/* Intel 80386/80486-specific support for 32-bit ELF Copyright 1993 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "bfd.h" #include "sysdep.h" #include "bfdlink.h" #include "libbfd.h" #include "libelf.h" static CONST struct reloc_howto_struct *elf_i386_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type)); static void elf_i386_info_to_howto PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *)); static void elf_i386_info_to_howto_rel PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *)); static boolean elf_i386_create_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static boolean elf_i386_check_relocs PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *)); static boolean elf_i386_adjust_dynamic_symbol PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); static boolean elf_i386_size_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static boolean elf_i386_relocate_section PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); static boolean elf_i386_finish_dynamic_symbol PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); static boolean elf_i386_finish_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); #define USE_REL 1 /* 386 uses REL relocations instead of RELA */ enum reloc_type { R_386_NONE = 0, R_386_32, R_386_PC32, R_386_GOT32, R_386_PLT32, R_386_COPY, R_386_GLOB_DAT, R_386_JUMP_SLOT, R_386_RELATIVE, R_386_GOTOFF, R_386_GOTPC, R_386_max }; #if 0 static CONST char *CONST reloc_type_names[] = { "R_386_NONE", "R_386_32", "R_386_PC32", "R_386_GOT32", "R_386_PLT32", "R_386_COPY", "R_386_GLOB_DAT", "R_386_JUMP_SLOT", "R_386_RELATIVE", "R_386_GOTOFF", "R_386_GOTPC", }; #endif static reloc_howto_type elf_howto_table[]= { HOWTO(R_386_NONE, 0,0, 0,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_NONE", true,0x00000000,0x00000000,false), HOWTO(R_386_32, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_32", true,0xffffffff,0xffffffff,false), HOWTO(R_386_PC32, 0,2,32,true, 0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_PC32", true,0xffffffff,0xffffffff,true), HOWTO(R_386_GOT32, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_GOT32", true,0xffffffff,0xffffffff,false), HOWTO(R_386_PLT32, 0,2,32,true,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_PLT32", true,0xffffffff,0xffffffff,true), HOWTO(R_386_COPY, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_COPY", true,0xffffffff,0xffffffff,false), HOWTO(R_386_GLOB_DAT, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_GLOB_DAT", true,0xffffffff,0xffffffff,false), HOWTO(R_386_JUMP_SLOT, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_JUMP_SLOT",true,0xffffffff,0xffffffff,false), HOWTO(R_386_RELATIVE, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_RELATIVE", true,0xffffffff,0xffffffff,false), HOWTO(R_386_GOTOFF, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_GOTOFF", true,0xffffffff,0xffffffff,false), HOWTO(R_386_GOTPC, 0,2,32,true,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_GOTPC", true,0xffffffff,0xffffffff,true), }; #ifdef DEBUG_GEN_RELOC #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str) #else #define TRACE(str) #endif static CONST struct reloc_howto_struct * elf_i386_reloc_type_lookup (abfd, code) bfd *abfd; bfd_reloc_code_real_type code; { switch (code) { case BFD_RELOC_NONE: TRACE ("BFD_RELOC_NONE"); return &elf_howto_table[ (int)R_386_NONE ]; case BFD_RELOC_32: TRACE ("BFD_RELOC_32"); return &elf_howto_table[ (int)R_386_32 ]; case BFD_RELOC_32_PCREL: TRACE ("BFD_RELOC_PC32"); return &elf_howto_table[ (int)R_386_PC32 ]; case BFD_RELOC_386_GOT32: TRACE ("BFD_RELOC_386_GOT32"); return &elf_howto_table[ (int)R_386_GOT32 ]; case BFD_RELOC_386_PLT32: TRACE ("BFD_RELOC_386_PLT32"); return &elf_howto_table[ (int)R_386_PLT32 ]; case BFD_RELOC_386_COPY: TRACE ("BFD_RELOC_386_COPY"); return &elf_howto_table[ (int)R_386_COPY ]; case BFD_RELOC_386_GLOB_DAT: TRACE ("BFD_RELOC_386_GLOB_DAT"); return &elf_howto_table[ (int)R_386_GLOB_DAT ]; case BFD_RELOC_386_JUMP_SLOT: TRACE ("BFD_RELOC_386_JUMP_SLOT"); return &elf_howto_table[ (int)R_386_JUMP_SLOT ]; case BFD_RELOC_386_RELATIVE: TRACE ("BFD_RELOC_386_RELATIVE"); return &elf_howto_table[ (int)R_386_RELATIVE ]; case BFD_RELOC_386_GOTOFF: TRACE ("BFD_RELOC_386_GOTOFF"); return &elf_howto_table[ (int)R_386_GOTOFF ]; case