/* BFD back-end for HP PA-RISC ELF files. Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001 Free Software Foundation, Inc. Original code by Center for Software Science Department of Computer Science University of Utah Largely rewritten by Alan Modra This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "bfd.h" #include "sysdep.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/hppa.h" #include "libhppa.h" #include "elf32-hppa.h" #define ARCH_SIZE 32 #include "elf-hppa.h" #include "elf32-hppa.h" /* In order to gain some understanding of code in this file without knowing all the intricate details of the linker, note the following: Functions named elf32_hppa_* are called by external routines, other functions are only called locally. elf32_hppa_* functions appear in this file more or less in the order in which they are called from external routines. eg. elf32_hppa_check_relocs is called early in the link process, elf32_hppa_finish_dynamic_sections is one of the last functions. */ /* We use two hash tables to hold information for linking PA ELF objects. The first is the elf32_hppa_link_hash_table which is derived from the standard ELF linker hash table. We use this as a place to attach other hash tables and static information. The second is the stub hash table which is derived from the base BFD hash table. The stub hash table holds the information necessary to build the linker stubs during a link. There are a number of different stubs generated by the linker. Long branch stub: : ldil LR'X,%r1 : be,n RR'X(%sr4,%r1) PIC long branch stub: : b,l .+8,%r1 : addil LR'X - ($PIC_pcrel$0 - 4),%r1 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1) Import stub to call shared library routine from normal object file (single sub-space version) : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point : ldw RR'lt_ptr+ltoff(%r1),%r21 : bv %r0(%r21) : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value. Import stub to call shared library routine from shared library (single sub-space version) : addil LR'ltoff,%r19 ; get procedure entry point : ldw RR'ltoff(%r1),%r21 : bv %r0(%r21) : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value. Import stub to call shared library routine from normal object file (multiple sub-space support) : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point : ldw RR'lt_ptr+ltoff(%r1),%r21 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value. : ldsid (%r21),%r1 : mtsp %r1,%sr0 : be 0(%sr0,%r21) ; branch to target : stw %rp,-24(%sp) ; save rp Import stub to call shared library routine from shared library (multiple sub-space support) : addil LR'ltoff,%r19 ; get procedure entry point : ldw RR'ltoff(%r1),%r21 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value. : ldsid (%r21),%r1 : mtsp %r1,%sr0 : be 0(%sr0,%r21) ; branch to target : stw %rp,-24(%sp) ; save rp Export stub to return from shared lib routine (multiple sub-space support) One of these is created for each exported procedure in a shared library (and stored in the shared lib). Shared lib routines are called via the first instruction in the export stub so that we can do an inter-space return. Not required for single sub-space. : bl,n X,%rp ; trap the return : nop : ldw -24(%sp),%rp ; restore the original rp : ldsid (%rp),%r1 : mtsp %r1,%sr0 : be,n 0(%sr0,%rp) ; inter-space return */ #define PLT_ENTRY_SIZE 8 #define PLABEL_PLT_ENTRY_SIZE PLT_ENTRY_SIZE #define GOT_ENTRY_SIZE 4 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" static const bfd_byte plt_stub[] = { 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */ 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */ 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */ #define PLT_STUB_ENTRY (3*4) 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */ 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */ 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */ 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */ }; /* Section name for stubs is the associated section name plus this string. */ #define STUB_SUFFIX ".stub" /* We don't need to copy certain PC- or GP-relative dynamic relocs into a shared object's dynamic section. All the relocs of the limited class we are interested in, are absolute. */ #ifndef RELATIVE_DYNRELOCS #define RELATIVE_DYNRELOCS 0 #define IS_ABSOLUTE_RELOC(r_type) 1 #endif enum elf32_hppa_stub_type { hppa_stub_long_branch, hppa_stub_long_branch_shared, hppa_stub_import, hppa_stub_import_shared, hppa_stub_export, hppa_stub_none }; struct elf32_hppa_stub_hash_entry { /* Base hash table entry structure. */ struct bfd_hash_entry root; /* The stub section. */ asection *stub_sec; /* Offset within stub_sec of the beginning of this stub. */ bfd_vma stub_offset; /* Given the symbol's value and its section we can determine its final value when building the stubs (so the stub knows where to jump. */ bfd_vma target_value; asection *target_section; enum elf32_hppa_stub_type stub_type; /* The symbol table entry, if any, that this was derived from. */ struct elf32_hppa_link_hash_entry *h; /* Where this stub is being called from, or, in the case of combined stub sections, the first input section in the group. */ asection *id_sec; }; struct elf32_hppa_link_hash_entry { struct elf_link_hash_entry elf; /* A pointer to the most recently used stub hash entry against this symbol. */ struct elf32_hppa_stub_hash_entry *stub_cache; /* Used to count relocations for delayed sizing of relocation sections. */ struct elf32_hppa_dyn_reloc_entry { /* Next relocation in the chain. */ struct elf32_hppa_dyn_reloc_entry *next; /* The input section of the reloc. */ asection *sec; /* Number of relocs copied in this section. */ bfd_size_type count; #if RELATIVE_DYNRELOCS /* Number of relative relocs copied for the input section. */ bfd_size_type relative_count; #endif } *dyn_relocs; /* Set during a static link if we detect a function is PIC. */ unsigned int maybe_pic_call:1; /* Set if the only reason we need a .plt entry is for a non-PIC to PIC function call. */ unsigned int pic_call:1; /* Set if this symbol is used by a plabel reloc. */ unsigned int plabel:1; }; struct elf32_hppa_link_hash_table { /* The main hash table. */ struct elf_link_hash_table elf; /* The stub hash table. */ struct bfd_hash_table stub_hash_table; /* Linker stub bfd. */ bfd *stub_bfd; /* Linker call-backs. */ asection * (*add_stub_section) PARAMS ((const char *, asection *)); void (*layout_sections_again) PARAMS ((void)); /* Array to keep track of which stub sections have been created, and information on stub grouping. */ struct map_stub { /* This is the section to which stubs in the group will be attached. */ asection *link_sec; /* The stub section. */ asection *stub_sec; } *stub_group; /* Short-cuts to get to dynamic linker sections. */ asection *sgot; asection *srelgot; asection *splt; asection *srelplt; asection *sdynbss; asection *srelbss; /* Used during a final link to store the base of the text and data segments so that we can perform SEGREL relocations. */ bfd_vma text_segment_base; bfd_vma data_segment_base; /* Whether we support multiple sub-spaces for shared libs. */ unsigned int multi_subspace:1; /* Flags set when PCREL12F and PCREL17F branches detected. Used to select suitable defaults for the stub group size. */ unsigned int has_12bit_branch:1; unsigned int has_17bit_branch:1; /* Set if we need a .plt stub to support lazy dynamic linking. */ unsigned int need_plt_stub:1; }; /* Various hash macros and functions. */ #define hppa_link_hash_table(p) \ ((struct elf32_hppa_link_hash_table *) ((p)->hash)) #define hppa_stub_hash_lookup(table, string, create, copy) \ ((struct elf32_hppa_stub_hash_entry *) \ bfd_hash_lookup ((table), (string), (create), (copy))) static struct bfd_hash_entry *stub_hash_newfunc PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); static struct bfd_hash_entry *hppa_link_hash_newfunc PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create PARAMS ((bfd *)); /* Stub handling functions. */ static char *hppa_stub_name PARAMS ((const asection *, const asection *, const struct elf32_hppa_link_hash_entry *, const Elf_Internal_Rela *)); static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry PARAMS ((const asection *, const asection *, struct elf32_hppa_link_hash_entry *, const Elf_Internal_Rela *, struct elf32_hppa_link_hash_table *)); static struct elf32_hppa_stub_hash_entry *hppa_add_stub PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *)); static enum elf32_hppa_stub_type hppa_type_of_stub PARAMS ((asection *, const Elf_Internal_Rela *, struct elf32_hppa_link_hash_entry *, bfd_vma)); static boolean hppa_build_one_stub PARAMS ((struct bfd_hash_entry *, PTR)); static boolean hppa_size_one_stub PARAMS ((struct bfd_hash_entry *, PTR)); /* BFD and elf backend functions. */ static boolean elf32_hppa_object_p PARAMS ((bfd *)); static boolean elf32_hppa_add_symbol_hook PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *, const char **, flagword *, asection **, bfd_vma *)); static boolean elf32_hppa_create_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static void elf32_hppa_copy_indirect_symbol PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *)); static boolean elf32_hppa_check_relocs PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *)); static asection *elf32_hppa_gc_mark_hook PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); static boolean elf32_hppa_gc_sweep_hook PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *)); static void elf32_hppa_hide_symbol PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); static boolean elf32_hppa_adjust_dynamic_symbol PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); static boolean hppa_handle_PIC_calls PARAMS ((struct elf_link_hash_entry *, PTR)); static boolean allocate_dynrelocs PARAMS ((struct elf_link_hash_entry *, PTR)); static boolean readonly_dynrelocs PARAMS ((struct elf_link_hash_entry *, PTR)); static boolean clobber_millicode_symbols PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *)); static boolean elf32_hppa_size_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static boolean elf32_hppa_final_link PARAMS ((bfd *, struct bfd_link_info *)); static void hppa_record_segment_addr PARAMS ((bfd *, asection *, PTR)); static bfd_reloc_status_type final_link_relocate PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *, bfd_vma, struct elf32_hppa_link_hash_table *, asection *, struct elf32_hppa_link_hash_entry *)); static boolean elf32_hppa_relocate_section PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); static int hppa_unwind_entry_compare PARAMS ((const PTR, const PTR)); static boolean elf32_hppa_finish_dynamic_symbol PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); static enum elf_reloc_type_class elf32_hppa_reloc_type_class PARAMS ((const Elf_Internal_Rela *)); static boolean elf32_hppa_finish_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static void elf32_hppa_post_process_headers PARAMS ((bfd *, struct bfd_link_info *)); static int elf32_hppa_elf_get_symbol_type PARAMS ((Elf_Internal_Sym *, int)); /* Assorted hash table functions. */ /* Initialize an entry in the stub hash table. */ static struct bfd_hash_entry * stub_hash_newfunc (entry, table, string) struct bfd_hash_entry *entry; struct bfd_hash_table *table; const char *string; { /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = bfd_hash_allocate (table, sizeof (struct elf32_hppa_stub_hash_entry)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = bfd_hash_newfunc (entry, table, string); if (entry != NULL) { struct elf32_hppa_stub_hash_entry *eh; /* Initialize the local fields. */ eh = (struct elf32_hppa_stub_hash_entry *) entry; eh->stub_sec = NULL; eh->stub_offset = 0; eh->target_value = 0; eh->target_section = NULL; eh->stub_type = hppa_stub_long_branch; eh->h = NULL; eh->id_sec = NULL; } return entry; } /* Initialize an entry in the link hash table. */ static struct bfd_hash_entry * hppa_link_hash_newfunc (entry, table, string) struct bfd_hash_entry *entry; struct bfd_hash_table *table; const char *string; { /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = bfd_hash_allocate (table, sizeof (struct elf32_hppa_link_hash_entry)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = _bfd_elf_link_hash_newfunc (entry, table, string); if (entry != NULL) { struct elf32_hppa_link_hash_entry *eh; /* Initialize the local fields. */ eh = (struct elf32_hppa_link_hash_entry *) entry; eh->stub_cache = NULL; eh->dyn_relocs = NULL; eh->maybe_pic_call = 0; eh->pic_call = 0; eh->plabel = 0; } return entry; } /* Create the derived linker hash table. The PA ELF port uses the derived hash table to keep information specific to the PA ELF linker (without using static variables). */ static struct bfd_link_hash_table * elf32_hppa_link_hash_table_create (abfd) bfd *abfd; { struct elf32_hppa_link_hash_table *ret; bfd_size_type amt = sizeof (*ret); ret = (struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, amt); if (ret == NULL) return NULL; if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc)) { bfd_release (abfd, ret); return NULL; } /* Init the stub hash table too. */ if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc)) return NULL; ret->stub_bfd = NULL; ret->add_stub_section = NULL; ret->layout_sections_again = NULL; ret->stub_group = NULL; ret->sgot = NULL; ret->srelgot = NULL; ret->splt = NULL; ret->srelplt = NULL; ret->sdynbss = NULL; ret->srelbss = NULL; ret->text_segment_base = (bfd_vma) -1; ret->data_segment_base = (bfd_vma) -1; ret->multi_subspace = 0; ret->has_12bit_branch = 