/* ELF executable support for BFD. Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* SECTION ELF backends BFD support for ELF formats is being worked on. Currently, the best supported back ends are for sparc and i386 (running svr4 or Solaris 2). Documentation of the internals of the support code still needs to be written. The code is changing quickly enough that we haven't bothered yet. */ /* For sparc64-cross-sparc32. */ #define _SYSCALL32 #include "bfd.h" #include "sysdep.h" #include "bfdlink.h" #include "libbfd.h" #define ARCH_SIZE 0 #include "elf-bfd.h" static INLINE struct elf_segment_map *make_mapping PARAMS ((bfd *, asection **, unsigned int, unsigned int, boolean)); static boolean map_sections_to_segments PARAMS ((bfd *)); static int elf_sort_sections PARAMS ((const PTR, const PTR)); static boolean assign_file_positions_for_segments PARAMS ((bfd *)); static boolean assign_file_positions_except_relocs PARAMS ((bfd *)); static boolean prep_headers PARAMS ((bfd *)); static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **, int)); static boolean copy_private_bfd_data PARAMS ((bfd *, bfd *)); static char *elf_read PARAMS ((bfd *, long, unsigned int)); static void elf_fake_sections PARAMS ((bfd *, asection *, PTR)); static boolean assign_section_numbers PARAMS ((bfd *)); static INLINE int sym_is_global PARAMS ((bfd *, asymbol *)); static boolean elf_map_symbols PARAMS ((bfd *)); static bfd_size_type get_program_header_size PARAMS ((bfd *)); static boolean elfcore_read_notes PARAMS ((bfd *, bfd_vma, bfd_vma)); static boolean elf_find_function PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **, const char **)); static int elfcore_make_pid PARAMS ((bfd *)); static boolean elfcore_maybe_make_sect PARAMS ((bfd *, char *, asection *)); static boolean elfcore_make_note_pseudosection PARAMS ((bfd *, char *, Elf_Internal_Note *)); static boolean elfcore_grok_prfpreg PARAMS ((bfd *, Elf_Internal_Note *)); static boolean elfcore_grok_prxfpreg PARAMS ((bfd *, Elf_Internal_Note *)); static boolean elfcore_grok_note PARAMS ((bfd *, Elf_Internal_Note *)); /* Swap version information in and out. The version information is currently size independent. If that ever changes, this code will need to move into elfcode.h. */ /* Swap in a Verdef structure. */ void _bfd_elf_swap_verdef_in (abfd, src, dst) bfd *abfd; const Elf_External_Verdef *src; Elf_Internal_Verdef *dst; { dst->vd_version = bfd_h_get_16 (abfd, src->vd_version); dst->vd_flags = bfd_h_get_16 (abfd, src->vd_flags); dst->vd_ndx = bfd_h_get_16 (abfd, src->vd_ndx); dst->vd_cnt = bfd_h_get_16 (abfd, src->vd_cnt); dst->vd_hash = bfd_h_get_32 (abfd, src->vd_hash); dst->vd_aux = bfd_h_get_32 (abfd, src->vd_aux); dst->vd_next = bfd_h_get_32 (abfd, src->vd_next); } /* Swap out a Verdef structure. */ void _bfd_elf_swap_verdef_out (abfd, src, dst) bfd *abfd; const Elf_Internal_Verdef *src; Elf_External_Verdef *dst; { bfd_h_put_16 (abfd, src->vd_version, dst->vd_version); bfd_h_put_16 (abfd, src->vd_flags, dst->vd_flags); bfd_h_put_16 (abfd, src->vd_ndx, dst->vd_ndx); bfd_h_put_16 (abfd, src->vd_cnt, dst->vd_cnt); bfd_h_put_32 (abfd, src->vd_hash, dst->vd_hash); bfd_h_put_32 (abfd, src->vd_aux, dst->vd_aux); bfd_h_put_32 (abfd, src->vd_next, dst->vd_next); } /* Swap in a Verdaux structure. */ void _bfd_elf_swap_verdaux_in (abfd, src, dst) bfd *abfd; const Elf_External_Verdaux *src; Elf_Internal_Verdaux *dst; { dst->vda_name = bfd_h_get_32 (abfd, src->vda_name); dst->vda_next = bfd_h_get_32 (abfd, src->vda_next); } /* Swap out a Verdaux structure. */ void _bfd_elf_swap_verdaux_out (abfd, src, dst) bfd *abfd; const Elf_Internal_Verdaux *src; Elf_External_Verdaux *dst; { bfd_h_put_32 (abfd, src->vda_name, dst->vda_name); bfd_h_put_32 (abfd, src->vda_next, dst->vda_next); } /* Swap in a Verneed structure. */ void _bfd_elf_swap_verneed_in (abfd, src, dst) bfd *abfd; const Elf_External_Verneed *src; Elf_Internal_Verneed *dst; { dst->vn_version = bfd_h_get_16 (abfd, src->vn_version); dst->vn_cnt = bfd_h_get_16 (abfd, src->vn_cnt); dst->vn_file = bfd_h_get_32 (abfd, src->vn_file); dst->vn_aux = bfd_h_get_32 (abfd, src->vn_aux); dst->vn_next = bfd_h_get_32 (abfd, src->vn_next); } /* Swap out a Verneed structure. */ void _bfd_elf_swap_verneed_out (abfd, src, dst) bfd *abfd; const Elf_Internal_Verneed *src; Elf_External_Verneed *dst; { bfd_h_put_16 (abfd, src->vn_version, dst->vn_version); bfd_h_put_16 (abfd, src->vn_cnt, dst->vn_cnt); bfd_h_put_32 (abfd, src->vn_file, dst->vn_file); bfd_h_put_32 (abfd, src->vn_aux, dst->vn_aux); bfd_h_put_32 (abfd, src->vn_next, dst->vn_next); } /* Swap in a Vernaux structure. */ void _bfd_elf_swap_vernaux_in (abfd, src, dst) bfd *abfd; const Elf_External_Vernaux *src; Elf_Internal_Vernaux *dst; { dst->vna_hash = bfd_h_get_32 (abfd, src->vna_hash); dst->vna_flags = bfd_h_get_16 (abfd, src->vna_flags); dst->vna_other = bfd_h_get_16 (abfd, src->vna_other); dst->vna_name = bfd_h_get_32 (abfd, src->vna_name); dst->vna_next = bfd_h_get_32 (abfd, src->vna_next); } /* Swap out a Vernaux structure. */ void _bfd_elf_swap_vernaux_out (abfd, src, dst) bfd *abfd; const Elf_Internal_Vernaux *src; Elf_External_Vernaux *dst; { bfd_h_put_32 (abfd, src->vna_hash, dst->vna_hash); bfd_h_put_16 (abfd, src->vna_flags, dst->vna_flags); bfd_h_put_16 (abfd, src->vna_other, dst->vna_other); bfd_h_put_32 (abfd, src->vna_name, dst->vna_name); bfd_h_put_32 (abfd, src->vna_next, dst->vna_next); } /* Swap in a Versym structure. */ void _bfd_elf_swap_versym_in (abfd, src, dst) bfd *abfd; const Elf_External_Versym *src; Elf_Internal_Versym *dst; { dst->vs_vers = bfd_h_get_16 (abfd, src->vs_vers); } /* Swap out a Versym structure. */ void _bfd_elf_swap_versym_out (abfd, src, dst) bfd *abfd; const Elf_Internal_Versym *src; Elf_External_Versym *dst; { bfd_h_put_16 (abfd, src->vs_vers, dst->vs_vers); } /* Standard ELF hash function. Do not change this function; you will cause invalid hash tables to be generated. */ unsigned long bfd_elf_hash (namearg) const char *namearg; { const unsigned char *name = (const unsigned char *) namearg; unsigned long h = 0; unsigned long g; int ch; while ((ch = *name++) != '\0') { h = (h << 4) + ch; if ((g = (h & 0xf0000000)) != 0) { h ^= g >> 24; /* The ELF ABI says `h &= ~g', but this is equivalent in this case and on some machines one insn instead of two. */ h ^= g; } } return h; } /* Read a specified number of bytes at a specified offset in an ELF file, into a newly