old objects for backwords compatibility. */ /* Functions for the M32R ELF linker. */ /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" /* The nop opcode we use. */ #define M32R_NOP 0x7000f000 #define PLT_EMPTY 0x10101010 /* RIE -> RIE */ /* The size in bytes of an entry in the procedure linkage table. */ #define PLT_ENTRY_SIZE 20 #define PLT_HEADER_SIZE 20 /* The first one entries in a procedure linkage table are reserved, and the initial contents are unimportant (we zero them out). Subsequent entries look like this. */ #define PLT0_ENTRY_WORD0 0xd6c00000 /* seth r6, #high(.got+4) */ #define PLT0_ENTRY_WORD1 0x86e60000 /* or3 r6, r6, #low(.got)+4) */ #define PLT0_ENTRY_WORD2 0x24e626c6 /* ld r4, @r6+ -> ld r6, @r6 */ #define PLT0_ENTRY_WORD3 0x1fc6f000 /* jmp r6 || pnop */ #define PLT0_ENTRY_WORD4 PLT_EMPTY /* RIE -> RIE */ #define PLT0_PIC_ENTRY_WORD0 0xa4cc0004 /* ld r4, @(4,r12) */ #define PLT0_PIC_ENTRY_WORD1 0xa6cc0008 /* ld r6, @(8,r12) */ #define PLT0_PIC_ENTRY_WORD2 0x1fc6f000 /* jmp r6 || nop */ #define PLT0_PIC_ENTRY_WORD3 PLT_EMPTY /* RIE -> RIE */ #define PLT0_PIC_ENTRY_WORD4 PLT_EMPTY /* RIE -> RIE */ #define PLT_ENTRY_WORD0 0xe6000000 /* ld24 r6, .name_in_GOT */ #define PLT_ENTRY_WORD1 0x06acf000 /* add r6, r12 || nop */ #define PLT_ENTRY_WORD0b 0xd6c00000 /* seth r6, #high(.name_in_GOT) */ #define PLT_ENTRY_WORD1b 0x86e60000 /* or3 r6, r6, #low(.name_in_GOT) */ #define PLT_ENTRY_WORD2 0x26c61fc6 /* ld r6, @r6 -> jmp r6 */ #define PLT_ENTRY_WORD3 0xe5000000 /* ld24 r5, $offset */ #define PLT_ENTRY_WORD4 0xff000000 /* bra .plt0. */ /* Utility to actually perform an R_M32R_10_PCREL reloc. */ static bfd_reloc_status_type m32r_elf_do_10_pcrel_reloc (bfd *abfd, reloc_howto_type *howto, asection *input_section, bfd_byte *data, bfd_vma offset, asection *symbol_section ATTRIBUTE_UNUSED, bfd_vma symbol_value, bfd_vma addend) { bfd_signed_vma relocation; unsigned long x; bfd_reloc_status_type status; /* Sanity check the address (offset in section). */ if (offset > bfd_get_section_limit (abfd, input_section)) return bfd_reloc_outofrange; relocation = symbol_value + addend; /* Make it pc relative. */ relocation -= (input_section->output_section->vma + input_section->output_offset); /* These jumps mask off the lower two bits of the current address before doing pcrel calculations. */ relocation -= (offset & -(bfd_vma) 4); if (relocation < -0x200 || relocation > 0x1ff) status = bfd_reloc_overflow; else status = bfd_reloc_ok; x = bfd_get_16 (abfd, data + offset); relocation >>= howto->rightshift; relocation <<= howto->bitpos; x = (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask); bfd_put_16 (abfd, (bfd_vma) x, data + offset); return status; } /* Handle the R_M32R_10_PCREL reloc. */ static bfd_reloc_status_type m32r_elf_10_pcrel_reloc (bfd * abfd, arelent * reloc_entry, asymbol * symbol, void * data, asection * input_section, bfd * output_bfd, char ** error_message ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; return m32r_elf_do_10_pcrel_reloc (abfd, reloc_entry->howto, input_section, data, reloc_entry->address, symbol->section, (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset), reloc_entry->addend); } /* Do generic partial_inplace relocation. This is a local replacement for bfd_elf_generic_reloc. */ static bfd_reloc_status_type m32r_elf_generic_reloc (bfd *input_bfd, arelent *reloc_entry, asymbol *symbol, void * data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { bfd_reloc_status_type ret; bfd_vma relocation; bfd_byte *inplace_address; /* This part is from bfd_elf_generic_reloc. If we're relocating, and this an external symbol, we don't want to change anything. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Now do the reloc in the usual way. ??? It would be nice to call bfd_elf_generic_reloc here, but we have partial_inplace set. bfd_elf_generic_reloc will pass the handling back to bfd_install_relocation which will install a section relative addend which is wrong. */ /* Sanity check the address (offset in section). */ if (reloc_entry->address > bfd_get_section_limit (input_bfd, input_section)) return bfd_reloc_outofrange; ret = bfd_reloc_ok; if (bfd_is_und_section (symbol->section) && output_bfd == NULL) ret = bfd_reloc_undefined; if (bfd_is_com_section (symbol->section) || output_bfd != NULL) relocation = 0; else relocation = symbol->value; /* Only do this for a final link. */ if (output_bfd == NULL) { relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; } relocation += reloc_entry->addend; inplace_address = (bfd_byte *) data + reloc_entry->address; #define DOIT(x) \ x = ( (x & ~reloc_entry->howto->dst_mask) | \ (((x & reloc_entry->howto->src_mask) + relocation) & \ reloc_entry->howto->dst_mask)) switch (reloc_entry->howto->size) { case 1: { short x = bfd_get_16 (input_bfd, inplace_address); DOIT (x); bfd_put_16 (input_bfd, (bfd_vma) x, inplace_address); } break; case 2: { unsigned long x = bfd_get_32 (input_bfd, inplace_address); DOIT (x); bfd_put_32 (input_bfd, (bfd_vma)x , inplace_address); } break; default: BFD_ASSERT (0); } if (output_bfd != NULL) reloc_entry->address += input_section->output_offset; return ret; } /* Handle the R_M32R_SDA16 reloc. This reloc is used to compute the address of objects in the small data area and to perform loads and stores from that area. The lower 16 bits are sign extended and added to the register specified in the instruction, which is assumed to point to _SDA_BASE_. */ static bfd_reloc_status_type m32r_elf_sda16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol, void * data ATTRIBUTE_UNUSED, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; /* FIXME: not sure what to do here yet. But then again, the linker may never call us. */ abort (); } /* Handle the R_M32R_HI16_[SU]LO relocs. HI16_SLO is for the add3 and load/store with displacement instructions. HI16_ULO is for the or3 instruction. For R_M32R_HI16_SLO, the lower 16 bits are sign extended when added to the high 16 bytes so if the lower 16 bits are negative (bit 15 == 1) then we must add one to the high 16 bytes (which will get subtracted off when the low 16 bits are added). These relocs have to be done in combination with an R_M32R_LO16 reloc because there is a carry from the LO16 to the HI16. Here we just save the information we need; we do the actual relocation when we see the LO16. This code is copied from the elf32-mips.c. We also support an arbitrary number of HI16 relocs to be associated with a single LO16 reloc. The assembler sorts the relocs to ensure each HI16 immediately precedes its LO16. However if there are multiple copies, the assembler may not find the real LO16 so it picks the first one it finds. */ struct m32r_hi16 { struct m32r_hi16 *next; bfd_byte *addr; bfd_vma addend; }; /* FIXME: This should not be a static variable. */ static struct m32r_hi16 *m32r_hi16_list; static bfd_reloc_status_type m32r_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol, void * data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { bfd_reloc_status_type ret; bfd_vma relocation; struct m32r_hi16 *n; /* This part is from bfd_elf_generic_reloc. If we're relocating, and this an external symbol, we don't want to change anything. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Sanity check the address (offset in section). */ if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) return bfd_reloc_outofrange; ret = bfd_reloc_ok; if (bfd_is_und_section (symbol->section) && output_bfd == NULL) ret = bfd_reloc_undefined; if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; relocation += reloc_entry->addend; /* Save the information, and let LO16 do the actual relocation. */ n = bfd_malloc ((bfd_size_type) sizeof *n); if (n == NULL) return bfd_reloc_outofrange; n->addr = (bfd_byte *) data + reloc_entry->address; n->addend = relocation; n->next = m32r_hi16_list; m32r_hi16_list = n; if (output_bfd != NULL) reloc_entry->address += input_section->output_offset; return ret; } /* Handle an M32R ELF HI16 reloc. */ static void m32r_elf_relocate_hi16 (bfd *input_bfd, int type, Elf_Internal_Rela *relhi, Elf_Internal_Rela *rello, bfd_byte *contents, bfd_vma addend) { unsigned long insn; bfd_vma addlo; insn = bfd_get_32 (input_bfd, contents + relhi->r_offset); addlo = bfd_get_32 (input_bfd, contents + rello->r_offset); if (type == R_M32R_HI16_SLO) addlo = ((addlo & 0xffff) ^ 0x8000) - 0x8000; else addlo &= 0xffff; addend += ((insn & 0xffff) << 16) + addlo; /* Reaccount for sign extension of low part. */ if (type == R_M32R_HI16_SLO && (addend & 0x8000) != 0) addend += 0x10000; bfd_put_32 (input_bfd, (insn & 0xffff0000) | ((addend >> 16) & 0xffff), contents + relhi->r_offset); } /* Do an R_M32R_LO16 relocation. This is a straightforward 16 bit inplace relocation; this function exists in order to do the R_M32R_HI16_[SU]LO relocation described above. */ static bfd_reloc_status_type m32r_elf_lo16_reloc (bfd *input_bfd, arelent *reloc_entry, asymbol *symbol, void * data, asection *input_section, bfd *output_bfd, char **error_message) { /* This part is from bfd_elf_generic_reloc. If we're relocating, and this an external symbol, we don't want to change anything. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (m32r_hi16_list != NULL) { struct m32r_hi16 *l; l = m32r_hi16_list; while (l != NULL) { unsigned long insn; unsigned long val; unsigned long vallo; struct m32r_hi16 *next; /* Do the HI16 relocation. Note that we actually don't need to know anything about the LO16 itself, except where to find the low 16 bits of the addend needed by the LO16. */ insn = bfd_get_32 (input_bfd, l->addr); vallo = ((bfd_get_32 (input_bfd, (bfd_byte *) data + reloc_entry->address) & 0xffff) ^ 0x8000) - 0x8000; val = ((insn & 0xffff) << 16) + vallo; val += l->addend; /* Reaccount for sign extension of low part. */ if ((val & 0x8000) != 0) val += 0x10000; insn = (insn &~ (bfd_vma) 0xffff) | ((val >> 16) & 0xffff); bfd_put_32 (input_bfd, (bfd_vma) insn, l->addr); next = l->next; free (l); l = next; } m32r_hi16_list = NULL; } /* Now do the LO16 reloc in the usual way. ??? It would be nice to call bfd_elf_generic_reloc here, but we have partial_inplace set. bfd_elf_generic_reloc will pass the handling back to bfd_install_relocation which will install a section relative addend which is wrong. */ return m32r_elf_generic_reloc (input_bfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); } static reloc_howto_type m32r_elf_howto_table[] = { /* This reloc does nothing. */ HOWTO (R_M32R_NONE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_NONE", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 16 bit absolute relocation. */ HOWTO (R_M32R_16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ m32r_elf_generic_reloc,/* special_function */ "R_M32R_16", /* name */ TRUE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 32 bit absolute relocation. */ HOWTO (R_M32R_32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ m32r_elf_generic_reloc,/* special_function */ "R_M32R_32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 24 bit address. */ HOWTO (R_M32R_24, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ m32r_elf_generic_reloc,/* special_function */ "R_M32R_24", /* name */ TRUE, /* partial_inplace */ 0xffffff, /* src_mask */ 0xffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* An PC Relative 10-bit relocation, shifted by 