BFD_RELOC_386_GOTPC: TRACE ("BFD_RELOC_386_GOTPC"); return &elf_howto_table[ (int)R_386_GOTPC ]; default: break; } TRACE ("Unknown"); return 0; } static void elf_i386_info_to_howto (abfd, cache_ptr, dst) bfd *abfd; arelent *cache_ptr; Elf32_Internal_Rela *dst; { BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_386_max); cache_ptr->howto = &elf_howto_table[ELF32_R_TYPE(dst->r_info)]; } static void elf_i386_info_to_howto_rel (abfd, cache_ptr, dst) bfd *abfd; arelent *cache_ptr; Elf32_Internal_Rel *dst; { BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_386_max); cache_ptr->howto = &elf_howto_table[ELF32_R_TYPE(dst->r_info)]; } /* Functions for the i386 ELF linker. */ /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" /* The size in bytes of an entry in the procedure linkage table. */ #define PLT_ENTRY_SIZE 16 /* The first entry in an absolute procedure linkage table looks like this. See the SVR4 ABI i386 supplement to see how this works. */ static bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] = { 0xff, 0x35, /* pushl contents of address */ 0, 0, 0, 0, /* replaced with address of .got + 4. */ 0xff, 0x25, /* jmp indirect */ 0, 0, 0, 0, /* replaced with address of .got + 8. */ 0, 0, 0, 0 /* pad out to 16 bytes. */ }; /* Subsequent entries in an absolute procedure linkage table look like this. */ static bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] = { 0xff, 0x25, /* jmp indirect */ 0, 0, 0, 0, /* replaced with address of this symbol in .got. */ 0x68, /* pushl immediate */ 0, 0, 0, 0, /* replaced with offset into relocation table. */ 0xe9, /* jmp relative */ 0, 0, 0, 0 /* replaced with offset to start of .plt. */ }; /* The first entry in a PIC procedure linkage table look like this. */ static bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] = { 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */ 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */ 0, 0, 0, 0 /* pad out to 16 bytes. */ }; /* Subsequent entries in a PIC procedure linkage table look like this. */ static bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] = { 0xff, 0xa3, /* jmp *offset(%ebx) */ 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */ 0x68, /* pushl immediate */ 0, 0, 0, 0, /* replaced with offset into relocation table. */ 0xe9, /* jmp relative */ 0, 0, 0, 0 /* replaced with offset to start of .plt. */ }; /* Create dynamic sections when linking against a dynamic object. */ static boolean elf_i386_create_dynamic_sections (abfd, info) bfd *abfd; struct bfd_link_info *info; { flagword flags; register asection *s; struct elf_link_hash_entry *h; /* We need to create .plt, .rel.plt, .got, .got.plt, .dynbss, and .rel.bss sections. */ flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; s = bfd_make_section (abfd, ".plt"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY | SEC_CODE) || ! bfd_set_section_alignment (abfd, s, 2)) return false; s = bfd_make_section (abfd, ".rel.plt"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) || ! bfd_set_section_alignment (abfd, s, 2)) return false; s = bfd_make_section (abfd, ".got"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags) || ! bfd_set_section_alignment (abfd, s, 2)) return false; s = bfd_make_section (abfd, ".got.plt"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags) || ! bfd_set_section_alignment (abfd, s, 2)) return false; /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got.plt section, which will be placed at the start of the output .got section. We don't do this in the linker script because we don't want to define the symbol if we are not creating a global offset table. */ h = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, (bfd_vma) 0, (const char *) NULL, false, get_elf_backend_data (abfd)->collect, (struct bfd_link_hash_entry **) &h))) return false; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_OBJECT; if (info->shared && ! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; /* The first three global offset table entries are reserved. */ s->_raw_size += 3 * 4; /* The .dynbss section is a place to put symbols which are defined by dynamic objects, are referenced by regular objects, and are not functions. We must allocate space for them in the process image and use a R_386_COPY reloc to tell the dynamic linker to initialize them at run time. The linker script puts the .dynbss section into the .bss section of the final image. */ s = bfd_make_section (abfd, ".dynbss"); if (s == NULL || ! bfd_set_section_flags (abfd, s, SEC_ALLOC)) return false; /* The .rel.bss section holds copy relocs. This section is not normally needed. We need to create it here, though, so that the linker will map it to an output section. We can't just create it only if we need it, because we will not know whether we need it until we have seen all the input files, and the first time the main linker code calls BFD after examining all the input files (size_dynamic_sections) the input sections have already been mapped to the output sections. If the section turns out not to be needed, we can discard it later. We will never need this section when generating a shared object, since they do not use copy relocs. */ if (! info->shared) { s = bfd_make_section (abfd, ".rel.bss"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) || ! bfd_set_section_alignment (abfd, s, 2)) return false; } return true; } /* Look through the relocs for a section during the first phase, and allocate space in the global offset table or procedure linkage table. */ static boolean elf_i386_check_relocs (abfd, info, sec, relocs) bfd *abfd; struct bfd_link_info *info; asection *sec; const Elf_Internal_Rela *relocs; { bfd *dynobj; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_vma *local_got_offsets; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *sgot; asection *srelgot; asection *splt; asection *sgotplt; asection *srelplt; asection *sreloc; if (info->relocateable) return true; dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_offsets = elf_local_got_offsets (abfd); sgot = NULL; srelgot = NULL; splt = NULL; sgotplt = NULL; srelplt = NULL; sreloc = NULL; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { long r_symndx; struct elf_link_hash_entry *h; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else h = sym_hashes[r_symndx - symtab_hdr->sh_info]; /* Some relocs require a global offset table. FIXME: If this is a static link of PIC code, we need a global offset table but we don't really need to create the full dynamic linking information. */ if (dynobj == NULL) { switch (ELF32_R_TYPE (rel->r_info)) { case R_386_GOT32: case R_386_PLT32: case R_386_GOTOFF: case R_386_GOTPC: elf_hash_table (info)->dynobj = dynobj = abfd; if (! bfd_elf32_link_create_dynamic_sections (dynobj, info)) return false; break; default: break; } } switch (ELF32_R_TYPE (rel->r_info)) { case R_386_GOT32: /* This symbol requires a global offset table entry. */ if (sgot == NULL) { sgot = bfd_get_section_by_name (dynobj, ".got"); srelgot = bfd_get_section_by_name (dynobj, ".rel.got"); if (srelgot == NULL) { srelgot = bfd_make_section (dynobj, ".rel.got"); if (srelgot == NULL || ! bfd_set_section_flags (dynobj, srelgot, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY)) || ! bfd_set_section_alignment (dynobj, srelgot, 2)) return false; } BFD_ASSERT (sgot != NULL && srelgot != NULL); } if (h != NULL) { if (h->got_offset != (bfd_vma) -1) { /* We have already allocated space in the .got. */ break; } h->got_offset = sgot->_raw_size; /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1) { if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } } else { /* This is a global offset table entry for a local symbol. */ if (local_got_offsets == NULL) { size_t size; register int i; size = symtab_hdr->sh_info * sizeof (bfd_vma); local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size); if (local_got_offsets == NULL) { bfd_set_error (bfd_error_no_memory); return false; } elf_local_got_offsets (abfd) = local_got_offsets; for (i = 0; i < symtab_hdr->sh_info; i++) local_got_offsets[i] = (bfd_vma) -1; } if (local_got_offsets[r_symndx] != (bfd_vma) -1) { /* We have already allocated space in the .got. */ break; } local_got_offsets[r_symndx] = sgot->_raw_size; } sgot->_raw_size += 4; srelgot->_raw_size += sizeof (Elf32_External_Rel); break; case R_386_PLT32: /* This symbol requires a procedure linkage table entry. */ /* If this is a local symbol, we resolve it directly without creating a procedure linkage table entry. */ if (h == NULL) continue; if (h->plt_offset != (bfd_vma) -1) { /* There is already