0; ret->has_17bit_branch = 0; ret->need_plt_stub = 0; return &ret->elf.root; } /* Build a name for an entry in the stub hash table. */ static char * hppa_stub_name (input_section, sym_sec, hash, rel) const asection *input_section; const asection *sym_sec; const struct elf32_hppa_link_hash_entry *hash; const Elf_Internal_Rela *rel; { char *stub_name; bfd_size_type len; if (hash) { len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1; stub_name = bfd_malloc (len); if (stub_name != NULL) { sprintf (stub_name, "%08x_%s+%x", input_section->id & 0xffffffff, hash->elf.root.root.string, (int) rel->r_addend & 0xffffffff); } } else { len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1; stub_name = bfd_malloc (len); if (stub_name != NULL) { sprintf (stub_name, "%08x_%x:%x+%x", input_section->id & 0xffffffff, sym_sec->id & 0xffffffff, (int) ELF32_R_SYM (rel->r_info) & 0xffffffff, (int) rel->r_addend & 0xffffffff); } } return stub_name; } /* Look up an entry in the stub hash. Stub entries are cached because creating the stub name takes a bit of time. */ static struct elf32_hppa_stub_hash_entry * hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab) const asection *input_section; const asection *sym_sec; struct elf32_hppa_link_hash_entry *hash; const Elf_Internal_Rela *rel; struct elf32_hppa_link_hash_table *htab; { struct elf32_hppa_stub_hash_entry *stub_entry; const asection *id_sec; /* If this input section is part of a group of sections sharing one stub section, then use the id of the first section in the group. Stub names need to include a section id, as there may well be more than one stub used to reach say, printf, and we need to distinguish between them. */ id_sec = htab->stub_group[input_section->id].link_sec; if (hash != NULL && hash->stub_cache != NULL && hash->stub_cache->h == hash && hash->stub_cache->id_sec == id_sec) { stub_entry = hash->stub_cache; } else { char *stub_name; stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel); if (stub_name == NULL) return NULL; stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name, false, false); if (stub_entry == NULL) { if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak) (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"), bfd_archive_filename (input_section->owner), input_section->name, (long) rel->r_offset, stub_name); } else { if (hash != NULL) hash->stub_cache = stub_entry; } free (stub_name); } return stub_entry; } /* Add a new stub entry to the stub hash. Not all fields of the new stub entry are initialised. */ static struct elf32_hppa_stub_hash_entry * hppa_add_stub (stub_name, section, htab) const char *stub_name; asection *section; struct elf32_hppa_link_hash_table *htab; { asection *link_sec; asection *stub_sec; struct elf32_hppa_stub_hash_entry *stub_entry; link_sec = htab->stub_group[section->id].link_sec; stub_sec = htab->stub_group[section->id].stub_sec; if (stub_sec == NULL) { stub_sec = htab->stub_group[link_sec->id].stub_sec; if (stub_sec == NULL) { bfd_size_type len; char *s_name; len = strlen (link_sec->name) + sizeof (STUB_SUFFIX); s_name = bfd_alloc (htab->stub_bfd, len); if (s_name == NULL) return NULL; strcpy (s_name, link_sec->name); strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX); stub_sec = (*htab->add_stub_section) (s_name, link_sec); if (stub_sec == NULL) return NULL; htab->stub_group[link_sec->id].stub_sec = stub_sec; } htab->stub_group[section->id].stub_sec = stub_sec; } /* Enter this entry into the linker stub hash table. */ stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name, true, false); if (stub_entry == NULL) { (*_bfd_error_handler) (_("%s: cannot create stub entry %s"), bfd_archive_filename (section->owner), stub_name); return NULL; } stub_entry->stub_sec = stub_sec; stub_entry->stub_offset = 0; stub_entry->id_sec = link_sec; return stub_entry; } /* Determine the type of stub needed, if any, for a call. */ static enum elf32_hppa_stub_type hppa_type_of_stub (input_sec, rel, hash, destination) asection *input_sec; const Elf_Internal_Rela *rel; struct elf32_hppa_link_hash_entry *hash; bfd_vma destination; { bfd_vma location; bfd_vma branch_offset; bfd_vma max_branch_offset; unsigned int r_type; if (hash != NULL && (((hash->elf.root.type == bfd_link_hash_defined || hash->elf.root.type == bfd_link_hash_defweak) && hash->elf.root.u.def.section->output_section == NULL) || (hash->elf.root.type == bfd_link_hash_defweak && hash->elf.dynindx != -1 && hash->elf.plt.offset != (bfd_vma) -1) || hash->elf.root.type == bfd_link_hash_undefweak || hash->elf.root.type == bfd_link_hash_undefined || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF)))) { /* If output_section is NULL, then it's a symbol defined in a shared library. We will need an import stub. Decide between hppa_stub_import and hppa_stub_import_shared later. For shared links we need stubs for undefined or weak syms too; They will presumably be resolved by the dynamic linker. */ return hppa_stub_import; } /* Determine where the call point is. */ location = (input_sec->output_offset + input_sec->output_section->vma + rel->r_offset); branch_offset = destination - location - 8; r_type = ELF32_R_TYPE (rel->r_info); /* Determine if a long branch stub is needed. parisc branch offsets are relative to the second instruction past the branch, ie. +8 bytes on from the branch instruction location. The offset is signed and counts in units of 4 bytes. */ if (r_type == (unsigned int) R_PARISC_PCREL17F) { max_branch_offset = (1 << (17-1)) << 2; } else if (r_type == (unsigned int) R_PARISC_PCREL12F) { max_branch_offset = (1 << (12-1)) << 2; } else /* R_PARISC_PCREL22F. */ { max_branch_offset = (1 << (22-1)) << 2; } if (branch_offset + max_branch_offset >= 2*max_branch_offset) return hppa_stub_long_branch; return hppa_stub_none; } /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY. IN_ARG contains the link info pointer. */ #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */ #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */ #define BL_R1 0xe8200000 /* b,l .+8,%r1 */ #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */ #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */ #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */ #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */ #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */ #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */ #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */ #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */ #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */ #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */ #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */ #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */ #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */ #define NOP 0x08000240 /* nop */ #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */ #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */ #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */ #ifndef R19_STUBS #define R19_STUBS 1 #endif #if R19_STUBS #define LDW_R1_DLT LDW_R1_R19 #else #define LDW_R1_DLT LDW_R1_DP #endif static boolean hppa_build_one_stub (gen_entry, in_arg) struct bfd_hash_entry *gen_entry; PTR in_arg; { struct elf32_hppa_stub_hash_entry *stub_entry; struct bfd_link_info *info; struct elf32_hppa_link_hash_table *htab; asection *stub_sec; bfd *stub_bfd; bfd_byte *loc; bfd_vma sym_value; bfd_vma insn; bfd_vma off; int val; int size; /* Massage our args to the form they really have. */ stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry; info = (struct bfd_link_info *) in_arg; htab = hppa_link_hash_table (info); stub_sec = stub_entry->stub_sec; /* Make a note of the offset within the stubs for this entry. */ stub_entry->stub_offset = stub_sec->_raw_size; loc = stub_sec->contents + stub_entry->stub_offset; stub_bfd = stub_sec->owner; switch (stub_entry->stub_type) { case hppa_stub_long_branch: /* Create the long branch. A long branch is formed with "ldil" loading the upper bits of the target address into a register, then branching with "be" which adds in the lower bits. The "be" has its delay slot nullified. */ sym_value = (stub_entry->target_value + stub_entry->target_section->output_offset + stub_entry->target_section->output_section->vma); val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel); insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21); bfd_put_32 (stub_bfd, insn, loc); val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2; insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); bfd_put_32 (stub_bfd, insn, loc + 4); size = 8; break; case hppa_stub_long_branch_shared: /* Branches are relative. This is where we are going to. */ sym_value = (stub_entry->target_value + stub_entry->target_section->output_offset + stub_entry->target_section->output_section->vma); /* And this is where we are coming from, more or less. */ sym_value -= (stub_entry->stub_offset + stub_sec->output_offset + stub_sec->output_section->vma); bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc); val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel); insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21); bfd_put_32 (stub_bfd, insn, loc + 4); val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2; insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); bfd_put_32 (stub_bfd, insn, loc + 8); size = 12; break; case hppa_stub_import: case hppa_stub_import_shared: off = stub_entry->h->elf.plt.offset; if (off >= (bfd_vma) -2) abort (); off &= ~ (bfd_vma) 1; sym_value = (off + htab->splt->output_offset + htab->splt->output_section->vma - elf_gp (htab->splt->output_section->owner)); insn = ADDIL_DP; #if R19_STUBS if (stub_entry->stub_type == hppa_stub_import_shared) insn = ADDIL_R19; #endif val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel), insn = hppa_rebuild_insn ((int) insn, val, 21); bfd_put_32 (stub_bfd, insn, loc); /* It is critical to use lrsel/rrsel here because we are using two different offsets (+0 and +4) from sym_value. If we use lsel/rsel then with unfortunate sym_values we will round sym_value+4 up to the next 2k block leading to a mis-match between the lsel and rsel value. */ val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel); insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14); bfd_put_32 (stub_bfd, insn, loc + 4); if (htab->multi_subspace) { val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel); insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14); bfd_put_32 (stub_bfd, insn, loc + 8); bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12); bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20); bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24); size = 28; } else { bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8); val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel); insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14); bfd_put_32 (stub_bfd, insn, loc + 12); size = 16; } if (!info->shared && stub_entry->h != NULL && stub_entry->h->pic_call) { /* Build the .plt entry needed to call a PIC function from statically linked code. We don't need any relocs. */ bfd *dynobj; struct elf32_hppa_link_hash_entry *eh; bfd_vma value; dynobj = htab->elf.dynobj; eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h; if (eh->elf.root.type != bfd_link_hash_defined && eh->elf.root.type != bfd_link_hash_defweak) abort (); value = (eh->elf.root.u.def.value + eh->elf.root.u.def.section->output_offset + eh->elf.root.u.def.section->output_section->vma); /* Fill in the entry in the procedure linkage table. The format of a plt entry is <__gp>. */ bfd_put_32 (htab->splt->owner, value, htab->splt->contents + off); value = elf_gp (htab->splt->output_section->owner); bfd_put_32 (htab->splt->owner, value, htab->splt->contents + off + 4); } break; case hppa_stub_export: /* Branches are relative. This is where we are going to. */ sym_value = (stub_entry->target_value + stub_entry->target_section->output_offset + stub_entry->target_section->output_section->vma); /* And this is where we are coming from. */ sym_value -= (stub_entry->stub_offset + stub_sec->output_offset + stub_sec->output_section->vma); if (sym_value - 8 + 0x40000 >= 0x80000) { (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"), bfd_archive_filename (stub_entry->target_section->owner), stub_sec->name, (long) stub_entry->stub_offset, stub_entry->root.string); bfd_set_error (bfd_error_bad_value); return false; } val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2; insn = hppa_rebuild_insn ((int) BL_RP, val, 17); bfd_put_32 (stub_bfd, insn, loc); bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4); bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8); bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12); bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20); /* Point the function symbol at the stub. */ stub_entry->h->elf.root.u.def.section = stub_sec; stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size; size = 24; break; default: BFD_FAIL (); return false; } stub_sec->_raw_size += size; return true; } #undef LDIL_R1 #undef BE_SR4_R1 #undef BL_R1 #undef ADDIL_R1 #undef DEPI_R1 #undef ADDIL_DP #undef LDW_R1_R21 #undef LDW_R1_DLT #undef LDW_R1_R19 #undef ADDIL_R19 #undef LDW_R1_DP #undef LDSID_R21_R1 #undef MTSP_R1 #undef BE_SR0_R21 #undef STW_RP #undef BV_R0_R21 #undef BL_RP #undef NOP #undef LDW_RP #undef LDSID_RP_R1 #undef BE_SR0_RP /* As above, but don't actually build the stub. Just bump offset so we know stub section sizes. */ static boolean hppa_size_one_stub (gen_entry, in_arg) struct