/* FRV-specific support for 32-bit ELF. Copyright 2002, 2003 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "bfd.h" #include "sysdep.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/frv.h" #include "elf/dwarf2.h" #include "hashtab.h" /* Forward declarations. */ static bfd_reloc_status_type elf32_frv_relocate_lo16 PARAMS ((bfd *, Elf_Internal_Rela *, bfd_byte *, bfd_vma)); static bfd_reloc_status_type elf32_frv_relocate_hi16 PARAMS ((bfd *, Elf_Internal_Rela *, bfd_byte *, bfd_vma)); static bfd_reloc_status_type elf32_frv_relocate_label24 PARAMS ((bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, bfd_vma)); static bfd_reloc_status_type elf32_frv_relocate_gprel12 PARAMS ((struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, bfd_vma)); static bfd_reloc_status_type elf32_frv_relocate_gprelu12 PARAMS ((struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, bfd_vma)); static bfd_reloc_status_type elf32_frv_relocate_gprello PARAMS ((struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, bfd_vma)); static bfd_reloc_status_type elf32_frv_relocate_gprelhi PARAMS ((struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, bfd_vma)); static reloc_howto_type *frv_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type)); static void frv_info_to_howto_rela PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); static bfd_boolean elf32_frv_relocate_section PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); static bfd_boolean elf32_frv_add_symbol_hook PARAMS (( bfd *, struct bfd_link_info *, const Elf_Internal_Sym *, const char **, flagword *, asection **, bfd_vma *)); static bfd_reloc_status_type frv_final_link_relocate PARAMS ((reloc_howto_type *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, bfd_vma)); static bfd_boolean elf32_frv_gc_sweep_hook PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *)); static asection * elf32_frv_gc_mark_hook PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); static bfd_boolean elf32_frv_check_relocs PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *)); static int elf32_frv_machine PARAMS ((bfd *)); static bfd_boolean elf32_frv_object_p PARAMS ((bfd *)); static bfd_boolean frv_elf_set_private_flags PARAMS ((bfd *, flagword)); static bfd_boolean frv_elf_copy_private_bfd_data PARAMS ((bfd *, bfd *)); static bfd_boolean frv_elf_merge_private_bfd_data PARAMS ((bfd *, bfd *)); static bfd_boolean frv_elf_print_private_bfd_data PARAMS ((bfd *, PTR)); static reloc_howto_type elf32_frv_howto_table [] = { /* This reloc does nothing. */ HOWTO (R_FRV_NONE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_NONE", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 32 bit absolute relocation. */ HOWTO (R_FRV_32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 16 bit pc-relative relocation. */ HOWTO (R_FRV_LABEL16, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_LABEL16", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* A 24-bit pc-relative relocation. */ HOWTO (R_FRV_LABEL24, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_LABEL24", /* name */ FALSE, /* partial_inplace */ 0x7e03ffff, /* src_mask */ 0x7e03ffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_FRV_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_LO16", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_FRV_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_HI16", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_FRV_GPREL12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_GPREL12", /* name */ FALSE, /* partial_inplace */ 0xfff, /* src_mask */ 0xfff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_FRV_GPRELU12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_GPRELU12", /* name */ FALSE, /* partial_inplace */ 0xfff, /* src_mask */ 0x3f03f, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_FRV_GPREL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_GPREL32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_FRV_GPRELHI, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_GPRELHI", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_FRV_GPRELLO, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_GPRELLO", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 12-bit signed operand with the GOT offset for the address of the symbol. */ HOWTO (R_FRV_GOT12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_GOT12", /* name */ FALSE, /* partial_inplace */ 0xfff, /* src_mask */ 0xfff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The upper 16 bits of the GOT offset for the address of the symbol. */ HOWTO (R_FRV_GOTHI, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_GOTHI", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The lower 16 bits of the GOT offset for the address of the symbol. */ HOWTO (R_FRV_GOTLO, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_GOTLO", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The 32-bit address of the canonical descriptor of a function. */ HOWTO (R_FRV_FUNCDESC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_FUNCDESC", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 12-bit signed operand with the GOT offset for the address of canonical descriptor of a function. */ HOWTO (R_FRV_FUNCDESC_GOT12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_FUNCDESC_GOT12", /* name */ FALSE, /* partial_inplace */ 0xfff, /* src_mask */ 0xfff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The upper 16 bits of the GOT offset for the address of the canonical descriptor of a function. */ HOWTO (R_FRV_FUNCDESC_GOTHI, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_FUNCDESC_GOTHI", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The lower 16 bits of the GOT offset for the address of the canonical descriptor of a function. */ HOWTO (R_FRV_FUNCDESC_GOTLO, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_FUNCDESC_GOTLO", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The 32-bit address of the canonical descriptor of a function. */ HOWTO (R_FRV_FUNCDESC_VALUE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_FUNCDESC_VALUE", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 12-bit signed operand with the GOT offset for the address of canonical descriptor of a function. */ HOWTO (R_FRV_FUNCDESC_GOTOFF12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_FUNCDESC_GOTOFF12", /* name */ FALSE, /* partial_inplace */ 0xfff, /* src_mask */ 0xfff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The upper 16 bits of the GOT offset for the address of the canonical descriptor of a function. */ HOWTO (R_FRV_FUNCDESC_GOTOFFHI, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_FUNCDESC_GOTOFFHI", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The lower 16 bits of the GOT offset for the address of the canonical descriptor of a function. */ HOWTO (R_FRV_FUNCDESC_GOTOFFLO, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_FUNCDESC_GOTOFFLO", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 12-bit signed operand with the GOT offset for the address of the symbol. */ HOWTO (R_FRV_GOTOFF12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_GOTOFF12", /* name */ FALSE, /* partial_inplace */ 0xfff, /* src_mask */ 0xfff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The upper 16 bits of the GOT offset for the address of the symbol. */ HOWTO (R_FRV_GOTOFFHI, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_GOTOFFHI", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* The lower 16 bits of the GOT offset for the address of the symbol. */ HOWTO (R_FRV_GOTOFFLO, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_GOTOFFLO", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ }; /* GNU extension to record C++ vtable hierarchy. */ static reloc_howto_type elf32_frv_vtinherit_howto = HOWTO (R_FRV_GNU_VTINHERIT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ NULL, /* special_function */ "R_FRV_GNU_VTINHERIT", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE); /* pcrel_offset */ /* GNU extension to record C++ vtable member usage. */ static reloc_howto_type elf32_frv_vtentry_howto = HOWTO (R_FRV_GNU_VTENTRY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_elf_rel_vtable_reloc_fn, /* special_function */ "R_FRV_GNU_VTENTRY", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE); /* pcrel_offset */ /* The following 3 relocations are REL. The only difference to the entries in the table above are that partial_inplace is TRUE. */ static reloc_howto_type elf32_frv_rel_32_howto = HOWTO (R_FRV_32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE); /* pcrel_offset */ static reloc_howto_type elf32_frv_rel_funcdesc_howto = HOWTO (R_FRV_FUNCDESC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_FUNCDESC", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE); /* pcrel_offset */ static reloc_howto_type elf32_frv_rel_funcdesc_value_howto = HOWTO (R_FRV_FUNCDESC_VALUE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_FRV_FUNCDESC_VALUE", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE); /* pcrel_offset */ /* Map BFD reloc types to FRV ELF reloc types. */ #if 0 struct frv_reloc_map { unsigned int bfd_reloc_val; unsigned int frv_reloc_val; }; static const struct frv_reloc_map frv_reloc_map [] = { { BFD_RELOC_NONE, R_FRV_NONE }, { BFD_RELOC_32, R_FRV_32 }, { BFD_RELOC_FRV_LABEL16, R_FRV_LABEL16 }, { BFD_RELOC_FRV_LABEL24, R_FRV_LABEL24 }, { BFD_RELOC_FRV_LO16, R_FRV_LO16 }, { BFD_RELOC_FRV_HI16, R_FRV_HI16 }, { BFD_RELOC_FRV_GPREL12, R_FRV_GPREL12 }, { BFD_RELOC_FRV_GPRELU12, R_FRV_GPRELU12 }, { BFD_RELOC_FRV_GPREL32, R_FRV_GPREL32 }, { BFD_RELOC_FRV_GPRELHI, R_FRV_GPRELHI }, { BFD_RELOC_FRV_GPRELLO, R_FRV_GPRELLO }, { BFD_RELOC_FRV_GOT12, R_FRV_GOT12 }, { BFD_RELOC_FRV_GOTHI, R_FRV_GOTHI }, { BFD_RELOC_FRV_GOTLO, R_FRV_GOTLO }, { BFD_RELOC_FRV_FUNCDESC, R_FRV_FUNCDESC }, { BFD_RELOC_FRV_FUNCDESC_GOT12, R_FRV_FUNCDESC_GOT12 }, { BFD_RELOC_FRV_FUNCDESC_GOTHI, R_FRV_FUNCDESC_GOTHI }, { BFD_RELOC_FRV_FUNCDESC_GOTLO, R_FRV_FUNCDESC_GOTLO }, { BFD_RELOC_FRV_FUNCDESC_VALUE, R_FRV_FUNCDESC_VALUE }, { BFD_RELOC_FRV_FUNCDESC_GOTOFF12, R_FRV_FUNCDESC_GOTOFF12 }, { BFD_RELOC_FRV_FUNCDESC_GOTOFFHI, R_FRV_FUNCDESC_GOTOFFHI }, { BFD_RELOC_FRV_FUNCDESC_GOTOFFLO, R_FRV_FUNCDESC_GOTOFFLO }, { BFD_RELOC_FRV_GOTOFF12, R_FRV_GOTOFF12 }, { BFD_RELOC_FRV_GOTOFFHI, R_FRV_GOTOFFHI }, { BFD_RELOC_FRV_GOTOFFLO, R_FRV_GOTOFFLO }, { BFD_RELOC_VTABLE_INHERIT, R_FRV_GNU_VTINHERIT }, { BFD_RELOC_VTABLE_ENTRY, R_FRV_GNU_VTENTRY }, }; #endif /* An extension of the elf hash table data structure, containing some additional FRV-specific data. */ struct frv_elf_link_hash_table { struct elf_link_hash_table elf; /* A pointer to the .got section. */ asection *sgot; /* A pointer to the .rel.got section. */ asection *sgotrel; /* A pointer to the .rofixup section. */ asection *sgotfixup; /* A pointer to the .plt section. */ asection *splt; /* A pointer to the .rel.plt section. */ asection *spltrel; /* GOT base offset. */ bfd_vma got0; /* Location of the first non-lazy PLT entry, i.e., the number of bytes taken by lazy PLT entries. */ bfd_vma plt0; /* A hash table holding information about which symbols were referenced with which PIC-related relocations. */ struct htab *relocs_info; }; /* Get the FRV ELF linker hash table from a link_info structure. */ #define frv_hash_table(info) \ ((struct frv_elf_link_hash_table *) ((info)->hash)) #define frv_got_section(info) \ (frv_hash_table (info)->sgot) #define frv_gotrel_section(info) \ (frv_hash_table (info)->sgotrel) #define frv_gotfixup_section(info) \ (frv_hash_table (info)->sgotfixup) #define frv_plt_section(info) \ (frv_hash_table (info)->splt) #define frv_pltrel_section(info) \ (frv_hash_table (info)->spltrel) #define frv_relocs_info(info) \ (frv_hash_table (info)->relocs_info) #define frv_got_initial_offset(info) \ (frv_hash_table (info)->got0) #define frv_plt_initial_offset(info) \ (frv_hash_table (info)->plt0) /* Create an FRV ELF linker hash table. */ static struct bfd_link_hash_table * frv_elf_link_hash_table_create (bfd *abfd) { struct frv_elf_link_hash_table *ret; bfd_size_type amt = sizeof (struct frv_elf_link_hash_table); ret = bfd_zalloc (abfd, amt); if (ret == NULL) return NULL; if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, _bfd_elf_link_hash_newfunc)) { free (ret); return NULL; } return &ret->elf.root; } /* Decide whether a reference to a symbol can be resolved locally or not. If the symbol is protected, we want the local address, but its function descriptor must be assigned by the dynamic linker. */ #define FRV_SYM_LOCAL(INFO, H) \ (_bfd_elf_symbol_refs_local_p ((H), (INFO), 1) \ || ! elf_hash_table (INFO)->dynamic_sections_created \ || (/* The condition below is an ugly hack to get .scommon data to be regarded as local. For some reason the ELF_LINK_HASH_DEF_REGULAR bit is not set on such common symbols, and the SEC_IS_COMMON bit is not set any longer when we need to perform this test. Hopefully this approximation is good enough. */ \ ((H)->root.type == bfd_link_hash_defined \ || (H)->root.type == bfd_link_hash_defweak) \ && (H)->root.u.def.section->output_section \ && ((H)->root.u.def.section->flags & SEC_LINKER_CREATED))) #define FRV_FUNCDESC_LOCAL(INFO, H) \ ((H)->dynindx == -1 || ! elf_hash_table (INFO)->dynamic_sections_created) /* This structure collects information on what kind of GOT, PLT or function descriptors are required by relocations that reference a certain symbol. */ struct frv_pic_relocs_info { /* The index of the symbol, as stored in the relocation r_info, if we have a local symbol; -1 otherwise. */ long symndx; union { /* The input bfd in which the symbol is defined, if it's a local symbol. */ bfd *abfd; /* If symndx == -1, the hash table entry corresponding to a global symbol (even if it turns out to bind locally, in which case it should ideally be replaced with section's symndx + addend). */ struct elf_link_hash_entry *h; } d; /* The addend of the relocation that references the symbol. */ bfd_vma addend; /* The fields above are used to identify an entry. The fields below contain information on how an entry is used and, later on, which locations it was assigned. */ /* The following 3 fields record whether the symbol+addend above was ever referenced with a GOT relocation. The 12 suffix indicates a GOT12 relocation; los is used for GOTLO relocations that are not matched by a GOTHI relocation; hilo is used for GOTLO/GOTHI pairs. */ unsigned got12:1; unsigned gotlos:1; unsigned gothilo:1; /* Whether a FUNCDESC relocation references symbol+addend. */ unsigned fd:1; /* Whether a FUNCDESC_GOT relocation references symbol+addend. */ unsigned fdgot12:1; unsigned fdgotlos:1; unsigned fdgothilo:1; /* Whether