/* M16C/M32C specific support for 32-bit ELF. Copyright (C) 2005-2017 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/m32c.h" #include "libiberty.h" /* Forward declarations. */ static reloc_howto_type * m32c_reloc_type_lookup (bfd *, bfd_reloc_code_real_type); static void m32c_info_to_howto_rela (bfd *, arelent *, Elf_Internal_Rela *); static bfd_boolean m32c_elf_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); static bfd_boolean m32c_elf_check_relocs (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *); static bfd_boolean m32c_elf_relax_delete_bytes (bfd *, asection *, bfd_vma, int); #ifdef DEBUG char * m32c_get_reloc (long reloc); void dump_symtab (bfd *, void *, void *); #endif static bfd_boolean m32c_elf_relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info, bfd_boolean *again); static bfd_reloc_status_type m32c_apply_reloc_24 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static reloc_howto_type m32c_elf_howto_table [] = { /* This reloc does nothing. */ HOWTO (R_M32C_NONE, /* type */ 0, /* rightshift */ 3, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32C_NONE", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* GCC intentionally overflows these next two in order to work around limitations in the addressing modes, so don't complain about overflow. */ HOWTO (R_M32C_16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32C_16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_M32C_24, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ m32c_apply_reloc_24, /* special_function */ "R_M32C_24", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_M32C_32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32C_32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_M32C_8_PCREL, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32C_8_PCREL", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_M32C_16_PCREL, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32C_16_PCREL", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_M32C_8, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32C_8", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_M32C_LO16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32C_LO16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_M32C_HI8, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32C_HI8", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_M32C_HI16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32C_HI16", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_M32C_RL_JUMP, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32C_RL_JUMP", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_M32C_RL_1ADDR, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32C_RL_1ADDR", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_M32C_RL_2ADDR, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_M32C_RL_2ADDR", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ }; /* Map BFD reloc types to M32C ELF reloc types. */ struct m32c_reloc_map { bfd_reloc_code_real_type bfd_reloc_val; unsigned int m32c_reloc_val; }; static const struct m32c_reloc_map m32c_reloc_map [] = { { BFD_RELOC_NONE, R_M32C_NONE }, { BFD_RELOC_16, R_M32C_16 }, { BFD_RELOC_24, R_M32C_24 }, { BFD_RELOC_32, R_M32C_32 }, { BFD_RELOC_8_PCREL, R_M32C_8_PCREL }, { BFD_RELOC_16_PCREL, R_M32C_16_PCREL }, { BFD_RELOC_8, R_M32C_8 }, { BFD_RELOC_LO16, R_M32C_LO16 }, { BFD_RELOC_HI16, R_M32C_HI16 }, { BFD_RELOC_M32C_HI8, R_M32C_HI8 }, { BFD_RELOC_M32C_RL_JUMP, R_M32C_RL_JUMP }, { BFD_RELOC_M32C_RL_1ADDR, R_M32C_RL_1ADDR }, { BFD_RELOC_M32C_RL_2ADDR, R_M32C_RL_2ADDR } }; static reloc_howto_type * m32c_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { unsigned int i; for (i = ARRAY_SIZE (m32c_reloc_map); i--;) if (m32c_reloc_map [i].bfd_reloc_val == code) return & m32c_elf_howto_table [m32c_reloc_map[i].m32c_reloc_val]; return NULL; } static reloc_howto_type * m32c_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < sizeof (m32c_elf_howto_table) / sizeof (m32c_elf_howto_table[0]); i++) if (m32c_elf_howto_table[i].name != NULL && strcasecmp (m32c_elf_howto_table[i].name, r_name) == 0) return &m32c_elf_howto_table[i]; return NULL; } /* Set the howto pointer for an M32C ELF reloc. */ static void m32c_info_to_howto_rela (bfd * abfd ATTRIBUTE_UNUSED, arelent * cache_ptr, Elf_Internal_Rela * dst) { unsigned int r_type; r_type = ELF32_R_TYPE (dst->r_info); if (r_type >= (unsigned int) R_M32C_max) { /* xgettext:c-format */ _bfd_error_handler (_("%B: invalid M32C reloc number: %d"), abfd, r_type); r_type = 0; } cache_ptr->howto = & m32c_elf_howto_table [r_type]; } /* Apply R_M32C_24 relocations. We have to do this because it's not a power-of-two size, and the generic code may think it overruns the section if it's right at the end. Must return something other than bfd_reloc_continue to avoid the above problem. Typical return values include bfd_reloc_ok or bfd_reloc_overflow. */ static bfd_reloc_status_type m32c_apply_reloc_24 (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol, void *vdata_start ATTRIBUTE_UNUSED, asection *input_section, bfd *ibfd ATTRIBUTE_UNUSED, char **error_msg ATTRIBUTE_UNUSED) { bfd_vma relocation; bfd_reloc_status_type s; s = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, vdata_start, input_section, ibfd, error_msg); if (s != bfd_reloc_continue) return s; /* Get symbol value. (Common symbols are special.) */ if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_offset; /* Add in supplied addend. */ relocation += reloc_entry->addend; reloc_entry->addend = relocation; reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Relocate an M32C ELF section. There is some attempt to make this function usable for many architectures, both