bfd_hash_entry *gen_entry; PTR in_arg; { struct elf32_hppa_stub_hash_entry *stub_entry; struct elf32_hppa_link_hash_table *htab; int size; /* Massage our args to the form they really have. */ stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry; htab = (struct elf32_hppa_link_hash_table *) in_arg; if (stub_entry->stub_type == hppa_stub_long_branch) size = 8; else if (stub_entry->stub_type == hppa_stub_long_branch_shared) size = 12; else if (stub_entry->stub_type == hppa_stub_export) size = 24; else /* hppa_stub_import or hppa_stub_import_shared. */ { if (htab->multi_subspace) size = 28; else size = 16; } stub_entry->stub_sec->_raw_size += size; return true; } /* Return nonzero if ABFD represents an HPPA ELF32 file. Additionally we set the default architecture and machine. */ static boolean elf32_hppa_object_p (abfd) bfd *abfd; { Elf_Internal_Ehdr * i_ehdrp; unsigned int flags; i_ehdrp = elf_elfheader (abfd); if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0) { if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX) return false; } else { if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX) return false; } flags = i_ehdrp->e_flags; switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) { case EFA_PARISC_1_0: return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); case EFA_PARISC_1_1: return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); case EFA_PARISC_2_0: return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); case EFA_PARISC_2_0 | EF_PARISC_WIDE: return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); } return true; } /* Undo the generic ELF code's subtraction of section->vma from the value of each external symbol. */ static boolean elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) bfd *abfd ATTRIBUTE_UNUSED; struct bfd_link_info *info ATTRIBUTE_UNUSED; const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED; const char **namep ATTRIBUTE_UNUSED; flagword *flagsp ATTRIBUTE_UNUSED; asection **secp; bfd_vma *valp; { *valp += (*secp)->vma; return true; } /* Create the .plt and .got sections, and set up our hash table short-cuts to various dynamic sections. */ static boolean elf32_hppa_create_dynamic_sections (abfd, info) bfd *abfd; struct bfd_link_info *info; { struct elf32_hppa_link_hash_table *htab; /* Don't try to create the .plt and .got twice. */ htab = hppa_link_hash_table (info); if (htab->splt != NULL) return true; /* Call the generic code to do most of the work. */ if (! _bfd_elf_create_dynamic_sections (abfd, info)) return false; htab->splt = bfd_get_section_by_name (abfd, ".plt"); htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt"); htab->sgot = bfd_get_section_by_name (abfd, ".got"); htab->srelgot = bfd_make_section (abfd, ".rela.got"); if (htab->srelgot == NULL || ! bfd_set_section_flags (abfd, htab->srelgot, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)) || ! bfd_set_section_alignment (abfd, htab->srelgot, 2)) return false; htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss"); htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss"); return true; } /* Copy the extra info we tack onto an elf_link_hash_entry. */ static void elf32_hppa_copy_indirect_symbol (dir, ind) struct elf_link_hash_entry *dir, *ind; { struct elf32_hppa_link_hash_entry *edir, *eind; edir = (struct elf32_hppa_link_hash_entry *) dir; eind = (struct elf32_hppa_link_hash_entry *) ind; if (eind->dyn_relocs != NULL) { if (edir->dyn_relocs != NULL) { struct elf32_hppa_dyn_reloc_entry **pp; struct elf32_hppa_dyn_reloc_entry *p; if (ind->root.type == bfd_link_hash_indirect) abort (); /* Add reloc counts against the weak sym to the strong sym list. Merge any entries against the same section. */ for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) { struct elf32_hppa_dyn_reloc_entry *q; for (q = edir->dyn_relocs; q != NULL; q = q->next) if (q->sec == p->sec) { #if RELATIVE_DYNRELOCS q->relative_count += p->relative_count; #endif q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->dyn_relocs; } edir->dyn_relocs = eind->dyn_relocs; eind->dyn_relocs = NULL; } _bfd_elf_link_hash_copy_indirect (dir, ind); } /* Look through the relocs for a section during the first phase, and calculate needed space in the global offset table, procedure linkage table, and dynamic reloc sections. At this point we haven't necessarily read all the input files. */ static boolean elf32_hppa_check_relocs (abfd, info, sec, relocs) bfd *abfd; struct bfd_link_info *info; asection *sec; const Elf_Internal_Rela *relocs; { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; struct elf32_hppa_link_hash_table *htab; asection *sreloc; asection *stubreloc; if (info->relocateable) return true; htab = hppa_link_hash_table (info); symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); sreloc = NULL; stubreloc = NULL; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { enum { NEED_GOT = 1, NEED_PLT = 2, NEED_DYNREL = 4, PLT_PLABEL = 8 }; unsigned int r_symndx, r_type; struct elf32_hppa_link_hash_entry *h; int need_entry; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else h = ((struct elf32_hppa_link_hash_entry *) sym_hashes[r_symndx - symtab_hdr->sh_info]); r_type = ELF32_R_TYPE (rel->r_info); switch (r_type) { case R_PARISC_DLTIND14F: case R_PARISC_DLTIND14R: case R_PARISC_DLTIND21L: /* This symbol requires a global offset table entry. */ need_entry = NEED_GOT; /* Mark this section as containing PIC code. */ sec->flags |= SEC_HAS_GOT_REF; break; case R_PARISC_PLABEL14R: /* "Official" procedure labels. */ case R_PARISC_PLABEL21L: case R_PARISC_PLABEL32: /* If the addend is non-zero, we break badly. */ if (rel->r_addend != 0) abort (); /* If we are creating a shared library, then we need to create a PLT entry for all PLABELs, because PLABELs with local symbols may be passed via a pointer to another object. Additionally, output a dynamic relocation pointing to the PLT entry. For executables, the original 32-bit ABI allowed two different styles of PLABELs (function pointers): For global functions, the PLABEL word points into the .plt two bytes past a (function address, gp) pair, and for local functions the PLABEL points directly at the function. The magic +2 for the first type allows us to differentiate between the two. As you can imagine, this is a real pain when it comes to generating code to call functions indirectly or to compare function pointers. We avoid the mess by always pointing a PLABEL into the .plt, even for local functions. */ need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL; break; case R_PARISC_PCREL12F: htab->has_12bit_branch = 1; /* Fall thru. */ case R_PARISC_PCREL17C: case R_PARISC_PCREL17F: htab->has_17bit_branch = 1; /* Fall thru. */ case R_PARISC_PCREL22F: /* Function calls might need to go through the .plt, and might require long branch stubs. */ if (h == NULL) { /* We know local syms won't need a .plt entry, and if they need a long branch stub we can't guarantee that we can reach the stub. So just flag an error later if we're doing a shared link and find we need a long branch stub. */ continue; } else { /* Global symbols will need a .plt entry if they remain global, and in most cases won't need a long branch stub. Unfortunately, we have to cater for the case where a symbol is forced local by versioning, or due to symbolic linking, and we lose the .plt entry. */ need_entry = NEED_PLT; if (h->elf.type == STT_PARISC_MILLI) need_entry = 0; } break; case R_PARISC_SEGBASE: /* Used to set segment base. */ case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */ case R_PARISC_PCREL14F: /* PC relative load/store. */ case R_PARISC_PCREL14R: case R_PARISC_PCREL17R: /* External branches. */ case R_PARISC_PCREL21L: /* As above, and for load/store too. */ /* We don't need to propagate the relocation if linking a shared object since these are section relative. */ continue; case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */ case R_PARISC_DPREL14R: case R_PARISC_DPREL21L: if (info->shared) { (*_bfd_error_handler) (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"), bfd_archive_filename (abfd), elf_hppa_howto_table[r_type].name); bfd_set_error (bfd_error_bad_value); return false; } /* Fall through. */ case R_PARISC_DIR17F: /* Used for external branches. */ case R_PARISC_DIR17R: case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */ case R_PARISC_DIR14R: case R_PARISC_DIR21L: /* As above, and for ext branches too. */ #if 1 /* Help debug shared library creation. Any of the above relocs can be used in shared libs, but they may cause pages to become unshared. */ if (info->shared) { (*_bfd_error_handler) (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"), bfd_archive_filename (abfd), elf_hppa_howto_table[r_type].name); } /* Fall through. */ #endif case R_PARISC_DIR32: /* .word relocs. */ /* We may want to output a dynamic relocation later. */ need_entry = NEED_DYNREL; break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_PARISC_GNU_VTINHERIT: if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, &h->elf, rel->r_offset)) return false; continue; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_PARISC_GNU_VTENTRY: if (!_bfd_elf32_gc_record_vtentry (abfd, sec, &h->elf, rel->r_addend)) return false; continue; default: continue; } /* Now carry out our orders. */ if (need_entry & NEED_GOT) { /* Allocate space for a GOT entry, as well as a dynamic relocation for this entry. */ if (htab->sgot == NULL) { if (htab->elf.dynobj == NULL) htab->elf.dynobj = abfd; if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info)) return false; } if (h != NULL) { h->elf.got.refcount += 1; } else { bfd_signed_vma *local_got_refcounts; /* This is a global offset table entry for a local symbol. */ local_got_refcounts = elf_local_got_refcounts (abfd); if (local_got_refcounts == NULL) { bfd_size_type size; /* Allocate space for local got offsets and local plt offsets. Done this way to save polluting elf_obj_tdata with another target specific pointer. */ size = symtab_hdr->sh_info; size *= 2 * sizeof (bfd_signed_vma); local_got_refcounts = ((bfd_signed_vma *) bfd_zalloc (abfd, size)); if (local_got_refcounts == NULL) return false; elf_local_got_refcounts (abfd) = local_got_refcounts; } local_got_refcounts[r_symndx] += 1; } } if (need_entry & NEED_PLT) { /* If we are creating a shared library, and this is a reloc against a weak symbol or a global symbol in a dynamic object, then we will be creating an import stub and a .plt entry for the symbol. Similarly, on a normal link to symbols defined in a dynamic object we'll need the import stub and a .plt entry. We don't know yet whether the symbol is defined or not, so make an entry anyway and clean up later in adjust_dynamic_symbol. */ if ((sec->flags & SEC_ALLOC) != 0) { if (h != NULL) { h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; h->elf.plt.refcount += 1; /* If this .plt entry is for a plabel, mark it so that adjust_dynamic_symbol will keep the entry even if it appears to be local. */ if (need_entry & PLT_PLABEL) h->plabel = 1; } else if (need_entry & PLT_PLABEL) { bfd_signed_vma *local_got_refcounts; bfd_signed_vma *local_plt_refcounts; local_got_refcounts = elf_local_got_refcounts (abfd); if (local_got_refcounts == NULL) { bfd_size_type size; /* Allocate space for local got offsets and local plt offsets. */ size = symtab_hdr->sh_info; size *= 2 * sizeof (bfd_signed_vma); local_got_refcounts = ((bfd_signed_vma *) bfd_zalloc (abfd, size)); if (local_got_refcounts == NULL) return false; elf_local_got_refcounts (abfd) = local_got_refcounts; } local_plt_refcounts = (local_got_refcounts + symtab_hdr->sh_info); local_plt_refcounts[r_symndx] += 1; } } } if (need_entry & NEED_DYNREL) { /* Flag this symbol as having a non-got, non-plt reference so that we generate copy relocs if it turns out to be dynamic. */ if (h != NULL && !info->shared) h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF; /* If we are creating a shared library then we need to copy the reloc into the shared library. However, if we are linking with -Bsymbolic, we need only copy absolute relocs or relocs against symbols that are not defined in an object we are including in the link. PC- or DP- or DLT-relative relocs against any local sym or global sym with DEF_REGULAR set, can be discarded. At this point we have not seen all the input files, so it is possible that DEF_REGULAR is not set now but will be set later (it is never cleared). We account for that possibility below by storing information in the dyn_relocs field of the hash table entry. A similar situation to the -Bsymbolic case occurs when creating shared libraries and symbol visibility changes render the symbol local. As it turns out, all the relocs we will be creating here are absolute, so we cannot remove them on -Bsymbolic links or visibility changes anyway. A STUB_REL reloc is absolute too, as in that case it is the reloc in the stub we will be creating, rather than copying the PCREL reloc in the branch. If on the other hand, we are creating an executable, we may need to keep relocations for symbols satisfied by a dynamic library if we manage to avoid copy relocs for the symbol. */ if ((info->shared && (sec->flags & SEC_ALLOC) != 0 && (IS_ABSOLUTE_RELOC (r_type) || (h != NULL && (!info->symbolic || h->elf.root.type == bfd_link_hash_defweak || (h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)))) || (!info->shared && (sec->flags & SEC_ALLOC) != 0 && h != NULL && (h->elf.root.type == bfd_link_hash_defweak || (h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))) { /* Create a reloc section in