a FUNCDESC_GOTOFF relocation references symbol+addend. */ unsigned fdgoff12:1; unsigned fdgofflos:1; unsigned fdgoffhilo:1; /* Whether symbol+addend is referenced with GOTOFF12, GOTOFFLO or GOTOFFHI relocations. The addend doesn't really matter, since we envision that this will only be used to check whether the symbol is mapped to the same segment as the got. */ unsigned gotoff:1; /* Whether symbol+addend is referenced by a LABEL24 relocation. */ unsigned call:1; /* Whether symbol+addend is referenced by a 32 or FUNCDESC_VALUE relocation. */ unsigned sym:1; /* Whether we need a PLT entry for a symbol. Should be implied by something like: (call && symndx == -1 && ! FRV_SYM_LOCAL (info, d.h)) */ unsigned plt:1; /* Whether a function descriptor should be created in this link unit for symbol+addend. Should be implied by something like: (plt || fdgotoff12 || fdgotofflos || fdgotofflohi || ((fd || fdgot12 || fdgotlos || fdgothilo) && (symndx != -1 || FRV_FUNCDESC_LOCAL (info, d.h)))) */ unsigned privfd:1; /* Whether a lazy PLT entry is needed for this symbol+addend. Should be implied by something like: (privfd && symndx == -1 && ! FRV_SYM_LOCAL (info, d.h) && ! (info->flags & DF_BIND_NOW)) */ unsigned lazyplt:1; /* Whether we've already emitted GOT relocations and PLT entries as needed for this symbol. */ unsigned done:1; /* The number of R_FRV_32, R_FRV_FUNCDESC and R_FRV_FUNCDESC_VALUE relocations referencing the symbol. */ unsigned relocs32, relocsfd, relocsfdv; /* The number of .rofixups entries and dynamic relocations allocated for this symbol, minus any that might have already been used. */ unsigned fixups, dynrelocs; /* The offsets of the GOT entries assigned to symbol+addend, to the function descriptor's address, and to a function descriptor, respectively. Should be zero if unassigned. The offsets are counted from the value that will be assigned to the PIC register, not from the beginning of the .got section. */ bfd_signed_vma got_entry, fdgot_entry, fd_entry; /* The offsets of the PLT entries assigned to symbol+addend, non-lazy and lazy, respectively. If unassigned, should be (bfd_vma)-1. */ bfd_vma plt_entry, lzplt_entry; }; /* Compute a hash with the key fields of an frv_pic_relocs_info entry. */ static hashval_t frv_pic_relocs_info_hash (const void *entry_) { const struct frv_pic_relocs_info *entry = entry_; return (entry->symndx == -1 ? entry->d.h->root.root.hash : entry->symndx + entry->d.abfd->id * 257) + entry->addend; } /* Test whether the key fields of two frv_pic_relocs_info entries are identical. */ static int frv_pic_relocs_info_eq (const void *entry1, const void *entry2) { const struct frv_pic_relocs_info *e1 = entry1; const struct frv_pic_relocs_info *e2 = entry2; return e1->symndx == e2->symndx && e1->addend == e2->addend && (e1->symndx == -1 ? e1->d.h == e2->d.h : e1->d.abfd == e2->d.abfd); } /* Find or create an entry in a hash table HT that matches the key fields of the given ENTRY. If it's not found, memory for a new entry is allocated in ABFD's obstack. */ static struct frv_pic_relocs_info * frv_pic_relocs_info_find (struct htab *ht, bfd *abfd, const struct frv_pic_relocs_info *entry, enum insert_option insert) { struct frv_pic_relocs_info **loc = (struct frv_pic_relocs_info **) htab_find_slot (ht, entry, insert); if (! loc) return NULL; if (*loc) return *loc; *loc = bfd_zalloc (abfd, sizeof (**loc)); if (! *loc) return *loc; (*loc)->symndx = entry->symndx; (*loc)->d = entry->d; (*loc)->addend = entry->addend; (*loc)->plt_entry = (bfd_vma)-1; (*loc)->lzplt_entry = (bfd_vma)-1; return *loc; } /* Obtain the address of the entry in HT associated with H's symbol + addend, creating a new entry if none existed. ABFD is only used for memory allocation purposes. */ inline static struct frv_pic_relocs_info * frv_pic_relocs_info_for_global (struct htab *ht, bfd *abfd, struct elf_link_hash_entry *h, bfd_vma addend, enum insert_option insert) { struct frv_pic_relocs_info entry; entry.symndx = -1; entry.d.h = h; entry.addend = addend; return frv_pic_relocs_info_find (ht, abfd, &entry, insert); } /* Obtain the address of the entry in HT associated with the SYMNDXth local symbol of the input bfd ABFD, plus the addend, creating a new entry if none existed. */ inline static struct frv_pic_relocs_info * frv_pic_relocs_info_for_local (struct htab *ht, bfd *abfd, long symndx, bfd_vma addend, enum insert_option insert) { struct frv_pic_relocs_info entry; entry.symndx = symndx; entry.d.abfd = abfd; entry.addend = addend; return frv_pic_relocs_info_find (ht, abfd, &entry, insert); } /* Merge fields set by check_relocs() of two entries that end up being mapped to the same (presumably global) symbol. */ inline static void frv_pic_merge_early_relocs_info (struct frv_pic_relocs_info *e2, struct frv_pic_relocs_info const *e1) { e2->got12 |= e1->got12; e2->gotlos |= e1->gotlos; e2->gothilo |= e1->gothilo; e2->fd |= e1->fd; e2->fdgot12 |= e1->fdgot12; e2->fdgotlos |= e1->fdgotlos; e2->fdgothilo |= e1->fdgothilo; e2->fdgoff12 |= e1->fdgoff12; e2->fdgofflos |= e1->fdgofflos; e2->fdgoffhilo |= e1->fdgoffhilo; e2->gotoff |= e1->gotoff; e2->call |= e1->call; e2->sym |= e1->sym; #if 0 /* These are set in _frv_count_got_plt_entries() or later, and this function is only called in _frv_resolve_final_relocs_info(), that runs just before it, so we don't have to worry about the fields below. */ e2->plt |= e1->plt; e2->privfd |= e1->privfd; e2->lazyplt |= e1->lazyplt; e2->done |= e1->done; e2->relocs32 += e1->relocs32; e2->relocsfd += e1->relocsfd; e2->relocsfdv += e1->relocsfdv; e2->fixups += e1->fixups; e2->dynrelocs += e1->dynrelocs; if (abs (e1->got_entry) < abs (e2->got_entry)) e2->got_entry = e1->got_entry; if (abs (e1->fdgot_entry) < abs (e2->fdgot_entry)) e2->fdgot_entry = e1->fdgot_entry; if (abs (e1->fd_entry) < abs (e2->fd_entry)) e2->fd_entry = e1->fd_entry; if (e1->plt_entry < e2->plt_entry) e2->plt_entry = e1->plt_entry; if (e1->lzplt_entry < e2->lzplt_entry) e2->lzplt_entry = e1->lzplt_entry; #endif } /* Every block of 65535 lazy PLT entries shares a single call to the resolver, inserted in the 32768th lazy PLT entry (i.e., entry # 32767, counting from 0). All other lazy PLT entries branch to it in a single instruction. */ #define FRV_LZPLT_BLOCK_SIZE ((bfd_vma) 8 * 65535 + 4) #define FRV_LZPLT_RESOLV_LOC (8 * 32767) /* Add a dynamic relocation to the SRELOC section. */ inline static bfd_vma _frv_add_dyn_reloc (bfd *output_bfd, asection *sreloc, bfd_vma offset, int reloc_type, long dynindx, bfd_vma addend, struct frv_pic_relocs_info *entry) { Elf_Internal_Rela outrel; bfd_vma reloc_offset; outrel.r_offset = offset; outrel.r_info = ELF32_R_INFO (dynindx, reloc_type); outrel.r_addend = addend; reloc_offset = sreloc->reloc_count * sizeof (Elf32_External_Rel); BFD_ASSERT (reloc_offset < sreloc->_raw_size); bfd_elf32_swap_reloc_out (output_bfd, &outrel, sreloc->contents + reloc_offset); sreloc->reloc_count++; BFD_ASSERT (entry->dynrelocs > 0); entry->dynrelocs--; return reloc_offset; } /* Add a fixup to the ROFIXUP section. */ static bfd_vma _frv_add_rofixup (bfd *output_bfd, asection *rofixup, bfd_vma offset, struct frv_pic_relocs_info *entry) { bfd_vma fixup_offset; if (rofixup->flags & SEC_EXCLUDE) return -1; fixup_offset = rofixup->reloc_count * 4; if (rofixup->contents) { BFD_ASSERT (fixup_offset < rofixup->_raw_size); bfd_put_32 (output_bfd, offset, rofixup->contents + fixup_offset); } rofixup->reloc_count++; if (entry) { BFD_ASSERT (entry->fixups > 0); entry->fixups--; } return fixup_offset; } /* Find the segment number in which OSEC, and output section, is located. */ static unsigned _frv_osec_to_segment (bfd *output_bfd, asection *osec) { struct elf_segment_map *m; Elf_Internal_Phdr *p; /* Find the segment that contains the output_section. */ for (m = elf_tdata (output_bfd)->segment_map, p = elf_tdata (output_bfd)->phdr; m != NULL; m = m->next, p++) { int i; for (i = m->count - 1; i >= 0; i--) if (m->sections[i] == osec) break; if (i >= 0) break; } return p - elf_tdata (output_bfd)->phdr; } inline static bfd_boolean _frv_osec_readonly_p (bfd *output_bfd, asection *osec) { unsigned seg = _frv_osec_to_segment (output_bfd, osec); return ! (elf_tdata (output_bfd)->phdr[seg].p_flags & PF_W); } /* Generate relocations for GOT entries, function descriptors, and code for PLT and lazy PLT entries. */ inline static bfd_boolean _frv_emit_got_relocs_plt_entries (struct frv_pic_relocs_info *entry, bfd *output_bfd, struct bfd_link_info *info, asection *sec, Elf_Internal_Sym *sym, bfd_vma addend) { bfd_vma fd_lazy_rel_offset = (bfd_vma)-1; int dynindx = -1; if (entry->done) return TRUE; entry->done = 1; if (entry->got_entry || entry->fdgot_entry || entry->fd_entry) { /* If the symbol is dynamic, consider it for dynamic relocations, otherwise decay to section + offset. */ if (entry->symndx == -1 && entry->d.h->dynindx != -1) dynindx = entry->d.h->dynindx; else { if (sec->output_section && ! bfd_is_abs_section (sec->output_section) && ! bfd_is_und_section (sec->output_section)) dynindx = elf_section_data (sec->output_section)->dynindx; else dynindx = 0; } } /* Generate relocation for GOT entry pointing to the symbol. */ if (entry->got_entry) { int idx = dynindx; bfd_vma ad = addend; /* If the symbol is dynamic but binds locally, use section+offset. */ if (sec && (entry->symndx != -1 || FRV_SYM_LOCAL (info, entry->d.h))) { if (entry->symndx == -1) ad += entry->d.h->root.u.def.value; else ad += sym->st_value; ad += sec->output_offset; if (sec->output_section && elf_section_data (sec->output_section)) idx = elf_section_data (sec->output_section)->dynindx; else idx = 0; } /* If we're linking an executable at a fixed address, we can omit the dynamic relocation as long as the symbol is local to this module. */ if (info->executable && !info->pie && (entry->symndx != -1 || FRV_SYM_LOCAL (info, entry->d.h))) { if (sec) ad += sec->output_section->vma; if (entry->symndx != -1 || entry->d.h->root.type != bfd_link_hash_undefweak) _frv_add_rofixup (output_bfd, frv_gotfixup_section (info), frv_got_section (info)->output_section->vma + frv_got_section (info)->output_offset + frv_got_initial_offset (info) + entry->got_entry, entry); } else _frv_add_dyn_reloc (output_bfd, frv_gotrel_section (info), _bfd_elf_section_offset (output_bfd, info, frv_got_section (info), frv_got_initial_offset (info) + entry->got_entry) + frv_got_section (info)->output_section->vma + frv_got_section (info)->output_offset, R_FRV_32, idx, ad, entry); bfd_put_32 (output_bfd, ad, frv_got_section (info)->contents + frv_got_initial_offset (info) + entry->got_entry); } /* Generate relocation for GOT entry pointing to a canonical function descriptor. */ if (entry->fdgot_entry) { int reloc, idx; bfd_vma ad = 0; if (! (entry->symndx == -1 && entry->d.h->root.type == bfd_link_hash_undefweak && FRV_SYM_LOCAL (info, entry->d.h))) { /* If the symbol is dynamic and there may be dynamic symbol resolution because we are, or are linked with, a shared library, emit a FUNCDESC relocation such that the dynamic linker will allocate the function descriptor. If the symbol needs a non-local function descriptor but binds locally (e.g., its visibility is protected, emit a dynamic relocation decayed to section+offset. */ if (entry->symndx == -1 && ! FRV_FUNCDESC_LOCAL (info, entry->d.h) && FRV_SYM_LOCAL (info, entry->d.h) && !(info->executable && !info->pie)) { reloc = R_FRV_FUNCDESC; idx = elf_section_data (entry->d.h->root.u.def.section ->output_section)->dynindx; ad = entry->d.h->root.u.def.section->output_offset + entry->d.h->root.u.def.value; } else if (entry->symndx == -1 && ! FRV_FUNCDESC_LOCAL (info, entry->d.h)) { reloc = R_FRV_FUNCDESC; idx = dynindx; ad = addend; if (ad) return FALSE; } else { /* Otherwise, we know we have a private function descriptor, so reference it directly. */ if (elf_hash_table (info)->dynamic_sections_created) BFD_ASSERT (entry->privfd); reloc = R_FRV_32; idx = elf_section_data (frv_got_section (info) ->output_section)->dynindx; ad = frv_got_section (info)->output_offset + frv_got_initial_offset (info) + entry->fd_entry; } /* If there is room for dynamic symbol resolution, emit the dynamic relocation. However, if we're linking an executable at a fixed location, we won't have emitted a dynamic symbol entry for the got section, so idx will be zero, which means we can and should compute the address of the private descriptor ourselves. */ if (info->executable && !info->pie && (entry->symndx != -1 || FRV_FUNCDESC_LOCAL (info, entry->d.h))) { ad += frv_got_section (info)->output_section->vma; _frv_add_rofixup (output_bfd, frv_gotfixup_section (info), frv_got_section (info)->output_section->vma + frv_got_section (info)->output_offset + frv_got_initial_offset (info) + entry->fdgot_entry, entry); } else _frv_add_dyn_reloc (output_bfd, frv_gotrel_section (info), _bfd_elf_section_offset (output_bfd, info, frv_got_section (info), frv_got_initial_offset (info) + entry->fdgot_entry) + frv_got_section (info)->output_section->vma + frv_got_section (info)->output_offset, reloc, idx, ad, entry); } bfd_put_32 (output_bfd, ad, frv_got_section (info)->contents + frv_got_initial_offset (info) + entry->fdgot_entry); } /* Generate relocation to fill in a private function descriptor in the GOT. */ if (entry->fd_entry) { int idx = dynindx; bfd_vma ad = addend; bfd_vma ofst; long lowword, highword; /* If the symbol is dynamic but binds locally, use section+offset. */ if (sec && (entry->symndx != -1 || FRV_SYM_LOCAL (info, entry->d.h))) { if (entry->symndx == -1) ad += entry->d.h->root.u.def.value; else ad += sym->st_value; ad += sec->output_offset; if (sec->output_section && elf_section_data (sec->output_section)) idx = elf_section_data (sec->output_section)->dynindx; else idx = 0; } /* If we're linking an executable at a fixed address, we can omit the dynamic relocation as long as the symbol is local to this module. */ if (info->executable && !info->pie && (entry->symndx != -1 || FRV_SYM_LOCAL (info, entry->d.h))) { if (sec) ad += sec->output_section->vma; ofst = 0; if (entry->symndx != -1 || entry->d.h->root.type != bfd_link_hash_undefweak) { _frv_add_rofixup (output_bfd, frv_gotfixup_section (info), frv_got_section (info)->output_section->vma + frv_got_section (info)->output_offset + frv_got_initial_offset (info) + entry->fd_entry, entry); _frv_add_rofixup (output_bfd, frv_gotfixup_section (info), frv_got_section (info)->output_section->vma + frv_got_section (info)->output_offset + frv_got_initial_offset (info) + entry->fd_entry + 4, entry); } } else { ofst = _frv_add_dyn_reloc (output_bfd, entry->lazyplt ? frv_pltrel_section (info) : frv_gotrel_section (info), _bfd_elf_section_offset (output_bfd, info, frv_got_section (info), frv_got_initial_offset (info) + entry->fd_entry) + frv_got_section (info)->output_section->vma + frv_got_section (info)->output_offset, R_FRV_FUNCDESC_VALUE, idx, ad, entry); } /* If we've omitted the dynamic relocation, just emit the fixed addresses of the symbol and of the local GOT base offset. */ if (info->executable && !info->pie && sec && sec->output_section) { lowword = ad; highword = frv_got_section (info)->output_section->vma + frv_got_section (info)->output_offset + frv_got_initial_offset (info); } else if (entry->lazyplt) { if (ad) return FALSE; fd_lazy_rel_offset = ofst; /* A function descriptor used for lazy or local resolving is initialized such that its high word contains the output section index in which the PLT entries are located, and the low word contains the address of the lazy PLT entry entry point, that must be within the memory region assigned to that section. */ lowword = entry->lzplt_entry + 4 + frv_plt_section (info)->output_offset + frv_plt_section (info)->output_section->vma; highword = _frv_osec_to_segment (output_bfd, frv_plt_section (info)->output_section); } else { /* A function descriptor for a local function gets the index of the section. For a non-local function, it's disregarded. */ lowword = ad; if (entry->symndx == -1 && entry->d.h->dynindx != -1 && entry->d.h->dynindx == idx) highword = 0; else highword = _frv_osec_to_segment (output_bfd, sec->output_section); } bfd_put_32 (output_bfd, lowword, frv_got_section (info)->contents + frv_got_initial_offset (info) + entry->fd_entry); bfd_put_32 (output_bfd, highword, frv_got_section (info)->contents + frv_got_initial_offset (info) + entry->fd_entry + 4); } /* Generate code for the PLT entry. */ if (entry->plt_entry != (bfd_vma) -1) { bfd_byte *plt_code = frv_plt_section (info)->contents + entry->plt_entry; BFD_ASSERT (entry->fd_entry); /* Figure out what kind of PLT entry we need, depending on the location of the function descriptor within the GOT. */ if (entry->fd_entry >= -(1 << (12 - 1)) && entry->fd_entry < (1 << (12 - 1))) { /* lddi @(gr15, fd_entry), gr14 */ bfd_put_32 (output_bfd, 0x9cccf000 | (entry->fd_entry & ((1 << 12) - 1)), plt_code); plt_code += 4; } else { if (entry->fd_entry >= -(1 << (16 - 1)) && entry->fd_entry < (1 << (16 - 1))) { /* setlos lo(fd_entry), gr14 */ bfd_put_32 (output_bfd, 0x9cfc0000 | (entry->fd_entry & (((bfd_vma)1 << 16) - 1)), plt_code); plt_code += 4; } else { /* sethi.p hi(fd_entry), gr14 setlo lo(fd_entry), gr14 */ bfd_put_32 (output_bfd, 0x1cf80000 | ((entry->fd_entry >> 16) & (((bfd_vma)1 << 16) - 1)), plt_code); bfd_put_32 (output_bfd, 0x9cf40000 | (entry->fd_entry & (((bfd_vma)1 << 16) - 1)), plt_code); plt_code += 8; } /* ldd @(gr14,gr15),gr14 */ bfd_put_32 (output_bfd, 0x9c08e14f, plt_code); plt_code += 4; } /* jmpl @(gr14,gr0) */ bfd_put_32 (output_bfd, 0x8030e000, plt_code); } /* Generate code for the lazy PLT entry. */ if (entry->lzplt_entry != (bfd_vma) -1) { bfd_byte *lzplt_code = frv_plt_section (info)->contents + entry->lzplt_entry; bfd_vma resolverStub_addr; bfd_put_32 (output_bfd, fd_lazy_rel_offset, lzplt_code); lzplt_code += 4; resolverStub_addr = entry->lzplt_entry / FRV_LZPLT_BLOCK_SIZE * FRV_LZPLT_BLOCK_SIZE + FRV_LZPLT_RESOLV_LOC; if (resolverStub_addr >= frv_plt_initial_offset (info)) resolverStub_addr = frv_plt_initial_offset (info) - 12; if (entry->lzplt_entry == resolverStub_addr) { /* This is a lazy PLT entry that includes a resolver call. */ /* ldd @(gr15,gr0), gr4 jmpl @(gr4,gr0) */ bfd_put_32 (output_bfd, 0x8808f140, lzplt_code); bfd_put_32 (output_bfd, 0x80304000, lzplt_code + 4); } else { /* bra resolverStub */ bfd_put_32 (output_bfd, 0xc01a0000 | (((resolverStub_addr - entry->lzplt_entry) / 4) & (((bfd_vma)1 << 16) - 1)), lzplt_code); } } return TRUE; } /* Handle an FRV small data reloc. */ static bfd_reloc_status_type elf32_frv_relocate_gprel12 (info, input_bfd, input_section, relocation, contents, value) struct bfd_link_info *info; bfd *input_bfd; asection *input_section; Elf_Internal_Rela *relocation; bfd_byte *contents; bfd_vma value; { bfd_vma insn; bfd_vma gp; struct bfd_link_hash_entry *h; h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); gp = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); value -= input_section->output_section->vma; value -= (gp - input_section->output_section->vma); insn = bfd_get_32 (input_bfd, contents + relocation->r_offset); value += relocation->r_addend; if ((long) value > 0x7ff || (long) value < -0x800) return bfd_reloc_overflow; bfd_put_32 (input_bfd, (insn & 0xfffff000) | (value & 0xfff), contents + relocation->r_offset); return bfd_reloc_ok; } /* Handle an FRV small data reloc. for the u12 field. */ static bfd_reloc_status_type elf32_frv_relocate_gprelu12 (info, input_bfd, input_section, relocation, contents, value) struct bfd_link_info *info; bfd *input_bfd; asection *input_section; Elf_Internal_Rela *relocation; bfd_byte *contents; bfd_vma value; { bfd_vma insn; bfd_vma gp; struct bfd_link_hash_entry *h; bfd_vma mask; h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); gp = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); value -= input_section->output_section->vma; value -= (gp - input_section->output_section->vma); insn = bfd_get_32 (input_bfd, contents + relocation->r_offset); value += relocation->r_addend; if ((long) value > 0x7ff || (long) value < -0x800) return bfd_reloc_overflow; /* The high 6 bits go into bits 17-12. The low 6 bits go into bits 5-0. */ mask = 0x3f03f; insn = (insn & ~mask) | ((value & 0xfc0) << 12) | (value & 0x3f); bfd_put_32 (input_bfd, insn, contents + relocation->r_offset); return bfd_reloc_ok; } /* Handle an FRV ELF HI16 reloc. */ static bfd_reloc_status_type elf32_frv_relocate_hi16 (input_bfd, relhi, contents, value) bfd *input_bfd; Elf_Internal_Rela *relhi; bfd_byte *contents; bfd_vma value; { bfd_vma insn; insn = bfd_get_32 (input_bfd, contents + relhi->r_offset); value += relhi->r_addend; value = ((value >> 16) & 0xffff); insn = (insn & 0xffff0000) | value; if ((long) value > 0xffff || (long) value < -0x10000) return bfd_reloc_overflow; bfd_put_32 (input_bfd, insn, contents + relhi->r_offset); return bfd_reloc_ok; } static bfd_reloc_status_type elf32_frv_relocate_lo16 (input_bfd, rello, contents, value) bfd *input_bfd; Elf_Internal_Rela *rello; bfd_byte *contents; bfd_vma value; { bfd_vma insn; insn = bfd_get_32 (input_bfd, contents + rello->r_offset); value += rello->r_addend; value = value & 0xffff; insn = (insn & 0xffff0000) | value; if ((long) value > 0xffff || (long) value < -0x10000) return bfd_reloc_overflow; bfd_put_32 (input_bfd, insn, contents + rello->r_offset); return bfd_reloc_ok; } /* Perform the relocation for the CALL label24 instruction. */ static bfd_reloc_status_type elf32_frv_relocate_label24 (input_bfd, input_section, rello, contents, value) bfd *input_bfd; asection *input_section; Elf_Internal_Rela *rello; bfd_byte *contents; bfd_vma value; { bfd_vma insn; bfd_vma label6; bfd_vma label18; /* The format for the call instruction is: 0 000000 0001111 000000000000000000 label6 opcode label18 The branch calculation is: pc + (4*label24) where label24 is the concatenation of label6 and label18. */ /* Grab the instruction. */ insn = bfd_get_32 (input_bfd, contents + rello->r_offset); value -= input_section->output_section->vma + input_section->output_offset; value -= rello->r_offset; value += rello->r_addend; value = value >> 2; label6 = value & 0xfc0000; label6 = label6 << 7; label18 = value & 0x3ffff; insn = insn & 0x803c0000; insn = insn | label6; insn = insn | label18; bfd_put_32 (input_bfd, insn, contents + rello->r_offset); return bfd_reloc_ok; } static bfd_reloc_status_type elf32_frv_relocate_gprelhi (info, input_bfd, input_section, relocation, contents, value) struct bfd_link_info *info; bfd *input_bfd; asection *input_section; Elf_Internal_Rela *relocation; bfd_byte *contents; bfd_vma value; { bfd_vma insn; bfd_vma gp; struct bfd_link_hash_entry *h; h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); gp = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); value -= input_section->output_section->vma; value -= (gp - input_section->output_section->vma); value += relocation->r_addend; value = ((value >> 16) & 0xffff); if ((long) value > 0xffff || (long) value < -0x10000) return bfd_reloc_overflow; insn = bfd_get_32 (input_bfd, contents + relocation->r_offset); insn = (insn & 0xffff0000) | value; bfd_put_32 (input_bfd, insn, contents + relocation->r_offset); return bfd_reloc_ok; } static bfd_reloc_status_type elf32_frv_relocate_gprello (info, input_bfd, input_section, relocation, contents, value) struct bfd_link_info *info; bfd *input_bfd; asection *input_section; Elf_Internal_Rela *relocation; bfd_byte *contents; bfd_vma value; { bfd_vma insn; bfd_vma gp; struct bfd_link_hash_entry *h; h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); gp = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); value -= input_section->output_section->vma; value -= (gp - input_section->output_section->vma); value += relocation->r_addend; value = value & 0xffff; if ((long) value > 0xffff || (long) value < -0x10000) return bfd_reloc_overflow; insn = bfd_get_32 (input_bfd, contents + relocation->r_offset); insn = (insn & 0xffff0000) | value; bfd_put_32 (input_bfd, insn, contents + relocation->r_offset); return bfd_reloc_ok; } static reloc_howto_type * frv_reloc_type_lookup (abfd, code) bfd *abfd ATTRIBUTE_UNUSED; bfd_reloc_code_real_type code; { switch (code) { default: break; case BFD_RELOC_NONE: return &elf32_frv_howto_table[ (int) R_FRV_NONE]; case BFD_RELOC_32: if (elf_elfheader (abfd)->e_type == ET_EXEC || elf_elfheader (abfd)->e_type == ET_DYN) return &elf32_frv_rel_32_howto; /* Fall through. */ case BFD_RELOC_CTOR: return &elf32_frv_howto_table[ (int) R_FRV_32]; case BFD_RELOC_FRV_LABEL16: return &elf32_frv_howto_table[ (int) R_FRV_LABEL16]; case BFD_RELOC_FRV_LABEL24: return &elf32_frv_howto_table[ (int) R_FRV_LABEL24]; case BFD_RELOC_FRV_LO16: return &elf32_frv_howto_table[ (int) R_FRV_LO16]; case BFD_RELOC_FRV_HI16: return &elf32_frv_howto_table[ (int) R_FRV_HI16]; case BFD_RELOC_FRV_GPREL12: return &elf32_frv_howto_table[ (int) R_FRV_GPREL12]; case BFD_RELOC_FRV_GPRELU12: return &elf32_frv_howto_table[ (int) R_FRV_GPRELU12]; case BFD_RELOC_FRV_GPREL32: return &elf32_frv_howto_table[ (int) R_FRV_GPREL32]; case BFD_RELOC_FRV_GPRELHI: return &elf32_frv_howto_table[ (int) R_FRV_GPRELHI]; case BFD_RELOC_FRV_GPRELLO: return &elf32_frv_howto_table[ (int) R_FRV_GPRELLO]; case BFD_RELOC_FRV_GOT12: return &elf32_frv_howto_table[ (int) R_FRV_GOT12]; case BFD_RELOC_FRV_GOTHI: return &elf32_frv_howto_table[ (int) R_FRV_GOTHI]; case BFD_RELOC_FRV_GOTLO: return &elf32_frv_howto_table[ (int) R_FRV_GOTLO]; case BFD_RELOC_FRV_FUNCDESC: if (elf_elfheader (abfd)->e_type == ET_EXEC || elf_elfheader (abfd)->e_type == ET_DYN) return &elf32_frv_rel_funcdesc_howto; return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC]; case BFD_RELOC_FRV_FUNCDESC_GOT12: return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_GOT12]; case BFD_RELOC_FRV_FUNCDESC_GOTHI: return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_GOTHI]; case BFD_RELOC_FRV_FUNCDESC_GOTLO: return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_GOTLO]; case BFD_RELOC_FRV_FUNCDESC_VALUE: if (elf_elfheader (abfd)->e_type == ET_EXEC || elf_elfheader (abfd)->e_type == ET_DYN) return &elf32_frv_rel_funcdesc_value_howto; return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_VALUE]; case BFD_RELOC_FRV_FUNCDESC_GOTOFF12: return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_GOTOFF12]; case BFD_RELOC_FRV_FUNCDESC_GOTOFFHI: return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_GOTOFFHI]; case BFD_RELOC_FRV_FUNCDESC_GOTOFFLO: return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_GOTOFFLO]; case BFD_RELOC_FRV_GOTOFF12: return &elf32_frv_howto_table[ (int) R_FRV_GOTOFF12]; case BFD_RELOC_FRV_GOTOFFHI: return &elf32_frv_howto_table[ (int) R_FRV_GOTOFFHI]; case BFD_RELOC_FRV_GOTOFFLO: return &elf32_frv_howto_table[ (int) R_FRV_GOTOFFLO]; case BFD_RELOC_VTABLE_INHERIT: return &elf32_frv_vtinherit_howto; case BFD_RELOC_VTABLE_ENTRY: return &elf32_frv_vtentry_howto; } return NULL; } /* Set the howto pointer for an FRV ELF reloc. */ static void frv_info_to_howto_rela (abfd, cache_ptr, dst) bfd *abfd ATTRIBUTE_UNUSED; arelent *cache_ptr; Elf_Internal_Rela *dst; { unsigned int r_type; r_type = ELF32_R_TYPE (dst->r_info); switch (r_type) { case R_FRV_GNU_VTINHERIT: cache_ptr->howto = &elf32_frv_vtinherit_howto; break; case R_FRV_GNU_VTENTRY: cache_ptr->howto = &elf32_frv_vtentry_howto; break; default: cache_ptr->howto = & elf32_frv_howto_table [r_type]; break; } } /* Set the howto pointer for an FRV ELF REL reloc. */ static void frv_info_to_howto_rel (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, Elf_Internal_Rela *dst) { unsigned int r_type; r_type = ELF32_R_TYPE (dst->r_info); switch (r_type) { case R_FRV_32: cache_ptr->howto = &elf32_frv_rel_32_howto; break; case R_FRV_FUNCDESC: cache_ptr->howto = &elf32_frv_rel_funcdesc_howto; break; case R_FRV_FUNCDESC_VALUE: cache_ptr->howto = &elf32_frv_rel_funcdesc_value_howto; break; default: cache_ptr->howto = NULL; break; } } /* Perform a single relocation. By default we use the standard BFD routines, but a few relocs, we have to do them ourselves. */ static bfd_reloc_status_type frv_final_link_relocate (howto, input_bfd, input_section, contents, rel, relocation) reloc_howto_type *howto; bfd *input_bfd; asection *input_section; bfd_byte *contents; Elf_Internal_Rela *rel; bfd_vma relocation; { return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); } /* Relocate an FRV ELF section. The RELOCATE_SECTION function is called by the new ELF backend linker to handle the relocations for a section. The relocs are always passed as Rela structures; if the section actually uses Rel structures, the r_addend field will always be zero. This function is responsible for adjusting the section contents as necessary, and (if using Rela relocs and generating a relocatable output file) adjusting the reloc addend as necessary. This function does not have to worry about setting the reloc address or the reloc symbol index. LOCAL_SYMS is a pointer to the swapped in local symbols. LOCAL_SECTIONS is an array giving the section in the input file corresponding to the st_shndx field of each local symbol. The global hash table entry for the global symbols can be found via elf_sym_hashes (input_bfd). When generating relocatable output, this function must handle STB_LOCAL/STT_SECTION symbols specially. The output symbol is going to be the section symbol corresponding to the output section, which means that the addend must be adjusted accordingly. */ static bfd_boolean elf32_frv_relocate_section (output_bfd, info, input_bfd, input_section, contents, relocs, local_syms, local_sections) bfd *output_bfd ATTRIBUTE_UNUSED; struct bfd_link_info *info; bfd *input_bfd; asection *input_section; bfd_byte *contents; Elf_Internal_Rela *relocs; Elf_Internal_Sym *local_syms; asection **local_sections; { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; unsigned isec_segment, got_segment, plt_segment, gprel_segment, check_segment[2]; int silence_segment_error = !