USE_REL and USE_RELA ['twould be nice if such a critter existed], if only to serve as a learning tool. The RELOCATE_SECTION function is called by the new ELF backend linker to handle the relocations for a section. The relocs are always passed as Rela structures; if the section actually uses Rel structures, the r_addend field will always be zero. This function is responsible for adjusting the section contents as necessary, and (if using Rela relocs and generating a relocatable output file) adjusting the reloc addend as necessary. This function does not have to worry about setting the reloc address or the reloc symbol index. LOCAL_SYMS is a pointer to the swapped in local symbols. LOCAL_SECTIONS is an array giving the section in the input file corresponding to the st_shndx field of each local symbol. The global hash table entry for the global symbols can be found via elf_sym_hashes (input_bfd). When generating relocatable output, this function must handle STB_LOCAL/STT_SECTION symbols specially. The output symbol is going to be the section symbol corresponding to the output section, which means that the addend must be adjusted accordingly. */ static bfd_boolean m32c_elf_relocate_section (bfd * output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info * info, bfd * input_bfd, asection * input_section, bfd_byte * contents, Elf_Internal_Rela * relocs, Elf_Internal_Sym * local_syms, asection ** local_sections) { Elf_Internal_Shdr * symtab_hdr; struct elf_link_hash_entry ** sym_hashes; Elf_Internal_Rela * rel; Elf_Internal_Rela * relend; asection *splt; symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); relend = relocs + input_section->reloc_count; splt = elf_hash_table (info)->splt; for (rel = relocs; rel < relend; rel ++) { reloc_howto_type * howto; unsigned long r_symndx; Elf_Internal_Sym * sym; asection * sec; struct elf_link_hash_entry * h; bfd_vma relocation; bfd_reloc_status_type r; const char * name = NULL; int r_type; r_type = ELF32_R_TYPE (rel->r_info); /* These are only used for relaxing; we don't actually relocate anything with them, so skip them. */ if (r_type == R_M32C_RL_JUMP || r_type == R_M32C_RL_1ADDR || r_type == R_M32C_RL_2ADDR) continue; r_symndx = ELF32_R_SYM (rel->r_info); howto = m32c_elf_howto_table + ELF32_R_TYPE (rel->r_info); h = NULL; sym = NULL; sec = NULL; relocation = 0; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections [r_symndx]; relocation = (sec->output_section->vma + sec->output_offset + sym->st_value); name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); name = (sym->st_name == 0) ? bfd_section_name (input_bfd, sec) : name; } else { h = sym_hashes [r_symndx - symtab_hdr->sh_info]; if (info->wrap_hash != NULL && (input_section->flags & SEC_DEBUGGING) != 0) h = ((struct elf_link_hash_entry *) unwrap_hash_lookup (info, input_bfd, &h->root)); while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; name = h->root.root.string; if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { sec = h->root.u.def.section; relocation = (h->root.u.def.value + sec->output_section->vma + sec->output_offset); } else if (h->root.type == bfd_link_hash_undefweak) ; else if (!bfd_link_relocatable (info)) (*info->callbacks->undefined_symbol) (info, h->root.root.string, input_bfd, input_section, rel->r_offset, TRUE); } if (sec != NULL && discarded_section (sec)) RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, rel, 1, relend, howto, 0, contents); if (bfd_link_relocatable (info)) { /* This is a relocatable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) rel->r_addend += sec->output_offset; continue; } switch (ELF32_R_TYPE (rel->r_info)) { case R_M32C_16: { bfd_vma *plt_offset; if (h != NULL) plt_offset = &h->plt.offset; else plt_offset = elf_local_got_offsets (input_bfd) + r_symndx; /* printf("%s: rel %x plt %d\n", h ? h->root.root.string : "(none)", relocation, *plt_offset);*/ if (relocation <= 0xffff) { /* If the symbol is in range for a 16-bit address, we should have deallocated the plt entry in relax_section. */ BFD_ASSERT (*plt_offset == (bfd_vma) -1); } else { /* If the symbol is out of range for a 16-bit address, we must have allocated a plt entry. */ BFD_ASSERT (*plt_offset != (bfd_vma) -1); /* If this is the first time we've processed this symbol, fill in the plt entry with the correct symbol address. */ if ((*plt_offset & 1) == 0) { unsigned int x; x = 0x000000fc; /* jmpf */ x |= (relocation << 8) & 0xffffff00; bfd_put_32 (input_bfd, x, splt->contents + *plt_offset); *plt_offset |= 1; } relocation = (splt->output_section->vma + splt->output_offset + (*plt_offset & -2)); if (name) { char *newname = bfd_malloc (strlen(name)+5); strcpy (newname, name); strcat(newname, ".plt"); _bfd_generic_link_add_one_symbol (info, input_bfd, newname, BSF_FUNCTION | BSF_WEAK, splt, (*plt_offset & -2), 0, 1, 0, 0); } } } break; case R_M32C_HI8: case R_M32C_HI16: relocation >>= 16; break; } #if 0 printf ("relocate %s at %06lx relocation %06lx addend %ld ", m32c_elf_howto_table[ELF32_R_TYPE(rel->r_info)].name, rel->r_offset + input_section->output_section->vma + input_section->output_offset, relocation, rel->r_addend); { int i; for (i=0; i<4; i++) printf (" %02x", contents[rel->r_offset+i]); printf ("\n"); } #endif switch (ELF32_R_TYPE(rel->r_info)) { case R_M32C_24: /* Like m32c_apply_reloc_24, we must handle this one separately. */ relocation += rel->r_addend; /* Sanity check the address. */ if (rel->r_offset + 3 > bfd_get_section_limit_octets (input_bfd, input_section)) r = bfd_reloc_outofrange; else { bfd_put_8 (input_bfd, relocation & 0xff, contents + rel->r_offset); bfd_put_8 (input_bfd, (relocation >> 8) & 0xff, contents + rel->r_offset + 1); bfd_put_8 (input_bfd, (relocation >> 16) & 0xff, contents + rel->r_offset + 2); r = bfd_reloc_ok; } break; default: r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; } if (r != bfd_reloc_ok) { const char * msg = (const char *) NULL; switch (r) { case bfd_reloc_overflow: (*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset); break; case bfd_reloc_undefined: (*info->callbacks->undefined_symbol) (info, name, input_bfd, input_section, rel->r_offset, TRUE); break; case bfd_reloc_outofrange: msg = _("internal error: out of range error"); break; case bfd_reloc_notsupported: msg = _("internal error: unsupported relocation error"); break; case bfd_reloc_dangerous: msg = _("internal error: dangerous relocation"); break; default: msg = _("internal error: unknown error"); break; } if (msg) (*info->callbacks->warning) (info, msg, name, input_bfd, input_section, rel->r_offset); } } return TRUE; } /* We support 16-bit pointers to code above 64k by generating a thunk below 64k containing a JMP instruction to the final address. */ static bfd_boolean m32c_elf_check_relocs (bfd * abfd, struct bfd_link_info * info, asection * sec, const Elf_Internal_Rela * relocs) { Elf_Internal_Shdr * symtab_hdr; struct elf_link_hash_entry ** sym_hashes; const Elf_Internal_Rela * rel; const Elf_Internal_Rela * rel_end; bfd_vma *local_plt_offsets; asection *splt; bfd *dynobj; if (bfd_link_relocatable (info)) return TRUE; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_plt_offsets = elf_local_got_offsets (abfd); splt = NULL; dynobj = elf_hash_table(info)->dynobj; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { struct elf_link_hash_entry *h; unsigned long r_symndx; bfd_vma *offset; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; /* PR15323, ref flags aren't set for references in the same object. */ h->root.non_ir_ref_regular = 1; } switch (ELF32_R_TYPE (rel->r_info)) { /* This relocation describes a 16-bit pointer to a function. We may need to allocate a thunk in low memory; reserve memory for it now. */ case R_M32C_16: if (dynobj == NULL) elf_hash_table (info)->dynobj = dynobj = abfd; splt = elf_hash_table (info)->splt; if (splt == NULL) { flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY | SEC_CODE); splt = bfd_make_section_anyway_with_flags (dynobj, ".plt", flags); elf_hash_table (info)->splt = splt; if (splt == NULL || ! bfd_set_section_alignment (dynobj, splt, 1)) return FALSE; } if (h != NULL) offset = &h->plt.offset; else { if (local_plt_offsets == NULL) { size_t size; unsigned int i; size = symtab_hdr->sh_info * sizeof (bfd_vma); local_plt_offsets = (bfd_vma *) bfd_alloc (abfd, size); if (local_plt_offsets == NULL) return FALSE; elf_local_got_offsets (abfd) = local_plt_offsets; for (i = 0; i < symtab_hdr->sh_info; i++) local_plt_offsets[i] = (bfd_vma) -1; } offset = &local_plt_offsets[r_symndx]; } if (*offset == (bfd_vma) -1) { *offset = splt->size; splt->size += 4; } break; } } return TRUE; } /* This must exist if dynobj is ever set. */ static bfd_boolean m32c_elf_finish_dynamic_sections (bfd *abfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { bfd *dynobj = elf_hash_table (info)->dynobj; asection *splt = elf_hash_table (info)->splt; /* As an extra sanity check, verify that all plt entries have been filled in. */ if (dynobj != NULL && splt != NULL) { bfd_byte *contents = splt->contents; unsigned int i, size = splt->size; for (i = 0; i < size; i += 4) { unsigned int x = bfd_get_32 (dynobj, contents + i); BFD_ASSERT (x != 0); } } return TRUE; } static bfd_boolean m32c_elf_always_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { bfd *dynobj; asection *splt; if (bfd_link_relocatable (info)) return TRUE; dynobj = elf_hash_table (info)->dynobj; if (dynobj == NULL) return TRUE; splt = elf_hash_table (info)->splt; BFD_ASSERT (splt != NULL); splt->contents = (bfd_byte *) bfd_zalloc (dynobj, splt->size); if (splt->contents == NULL) return FALSE; return TRUE; } /* Function to set the ELF flag bits. */ static bfd_boolean m32c_elf_set_private_flags (bfd *abfd, flagword flags) { elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = TRUE; return TRUE; } /* Merge backend specific data from an object file to the output object file when linking. */ static bfd_boolean m32c_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) { bfd *obfd = info->output_bfd; flagword old_flags, old_partial; flagword new_flags, new_partial; bfd_boolean error = FALSE; char new_opt[80]; char old_opt[80]; new_opt[0] = old_opt[0] = '\0'; new_flags = elf_elfheader (ibfd)->e_flags; old_flags = elf_elfheader (obfd)->e_flags; #ifdef DEBUG _bfd_error_handler ("old_flags = 0x%.8lx, new_flags = 0x%.8lx, init = %s, filename = %s", old_flags, new_flags, elf_flags_init (obfd) ? "yes" : "no", bfd_get_filename (ibfd)); #endif if (!elf_flags_init (obfd)) { /* First call, no flags set. */ elf_flags_init (obfd) = TRUE; elf_elfheader (obfd)->e_flags = new_flags; } else if (new_flags == old_flags) /* Compatible flags are ok. */ ; else /* Possibly incompatible flags. */ { /* Warn if different cpu is used (allow a specific cpu to override the generic cpu). */ new_partial = (new_flags & EF_M32C_CPU_MASK); old_partial = (old_flags & EF_M32C_CPU_MASK); if (new_partial == old_partial) ; else { switch (new_partial) { default: strcat (new_opt, " -m16c"); break; case EF_M32C_CPU_M16C: strcat (new_opt, " -m16c"); break; case EF_M32C_CPU_M32C: strcat (new_opt, " -m32c"); break; } switch (old_partial) { default: strcat (old_opt, " -m16c"); break; case EF_M32C_CPU_M16C: strcat (old_opt, " -m16c"); break; case EF_M32C_CPU_M32C: strcat (old_opt, " -m32c"); break; } } /* Print out any mismatches from above. */ if (new_opt[0]) { error = TRUE; _bfd_error_handler /* xgettext:c-format */ (_("%s: compiled with %s and linked with modules compiled with %s"), bfd_get_filename (ibfd), new_opt, old_opt); } new_flags &= ~ EF_M32C_ALL_FLAGS; old_flags &= ~ EF_M32C_ALL_FLAGS; /* Warn about any other mismatches. */ if (new_flags != old_flags) { error = TRUE; _bfd_error_handler /* xgettext:c-format */ (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), bfd_get_filename (ibfd), (long)new_flags, (long)old_flags); } } if (error) bfd_set_error (bfd_error_bad_value); return !error; } static bfd_boolean m32c_elf_print_private_bfd_data (bfd *abfd, void *ptr) { FILE *file = (FILE *) ptr; flagword flags; BFD_ASSERT (abfd != NULL && ptr != NULL); /* Print normal ELF private data. */ _bfd_elf_print_private_bfd_data (abfd, ptr); flags = elf_elfheader (abfd)->e_flags; fprintf (file, _("private flags = 0x%lx:"), (unsigned long) flags); switch (flags & EF_M32C_CPU_MASK) { default: break; case EF_M32C_CPU_M16C: fprintf (file, " -m16c"); break; case EF_M32C_CPU_M32C: fprintf (file, " -m32c"); break; } fputc ('\n', file); return TRUE; } /* Return the MACH for an e_flags value. */ static int elf32_m32c_machine (bfd *abfd) { switch (elf_elfheader (abfd)->e_flags & EF_M32C_CPU_MASK) { case EF_M32C_CPU_M16C: return bfd_mach_m16c; case EF_M32C_CPU_M32C: return bfd_mach_m32c; } return bfd_mach_m16c; } static bfd_boolean m32c_elf_object_p (bfd *abfd) { bfd_default_set_arch_mach (abfd, bfd_arch_m32c, elf32_m32c_machine (abfd)); return TRUE; } #ifdef DEBUG void dump_symtab (bfd * abfd, void *internal_syms, void *external_syms) { size_t locsymcount; Elf_Internal_Sym *isymbuf; Elf_Internal_Sym *isymend; Elf_Internal_Sym *isym; Elf_Internal_Shdr *symtab_hdr; bfd_boolean free_internal = 0, free_external = 0; char * st_info_str; char * st_info_stb_str; char * st_other_str; char * st_shndx_str; if (! internal_syms) { internal_syms = bfd_malloc (1000); free_internal = 1; } if (! external_syms) { external_syms = bfd_malloc (1000); free_external = 1; } symtab_hdr = &elf_tdata (abfd)->symtab_hdr; locsymcount = symtab_hdr->sh_size / get_elf_backend_data(abfd)->s->sizeof_sym; if (free_internal) isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, internal_syms, external_syms, NULL); else isymbuf = internal_syms; isymend = isymbuf + locsymcount; for (isym = isymbuf ; isym < isymend ; isym++) { switch (ELF_ST_TYPE (isym->st_info)) { case STT_FUNC: st_info_str = "STT_FUNC"; break; case STT_SECTION: st_info_str = "STT_SECTION"; break; case STT_FILE: st_info_str = "STT_FILE"; break; case STT_OBJECT: st_info_str = "STT_OBJECT"; break; case STT_TLS: st_info_str = "STT_TLS"; break; default: st_info_str = ""; } switch (ELF_ST_BIND (isym->st_info)) { case STB_LOCAL: st_info_stb_str = "STB_LOCAL"; break; case STB_GLOBAL: st_info_stb_str = "STB_GLOBAL"; break; default: st_info_stb_str = ""; } switch (ELF_ST_VISIBILITY (isym->st_other)) { case STV_DEFAULT: st_other_str = "STV_DEFAULT"; break; case STV_INTERNAL: st_other_str = "STV_INTERNAL"; break; case STV_PROTECTED: st_other_str = "STV_PROTECTED"; break; default: st_other_str = ""; } switch (isym->st_shndx) { case SHN_ABS: st_shndx_str = "SHN_ABS"; break; case SHN_COMMON: st_shndx_str = "SHN_COMMON"; break; case SHN_UNDEF: st_shndx_str = "SHN_UNDEF"; break; default: st_shndx_str = ""; } printf ("isym = %p st_value = %lx st_size = %lx st_name = (%lu) %s " "st_info = (%d) %s %s st_other = (%d) %s st_shndx = (%d) %s\n", isym, (unsigned long) isym->st_value, (unsigned long) isym->st_size, isym->st_name, bfd_elf_string_from_elf_section (abfd, symtab_hdr->sh_link, isym->st_name), isym->st_info, st_info_str, st_info_stb_str, isym->st_other, st_other_str, isym->st_shndx, st_shndx_str); } if (free_internal) free (internal_syms); if (free_external) free (external_syms); } char * m32c_get_reloc (long reloc) { if (0 <= reloc && reloc < R_M32C_max) return m32c_elf_howto_table[reloc].name; else return ""; } #endif /* DEBUG */ /* Handle relaxing. */ /* A subroutine of m32c_elf_relax_section. If the global symbol H is within the low 64k, remove any entry for it in the plt. */ struct relax_plt_data { asection *splt; bfd_boolean *again; }; static bfd_boolean m32c_relax_plt_check (struct elf_link_hash_entry *h, void * xdata) { struct relax_plt_data *data = (struct relax_plt_data *) xdata; if (h->plt.offset != (bfd_vma) -1) { bfd_vma address; if (h->root.type == bfd_link_hash_undefined || h->root.type == bfd_link_hash_undefweak) address = 0; else address = (h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset + h->root.u.def.value); if (address <= 0xffff) { h->plt.offset = -1; data->splt->size -= 4; *data->again = TRUE; } } return TRUE; } /* A subroutine of m32c_elf_relax_section. If the global symbol H previously had a plt entry, give it a new entry offset. */ static bfd_boolean m32c_relax_plt_realloc (struct elf_link_hash_entry *h, void * xdata) { bfd_vma *entry = (bfd_vma *) xdata; if (h->plt.offset != (bfd_vma) -1) { h->plt.offset = *entry; *entry += 4; } return TRUE; } static bfd_boolean m32c_elf_relax_plt_section (asection *splt, struct bfd_link_info *info, bfd_boolean *again) { struct relax_plt_data relax_plt_data; bfd *ibfd; /* Assume nothing changes. */ *again = FALSE; if (bfd_link_relocatable (info)) return TRUE; /* Quick check for an empty plt. */ if (splt->size == 0) return TRUE; /* Map across all global symbols; see which ones happen to fall in the low 64k. */ relax_plt_data.splt = splt; relax_plt_data.again = again; elf_link_hash_traverse (elf_hash_table (info), m32c_relax_plt_check, &relax_plt_data); /* Likewise for local symbols, though that's somewhat less convenient as we have to walk the list of input bfds and swap in symbol data. */ for (ibfd = info->input_bfds; ibfd ; ibfd = ibfd->link.next) { bfd_vma *local_plt_offsets = elf_local_got_offsets (ibfd); Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Sym *isymbuf = NULL; unsigned int idx; if (! local_plt_offsets) continue; symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; if (symtab_hdr->sh_info != 0) { isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; if (isymbuf == NULL) isymbuf = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (isymbuf == NULL) return FALSE; } for (idx = 0; idx < symtab_hdr->sh_info; ++idx) { Elf_Internal_Sym *isym; asection *tsec; bfd_vma address; if (local_plt_offsets[idx] == (bfd_vma) -1) continue; isym = &isymbuf[idx]; if (isym->st_shndx == SHN_UNDEF) continue; else if (isym->st_shndx == SHN_ABS) tsec = bfd_abs_section_ptr; else if (isym->st_shndx == SHN_COMMON) tsec = bfd_com_section_ptr; else tsec = bfd_section_from_elf_index (ibfd, isym->st_shndx); address = (tsec->output_section->vma + tsec->output_offset + isym->st_value); if (address <= 0xffff) { local_plt_offsets[idx] = -1; splt->size -= 4; *again = TRUE; } } if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) { if (! info->keep_memory) free (isymbuf); else { /* Cache the symbols for elf_link_input_bfd. */ symtab_hdr->contents = (unsigned char *) isymbuf; } } } /* If we changed anything, walk the symbols again to reallocate .plt entry addresses. */ if (*again && splt->size > 0) { bfd_vma entry = 0; elf_link_hash_traverse (elf_hash_table (info), m32c_relax_plt_realloc, &entry); for (ibfd = info->input_bfds; ibfd ; ibfd = ibfd->link.next) { bfd_vma *local_plt_offsets = elf_local_got_offsets (ibfd); unsigned int nlocals = elf_tdata (ibfd)->symtab_hdr.sh_info; unsigned int idx; if (! local_plt_offsets) continue; for (idx = 0; idx < nlocals; ++idx) if (local_plt_offsets[idx] != (bfd_vma) -1) { local_plt_offsets[idx] = entry; entry += 4; } } } return TRUE; } static int compare_reloc (const void *e1, const void *e2) { const Elf_Internal_Rela *i1 = (const Elf_Internal_Rela *) e1; const Elf_Internal_Rela *i2 = (const Elf_Internal_Rela *) e2; if (i1->r_offset == i2->r_offset) return 0; else return i1->r_offset < i2->r_offset ? -1 : 1; } #define OFFSET_FOR_RELOC(rel) m32c_offset_for_reloc (abfd, rel, symtab_hdr, shndx_buf, intsyms) static bfd_vma m32c_offset_for_reloc (bfd *abfd, Elf_Internal_Rela *rel, Elf_Internal_Shdr *symtab_hdr, Elf_External_Sym_Shndx *shndx_buf ATTRIBUTE_UNUSED, Elf_Internal_Sym *intsyms) { bfd_vma symval; /* Get the value of the symbol referred to by the reloc. */ if (ELF32_R_SYM (rel->r_info) < symtab_hdr->sh_info) { /* A local symbol. */ Elf_Internal_Sym *isym; asection *ssec; isym = intsyms + ELF32_R_SYM (rel->r_info); ssec = bfd_section_from_elf_index (abfd, isym->st_shndx); symval = isym->st_value; if (ssec) symval += ssec->output_section->vma + ssec->output_offset; } else { unsigned long indx; struct elf_link_hash_entry *h; /* An external symbol. */ indx = ELF32_R_SYM (rel->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[indx]; BFD_ASSERT (h != NULL); if (h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) /* This appears to be a reference to an undefined symbol. Just ignore it--it will be caught by the regular reloc processing. */ return 0; symval = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } return symval; } static int bytes_saved = 0; static int bytes_to_reloc[] = { R_M32C_NONE, R_M32C_8, R_M32C_16, R_M32C_24, R_M32C_32 }; /* What we use the bits in a relax reloc addend (R_M32C_RL_*) for. */ /* Mask for the number of relocs associated with this insn. */ #define RLA_RELOCS 0x0000000f /* Number of bytes gas emitted (before gas's relaxing) */ #define RLA_NBYTES 0x00000ff0 /* If the displacement is within the given range and the new encoding differs from the old encoding (the index), then the insn can be relaxed to the new encoding. */ typedef struct { int bytes; unsigned int max_disp; unsigned char new_encoding; } EncodingTable; static EncodingTable m16c_addr_encodings[] = { { 0, 0, 0 }, /* R0 */ { 0, 0, 1 }, /* R1 */ { 0, 0, 2 }, /* R2 */ { 0, 0, 3 }, /* R3 */ { 0, 0, 4 }, /* A0 */ { 0, 0, 5 }, /* A1 */ { 0, 0, 6 }, /* [A0] */ { 0, 0, 7 }, /* [A1] */ { 1, 0, 6 }, /* udsp:8[A0] */ { 1, 0, 7 }, /* udsp:8[A1] */ { 1, 0, 10 }, /* udsp:8[SB] */ { 1, 0, 11 }, /* sdsp:8[FB] */ { 2, 255, 8 }, /* udsp:16[A0] */ { 2, 255, 9 }, /* udsp:16[A1] */ { 2, 255, 10 }, /* udsp:16[SB] */ { 2, 0, 15 }, /* abs:16 */ }; static EncodingTable m16c_jmpaddr_encodings[] = { { 0, 0, 0 }, /* R0 */ { 0, 0, 1 }, /* R1 */ { 0, 0, 2 }, /* R2 */ { 0, 0, 3 }, /* R3 */ { 0, 0, 4 }, /* A0 */ { 0, 0, 5 }, /* A1 */ { 0, 0, 6 }, /* [A0] */ { 0, 0, 7 }, /* [A1] */ { 1, 0, 6 }, /* udsp:8[A0] */ { 1, 0, 7 }, /* udsp:8[A1] */ { 1, 0, 10 }, /* udsp:8[SB] */ { 1, 0, 11 }, /* sdsp:8[FB] */ { 3, 255, 8 }, /* udsp:20[A0] */ { 3, 255, 9 }, /* udsp:20[A1] */ { 2, 255, 10 }, /* udsp:16[SB] */ { 2, 0, 15 }, /* abs:16 */ }; static EncodingTable m32c_addr_encodings[] = { { 0, 0, 0 }, /* [A0] */ { 0, 0, 1 }, /* [A1] */ { 0, 0, 2 }, /* A0 */ { 0, 0, 3 }, /* A1 */ { 1, 0, 0 }, /* udsp:8[A0] */ { 1, 0, 1 }, /* udsp:8[A1] */ { 1, 0, 6 }, /* udsp:8[SB] */ { 1, 0, 7 }, /* sdsp:8[FB] */ { 2, 255, 4 }, /* udsp:16[A0] */ { 2, 255, 5 }, /* udsp:16[A1] */ { 2, 255, 6 }, /* udsp:16[SB] */ { 2, 127, 7 }, /* sdsp:16[FB] */ { 3, 65535, 8 }, /* udsp:24[A0] */ { 3, 65535, 9 }, /* udsp:24[A1] */ { 3, 65535, 15 }, /* abs24 */ { 2, 0, 15 }, /* abs16 */ { 0, 0, 16 }, /* R2 */ { 0, 0, 17 }, /* R3 */ { 0, 0, 18 }, /* R0 */ { 0, 0, 19 }, /* R1 */ { 0, 0, 20 }, /* */ { 0, 0, 21 }, /* */ { 0, 0, 22 }, /* */ { 0, 0, 23 }, /* */ { 0, 0, 24 }, /* */ { 0, 0, 25 }, /* */ { 0, 0, 26 }, /* */ { 0, 0, 27 }, /* */ { 0, 0, 28 }, /* */ { 0, 0, 29 }, /* */ { 