dynobj and make room for this reloc. */ if (sreloc == NULL) { char *name; bfd *dynobj; name = (bfd_elf_string_from_elf_section (abfd, elf_elfheader (abfd)->e_shstrndx, elf_section_data (sec)->rel_hdr.sh_name)); if (name == NULL) { (*_bfd_error_handler) (_("Could not find relocation section for %s"), sec->name); bfd_set_error (bfd_error_bad_value); return false; } if (htab->elf.dynobj == NULL) htab->elf.dynobj = abfd; dynobj = htab->elf.dynobj; sreloc = bfd_get_section_by_name (dynobj, name); if (sreloc == NULL) { flagword flags; sreloc = bfd_make_section (dynobj, name); flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED); if ((sec->flags & SEC_ALLOC) != 0) flags |= SEC_ALLOC | SEC_LOAD; if (sreloc == NULL || !bfd_set_section_flags (dynobj, sreloc, flags) || !bfd_set_section_alignment (dynobj, sreloc, 2)) return false; } elf_section_data (sec)->sreloc = sreloc; } /* If this is a global symbol, we count the number of relocations we need for this symbol. */ if (h != NULL) { struct elf32_hppa_dyn_reloc_entry *p; p = h->dyn_relocs; if (p == NULL || p->sec != sec) { p = ((struct elf32_hppa_dyn_reloc_entry *) bfd_alloc (htab->elf.dynobj, (bfd_size_type) sizeof *p)); if (p == NULL) return false; p->next = h->dyn_relocs; h->dyn_relocs = p; p->sec = sec; p->count = 0; #if RELATIVE_DYNRELOCS p->relative_count = 0; #endif } p->count += 1; #if RELATIVE_DYNRELOCS if (!IS_ABSOLUTE_RELOC (rtype)) p->relative_count += 1; #endif } else { /* Track dynamic relocs needed for local syms too. */ elf_section_data (sec)->local_dynrel += 1; } } } } return true; } /* Return the section that should be marked against garbage collection for a given relocation. */ static asection * elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym) bfd *abfd; struct bfd_link_info *info ATTRIBUTE_UNUSED; Elf_Internal_Rela *rel; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { if (h != NULL) { switch ((unsigned int) ELF32_R_TYPE (rel->r_info)) { case R_PARISC_GNU_VTINHERIT: case R_PARISC_GNU_VTENTRY: break; default: switch (h->root.type) { case bfd_link_hash_defined: case bfd_link_hash_defweak: return h->root.u.def.section; case bfd_link_hash_common: return h->root.u.c.p->section; default: break; } } } else { if (!(elf_bad_symtab (abfd) && ELF_ST_BIND (sym->st_info) != STB_LOCAL) && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE) && sym->st_shndx != SHN_COMMON)) { return bfd_section_from_elf_index (abfd, sym->st_shndx); } } return NULL; } /* Update the got and plt entry reference counts for the section being removed. */ static boolean elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs) bfd *abfd; struct bfd_link_info *info ATTRIBUTE_UNUSED; asection *sec; const Elf_Internal_Rela *relocs; { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; bfd_signed_vma *local_plt_refcounts; const Elf_Internal_Rela *rel, *relend; unsigned long r_symndx; struct elf_link_hash_entry *h; struct elf32_hppa_link_hash_table *htab; bfd *dynobj; elf_section_data (sec)->local_dynrel = 0; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); local_plt_refcounts = local_got_refcounts; if (local_plt_refcounts != NULL) local_plt_refcounts += symtab_hdr->sh_info; htab = hppa_link_hash_table (info); dynobj = htab->elf.dynobj; if (dynobj == NULL) return true; relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) switch ((unsigned int) ELF32_R_TYPE (rel->r_info)) { case R_PARISC_DLTIND14F: case R_PARISC_DLTIND14R: case R_PARISC_DLTIND21L: r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; if (h->got.refcount > 0) h->got.refcount -= 1; } else if (local_got_refcounts != NULL) { if (local_got_refcounts[r_symndx] > 0) local_got_refcounts[r_symndx] -= 1; } break; case R_PARISC_PCREL12F: case R_PARISC_PCREL17C: case R_PARISC_PCREL17F: case R_PARISC_PCREL22F: r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; if (h->plt.refcount > 0) h->plt.refcount -= 1; } break; case R_PARISC_PLABEL14R: case R_PARISC_PLABEL21L: case R_PARISC_PLABEL32: r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { struct elf32_hppa_link_hash_entry *eh; struct elf32_hppa_dyn_reloc_entry **pp; struct elf32_hppa_dyn_reloc_entry *p; h = sym_hashes[r_symndx - symtab_hdr->sh_info]; if (h->plt.refcount > 0) h->plt.refcount -= 1; eh = (struct elf32_hppa_link_hash_entry *) h; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) if (p->sec == sec) { #if RELATIVE_DYNRELOCS if (!IS_ABSOLUTE_RELOC (rtype)) p->relative_count -= 1; #endif p->count -= 1; if (p->count == 0) *pp = p->next; break; } } else if (local_plt_refcounts != NULL) { if (local_plt_refcounts[r_symndx] > 0) local_plt_refcounts[r_symndx] -= 1; } break; case R_PARISC_DIR32: r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { struct elf32_hppa_link_hash_entry *eh; struct elf32_hppa_dyn_reloc_entry **pp; struct elf32_hppa_dyn_reloc_entry *p; h = sym_hashes[r_symndx - symtab_hdr->sh_info]; eh = (struct elf32_hppa_link_hash_entry *) h; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) if (p->sec == sec) { #if RELATIVE_DYNRELOCS if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32)) p->relative_count -= 1; #endif p->count -= 1; if (p->count == 0) *pp = p->next; break; } } break; default: break; } return true; } /* Our own version of hide_symbol, so that we can keep plt entries for plabels. */ static void elf32_hppa_hide_symbol (info, h) struct bfd_link_info *info ATTRIBUTE_UNUSED; struct elf_link_hash_entry *h; { if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) h->dynindx = -1; if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel) { h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; h->plt.offset = (bfd_vma) -1; } } /* This is the condition under which elf32_hppa_finish_dynamic_symbol will be called from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol routine, we'll need to do something about initializing any .plt and .got entries in elf32_hppa_relocate_section. */ #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \ ((DYN) \ && ((INFO)->shared \ || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \ && ((H)->dynindx != -1 \ || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)) /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static boolean elf32_hppa_adjust_dynamic_symbol (info, h) struct bfd_link_info *info; struct elf_link_hash_entry *h; { struct elf32_hppa_link_hash_table *htab; struct elf32_hppa_link_hash_entry *eh; struct elf32_hppa_dyn_reloc_entry *p; asection *s; unsigned int power_of_two; /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later, when we know the address of the .got section. */ if (h->type == STT_FUNC || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) { if (!info->shared && h->plt.refcount > 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0) { ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1; } if (h->plt.refcount <= 0 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 && h->root.type != bfd_link_hash_defweak && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel && (!info->shared || info->symbolic))) { /* The .plt entry is not needed when: a) Garbage collection has removed all references to the symbol, or b) We know for certain the symbol is defined in this object, and it's not a weak definition, nor is the symbol used by a plabel relocation. Either this object is the application or we are doing a shared symbolic link. */ /* As a special sop to the hppa ABI, we keep a .plt entry for functions in sections containing PIC code. */ if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call) ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1; else { h->plt.offset = (bfd_vma) -1; h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; } } return true; } else h->plt.offset = (bfd_vma) -1; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->weakdef != NULL) { if (h->weakdef->root.type != bfd_link_hash_defined && h->weakdef->root.type != bfd_link_hash_defweak) abort (); h->root.u.def.section = h->weakdef->root.u.def.section; h->root.u.def.value = h->weakdef->root.u.def.value; return true; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return true; /* If there are no references to this symbol that do not use the GOT, we don't need to generate a copy reloc. */ if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0) return true; eh = (struct elf32_hppa_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { s = p->sec->output_section; if (s != NULL && (s->flags & SEC_READONLY) != 0) break; } /* If we didn't find any dynamic relocs in read-only sections, then we'll be keeping the dynamic relocs and avoiding the copy reloc. */ if (p == NULL) { h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF; return true; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ htab = hppa_link_hash_table (info); /* We must generate a COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { htab->srelbss->_raw_size += sizeof (Elf32_External_Rela); h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY; } /* We need to figure out the alignment required for this symbol. I have no idea how other ELF linkers handle this. */ power_of_two = bfd_log2 (h->size); if (power_of_two > 3) power_of_two = 3; /* Apply the required alignment. */ s = htab->sdynbss; s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two)); if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s)) { if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two)) return false; } /* Define the symbol as being at this point in the section. */ h->root.u.def.section = s; h->root.u.def.value = s->_raw_size; /* Increment the section size to make room for the symbol. */ s->_raw_size += h->size; return true; } /* Called via elf_link_hash_traverse to create .plt entries for an application that uses statically linked PIC functions. Similar to the first part of elf32_hppa_adjust_dynamic_symbol. */ static boolean hppa_handle_PIC_calls (h, inf) struct elf_link_hash_entry *h; PTR inf ATTRIBUTE_UNUSED; { if (! (h->plt.refcount > 0 && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)) { h->plt.offset = (bfd_vma) -1; h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; return true; } h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1; ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1; return true; } /* Allocate space in .plt, .got and associated reloc sections for global syms. */ static boolean allocate_dynrelocs (h, inf) struct elf_link_hash_entry *h; PTR inf; { struct bfd_link_info *info; struct elf32_hppa_link_hash_table *htab; asection *s; struct elf32_hppa_link_hash_entry *eh; struct elf32_hppa_dyn_reloc_entry *p; if (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) return true; info = (struct bfd_link_info *) inf; htab = hppa_link_hash_table (info); if ((htab->elf.dynamic_sections_created && h->plt.refcount > 0) || ((struct elf32_hppa_link_hash_entry *) h)->pic_call) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0 && h->type != STT_PARISC_MILLI && !((struct elf32_hppa_link_hash_entry *) h)->pic_call) { if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } if (((struct elf32_hppa_link_hash_entry *) h)->pic_call || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h)) { /* Make an entry in the .plt section. */ s = htab->splt; h->plt.offset = s->_raw_size; if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE && ((struct elf32_hppa_link_hash_entry *) h)->plabel && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) { /* Add some extra space for the dynamic linker to use. */ s->_raw_size += PLABEL_PLT_ENTRY_SIZE; } else s->_raw_size += PLT_ENTRY_SIZE; if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call) { /* We also need to make an entry in the .rela.plt section. */ htab->srelplt->_raw_size += sizeof (Elf32_External_Rela); htab->need_plt_stub = 1; } } else { h->plt.offset = (bfd_vma) -1; h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; } } else { h->plt.offset = (bfd_vma) -1; h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; } if (h->got.