2. This reloc is complicated because relocations are relative to pc & -4. i.e. branches in the right insn slot use the address of the left insn slot for pc. */ /* ??? It's not clear whether this should have partial_inplace set or not. Branch relaxing in the assembler can store the addend in the insn, and if bfd_install_relocation gets called the addend may get added again. */ HOWTO (R_M32R_10_PCREL, /* type */ 2, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 10, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ m32r_elf_10_pcrel_reloc, /* special_function */ "R_M32R_10_PCREL", /* name */ FALSE, /* partial_inplace */ 0xff, /* src_mask */ 0xff, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative 18 bit relocation, right shifted by 2. */ HOWTO (R_M32R_18_PCREL, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_18_PCREL", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative 26 bit relocation, right shifted by 2. */ /* ??? It's not clear whether this should have partial_inplace set or not. Branch relaxing in the assembler can store the addend in the insn, and if bfd_install_relocation gets called the addend may get added again. */ HOWTO (R_M32R_26_PCREL, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_26_PCREL", /* name */ FALSE, /* partial_inplace */ 0xffffff, /* src_mask */ 0xffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* High 16 bits of address when lower 16 is or'd in. */ HOWTO (R_M32R_HI16_ULO, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ m32r_elf_hi16_reloc, /* special_function */ "R_M32R_HI16_ULO", /* name */ TRUE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* High 16 bits of address when lower 16 is added in. */ HOWTO (R_M32R_HI16_SLO, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ m32r_elf_hi16_reloc, /* special_function */ "R_M32R_HI16_SLO", /* name */ TRUE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Lower 16 bits of address. */ HOWTO (R_M32R_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ m32r_elf_lo16_reloc, /* special_function */ "R_M32R_LO16", /* name */ TRUE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Small data area 16 bits offset. */ HOWTO (R_M32R_SDA16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ m32r_elf_sda16_reloc, /* special_function */ "R_M32R_SDA16", /* name */ TRUE, /* partial_inplace */ /* FIXME: correct? */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* GNU extension to record C++ vtable hierarchy. */ HOWTO (R_M32R_GNU_VTINHERIT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ NULL, /* special_function */ "R_M32R_GNU_VTINHERIT", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* GNU extension to record C++ vtable member usage. */ HOWTO (R_M32R_GNU_VTENTRY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_elf_rel_vtable_reloc_fn, /* special_function */ "R_M32R_GNU_VTENTRY", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ EMPTY_HOWTO (13), EMPTY_HOWTO (14), EMPTY_HOWTO (15), EMPTY_HOWTO (16), EMPTY_HOWTO (17), EMPTY_HOWTO (18), EMPTY_HOWTO (19), EMPTY_HOWTO (20), EMPTY_HOWTO (21), EMPTY_HOWTO (22), EMPTY_HOWTO (23), EMPTY_HOWTO (24), EMPTY_HOWTO (25), EMPTY_HOWTO (26), EMPTY_HOWTO (27), EMPTY_HOWTO (28), EMPTY_HOWTO (29), EMPTY_HOWTO (30), EMPTY_HOWTO (31), EMPTY_HOWTO (32), /* A 16 bit absolute relocation. */ HOWTO (R_M32R_16_RELA, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_16_RELA", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 32 bit absolute relocation. */ HOWTO (R_M32R_32_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc,/* special_function */ "R_M32R_32_RELA", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 24 bit address. */ HOWTO (R_M32R_24_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc,/* special_function */ "R_M32R_24_RELA", /* name */ FALSE, /* partial_inplace */ 0xffffff, /* src_mask */ 0xffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_M32R_10_PCREL_RELA, /* type */ 2, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 10, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ m32r_elf_10_pcrel_reloc, /* special_function */ "R_M32R_10_PCREL_RELA",/* name */ FALSE, /* partial_inplace */ 0xff, /* src_mask */ 0xff, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative 18 bit relocation, right shifted by 2. */ HOWTO (R_M32R_18_PCREL_RELA, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_18_PCREL_RELA",/* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative 26 bit relocation, right shifted by 2. */ HOWTO (R_M32R_26_PCREL_RELA, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_26_PCREL_RELA",/* name */ FALSE, /* partial_inplace */ 0xffffff, /* src_mask */ 0xffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* High 16 bits of address when lower 16 is or'd in. */ HOWTO (R_M32R_HI16_ULO_RELA, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_HI16_ULO_RELA",/* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* High 16 bits of address when lower 16 is added in. */ HOWTO (R_M32R_HI16_SLO_RELA, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_HI16_SLO_RELA",/* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Lower 16 bits of address. */ HOWTO (R_M32R_LO16_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_LO16_RELA", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Small data area 16 bits offset. */ HOWTO (R_M32R_SDA16_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_SDA16_RELA", /* name */ TRUE, /* partial_inplace */ /* FIXME: correct? */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* GNU extension to record C++ vtable hierarchy. */ HOWTO (R_M32R_RELA_GNU_VTINHERIT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ NULL, /* special_function */ "R_M32R_RELA_GNU_VTINHERIT", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* GNU extension to record C++ vtable member usage. */ HOWTO (R_M32R_RELA_GNU_VTENTRY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_elf_rel_vtable_reloc_fn, /* special_function */ "R_M32R_RELA_GNU_VTENTRY", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 32 bit PC relative relocation. */ HOWTO (R_M32R_REL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc,/* special_function */ "R_M32R_REL32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ EMPTY_HOWTO (46), EMPTY_HOWTO (47), /* Like R_M32R_24, but referring to the GOT table entry for the symbol. */ HOWTO (R_M32R_GOT24, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_GOT24", /* name */ FALSE, /* partial_inplace */ 0xffffff, /* src_mask */ 0xffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_M32R_PCREL, but referring to the procedure linkage table entry for the symbol. */ HOWTO (R_M32R_26_PLTREL, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_26_PLTREL", /* name */ FALSE, /* partial_inplace */ 0xffffff, /* src_mask */ 0xffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* This is used only by the dynamic linker. The symbol should exist both in the object being run and in some shared library. The dynamic linker copies the data addressed by the symbol from the shared library into the object, because the object being run has to have the data at some particular address. */ HOWTO (R_M32R_COPY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_COPY", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_M32R_24, but used when setting global offset table entries. */ HOWTO (R_M32R_GLOB_DAT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_GLOB_DAT", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Marks a procedure linkage table entry for a symbol. */ HOWTO (R_M32R_JMP_SLOT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_JMP_SLOT", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Used only by the dynamic linker. When the object is run, this longword is set to the load address of the object, plus the addend. */ HOWTO (R_M32R_RELATIVE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_RELATIVE", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_M32R_GOTOFF, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_GOTOFF", /* name */ FALSE, /* partial_inplace */ 0xffffff, /* src_mask */ 0xffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* An PC Relative 24-bit relocation used when setting PIC offset table register. */ HOWTO (R_M32R_GOTPC24, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_GOTPC24", /* name */ FALSE, /* partial_inplace */ 0xffffff, /* src_mask */ 0xffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* Like R_M32R_HI16_ULO, but referring to the GOT table entry for the symbol. */ HOWTO (R_M32R_GOT16_HI_ULO, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_GOT16_HI_ULO", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_M32R_HI16_SLO, but referring to the GOT table entry for the symbol. */ HOWTO (R_M32R_GOT16_HI_SLO, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_GOT16_HI_SLO", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_M32R_LO16, but referring to the GOT table entry for the symbol. */ HOWTO (R_M32R_GOT16_LO, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_GOT16_LO", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* An PC Relative relocation used when setting PIC offset table register. Like R_M32R_HI16_ULO, but referring to the GOT table entry for the symbol. */ HOWTO (R_M32R_GOTPC_HI_ULO, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_GOTPC_HI_ULO", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* An PC Relative relocation used when setting PIC offset table register. Like R_M32R_HI16_SLO, but referring to the GOT table entry for the symbol. */ HOWTO (R_M32R_GOTPC_HI_SLO, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_GOTPC_HI_SLO", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* An PC Relative relocation used when setting PIC offset table register. Like R_M32R_LO16, but referring to the GOT table entry for the symbol. */ HOWTO (R_M32R_GOTPC_LO, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_GOTPC_LO", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_M32R_GOTOFF_HI_ULO, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_GOTOFF_HI_ULO",/* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_M32R_GOTOFF_HI_SLO, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_GOTOFF_HI_SLO",/* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_M32R_GOTOFF_LO, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32R_GOTOFF_LO", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ }; /* Map BFD reloc types to M32R ELF reloc types. */ struct m32r_reloc_map { bfd_reloc_code_real_type bfd_reloc_val; unsigned char elf_reloc_val; }; #ifdef USE_M32R_OLD_RELOC static const struct m32r_reloc_map m32r_reloc_map_old[] = { { BFD_RELOC_NONE, R_M32R_NONE }, { BFD_RELOC_16, R_M32R_16 }, { BFD_RELOC_32, R_M32R_32 }, { BFD_RELOC_M32R_24, R_M32R_24 }, { BFD_RELOC_M32R_10_PCREL, R_M32R_10_PCREL }, { BFD_RELOC_M32R_18_PCREL, R_M32R_18_PCREL }, { BFD_RELOC_M32R_26_PCREL, R_M32R_26_PCREL }, { BFD_RELOC_M32R_HI16_ULO, R_M32R_HI16_ULO }, { BFD_RELOC_M32R_HI16_SLO, R_M32R_HI16_SLO }, { BFD_RELOC_M32R_LO16, R_M32R_LO16 }, { BFD_RELOC_M32R_SDA16, R_M32R_SDA16 }, { BFD_RELOC_VTABLE_INHERIT, R_M32R_GNU_VTINHERIT }, { BFD_RELOC_VTABLE_ENTRY, R_M32R_GNU_VTENTRY }, }; #else static const struct m32r_reloc_map m32r_reloc_map[] = { { BFD_RELOC_NONE, R_M32R_NONE }, { BFD_RELOC_16, R_M32R_16_RELA }, { BFD_RELOC_32, R_M32R_32_RELA }, { BFD_RELOC_M32R_24, R_M32R_24_RELA }, { BFD_RELOC_M32R_10_PCREL, R_M32R_10_PCREL_RELA }, { BFD_RELOC_M32R_18_PCREL, R_M32R_18_PCREL_RELA }, { BFD_RELOC_M32R_26_PCREL, R_M32R_26_PCREL_RELA }, { BFD_RELOC_M32R_HI16_ULO, R_M32R_HI16_ULO_RELA }, { BFD_RELOC_M32R_HI16_SLO, R_M32R_HI16_SLO_RELA }, { BFD_RELOC_M32R_LO16, R_M32R_LO16_RELA }, { BFD_RELOC_M32R_SDA16, R_M32R_SDA16_RELA }, { BFD_RELOC_VTABLE_INHERIT, R_M32R_RELA_GNU_VTINHERIT }, { BFD_RELOC_VTABLE_ENTRY, R_M32R_RELA_GNU_VTENTRY }, { BFD_RELOC_32_PCREL, R_M32R_REL32 }, { BFD_RELOC_M32R_GOT24, R_M32R_GOT24 }, { BFD_RELOC_M32R_26_PLTREL, R_M32R_26_PLTREL }, { BFD_RELOC_M32R_COPY, R_M32R_COPY }, { BFD_RELOC_M32R_GLOB_DAT, R_M32R_GLOB_DAT }, { BFD_RELOC_M32R_JMP_SLOT, R_M32R_JMP_SLOT }, { BFD_RELOC_M32R_RELATIVE, R_M32R_RELATIVE }, { BFD_RELOC_M32R_GOTOFF, R_M32R_GOTOFF }, { BFD_RELOC_M32R_GOTPC24, R_M32R_GOTPC24 }, { BFD_RELOC_M32R_GOT16_HI_ULO, R_M32R_GOT16_HI_ULO }, { BFD_RELOC_M32R_GOT16_HI_SLO, R_M32R_GOT16_HI_SLO }, { BFD_RELOC_M32R_GOT16_LO, R_M32R_GOT16_LO }, { BFD_RELOC_M32R_GOTPC_HI_ULO, R_M32R_GOTPC_HI_ULO }, { BFD_RELOC_M32R_GOTPC_HI_SLO, R_M32R_GOTPC_HI_SLO }, { BFD_RELOC_M32R_GOTPC_LO, R_M32R_GOTPC_LO }, { BFD_RELOC_M32R_GOTOFF_HI_ULO, R_M32R_GOTOFF_HI_ULO }, { BFD_RELOC_M32R_GOTOFF_HI_SLO, R_M32R_GOTOFF_HI_SLO }, { BFD_RELOC_M32R_GOTOFF_LO, R_M32R_GOTOFF_LO }, }; #endif static reloc_howto_type * bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { unsigned int i; #ifdef USE_M32R_OLD_RELOC for (i = 0; i < sizeof (m32r_reloc_map_old) / sizeof (struct m32r_reloc_map); i++) if (m32r_reloc_map_old[i].bfd_reloc_val == code) return &m32r_elf_howto_table[m32r_reloc_map_old[i].elf_reloc_val]; #else /* ! USE_M32R_OLD_RELOC */ for (i = 0; i < sizeof (m32r_reloc_map) / sizeof (struct m32r_reloc_map); i++) if (m32r_reloc_map[i].bfd_reloc_val == code) return &m32r_elf_howto_table[m32r_reloc_map[i].elf_reloc_val]; #endif return NULL; } /* Set the howto pointer for an M32R ELF reloc. */ static void m32r_info_to_howto_rel (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, Elf_Internal_Rela *dst) { unsigned int r_type; r_type = ELF32_R_TYPE (dst->r_info); BFD_ASSERT (ELF32_R_TYPE(dst->r_info) <= (unsigned int) R_M32R_GNU_VTENTRY); cache_ptr->howto = &m32r_elf_howto_table[r_type]; } static void m32r_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, Elf_Internal_Rela *dst) { BFD_ASSERT ((ELF32_R_TYPE(dst->r_info) == (unsigned int) R_M32R_NONE) || ((ELF32_R_TYPE(dst->r_info) > (unsigned int) R_M32R_GNU_VTENTRY) && (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_M32R_max))); cache_ptr->howto = &m32r_elf_howto_table[ELF32_R_TYPE(dst->r_info)]; } /* Given a BFD section, try to locate the corresponding ELF section index. */ static bfd_boolean _bfd_m32r_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, int *retval) { if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) { *retval = SHN_M32R_SCOMMON; return TRUE; } return FALSE; } /* M32R ELF uses two common sections. One is the usual one, and the other is for small objects. All the small objects are kept together, and then referenced via one register, which yields faster assembler code. It is up to the compiler to emit an instruction to load the register with _SDA_BASE. This is what we use for the small common section. This approach is copied from elf32-mips.c. */ static asection m32r_elf_scom_section; static asymbol m32r_elf_scom_symbol; static asymbol *m32r_elf_scom_symbol_ptr; /* Handle the special M32R section numbers that a symbol may use. */ static void _bfd_m32r_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym) { elf_symbol_type *elfsym = (elf_symbol_type *) asym; switch (elfsym->internal_elf_sym.st_shndx) { case SHN_M32R_SCOMMON: if (m32r_elf_scom_section.name == NULL) { /* Initialize the small common section. */ m32r_elf_scom_section.name = ".scommon"; m32r_elf_scom_section.flags = SEC_IS_COMMON; m32r_elf_scom_section.output_section = &m32r_elf_scom_section; m32r_elf_scom_section.symbol = &m32r_elf_scom_symbol; m32r_elf_scom_section.symbol_ptr_ptr = &m32r_elf_scom_symbol_ptr; m32r_elf_scom_symbol.name = ".scommon"; m32r_elf_scom_symbol.flags = BSF_SECTION_SYM; m32r_elf_scom_symbol.section = &m32r_elf_scom_section; m32r_elf_scom_symbol_ptr = &m32r_elf_scom_symbol; } asym->section = &m32r_elf_scom_section; asym->value = elfsym->internal_elf_sym.st_size; break; } } /* Hook called by the linker routine which adds symbols from an object file. We must handle the special M32R section numbers here. We also keep watching for whether we need to create the sdata special linker sections. */ static bfd_boolean m32r_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym, const char **namep, flagword *flagsp ATTRIBUTE_UNUSED, asection **secp, bfd_vma *valp) { if (! info->relocatable && (*namep)[0] == '_' && (*namep)[1] == 'S' && strcmp (*namep, "_SDA_BASE_") == 0 && is_elf_hash_table (info->hash)) { /* This is simpler than using _bfd_elf_create_linker_section (our needs are simpler than ppc's needs). Also _bfd_elf_create_linker_section currently has a bug where if a .sdata section already exists a new one is created that follows it which screws of _SDA_BASE_ address calcs because output_offset != 0. */ struct elf_link_hash_entry *h; struct bfd_link_hash_entry *bh; asection *s = bfd_get_section_by_name (abfd, ".sdata"); /* The following code was cobbled from elf32-ppc.c and elflink.c. */ if (s == NULL) { flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); s = bfd_make_section_anyway_with_flags (abfd, ".sdata", flags); if (s == NULL) return FALSE; bfd_set_section_alignment (abfd, s, 2); } bh = bfd_link_hash_lookup (info->hash, "_SDA_BASE_", FALSE, FALSE, FALSE); if ((bh == NULL || bh->type == bfd_link_hash_undefined) && !(_bfd_generic_link_add_one_symbol (info, abfd, "_SDA_BASE_", BSF_GLOBAL, s, (bfd_vma) 32768, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->type = STT_OBJECT; } switch (sym->st_shndx) { case SHN_M32R_SCOMMON: *secp = bfd_make_section_old_way (abfd, ".scommon"); (*secp)->flags |= SEC_IS_COMMON; *valp = sym->st_size; break; } return TRUE; } /* We have to figure out the SDA_BASE value, so that we can adjust the symbol value correctly. We look up the symbol _SDA_BASE_ in the output BFD. If we can't find it, we're stuck. We cache it in the ELF target data. We don't need to adjust the symbol value for an external symbol if we are producing relocatable output. */ static bfd_reloc_status_type m32r_elf_final_sda_base (bfd *output_bfd, struct bfd_link_info *info, const char **error_message, bfd_vma *psb) { if (elf_gp (output_bfd) == 0) { struct bfd_link_hash_entry *h; h = bfd_link_hash_lookup (info->hash, "_SDA_BASE_", FALSE, FALSE, TRUE); if (h != NULL && h->type == bfd_link_hash_defined) elf_gp (output_bfd) = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); else { /* Only get the error once. */ *psb = elf_gp (output_bfd) = 4; *error_message = (const char *) _("SDA relocation when _SDA_BASE_ not defined"); return bfd_reloc_dangerous; } } *psb = elf_gp (output_bfd); return bfd_reloc_ok; } /* Return size of a PLT entry. */ #define elf_m32r_sizeof_plt(info) PLT_ENTRY_SIZE /* The m32r linker needs to keep track of the number of relocs that it decides to copy in check_relocs for each symbol. This is so that it can discard PC relative relocs if it doesn't need them when linking with -Bsymbolic. We store the information in a field extending the regular ELF linker hash table. */ /* This structure keeps track of the number of PC relative relocs we have copied for a given symbol. */ struct elf_m32r_pcrel_relocs_copied { /* Next section. */ struct elf_m32r_pcrel_relocs_copied *next; /* A section in dynobj. */ asection *section; /* Number of relocs copied in this section. */ bfd_size_type count; }; /* The sh linker needs to keep track of the number of relocs that it decides to copy as dynamic relocs in check_relocs for each symbol. This is so that it can later discard them if they are found to be unnecessary. We store the information in a field extending the regular ELF linker hash table. */ struct elf_m32r_dyn_relocs { struct elf_m32r_dyn_relocs *next; /* The input section of the reloc. */ asection *sec; /* Total number of relocs copied for the input section. */ bfd_size_type count; /* Number of pc-relative relocs copied for the input section. */ bfd_size_type pc_count; }; /* m32r ELF linker hash entry. */ struct elf_m32r_link_hash_entry { struct elf_link_hash_entry root; /* Track dynamic relocs copied for this symbol. */ struct elf_m32r_dyn_relocs *dyn_relocs; }; /* m32r ELF linker hash table. */ struct elf_m32r_link_hash_table { struct elf_link_hash_table root; /* Short-cuts to get to dynamic linker sections. */ asection *sgot; asection *sgotplt; asection *srelgot; asection *splt; asection *srelplt; asection *sdynbss; asection *srelbss; /* Small local sym to section mapping cache. */ struct sym_sec_cache sym_sec; }; /* Traverse an m32r ELF linker hash table. */ #define m32r_elf_link_hash_traverse(table, func, info) \ (elf_link_hash_traverse \ (&(table)->root, \ (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ (info))) /* Get the m32r ELF linker hash table from a link_info structure. */ #define m32r_elf_hash_table(p) \ ((struct elf_m32r_link_hash_table *) ((p)->hash)) /* Create an entry in an m32r ELF linker hash table. */ static struct bfd_hash_entry * m32r_elf_link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { struct elf_m32r_link_hash_entry *ret = (struct elf_m32r_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == NULL) ret = bfd_hash_allocate (table, sizeof (struct elf_m32r_link_hash_entry)); if (ret == NULL) return NULL; /* Call the allocation method of the superclass. */ ret = ((struct elf_m32r_link_hash_entry *) _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret != NULL) { struct elf_m32r_link_hash_entry *eh; eh = (struct elf_m32r_link_hash_entry *) ret; eh->dyn_relocs = NULL; } return (struct bfd_hash_entry *) ret; } /* Create an m32r ELF linker hash table. */ static struct bfd_link_hash_table * m32r_elf_link_hash_table_create (bfd *abfd) { struct elf_m32r_link_hash_table *ret; bfd_size_type amt = sizeof (struct elf_m32r_link_hash_table); ret = bfd_malloc (amt); if (ret == NULL) return NULL; if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, m32r_elf_link_hash_newfunc)) { free (ret); return NULL; } ret->sgot = NULL; ret->sgotplt = NULL; ret->srelgot = NULL; ret->splt = NULL; ret->srelplt = NULL; ret->sdynbss = NULL; ret->srelbss = NULL; ret->sym_sec.abfd = NULL; return &ret->root.root; } /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static bfd_boolean create_got_section (bfd *dynobj, struct bfd_link_info *info) { struct elf_m32r_link_hash_table *htab; if (! _bfd_elf_create_got_section (dynobj, info)) return FALSE; htab = m32r_elf_hash_table (info); htab->sgot = bfd_get_section_by_name (dynobj, ".got"); htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); if (! htab->sgot || ! htab->sgotplt) abort (); htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)); if (htab->srelgot == NULL || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2)) return FALSE; return TRUE; } /* Create dynamic sections when linking against a dynamic object. */ static bfd_boolean m32r_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) { struct elf_m32r_link_hash_table *htab; flagword flags, pltflags; asection *s; const struct elf_backend_data *bed = get_elf_backend_data (abfd); int ptralign = 2; /* 32bit */ htab = m32r_elf_hash_table (info); /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and .rel[a].bss sections. */ flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); pltflags = flags; pltflags |= SEC_CODE; if (bed->plt_not_loaded) pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS); if (bed->plt_readonly) pltflags |= SEC_READONLY; s = bfd_make_section_with_flags (abfd, ".plt", pltflags); htab->splt = s; if (s == NULL || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment)) return FALSE; if (bed->want_plt_sym) { /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section. */ struct bfd_link_hash_entry *bh = NULL; struct elf_link_hash_entry *h; if (! (_bfd_generic_link_add_one_symbol (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, (bfd_vma) 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->def_regular = 1; h->type = STT_OBJECT; if (info->shared && ! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } s = bfd_make_section_with_flags (abfd, bed->default_use_rela_p ? ".rela.plt" : ".rel.plt", flags | SEC_READONLY); htab->srelplt = s; if (s == NULL || ! bfd_set_section_alignment (abfd, s, ptralign)) return FALSE; if (htab->sgot == NULL && ! create_got_section (abfd, info)) return FALSE; { const char *secname; char *relname; flagword secflags; asection *sec; for (sec = abfd->sections; sec; sec = sec->next) { secflags = bfd_get_section_flags (abfd, sec); if ((secflags & (SEC_DATA | SEC_LINKER_CREATED)) || ((secflags & SEC_HAS_CONTENTS) != SEC_HAS_CONTENTS)) continue; secname = bfd_get_section_name (abfd, sec); relname = bfd_malloc ((bfd_size_type) strlen (secname) + 6); strcpy (relname, ".rela"); strcat (relname, secname); if (bfd_get_section_by_name (abfd, secname)) continue; s = bfd_make_section_with_flags (abfd, relname, flags | SEC_READONLY); if (s == NULL || ! bfd_set_section_alignment (abfd, s, ptralign)) return FALSE; } } if (bed->want_dynbss) { /* The .dynbss section is a place to put symbols which are defined by dynamic objects, are referenced by regular objects, and are not functions. We must allocate space for them in the process image and use a R_*_COPY reloc to tell the dynamic linker to initialize them at run time. The linker script puts the .dynbss section into the .bss section of the final image. */ s = bfd_make_section_with_flags (abfd, ".dynbss", SEC_ALLOC | SEC_LINKER_CREATED); htab->sdynbss = s; if (s == NULL) return FALSE; /* The .rel[a].bss section holds copy relocs. This section is not normally needed. We need to create it here, though, so that the linker will map it to an output section. We can't just create it only if we need it, because we will not know whether we need it until we have seen all the input files, and the first time the main linker code calls BFD after examining all the input files (size_dynamic_sections) the input sections have already been mapped to the output sections. If the section turns out not to be needed, we can discard it later. We will never need this section when generating a shared object, since they do not use copy relocs. */ if (! info->shared) { s = bfd_make_section_with_flags (abfd, (bed->default_use_rela_p ? ".rela.bss" : ".rel.bss"), flags | SEC_READONLY); htab->srelbss = s; if (s == NULL || ! bfd_set_section_alignment (abfd, s, ptralign)) return FALSE; } } return TRUE; } /* Copy the extra info we tack onto an elf_link_hash_entry. */ static void m32r_elf_copy_indirect_symbol (const struct elf_backend_data *bed, struct elf_link_hash_entry *dir, struct elf_link_hash_entry *ind) { struct elf_m32r_link_hash_entry * edir; struct elf_m32r_link_hash_entry * eind; edir = (struct elf_m32r_link_hash_entry *) dir; eind = (struct elf_m32r_link_hash_entry *) ind; if (eind->dyn_relocs != NULL) { if (edir->dyn_relocs != NULL) { struct elf_m32r_dyn_relocs **pp; struct elf_m32r_dyn_relocs *p; if (ind->root.type == bfd_link_hash_indirect) abort (); /* Add reloc counts against the weak sym to the strong sym list. Merge any entries against the same section. */ for (pp = &eind->dyn_relocs; (p = *pp) != NULL;) { struct elf_m32r_dyn_relocs *q; for (q = edir->dyn_relocs; q != NULL; q = q->next) if (q->sec == p->sec) { q->pc_count += p->pc_count; q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->dyn_relocs; } edir->dyn_relocs = eind->dyn_relocs; eind->dyn_relocs = NULL; } _bfd_elf_link_hash_copy_indirect (bed, dir, ind); } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bfd_boolean m32r_elf_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { struct elf_m32r_link_hash_table *htab; struct elf_m32r_link_hash_entry *eh; struct elf_m32r_dyn_relocs *p; bfd *dynobj; asection *s; unsigned int power_of_two; #ifdef DEBUG_PIC printf ("m32r_elf_adjust_dynamic_symbol()\n"); #endif dynobj = elf_hash_table (info)->dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && (h->needs_plt || h->u.weakdef != NULL || (h->def_dynamic && h->ref_regular && !h->def_regular))); /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later, when we know the address of the .got section. */ if (h->type == STT_FUNC || h->needs_plt) { if (! info->shared && !h->def_dynamic && !h->ref_dynamic && h->root.type != bfd_link_hash_undefweak && h->root.type != bfd_link_hash_undefined) { /* This case can occur if we saw a PLT reloc in an input file, but the symbol was never referred to by a dynamic object. In such a case, we don't actually need to build a procedure linkage table, and we can just do a PCREL reloc instead. */ h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } return TRUE; } else h->plt.offset = (bfd_vma) -1; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->u.weakdef != NULL) { BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined || h->u.weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->u.weakdef->root.u.def.section; h->root.u.def.value = h->u.weakdef->root.u.def.value; return TRUE; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return TRUE; /* If there are no references to this symbol that do not use the GOT, we don't need to generate a copy reloc. */ if (!h->non_got_ref) return TRUE; /* If -z nocopyreloc was given, we won't generate them either. */ if (info->nocopyreloc) { h->non_got_ref = 0; return TRUE; } eh = (struct elf_m32r_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { s = p->sec->output_section; if (s != NULL && (s->flags & (SEC_READONLY | SEC_HAS_CONTENTS)) != 0) break; } /* If we didn't find any dynamic relocs in sections which needs the copy reloc, then we'll be keeping the dynamic relocs and avoiding the copy reloc. */ if (p == NULL) { h->non_got_ref = 0; return TRUE; } if (h->size == 0) { (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), h->root.root.string); return TRUE; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ htab = m32r_elf_hash_table (info); s = htab->sdynbss; BFD_ASSERT (s != NULL); /* We must generate a R_M32R_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. We need to remember the offset into the .rela.bss section we are going to use. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { asection *srel; srel = htab->srelbss; BFD_ASSERT (srel != NULL); srel->size += sizeof (Elf32_External_Rela); h->needs_copy = 1; } /* We need to figure out the alignment required for this symbol. I have no idea how ELF linkers handle this. */ power_of_two = bfd_log2 (h->size); if (power_of_two > 3) power_of_two = 3; /* Apply the required alignment. */ s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two)); if (power_of_two > bfd_get_section_alignment (dynobj, s)) { if (! bfd_set_section_alignment (dynobj, s, power_of_two)) return FALSE; } /* Define the symbol as being at this point in the section. */ h->root.u.def.section = s; h->root.u.def.value = s->size; /* Increment the section size to make room for the symbol. */ s->size += h->size; return TRUE; } /* Allocate space in .plt, .got and associated reloc sections for dynamic relocs. */ static bfd_boolean allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf) { struct bfd_link_info *info; struct elf_m32r_link_hash_table *htab; struct elf_m32r_link_hash_entry *eh; struct elf_m32r_dyn_relocs *p; if (h->root.type == bfd_link_hash_indirect) return TRUE; if (h->root.type == bfd_link_hash_warning) /* When warning symbols are created, they **replace** the "real" entry in the hash table, thus we never get to see the real symbol in a hash traversal. So look at it now. */ h = (struct elf_link_hash_entry *) h->root.u.i.link; info = (struct bfd_link_info *) inf; htab = m32r_elf_hash_table (info); eh = (struct elf_m32r_link_hash_entry *) h; if (htab->root.dynamic_sections_created && h->plt.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h)) { asection *s = htab->splt; /* If this is the first .plt entry, make room for the special first entry. */ if (s->size == 0) s->size += PLT_ENTRY_SIZE; h->plt.offset = s->size; /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (! info->shared && !h->def_regular) { h->root.u.def.section = s; h->root.u.def.value = h->plt.offset; } /* Make room for this entry. */ s->size += PLT_ENTRY_SIZE; /* We also need to make an entry in the .got.plt section, which will be placed in the .got section by the linker script. */ htab->sgotplt->size += 4; /* We also need to make an entry in the .rel.plt section. */ htab->srelplt->size += sizeof (Elf32_External_Rela); } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } if (h->got.refcount > 0) { asection *s; bfd_boolean dyn; /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } s = htab->sgot; h->got.offset = s->size; s->size += 4; dyn = htab->root.dynamic_sections_created; if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)) htab->srelgot->size += sizeof (Elf32_External_Rela); } else h->got.offset = (bfd_vma) -1; if (eh->dyn_relocs == NULL) return TRUE; /* In the shared -Bsymbolic case, discard space allocated for dynamic pc-relative relocs against symbols which turn out to be defined in regular objects. For the normal shared case, discard space for pc-relative relocs that have become local due to symbol visibility changes. */ if (info->shared) { if (h->def_regular && (h->forced_local || info->symbolic)) { struct elf_m32r_dyn_relocs **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL;) { p->count -= p->pc_count; p->pc_count = 0; if (p->count == 0) *pp = p->next; else pp = &p->next; } } } else { /* For the non-shared case, discard space for relocs against symbols which turn out to need copy relocs or are not dynamic. */ if (!h->non_got_ref && ((h->def_dynamic && !h->def_regular) || (htab->root.dynamic_sections_created && (h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined)))) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } /* If that succeeded, we know we'll be keeping all the relocs. */ if (h->dynindx != -1) goto keep; } eh->dyn_relocs = NULL; keep: ; } /* Finally, allocate space. */ for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *sreloc = elf_section_data (p->sec)->sreloc; sreloc->size += p->count * sizeof (Elf32_External_Rela); } return TRUE; } /* Find any dynamic relocs that apply to read-only sections. */ static bfd_boolean readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf) { struct elf_m32r_link_hash_entry *eh; struct elf_m32r_dyn_relocs *p; if (h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; eh = (struct