0, 0, 30 }, /* */ { 0, 0, 31 }, /* */ }; static bfd_boolean m32c_elf_relax_section (bfd * abfd, asection * sec, struct bfd_link_info * link_info, bfd_boolean * again) { Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Shdr *shndx_hdr; Elf_Internal_Rela *internal_relocs; Elf_Internal_Rela *free_relocs = NULL; Elf_Internal_Rela *irel, *irelend, *srel; bfd_byte * contents = NULL; bfd_byte * free_contents = NULL; Elf_Internal_Sym *intsyms = NULL; Elf_Internal_Sym *free_intsyms = NULL; Elf_External_Sym_Shndx *shndx_buf = NULL; int machine; if (abfd == elf_hash_table (link_info)->dynobj && (sec->flags & SEC_LINKER_CREATED) != 0 && strcmp (sec->name, ".plt") == 0) return m32c_elf_relax_plt_section (sec, link_info, again); /* Assume nothing changes. */ *again = FALSE; machine = elf32_m32c_machine (abfd); /* We don't have to do anything for a relocatable link, if this section does not have relocs, or if this is not a code section. */ if (bfd_link_relocatable (link_info) || (sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0 || (sec->flags & SEC_CODE) == 0) return TRUE; symtab_hdr = & elf_symtab_hdr (abfd); if (elf_symtab_shndx_list (abfd)) shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; else shndx_hdr = NULL; /* Get the section contents. */ if (elf_section_data (sec)->this_hdr.contents != NULL) contents = elf_section_data (sec)->this_hdr.contents; /* Go get them off disk. */ else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) goto error_return; /* Read this BFD's symbols. */ /* Get cached copy if it exists. */ if (symtab_hdr->contents != NULL) { intsyms = (Elf_Internal_Sym *) symtab_hdr->contents; } else { intsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); symtab_hdr->contents = (bfd_byte *) intsyms; } if (shndx_hdr && shndx_hdr->sh_size != 0) { bfd_size_type amt; amt = symtab_hdr->sh_info; amt *= sizeof (Elf_External_Sym_Shndx); shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt); if (shndx_buf == NULL) goto error_return; if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0 || bfd_bread (shndx_buf, amt, abfd) != amt) goto error_return; shndx_hdr->contents = (bfd_byte *) shndx_buf; } /* Get a copy of the native relocations. */ internal_relocs = (_bfd_elf_link_read_relocs (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, link_info->keep_memory)); if (internal_relocs == NULL) goto error_return; if (! link_info->keep_memory) free_relocs = internal_relocs; /* The RL_ relocs must be just before the operand relocs they go with, so we must sort them to guarantee this. */ qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), compare_reloc); /* Walk through them looking for relaxing opportunities. */ irelend = internal_relocs + sec->reloc_count; for (irel = internal_relocs; irel < irelend; irel++) { bfd_vma symval; unsigned char *insn, *gap, *einsn; bfd_vma pc; bfd_signed_vma pcrel; int relax_relocs; int gap_size; int new_type; int posn; int enc; EncodingTable *enctbl; EncodingTable *e; if (ELF32_R_TYPE(irel->r_info) != R_M32C_RL_JUMP && ELF32_R_TYPE(irel->r_info) != R_M32C_RL_1ADDR && ELF32_R_TYPE(irel->r_info) != R_M32C_RL_2ADDR) continue; srel = irel; /* There will always be room for the relaxed insn, since it is smaller than the one it would replace. */ BFD_ASSERT (irel->r_offset < sec->size); insn = contents + irel->r_offset; relax_relocs = irel->r_addend % 16; /* Ok, we only have three relocs we care about, and they're all fake. The lower four bits of the addend is always the number of following relocs (hence the qsort above) that are assigned to this opcode. The next 8 bits of the addend indicates the number of bytes in the insn. We use the rest of them ourselves as flags for the more expensive operations (defines above). The three relocs are: RL_JUMP: This marks all direct jump insns. We check the displacement and replace them with shorter jumps if they're in range. We also use this to find JMP.S insns and manually shorten them when we delete bytes. We have to decode these insns to figure out what to do. RL_1ADDR: This is a :G or :Q insn, which has a single "standard" operand. We have to extract the type field, see if it's a wide displacement, then figure out if we can replace it with a narrow displacement. We don't have to decode these insns. RL_2ADDR: Similarly, but two "standard" operands. Note that r_addend may still be 1, as standard operands don't always have displacements. Gas shouldn't give us one with zero operands, but since we don't know which one has the displacement, we check them both anyway. These all point to the beginning of the insn itself, not the operands. Note that we only relax one step at a time, relying on the linker to call us repeatedly. Thus, there is no code for JMP.A->JMP.B although that will happen in two steps. Likewise, for 2ADDR relaxes, we do one operand per cycle. */ /* Get the value of the symbol referred to by the reloc. Just in case this is the last reloc in the list, use the RL's addend to choose between this reloc (no addend) or the next (yes addend, which means at least one following reloc). */ srel = irel + (relax_relocs ? 