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0 && h->type != STT_PARISC_MILLI) { if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } s = htab->sgot; h->got.offset = s->_raw_size; s->_raw_size += GOT_ENTRY_SIZE; if (htab->elf.dynamic_sections_created && (info->shared || (h->dynindx != -1 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)) { htab->srelgot->_raw_size += sizeof (Elf32_External_Rela); } } else h->got.offset = (bfd_vma) -1; eh = (struct elf32_hppa_link_hash_entry *) h; if (eh->dyn_relocs == NULL) return true; /* If this is a -Bsymbolic shared link, then we need to discard all space allocated for dynamic pc-relative relocs against symbols defined in a regular object. For the normal shared case, discard space for relocs that have become local due to symbol visibility changes. */ if (info->shared) { #if RELATIVE_DYNRELOCS if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0 || info->symbolic)) { struct elf32_hppa_dyn_reloc_entry **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) { p->count -= p->relative_count; p->relative_count = 0; if (p->count == 0) *pp = p->next; else pp = &p->next; } } #endif } else { /* For the non-shared case, discard space for relocs against symbols which turn out to need copy relocs or are not dynamic. */ if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) || (htab->elf.dynamic_sections_created && (h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined)))) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0 && h->type != STT_PARISC_MILLI) { if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } /* If that succeeded, we know we'll be keeping all the relocs. */ if (h->dynindx != -1) goto keep; } eh->dyn_relocs = NULL; return true; keep: } /* Finally, allocate space. */ for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *sreloc = elf_section_data (p->sec)->sreloc; sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela); } return true; } /* This function is called via elf_link_hash_traverse to force millicode symbols local so they do not end up as globals in the dynamic symbol table. We ought to be able to do this in adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called for all dynamic symbols. Arguably, this is a bug in elf_adjust_dynamic_symbol. */ static boolean clobber_millicode_symbols (h, info) struct elf_link_hash_entry *h; struct bfd_link_info *info; { /* We only want to remove these from the dynamic symbol table. Therefore we do not leave ELF_LINK_FORCED_LOCAL set. */ if (h->type == STT_PARISC_MILLI) { unsigned short oldflags = h->elf_link_hash_flags; h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; elf32_hppa_hide_symbol (info, h); h->elf_link_hash_flags &= ~ELF_LINK_FORCED_LOCAL; h->elf_link_hash_flags |= oldflags & ELF_LINK_FORCED_LOCAL; } return true; } /* Find any dynamic relocs that apply to read-only sections. */ static boolean readonly_dynrelocs (h, inf) struct elf_link_hash_entry *h; PTR inf; { struct elf32_hppa_link_hash_entry *eh; struct elf32_hppa_dyn_reloc_entry *p; eh = (struct elf32_hppa_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *s = p->sec->output_section; if (s != NULL && (s->flags & SEC_READONLY) != 0) { struct bfd_link_info *info = (struct bfd_link_info *) inf; info->flags |= DF_TEXTREL; /* Not an error, just cut short the traversal. */ return false; } } return true; } /* Set the sizes of the dynamic sections. */ static boolean elf32_hppa_size_dynamic_sections (output_bfd, info) bfd *output_bfd ATTRIBUTE_UNUSED; struct bfd_link_info *info; { struct elf32_hppa_link_hash_table *htab; bfd *dynobj; bfd *ibfd; asection *s; boolean relocs; htab = hppa_link_hash_table (info); dynobj = htab->elf.dynobj; if (dynobj == NULL) abort (); if (htab->elf.dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (! info->shared) { s = bfd_get_section_by_name (dynobj, ".interp"); if (s == NULL) abort (); s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } /* Force millicode symbols local. */ elf_link_hash_traverse (&htab->elf, clobber_millicode_symbols, info); } else { /* Run through the function symbols, looking for any that are PIC, and allocate space for the necessary .plt entries so that %r19 will be set up. */ if (! info->shared) elf_link_hash_traverse (&htab->elf, hppa_handle_PIC_calls, info); } /* Set up .got and .plt offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { bfd_signed_vma *local_got; bfd_signed_vma *end_local_got; bfd_signed_vma *local_plt; bfd_signed_vma *end_local_plt; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; asection *srel; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) continue; for (s = ibfd->sections; s != NULL; s = s->next) { bfd_size_type count = elf_section_data (s)->local_dynrel; if (count != 0) { srel = elf_section_data (s)->sreloc; srel->_raw_size += count * sizeof (Elf32_External_Rela); } } local_got = elf_local_got_refcounts (ibfd); if (!local_got) continue; symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; locsymcount = symtab_hdr->sh_info; end_local_got = local_got + locsymcount; s = htab->sgot; srel = htab->srelgot; for (; local_got < end_local_got; ++local_got) { if (*local_got > 0) { *local_got = s->_raw_size; s->_raw_size += GOT_ENTRY_SIZE; if (info->shared) srel->_raw_size += sizeof (Elf32_External_Rela); } else *local_got = (bfd_vma) -1; } local_plt = end_local_got; end_local_plt = local_plt + locsymcount; if (! htab->elf.dynamic_sections_created) { /* Won't be used, but be safe. */ for (; local_plt < end_local_plt; ++local_plt) *local_plt = (bfd_vma) -1; } else { s = htab->splt; srel = htab->srelplt; for (; local_plt < end_local_plt; ++local_plt) { if (*local_plt > 0) { *local_plt = s->_raw_size; s->_raw_size += PLT_ENTRY_SIZE; if (info->shared) srel->_raw_size += sizeof (Elf32_External_Rela); } else *local_plt = (bfd_vma) -1; } } } /* Allocate global sym .plt and .got entries, and space for global sym dynamic relocs. */ elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info); /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ relocs = false; for (s = dynobj->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LINKER_CREATED) == 0) continue; if (s == htab->splt) { if (htab->need_plt_stub) { /* Make space for the plt stub at the end of the .plt section. We want this stub right at the end, up against the .got section. */ int gotalign = bfd_section_alignment (dynobj, htab->sgot); int pltalign = bfd_section_alignment (dynobj, s); bfd_size_type mask; if (gotalign > pltalign) bfd_set_section_alignment (dynobj, s, gotalign); mask = ((bfd_size_type) 1 << gotalign) - 1; s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask; } } else if (s == htab->sgot) ; else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0) { if (s->_raw_size != 0) { /* Remember whether there are any reloc sections other than .rela.plt. */ if (s != htab->srelplt) relocs = true; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } } else { /* It's not one of our sections, so don't allocate space. */ continue; } if (s->_raw_size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rela.bss and .rela.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ _bfd_strip_section_from_output (info, s); continue; } /* Allocate memory for the section contents. Zero it, because we may not fill in all the reloc sections. */ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size); if (s->contents == NULL && s->_raw_size != 0) return false; } if (htab->elf.dynamic_sections_created) { /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It actually has nothing to do with the PLT, it is how we communicate the LTP value of a load module to the dynamic linker. */ #define add_dynamic_entry(TAG, VAL) \ bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL)) if (!add_dynamic_entry (DT_PLTGOT, 0)) return false; /* Add some entries to the .dynamic section. We fill in the values later, in elf32_hppa_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ if (!info->shared) { if (!add_dynamic_entry (DT_DEBUG, 0)) return false; } if (htab->srelplt->_raw_size != 0) { if (!add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, DT_RELA) || !add_dynamic_entry (DT_JMPREL, 0)) return false; } if (relocs) { if (!add_dynamic_entry (DT_RELA, 0) || !add_dynamic_entry (DT_RELASZ, 0) || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) return false; /* If any dynamic relocs apply to a read-only section, then we need a DT_TEXTREL entry. */ elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info); if ((info->flags & DF_TEXTREL) != 0) { if (!add_dynamic_entry (DT_TEXTREL, 0)) return false; } } } #undef add_dynamic_entry return true; } /* External entry points for sizing and building linker stubs. */ /* Determine and set the size of the stub section for a final link. The basic idea here is to examine all the relocations looking for PC-relative calls to a target that is unreachable with a "bl" instruction. */ boolean elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size, add_stub_section, layout_sections_again) bfd *output_bfd; bfd *stub_bfd; struct bfd_link_info *info; boolean multi_subspace; bfd_signed_vma group_size; asection * (*add_stub_section) PARAMS ((const char *, asection *)); void (*layout_sections_again) PARAMS ((void)); { bfd *input_bfd; asection *section; asection **input_list, **list; Elf_Internal_Sym *local_syms, **all_local_syms; unsigned int bfd_indx, bfd_count; int top_id, top_index; struct elf32_hppa_link_hash_table *htab; bfd_size_type stub_group_size; boolean stubs_always_before_branch; boolean stub_changed = 0; boolean ret = 0; bfd_size_type amt; htab = hppa_link_hash_table (info); /* Stash our params away. */ htab->stub_bfd = stub_bfd; htab->multi_subspace = multi_subspace; htab->add_stub_section = add_stub_section; htab->layout_sections_again = layout_sections_again; stubs_always_before_branch = group_size < 0; if (group_size < 0) stub_group_size = -group_size; else stub_group_size = group_size; if (stub_group_size == 1) { /* Default values. */ stub_group_size = 8000000; if (htab->has_17bit_branch || htab->multi_subspace) stub_group_size = 250000; if (htab->has_12bit_branch) stub_group_size = 7812; } /* Count the number of input BFDs and find the top input section id. */ for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; input_bfd != NULL; input_bfd = input_bfd->link_next) { bfd_count += 1; for (section = input_bfd->sections; section != NULL; section = section->next) { if (top_id < section->id) top_id = section->id; } } amt = sizeof (struct map_stub) * (top_id + 1); htab->stub_group = (struct map_stub *) bfd_zmalloc (amt); if (htab->stub_group == NULL) return false; /* Make a list of input sections for each output section included in the link. We can't use output_bfd->section_count here to find the top output section index as some sections may have been removed, and _bfd_strip_section_from_output doesn't renumber the indices. */ for (section = output_bfd->sections, top_index = 0; section != NULL; section = section->next) { if (top_index < section->index) top_index = section->index; } amt = sizeof (asection *) * (top_index + 1); input_list = (asection **) bfd_malloc (amt); if (input_list == NULL) return false; /* For sections we aren't interested in, mark their entries with a value we can check later. */ list = input_list + top_index; do *list = bfd_abs_section_ptr; while (list-- != input_list); for (section = output_bfd->sections; section != NULL; section = section->next) { if ((section->flags & SEC_CODE) != 0) input_list[section->index] = NULL; } /* Now actually build the lists. */ for (input_bfd = info->input_bfds; input_bfd != NULL; input_bfd = input_bfd->link_next) { for (section = input_bfd->sections; section != NULL; section = section->next) { if (section->output_section != NULL && section->output_section->owner == output_bfd && section->output_section->index <= top_index) { list = input_list + section->output_section->index; if (*list != bfd_abs_section_ptr) { /* Steal the link_sec pointer for our list. */ #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) /* This happens to make the list in reverse order, which is what we want. */ PREV_SEC (section) = *list; *list = section; } } } } /* See whether we can group stub sections together. Grouping stub sections may result in fewer stubs. More importantly, we need to put all .init* and .fini* stubs at the beginning of the .init or .fini output sections respectively, because glibc splits the _init and _fini functions into multiple parts. Putting a stub in the middle of a function is not a good idea. */ list = input_list + top_index; do { asection *tail = *list; if (tail == bfd_abs_section_ptr) continue; while (tail != NULL) { asection *curr; asection *prev; bfd_size_type total; curr = tail; if (tail->_cooked_size) total = tail->_cooked_size; else total = tail->_raw_size; while ((prev = PREV_SEC (curr)) != NULL && ((total += curr->output_offset - prev->output_offset) < stub_group_size)) curr = prev; /* OK, the size from the start of CURR to the end is less than 250000 bytes and thus can be handled by one stub section. (or the tail section is itself larger than 250000 bytes, in which case we may be toast.) We should really be keeping track of the total size of stubs added here, as stubs contribute to the final output section size. That's a little tricky, and this way will only break if stubs added total more than 12144 bytes, or 1518 long branch stubs. It seems unlikely for more than 1518 different functions to be called, especially from code only 250000 bytes long. */ do { prev = PREV_SEC (tail); /* Set up this stub group. */ htab->stub_group[tail->id].link_sec = curr; } while (tail != curr && (tail = prev) != NULL); /* But wait, there's more! Input sections up to 250000 bytes before the stub section can be handled by it too. */ if (!stubs_always_before_branch) { total = 0; while (prev != NULL && ((total += tail->output_offset - prev->output_offset) < stub_group_size)) { tail = prev; prev = PREV_SEC (tail); htab->stub_group[tail->id].link_sec = curr; } } tail = prev; } } while (list-- != input_list); free (input_list); #undef PREV_SEC /* We want to read in symbol extension records only once. To do this we need to read in the local symbols in parallel and save them for later use; so hold pointers to the local symbols in an array. */ amt = sizeof (Elf_Internal_Sym *) * bfd_count; all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt); if (all_local_syms == NULL) return false; /* Walk over all the input BFDs, swapping in local symbols. If we are creating a shared library, create hash entries for the export stubs. */ for (input_bfd = info->input_bfds, bfd_indx = 0; input_bfd != NULL; input_bfd = input_bfd->link_next, bfd_indx++) { Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Sym *isym; Elf32_External_Sym *ext_syms, *esym, *end_sy; bfd_size_type sec_size; /* We'll need the symbol table in a second. */ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; if (symtab_hdr->sh_info == 0) continue; /* We need an array of the local symbols attached to the input bfd. Unfortunately, we're going to have to read & swap them in. */ sec_size = symtab_hdr->sh_info; sec_size *= sizeof (Elf_Internal_Sym); local_syms = (Elf_Internal_Sym *) bfd_malloc (sec_size); if (local_syms == NULL) { goto error_ret_free_local; } all_local_syms[bfd_indx] = local_syms; sec_size = symtab_hdr->sh_info; sec_size *= sizeof (Elf32_External_Sym); ext_syms = (Elf32_External_Sym *) bfd_malloc (sec_size); if (ext_syms == NULL) { goto error_ret_free_local; } if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 || (bfd_bread (ext_syms, sec_size, input_bfd) != sec_size)) { free (ext_syms); goto error_ret_free_local; } /* Swap the local symbols in. */ isym = local_syms; esym = ext_syms; for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++) bfd_elf32_swap_symbol_in (input_bfd, esym, isym); /* Now we can free the external symbols. */ free (ext_syms); if (info->shared && htab->multi_subspace) { struct elf_link_hash_entry **sym_hashes; struct elf_link_hash_entry **end_hashes; unsigned int symcount; symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) - symtab_hdr->sh_info); sym_hashes = elf_sym_hashes (input_bfd); end_hashes = sym_hashes + symcount; /* Look through the global syms for functions; We need to build export stubs for all globally visible functions. */ for (; sym_hashes < end_hashes; sym_hashes++) { struct elf32_hppa_link_hash_entry *hash; hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes; while (hash->elf.root.type == bfd_link_hash_indirect || hash->elf.root.type == bfd_link_hash_warning) hash = ((struct elf32_hppa_link_hash_entry *) hash->elf.root.u.i.link); /* At this point in the link, undefined syms have been resolved, so we need to check that the symbol was defined in this BFD. */ if ((hash->elf.root.type == bfd_link_hash_defined || hash->elf.root.type == bfd_link_hash_defweak) && hash->elf.type == STT_FUNC && hash->elf.root.u.def.section->output_section != NULL && (hash->elf.root.u.def.section->output_section->owner == output_bfd) && hash->elf.root.u.def.section->owner == input_bfd && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT) { asection *sec; const char *stub_name; struct elf32_hppa_stub_hash_entry *stub_entry; sec = hash->elf.root.u.def.section; stub_name = hash->elf.root.root.string; stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name, false, false); if (stub_entry == NULL) { stub_entry = hppa_add_stub (stub_name, sec, htab); if (!stub_entry) goto error_ret_free_local; stub_entry->target_value = hash->elf.root.u.def.value; stub_entry->target_section = hash->elf.root.u.def.section; stub_entry->stub_type = hppa_stub_export; stub_entry->h = hash; stub_changed = 1; } else { (*_bfd_error_handler) (_("%s: duplicate export stub %s"), bfd_archive_filename (input_bfd), stub_name); } } } } } while (1) { asection *stub_sec; for (input_bfd = info->input_bfds, bfd_indx = 0; input_bfd != NULL; input_bfd = input_bfd->link_next, bfd_indx++) { Elf_Internal_Shdr *symtab_hdr; /* We'll need the symbol table in a second. */ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; if (symtab_hdr->sh_info == 0) continue; local_syms = all_local_syms[bfd_indx]; /* Walk over each section attached to the input bfd. */ for (section = input_bfd->sections; section != NULL; section = section->next) { Elf_Internal_Shdr *input_rel_hdr; Elf32_External_Rela *external_relocs, *erelaend, *erela; Elf_Internal_Rela *internal_relocs, *irelaend, *irela; /* If there aren't any relocs, then there's nothing more to do. */ if ((section->flags & SEC_RELOC) == 0 || section->reloc_count == 0) continue; /* If this section is a link-once section that will be discarded, then don't create any stubs. */ if (section->output_section == NULL || section->output_section->owner != output_bfd) continue; /* Allocate space for the external relocations. */ amt = section->reloc_count; amt *= sizeof (Elf32_External_Rela); external_relocs = (Elf32_External_Rela *) bfd_malloc (amt); if (external_relocs == NULL) { goto error_ret_free_local; } /* Likewise for the internal relocations. */ amt = section->reloc_count; amt *= sizeof (Elf_Internal_Rela); internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt); if (internal_relocs == NULL) { free (external_relocs); goto error_ret_free_local; } /* Read in the external relocs. */ input_rel_hdr = &elf_section_data (section)->rel_hdr; if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0 || bfd_bread (external_relocs, input_rel_hdr->sh_size, input_bfd) != input_rel_hdr->sh_size) { free (external_relocs); error_ret_free_internal: free (internal_relocs); goto error_ret_free_local; } /* Swap in the relocs. */ erela = external_relocs; erelaend = erela + section->reloc_count; irela = internal_relocs; for (; erela < erelaend; erela++, irela++) bfd_elf32_swap_reloca_in (input_bfd, erela, irela); /* We're done with the external relocs, free them. */ free (external_relocs); /* Now examine each relocation. */ irela = internal_relocs; irelaend = irela + section->reloc_count; for (; irela < irelaend; irela++) { unsigned int r_type, r_indx; enum elf32_hppa_stub_type stub_type; struct elf32_hppa_stub_hash_entry *stub_entry; asection *sym_sec; bfd_vma sym_value; bfd_vma destination; struct elf32_hppa_link_hash_entry *hash; char *stub_name; const asection *id_sec; r_type = ELF32_R_TYPE (irela->r_info); r_indx = ELF32_R_SYM (irela->r_info); if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) { bfd_set_error (bfd_error_bad_value); goto error_ret_free_internal; } /* Only look for stubs on call instructions. */ if (r_type != (unsigned int) R_PARISC_PCREL12F && r_type != (unsigned int) R_PARISC_PCREL17F && r_type != (unsigned int) R_PARISC_PCREL22F) continue; /* Now determine the call target, its name, value, section. */ sym_sec = NULL; sym_value = 0; destination = 0; hash = NULL; if (r_indx < symtab_hdr->sh_info) { /* It's a local symbol. */ Elf_Internal_Sym *sym; Elf_Internal_Shdr *hdr; sym = local_syms + r_indx; hdr = elf_elfsections (input_bfd)[sym->st_shndx]; sym_sec = hdr->bfd_section; if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) sym_value = sym->st_value; destination = (sym_value + irela->r_addend + sym_sec->output_offset + sym_sec->output_section->vma); } else { /* It's an external symbol. */ int e_indx; e_indx = r_indx - symtab_hdr->sh_info; hash = ((struct elf32_hppa_link_hash_entry *) elf_sym_hashes (input_bfd)[e_indx]); while (hash->elf.root.type == bfd_link_hash_indirect || hash->elf.root.type == bfd_link_hash_warning) hash = ((struct elf32_hppa_link_hash_entry *) hash->elf.root.u.i.link); if (hash->elf.root.type == bfd_link_hash_defined || hash->elf.root.type == bfd_link_hash_defweak) { sym_sec = hash->elf.root.u.def.section; sym_value = hash->elf.root.u.def.value; if (sym_sec->output_section != NULL) destination = (sym_value + irela->r_addend + sym_sec->output_offset + sym_sec->output_section->vma); } else if (hash->elf.root.type == bfd_link_hash_undefweak) { if (! info->shared) continue; } else if (hash->elf.root.type == bfd_link_hash_undefined) { if (! (info->shared && !info->no_undefined && (ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT))) continue; } else { bfd_set_error (bfd_error_bad_value); goto error_ret_free_internal; } } /* Determine what (if any) linker stub is needed. */ stub_type = hppa_type_of_stub (section, irela, hash, destination); if (stub_type == hppa_stub_none) continue; /* Support for grouping stub sections. */ id_sec = htab->stub_group[section->id].link_sec; /* Get the name of this stub. */ stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela); if (!stub_name) goto error_ret_free_internal; stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name, false, false); if (stub_entry != NULL) { /* The proper stub has already been created. */ free (stub_name); continue; } stub_entry = hppa_add_stub (stub_name, section, htab); if (stub_entry == NULL) { free (stub_name); goto error_ret_free_local; } stub_entry->target_value = sym_value; stub_entry->target_section = sym_sec; stub_entry->stub_type = stub_type; if (info->shared) { if (stub_type == hppa_stub_import) stub_entry->stub_type = hppa_stub_import_shared; else if (stub_type == hppa_stub_long_branch) stub_entry->stub_type = hppa_stub_long_branch_shared; } stub_entry->h = hash; stub_changed = 1; } /* We're done with the internal relocs, free them. */ free (internal_relocs); } } if (!stub_changed) break; /* OK, we've added some stubs. Find out the new size of the stub sections. */ for (stub_sec = htab->stub_bfd->sections; stub_sec != NULL; stub_sec = stub_sec->next) { stub_sec->_raw_size = 0; stub_sec->_cooked_size = 0; } bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab); /* Ask the linker to do its stuff. */ (*htab->layout_sections_again) (); stub_changed = 0; } ret = 1; error_ret_free_local: while (bfd_count-- > 0) if (all_local_syms[bfd_count]) free (all_local_syms[bfd_count]); free (all_local_syms); return ret; } /* For a final link, this function is called after we have sized the stubs to provide a value for __gp. */ boolean elf32_hppa_set_gp (abfd, info) bfd *abfd; struct bfd_link_info *info; { struct elf32_hppa_link_hash_table *htab; struct elf_link_hash_entry *h; asection *sec; bfd_vma gp_val; htab = hppa_link_hash_table (info); h = elf_link_hash_lookup (&htab->elf, "$global$", false, false, false); if (h != NULL && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)) { gp_val = h->root.u.def.value; sec = h->root.u.def.section; } else { /* Choose to point our LTP at, in this order, one of .plt, .got, or .data, if these sections exist. In the case of choosing .plt try to make the LTP ideal for addressing anywhere in the .plt or .got with a 14 bit signed offset. Typically, the end of the .plt is the start of the .got, so choose .plt + 0x2000 if either the .plt or .got is larger than 0x2000. If both the .plt and .got are smaller than 0x2000, choose the end of the .plt section. */ sec = htab->splt; if (sec != NULL) { gp_val = sec->_raw_size; if (gp_val > 0x2000 || (htab->sgot && htab->sgot->_raw_size > 0x2000)) { gp_val = 0x2000; } } else { gp_val = 0; sec = htab->sgot; if (sec != NULL) { /* We know we don't have a .plt. If .got is large, offset our LTP. */ if (sec->_raw_size > 0x2000) gp_val = 0x2000; } else { /* No .plt or .got. Who cares what the LTP is? */ sec = bfd_get_section_by_name (abfd, ".data"); } } if (h != NULL) { h->root.type = bfd_link_hash_defined; h->root.u.def.value = gp_val; if (sec != NULL) h->root.u.def.section = sec; else h->root.u.def.section = bfd_abs_section_ptr; } } if (sec != NULL && sec->output_section != NULL) gp_val += sec->output_section->vma + sec->output_offset; elf_gp (abfd) = gp_val; return true; } /* Build all the stubs associated with the current output file. The stubs are kept in a hash table attached to the main linker hash table. We also set up the .plt entries for statically linked PIC functions here. This function is called via hppaelf_finish in the linker. */ boolean elf32_hppa_build_stubs (info) struct bfd_link_info *info; { asection *stub_sec; struct bfd_hash_table *table; struct elf32_hppa_link_hash_table *htab; htab = hppa_link_hash_table (info); for (stub_sec = htab->stub_bfd->sections; stub_sec != NULL; stub_sec = stub_sec->next) { bfd_size_type size; /* Allocate memory to hold the linker stubs. */ size = stub_sec->_raw_size; stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); if (stub_sec->contents == NULL && size != 0) return false; stub_sec->_raw_size = 0; } /* Build the stubs as directed by the stub hash table. */ table = &htab->stub_hash_table; bfd_hash_traverse (table, hppa_build_one_stub, info); return true; } /* Perform a final link. */ static boolean elf32_hppa_final_link (abfd, info) bfd *abfd; struct bfd_link_info *info; { asection *s; /* Invoke the regular ELF linker to do all the work. */ if (!bfd_elf32_bfd_final_link (abfd, info)) return false; /* If we're producing a final executable, sort the contents of the unwind section. Magic section names, but this is much safer than having elf32_hppa_relocate_section remember where SEGREL32 relocs occurred. Consider what happens if someone inept creates a linker script that puts unwind information in .text. */ s = bfd_get_section_by_name (abfd, ".PARISC.unwind"); if (s != NULL) { bfd_size_type size; char *contents; size = s->_raw_size; contents = bfd_malloc (size); if (contents == NULL) return false; if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size)) return false; qsort (contents, (size_t) (size / 16), 16, hppa_unwind_entry_compare); if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size)) return false; } return true; } /* Record the lowest address for the data and text segments. */ static void hppa_record_segment_addr (abfd, section, data) bfd *abfd ATTRIBUTE_UNUSED; asection *section; PTR data; { struct elf32_hppa_link_hash_table *htab; htab = (struct elf32_hppa_link_hash_table *) data; if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) { bfd_vma value = section->vma - section->filepos; if ((section->flags & SEC_READONLY) != 0) { if (value < htab->text_segment_base) htab->text_segment_base = value; } else { if (value < htab->data_segment_base) htab->data_segment_base = value; } } } /* Perform a relocation as part of a final link. */ static bfd_reloc_status_type final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h) asection *input_section; bfd_byte *contents; const Elf_Internal_Rela *rel; bfd_vma value; struct elf32_hppa_link_hash_table *htab; asection *sym_sec; struct elf32_hppa_link_hash_entry *h; { int insn; unsigned int r_type = ELF32_R_TYPE (rel->r_info); reloc_howto_type *howto = elf_hppa_howto_table + r_type; int r_format = howto->bitsize; enum hppa_reloc_field_selector_type_alt r_field; bfd *input_bfd = input_section->owner; bfd_vma offset = rel->r_offset; bfd_vma max_branch_offset = 0; bfd_byte *hit_data = contents + offset; bfd_signed_vma addend = rel->r_addend; bfd_vma location; struct elf32_hppa_stub_hash_entry *stub_entry = NULL; int val; if (r_type == R_PARISC_NONE) return bfd_reloc_ok; insn = bfd_get_32 (input_bfd, hit_data); /* Find out where we are and where we're going. */ location = (offset + input_section->output_offset + input_section->output_section->vma); switch (r_type) { case R_PARISC_PCREL12F: case R_PARISC_PCREL17F: case R_PARISC_PCREL22F: /* If this is a call to a function defined in another dynamic library, or if it is a call to a PIC function in the same object, or if this is a shared link and it is a call to a weak symbol which may or may not be in the same object, then find the import stub in the stub hash. */ if (sym_sec == NULL || sym_sec->output_section == NULL || (h != NULL && ((h->maybe_pic_call && !