(info->shared || info->pie); if (info->relocatable) return TRUE; symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); relend = relocs + input_section->reloc_count; isec_segment = _frv_osec_to_segment (output_bfd, input_section->output_section); if (frv_got_section (info)) got_segment = _frv_osec_to_segment (output_bfd, frv_got_section (info) ->output_section); else got_segment = -1; if (frv_gotfixup_section (info)) gprel_segment = _frv_osec_to_segment (output_bfd, frv_gotfixup_section (info) ->output_section); else gprel_segment = -1; if (elf_hash_table (info)->dynamic_sections_created) plt_segment = _frv_osec_to_segment (output_bfd, frv_plt_section (info) ->output_section); else plt_segment = -1; for (rel = relocs; rel < relend; rel ++) { reloc_howto_type *howto; unsigned long r_symndx; Elf_Internal_Sym *sym; asection *sec; struct elf_link_hash_entry *h; bfd_vma relocation; bfd_reloc_status_type r; const char * name = NULL; int r_type; asection *osec; struct frv_pic_relocs_info *picrel; bfd_vma orig_addend = rel->r_addend; r_type = ELF32_R_TYPE (rel->r_info); if ( r_type == R_FRV_GNU_VTINHERIT || r_type == R_FRV_GNU_VTENTRY) continue; /* This is a final link. */ r_symndx = ELF32_R_SYM (rel->r_info); howto = elf32_frv_howto_table + ELF32_R_TYPE (rel->r_info); h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; osec = sec = local_sections [r_symndx]; relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name; } else { h = sym_hashes [r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; name = h->root.root.string; if ((h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && ! FRV_SYM_LOCAL (info, h)) { sec = NULL; relocation = 0; } else if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { sec = h->root.u.def.section; relocation = (h->root.u.def.value + sec->output_section->vma + sec->output_offset); } else if (h->root.type == bfd_link_hash_undefweak) { relocation = 0; } else if (info->unresolved_syms_in_objects == RM_IGNORE && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) relocation = 0; else { if (! ((*info->callbacks->undefined_symbol) (info, h->root.root.string, input_bfd, input_section, rel->r_offset, (info->unresolved_syms_in_objects == RM_GENERATE_ERROR || ELF_ST_VISIBILITY (h->other))))) return FALSE; relocation = 0; } osec = sec; } switch (r_type) { case R_FRV_LABEL24: case R_FRV_32: case R_FRV_GOT12: case R_FRV_GOTHI: case R_FRV_GOTLO: case R_FRV_FUNCDESC_GOT12: case R_FRV_FUNCDESC_GOTHI: case R_FRV_FUNCDESC_GOTLO: case R_FRV_GOTOFF12: case R_FRV_GOTOFFHI: case R_FRV_GOTOFFLO: case R_FRV_FUNCDESC_GOTOFF12: case R_FRV_FUNCDESC_GOTOFFHI: case R_FRV_FUNCDESC_GOTOFFLO: case R_FRV_FUNCDESC: case R_FRV_FUNCDESC_VALUE: if (h != NULL) picrel = frv_pic_relocs_info_for_global (frv_relocs_info (info), input_bfd, h, orig_addend, INSERT); else /* In order to find the entry we created before, we must use the original addend, not the one that may have been modified by _bfd_elf_rela_local_sym(). */ picrel = frv_pic_relocs_info_for_local (frv_relocs_info (info), input_bfd, r_symndx, orig_addend, INSERT); if (! picrel) return FALSE; if (!_frv_emit_got_relocs_plt_entries (picrel, output_bfd, info, osec, sym, rel->r_addend)) { info->callbacks->warning (info, _("Dynamic relocation references symbol with nonzero addend"), name, input_bfd, input_section, rel->r_offset); return FALSE; } break; default: picrel = NULL; if (h && ! FRV_SYM_LOCAL (info, h)) { info->callbacks->warning (info, _("relocation references symbol not defined in the module"), name, input_bfd, input_section, rel->r_offset); return FALSE; } break; } switch (r_type) { case R_FRV_LABEL24: check_segment[0] = isec_segment; if (picrel->plt) { relocation = frv_plt_section (info)->output_section->vma + frv_plt_section (info)->output_offset + picrel->plt_entry; check_segment[1] = plt_segment; } /* We don't want to warn on calls to undefined weak symbols, as calls to them must be protected by non-NULL tests anyway, and unprotected calls would invoke undefined behavior. */ else if (picrel->symndx == -1 && picrel->d.h->root.type == bfd_link_hash_undefweak) check_segment[1] = check_segment[0]; else check_segment[1] = sec ? _frv_osec_to_segment (output_bfd, sec->output_section) : (unsigned)-1; break; case R_FRV_GOT12: case R_FRV_GOTHI: case R_FRV_GOTLO: relocation = picrel->got_entry; check_segment[0] = check_segment[1] = got_segment; break; case R_FRV_FUNCDESC_GOT12: case R_FRV_FUNCDESC_GOTHI: case R_FRV_FUNCDESC_GOTLO: relocation = picrel->fdgot_entry; check_segment[0] = check_segment[1] = got_segment; break; case R_FRV_GOTOFFHI: case R_FRV_GOTOFF12: case R_FRV_GOTOFFLO: relocation -= frv_got_section (info)->output_section->vma + frv_got_section (info)->output_offset + frv_got_initial_offset (info); check_segment[0] = got_segment; check_segment[1] = sec ? _frv_osec_to_segment (output_bfd, sec->output_section) : (unsigned)-1; break; case R_FRV_FUNCDESC_GOTOFF12: case R_FRV_FUNCDESC_GOTOFFHI: case R_FRV_FUNCDESC_GOTOFFLO: relocation = picrel->fd_entry; check_segment[0] = check_segment[1] = got_segment; break; case R_FRV_FUNCDESC: { int dynindx; bfd_vma addend = rel->r_addend; if (! (h && h->root.type == bfd_link_hash_undefweak && FRV_SYM_LOCAL (info, h))) { /* If the symbol is dynamic and there may be dynamic symbol resolution because we are or are linked with a shared library, emit a FUNCDESC relocation such that the dynamic linker will allocate the function descriptor. If the symbol needs a non-local function descriptor but binds locally (e.g., its visibility is protected, emit a dynamic relocation decayed to section+offset. */ if (h && ! FRV_FUNCDESC_LOCAL (info, h) && FRV_SYM_LOCAL (info, h) && !(info->executable && !info->pie)) { dynindx = elf_section_data (h->root.u.def.section ->output_section)->dynindx; addend += h->root.u.def.section->output_offset + h->root.u.def.value; } else if (h && ! FRV_FUNCDESC_LOCAL (info, h)) { if (addend) { info->callbacks->warning (info, _("R_FRV_FUNCDESC references dynamic symbol with nonzero addend"), name, input_bfd, input_section, rel->r_offset); return FALSE; } dynindx = h->dynindx; } else { /* Otherwise, we know we have a private function descriptor, so reference it directly. */ BFD_ASSERT (picrel->privfd); r_type = R_FRV_32; dynindx = elf_section_data (frv_got_section (info) ->output_section)->dynindx; addend = frv_got_section (info)->output_offset + frv_got_initial_offset (info) + picrel->fd_entry; } /* If there is room for dynamic symbol resolution, emit the dynamic relocation. However, if we're linking an executable at a fixed location, we won't have emitted a dynamic symbol entry for the got section, so idx will be zero, which means we can and should compute the address of the private descriptor ourselves. */ if (info->executable && !info->pie && (!h || FRV_FUNCDESC_LOCAL (info, h))) { addend += frv_got_section (info)->output_section->vma; if ((bfd_get_section_flags (output_bfd, input_section->output_section) & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) { if (_frv_osec_readonly_p (output_bfd, input_section->output_section)) { info->callbacks->warning (info, _("cannot emit fixups in read-only section"), name, input_bfd, input_section, rel->r_offset); return FALSE; } _frv_add_rofixup (output_bfd, frv_gotfixup_section (info), _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset) + input_section->output_section->vma + input_section->output_offset, picrel); } } else if ((bfd_get_section_flags (output_bfd, input_section->output_section) & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) { if (_frv_osec_readonly_p (output_bfd, input_section->output_section)) { info->callbacks->warning (info, _("cannot emit dynamic relocations in read-only section"), name, input_bfd, input_section, rel->r_offset); return FALSE; } _frv_add_dyn_reloc (output_bfd, frv_gotrel_section (info), _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset) + input_section->output_section->vma + input_section->output_offset, r_type, dynindx, addend, picrel); } } /* We want the addend in-place because dynamic relocations are REL. Setting relocation to it should arrange for it to be installed. */ relocation = addend - rel->r_addend; } check_segment[0] = check_segment[1] = got_segment; break; case R_FRV_32: case R_FRV_FUNCDESC_VALUE: { int dynindx; bfd_vma addend = rel->r_addend; /* If the symbol is dynamic but binds locally, use section+offset. */ if (h && ! FRV_SYM_LOCAL (info, h)) { if (addend && r_type == R_FRV_FUNCDESC_VALUE) { info->callbacks->warning (info, _("R_FRV_FUNCDESC_VALUE references dynamic symbol with nonzero addend"), name, input_bfd, input_section, rel->r_offset); return FALSE; } dynindx = h->dynindx; } else { if (h) addend += h->root.u.def.value; else addend += sym->st_value; if (osec) addend += osec->output_offset; if (osec && osec->output_section && ! bfd_is_abs_section (osec->output_section) && ! bfd_is_und_section (osec->output_section)) dynindx = elf_section_data (osec->output_section)->dynindx; else dynindx = 0; } /* If we're linking an executable at a fixed address, we can omit the dynamic relocation as long as the symbol is defined in the current link unit (which is implied by its output section not being NULL). */ if (info->executable && !info->pie && (!h || FRV_SYM_LOCAL (info, h))) { if (osec) addend += osec->output_section->vma; if ((elf_elfheader (input_bfd)->e_flags & EF_FRV_FDPIC) && (bfd_get_section_flags (output_bfd, input_section->output_section) & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) { if (_frv_osec_readonly_p (output_bfd, input_section->output_section)) { info->callbacks->warning (info, _("cannot emit fixups in read-only section"), name, input_bfd, input_section, rel->r_offset); return FALSE; } if (!h || h->root.type != bfd_link_hash_undefweak) { _frv_add_rofixup (output_bfd, frv_gotfixup_section (info), _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset) + input_section->output_section->vma + input_section->output_offset, picrel); if (r_type == R_FRV_FUNCDESC_VALUE) _frv_add_rofixup (output_bfd, frv_gotfixup_section (info), _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset) + input_section->output_section->vma + input_section->output_offset + 4, picrel); } } } else { if ((bfd_get_section_flags (output_bfd, input_section->output_section) & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) { if (_frv_osec_readonly_p (output_bfd, input_section->output_section)) { info->callbacks->warning (info, _("cannot emit dynamic relocations in read-only section"), name, input_bfd, input_section, rel->r_offset); return FALSE; } _frv_add_dyn_reloc (output_bfd, frv_gotrel_section (info), _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset) + input_section->output_section->vma + input_section->output_offset, r_type, dynindx, addend, picrel); } /* We want the addend in-place because dynamic relocations are REL. Setting relocation to it should arrange for it to be installed. */ relocation = addend - rel->r_addend; } if (r_type == R_FRV_FUNCDESC_VALUE) { /* If we've omitted the dynamic relocation, just emit the fixed addresses of the symbol and of the local GOT base offset. */ if (info->executable && !info->pie && (!h || FRV_SYM_LOCAL (info, h))) bfd_put_32 (output_bfd, frv_got_section (info)->output_section->vma + frv_got_section (info)->output_offset + frv_got_initial_offset (info), contents + rel->r_offset + 4); else /* A function descriptor used for lazy or local resolving is initialized such that its high word contains the output section index in which the PLT entries are located, and the low word contains the offset of the lazy PLT entry entry point into that section. */ bfd_put_32 (output_bfd, h && ! FRV_SYM_LOCAL (info, h) ? 0 : _frv_osec_to_segment (output_bfd, sec->output_section), contents + rel->r_offset + 4); } } check_segment[0] = check_segment[1] = got_segment; break; case R_FRV_GPREL12: case R_FRV_GPRELU12: case R_FRV_GPREL32: case R_FRV_GPRELHI: case R_FRV_GPRELLO: check_segment[0] = gprel_segment; check_segment[1] = sec ? _frv_osec_to_segment (output_bfd, sec->output_section) : (unsigned)-1; break; default: check_segment[0] = isec_segment; check_segment[1] = sec ? _frv_osec_to_segment (output_bfd, sec->output_section) : (unsigned)-1; break; } if (check_segment[0] != check_segment[1] && (elf_elfheader (output_bfd)->e_flags & EF_FRV_FDPIC)) { #if 1 /* This helps catch problems in GCC while we can't do more than static linking. The idea is to test whether the input file basename is crt0.o only once. */ if (silence_segment_error == 1) silence_segment_error = (strlen (input_bfd->filename) == 6 && strcmp (input_bfd->filename, "crt0.o") == 0) || (strlen (input_bfd->filename) > 6 && strcmp (input_bfd->filename + strlen (input_bfd->filename) - 7, "/crt0.o") == 0) ? -1 : 0; #endif if (!silence_segment_error /* We don't want duplicate errors for undefined symbols. */ && !