1 : 0); symval = OFFSET_FOR_RELOC (srel); /* Setting gap_size nonzero is the flag which means "something shrunk". */ gap_size = 0; gap = NULL; new_type = ELF32_R_TYPE(srel->r_info); pc = sec->output_section->vma + sec->output_offset + srel->r_offset; pcrel = symval - pc + srel->r_addend; if (machine == bfd_mach_m16c) { /* R8C / M16C */ switch (ELF32_R_TYPE(irel->r_info)) { case R_M32C_RL_JUMP: switch (insn[0]) { case 0xfe: /* jmp.b */ if (pcrel >= 2 && pcrel <= 9) { /* Relax JMP.B -> JMP.S. We need to get rid of the following reloc though. */ insn[0] = 0x60 | (pcrel - 2); new_type = R_M32C_NONE; irel->r_addend = 0x10; gap_size = 1; gap = insn + 1; } break; case 0xf4: /* jmp.w */ /* 128 is allowed because it will be one byte closer after relaxing. Likewise for all other pc-rel jumps. */ if (pcrel <= 128 && pcrel >= -128) { /* Relax JMP.W -> JMP.B */ insn[0] = 0xfe; insn[1] = 0; new_type = R_M32C_8_PCREL; gap_size = 1; gap = insn + 2; } break; case 0xfc: /* jmp.a */ if (pcrel <= 32768 && pcrel >= -32768) { /* Relax JMP.A -> JMP.W */ insn[0] = 0xf4; insn[1] = 0; insn[2] = 0; new_type = R_M32C_16_PCREL; gap_size = 1; gap = insn + 3; } break; case 0xfd: /* jsr.a */ if (pcrel <= 32768 && pcrel >= -32768) { /* Relax JSR.A -> JSR.W */ insn[0] = 0xf5; insn[1] = 0; insn[2] = 0; new_type = R_M32C_16_PCREL; gap_size = 1; gap = insn + 3; } break; } break; case R_M32C_RL_2ADDR: /* xxxx xxxx srce dest [src-disp] [dest-disp]*/ enctbl = m16c_addr_encodings; posn = 2; enc = (insn[1] >> 4) & 0x0f; e = & enctbl[enc]; if (srel->r_offset == irel->r_offset + posn && e->new_encoding != enc && symval <= e->max_disp) { insn[1] &= 0x0f; insn[1] |= e->new_encoding << 4; gap_size = e->bytes - enctbl[e->new_encoding].bytes; gap = insn + posn + enctbl[e->new_encoding].bytes; new_type = bytes_to_reloc[enctbl[e->new_encoding].bytes]; break; } if (relax_relocs == 2) srel ++; posn += e->bytes; goto try_1addr_16; case R_M32C_RL_1ADDR: /* xxxx xxxx xxxx dest [disp] */ enctbl = m16c_addr_encodings; posn = 2; /* Check the opcode for jumps. We know it's safe to do this because all 2ADDR insns are at least two bytes long. */ enc = insn[0] * 256 + insn[1]; enc &= 0xfff0; if (enc == 0x7d20 || enc == 0x7d00 || enc == 0x7d30 || enc == 0x7d10) { enctbl = m16c_jmpaddr_encodings; } try_1addr_16: /* srel, posn, and enc must be set here. */ symval = OFFSET_FOR_RELOC (srel); enc = insn[1] & 0x0f; e = & enctbl[enc]; if (srel->r_offset == irel->r_offset + posn && e->new_encoding != enc && symval <= e->max_disp) { insn[1] &= 0xf0; insn[1] |= e->new_encoding; gap_size = e->bytes - enctbl[e->new_encoding].bytes; gap = insn + posn + enctbl[e->new_encoding].bytes; new_type = bytes_to_reloc[enctbl[e->new_encoding].bytes]; break; } break; } /* Ends switch (reloc type) for m16c. */ } else /* machine == bfd_mach_m32c */ { /* M32CM / M32C */ switch (ELF32_R_TYPE(irel->r_info)) { case R_M32C_RL_JUMP: switch (insn[0]) { case 0xbb: /* jmp.b */ if (pcrel >= 2 && pcrel <= 9) { int p = pcrel - 2; /* Relax JMP.B -> JMP.S. We need to get rid of the following reloc though. */ insn[0] = 0x4a | ((p << 3) & 0x30) | (p & 1); new_type = R_M32C_NONE; irel->r_addend = 0x10; gap_size = 1; gap = insn + 1; } break; case 0xce: /* jmp.w */ if (pcrel <= 128 && pcrel >= -128) { /* Relax JMP.W -> JMP.B */ insn[0] = 0xbb; insn[1] = 0; new_type = R_M32C_8_PCREL; gap_size = 1; gap = insn + 2; } break; case 0xcc: /* jmp.a */ if (pcrel <= 32768 && pcrel >= -32768) { /* Relax JMP.A -> JMP.W */ insn[0] = 0xce; insn[1] = 0; insn[2] = 0; new_type = R_M32C_16_PCREL; gap_size = 1; gap = insn + 3; } break; case 0xcd: /* jsr.a */ if (pcrel <= 32768 && pcrel >= -32768) { /* Relax JSR.A -> JSR.W */ insn[0] = 0xcf; insn[1] = 0; insn[2] = 0; new_type = R_M32C_16_PCREL; gap_size = 1; gap = insn + 3; } break; } break; case R_M32C_RL_2ADDR: /* xSSS DDDx DDSS xxxx [src-disp] [dest-disp]*/ einsn = insn; posn = 2; if (einsn[0] == 1) { /* prefix; remove it as far as the RL reloc is concerned. */ einsn ++; posn ++; } enctbl = m32c_addr_encodings; enc = ((einsn[0] & 0x70) >> 2) | ((einsn[1] & 0x30) >> 4); e = & enctbl[enc]; if (srel->r_offset == irel->r_offset + posn && e->new_encoding != enc && symval <= e->max_disp) { einsn[0] &= 0x8f; einsn[0] |= (e->new_encoding & 0x1c) << 2; einsn[1] &= 0xcf; einsn[1] |= (e->new_encoding & 0x03) << 4; gap_size = e->bytes - enctbl[e->new_encoding].bytes; gap = insn + posn + enctbl[e->new_encoding].bytes; new_type = bytes_to_reloc[enctbl[e->new_encoding].bytes]; break; } if (relax_relocs == 2) srel ++; posn += e->bytes; goto try_1addr_32; case R_M32C_RL_1ADDR: /* xxxx DDDx DDxx xxxx [disp] */ einsn = insn; posn = 2; if (einsn[0] == 1) { /* prefix; remove it as far as the RL reloc is concerned. */ einsn ++; posn ++; } enctbl = m32c_addr_encodings; try_1addr_32: /* srel, posn, and enc must be set here. */ symval = OFFSET_FOR_RELOC (srel); enc = ((einsn[0] & 0x0e) << 1) | ((einsn[1] & 0xc0) >> 6); e = & enctbl[enc]; if (srel->r_offset == irel->r_offset + posn && e->new_encoding != enc && symval <= e->max_disp) { einsn[0] &= 0xf1; einsn[0] |= (e->new_encoding & 0x1c) >> 1; einsn[1] &= 0x3f; einsn[1] |= (e->new_encoding & 0x03) << 6; gap_size = e->bytes - enctbl[e->new_encoding].bytes; gap = insn + posn + enctbl[e->new_encoding].bytes; new_type = bytes_to_reloc[enctbl[e->new_encoding].bytes]; break; } break; } /* Ends switch (reloc type) for m32c. */ } if (gap_size == 0) continue; *again = TRUE; srel->r_info = ELF32_R_INFO (ELF32_R_SYM (srel->r_info), new_type); /* Note that we've changed the relocs, section contents, etc. */ elf_section_data (sec)->relocs = internal_relocs; free_relocs = NULL; elf_section_data (sec)->this_hdr.contents = contents; free_contents = NULL; symtab_hdr->contents = (bfd_byte *) intsyms; free_intsyms = NULL; bytes_saved += gap_size; if (! m32c_elf_relax_delete_bytes(abfd, sec, gap - contents, gap_size)) goto error_return; } /* next relocation */ if (free_relocs != NULL) { free (free_relocs); free_relocs = NULL; } if (free_contents != NULL) { if (! link_info->keep_memory) free (free_contents); /* Cache the section contents for elf_link_input_bfd. */ else elf_section_data (sec)->this_hdr.contents = contents; free_contents = NULL; } if (shndx_buf != NULL) { shndx_hdr->contents = NULL; free (shndx_buf); } if (free_intsyms != NULL) { if (! link_info->keep_memory) free (free_intsyms); /* Cache the symbols for elf_link_input_bfd. */ else { symtab_hdr->contents = NULL /* (unsigned char *) intsyms*/; } free_intsyms = NULL; } return TRUE; error_return: if (free_relocs != NULL) free (free_relocs); if (free_contents != NULL) free (free_contents); if (shndx_buf != NULL) { shndx_hdr->contents = NULL; free (shndx_buf); } if (free_intsyms != NULL) free (free_intsyms); return FALSE; } /* Delete some bytes from a section while relaxing. */ static bfd_boolean m32c_elf_relax_delete_bytes (bfd * abfd, asection * sec, bfd_vma addr, int count) { Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Shdr *shndx_hdr; int sec_shndx; bfd_byte *contents; Elf_Internal_Rela *irel; Elf_Internal_Rela *irelend; bfd_vma toaddr; Elf_Internal_Sym *isym; Elf_Internal_Sym *isymend; Elf_Internal_Sym *intsyms; Elf_External_Sym_Shndx *shndx_buf; Elf_External_Sym_Shndx *shndx; struct elf_link_hash_entry ** sym_hashes; struct elf_link_hash_entry ** end_hashes; unsigned int symcount; contents = elf_section_data (sec)->this_hdr.contents; toaddr = sec->size; irel = elf_section_data (sec)->relocs; irelend = irel + sec->reloc_count; /* Actually delete the bytes. */ memmove (contents + addr, contents + addr + count, (size_t) (toaddr - addr - count)); sec->size -= count; /* Adjust all the relocs. */ for (irel = elf_section_data (sec)->relocs; irel < irelend; irel ++) { /* Get the new reloc address. */ if (irel->r_offset > addr && irel->r_offset < toaddr) irel->r_offset -= count; if (ELF32_R_TYPE(irel->r_info) == R_M32C_RL_JUMP && irel->r_addend == 0x10 /* one byte insn, no relocs */ && irel->r_offset + 1 < addr && irel->r_offset + 7 > addr) { bfd_vma disp; unsigned char *insn = &contents[irel->r_offset]; disp = *insn; /* This is a JMP.S, which we have to manually update. */ if (elf32_m32c_machine (abfd) == bfd_mach_m16c) { if ((*insn & 0xf8) != 0x60) continue; disp = (disp & 7); } else { if ((*insn & 0xce) != 0x4a) continue; disp = ((disp & 0x30) >> 3) | (disp & 1); } if (irel->r_offset + disp + 2 >= addr+count) { disp -= count; if (elf32_m32c_machine (abfd) == bfd_mach_m16c) { *insn = (*insn & 0xf8) | disp; } else { *insn = (*insn & 0xce) | ((disp & 6) << 3) | (disp & 1); } } } } /* Adjust the local symbols defined in this section. */ symtab_hdr = & elf_tdata (abfd)->symtab_hdr; intsyms = (Elf_Internal_Sym *) symtab_hdr->contents; isym = intsyms; isymend = isym + symtab_hdr->sh_info; sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); if (elf_symtab_shndx_list (abfd)) { shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; shndx_buf = (Elf_External_Sym_Shndx *) shndx_hdr->contents; } else { shndx_hdr = NULL; shndx_buf = NULL; } shndx = shndx_buf; for (; isym < isymend; isym++, shndx = (shndx ? shndx + 1 : NULL)) { /* If the symbol is in the range of memory we just moved, we have to adjust its value. */ if ((int) isym->st_shndx == sec_shndx && isym->st_value > addr && isym->st_value < toaddr) { isym->st_value -= count; } /* If the symbol *spans* the bytes we just deleted (i.e. it's *end* is in the moved bytes but it's *start* isn't), then we must adjust its size. */ if ((int) isym->st_shndx == sec_shndx && isym->st_value < addr && isym->st_value + isym->st_size > addr && isym->st_value + isym->st_size < toaddr) { isym->st_size -= count; } } /* Now adjust the global symbols defined in this section. */ symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) - symtab_hdr->sh_info); sym_hashes = elf_sym_hashes (abfd); // sym_hashes += symtab_hdr->sh_info; end_hashes = sym_hashes + symcount; for (; sym_hashes < end_hashes; sym_hashes ++) { struct elf_link_hash_entry * sym_hash = * sym_hashes; if (sym_hash && (sym_hash->root.type == bfd_link_hash_defined || sym_hash->root.type == bfd_link_hash_defweak) && sym_hash->root.u.def.section == sec) { if (sym_hash->root.u.def.value > addr && sym_hash->root.u.def.value < toaddr) { sym_hash->root.u.def.value -= count; } if (sym_hash->root.u.def.value < addr && sym_hash->root.u.def.value + sym_hash->size > addr && sym_hash->root.u.def.value + sym_hash->size < toaddr) { sym_hash->size -= count; } } } return TRUE; } /* This is for versions of gcc prior to 4.3. */ static unsigned int _bfd_m32c_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED) { if ((elf_elfheader (abfd)->e_flags & EF_M32C_CPU_MASK) == EF_M32C_CPU_M16C) return 2; return 4; } #define ELF_ARCH bfd_arch_m32c #define ELF_MACHINE_CODE EM_M32C #define ELF_MACHINE_ALT1 EM_M32C_OLD #define ELF_MAXPAGESIZE 0x100 #if 0 #define TARGET_BIG_SYM m32c_elf32_vec #define TARGET_BIG_NAME "elf32-m32c" #else #define TARGET_LITTLE_SYM m32c_elf32_vec #define TARGET_LITTLE_NAME "elf32-m32c" #endif #define elf_info_to_howto_rel NULL #define elf_info_to_howto m32c_info_to_howto_rela #define elf_backend_object_p m32c_elf_object_p #define elf_backend_relocate_section m32c_elf_relocate_section #define elf_backend_check_relocs m32c_elf_check_relocs #define elf_backend_object_p m32c_elf_object_p #define elf_symbol_leading_char ('_') #define elf_backend_always_size_sections \ m32c_elf_always_size_sections #define elf_backend_finish_dynamic_sections \ m32c_elf_finish_dynamic_sections #define elf_backend_can_gc_sections 1 #define elf_backend_eh_frame_address_size _bfd_m32c_elf_eh_frame_address_size #define bfd_elf32_bfd_reloc_type_lookup m32c_reloc_type_lookup #define bfd_elf32_bfd_reloc_name_lookup m32c_reloc_name_lookup #define bfd_elf32_bfd_relax_section m32c_elf_relax_section #define bfd_elf32_bfd_set_private_flags m32c_elf_set_private_flags #define bfd_elf32_bfd_merge_private_bfd_data m32c_elf_merge_private_bfd_data #define bfd_elf32_bfd_print_private_bfd_data m32c_elf_print_private_bfd_data #include "elf32-target.h"