(input_section->flags & SEC_HAS_GOT_REF)) || (h->elf.root.type == bfd_link_hash_defweak && h->elf.dynindx != -1 && h->elf.plt.offset != (bfd_vma) -1)))) { stub_entry = hppa_get_stub_entry (input_section, sym_sec, h, rel, htab); if (stub_entry != NULL) { value = (stub_entry->stub_offset + stub_entry->stub_sec->output_offset + stub_entry->stub_sec->output_section->vma); addend = 0; } else if (sym_sec == NULL && h != NULL && h->elf.root.type == bfd_link_hash_undefweak) { /* It's OK if undefined weak. Calls to undefined weak symbols behave as if the "called" function immediately returns. We can thus call to a weak function without first checking whether the function is defined. */ value = location; addend = 8; } else return bfd_reloc_notsupported; } /* Fall thru. */ case R_PARISC_PCREL21L: case R_PARISC_PCREL17C: case R_PARISC_PCREL17R: case R_PARISC_PCREL14R: case R_PARISC_PCREL14F: /* Make it a pc relative offset. */ value -= location; addend -= 8; break; case R_PARISC_DPREL21L: case R_PARISC_DPREL14R: case R_PARISC_DPREL14F: /* For all the DP relative relocations, we need to examine the symbol's section. If it's a code section, then "data pointer relative" makes no sense. In that case we don't adjust the "value", and for 21 bit addil instructions, we change the source addend register from %dp to %r0. This situation commonly arises when a variable's "constness" is declared differently from the way the variable is defined. For instance: "extern int foo" with foo defined as "const int foo". */ if (sym_sec == NULL) break; if ((sym_sec->flags & SEC_CODE) != 0) { if ((insn & ((0x3f << 26) | (0x1f << 21))) == (((int) OP_ADDIL << 26) | (27 << 21))) { insn &= ~ (0x1f << 21); #if 1 /* debug them. */ (*_bfd_error_handler) (_("%s(%s+0x%lx): fixing %s"), bfd_archive_filename (input_bfd), input_section->name, (long) rel->r_offset, howto->name); #endif } /* Now try to make things easy for the dynamic linker. */ break; } /* Fall thru. */ case R_PARISC_DLTIND21L: case R_PARISC_DLTIND14R: case R_PARISC_DLTIND14F: value -= elf_gp (input_section->output_section->owner); break; case R_PARISC_SEGREL32: if ((sym_sec->flags & SEC_CODE) != 0) value -= htab->text_segment_base; else value -= htab->data_segment_base; break; default: break; } switch (r_type) { case R_PARISC_DIR32: case R_PARISC_DIR14F: case R_PARISC_DIR17F: case R_PARISC_PCREL17C: case R_PARISC_PCREL14F: case R_PARISC_DPREL14F: case R_PARISC_PLABEL32: case R_PARISC_DLTIND14F: case R_PARISC_SEGBASE: case R_PARISC_SEGREL32: r_field = e_fsel; break; case R_PARISC_DIR21L: case R_PARISC_PCREL21L: case R_PARISC_DPREL21L: case R_PARISC_PLABEL21L: case R_PARISC_DLTIND21L: r_field = e_lrsel; break; case R_PARISC_DIR17R: case R_PARISC_PCREL17R: case R_PARISC_DIR14R: case R_PARISC_PCREL14R: case R_PARISC_DPREL14R: case R_PARISC_PLABEL14R: case R_PARISC_DLTIND14R: r_field = e_rrsel; break; case R_PARISC_PCREL12F: case R_PARISC_PCREL17F: case R_PARISC_PCREL22F: r_field = e_fsel; if (r_type == (unsigned int) R_PARISC_PCREL17F) { max_branch_offset = (1 << (17-1)) << 2; } else if (r_type == (unsigned int) R_PARISC_PCREL12F) { max_branch_offset = (1 << (12-1)) << 2; } else { max_branch_offset = (1 << (22-1)) << 2; } /* sym_sec is NULL on undefined weak syms or when shared on undefined syms. We've already checked for a stub for the shared undefined case. */ if (sym_sec == NULL) break; /* If the branch is out of reach, then redirect the call to the local stub for this function. */ if (value + addend + max_branch_offset >= 2*max_branch_offset) { stub_entry = hppa_get_stub_entry (input_section, sym_sec, h, rel, htab); if (stub_entry == NULL) return bfd_reloc_notsupported; /* Munge up the value and addend so that we call the stub rather than the procedure directly. */ value = (stub_entry->stub_offset + stub_entry->stub_sec->output_offset + stub_entry->stub_sec->output_section->vma - location); addend = -8; } break; /* Something we don't know how to handle. */ default: return bfd_reloc_notsupported; } /* Make sure we can reach the stub. */ if (max_branch_offset != 0 && value + addend + max_branch_offset >= 2*max_branch_offset) { (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"), bfd_archive_filename (input_bfd), input_section->name, (long) rel->r_offset, stub_entry->root.string); bfd_set_error (bfd_error_bad_value); return bfd_reloc_notsupported; } val = hppa_field_adjust (value, addend, r_field); switch (r_type) { case R_PARISC_PCREL12F: case R_PARISC_PCREL17C: case R_PARISC_PCREL17F: case R_PARISC_PCREL17R: case R_PARISC_PCREL22F: case R_PARISC_DIR17F: case R_PARISC_DIR17R: /* This is a branch. Divide the offset by four. Note that we need to decide whether it's a branch or otherwise by inspecting the reloc. Inspecting insn won't work as insn might be from a .word directive. */ val >>= 2; break; default: break; } insn = hppa_rebuild_insn (insn, val, r_format); /* Update the instruction word. */ bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data); return bfd_reloc_ok; } /* Relocate an HPPA ELF section. */ static boolean elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section, contents, relocs, local_syms, local_sections) bfd *output_bfd; struct bfd_link_info *info; bfd *input_bfd; asection *input_section; bfd_byte *contents; Elf_Internal_Rela *relocs; Elf_Internal_Sym *local_syms; asection **local_sections; { bfd_vma *local_got_offsets; struct elf32_hppa_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; htab = hppa_link_hash_table (info); local_got_offsets = elf_local_got_offsets (input_bfd); rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { unsigned int r_type; reloc_howto_type *howto; unsigned int r_symndx; struct elf32_hppa_link_hash_entry *h; Elf_Internal_Sym *sym; asection *sym_sec; bfd_vma relocation; bfd_reloc_status_type r; const char *sym_name; boolean plabel; r_type = ELF32_R_TYPE (rel->r_info); if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) { bfd_set_error (bfd_error_bad_value); return false; } if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT) continue; r_symndx = ELF32_R_SYM (rel->r_info); if (info->relocateable) { /* This is a relocatable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) { sym_sec = local_sections[r_symndx]; rel->r_addend += sym_sec->output_offset; } } continue; } /* This is a final link. */ h = NULL; sym = NULL; sym_sec = NULL; if (r_symndx < symtab_hdr->sh_info) { /* This is a local symbol, h defaults to NULL. */ sym = local_syms + r_symndx; sym_sec = local_sections[r_symndx]; relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION ? 0 : sym->st_value) + sym_sec->output_offset + sym_sec->output_section->vma); } else { int indx; /* It's a global; Find its entry in the link hash. */ indx = r_symndx - symtab_hdr->sh_info; h = ((struct elf32_hppa_link_hash_entry *) elf_sym_hashes (input_bfd)[indx]); while (h->elf.root.type == bfd_link_hash_indirect || h->elf.root.type == bfd_link_hash_warning) h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link; relocation = 0; if (h->elf.root.type == bfd_link_hash_defined || h->elf.root.type == bfd_link_hash_defweak) { sym_sec = h->elf.root.u.def.section; /* If sym_sec->output_section is NULL, then it's a symbol defined in a shared library. */ if (sym_sec->output_section != NULL) relocation = (h->elf.root.u.def.value + sym_sec->output_offset + sym_sec->output_section->vma); } else if (h->elf.root.type == bfd_link_hash_undefweak) ; else if (info->shared && !info->no_undefined && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT && h->elf.type != STT_PARISC_MILLI) { if (info->symbolic && !info->allow_shlib_undefined) if (!((*info->callbacks->undefined_symbol) (info, h->elf.root.root.string, input_bfd, input_section, rel->r_offset, false))) return false; } else { if (!((*info->callbacks->undefined_symbol) (info, h->elf.root.root.string, input_bfd, input_section, rel->r_offset, true))) return false; } } /* Do any required modifications to the relocation value, and determine what types of dynamic info we need to output, if any. */ plabel = 0; switch (r_type) { case R_PARISC_DLTIND14F: case R_PARISC_DLTIND14R: case R_PARISC_DLTIND21L: { bfd_vma off; boolean do_got = 0; /* Relocation is to the entry for this symbol in the global offset table. */ if (h != NULL) { boolean dyn; off = h->elf.got.offset; dyn = htab->elf.dynamic_sections_created; if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf)) { /* If we aren't going to call finish_dynamic_symbol, then we need to handle initialisation of the .got entry and create needed relocs here. Since the offset must always be a multiple of 4, we use the least significant bit to record whether we have initialised it already. */ if ((off & 1) != 0) off &= ~1; else { h->elf.got.offset |= 1; do_got = 1; } } } else { /* Local symbol case. */ if (local_got_offsets == NULL) abort (); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already generated the necessary reloc. */ if ((off & 1) != 0) off &= ~1; else { local_got_offsets[r_symndx] |= 1; do_got = 1; } } if (do_got) { if (info->shared) { /* Output a dynamic relocation for this GOT entry. In this case it is relative to the base of the object because the symbol index is zero. */ Elf_Internal_Rela outrel; asection *srelgot = htab->srelgot; Elf32_External_Rela *loc; outrel.r_offset = (off + htab->sgot->output_offset + htab->sgot->output_section->vma); outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); outrel.r_addend = relocation; loc = (Elf32_External_Rela *) srelgot->contents; loc += srelgot->reloc_count++; bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); } else bfd_put_32 (output_bfd, relocation, htab->sgot->contents + off); } if (off >= (bfd_vma) -2) abort (); /* Add the base of the GOT to the relocation value. */ relocation = (off + htab->sgot->output_offset + htab->sgot->output_section->vma); } break; case R_PARISC_SEGREL32: /* If this is the first SEGREL relocation, then initialize the segment base values. */ if (htab->text_segment_base == (bfd_vma) -1) bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab); break; case R_PARISC_PLABEL14R: case R_PARISC_PLABEL21L: case R_PARISC_PLABEL32: if (htab->elf.dynamic_sections_created) { bfd_vma off; boolean do_plt = 0; /* If we have a global symbol with a PLT slot, then redirect this relocation to it. */ if (h != NULL) { off = h->elf.plt.offset; if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf)) { /* In a non-shared link, adjust_dynamic_symbols isn't called for symbols forced local. We need to write out the plt entry here. */ if ((off & 1) != 0) off &= ~1; else { h->elf.plt.offset |= 1; do_plt = 1; } } } else { bfd_vma *local_plt_offsets; if (local_got_offsets == NULL) abort (); local_plt_offsets = local_got_offsets + symtab_hdr->sh_info; off = local_plt_offsets[r_symndx]; /* As for the local .got entry case, we use the last bit to record whether we've already initialised this local .plt entry. */ if ((off & 1) != 0) off &= ~1; else { local_plt_offsets[r_symndx] |= 1; do_plt = 1; } } if (do_plt) { if (info->shared) { /* Output a dynamic IPLT relocation for this PLT entry. */ Elf_Internal_Rela outrel; asection *srelplt = htab->srelplt; Elf32_External_Rela *loc; outrel.r_offset = (off + htab->splt->output_offset + htab->splt->output_section->vma); outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); outrel.r_addend = relocation; loc = (Elf32_External_Rela *) srelplt->contents; loc += srelplt->reloc_count++; bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); } else { bfd_put_32 (output_bfd, relocation, htab->splt->contents + off); bfd_put_32 (output_bfd, elf_gp (htab->splt->output_section->owner), htab->splt->contents + off + 4); } } if (off >= (bfd_vma) -2) abort (); /* PLABELs contain function pointers. Relocation is to the entry for the function in the .plt. The magic +2 offset signals to $$dyncall that the function pointer is in the .plt and thus has a gp pointer too. Exception: Undefined PLABELs should have a value of zero. */ if (h == NULL || (h->elf.root.type != bfd_link_hash_undefweak && h->elf.root.type != bfd_link_hash_undefined)) { relocation = (off + htab->splt->output_offset + htab->splt->output_section->vma + 2); } plabel = 1; } /* Fall through and possibly emit a dynamic relocation. */ case R_PARISC_DIR17F: case R_PARISC_DIR17R: case R_PARISC_DIR14F: case R_PARISC_DIR14R: case R_PARISC_DIR21L: case R_PARISC_DPREL14F: case R_PARISC_DPREL14R: case R_PARISC_DPREL21L: case R_PARISC_DIR32: /* The reloc types handled here and this conditional expression must match the code in ..check_relocs and ..discard_relocs. ie. We need exactly the same condition as in ..check_relocs, with some extra conditions (dynindx test in this case) to cater