elf_m32r_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *s = p->sec->output_section; if (s != NULL && (s->flags & SEC_READONLY) != 0) { struct bfd_link_info *info = (struct bfd_link_info *) inf; info->flags |= DF_TEXTREL; /* Not an error, just cut short the traversal. */ return FALSE; } } return TRUE; } /* Set the sizes of the dynamic sections. */ static bfd_boolean m32r_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { struct elf_m32r_link_hash_table *htab; bfd *dynobj; asection *s; bfd_boolean relocs; bfd *ibfd; #ifdef DEBUG_PIC printf ("m32r_elf_size_dynamic_sections()\n"); #endif htab = m32r_elf_hash_table (info); dynobj = htab->root.dynobj; BFD_ASSERT (dynobj != NULL); if (htab->root.dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (info->executable) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } /* Set up .got offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { bfd_signed_vma *local_got; bfd_signed_vma *end_local_got; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; asection *srel; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) continue; for (s = ibfd->sections; s != NULL; s = s->next) { struct elf_m32r_dyn_relocs *p; for (p = ((struct elf_m32r_dyn_relocs *) elf_section_data (s)->local_dynrel); p != NULL; p = p->next) { if (! bfd_is_abs_section (p->sec) && bfd_is_abs_section (p->sec->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (p->count != 0) { srel = elf_section_data (p->sec)->sreloc; srel->size += p->count * sizeof (Elf32_External_Rela); if ((p->sec->output_section->flags & SEC_READONLY) != 0) info->flags |= DF_TEXTREL; } } } local_got = elf_local_got_refcounts (ibfd); if (!local_got) continue; symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; locsymcount = symtab_hdr->sh_info; end_local_got = local_got + locsymcount; s = htab->sgot; srel = htab->srelgot; for (; local_got < end_local_got; ++local_got) { if (*local_got > 0) { *local_got = s->size; s->size += 4; if (info->shared) srel->size += sizeof (Elf32_External_Rela); } else *local_got = (bfd_vma) -1; } } /* Allocate global sym .plt and .got entries, and space for global sym dynamic relocs. */ elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); /* We now have determined the sizes of the various dynamic sections. Allocate memory for them. */ relocs = FALSE; for (s = dynobj->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LINKER_CREATED) == 0) continue; if (s == htab->splt || s == htab->sgot || s == htab->sgotplt || s == htab->sdynbss) { /* Strip this section if we don't need it; see the comment below. */ } else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0) { if (s->size != 0 && s != htab->srelplt) relocs = TRUE; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } else /* It's not one of our sections, so don't allocate space. */ continue; if (s->size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rela.bss and .rela.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ s->flags |= SEC_EXCLUDE; continue; } if ((s->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. We use bfd_zalloc here in case unused entries are not reclaimed before the section's contents are written out. This should not happen, but this way if it does, we get a R_M32R_NONE reloc instead of garbage. */ s->contents = bfd_zalloc (dynobj, s->size); if (s->contents == NULL) return FALSE; } if (htab->root.dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in m32r_elf_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ #define add_dynamic_entry(TAG, VAL) \ _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (info->executable) { if (! add_dynamic_entry (DT_DEBUG, 0)) return FALSE; } if (htab->splt->size != 0) { if (! add_dynamic_entry (DT_PLTGOT, 0) || ! add_dynamic_entry (DT_PLTRELSZ, 0) || ! add_dynamic_entry (DT_PLTREL, DT_RELA) || ! add_dynamic_entry (DT_JMPREL, 0)) return FALSE; } if (relocs) { if (! add_dynamic_entry (DT_RELA, 0) || ! add_dynamic_entry (DT_RELASZ, 0) || ! add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) return FALSE; /* If any dynamic relocs apply to a read-only section, then we need a DT_TEXTREL entry. */ if ((info->flags & DF_TEXTREL) == 0) elf_link_hash_traverse (&htab->root, readonly_dynrelocs, info); if ((info->flags & DF_TEXTREL) != 0) { if (! add_dynamic_entry (DT_TEXTREL, 0)) return FALSE; } } } #undef add_dynamic_entry return TRUE; } /* Relocate an M32R/D ELF section. There is some attempt to make this function usable for many architectures, both for RELA and REL type relocs, if only to serve as a learning tool. The RELOCATE_SECTION function is called by the new ELF backend linker to handle the relocations for a section. The relocs are always passed as Rela structures; if the section actually uses Rel structures, the r_addend field will always be zero. This function is responsible for adjust the section contents as necessary, and (if using Rela relocs and generating a relocatable output file) adjusting the reloc addend as necessary. This function does not have to worry about setting the reloc address or the reloc symbol index. LOCAL_SYMS is a pointer to the swapped in local symbols. LOCAL_SECTIONS is an array giving the section in the input file corresponding to the st_shndx field of each local symbol. The global hash table entry for the global symbols can be found via elf_sym_hashes (input_bfd). When generating relocatable output, this function must handle STB_LOCAL/STT_SECTION symbols specially. The output symbol is going to be the section symbol corresponding to the output section, which means that the addend must be adjusted accordingly. */ static bfd_boolean m32r_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { Elf_Internal_Shdr *symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); Elf_Internal_Rela *rel, *relend; /* Assume success. */ bfd_boolean ret = TRUE; struct elf_m32r_link_hash_table *htab = m32r_elf_hash_table (info); bfd *dynobj; bfd_vma *local_got_offsets; asection *sgot, *splt, *sreloc; bfd_vma high_address = bfd_get_section_limit (input_bfd, input_section); dynobj = htab->root.dynobj; local_got_offsets = elf_local_got_offsets (input_bfd); sgot = htab->sgot; splt = htab->splt; sreloc = NULL; rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { int r_type; reloc_howto_type *howto; unsigned long r_symndx; struct elf_link_hash_entry *h; /* We can't modify r_addend here as elf_link_input_bfd has an assert to ensure it's zero (we use REL relocs, not RELA). Therefore this should be assigning zero to `addend', but for clarity we use `r_addend'. */ bfd_vma addend = rel->r_addend; bfd_vma offset = rel->r_offset; Elf_Internal_Sym *sym; asection *sec; const char *sym_name; bfd_reloc_status_type r; const char *errmsg = NULL; bfd_boolean use_rel = FALSE; h = NULL; r_type = ELF32_R_TYPE (rel->r_info); if (r_type < 0 || r_type >= (int) R_M32R_max) { (*_bfd_error_handler) (_("%B: unknown relocation type %d"), input_bfd, (int) r_type); bfd_set_error (bfd_error_bad_value); ret = FALSE; continue; } if ( r_type == R_M32R_GNU_VTENTRY || r_type == R_M32R_GNU_VTINHERIT || r_type == R_M32R_NONE || r_type == R_M32R_RELA_GNU_VTENTRY || r_type == R_M32R_RELA_GNU_VTINHERIT) continue; if (r_type <= R_M32R_GNU_VTENTRY) use_rel = TRUE; howto = m32r_elf_howto_table + r_type; r_symndx = ELF32_R_SYM (rel->r_info); if (info->relocatable && use_rel) { /* This is a relocatable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ sec = NULL; if (r_symndx >= symtab_hdr->sh_info) /* External symbol. */ continue; /* Local symbol. */ sym = local_syms + r_symndx; sym_name = ""; /* STT_SECTION: symbol is associated with a section. */ if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) /* Symbol isn't associated with a section. Nothing to do. */ continue; sec = local_sections[r_symndx]; addend += sec->output_offset + sym->st_value; /* If partial_inplace, we need to store any additional addend back in the section. */ if (! howto->partial_inplace) continue; /* ??? Here is a nice place to call a special_function like handler. */ if (r_type != R_M32R_HI16_SLO && r_type != R_M32R_HI16_ULO) r = _bfd_relocate_contents (howto, input_bfd, addend, contents + offset); else { Elf_Internal_Rela *lorel; /* We allow an arbitrary number of HI16 relocs before the LO16 reloc. This permits gcc to emit the HI and LO relocs itself. */ for (lorel = rel + 1; (lorel < relend && (ELF32_R_TYPE (lorel->r_info) == R_M32R_HI16_SLO || ELF32_R_TYPE (lorel->r_info) == R_M32R_HI16_ULO)); lorel++) continue; if (lorel < relend && ELF32_R_TYPE (lorel->r_info) == R_M32R_LO16) { m32r_elf_relocate_hi16 (input_bfd, r_type, rel, lorel, contents, addend); r = bfd_reloc_ok; } else r = _bfd_relocate_contents (howto, input_bfd, addend, contents + offset); } } else { bfd_vma relocation; /* This is a final link. */ sym = NULL; sec = NULL; h = NULL; if (r_symndx < symtab_hdr->sh_info) { /* Local symbol. */ sym = local_syms + r_symndx; sec = local_sections[r_symndx]; sym_name = ""; if (!use_rel) { relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); addend = rel->r_addend; if (info->relocatable) { /* This is a relocatable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) rel->r_addend += sec->output_offset + sym->st_value; continue; } } else { relocation = (sec->output_section->vma + sec->output_offset + sym->st_value); } } else { /* External symbol. */ if (info->relocatable && !use_rel) continue; h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; sym_name = h->root.root.string; if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { bfd_boolean dyn; sec = h->root.u.def.section; dyn = htab->root.dynamic_sections_created; sec = h->root.u.def.section; if (r_type == R_M32R_GOTPC24 || (r_type == R_M32R_GOTPC_HI_ULO || r_type == R_M32R_GOTPC_HI_SLO || r_type == R_M32R_GOTPC_LO) || (r_type == R_M32R_26_PLTREL && h->plt.offset != (bfd_vma) -1) || ((r_type == R_M32R_GOT24 || r_type == R_M32R_GOT16_HI_ULO || r_type == R_M32R_GOT16_HI_SLO || r_type == R_M32R_GOT16_LO) && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) && (! info->shared || (! info->symbolic && h->dynindx != -1) || !h->def_regular)) || (info->shared && ((! info->symbolic && h->dynindx != -1) || !h->def_regular) && (((r_type == R_M32R_16_RELA || r_type == R_M32R_32_RELA || r_type == R_M32R_24_RELA || r_type == R_M32R_HI16_ULO_RELA || r_type == R_M32R_HI16_SLO_RELA || r_type == R_M32R_LO16_RELA) && !h->forced_local) || r_type == R_M32R_REL32 || r_type == R_M32R_10_PCREL_RELA || r_type == R_M32R_18_PCREL_RELA || r_type == R_M32R_26_PCREL_RELA) && ((input_section->flags & SEC_ALLOC) != 0 /* DWARF will emit R_M32R_16(24,32) relocations in its sections against symbols defined externally in shared libraries. We can't do anything with them here. */ || ((input_section->flags & SEC_DEBUGGING) != 0 && h->def_dynamic)))) { /* In these cases, we don't need the relocation value. We check specially because in some obscure cases sec->output_section will be NULL. */ relocation = 0; } else if (sec->output_section == NULL) { (*_bfd_error_handler) (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), input_bfd, input_section, (long) rel->r_offset, howto->name, h->root.root.string); relocation = 0; } else relocation = (h->root.u.def.value + sec->output_section->vma + sec->output_offset); } else if (h->root.type == bfd_link_hash_undefweak) relocation = 0; else if (info->unresolved_syms_in_objects == RM_IGNORE && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) relocation = 0; else { if (! ((*info->callbacks->undefined_symbol) (info, h->root.root.string, input_bfd, input_section, offset, (info->unresolved_syms_in_objects == RM_GENERATE_ERROR || ELF_ST_VISIBILITY (h->other))))) return FALSE; relocation = 0; } } /* Sanity check the address. */ if (offset > high_address) { r = bfd_reloc_outofrange; goto check_reloc; } switch ((int) r_type) { case R_M32R_GOTOFF: /* Relocation is relative to the start of the global offset table (for ld24 rx, #uimm24). eg access at label+addend ld24 rx. #label@GOTOFF + addend sub rx, r12. */ BFD_ASSERT (sgot != NULL); relocation = -(relocation - sgot->output_section->vma); rel->r_addend = -rel->r_addend; break; case R_M32R_GOTOFF_HI_ULO: case R_M32R_GOTOFF_HI_SLO: case R_M32R_GOTOFF_LO: BFD_ASSERT (sgot != NULL); relocation -= sgot->output_section->vma; if ((r_type == R_M32R_GOTOFF_HI_SLO) && ((relocation + rel->r_addend) & 0x8000)) rel->r_addend += 0x10000; break; case R_M32R_GOTPC24: /* .got(_GLOBAL_OFFSET_TABLE_) - pc relocation ld24 rx,#_GLOBAL_OFFSET_TABLE_ */ relocation = sgot->output_section->vma; break; case R_M32R_GOTPC_HI_ULO: case R_M32R_GOTPC_HI_SLO: case R_M32R_GOTPC_LO: { /* .got(_GLOBAL_OFFSET_TABLE_) - pc relocation bl .