an entry for this symbol in the procedure linkage table. */ break; } if (splt == NULL) { splt = bfd_get_section_by_name (dynobj, ".plt"); sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); srelplt = bfd_get_section_by_name (dynobj, ".rel.plt"); BFD_ASSERT (splt != NULL && sgotplt != NULL && srelplt != NULL); } /* If this is the first .plt entry, make room for the special first entry. */ if (splt->_raw_size == 0) splt->_raw_size += PLT_ENTRY_SIZE; /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1) { if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } h->plt_offset = splt->_raw_size; /* Make room for this entry. We need a procedure linkage table entry in .plt, a global offset table entry in .got.plt (which is placed in .got by the linker script), and a relocation in .rel.plt. */ splt->_raw_size += PLT_ENTRY_SIZE; sgotplt->_raw_size += 4; srelplt->_raw_size += sizeof (Elf32_External_Rel); break; case R_386_32: case R_386_PC32: if (info->shared && (sec->flags & SEC_ALLOC) != 0) { /* When creating a shared object, we must output a R_386_RELATIVE reloc for this location. We create a reloc section in dynobj and make room for this reloc. */ if (sreloc == NULL) { const char *name; name = (elf_string_from_elf_section (abfd, elf_elfheader (abfd)->e_shstrndx, elf_section_data (sec)->rel_hdr.sh_name)); if (name == NULL) return false; BFD_ASSERT (strncmp (name, ".rel", 4) == 0 && strcmp (bfd_get_section_name (abfd, sec), name + 4) == 0); sreloc = bfd_get_section_by_name (dynobj, name); if (sreloc == NULL) { sreloc = bfd_make_section (dynobj, name); if (sreloc == NULL || ! bfd_set_section_flags (dynobj, sreloc, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY)) || ! bfd_set_section_alignment (dynobj, sreloc, 2)) return false; } } sreloc->_raw_size += sizeof (Elf32_External_Rel); } break; default: break; } } return true; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static boolean elf_i386_adjust_dynamic_symbol (info, h) struct bfd_link_info *info; struct elf_link_hash_entry *h; { bfd *dynobj; asection *s; unsigned int power_of_two; dynobj = elf_hash_table (info)->dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 && h->root.type == bfd_link_hash_defined && (bfd_get_flavour (h->root.u.def.section->owner) == bfd_target_elf_flavour) && (elf_elfheader (h->root.u.def.section->owner)->e_type == ET_DYN) && h->root.u.def.section->output_section == NULL); /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later, when we know the address of the .got section. */ if (h->type == STT_FUNC) { s = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (s != NULL); if (h->plt_offset != (bfd_vma) -1) { h->root.u.def.section = s; h->root.u.def.value = h->plt_offset; } else { /* If this is the first .plt entry, make room for the special first entry. */ if (s->_raw_size == 0) s->_raw_size += PLT_ENTRY_SIZE; /* Set the symbol to this location in the .plt. */ h->root.u.def.section = s; h->root.u.def.value = s->_raw_size; h->plt_offset = s->_raw_size; /* Make room for this entry. */ s->_raw_size += PLT_ENTRY_SIZE; /* We also need to make an entry in the .got.plt section, which will be placed in the .got section by the linker script. */ s = bfd_get_section_by_name (dynobj, ".got.plt"); BFD_ASSERT (s != NULL); s->_raw_size += 4; /* We also need to make an entry in the .rel.plt section. */ s = bfd_get_section_by_name (dynobj, ".rel.plt"); BFD_ASSERT (s != NULL); s->_raw_size += sizeof (Elf32_External_Rel); } return true; } /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->weakdef != NULL) { BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined); h->root.u.def.section = h->weakdef->root.u.def.section; h->root.u.def.value = h->weakdef->root.u.def.value; return true; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return true; /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ s = bfd_get_section_by_name (dynobj, ".dynbss"); BFD_ASSERT (s != NULL); /* If the symbol is currently defined in the .bss section of the dynamic object, then it is OK to simply initialize it to zero. If the symbol is in some other section, we must generate a R_386_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. We need to remember the offset into the .rel.bss section we are going to use. */ if ((h->root.u.def.section->flags & SEC_LOAD) != 0) { asection *srel; srel = bfd_get_section_by_name (dynobj, ".rel.bss"); BFD_ASSERT (srel != NULL); srel->_raw_size += sizeof (Elf32_External_Rel); h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY; } /* We need to figure out the alignment required for this symbol. I have no idea how ELF linkers handle this. */ power_of_two = bfd_log2 (h->size); if (power_of_two > 3) power_of_two = 3; /* Apply the required alignment. */ s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two)); if (power_of_two > bfd_get_section_alignment (dynobj, s)) { if (! bfd_set_section_alignment (dynobj, s, power_of_two)) return false; } /* Define the symbol as being at this point in the section. */ h->root.u.def.section = s; h->root.u.def.value = s->_raw_size; /* Increment the section size to make room for the symbol. */ s->_raw_size += h->size; return true; } /* Set the sizes of the dynamic sections. */ static boolean elf_i386_size_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *s; boolean plt; boolean relocs; boolean reltext; dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); /* Set the contents of the .interp section to the interpreter. */ if (! info->shared) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ plt = false; relocs = false; reltext = false; for (s = dynobj->sections; s != NULL; s = s->next) { const char *name; boolean strip; if ((s->flags & SEC_IN_MEMORY) == 0) continue; /* It's OK to base decisions on the section name, because none of the dynobj section names depend upon the input files. */ name = bfd_get_section_name (dynobj, s); strip = false; if (strcmp (name, ".plt") == 0) { if (s->_raw_size == 0) { /* Strip this section if we don't need it; see the comment below. */ strip = true; } else { /* Remember whether there is a PLT. */ plt = true; } } else if (strncmp (name, ".rel", 4) == 0) { if (s->_raw_size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rel.bss and .rel.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ strip = true; } else { asection *target; /* Remember whether there are any reloc sections other than .rel.plt. */ if (strcmp (name, ".rel.plt") != 0) relocs = true; /* If this relocation section applies to a read only section, then we probably need a DT_TEXTREL entry. */ target = bfd_get_section_by_name (output_bfd, name + 4); if (target != NULL && (target->flags & SEC_READONLY) != 0) reltext = true; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } } else if (strncmp (name, ".got", 4) != 0) { /* It's not one of our sections, so don't allocate space. */ continue; } if (strip) { asection **spp; for (spp = &s->output_section->owner->sections; *spp != s->output_section; spp = &(*spp)->next) ; *spp = s->output_section->next; --s->output_section->owner->section_count; continue; } /* Allocate memory for the section contents. */ s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); if (s->contents == NULL && s->_raw_size != 0) { bfd_set_error (bfd_error_no_memory); return false; } } /* Add some entries to the .dynamic section. We fill in the values later, in elf_i386_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ if (! info->shared) { if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0)) return false; } if (plt) { if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0) || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0) || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL) || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0)) return false; } if (relocs) { if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0) || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0) || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT, sizeof (Elf32_External_Rel))) return false; } if (reltext) { if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0)) return false; } return true; } /* Relocate an i386 ELF section. */ static boolean elf_i386_relocate_section (output_bfd, info, input_bfd, input_section, contents, relocs, local_syms, local_sections) bfd *output_bfd; struct bfd_link_info *info; bfd *input_bfd; asection *input_section; bfd_byte *contents; Elf_Internal_Rela *relocs; Elf_Internal_Sym *local_syms; asection **local_sections; char *output_names; { bfd *dynobj; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_vma *local_got_offsets; asection *sgot; asection *splt; asection *sreloc; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); local_got_offsets = elf_local_got_offsets (input_bfd); sgot = NULL; splt = NULL; sreloc = NULL; rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { int r_type; const reloc_howto_type *howto; long r_symndx; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; asection *sec; bfd_vma relocation; bfd_reloc_status_type r; r_type = ELF32_R_TYPE (rel->r_info); if (r_type < 0 || r_type >= (int) R_386_max) { bfd_set_error (bfd_error_bad_value); return false; } howto = elf_howto_table + r_type; r_symndx = ELF32_R_SYM (rel->r_info); if (info->relocateable) { /* This is a relocateable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) { bfd_vma val; sec = local_sections[r_symndx]; val = bfd_get_32 (input_bfd, contents + rel->r_offset); val += sec->output_offset + sym->st_value; bfd_put_32 (input_bfd, val, contents + rel->r_offset); } } continue; } /* This is a final link. */ h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; relocation = (sec->output_section->vma + sec->output_offset + sym->st_value); } else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; if (h->root.type == bfd_link_hash_defined) { sec = h->root.u.def.section; relocation = (h->root.u.def.value + sec->output_section->vma + sec->output_offset); } else if (h->root.type == bfd_link_hash_weak) relocation = 0; else if (info->shared) relocation = 0; else { if (! ((*info->callbacks->undefined_symbol) (info, h->root.root.string, input_bfd, input_section, rel->r_offset))) return false; relocation = 0; } } switch (r_type) { case R_386_GOT32: /* Relocation is to the entry for this symbol in the global offset table. */ if (sgot == NULL) { sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); } if (h != NULL) { BFD_ASSERT (h->got_offset != (bfd_vma) -1); relocation = sgot->output_offset + h->got_offset; } else { bfd_vma off; BFD_ASSERT (local_got_offsets != NULL && local_got_offsets[r_symndx] != (bfd_vma) -1); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already generated the necessary reloc. */ if ((off & 1) != 0) off &= ~1; else { asection *srelgot; Elf_Internal_Rel outrel; bfd_put_32 (output_bfd, relocation, sgot->contents + off); srelgot = bfd_get_section_by_name (dynobj, ".rel.got"); BFD_ASSERT (srelgot != NULL); outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); bfd_elf32_swap_reloc_out (output_bfd, &outrel, (((Elf32_External_Rel *) srelgot->contents) + srelgot->reloc_count)); ++srelgot->reloc_count; local_got_offsets[r_symndx] |= 1; } relocation = sgot->output_offset + off; } break; case R_386_GOTOFF: /* Relocation is relative to the start of the global offset table. */ if (sgot == NULL) { sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); } /* Note that sgot->output_offset is not involved in this calculation. We always want the start of .got. If we defined _GLOBAL_OFFSET_TABLE in a different way, as is permitted by the ABI, we might have to change this calculation. */ relocation -= sgot->output_section->vma; break; case R_386_GOTPC: /* Use global offset table as symbol value. */ if (sgot == NULL) { sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); } relocation = sgot->output_section->vma; break; case R_386_PLT32: /* Relocation is to the entry for this symbol in the procedure linkage table. */ /* Resolve a PLT32 reloc again a local symbol directly, without using the procedure linkage table. */ if (h == NULL) break; if (splt == NULL) { splt = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (splt != NULL); } BFD_ASSERT (h != NULL && h->plt_offset != (bfd_vma) -1); relocation = (splt->output_section->vma + splt->output_offset + h->plt_offset); break; case R_386_32: case R_386_PC32: if (info->shared && (input_section->flags & SEC_ALLOC) != 0) { Elf_Internal_Rel outrel; /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ if (sreloc == NULL) { const char *name; name = (elf_string_from_elf_section (input_bfd, elf_elfheader (input_bfd)->e_shstrndx, elf_section_data (input_section)->rel_hdr.sh_name)); if (name == NULL) return false; BFD_ASSERT (strncmp (name, ".rel", 4) == 0 && strcmp (bfd_get_section_name (input_bfd, input_section), name + 4) == 0); sreloc = bfd_get_section_by_name (dynobj, name); BFD_ASSERT (sreloc != NULL); } outrel.r_offset = (rel->r_offset + input_section->output_section->vma + input_section->output_offset); if (r_type == R_386_PC32) { BFD_ASSERT (h != NULL && h->dynindx != (bfd_vma) -1); outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_PC32); } else { if (h == NULL) outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); else { BFD_ASSERT (h->dynindx != (bfd_vma) -1); outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_32); } } bfd_elf32_swap_reloc_out (output_bfd, &outrel, (((Elf32_External_Rel *) sreloc->contents) + sreloc->reloc_count)); ++sreloc->reloc_count; /* If this reloc is against an external symbol, we do not want to fiddle with the addend. Otherwise, we need to include the symbol value so that it becomes an addend for the dynamic reloc. */ if (h != NULL) continue; } break; default: break; } r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, (bfd_vma) 0); if (r != bfd_reloc_ok) { switch (r) { default: case bfd_reloc_outofrange: abort (); case bfd_reloc_overflow: { const char *name; if (h != NULL) name = h->root.root.string; else { name = elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (name == NULL) return false; if (*name == '\0') name = bfd_section_name (input_bfd, sec); } if (! ((*info->callbacks->reloc_overflow) (info, name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return false; } break; } } } return true; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static boolean elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym) bfd *output_bfd; struct bfd_link_info *info; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { bfd *dynobj; dynobj = elf_hash_table (info)->dynobj; if (h->plt_offset != (bfd_vma) -1) { asection *splt; asection *sgot; asection *srel; bfd_vma plt_index; bfd_vma got_offset; Elf_Internal_Rel rel; /* This symbol has an entry in the procedure linkage table. Set it up. */ BFD_ASSERT (h->dynindx != -1); splt = bfd_get_section_by_name (dynobj, ".plt"); sgot = bfd_get_section_by_name (dynobj, ".got.plt"); srel = bfd_get_section_by_name (dynobj, ".rel.plt"); BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); /* Get the index in the procedure linkage table which corresponds to this symbol. This is the index of this symbol in all the symbols for which we are making plt entries. The first entry in the procedure linkage table is reserved. */ plt_index = h->plt_offset / PLT_ENTRY_SIZE - 1; /* Get the offset into the .got table of the entry that corresponds to this function. Each .got entry is 4 bytes. The first three are reserved. */ got_offset = (plt_index + 3) * 4; /* Fill in the entry in the procedure linkage table. */ if (! info->shared) { memcpy (splt->contents + h->plt_offset, elf_i386_plt_entry, PLT_ENTRY_SIZE); bfd_put_32 (output_bfd, (sgot->output_section->vma + sgot->output_offset + got_offset), splt->contents + h->plt_offset + 2); } else { memcpy (splt->contents + h->plt_offset, elf_i386_pic_plt_entry, PLT_ENTRY_SIZE); bfd_put_32 (output_bfd, got_offset, splt->contents + h->plt_offset + 2); } bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel), splt->contents + h->plt_offset + 7); bfd_put_32 (output_bfd, - (h->plt_offset + PLT_ENTRY_SIZE), splt->contents + h->plt_offset + 12); /* Fill in the entry in the global offset table. */ bfd_put_32 (output_bfd, (splt->output_section->vma + splt->output_offset + h->plt_offset + 6), sgot->contents + got_offset); /* Fill in the entry in the .rel.plt section. */ rel.r_offset = (sgot->output_section->vma + sgot->output_offset + got_offset); rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT); bfd_elf32_swap_reloc_out (output_bfd, &rel, ((Elf32_External_Rel *) srel->contents + plt_index)); if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; } } if (h->got_offset != (bfd_vma) -1) { asection *sgot; asection *srel; Elf_Internal_Rel rel; /* This symbol has an entry in the global offset table. Set it up. */ BFD_ASSERT (h->dynindx != -1); sgot = bfd_get_section_by_name (dynobj, ".got"); srel = bfd_get_section_by_name (dynobj, ".rel.got"); BFD_ASSERT (sgot != NULL && srel != NULL); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got_offset); rel.r_offset = (sgot->output_section->vma + sgot->output_offset + h->got_offset); rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT); bfd_elf32_swap_reloc_out (output_bfd, &rel, ((Elf32_External_Rel *) srel->contents + srel->reloc_count)); ++srel->reloc_count; } if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0) { asection *s; Elf_Internal_Rel rel; /* This symbol needs a copy reloc. Set it up. */ BFD_ASSERT (h->dynindx != -1 && h->root.type == bfd_link_hash_defined); s = bfd_get_section_by_name (h->root.u.def.section->owner, ".rel.bss"); BFD_ASSERT (s != NULL); rel.