(picrel && picrel->symndx == -1 && picrel->d.h->root.type == bfd_link_hash_undefined)) info->callbacks->warning (info, (info->shared || info->pie) ? _("relocations between different segments are not supported") : _("warning: relocation references a different segment"), name, input_bfd, input_section, rel->r_offset); if (!silence_segment_error && (info->shared || info->pie)) return FALSE; elf_elfheader (output_bfd)->e_flags |= EF_FRV_PIC; } switch (r_type) { case R_FRV_GOTOFFHI: /* We need the addend to be applied before we shift the value right. */ relocation += rel->r_addend; /* Fall through. */ case R_FRV_GOTHI: case R_FRV_FUNCDESC_GOTHI: case R_FRV_FUNCDESC_GOTOFFHI: relocation >>= 16; /* Fall through. */ case R_FRV_GOTLO: case R_FRV_FUNCDESC_GOTLO: case R_FRV_GOTOFFLO: case R_FRV_FUNCDESC_GOTOFFLO: relocation &= 0xffff; break; default: break; } switch (r_type) { case R_FRV_LABEL24: if (! picrel->plt) break; /* Fall through. */ /* When referencing a GOT entry, a function descriptor or a PLT, we don't want the addend to apply to the reference, but rather to the referenced symbol. The actual entry will have already been created taking the addend into account, so cancel it out here. */ case R_FRV_GOT12: case R_FRV_GOTHI: case R_FRV_GOTLO: case R_FRV_FUNCDESC_GOT12: case R_FRV_FUNCDESC_GOTHI: case R_FRV_FUNCDESC_GOTLO: case R_FRV_FUNCDESC_GOTOFF12: case R_FRV_FUNCDESC_GOTOFFHI: case R_FRV_FUNCDESC_GOTOFFLO: /* Note that we only want GOTOFFHI, not GOTOFFLO or GOTOFF12 here, since we do want to apply the addend to the others. Note that we've applied the addend to GOTOFFHI before we shifted it right. */ case R_FRV_GOTOFFHI: relocation -= rel->r_addend; break; default: break; } if (r_type == R_FRV_HI16) r = elf32_frv_relocate_hi16 (input_bfd, rel, contents, relocation); else if (r_type == R_FRV_LO16) r = elf32_frv_relocate_lo16 (input_bfd, rel, contents, relocation); else if (r_type == R_FRV_LABEL24) r = elf32_frv_relocate_label24 (input_bfd, input_section, rel, contents, relocation); else if (r_type == R_FRV_GPREL12) r = elf32_frv_relocate_gprel12 (info, input_bfd, input_section, rel, contents, relocation); else if (r_type == R_FRV_GPRELU12) r = elf32_frv_relocate_gprelu12 (info, input_bfd, input_section, rel, contents, relocation); else if (r_type == R_FRV_GPRELLO) r = elf32_frv_relocate_gprello (info, input_bfd, input_section, rel, contents, relocation); else if (r_type == R_FRV_GPRELHI) r = elf32_frv_relocate_gprelhi (info, input_bfd, input_section, rel, contents, relocation); else r = frv_final_link_relocate (howto, input_bfd, input_section, contents, rel, relocation); if (r != bfd_reloc_ok) { const char * msg = (const char *) NULL; switch (r) { case bfd_reloc_overflow: r = info->callbacks->reloc_overflow (info, name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset); break; case bfd_reloc_undefined: r = info->callbacks->undefined_symbol (info, name, input_bfd, input_section, rel->r_offset, TRUE); break; case bfd_reloc_outofrange: msg = _("internal error: out of range error"); break; case bfd_reloc_notsupported: msg = _("internal error: unsupported relocation error"); break; case bfd_reloc_dangerous: msg = _("internal error: dangerous relocation"); break; default: msg = _("internal error: unknown error"); break; } if (msg) r = info->callbacks->warning (info, msg, name, input_bfd, input_section, rel->r_offset); if (! r) return FALSE; } } return TRUE; } /* Return the section that should be marked against GC for a given relocation. */ static asection * elf32_frv_gc_mark_hook (sec, info, rel, h, sym) asection *sec; struct bfd_link_info *info ATTRIBUTE_UNUSED; Elf_Internal_Rela *rel; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { if (h != NULL) { switch (ELF32_R_TYPE (rel->r_info)) { case R_FRV_GNU_VTINHERIT: case R_FRV_GNU_VTENTRY: break; default: switch (h->root.type) { default: break; case bfd_link_hash_defined: case bfd_link_hash_defweak: return h->root.u.def.section; case bfd_link_hash_common: return h->root.u.c.p->section; } } } else return bfd_section_from_elf_index (sec->owner, sym->st_shndx); return NULL; } /* Update the got entry reference counts for the section being removed. */ static bfd_boolean elf32_frv_gc_sweep_hook (abfd, info, sec, relocs) bfd *abfd ATTRIBUTE_UNUSED; struct bfd_link_info *info ATTRIBUTE_UNUSED; asection *sec ATTRIBUTE_UNUSED; const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED; { return TRUE; } /* Hook called by the linker routine which adds symbols from an object file. We use it to put .comm items in .scomm, and not .comm. */ static bfd_boolean elf32_frv_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) bfd *abfd; struct bfd_link_info *info; const Elf_Internal_Sym *sym; const char **namep ATTRIBUTE_UNUSED; flagword *flagsp ATTRIBUTE_UNUSED; asection **secp; bfd_vma *valp; { if (sym->st_shndx == SHN_COMMON && !info->relocatable && (int)sym->st_size <= (int)bfd_get_gp_size (abfd)) { /* Common symbols less than or equal to -G nn bytes are automatically put into .sbss. */ asection *scomm = bfd_get_section_by_name (abfd, ".scommon"); if (scomm == NULL) { scomm = bfd_make_section (abfd, ".scommon"); if (scomm == NULL || !bfd_set_section_flags (abfd, scomm, (SEC_ALLOC | SEC_IS_COMMON | SEC_LINKER_CREATED))) return FALSE; } *secp = scomm; *valp = sym->st_size; } return TRUE; } /* Create a .got section, as well as its additional info field. This is almost entirely copied from elflink.c:_bfd_elf_create_got_section(). */ static bfd_boolean _frv_create_got_section (bfd *abfd, struct bfd_link_info *info) { flagword flags; asection *s; struct elf_link_hash_entry *h; struct bfd_link_hash_entry *bh; const struct elf_backend_data *bed = get_elf_backend_data (abfd); int ptralign; /* This function may be called more than once. */ s = bfd_get_section_by_name (abfd, ".got"); if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0) return TRUE; /* Machine specific: although pointers are 32-bits wide, we want the GOT to be aligned to a 64-bit boundary, such that function descriptors in it can be accessed with 64-bit loads and stores. */ ptralign = 3; flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); s = bfd_make_section (abfd, ".got"); if (s == NULL || !bfd_set_section_flags (abfd, s, flags) || !bfd_set_section_alignment (abfd, s, ptralign)) return FALSE; if (bed->want_got_plt) { s = bfd_make_section (abfd, ".got.plt"); if (s == NULL || !bfd_set_section_flags (abfd, s, flags) || !bfd_set_section_alignment (abfd, s, ptralign)) return FALSE; } if (bed->want_got_sym) { /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got (or .got.plt) section. We don't do this in the linker script because we don't want to define the symbol if we are not creating a global offset table. */ bh = NULL; if (!(_bfd_generic_link_add_one_symbol (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, bed->got_symbol_offset, (const char *) NULL, FALSE, bed->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_OBJECT; /* Machine-specific: we want the symbol for executables as well. */ if (! _bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; elf_hash_table (info)->hgot = h; } /* The first bit of the global offset table is the header. */ s->_raw_size += bed->got_header_size + bed->got_symbol_offset; /* This is the machine-specific part. Create and initialize section data for the got. */ frv_got_section (info) = s; frv_relocs_info (info) = htab_try_create (1, frv_pic_relocs_info_hash, frv_pic_relocs_info_eq, (htab_del) NULL); if (! frv_relocs_info (info)) return FALSE; s = bfd_make_section (abfd, ".rel.got"); if (s == NULL || ! bfd_set_section_flags (abfd, s, (flags | SEC_READONLY)) || ! bfd_set_section_alignment (abfd, s, 2)) return FALSE; frv_gotrel_section (info) = s; /* Machine-specific. */ s = bfd_make_section (abfd, ".rofixup"); if (s == NULL || ! bfd_set_section_flags (abfd, s, (flags | SEC_READONLY)) || ! bfd_set_section_alignment (abfd, s, 2)) return FALSE; frv_gotfixup_section (info) = s; /* Define _gp in .rofixup, for FDPIC. If it turns out that we're linking with a different linker script, the linker script will override it. */ bh = NULL; if (!(_bfd_generic_link_add_one_symbol (info, abfd, "_gp", BSF_GLOBAL, s, -2048, (const char *) NULL, FALSE, bed->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_OBJECT; /* Machine-specific: we want the symbol for executables as well. */ if (! _bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; return TRUE; } /* Make sure the got and plt sections exist, and that our pointers in the link hash table point to them. */ static bfd_boolean elf32_frv_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) { /* This is mostly copied from elflink.c:_bfd_elf_create_dynamic_sections(). */ flagword flags, pltflags; asection *s; const struct elf_backend_data *bed = get_elf_backend_data (abfd); /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and .rel[a].bss sections. */ flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); pltflags = flags; pltflags |= SEC_CODE; if (bed->plt_not_loaded) pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); if (bed->plt_readonly) pltflags |= SEC_READONLY; s = bfd_make_section (abfd, ".plt"); if (s == NULL || ! bfd_set_section_flags (abfd, s, pltflags) || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment)) return FALSE; /* FRV-specific: remember it. */ frv_plt_section (info) = s; if (bed->want_plt_sym) { /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section. */ struct elf_link_hash_entry *h; struct bfd_link_hash_entry *bh = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_OBJECT; if (! info->executable && ! _bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } /* FRV-specific: we want rel relocations for the plt. */ s = bfd_make_section (abfd, ".rel.plt"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) return FALSE; /* FRV-specific: remember it. */ frv_pltrel_section (info) = s; /* FRV-specific: we want to create the GOT in the FRV way. */ if (! _frv_create_got_section (abfd, info)) return FALSE; /* FRV-specific: make sure we created everything we wanted. */ BFD_ASSERT (frv_got_section (info) && frv_gotrel_section (info) && frv_gotfixup_section (info) && frv_plt_section (info) && frv_pltrel_section (info)); if (bed->want_dynbss) { /* The .dynbss section is a place to put symbols which are defined by dynamic objects, are referenced by regular objects, and are not functions. We must allocate space for them in the process image and use a R_*_COPY reloc to tell the dynamic linker to initialize them at run time. The linker script puts the .dynbss section into the .bss section of the final image. */ s = bfd_make_section (abfd, ".dynbss"); if (s == NULL || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED)) return FALSE; /* The .rel[a].bss section holds copy relocs. This section is not normally needed. We need to create it here, though, so that the linker will map it to an output section. We can't just create it only if we need it, because we will not know whether we need it until we have seen all the input files, and the first time the main linker code calls BFD after examining all the input files (size_dynamic_sections) the input sections have already been mapped to the output sections. If the section turns out not to be needed, we can discard it later. We will never need this section when generating a shared object, since they do not use copy relocs. */ if (! info->shared) { s = bfd_make_section (abfd, (bed->default_use_rela_p ? ".rela.bss" : ".rel.bss")); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) return FALSE; } } return TRUE; } /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" #define DEFAULT_STACK_SIZE 0x20000 /* This structure is used to collect the number of entries present in each addressable range of the got. */ struct _frv_dynamic_got_info { /* Several bits of information about the current link. */ struct bfd_link_info *info; /* Total size needed for GOT entries within the 12-, 16- or 32-bit ranges. */ bfd_vma got12, gotlos, gothilo; /* Total size needed for function descriptor entries within the 12-, 16- or 32-bit ranges. */ bfd_vma fd12, fdlos, fdhilo; /* Total size needed function descriptor entries referenced in PLT entries, that would be profitable to place in offsets close to the PIC register. */ bfd_vma fdplt; /* Total size needed by lazy PLT entries. */ bfd_vma lzplt; /* Number of relocations carried over from input object files. */ unsigned long relocs; /* Number of fixups introduced by relocations in input object files. */ unsigned long fixups; }; /* Compute the total GOT size required by each symbol in each range. Symbols may require up to 4 words in the GOT: an entry pointing to the symbol, an entry pointing to its function descriptor, and a private function descriptors taking two words. */ static int _frv_count_got_plt_entries (void **entryp, void *dinfo_) { struct frv_pic_relocs_info *entry = *entryp; struct _frv_dynamic_got_info *dinfo = dinfo_; unsigned relocs = 0, fixups = 0; /* Allocate space for a GOT entry pointing to the symbol. */ if (entry->got12) dinfo->got12 += 4; else if (entry->gotlos) dinfo->gotlos += 4; else if (entry->gothilo) dinfo->gothilo += 4; else entry->relocs32--; entry->relocs32++; /* Allocate space for a GOT entry pointing to the function descriptor. */ if (entry->fdgot12) dinfo->got12 += 4; else if (entry->fdgotlos) dinfo->gotlos += 4; else if (entry->fdgothilo) dinfo->gothilo += 4; else entry->relocsfd--; entry->relocsfd++; /* Decide whether we need a PLT entry, a function descriptor in the GOT, and a lazy PLT entry for this symbol. */ entry->plt = entry->call && entry->symndx == -1 && ! FRV_SYM_LOCAL (dinfo->info, entry->d.h) && elf_hash_table (dinfo->info)->dynamic_sections_created; entry->privfd = entry->plt || entry->fdgoff12 || entry->fdgofflos || entry->fdgoffhilo || ((entry->fd || entry->fdgot12 || entry->fdgotlos || entry->fdgothilo) && (entry->symndx != -1 || FRV_FUNCDESC_LOCAL (dinfo->info, entry->d.h))); entry->lazyplt = entry->privfd && entry->symndx == -1 && ! FRV_SYM_LOCAL (dinfo->info, entry->d.h) && ! (dinfo->info->flags & DF_BIND_NOW) && elf_hash_table (dinfo->info)->dynamic_sections_created; /* Allocate space for a function descriptor. */ if (entry->fdgoff12) dinfo->fd12 += 8; else if (entry->fdgofflos) dinfo->fdlos += 8; else if (entry->privfd && entry->plt) dinfo->fdplt += 8; else if (entry->privfd) dinfo->fdhilo += 8; else entry->relocsfdv--; entry->relocsfdv++; if (entry->lazyplt) dinfo->lzplt += 8; if (!dinfo->info->executable || dinfo->info->pie) relocs = entry->relocs32 + entry->relocsfd + entry->relocsfdv; else { if (entry->symndx != -1 || FRV_SYM_LOCAL (dinfo->info, entry->d.h)) { if (entry->symndx != -1 || entry->d.h->root.type != bfd_link_hash_undefweak) fixups += entry->relocs32 + 2 * entry->relocsfdv; } else relocs += entry->relocs32 + entry->relocsfdv; if (entry->symndx != -1 || FRV_FUNCDESC_LOCAL (dinfo->info, entry->d.h)) { if (entry->symndx != -1 || entry->d.h->root.type != bfd_link_hash_undefweak) fixups += entry->relocsfd; } else relocs += entry->relocsfd; } entry->dynrelocs += relocs; entry->fixups += fixups; dinfo->relocs += relocs; dinfo->fixups += fixups; return 1; } /* This structure is used to assign offsets to got entries, function descriptors, plt entries and lazy plt entries. */ struct _frv_dynamic_got_plt_info { /* Summary information collected with _frv_count_got_plt_entries. */ struct _frv_dynamic_got_info g; /* For each addressable range, we record a MAX (positive) and MIN (negative) value. CUR is used to assign got entries, and it's incremented from an initial positive value to MAX, then from MIN to FDCUR (unless FDCUR wraps around first). FDCUR is used to assign function descriptors, and it's decreased from an initial non-positive value