+4 seth rx,#high(_GLOBAL_OFFSET_TABLE_) or3 rx,rx,#low(_GLOBAL_OFFSET_TABLE_ +4) or bl .+4 seth rx,#shigh(_GLOBAL_OFFSET_TABLE_) add3 rx,rx,#low(_GLOBAL_OFFSET_TABLE_ +4) */ relocation = sgot->output_section->vma; relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); if ((r_type == R_M32R_GOTPC_HI_SLO) && ((relocation + rel->r_addend) & 0x8000)) rel->r_addend += 0x10000; break; } case R_M32R_GOT16_HI_ULO: case R_M32R_GOT16_HI_SLO: case R_M32R_GOT16_LO: /* Fall through. */ case R_M32R_GOT24: /* Relocation is to the entry for this symbol in the global offset table. */ BFD_ASSERT (sgot != NULL); if (h != NULL) { bfd_boolean dyn; bfd_vma off; off = h->got.offset; BFD_ASSERT (off != (bfd_vma) -1); dyn = htab->root.dynamic_sections_created; if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) || (info->shared && (info->symbolic || h->dynindx == -1 || h->forced_local) && h->def_regular)) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally, or the symbol was forced to be local because of a version file. We must initialize this entry in the global offset table. Since the offset must always be a multiple of 4, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a .rela.got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); h->got.offset |= 1; } } relocation = sgot->output_offset + off; } else { bfd_vma off; bfd_byte *loc; BFD_ASSERT (local_got_offsets != NULL && local_got_offsets[r_symndx] != (bfd_vma) -1); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already processed this entry. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); if (info->shared) { asection *srelgot; Elf_Internal_Rela outrel; /* We need to generate a R_M32R_RELATIVE reloc for the dynamic linker. */ srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); BFD_ASSERT (srelgot != NULL); outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); outrel.r_info = ELF32_R_INFO (0, R_M32R_RELATIVE); outrel.r_addend = relocation; loc = srelgot->contents; loc += srelgot->reloc_count * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc); ++srelgot->reloc_count; } local_got_offsets[r_symndx] |= 1; } relocation = sgot->output_offset + off; } if ((r_type == R_M32R_GOT16_HI_SLO) && ((relocation + rel->r_addend) & 0x8000)) rel->r_addend += 0x10000; break; case R_M32R_26_PLTREL: /* Relocation is to the entry for this symbol in the procedure linkage table. */ /* The native assembler will generate a 26_PLTREL reloc for a local symbol if you assemble a call from one section to another when using -K pic. */ if (h == NULL) break; if (h->forced_local) break; if (h->plt.offset == (bfd_vma) -1) /* We didn't make a PLT entry for this symbol. This happens when statically linking PIC code, or when using -Bsymbolic. */ break; relocation = (splt->output_section->vma + splt->output_offset + h->plt.offset); break; case R_M32R_HI16_SLO_RELA: if ((relocation + rel->r_addend) & 0x8000) rel->r_addend += 0x10000; /* Fall through. */ case R_M32R_16_RELA: case R_M32R_24_RELA: case R_M32R_32_RELA: case R_M32R_REL32: case R_M32R_18_PCREL_RELA: case R_M32R_26_PCREL_RELA: case R_M32R_HI16_ULO_RELA: case R_M32R_LO16_RELA: if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC) != 0 && ((r_type != R_M32R_18_PCREL_RELA && r_type != R_M32R_26_PCREL_RELA && r_type != R_M32R_REL32) || (h != NULL && h->dynindx != -1 && (! info->symbolic || !h->def_regular)))) { Elf_Internal_Rela outrel; bfd_boolean skip, relocate; bfd_byte *loc; /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ if (sreloc == NULL) { const char *name; name = (bfd_elf_string_from_elf_section (input_bfd, elf_elfheader (input_bfd)->e_shstrndx, elf_section_data (input_section)->rel_hdr.sh_name)); if (name == NULL) return FALSE; BFD_ASSERT (strncmp (name, ".rela", 5) == 0 && strcmp (bfd_get_section_name (input_bfd, input_section), name + 5) == 0); sreloc = bfd_get_section_by_name (dynobj, name); BFD_ASSERT (sreloc != NULL); } skip = FALSE; relocate = FALSE; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) -1) skip = TRUE; else if (outrel.r_offset == (bfd_vma) -2) skip = relocate = TRUE; outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); if (skip) memset (&outrel, 0, sizeof outrel); else if (r_type == R_M32R_18_PCREL_RELA || r_type == R_M32R_26_PCREL_RELA || r_type == R_M32R_REL32) { BFD_ASSERT (h != NULL && h->dynindx != -1); outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); outrel.r_addend = rel->r_addend; } else { /* h->dynindx may be -1 if this symbol was marked to become local. */ if (h == NULL || ((info->symbolic || h->dynindx == -1) && h->def_regular)) { relocate = TRUE; outrel.r_info = ELF32_R_INFO (0, R_M32R_RELATIVE); outrel.r_addend = relocation + rel->r_addend; } else { BFD_ASSERT (h->dynindx != -1); outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); outrel.r_addend = relocation + rel->r_addend; } } loc = sreloc->contents; loc += sreloc->reloc_count * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc); ++sreloc->reloc_count; /* If this reloc is against an external symbol, we do not want to fiddle with the addend. Otherwise, we need to include the symbol value so that it becomes an addend for the dynamic reloc. */ if (! relocate) continue; } break; case (int) R_M32R_10_PCREL : r = m32r_elf_do_10_pcrel_reloc (input_bfd, howto, input_section, contents, offset, sec, relocation, addend); goto check_reloc; case (int) R_M32R_HI16_SLO : case (int) R_M32R_HI16_ULO : { Elf_Internal_Rela *lorel; /* We allow an arbitrary number of HI16 relocs before the LO16 reloc. This permits gcc to emit the HI and LO relocs itself. */ for (lorel = rel + 1; (lorel < relend && (ELF32_R_TYPE (lorel->r_info) == R_M32R_HI16_SLO || ELF32_R_TYPE (lorel->r_info) == R_M32R_HI16_ULO)); lorel++) continue; if (lorel < relend && ELF32_R_TYPE (lorel->r_info) == R_M32R_LO16) { m32r_elf_relocate_hi16 (input_bfd, r_type, rel, lorel, contents, relocation + addend); r = bfd_reloc_ok; } else r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, offset, relocation, addend); } goto check_reloc; case (int) R_M32R_SDA16_RELA: case (int) R_M32R_SDA16 : { const char *name; BFD_ASSERT (sec != NULL); name = bfd_get_section_name (abfd, sec); if ( strcmp (name, ".sdata") == 0 || strcmp (name, ".sbss") == 0 || strcmp (name, ".scommon") == 0) { bfd_vma sda_base; bfd *out_bfd = sec->output_section->owner; r = m32r_elf_final_sda_base (out_bfd, info, &errmsg, &sda_base); if (r != bfd_reloc_ok) { ret = FALSE; goto check_reloc; } /* At this point `relocation' contains the object's address. */ relocation -= sda_base; /* Now it contains the offset from _SDA_BASE_. */ } else { (*_bfd_error_handler) (_("%B: The target (%s) of an %s relocation is in the wrong section (%A)"), input_bfd, sec, sym_name, m32r_elf_howto_table[(int) r_type].name); /*bfd_set_error (bfd_error_bad_value); ??? why? */ ret = FALSE; continue; } } /* Fall through. */ default : /* OLD_M32R_RELOC */ r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, offset, relocation, addend); goto check_reloc; } r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); } check_reloc: if (r != bfd_reloc_ok) { /* FIXME: This should be generic enough to go in a utility. */ const char *name; if (h != NULL) name = h->root.root.string; else { name = (bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name)); if (name == NULL || *name == '\0') name = bfd_section_name (input_bfd, sec); } if (errmsg != NULL) goto common_error; switch (r) { case bfd_reloc_overflow: if (! ((*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, input_bfd, input_section, offset))) return FALSE; break; case bfd_reloc_undefined: if (! ((*info->callbacks->undefined_symbol) (info, name, input_bfd, input_section, offset, TRUE))) return FALSE; break; case bfd_reloc_outofrange: errmsg = _("internal error: out of range error"); goto common_error; case bfd_reloc_notsupported: errmsg = _("internal error: unsupported relocation error"); goto common_error; case bfd_reloc_dangerous: errmsg = _("internal error: dangerous error"); goto common_error; default: errmsg = _("internal error: unknown error"); /* fall through */ common_error: if (!((*info->callbacks->warning) (info, errmsg, name, input_bfd, input_section, offset))) return FALSE; break; } } } return ret; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static bfd_boolean m32r_elf_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { struct elf_m32r_link_hash_table *htab; bfd *dynobj; bfd_byte *loc; #ifdef DEBUG_PIC printf ("m32r_elf_finish_dynamic_symbol()\n"); #endif htab = m32r_elf_hash_table (info); dynobj = htab->root.dynobj; if (h->plt.offset != (bfd_vma) -1) { asection *splt; asection *sgot; asection *srela; bfd_vma plt_index; bfd_vma got_offset; Elf_Internal_Rela rela; /* This symbol has an entry in the procedure linkage table. Set it up. */ BFD_ASSERT (h->dynindx != -1); splt = htab->splt; sgot = htab->sgotplt; srela = htab->srelplt; BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL); /* Get the index in the procedure linkage table which corresponds to this symbol. This is the index of this symbol in all the symbols for which we are making plt entries. The first entry in the procedure linkage table is reserved. */ plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1; /* Get the offset into the .got table of the entry that corresponds to this function. Each .got entry is 4 bytes. The first three are reserved. */ got_offset = (plt_index + 3) * 4; /* Fill in the entry in the procedure linkage table. */ if (! info->shared) { bfd_put_32 (output_bfd, (PLT_ENTRY_WORD0b + (((sgot->output_section->vma + sgot->output_offset + got_offset) >> 16) & 0xffff)), splt->contents + h->plt.offset); bfd_put_32 (output_bfd, (PLT_ENTRY_WORD1b + ((sgot->output_section->vma + sgot->output_offset + got_offset) & 0xffff)), splt->contents + h->plt.offset + 4); bfd_put_32 (output_bfd, PLT_ENTRY_WORD2, splt->contents + h->plt.offset + 8); bfd_put_32 (output_bfd, (PLT_ENTRY_WORD3 + plt_index * sizeof (Elf32_External_Rela)), splt->contents + h->plt.offset + 12); bfd_put_32 (output_bfd, (PLT_ENTRY_WORD4 + (((unsigned int) ((- (h->plt.offset + 16)) >> 2)) & 0xffffff)), splt->contents + h->plt.offset + 16); } else { bfd_put_32 (output_bfd, PLT_ENTRY_WORD0 + got_offset, splt->contents + h->plt.offset); bfd_put_32 (output_bfd, PLT_ENTRY_WORD1, splt->contents + h->plt.offset + 4); bfd_put_32 (output_bfd, PLT_ENTRY_WORD2, splt->contents + h->plt.offset + 8); bfd_put_32 (output_bfd, (PLT_ENTRY_WORD3 + plt_index * sizeof (Elf32_External_Rela)), splt->contents + h->plt.offset + 12); bfd_put_32 (output_bfd, (PLT_ENTRY_WORD4 + (((unsigned int) ((- (h->plt.offset + 16)) >> 2)) & 0xffffff)), splt->contents + h->plt.offset + 16); } /* Fill in the entry in the global offset table. */ bfd_put_32 (output_bfd, (splt->output_section->vma + splt->output_offset + h->plt.offset + 12), /* same offset */ sgot->contents + got_offset); /* Fill in the entry in the .rela.plt section. */ rela.r_offset = (sgot->output_section->vma + sgot->output_offset + got_offset); rela.r_info = ELF32_R_INFO (h->dynindx, R_M32R_JMP_SLOT); rela.r_addend = 0; loc = srela->contents; loc += plt_index * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); if (!h->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; } } if (h->got.offset != (bfd_vma) -1) { asection *sgot; asection *srela; Elf_Internal_Rela rela; /* This symbol has an entry in the global offset table. Set it up. */ sgot = htab->sgot; srela = htab->srelgot; BFD_ASSERT (sgot != NULL && srela != NULL); rela.r_offset = (sgot->output_section->vma + sgot->output_offset + (h->got.offset &~ 1)); /* If this is a -Bsymbolic link, and the symbol is defined locally, we just want to emit a RELATIVE reloc. Likewise if the symbol was forced to be local because of a version file. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (info->shared && (info->symbolic || h->dynindx == -1 || h->forced_local) && h->def_regular) { rela.r_info = ELF32_R_INFO (0, R_M32R_RELATIVE); rela.r_addend = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } else { BFD_ASSERT ((h->got.offset & 1) == 0); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); rela.r_info = ELF32_R_INFO (h->dynindx, R_M32R_GLOB_DAT); rela.r_addend = 0; } loc = srela->contents; loc += srela->reloc_count * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); ++srela->reloc_count; } if (h->needs_copy) { asection *s; Elf_Internal_Rela rela; /* This symbols needs a copy reloc. Set it up. */ BFD_ASSERT (h->dynindx != -1 && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)); s = bfd_get_section_by_name (h->root.u.def.section->owner, ".rela.bss"); BFD_ASSERT (s != NULL); rela.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rela.r_info = ELF32_R_INFO (h->dynindx, R_M32R_COPY); rela.r_addend = 0; loc = s->contents; loc += s->reloc_count * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); ++s->reloc_count; } /* Mark some specially defined symbols as absolute. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) sym->st_shndx = SHN_ABS; return TRUE; } /* Finish up the dynamic sections. */ static bfd_boolean m32r_elf_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { struct elf_m32r_link_hash_table *htab; bfd *dynobj; asection *sdyn; asection *sgot; #ifdef DEBUG_PIC printf ("m32r_elf_finish_dynamic_sections()\n"); #endif htab = m32r_elf_hash_table (info); dynobj = htab->root.dynobj; sgot = htab->sgotplt; sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (htab->root.dynamic_sections_created) { asection *splt; Elf32_External_Dyn *dyncon, *dynconend; BFD_ASSERT (sgot != NULL && sdyn != NULL); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; const char *name; asection *s; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: break; case DT_PLTGOT: name = ".got"; s = htab->sgot->output_section; goto get_vma; case DT_JMPREL: name = ".rela.plt"; s = htab->srelplt->output_section; get_vma: BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->vma; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_PLTRELSZ: s = htab->srelplt->output_section; BFD_ASSERT (s != NULL); dyn.d_un.d_val = s->size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_RELASZ: /* My reading of the SVR4 ABI indicates that the procedure linkage table relocs (DT_JMPREL) should be included in the overall relocs (DT_RELA). This is what Solaris does. However, UnixWare can not handle that case. Therefore, we override the DT_RELASZ entry here to make it not include the JMPREL relocs. Since the linker script arranges for .rela.plt to follow all other relocation sections, we don't have to worry about changing the DT_RELA entry. */ if (htab->srelplt != NULL) { s = htab->srelplt->output_section; dyn.d_un.d_val -= s->size; } bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; } } /* Fill in the first entry in the procedure linkage table. */ splt = htab->splt; if (splt && splt->size > 0) { if (info->shared) { bfd_put_32 (output_bfd, PLT0_PIC_ENTRY_WORD0, splt->contents); bfd_put_32 (output_bfd, PLT0_PIC_ENTRY_WORD1, splt->contents + 4); bfd_put_32 (output_bfd, PLT0_PIC_ENTRY_WORD2, splt->contents + 8); bfd_put_32 (output_bfd, PLT0_PIC_ENTRY_WORD3, splt->contents + 12); bfd_put_32 (output_bfd, PLT0_PIC_ENTRY_WORD4, splt->contents + 16); } else { unsigned long addr; /* addr = .got + 4 */ addr = sgot->output_section->vma + sgot->output_offset + 4; bfd_put_32 (output_bfd, PLT0_ENTRY_WORD0 | ((addr >> 16) & 0xffff), splt->contents); bfd_put_32 (output_bfd, PLT0_ENTRY_WORD1 | (addr & 0xffff), splt->contents + 4); bfd_put_32 (output_bfd, PLT0_ENTRY_WORD2, splt->contents + 8); bfd_put_32 (output_bfd, PLT0_ENTRY_WORD3, splt->contents + 12); bfd_put_32 (output_bfd, PLT0_ENTRY_WORD4, splt->contents + 16); } elf_section_data (splt->output_section)->this_hdr.sh_entsize = PLT_ENTRY_SIZE; } } /* Fill in the first three entries in the global offset table. */ if (sgot && sgot->size > 0) { if (sdyn == NULL) bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); else bfd_put_32 (output_bfd, sdyn->output_section->vma + sdyn->output_offset, sgot->contents); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; } return TRUE; } /* Set the right machine number. */ static bfd_boolean m32r_elf_object_p (bfd *abfd) { switch (elf_elfheader (abfd)->e_flags & EF_M32R_ARCH) { default: case E_M32R_ARCH: (void) bfd_default_set_arch_mach (abfd, bfd_arch_m32r, bfd_mach_m32r); break; case E_M32RX_ARCH: (void) bfd_default_set_arch_mach (abfd, bfd_arch_m32r, bfd_mach_m32rx); break; case E_M32R2_ARCH: (void) bfd_default_set_arch_mach (abfd, bfd_arch_m32r, bfd_mach_m32r2); break; } return TRUE; } /* Store the machine number in the flags field. */ static void m32r_elf_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED) { unsigned long val; switch (bfd_get_mach (abfd)) { default: case bfd_mach_m32r: val = E_M32R_ARCH; break; case bfd_mach_m32rx: val = E_M32RX_ARCH; break; case bfd_mach_m32r2: val = E_M32R2_ARCH; break; } elf_elfheader (abfd)->e_flags &=~ EF_M32R_ARCH; elf_elfheader (abfd)->e_flags |= val; } /* Function to keep M32R specific file flags. */ static bfd_boolean m32r_elf_set_private_flags (bfd *abfd, flagword flags) { BFD_ASSERT (!elf_flags_init (abfd) || elf_elfheader (abfd)->e_flags == flags); elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = TRUE; return TRUE; } /* Merge backend specific data from an object file to the output object file when linking. */ static bfd_boolean m32r_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) { flagword out_flags; flagword in_flags; if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return TRUE; in_flags = elf_elfheader (ibfd)->e_flags; out_flags = elf_elfheader (obfd)->e_flags; if (! elf_flags_init (obfd)) { /* If the input is the default architecture then do not bother setting the flags for the output architecture, instead allow future merges to do this. If no future merges ever set these flags then they will retain their unitialised values, which surprise surprise, correspond to the default values. */ if (bfd_get_arch_info (ibfd)->the_default) return TRUE; elf_flags_init (obfd) = TRUE; elf_elfheader (obfd)->e_flags = in_flags; if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) && bfd_get_arch_info (obfd)->the_default) return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd)); return TRUE; } /* Check flag compatibility. */ if (in_flags == out_flags) return TRUE; if ((in_flags & EF_M32R_ARCH) != (out_flags & EF_M32R_ARCH)) { if ( ((in_flags & EF_M32R_ARCH) != E_M32R_ARCH) || ((out_flags & EF_M32R_ARCH) == E_M32R_ARCH) || ((in_flags & EF_M32R_ARCH) == E_M32R2_ARCH)) { (*_bfd_error_handler) (_("%B: Instruction set mismatch with previous modules"), ibfd); bfd_set_error (bfd_error_bad_value); return FALSE; } } return TRUE; } /* Display the flags field. */ static bfd_boolean m32r_elf_print_private_bfd_data (bfd *abfd, void * ptr) { FILE * file = (FILE *) ptr; BFD_ASSERT (abfd != NULL && ptr != NULL); _bfd_elf_print_private_bfd_data (abfd, ptr); fprintf (file, _("private flags = %lx"), elf_elfheader (abfd)->e_flags); switch (elf_elfheader (abfd)->e_flags & EF_M32R_ARCH) { default: case E_M32R_ARCH: fprintf (file, _(": m32r instructions")); break; case E_M32RX_ARCH: fprintf (file, _(": m32rx instructions")); break; case E_M32R2_ARCH: fprintf (file, _(": m32r2 instructions")); break; } fputc ('\n', file); return TRUE; } static asection * m32r_elf_gc_mark_hook (asection *sec, struct bfd_link_info *info ATTRIBUTE_UNUSED, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { if (h != NULL) { switch (ELF32_R_TYPE (rel->r_info)) { case R_M32R_GNU_VTINHERIT: case R_M32R_GNU_VTENTRY: case R_M32R_RELA_GNU_VTINHERIT: case R_M32R_RELA_GNU_VTENTRY: break; default: switch (h->root.type) { case bfd_link_hash_defined: case bfd_link_hash_defweak: return h->root.u.def.section; case bfd_link_hash_common: return h->root.u.c.p->section; default: break; } } } else return bfd_section_from_elf_index (sec->owner, sym->st_shndx); return NULL; } static bfd_boolean m32r_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, struct bfd_link_info *info ATTRIBUTE_UNUSED, asection *sec ATTRIBUTE_UNUSED, const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) { /* Update the got entry reference counts for the section being removed. */ Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel, *relend; elf_section_data (sec)->local_dynrel = NULL; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) { unsigned long r_symndx; struct elf_link_hash_entry *h = NULL; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } switch (ELF32_R_TYPE (rel->r_info)) { case R_M32R_GOT16_HI_ULO: case R_M32R_GOT16_HI_SLO: case R_M32R_GOT16_LO: case R_M32R_GOTOFF: case R_M32R_GOTOFF_HI_ULO: case R_M32R_GOTOFF_HI_SLO: case R_M32R_GOTOFF_LO: case R_M32R_GOT24: case R_M32R_GOTPC_HI_ULO: case R_M32R_GOTPC_HI_SLO: case R_M32R_GOTPC_LO: case R_M32R_GOTPC24: if (h != NULL) { if (h->got.refcount > 0) h->got.refcount--; } else { if (local_got_refcounts && local_got_refcounts[r_symndx] > 0) local_got_refcounts[r_symndx]--; } break; case R_M32R_16_RELA: case R_M32R_24_RELA: case R_M32R_32_RELA: case R_M32R_REL32: case R_M32R_HI16_ULO_RELA: case R_M32R_HI16_SLO_RELA: case R_M32R_LO16_RELA: case R_M32R_SDA16_RELA: case R_M32R_18_PCREL_RELA: case R_M32R_26_PCREL_RELA: if (h != NULL) { struct elf_m32r_link_hash_entry *eh; struct elf_m32r_dyn_relocs **pp; struct elf_m32r_dyn_relocs *p; if (!info->shared && h->plt.refcount > 0) h->plt.refcount -= 1; eh = (struct