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY); bfd_elf32_swap_reloc_out (output_bfd, &rel, ((Elf32_External_Rel *) s->contents + s->reloc_count)); ++s->reloc_count; } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) sym->st_shndx = SHN_ABS; return true; } /* Finish up the dynamic sections. */ static boolean elf_i386_finish_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *splt; asection *sgot; asection *sdyn; Elf32_External_Dyn *dyncon, *dynconend; dynobj = elf_hash_table (info)->dynobj; splt = bfd_get_section_by_name (dynobj, ".plt"); sgot = bfd_get_section_by_name (dynobj, ".got.plt"); sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); BFD_ASSERT (splt != NULL && sgot != NULL && sdyn != NULL); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; const char *name; asection *s; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: break; case DT_PLTGOT: name = ".got"; goto get_vma; case DT_JMPREL: name = ".rel.plt"; get_vma: s = bfd_get_section_by_name (output_bfd, name); BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->vma; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_PLTRELSZ: s = bfd_get_section_by_name (output_bfd, ".rel.plt"); BFD_ASSERT (s != NULL); if (s->_cooked_size != 0) dyn.d_un.d_val = s->_cooked_size; else dyn.d_un.d_val = s->_raw_size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_RELSZ: /* My reading of the SVR4 ABI indicates that the procedure linkage table relocs (DT_JMPREL) should be included in the overall relocs (DT_REL). This is what Solaris does. However, UnixWare can not handle that case. Therefore, we override the DT_RELSZ entry here to make it not include the JMPREL relocs. Since the linker script arranges for .rel.plt to follow all other relocation sections, we don't have to worry about changing the DT_REL entry. */ s = bfd_get_section_by_name (output_bfd, ".rel.plt"); if (s != NULL) { if (s->_cooked_size != 0) dyn.d_un.d_val -= s->_cooked_size; else dyn.d_un.d_val -= s->_raw_size; } bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; } } /* Fill in the first entry in the procedure linkage table. */ if (splt->_raw_size > 0) { if (info->shared) memcpy (splt->contents, elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE); else { memcpy (splt->contents, elf_i386_plt0_entry, PLT_ENTRY_SIZE); bfd_put_32 (output_bfd, sgot->output_section->vma + sgot->output_offset + 4, splt->contents + 2); bfd_put_32 (output_bfd, sgot->output_section->vma + sgot->output_offset + 8, splt->contents + 8); } } /* Fill in the first three entries in the global offset table. */ if (sgot->_raw_size > 0) { bfd_put_32 (output_bfd, sdyn->output_section->vma + sdyn->output_offset, sgot->contents); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); } elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; /* UnixWare sets the entsize of .plt to 4, although that doesn't really seem like the right value. */ elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4; return true; } #define TARGET_LITTLE_SYM bfd_elf32_i386_vec #define TARGET_LITTLE_NAME "elf32-i386" #define ELF_ARCH bfd_arch_i386 #define ELF_MACHINE_CODE EM_386 #define elf_info_to_howto elf_i386_info_to_howto #define elf_info_to_howto_rel elf_i386_info_to_howto_rel #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup #define ELF_MAXPAGESIZE 0x1000 #define elf_backend_create_dynamic_sections \ elf_i386_create_dynamic_sections #define elf_backend_check_relocs elf_i386_check_relocs #define elf_backend_adjust_dynamic_symbol \ elf_i386_adjust_dynamic_symbol #define elf_backend_size_dynamic_sections \ elf_i386_size_dynamic_sections #define elf_backend_relocate_section elf_i386_relocate_section #define elf_backend_finish_dynamic_symbol \ elf_i386_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections \ elf_i386_finish_dynamic_sections #include "elf32-target.h"