to MIN, then from MAX down to CUR (unless CUR wraps around first). All of MIN, MAX, CUR and FDCUR always point to even words. ODD, if non-zero, indicates an odd word to be used for the next got entry, otherwise CUR is used and incremented by a pair of words, wrapping around when it reaches MAX. FDCUR is decremented (and wrapped) before the next function descriptor is chosen. FDPLT indicates the number of remaining slots that can be used for function descriptors used only by PLT entries. */ struct _frv_dynamic_got_alloc_data { bfd_signed_vma max, cur, odd, fdcur, min; bfd_vma fdplt; } got12, gotlos, gothilo; }; /* Determine the positive and negative ranges to be used by each offset range in the GOT. FDCUR and CUR, that must be aligned to a double-word boundary, are the minimum (negative) and maximum (positive) GOT offsets already used by previous ranges, except for an ODD entry that may have been left behind. GOT and FD indicate the size of GOT entries and function descriptors that must be placed within the range from -WRAP to WRAP. If there's room left, up to FDPLT bytes should be reserved for additional function descriptors. */ inline static bfd_signed_vma _frv_compute_got_alloc_data (struct _frv_dynamic_got_alloc_data *gad, bfd_signed_vma fdcur, bfd_signed_vma odd, bfd_signed_vma cur, bfd_vma got, bfd_vma fd, bfd_vma fdplt, bfd_vma wrap) { bfd_signed_vma wrapmin = -wrap; /* Start at the given initial points. */ gad->fdcur = fdcur; gad->cur = cur; /* If we had an incoming odd word and we have any got entries that are going to use it, consume it, otherwise leave gad->odd at zero. We might force gad->odd to zero and return the incoming odd such that it is used by the next range, but then GOT entries might appear to be out of order and we wouldn't be able to shorten the GOT by one word if it turns out to end with an unpaired GOT entry. */ if (odd && got) { gad->odd = odd; got -= 4; odd = 0; } else gad->odd = 0; /* If we're left with an unpaired GOT entry, compute its location such that we can return it. Otherwise, if got doesn't require an odd number of words here, either odd was already zero in the block above, or it was set to zero because got was non-zero, or got was already zero. In the latter case, we want the value of odd to carry over to the return statement, so we don't want to reset odd unless the condition below is true. */ if (got & 4) { odd = cur + got; got += 4; } /* Compute the tentative boundaries of this range. */ gad->max = cur + got; gad->min = fdcur - fd; gad->fdplt = 0; /* If function descriptors took too much space, wrap some of them around. */ if (gad->min < wrapmin) { gad->max += wrapmin - gad->min; gad->min = wrapmin; } /* If there is space left and we have function descriptors referenced in PLT entries that could take advantage of shorter offsets, place them here. */ else if (fdplt && gad->min > wrapmin) { bfd_vma fds; if ((bfd_vma) (gad->min - wrapmin) < fdplt) fds = gad->min - wrapmin; else fds = fdplt; fdplt -= fds; gad->min -= fds; gad->fdplt += fds; } /* If GOT entries took too much space, wrap some of them around. This may well cause gad->min to become lower than wrapmin. This will cause a relocation overflow later on, so we don't have to report it here . */ if ((bfd_vma) gad->max > wrap) { gad->min -= gad->max - wrap; gad->max = wrap; } /* If there is more space left, try to place some more function descriptors for PLT entries. */ else if (fdplt && (bfd_vma) gad->max < wrap) { bfd_vma fds; if ((bfd_vma) (wrap - gad->max) < fdplt) fds = wrap - gad->max; else fds = fdplt; fdplt -= fds; gad->max += fds; gad->fdplt += fds; } /* If odd was initially computed as an offset past the wrap point, wrap it around. */ if (odd > gad->max) odd = gad->min + odd - gad->max; /* _frv_get_got_entry() below will always wrap gad->cur if needed before returning, so do it here too. This guarantees that, should cur and fdcur meet at the wrap point, they'll both be equal to min. */ if (gad->cur == gad->max) gad->cur = gad->min; return odd; } /* Compute the location of the next GOT entry, given the allocation data for a range. */ inline static bfd_signed_vma _frv_get_got_entry (struct _frv_dynamic_got_alloc_data *gad) { bfd_signed_vma ret; if (gad->odd) { /* If there was an odd word left behind, use it. */ ret = gad->odd; gad->odd = 0; } else { /* Otherwise, use the word pointed to by cur, reserve the next as an odd word, and skip to the next pair of words, possibly wrapping around. */ ret = gad->cur; gad->odd = gad->cur + 4; gad->cur += 8; if (gad->cur == gad->max) gad->cur = gad->min; } return ret; } /* Compute the location of the next function descriptor entry in the GOT, given the allocation data for a range. */ inline static bfd_signed_vma _frv_get_fd_entry (struct _frv_dynamic_got_alloc_data *gad) { /* If we're at the bottom, wrap around, and only then allocate the next pair of words. */ if (gad->fdcur == gad->min) gad->fdcur = gad->max; return gad->fdcur -= 8; } /* Assign GOT offsets for every GOT entry and function descriptor. Doing everything in a single pass is tricky. */ static int _frv_assign_got_entries (void **entryp, void *info_) { struct frv_pic_relocs_info *entry = *entryp; struct _frv_dynamic_got_plt_info *dinfo = info_; if (entry->got12) entry->got_entry = _frv_get_got_entry (&dinfo->got12); else if (entry->gotlos) entry->got_entry = _frv_get_got_entry (&dinfo->gotlos); else if (entry->gothilo) entry->got_entry = _frv_get_got_entry (&dinfo->gothilo); if (entry->fdgot12) entry->fdgot_entry = _frv_get_got_entry (&dinfo->got12); else if (entry->fdgotlos) entry->fdgot_entry = _frv_get_got_entry (&dinfo->gotlos); else if (entry->fdgothilo) entry->fdgot_entry = _frv_get_got_entry (&dinfo->gothilo); if (entry->fdgoff12) entry->fd_entry = _frv_get_fd_entry (&dinfo->got12); else if (entry->plt && dinfo->got12.fdplt) { dinfo->got12.fdplt -= 8; entry->fd_entry = _frv_get_fd_entry (&dinfo->got12); } else if (entry->fdgofflos) entry->fd_entry = _frv_get_fd_entry (&dinfo->gotlos); else if (entry->plt && dinfo->gotlos.fdplt) { dinfo->gotlos.fdplt -= 8; entry->fd_entry = _frv_get_fd_entry (&dinfo->gotlos); } else if (entry->plt) { dinfo->gothilo.fdplt -= 8; entry->fd_entry = _frv_get_fd_entry (&dinfo->gothilo); } else if (entry->privfd) entry->fd_entry = _frv_get_fd_entry (&dinfo->gothilo); return 1; } /* Assign GOT offsets to private function descriptors used by PLT entries (or referenced by 32-bit offsets), as well as PLT entries and lazy PLT entries. */ static int _frv_assign_plt_entries (void **entryp, void *info_) { struct frv_pic_relocs_info *entry = *entryp; struct _frv_dynamic_got_plt_info *dinfo = info_; /* If this symbol requires a local function descriptor, allocate one. */ if (entry->privfd && entry->fd_entry == 0) { if (dinfo->got12.fdplt) { entry->fd_entry = _frv_get_fd_entry (&dinfo->got12); dinfo->got12.fdplt -= 8; } else if (dinfo->gotlos.fdplt) { entry->fd_entry = _frv_get_fd_entry (&dinfo->gotlos); dinfo->gotlos.fdplt -= 8; } else { BFD_ASSERT (dinfo->gothilo.fdplt) entry->fd_entry = _frv_get_fd_entry (&dinfo->gothilo); dinfo->gothilo.fdplt -= 8; } } if (entry->plt) { int size; /* We use the section's raw size to mark the location of the next PLT entry. */ entry->plt_entry = frv_plt_section (dinfo->g.info)->_raw_size; /* Figure out the length of this PLT entry based on the addressing mode we need to reach the function descriptor. */ BFD_ASSERT (entry->fd_entry); if (entry->fd_entry >= -(1 << (12 - 1)) && entry->fd_entry < (1 << (12 - 1))) size = 8; else if (entry->fd_entry >= -(1 << (16 - 1)) && entry->fd_entry < (1 << (16 - 1))) size = 12; else size = 16; frv_plt_section (dinfo->g.info)->_raw_size += size; } if (entry->lazyplt) { entry->lzplt_entry = dinfo->g.lzplt; dinfo->g.lzplt += 8; /* If this entry is the one that gets the resolver stub, account for the additional instruction. */ if (entry->lzplt_entry % FRV_LZPLT_BLOCK_SIZE == FRV_LZPLT_RESOLV_LOC) dinfo->g.lzplt += 4; } return 1; } /* Follow indirect and warning hash entries so that each got entry points to the final symbol definition. P must point to a pointer to the hash table we're traversing. Since this traversal may modify the hash table, we set this pointer to NULL to indicate we've made a potentially-destructive change to the hash table, so the traversal must be restarted. */ static int _frv_resolve_final_relocs_info (void **entryp, void *p) { struct frv_pic_relocs_info *entry = *entryp; htab_t *htab = p; if (entry->symndx == -1) { struct elf_link_hash_entry *h = entry->d.h; struct frv_pic_relocs_info *oentry; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *)h->root.u.i.link; if (entry->d.h == h) return 1; oentry = frv_pic_relocs_info_for_global (*htab, 0, h, entry->addend, NO_INSERT); if (oentry) { /* Merge the two entries. */ frv_pic_merge_early_relocs_info (oentry, entry); htab_clear_slot (*htab, entryp); return 1; } entry->d.h = h; /* If we can't find this entry with the new bfd hash, re-insert it, and get the traversal restarted. */ if (! htab_find (*htab, entry)) { htab_clear_slot (*htab, entryp); entryp = htab_find_slot (*htab, entry, INSERT); if (! *entryp) *entryp = entry; /* Abort the traversal, since the whole table may have moved, and leave it up to the parent to restart the process. */ *(htab_t *)p = NULL; return 0; } } return 1; } /* Set the sizes of the dynamic sections. */ static bfd_boolean elf32_frv_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { bfd *dynobj; asection *s; struct _frv_dynamic_got_plt_info gpinfo; bfd_signed_vma odd; bfd_vma limit; dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (info->executable) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER; } } memset (&gpinfo, 0, sizeof (gpinfo)); gpinfo.g.info = info; for (;;) { htab_t relocs = frv_relocs_info (info); htab_traverse (relocs, _frv_resolve_final_relocs_info, &relocs); if (relocs == frv_relocs_info (info)) break; } htab_traverse (frv_relocs_info (info), _frv_count_got_plt_entries, &gpinfo.g); odd = 12; /* Compute the total size taken by entries in the 12-bit and 16-bit ranges, to tell how many PLT function descriptors we can bring into the 12-bit range without causing the 16-bit range to overflow. */ limit = odd + gpinfo.g.got12 + gpinfo.g.gotlos + gpinfo.g.fd12 + gpinfo.g.fdlos; if (limit < (bfd_vma)1 << 16) limit = ((bfd_vma)1 << 16) - limit; else limit = 0; if (gpinfo.g.fdplt < limit) limit = gpinfo.g.fdplt; /* Determine the ranges of GOT offsets that we can use for each range of addressing modes. */ odd = _frv_compute_got_alloc_data (&gpinfo.got12, 0, odd, 16, gpinfo.g.got12, gpinfo.g.fd12, limit, (bfd_vma)1 << (12-1)); odd = _frv_compute_got_alloc_data (&gpinfo.gotlos, gpinfo.got12.min, odd, gpinfo.got12.max, gpinfo.g.gotlos, gpinfo.g.fdlos, gpinfo.g.fdplt - gpinfo.got12.fdplt, (bfd_vma)1 << (16-1)); odd = _frv_compute_got_alloc_data (&gpinfo.gothilo, gpinfo.gotlos.min, odd, gpinfo.gotlos.max, gpinfo.g.gothilo, gpinfo.g.fdhilo, gpinfo.g.fdplt - gpinfo.got12.fdplt - gpinfo.gotlos.fdplt, (bfd_vma)1 << (32-1)); /* Now assign (most) GOT offsets. */ htab_traverse (frv_relocs_info (info), _frv_assign_got_entries, &gpinfo); frv_got_section (info)->_raw_size = gpinfo.gothilo.max - gpinfo.gothilo.min /* If an odd word is the last word of the GOT, we don't need this word to be part of the GOT. */ - (odd + 4 == gpinfo.gothilo.max ? 4 : 0); if (frv_got_section (info)->_raw_size == 0) frv_got_section (info)->flags |= SEC_EXCLUDE; else if (frv_got_section (info)->_raw_size == 12 && ! elf_hash_table (info)->dynamic_sections_created) { frv_got_section (info)->flags |= SEC_EXCLUDE; frv_got_section (info)->_raw_size = 0; } else { frv_got_section (info)->contents = (bfd_byte *) bfd_zalloc (dynobj, frv_got_section (info)->_raw_size); if (frv_got_section (info)->contents == NULL) return FALSE; } if (elf_hash_table (info)->dynamic_sections_created) /* Subtract the number of lzplt entries, since those will generate relocations in the pltrel section. */ frv_gotrel_section (info)->_raw_size = (gpinfo.g.relocs - gpinfo.g.lzplt / 8) * get_elf_backend_data (output_bfd)->s->sizeof_rel; else BFD_ASSERT (gpinfo.g.relocs == 0); if (frv_gotrel_section (info)->_raw_size == 0) frv_gotrel_section (info)->flags |= SEC_EXCLUDE; else { frv_gotrel_section (info)->contents = (bfd_byte *) bfd_zalloc (dynobj, frv_gotrel_section (info)->_raw_size); if (frv_gotrel_section (info)->contents == NULL) return FALSE; } if (elf_elfheader (output_bfd)->e_flags & EF_FRV_FDPIC) frv_gotfixup_section (info)->_raw_size = (gpinfo.g.fixups + 1) * 4; if (frv_gotfixup_section (info)->_raw_size == 0) frv_gotfixup_section (info)->flags |= SEC_EXCLUDE; else { frv_gotfixup_section (info)->contents = (bfd_byte *) bfd_zalloc (dynobj, frv_gotfixup_section (info)->_raw_size); if (frv_gotfixup_section (info)->contents == NULL) return FALSE; } if (elf_hash_table (info)->dynamic_sections_created) { frv_pltrel_section (info)->_raw_size = gpinfo.g.lzplt / 8 * get_elf_backend_data (output_bfd)->s->sizeof_rel; if (frv_pltrel_section (info)->_raw_size == 0) frv_pltrel_section (info)->flags |= SEC_EXCLUDE; else { frv_pltrel_section (info)->contents = (bfd_byte *) bfd_zalloc (dynobj, frv_pltrel_section (info)->_raw_size); if (frv_pltrel_section (info)->contents == NULL) return FALSE; } } /* Add 4 bytes for every block of at most 65535 lazy PLT entries, such that there's room for the additional instruction needed to call the resolver. Since _frv_assign_got_entries didn't account for them, our block size is 4 bytes smaller than the real block size. */ if (elf_hash_table (info)->dynamic_sections_created) { frv_plt_section (info)->_raw_size = gpinfo.g.lzplt + ((gpinfo.g.lzplt + (FRV_LZPLT_BLOCK_SIZE - 4) - 8) / (FRV_LZPLT_BLOCK_SIZE - 4) * 4); } /* Reset it, such that _frv_assign_plt_entries() can use it to actually assign lazy PLT entries addresses. */ gpinfo.g.lzplt = 0; /* Save information that we're going to need to generate GOT and PLT entries. */ frv_got_initial_offset (info) = -gpinfo.gothilo.min; if (get_elf_backend_data (output_bfd)->want_got_sym) elf_hash_table (info)->hgot->root.u.def.value += frv_got_initial_offset (info); if (elf_hash_table (info)->dynamic_sections_created) frv_plt_initial_offset (info) = frv_plt_section (info)->_raw_size; htab_traverse (frv_relocs_info (info), _frv_assign_plt_entries, &gpinfo); /* Allocate the PLT section contents only after _frv_assign_plt_entries has a chance to add the size of the non-lazy PLT entries. */ if (elf_hash_table (info)->dynamic_sections_created) { if (frv_plt_section (info)->_raw_size == 0) frv_plt_section (info)->flags |= SEC_EXCLUDE; else { frv_plt_section (info)->contents = (bfd_byte *) bfd_zalloc (dynobj, frv_plt_section (info)->_raw_size); if (frv_plt_section (info)->contents == NULL) return FALSE; } } if (elf_hash_table (info)->dynamic_sections_created) { if (frv_got_section (info)->_raw_size) if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)) return FALSE; if (frv_pltrel_section (info)->_raw_size) if (! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0) || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL) || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0)) return FALSE; if (frv_gotrel_section (info)->_raw_size) if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0) || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0) || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT, sizeof (Elf32_External_Rel))) return FALSE; } return TRUE; } static bfd_boolean elf32_frv_always_size_sections (bfd *output_bfd, struct bfd_link_info *info) { if (!info->relocatable && elf_elfheader (output_bfd)->e_flags & EF_FRV_FDPIC) { struct elf_link_hash_entry *h; asection *sec; /* Force a PT_GNU_STACK segment to be created. */ if (! elf_tdata (output_bfd)->stack_flags) elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X; /* Define __stacksize if it's not defined yet. */ h = elf_link_hash_lookup (elf_hash_table (info), "__stacksize", FALSE, FALSE, FALSE); if (! h || h->root.type != bfd_link_hash_defined || h->type != STT_OBJECT || !(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)) { struct bfd_link_hash_entry *bh = NULL; if (!(_bfd_generic_link_add_one_symbol (info, output_bfd, "__stacksize", BSF_GLOBAL, bfd_abs_section_ptr, DEFAULT_STACK_SIZE, (const char *) NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_OBJECT; } /* Create a stack section, and set its alignment. */ sec = bfd_make_section (output_bfd, ".stack"); if (sec == NULL || ! bfd_set_section_alignment (output_bfd, sec, 3)) return FALSE; } return TRUE; } static bfd_boolean elf32_frv_modify_segment_map (bfd *output_bfd, struct bfd_link_info *info) { if (elf_elfheader (output_bfd)->e_flags & EF_FRV_FDPIC) { struct elf_segment_map *m; for (m = elf_tdata (output_bfd)->segment_map; m != NULL; m = m->next) if (m->p_type == PT_GNU_STACK) break; if (m) { asection *sec = bfd_get_section_by_name (output_bfd, ".stack"); struct elf_link_hash_entry *h; if (sec) { /* Obtain the pointer to the __stacksize symbol. */ h = elf_link_hash_lookup (elf_hash_table (info), "__stacksize", FALSE, FALSE, FALSE); while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *)h->root.u.i.link; BFD_ASSERT (h->root.type == bfd_link_hash_defined); /* Set the section size from the symbol value. We intentionally ignore the symbol section. */ if (h->root.type == bfd_link_hash_defined) sec->_raw_size = h->root.u.def.value; else sec->_raw_size = DEFAULT_STACK_SIZE; /* Add the stack section to the PT_GNU_STACK segment, such that its size and alignment requirements make it to the segment. */ m->sections[m->count] = sec; m->count++; } } } return TRUE; } /* Fill in code and data in dynamic sections. */ static bfd_boolean elf32_frv_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { bfd *dynobj; asection *sdyn; dynobj = elf_hash_table (info)->dynobj; if (frv_got_section (info)) { BFD_ASSERT (frv_gotrel_section (info)->_raw_size == (frv_gotrel_section (info)->reloc_count * sizeof (Elf32_External_Rel))); if (frv_gotfixup_section (info)) { if (elf_elfheader (output_bfd)->e_flags & EF_FRV_FDPIC) { struct elf_link_hash_entry *hgot = elf_hash_table (info)->hgot; bfd_vma got_value = hgot->root.u.def.value + hgot->root.u.def.section->output_section->vma + hgot->root.u.def.section->output_offset; _frv_add_rofixup (output_bfd, frv_gotfixup_section (info), got_value, 0); } if (frv_gotfixup_section (info)->_raw_size != (frv_gotfixup_section (info)->reloc_count * 4)) { if (frv_gotfixup_section (info)->_raw_size < frv_gotfixup_section (info)->reloc_count * 4) { info->callbacks->warning (info, "LINKER BUG: .rofixup section size mismatch", ".rofixup", NULL, NULL, 0); abort (); return FALSE; } else if (!elf_hash_table (info)->dynamic_sections_created) { info->callbacks->warning (info, "no dynamic sections, missing -melf32frvfd?", ".rofixup", NULL, NULL, 0); return FALSE; } BFD_ASSERT (0); } } } if (elf_hash_table (info)->dynamic_sections_created) { BFD_ASSERT (frv_pltrel_section (info)->_raw_size == (frv_pltrel_section (info)->reloc_count * sizeof (Elf32_External_Rel))); } sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (elf_hash_table (info)->dynamic_sections_created) { Elf32_External_Dyn * dyncon; Elf32_External_Dyn * dynconend; BFD_ASSERT (sdyn != NULL); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: break; case DT_PLTGOT: dyn.d_un.d_ptr = frv_got_section (info)->output_section->vma + frv_got_section (info)->output_offset + frv_got_initial_offset (info); bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_JMPREL: dyn.d_un.d_ptr = frv_pltrel_section (info)->output_section->vma + frv_pltrel_section (info)->output_offset; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_PLTRELSZ: if (frv_pltrel_section (info)->_cooked_size != 0) dyn.d_un.d_val = frv_pltrel_section (info)->_cooked_size; else dyn.d_un.d_val = frv_pltrel_section (info)->_raw_size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; } } } return TRUE; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. */ static bfd_boolean elf32_frv_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) { bfd * dynobj; dynobj = elf_hash_table (info)->dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && (h->weakdef != NULL || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))); /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->weakdef != NULL) { BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined || h->weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->weakdef->root.u.def.section; h->root.u.def.value = h->weakdef->root.u.def.value; } return TRUE; } /* Perform any actions needed for dynamic symbols. */ static bfd_boolean elf32_frv_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info ATTRIBUTE_UNUSED, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym ATTRIBUTE_UNUSED) { return TRUE; } /* Decide whether to attempt to turn absptr or lsda encodings in shared libraries into pcrel within the given input section. */ static bfd_boolean frv_elf_use_relative_eh_frame (bfd *input_bfd, struct bfd_link_info *info ATTRIBUTE_UNUSED, asection *eh_frame_section ATTRIBUTE_UNUSED) { /* We can't use PC-relative encodings in FDPIC binaries, in general. */ if (elf_elfheader (input_bfd)->e_flags & EF_FRV_FDPIC) return FALSE; return TRUE; } /* Adjust the contents of an eh_frame_hdr section before they're output. */ static bfd_byte frv_elf_encode_eh_address (bfd *abfd, struct bfd_link_info *info, asection *osec, bfd_vma offset, asection *loc_sec, bfd_vma loc_offset, bfd_vma *encoded) { struct elf_link_hash_entry *h; /* Non-FDPIC binaries can use PC-relative encodings. */ if (! (elf_elfheader (abfd)->e_flags & EF_FRV_FDPIC)) return _bfd_elf_encode_eh_address (abfd, info, osec, offset, loc_sec, loc_offset, encoded); h = elf_hash_table (info)->hgot; BFD_ASSERT (h && h->root.type == bfd_link_hash_defined); if (! h || (_frv_osec_to_segment (abfd, osec) == _frv_osec_to_segment (abfd, loc_sec->output_section))) return _bfd_elf_encode_eh_address (abfd, info, osec, offset, loc_sec, loc_offset, encoded); BFD_ASSERT (_frv_osec_to_segment (abfd, osec) == _frv_osec_to_segment (abfd, h->root.u.def.section->output_section)); *encoded = osec->vma + offset - (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); return DW_EH_PE_datarel | DW_EH_PE_sdata4; } /* Look through the relocs for a section during the first phase. Besides handling virtual table relocs for gc, we have to deal with all sorts of PIC-related relocations. We describe below the general plan on how to handle such relocations, even though we only collect information at this point, storing them in hash tables for perusal of later passes. 32 relocations are propagated to the linker output when creating position-independent output. LO16 and HI16 relocations are not supposed to be encountered in this case. LABEL16 should always be resolvable by the linker, since it's only used by branches. LABEL24, on the other hand, is used by calls. If it turns out that the target of a call is a dynamic symbol, a PLT entry must be created for it, which triggers the creation of a private function descriptor and, unless lazy binding is disabled, a lazy PLT entry. GPREL relocations require the referenced symbol to be in the same segment as _gp, but this can only be checked later. All GOT, GOTOFF and FUNCDESC relocations require a .got section to exist. LABEL24 might as well, since it may require a PLT entry, that will require a got. Non-FUNCDESC GOT relocations require a GOT entry to be created regardless of whether the symbol is dynamic. However, since a global symbol that turns out to not be exported may have the same address of a non-dynamic symbol, we don't assign GOT entries at this point, such that we can share them in this case. A relocation for the GOT entry always has to be created, be it to offset a private symbol by the section load address, be it to get the symbol resolved dynamically. FUNCDESC GOT relocations require a GOT entry to be created, and handled as if a FUNCDESC relocation was applied to the GOT entry in an object file. FUNCDESC relocations referencing a symbol that turns out to NOT be dynamic cause a private function descriptor to be created. The FUNCDESC relocation then decays to a 32 relocation that points at the private descriptor. If the symbol is dynamic, the FUNCDESC relocation is propagated to the linker output, such that the dynamic linker creates the canonical descriptor, pointing to the dynamically-resolved definition of the function. Non-FUNCDESC GOTOFF relocations must always refer to non-dynamic symbols that are assigned to the same segment as the GOT, but we can only check this later, after we know the complete set of symbols defined and/or exported. FUNCDESC GOTOFF relocations require a function descriptor to be created and, unless lazy binding is disabled or the symbol is not dynamic, a lazy PLT entry. Since we can't tell at this point whether a symbol is going to be dynamic, we have to decide later whether to create a lazy PLT entry or bind the descriptor directly to the private function. FUNCDESC_VALUE relocations are not supposed to be present in object files, but they may very well be simply propagated to the linker output, since they have no side effect. A function descriptor always requires a FUNCDESC_VALUE relocation. Whether it's in .plt.rel or not depends on whether lazy binding is enabled and on whether the referenced symbol is dynamic. The existence of a lazy PLT requires the resolverStub lazy PLT entry to be present. As for assignment of GOT, PLT and lazy PLT entries, and private descriptors, we might do them all sequentially, but we can do better than that. For example, we can place GOT entries and private function descriptors referenced using 12-bit operands closer to the PIC register value, such that these relocations don't overflow. Those that are only referenced with LO16 relocations could come next, but we may as well place PLT-required function descriptors in the 12-bit range to make them shorter. Symbols referenced with LO16/HI16 may come next, but we may place additional function descriptors in the 16-bit range if we can reliably tell that we've already placed entries that are ever referenced with only LO16. PLT entries are therefore generated as small as possible, while not introducing relocation overflows in GOT or FUNCDESC_GOTOFF relocations. Lazy PLT entries could be generated before or after PLT entries, but not intermingled with them, such that we can have more lazy PLT entries in range for a branch to the resolverStub. The resolverStub should be emitted at the most distant location from the first lazy PLT entry such that it's still in range for a branch, or closer, if there isn't a need for so many lazy PLT entries. Additional lazy PLT entries may be emitted after the resolverStub, as long as branches are still in range. If the branch goes out of range, longer lazy PLT entries are emitted. We could further optimize PLT and lazy PLT entries by giving them priority in assignment to closer-to-gr17 locations depending on the number of occurrences of references to them (assuming a function that's called more often is more important for performance, so its PLT entry should be faster), or taking hints from the compiler. Given infinite time and money... :-) */ static bfd_boolean elf32_frv_check_relocs (abfd, info, sec, relocs) bfd *abfd; struct bfd_link_info *info; asection *sec; const Elf_Internal_Rela *relocs; { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; bfd *dynobj; struct frv_pic_relocs_info *picrel; if (info->relocatable) return TRUE; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf32_External_Sym); if (!elf_bad_symtab (abfd)) sym_hashes_end -= symtab_hdr->sh_info; dynobj = elf_hash_table (info)->dynobj; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { struct elf_link_hash_entry *h; unsigned long r_symndx; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else h = sym_hashes[r_symndx - symtab_hdr->sh_info]; switch (ELF32_R_TYPE (rel->r_info)) { case R_FRV_LABEL24: case R_FRV_32: case R_FRV_GOT12: case R_FRV_GOTHI: case R_FRV_GOTLO: case R_FRV_FUNCDESC_GOT12: case R_FRV_FUNCDESC_GOTHI: case R_FRV_FUNCDESC_GOTLO: case R_FRV_GOTOFF12: case R_FRV_GOTOFFHI: case R_FRV_GOTOFFLO: case R_FRV_FUNCDESC_GOTOFF12: case R_FRV_FUNCDESC_GOTOFFHI: case R_FRV_FUNCDESC_GOTOFFLO: case R_FRV_FUNCDESC: case R_FRV_FUNCDESC_VALUE: if (! dynobj) { elf_hash_table (info)->dynobj = dynobj = abfd; if (! _frv_create_got_section (abfd, info)) return FALSE; } if (h != NULL) { if (h->dynindx == -1) switch (ELF_ST_VISIBILITY (h->other)) { case STV_INTERNAL: case STV_HIDDEN: break; default: bfd_elf32_link_record_dynamic_symbol (info, h); break; } picrel = frv_pic_relocs_info_for_global (frv_relocs_info (info), abfd, h, rel->r_addend, INSERT); } else picrel = frv_pic_relocs_info_for_local (frv_relocs_info (info), abfd, r_symndx, rel->r_addend, INSERT); if (! picrel) return FALSE; break; default: picrel = NULL; break; } switch (ELF32_R_TYPE (rel->r_info)) { case R_FRV_LABEL24: picrel->call = 1; break; case R_FRV_FUNCDESC_VALUE: picrel->relocsfdv++; if (bfd_get_section_flags (abfd, sec) & SEC_ALLOC) picrel->relocs32--; /* Fall through. */ case R_FRV_32: picrel->sym = 1; if (bfd_get_section_flags (abfd, sec) & SEC_ALLOC) picrel->relocs32++; break; case R_FRV_GOT12: picrel->got12 = 1; break; case R_FRV_GOTHI: case