for relocs removed by ..discard_relocs. If you squint, the non-shared test here does indeed match the one in ..check_relocs, the difference being that here we test DEF_DYNAMIC as well as !DEF_REGULAR. All common syms end up with !DEF_REGULAR, which is why we can't use just that test here. Conversely, DEF_DYNAMIC can't be used in check_relocs as there all files have not been loaded. */ if ((info->shared && (input_section->flags & SEC_ALLOC) != 0 && (IS_ABSOLUTE_RELOC (r_type) || (h != NULL && h->elf.dynindx != -1 && (!info->symbolic || (h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)))) || (!info->shared && (input_section->flags & SEC_ALLOC) != 0 && h != NULL && h->elf.dynindx != -1 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0 && (((h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 && (h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) || h->elf.root.type == bfd_link_hash_undefweak || h->elf.root.type == bfd_link_hash_undefined))) { Elf_Internal_Rela outrel; boolean skip; asection *sreloc; Elf32_External_Rela *loc; /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ outrel.r_offset = rel->r_offset; outrel.r_addend = rel->r_addend; skip = false; if (elf_section_data (input_section)->stab_info != NULL) { bfd_vma off; off = (_bfd_stab_section_offset (output_bfd, &htab->elf.stab_info, input_section, &elf_section_data (input_section)->stab_info, rel->r_offset)); if (off == (bfd_vma) -1) skip = true; outrel.r_offset = off; } outrel.r_offset += (input_section->output_offset + input_section->output_section->vma); if (skip) { memset (&outrel, 0, sizeof (outrel)); } else if (h != NULL && h->elf.dynindx != -1 && (plabel || !IS_ABSOLUTE_RELOC (r_type) || !info->shared || !info->symbolic || (h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) { outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type); } else /* It's a local symbol, or one marked to become local. */ { int indx = 0; /* Add the absolute offset of the symbol. */ outrel.r_addend += relocation; /* Global plabels need to be processed by the dynamic linker so that functions have at most one fptr. For this reason, we need to differentiate between global and local plabels, which we do by providing the function symbol for a global plabel reloc, and no symbol for local plabels. */ if (! plabel && sym_sec != NULL && sym_sec->output_section != NULL && ! bfd_is_abs_section (sym_sec)) { indx = elf_section_data (sym_sec->output_section)->dynindx; /* We are turning this relocation into one against a section symbol, so subtract out the output section's address but not the offset of the input section in the output section. */ outrel.r_addend -= sym_sec->output_section->vma; } outrel.r_info = ELF32_R_INFO (indx, r_type); } #if 0 /* EH info can cause unaligned DIR32 relocs. Tweak the reloc type for the dynamic linker. */ if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0) outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info), R_PARISC_DIR32U); #endif sreloc = elf_section_data (input_section)->sreloc; if (sreloc == NULL) abort (); loc = (Elf32_External_Rela *) sreloc->contents; loc += sreloc->reloc_count++; bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); } break; default: break; } r = final_link_relocate (input_section, contents, rel, relocation, htab, sym_sec, h); if (r == bfd_reloc_ok) continue; if (h != NULL) sym_name = h->elf.root.root.string; else { sym_name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (sym_name == NULL) return false; if (*sym_name == '\0') sym_name = bfd_section_name (input_bfd, sym_sec); } howto = elf_hppa_howto_table + r_type; if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported) { (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot handle %s for %s"), bfd_archive_filename (input_bfd), input_section->name, (long) rel->r_offset, howto->name, sym_name); bfd_set_error (bfd_error_bad_value); return false; } else { if (!((*info->callbacks->reloc_overflow) (info, sym_name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return false; } } return true; } /* Comparison function for qsort to sort unwind section during a final link. */ static int hppa_unwind_entry_compare (a, b) const PTR a; const PTR b; { const bfd_byte *ap, *bp; unsigned long av, bv; ap = (const bfd_byte *) a; av = (unsigned long) ap[0] << 24; av |= (unsigned long) ap[1] << 16; av |= (unsigned long) ap[2] << 8; av |= (unsigned long) ap[3]; bp = (const bfd_byte *) b; bv = (unsigned long) bp[0] << 24; bv |= (unsigned long) bp[1] << 16; bv |= (unsigned long) bp[2] << 8; bv |= (unsigned long) bp[3]; return av < bv ? -1 : av > bv ? 1 : 0; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static boolean elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym) bfd *output_bfd; struct bfd_link_info *info; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { struct elf32_hppa_link_hash_table *htab; htab = hppa_link_hash_table (info); if (h->plt.offset != (bfd_vma) -1) { bfd_vma value; if (h->plt.offset & 1) abort (); /* This symbol has an entry in the procedure linkage table. Set it up. The format of a plt entry is <__gp> */ value = 0; if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { value = h->root.u.def.value; if (h->root.u.def.section->output_section != NULL) value += (h->root.u.def.section->output_offset + h->root.u.def.section->output_section->vma); } if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call) { Elf_Internal_Rela rel; Elf32_External_Rela *loc; /* Create a dynamic IPLT relocation for this entry. */ rel.r_offset = (h->plt.offset + htab->splt->output_offset + htab->splt->output_section->vma); if (h->dynindx != -1) { /* To support lazy linking, the function pointer is initialised to point to a special stub stored at the end of the .plt. This is not done for plt entries with a base-relative dynamic relocation. */ value = (htab->splt->output_offset + htab->splt->output_section->vma + htab->splt->_raw_size - sizeof (plt_stub) + PLT_STUB_ENTRY); rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT); rel.r_addend = 0; } else { /* This symbol has been marked to become local, and is used by a plabel so must be kept in the .plt. */ rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); rel.r_addend = value; } loc = (Elf32_External_Rela *) htab->srelplt->contents; loc += htab->srelplt->reloc_count++; bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rel, loc); } else { bfd_put_32 (htab->splt->owner, value, htab->splt->contents + h->plt.offset); bfd_put_32 (htab->splt->owner, elf_gp (htab->splt->output_section->owner), htab->splt->contents + h->plt.offset + 4); } if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; } } if (h->got.offset != (bfd_vma) -1) { Elf_Internal_Rela rel; Elf32_External_Rela *loc; /* This symbol has an entry in the global offset table. Set it up. */ rel.r_offset = ((h->got.offset &~ (bfd_vma) 1) + htab->sgot->output_offset + htab->sgot->output_section->vma); /* If this is a -Bsymbolic link and the symbol is defined locally or was forced to be local because of a version file, we just want to emit a RELATIVE reloc. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (info->shared && (info->symbolic || h->dynindx == -1) && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)) { rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); rel.r_addend = (h->root.u.def.value + h->root.u.def.section->output_offset + h->root.u.def.section->output_section->vma); } else { if ((h->got.offset & 1) != 0) abort (); bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgot->contents + h->got.offset); rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32); rel.r_addend = 0; } loc = (Elf32_External_Rela *) htab->srelgot->contents; loc += htab->srelgot->reloc_count++; bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); } if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0) { asection *s; Elf_Internal_Rela rel; Elf32_External_Rela *loc; /* This symbol needs a copy reloc. Set it up. */ if (! (h->dynindx != -1 && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak))) abort (); s = htab->srelbss; rel.r_offset = (h->root.u.def.value + h->root.u.def.section->output_offset + h->root.u.def.section->output_section->vma); rel.r_addend = 0; rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY); loc = (Elf32_External_Rela *) s->contents + s->reloc_count++; bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ if (h->root.root.string[0] == '_' && (strcmp (h->root.root.string, "_DYNAMIC") == 0 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)) { sym->st_shndx = SHN_ABS; } return true; } /* Used to decide how to sort relocs in an optimal manner for the dynamic linker, before writing them out. */ static enum elf_reloc_type_class elf32_hppa_reloc_type_class (rela) const Elf_Internal_Rela *rela; { if (ELF32_R_SYM (rela->r_info) == 0) return reloc_class_relative; switch ((int) ELF32_R_TYPE (rela->r_info)) { case R_PARISC_IPLT: return reloc_class_plt; case R_PARISC_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* Finish up the dynamic sections. */ static boolean elf32_hppa_finish_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; struct elf32_hppa_link_hash_table *htab; asection *sdyn; htab = hppa_link_hash_table (info); dynobj = htab->elf.dynobj; sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (htab->elf.dynamic_sections_created) { Elf32_External_Dyn *dyncon, *dynconend; if (sdyn == NULL) abort (); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; asection *s; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: continue; case DT_PLTGOT: /* Use PLTGOT to set the GOT register. */ dyn.d_un.d_ptr = elf_gp (output_bfd); break; case DT_JMPREL: s = htab->srelplt; dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; break; case DT_PLTRELSZ: s = htab->srelplt; if (s->_cooked_size != 0) dyn.d_un.d_val = s->_cooked_size; else dyn.d_un.d_val = s->_raw_size; break; case DT_RELASZ: /* Don't count procedure linkage table relocs in the overall reloc count. */ if (htab->srelplt != NULL) { s = htab->srelplt->output_section; if (s->_cooked_size != 0) dyn.d_un.d_val -= s->_cooked_size; else dyn.d_un.d_val -= s->_raw_size; } break; } bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); } } if (htab->sgot != NULL && htab->sgot->_raw_size != 0) { /* Fill in the first entry in the global offset table. We use it to point to our dynamic section, if we have one. */ bfd_put_32 (output_bfd, (sdyn != NULL ? sdyn->output_section->vma + sdyn->output_offset : (bfd_vma) 0), htab->sgot->contents); /* The second entry is reserved for use by the dynamic linker. */ memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE); /* Set .got entry size. */ elf_section_data (htab->sgot->output_section) ->this_hdr.sh_entsize = GOT_ENTRY_SIZE; } if (htab->splt != NULL && htab->splt->_raw_size != 0) { /* Set plt entry size. */ elf_section_data (htab->splt->output_section) ->this_hdr.sh_entsize = PLT_ENTRY_SIZE; if (htab->need_plt_stub) { /* Set up the .plt stub. */ memcpy (htab->splt->contents + htab->splt->_raw_size - sizeof (plt_stub), plt_stub, sizeof (plt_stub)); if ((htab->splt->output_offset + htab->splt->output_section->vma + htab->splt->_raw_size) != (htab->sgot->output_offset + htab->sgot->output_section->vma)) { (*_bfd_error_handler) (_(".got section not immediately after .plt section")); return false; } } } return true; } /* Tweak the OSABI field of the elf header. */ static void elf32_hppa_post_process_headers (abfd, link_info) bfd *abfd; struct bfd_link_info *link_info ATTRIBUTE_UNUSED; { Elf_Internal_Ehdr * i_ehdrp; i_ehdrp = elf_elfheader (abfd); if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0) { i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX; } else { i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX; } } /* Called when writing out an object file to decide the type of a symbol. */ static int elf32_hppa_elf_get_symbol_type (elf_sym, type) Elf_Internal_Sym *elf_sym; int type; { if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) return STT_PARISC_MILLI; else return type; } /* Misc BFD support code. */ #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup #define elf_info_to_howto elf_hppa_info_to_howto #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel /* Stuff for the BFD linker. */ #define bfd_elf32_bfd_final_link elf32_hppa_final_link #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol #define elf_backend_check_relocs elf32_hppa_check_relocs #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections #define elf_backend_fake_sections elf_hppa_fake_sections #define elf_backend_relocate_section elf32_hppa_relocate_section #define elf_backend_hide_symbol elf32_hppa_hide_symbol #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook #define elf_backend_object_p elf32_hppa_object_p #define elf_backend_final_write_processing elf_hppa_final_write_processing #define elf_backend_post_process_headers elf32_hppa_post_process_headers #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class #define elf_backend_can_gc_sections 1 #define elf_backend_can_refcount 1 #define elf_backend_plt_alignment 2 #define elf_backend_want_got_plt 0 #define elf_backend_plt_readonly 0 #define elf_backend_want_plt_sym 0 #define elf_backend_got_header_size 8 #define TARGET_BIG_SYM bfd_elf32_hppa_vec #define TARGET_BIG_NAME "elf32-hppa" #define ELF_ARCH bfd_arch_hppa #define ELF_MACHINE_CODE EM_PARISC #define ELF_MAXPAGESIZE 0x1000 #include "elf32-target.h" #undef TARGET_BIG_SYM #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-hppa-linux" #define INCLUDED_TARGET_FILE 1 #include "elf32-target.h"