elf_m32r_link_hash_entry *) h; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) if (p->sec == sec) { if (ELF32_R_TYPE (rel->r_info) == R_M32R_26_PCREL_RELA || ELF32_R_TYPE (rel->r_info) == R_M32R_26_PCREL_RELA || ELF32_R_TYPE (rel->r_info) == R_M32R_REL32) p->pc_count -= 1; p->count -= 1; if (p->count == 0) *pp = p->next; break; } } break; case R_M32R_26_PLTREL: if (h != NULL) { if (h->plt.refcount > 0) h->plt.refcount--; } break; default: break; } } return TRUE; } /* Look through the relocs for a section during the first phase. Since we don't do .gots or .plts, we just need to consider the virtual table relocs for gc. */ static bfd_boolean m32r_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; struct elf_m32r_link_hash_table *htab; bfd *dynobj; bfd_vma *local_got_offsets; asection *sgot, *srelgot, *sreloc; if (info->relocatable) return TRUE; sgot = srelgot = sreloc = NULL; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof (Elf32_External_Sym); if (!elf_bad_symtab (abfd)) sym_hashes_end -= symtab_hdr->sh_info; htab = m32r_elf_hash_table (info); dynobj = htab->root.dynobj; local_got_offsets = elf_local_got_offsets (abfd); rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { int r_type; struct elf_link_hash_entry *h; unsigned long r_symndx; r_symndx = ELF32_R_SYM (rel->r_info); r_type = ELF32_R_TYPE (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } /* Some relocs require a global offset table. */ if (htab->sgot == NULL) { switch (r_type) { case R_M32R_GOT16_HI_ULO: case R_M32R_GOT16_HI_SLO: case R_M32R_GOTOFF: case R_M32R_GOTOFF_HI_ULO: case R_M32R_GOTOFF_HI_SLO: case R_M32R_GOTOFF_LO: case R_M32R_GOT16_LO: case R_M32R_GOTPC24: case R_M32R_GOTPC_HI_ULO: case R_M32R_GOTPC_HI_SLO: case R_M32R_GOTPC_LO: case R_M32R_GOT24: if (dynobj == NULL) htab->root.dynobj = dynobj = abfd; if (! create_got_section (dynobj, info)) return FALSE; break; default: break; } } switch (r_type) { case R_M32R_GOT16_HI_ULO: case R_M32R_GOT16_HI_SLO: case R_M32R_GOT16_LO: case R_M32R_GOT24: if (h != NULL) h->got.refcount += 1; else { bfd_signed_vma *local_got_refcounts; /* This is a global offset table entry for a local symbol. */ local_got_refcounts = elf_local_got_refcounts (abfd); if (local_got_refcounts == NULL) { bfd_size_type size; size = symtab_hdr->sh_info; size *= sizeof (bfd_signed_vma); local_got_refcounts = bfd_zalloc (abfd, size); if (local_got_refcounts == NULL) return FALSE; elf_local_got_refcounts (abfd) = local_got_refcounts; } local_got_refcounts[r_symndx] += 1; } break; case R_M32R_26_PLTREL: /* This symbol requires a procedure linkage table entry. We actually build the entry in adjust_dynamic_symbol, because this might be a case of linking PIC code without linking in any dynamic objects, in which case we don't need to generate a procedure linkage table after all. */ /* If this is a local symbol, we resolve it directly without creating a procedure linkage table entry. */ if (h == NULL) continue; if (h->forced_local) break; h->needs_plt = 1; h->plt.refcount += 1; break; case R_M32R_16_RELA: case R_M32R_24_RELA: case R_M32R_32_RELA: case R_M32R_REL32: case R_M32R_HI16_ULO_RELA: case R_M32R_HI16_SLO_RELA: case R_M32R_LO16_RELA: case R_M32R_SDA16_RELA: case R_M32R_18_PCREL_RELA: case R_M32R_26_PCREL_RELA: if (h != NULL && !info->shared) { h->non_got_ref = 1; h->plt.refcount += 1; } /* If we are creating a shared library, and this is a reloc against a global symbol, or a non PC relative reloc against a local symbol, then we need to copy the reloc into the shared library. However, if we are linking with -Bsymbolic, we do not need to copy a reloc against a global symbol which is defined in an object we are including in the link (i.e., DEF_REGULAR is set). At this point we have not seen all the input files, so it is possible that DEF_REGULAR is not set now but will be set later (it is never cleared). We account for that possibility below by storing information in the dyn_relocs field of the hash table entry. A similar situation occurs when creating shared libraries and symbol visibility changes render the symbol local. If on the other hand, we are creating an executable, we may need to keep relocations for symbols satisfied by a dynamic library if we manage to avoid copy relocs for the symbol. */ if ((info->shared && (sec->flags & SEC_ALLOC) != 0 && ((r_type != R_M32R_26_PCREL_RELA && r_type != R_M32R_18_PCREL_RELA && r_type != R_M32R_REL32) || (h != NULL && (! info->symbolic || h->root.type == bfd_link_hash_defweak || !h->def_regular)))) || (!info->shared && (sec->flags & SEC_ALLOC) != 0 && h != NULL && (h->root.type == bfd_link_hash_defweak || !h->def_regular))) { struct elf_m32r_dyn_relocs *p; struct elf_m32r_dyn_relocs **head; if (dynobj == NULL) htab->root.dynobj = dynobj = abfd; /* When creating a shared object, we must copy these relocs into the output file. We create a reloc section in dynobj and make room for the reloc. */ if (sreloc == NULL) { const char *name; name = (bfd_elf_string_from_elf_section (abfd, elf_elfheader (abfd)->e_shstrndx, elf_section_data (sec)->rel_hdr.sh_name)); if (name == NULL) return FALSE; BFD_ASSERT (strncmp (name, ".rela", 5) == 0 && strcmp (bfd_get_section_name (abfd, sec), name + 5) == 0); sreloc = bfd_get_section_by_name (dynobj, name); if (sreloc == NULL) { flagword flags; flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED); if ((sec->flags & SEC_ALLOC) != 0) flags |= SEC_ALLOC | SEC_LOAD; sreloc = bfd_make_section_with_flags (dynobj, name, flags); if (sreloc == NULL || ! bfd_set_section_alignment (dynobj, sreloc, 2)) return FALSE; } elf_section_data (sec)->sreloc = sreloc; } /* If this is a global symbol, we count the number of relocations we need for this symbol. */ if (h != NULL) head = &((struct elf_m32r_link_hash_entry *) h)->dyn_relocs; else { asection *s; /* Track dynamic relocs needed for local syms too. */ s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec, r_symndx); if (s == NULL) return FALSE; head = ((struct elf_m32r_dyn_relocs **) &elf_section_data (s)->local_dynrel); } p = *head; if (p == NULL || p->sec != sec) { bfd_size_type amt = sizeof (*p); p = bfd_alloc (dynobj, amt); if (p == NULL) return FALSE; p->next = *head; *head = p; p->sec = sec; p->count = 0; p->pc_count = 0; } p->count += 1; if (ELF32_R_TYPE (rel->r_info) == R_M32R_26_PCREL_RELA || ELF32_R_TYPE (rel->r_info) == R_M32R_REL32 || ELF32_R_TYPE (rel->r_info) == R_M32R_18_PCREL_RELA) p->pc_count += 1; } break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_M32R_RELA_GNU_VTINHERIT: case R_M32R_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return FALSE; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_M32R_GNU_VTENTRY: if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) return FALSE; break; case R_M32R_RELA_GNU_VTENTRY: if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) return FALSE; break; } } return TRUE; } static const struct bfd_elf_special_section m32r_elf_special_sections[] = { { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, { NULL, 0, 0, 0, 0 } }; static bfd_boolean m32r_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED, asection *sec) { const char *name; name = bfd_get_section_name (abfd, sec); /* The generic elf_fake_sections will set up REL_HDR using the default kind of relocations. But, we may actually need both kinds of relocations, so we set up the second header here. This is not necessary for the O32 ABI since that only uses Elf32_Rel relocations (cf. System V ABI, MIPS RISC Processor Supplement, 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one of the resulting empty .rela.
sections starts with sh_offset == object size, and ld doesn't allow that. While the check is arguably bogus for empty or SHT_NOBITS sections, it can easily be avoided by not emitting those useless sections in the first place. */ if ((sec->flags & SEC_RELOC) != 0) { struct bfd_elf_section_data *esd; bfd_size_type amt = sizeof (Elf_Internal_Shdr); esd = elf_section_data (sec); BFD_ASSERT (esd->rel_hdr2 == NULL); esd->rel_hdr2 = bfd_zalloc (abfd, amt); if (!esd->rel_hdr2) return FALSE; _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec, !sec->use_rela_p); } return TRUE; } static enum elf_reloc_type_class m32r_elf_reloc_type_class (const Elf_Internal_Rela *rela) { switch ((int) ELF32_R_TYPE (rela->r_info)) { case R_M32R_RELATIVE: return reloc_class_relative; case R_M32R_JMP_SLOT: return reloc_class_plt; case R_M32R_COPY: return reloc_class_copy; default: return reloc_class_normal; } } #define ELF_ARCH bfd_arch_m32r #define ELF_MACHINE_CODE EM_M32R #define ELF_MACHINE_ALT1 EM_CYGNUS_M32R #define ELF_MAXPAGESIZE 0x1 /* Explicitly requested by Mitsubishi. */ #define TARGET_BIG_SYM bfd_elf32_m32r_vec #define TARGET_BIG_NAME "elf32-m32r" #define TARGET_LITTLE_SYM bfd_elf32_m32rle_vec #define TARGET_LITTLE_NAME "elf32-m32rle" #define elf_info_to_howto m32r_info_to_howto #define elf_info_to_howto_rel m32r_info_to_howto_rel #define elf_backend_section_from_bfd_section _bfd_m32r_elf_section_from_bfd_section #define elf_backend_symbol_processing _bfd_m32r_elf_symbol_processing #define elf_backend_add_symbol_hook m32r_elf_add_symbol_hook #define elf_backend_relocate_section m32r_elf_relocate_section #define elf_backend_gc_mark_hook m32r_elf_gc_mark_hook #define elf_backend_gc_sweep_hook m32r_elf_gc_sweep_hook #define elf_backend_check_relocs m32r_elf_check_relocs #define elf_backend_create_dynamic_sections m32r_elf_create_dynamic_sections #define bfd_elf32_bfd_link_hash_table_create m32r_elf_link_hash_table_create #define elf_backend_size_dynamic_sections m32r_elf_size_dynamic_sections #define elf_backend_finish_dynamic_sections m32r_elf_finish_dynamic_sections #define elf_backend_adjust_dynamic_symbol m32r_elf_adjust_dynamic_symbol #define elf_backend_finish_dynamic_symbol m32r_elf_finish_dynamic_symbol #define elf_backend_reloc_type_class m32r_elf_reloc_type_class #define elf_backend_copy_indirect_symbol m32r_elf_copy_indirect_symbol #define elf_backend_can_gc_sections 1 /*#if !USE_REL #define elf_backend_rela_normal 1 #endif*/ #define elf_backend_can_refcount 1 #define elf_backend_want_got_plt 1 #define elf_backend_plt_readonly 1 #define elf_backend_want_plt_sym 0 #define elf_backend_got_header_size 12 #define elf_backend_may_use_rel_p 1 #ifdef USE_M32R_OLD_RELOC #define elf_backend_default_use_rela_p 0 #define elf_backend_may_use_rela_p 0 #else #define elf_backend_default_use_rela_p 1 #define elf_backend_may_use_rela_p 1 #define elf_backend_fake_sections m32r_elf_fake_sections #endif #define elf_backend_object_p m32r_elf_object_p #define elf_backend_final_write_processing m32r_elf_final_write_processing #define bfd_elf32_bfd_merge_private_bfd_data m32r_elf_merge_private_bfd_data #define bfd_elf32_bfd_set_private_flags m32r_elf_set_private_flags #define bfd_elf32_bfd_print_private_bfd_data m32r_elf_print_private_bfd_data #define elf_backend_special_sections m32r_elf_special_sections #include "elf32-target.h" #undef ELF_MAXPAGESIZE #define ELF_MAXPAGESIZE 0x1000 #undef TARGET_BIG_SYM #define TARGET_BIG_SYM bfd_elf32_m32rlin_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-m32r-linux" #undef TARGET_LITTLE_SYM #define TARGET_LITTLE_SYM bfd_elf32_m32rlelin_vec #undef TARGET_LITTLE_NAME #define TARGET_LITTLE_NAME "elf32-m32rle-linux" #undef elf32_bed #define elf32_bed elf32_m32r_lin_bed #include "elf32-target.h"