R_FRV_GOTLO: picrel->gothilo = 1; break; case R_FRV_FUNCDESC_GOT12: picrel->fdgot12 = 1; break; case R_FRV_FUNCDESC_GOTHI: case R_FRV_FUNCDESC_GOTLO: picrel->fdgothilo = 1; break; case R_FRV_GOTOFF12: case R_FRV_GOTOFFHI: case R_FRV_GOTOFFLO: picrel->gotoff = 1; break; case R_FRV_FUNCDESC_GOTOFF12: picrel->fdgoff12 = 1; break; case R_FRV_FUNCDESC_GOTOFFHI: case R_FRV_FUNCDESC_GOTOFFLO: picrel->fdgoffhilo = 1; break; case R_FRV_FUNCDESC: picrel->fd = 1; picrel->relocsfd++; break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_FRV_GNU_VTINHERIT: if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return FALSE; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_FRV_GNU_VTENTRY: if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend)) return FALSE; break; } } return TRUE; } /* Return the machine subcode from the ELF e_flags header. */ static int elf32_frv_machine (abfd) bfd *abfd; { switch (elf_elfheader (abfd)->e_flags & EF_FRV_CPU_MASK) { default: break; case EF_FRV_CPU_FR550: return bfd_mach_fr550; case EF_FRV_CPU_FR500: return bfd_mach_fr500; case EF_FRV_CPU_FR450: return bfd_mach_fr450; case EF_FRV_CPU_FR405: return bfd_mach_fr400; case EF_FRV_CPU_FR400: return bfd_mach_fr400; case EF_FRV_CPU_FR300: return bfd_mach_fr300; case EF_FRV_CPU_SIMPLE: return bfd_mach_frvsimple; case EF_FRV_CPU_TOMCAT: return bfd_mach_frvtomcat; } return bfd_mach_frv; } /* Set the right machine number for a FRV ELF file. */ static bfd_boolean elf32_frv_object_p (abfd) bfd *abfd; { bfd_default_set_arch_mach (abfd, bfd_arch_frv, elf32_frv_machine (abfd)); return TRUE; } /* Function to set the ELF flag bits. */ static bfd_boolean frv_elf_set_private_flags (abfd, flags) bfd *abfd; flagword flags; { elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = TRUE; return TRUE; } /* Copy backend specific data from one object module to another. */ static bfd_boolean frv_elf_copy_private_bfd_data (ibfd, obfd) bfd *ibfd; bfd *obfd; { if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return TRUE; BFD_ASSERT (!elf_flags_init (obfd) || elf_elfheader (obfd)->e_flags == elf_elfheader (ibfd)->e_flags); elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; elf_flags_init (obfd) = TRUE; return TRUE; } /* Return true if the architecture described by elf header flag EXTENSION is an extension of the architecture described by BASE. */ static bfd_boolean frv_elf_arch_extension_p (flagword base, flagword extension) { if (base == extension) return TRUE; /* CPU_GENERIC code can be merged with code for a specific architecture, in which case the result is marked as being for the specific architecture. Everything is therefore an extension of CPU_GENERIC. */ if (base == EF_FRV_CPU_GENERIC) return TRUE; if (extension == EF_FRV_CPU_FR450) if (base == EF_FRV_CPU_FR400 || base == EF_FRV_CPU_FR405) return TRUE; if (extension == EF_FRV_CPU_FR405) if (base == EF_FRV_CPU_FR400) return TRUE; return FALSE; } /* Merge backend specific data from an object file to the output object file when linking. */ static bfd_boolean frv_elf_merge_private_bfd_data (ibfd, obfd) bfd *ibfd; bfd *obfd; { flagword old_flags, old_partial; flagword new_flags, new_partial; bfd_boolean error = FALSE; char new_opt[80]; char old_opt[80]; new_opt[0] = old_opt[0] = '\0'; new_flags = elf_elfheader (ibfd)->e_flags; old_flags = elf_elfheader (obfd)->e_flags; if (new_flags & EF_FRV_FDPIC) new_flags &= ~EF_FRV_PIC; #ifdef DEBUG (*_bfd_error_handler) ("old_flags = 0x%.8lx, new_flags = 0x%.8lx, init = %s, filename = %s", old_flags, new_flags, elf_flags_init (obfd) ? "yes" : "no", bfd_get_filename (ibfd)); #endif if (!elf_flags_init (obfd)) /* First call, no flags set. */ { elf_flags_init (obfd) = TRUE; old_flags = new_flags; } else if (new_flags == old_flags) /* Compatible flags are ok. */ ; else /* Possibly incompatible flags. */ { /* Warn if different # of gprs are used. Note, 0 means nothing is said about the size of gprs. */ new_partial = (new_flags & EF_FRV_GPR_MASK); old_partial = (old_flags & EF_FRV_GPR_MASK); if (new_partial == old_partial) ; else if (new_partial == 0) ; else if (old_partial == 0) old_flags |= new_partial; else { switch (new_partial) { default: strcat (new_opt, " -mgpr-??"); break; case EF_FRV_GPR_32: strcat (new_opt, " -mgpr-32"); break; case EF_FRV_GPR_64: strcat (new_opt, " -mgpr-64"); break; } switch (old_partial) { default: strcat (old_opt, " -mgpr-??"); break; case EF_FRV_GPR_32: strcat (old_opt, " -mgpr-32"); break; case EF_FRV_GPR_64: strcat (old_opt, " -mgpr-64"); break; } } /* Warn if different # of fprs are used. Note, 0 means nothing is said about the size of fprs. */ new_partial = (new_flags & EF_FRV_FPR_MASK); old_partial = (old_flags & EF_FRV_FPR_MASK); if (new_partial == old_partial) ; else if (new_partial == 0) ; else if (old_partial == 0) old_flags |= new_partial; else { switch (new_partial) { default: strcat (new_opt, " -mfpr-?"); break; case EF_FRV_FPR_32: strcat (new_opt, " -mfpr-32"); break; case EF_FRV_FPR_64: strcat (new_opt, " -mfpr-64"); break; case EF_FRV_FPR_NONE: strcat (new_opt, " -msoft-float"); break; } switch (old_partial) { default: strcat (old_opt, " -mfpr-?"); break; case EF_FRV_FPR_32: strcat (old_opt, " -mfpr-32"); break; case EF_FRV_FPR_64: strcat (old_opt, " -mfpr-64"); break; case EF_FRV_FPR_NONE: strcat (old_opt, " -msoft-float"); break; } } /* Warn if different dword support was used. Note, 0 means nothing is said about the dword support. */ new_partial = (new_flags & EF_FRV_DWORD_MASK); old_partial = (old_flags & EF_FRV_DWORD_MASK); if (new_partial == old_partial) ; else if (new_partial == 0) ; else if (old_partial == 0) old_flags |= new_partial; else { switch (new_partial) { default: strcat (new_opt, " -mdword-?"); break; case EF_FRV_DWORD_YES: strcat (new_opt, " -mdword"); break; case EF_FRV_DWORD_NO: strcat (new_opt, " -mno-dword"); break; } switch (old_partial) { default: strcat (old_opt, " -mdword-?"); break; case EF_FRV_DWORD_YES: strcat (old_opt, " -mdword"); break; case EF_FRV_DWORD_NO: strcat (old_opt, " -mno-dword"); break; } } /* Or in flags that accumulate (ie, if one module uses it, mark that the feature is used. */ old_flags |= new_flags & (EF_FRV_DOUBLE | EF_FRV_MEDIA | EF_FRV_MULADD | EF_FRV_NON_PIC_RELOCS); /* If any module was compiled without -G0, clear the G0 bit. */ old_flags = ((old_flags & ~ EF_FRV_G0) | (old_flags & new_flags & EF_FRV_G0)); /* If any module was compiled without -mnopack, clear the mnopack bit. */ old_flags = ((old_flags & ~ EF_FRV_NOPACK) | (old_flags & new_flags & EF_FRV_NOPACK)); /* We don't have to do anything if the pic flags are the same, or the new module(s) were compiled with -mlibrary-pic. */ new_partial = (new_flags & EF_FRV_PIC_FLAGS); old_partial = (old_flags & EF_FRV_PIC_FLAGS); if ((new_partial == old_partial) || ((new_partial & EF_FRV_LIBPIC) != 0)) ; /* If the old module(s) were compiled with -mlibrary-pic, copy in the pic flags if any from the new module. */ else if ((old_partial & EF_FRV_LIBPIC) != 0) old_flags = (old_flags & ~ EF_FRV_PIC_FLAGS) | new_partial; /* If we have mixtures of -fpic and -fPIC, or in both bits. */ else if (new_partial != 0 && old_partial != 0) old_flags |= new_partial; /* One module was compiled for pic and the other was not, see if we have had any relocations that are not pic-safe. */ else { if ((old_flags & EF_FRV_NON_PIC_RELOCS) == 0) old_flags |= new_partial; else { old_flags &= ~ EF_FRV_PIC_FLAGS; #ifndef FRV_NO_PIC_ERROR error = TRUE; (*_bfd_error_handler) (_("%s: compiled with %s and linked with modules that use non-pic relocations"), bfd_get_filename (ibfd), (new_flags & EF_FRV_BIGPIC) ? "-fPIC" : "-fpic"); #endif } } /* Warn if different cpu is used (allow a specific cpu to override the generic cpu). */ new_partial = (new_flags & EF_FRV_CPU_MASK); old_partial = (old_flags & EF_FRV_CPU_MASK); if (frv_elf_arch_extension_p (new_partial, old_partial)) ; else if (frv_elf_arch_extension_p (old_partial, new_partial)) old_flags = (old_flags & ~EF_FRV_CPU_MASK) | new_partial; else { switch (new_partial) { default: strcat (new_opt, " -mcpu=?"); break; case EF_FRV_CPU_GENERIC: strcat (new_opt, " -mcpu=frv"); break; case EF_FRV_CPU_SIMPLE: strcat (new_opt, " -mcpu=simple"); break; case EF_FRV_CPU_FR550: strcat (new_opt, " -mcpu=fr550"); break; case EF_FRV_CPU_FR500: strcat (new_opt, " -mcpu=fr500"); break; case EF_FRV_CPU_FR450: strcat (new_opt, " -mcpu=fr450"); break; case EF_FRV_CPU_FR405: strcat (new_opt, " -mcpu=fr405"); break; case EF_FRV_CPU_FR400: strcat (new_opt, " -mcpu=fr400"); break; case EF_FRV_CPU_FR300: strcat (new_opt, " -mcpu=fr300"); break; case EF_FRV_CPU_TOMCAT: strcat (new_opt, " -mcpu=tomcat"); break; } switch (old_partial) { default: strcat (old_opt, " -mcpu=?"); break; case EF_FRV_CPU_GENERIC: strcat (old_opt, " -mcpu=frv"); break; case EF_FRV_CPU_SIMPLE: strcat (old_opt, " -mcpu=simple"); break; case EF_FRV_CPU_FR550: strcat (old_opt, " -mcpu=fr550"); break; case EF_FRV_CPU_FR500: strcat (old_opt, " -mcpu=fr500"); break; case EF_FRV_CPU_FR450: strcat (old_opt, " -mcpu=fr450"); break; case EF_FRV_CPU_FR405: strcat (old_opt, " -mcpu=fr405"); break; case EF_FRV_CPU_FR400: strcat (old_opt, " -mcpu=fr400"); break; case EF_FRV_CPU_FR300: strcat (old_opt, " -mcpu=fr300"); break; case EF_FRV_CPU_TOMCAT: strcat (old_opt, " -mcpu=tomcat"); break; } } /* Print out any mismatches from above. */ if (new_opt[0]) { error = TRUE; (*_bfd_error_handler) (_("%s: compiled with %s and linked with modules compiled with %s"), bfd_get_filename (ibfd), new_opt, old_opt); } /* Warn about any other mismatches */ new_partial = (new_flags & ~ EF_FRV_ALL_FLAGS); old_partial = (old_flags & ~ EF_FRV_ALL_FLAGS); if (new_partial != old_partial) { old_flags |= new_partial; error = TRUE; (*_bfd_error_handler) (_("%s: uses different unknown e_flags (0x%lx) fields than previous modules (0x%lx)"), bfd_get_filename (ibfd), (long)new_partial, (long)old_partial); } } /* If the cpu is -mcpu=simple, then set the -mnopack bit. */ if ((old_flags & EF_FRV_CPU_MASK) == EF_FRV_CPU_SIMPLE) old_flags |= EF_FRV_NOPACK; /* Update the old flags now with changes made above. */ old_partial = elf_elfheader (obfd)->e_flags & EF_FRV_CPU_MASK; elf_elfheader (obfd)->e_flags = old_flags; if (old_partial != (old_flags & EF_FRV_CPU_MASK)) bfd_default_set_arch_mach (obfd, bfd_arch_frv, elf32_frv_machine (obfd)); if (error) bfd_set_error (bfd_error_bad_value); return !error; } bfd_boolean frv_elf_print_private_bfd_data (abfd, ptr) bfd *abfd; PTR ptr; { FILE *file = (FILE *) ptr; flagword flags; BFD_ASSERT (abfd != NULL && ptr != NULL); /* Print normal ELF private data. */ _bfd_elf_print_private_bfd_data (abfd, ptr); flags = elf_elfheader (abfd)->e_flags; fprintf (file, _("private flags = 0x%lx:"), (long)flags); switch (flags & EF_FRV_CPU_MASK) { default: break; case EF_FRV_CPU_SIMPLE: fprintf (file, " -mcpu=simple"); break; case EF_FRV_CPU_FR550: fprintf (file, " -mcpu=fr550"); break; case EF_FRV_CPU_FR500: fprintf (file, " -mcpu=fr500"); break; case EF_FRV_CPU_FR450: fprintf (file, " -mcpu=fr450"); break; case EF_FRV_CPU_FR405: fprintf (file, " -mcpu=fr405"); break; case EF_FRV_CPU_FR400: fprintf (file, " -mcpu=fr400"); break; case EF_FRV_CPU_FR300: fprintf (file, " -mcpu=fr300"); break; case EF_FRV_CPU_TOMCAT: fprintf (file, " -mcpu=tomcat"); break; } switch (flags & EF_FRV_GPR_MASK) { default: break; case EF_FRV_GPR_32: fprintf (file, " -mgpr-32"); break; case EF_FRV_GPR_64: fprintf (file, " -mgpr-64"); break; } switch (flags & EF_FRV_FPR_MASK) { default: break; case EF_FRV_FPR_32: fprintf (file, " -mfpr-32"); break; case EF_FRV_FPR_64: fprintf (file, " -mfpr-64"); break; case EF_FRV_FPR_NONE: fprintf (file, " -msoft-float"); break; } switch (flags & EF_FRV_DWORD_MASK) { default: break; case EF_FRV_DWORD_YES: fprintf (file, " -mdword"); break; case EF_FRV_DWORD_NO: fprintf (file, " -mno-dword"); break; } if (flags & EF_FRV_DOUBLE) fprintf (file, " -mdouble"); if (flags & EF_FRV_MEDIA) fprintf (file, " -mmedia"); if (flags & EF_FRV_MULADD) fprintf (file, " -mmuladd"); if (flags & EF_FRV_PIC) fprintf (file, " -fpic"); if (flags & EF_FRV_BIGPIC) fprintf (file, " -fPIC"); if (flags & EF_FRV_LIBPIC) fprintf (file, " -mlibrary-pic"); if (flags & EF_FRV_FDPIC) fprintf (file, " -mfdpic"); if (flags & EF_FRV_NON_PIC_RELOCS) fprintf (file, " non-pic relocations"); if (flags & EF_FRV_G0) fprintf (file, " -G0"); fputc ('\n', file); return TRUE; } #define ELF_ARCH bfd_arch_frv #define ELF_MACHINE_CODE EM_CYGNUS_FRV #define ELF_MAXPAGESIZE 0x1000 #define TARGET_BIG_SYM bfd_elf32_frv_vec #define TARGET_BIG_NAME "elf32-frv" #define elf_info_to_howto_rel frv_info_to_howto_rel #define elf_info_to_howto frv_info_to_howto_rela #define elf_backend_relocate_section elf32_frv_relocate_section #define elf_backend_gc_mark_hook elf32_frv_gc_mark_hook #define elf_backend_gc_sweep_hook elf32_frv_gc_sweep_hook #define elf_backend_check_relocs elf32_frv_check_relocs #define elf_backend_object_p elf32_frv_object_p #define elf_backend_add_symbol_hook elf32_frv_add_symbol_hook #define elf_backend_can_gc_sections 1 #define elf_backend_rela_normal 1 #define bfd_elf32_bfd_reloc_type_lookup frv_reloc_type_lookup #define bfd_elf32_bfd_set_private_flags frv_elf_set_private_flags #define bfd_elf32_bfd_copy_private_bfd_data frv_elf_copy_private_bfd_data #define bfd_elf32_bfd_merge_private_bfd_data frv_elf_merge_private_bfd_data #define bfd_elf32_bfd_print_private_bfd_data frv_elf_print_private_bfd_data #define bfd_elf32_bfd_link_hash_table_create frv_elf_link_hash_table_create #define elf_backend_always_size_sections \ elf32_frv_always_size_sections #define elf_backend_modify_segment_map \ elf32_frv_modify_segment_map #define elf_backend_create_dynamic_sections \ elf32_frv_create_dynamic_sections #define elf_backend_adjust_dynamic_symbol \ elf32_frv_adjust_dynamic_symbol #define elf_backend_size_dynamic_sections \ elf32_frv_size_dynamic_sections #define elf_backend_finish_dynamic_symbol \ elf32_frv_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections \ elf32_frv_finish_dynamic_sections #define elf_backend_want_got_sym 1 #define elf_backend_got_header_size 0 #define elf_backend_want_got_plt 0 #define elf_backend_plt_readonly 1 #define elf_backend_want_plt_sym 0 #define elf_backend_plt_header_size 0 #define elf_backend_can_make_relative_eh_frame \ frv_elf_use_relative_eh_frame #define elf_backend_can_make_lsda_relative_eh_frame \ frv_elf_use_relative_eh_frame #define elf_backend_encode_eh_address frv_elf_encode_eh_address #define elf_backend_may_use_rel_p 1 #define elf_backend_may_use_rela_p 1 /* We use REL for dynamic relocations only. */ #define elf_backend_default_use_rela_p 1 #include "elf32-target.h"