allocated buffer, and return a pointer to the buffer. */ static char * elf_read (abfd, offset, size) bfd *abfd; long offset; unsigned int size; { char *buf; if ((buf = bfd_alloc (abfd, size)) == NULL) return NULL; if (bfd_seek (abfd, offset, SEEK_SET) == -1) return NULL; if (bfd_read ((PTR) buf, size, 1, abfd) != size) { if (bfd_get_error () != bfd_error_system_call) bfd_set_error (bfd_error_file_truncated); return NULL; } return buf; } boolean bfd_elf_mkobject (abfd) bfd *abfd; { /* This just does initialization. */ /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */ elf_tdata (abfd) = (struct elf_obj_tdata *) bfd_zalloc (abfd, sizeof (struct elf_obj_tdata)); if (elf_tdata (abfd) == 0) return false; /* Since everything is done at close time, do we need any initialization? */ return true; } boolean bfd_elf_mkcorefile (abfd) bfd *abfd; { /* I think this can be done just like an object file. */ return bfd_elf_mkobject (abfd); } char * bfd_elf_get_str_section (abfd, shindex) bfd *abfd; unsigned int shindex; { Elf_Internal_Shdr **i_shdrp; char *shstrtab = NULL; unsigned int offset; unsigned int shstrtabsize; i_shdrp = elf_elfsections (abfd); if (i_shdrp == 0 || i_shdrp[shindex] == 0) return 0; shstrtab = (char *) i_shdrp[shindex]->contents; if (shstrtab == NULL) { /* No cached one, attempt to read, and cache what we read. */ offset = i_shdrp[shindex]->sh_offset; shstrtabsize = i_shdrp[shindex]->sh_size; shstrtab = elf_read (abfd, offset, shstrtabsize); i_shdrp[shindex]->contents = (PTR) shstrtab; } return shstrtab; } char * bfd_elf_string_from_elf_section (abfd, shindex, strindex) bfd *abfd; unsigned int shindex; unsigned int strindex; { Elf_Internal_Shdr *hdr; if (strindex == 0) return ""; hdr = elf_elfsections (abfd)[shindex]; if (hdr->contents == NULL && bfd_elf_get_str_section (abfd, shindex) == NULL) return NULL; if (strindex >= hdr->sh_size) { (*_bfd_error_handler) (_("%s: invalid string offset %u >= %lu for section `%s'"), bfd_get_filename (abfd), strindex, (unsigned long) hdr->sh_size, ((shindex == elf_elfheader(abfd)->e_shstrndx && strindex == hdr->sh_name) ? ".shstrtab" : elf_string_from_elf_strtab (abfd, hdr->sh_name))); return ""; } return ((char *) hdr->contents) + strindex; } /* Make a BFD section from an ELF section. We store a pointer to the BFD section in the bfd_section field of the header. */ boolean _bfd_elf_make_section_from_shdr (abfd, hdr, name) bfd *abfd; Elf_Internal_Shdr *hdr; const char *name; { asection *newsect; flagword flags; struct elf_backend_data *bed; if (hdr->bfd_section != NULL) { BFD_ASSERT (strcmp (name, bfd_get_section_name (abfd, hdr->bfd_section)) == 0); return true; } newsect = bfd_make_section_anyway (abfd, name); if (newsect == NULL) return false; newsect->filepos = hdr->sh_offset; if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr) || ! bfd_set_section_size (abfd, newsect, hdr->sh_size) || ! bfd_set_section_alignment (abfd, newsect, bfd_log2 (hdr->sh_addralign))) return false; flags = SEC_NO_FLAGS; if (hdr->sh_type != SHT_NOBITS) flags |= SEC_HAS_CONTENTS; if ((hdr->sh_flags & SHF_ALLOC) != 0) { flags |= SEC_ALLOC; if (hdr->sh_type != SHT_NOBITS) flags |= SEC_LOAD; } if ((hdr->sh_flags & SHF_WRITE) == 0) flags |= SEC_READONLY; if ((hdr->sh_flags & SHF_EXECINSTR) != 0) flags |= SEC_CODE; else if ((flags & SEC_LOAD) != 0) flags |= SEC_DATA; if ((hdr->sh_flags & SHF_MERGE) != 0) { flags |= SEC_MERGE; newsect->entsize = hdr->sh_entsize; if ((hdr->sh_flags & SHF_STRINGS) != 0) flags |= SEC_STRINGS; } /* The debugging sections appear to be recognized only by name, not any sort of flag. */ { static const char *debug_sec_names [] = { ".debug", ".gnu.linkonce.wi.", ".line", ".stab" }; int i; for (i = sizeof (debug_sec_names) / sizeof (debug_sec_names[0]); i--;) if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0) break; if (i >= 0) flags |= SEC_DEBUGGING; } /* As a GNU extension, if the name begins with .gnu.linkonce, we only link a single copy of the section. This is used to support g++. g++ will emit each template expansion in its own section. The symbols will be defined as weak, so that multiple definitions are permitted. The GNU linker extension is to actually discard all but one of the sections. */ if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0) flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; bed = get_elf_backend_data (abfd); if (bed->elf_backend_section_flags) if (! bed->elf_backend_section_flags (&flags, hdr)) return false; if (! bfd_set_section_flags (abfd, newsect, flags)) return false; if ((flags & SEC_ALLOC) != 0) { Elf_Internal_Phdr *phdr; unsigned int i; /* Look through the phdrs to see if we need to adjust the lma. If all the p_paddr fields are zero, we ignore them, since some ELF linkers produce such output. */ phdr = elf_tdata (abfd)->phdr; for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) { if (phdr->p_paddr != 0) break; } if (i < elf_elfheader (abfd)->e_phnum) { phdr = elf_tdata (abfd)->phdr; for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) { if (phdr->p_type == PT_LOAD && phdr->p_vaddr != phdr->p_paddr && phdr->p_vaddr <= hdr->sh_addr && (phdr->p_vaddr + phdr->p_memsz >= hdr->sh_addr + hdr->sh_size) && ((flags & SEC_LOAD) == 0 || (phdr->p_offset <= (bfd_vma) hdr->sh_offset && (phdr->p_offset + phdr->p_filesz >= hdr->sh_offset + hdr->sh_size)))) { newsect->lma += phdr->p_paddr - phdr->p_vaddr; break; } } } } hdr->bfd_section = newsect; elf_section_data (newsect)->this_hdr = *hdr; return true; } /* INTERNAL_FUNCTION bfd_elf_find_section SYNOPSIS struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name); DESCRIPTION Helper functions for GDB to locate the string tables. Since BFD hides string tables from callers, GDB needs to use an internal hook to find them. Sun's .stabstr, in particular, isn't even pointed to by the .stab section, so ordinary mechanisms wouldn't work to find it, even if we had some. */ struct elf_internal_shdr * bfd_elf_find_section (abfd, name) bfd *abfd; char *name; { Elf_Internal_Shdr **i_shdrp; char *shstrtab; unsigned int max; unsigned int i; i_shdrp = elf_elfsections (abfd); if (i_shdrp != NULL) { shstrtab = bfd_elf_get_str_section (abfd, elf_elfheader (abfd)->e_shstrndx); if (shstrtab != NULL) { max = elf_elfheader (abfd)->e_shnum; for (i = 1; i < max; i++) if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name)) return i_shdrp[i]; } } return 0; } const char *const bfd_elf_section_type_names[] = { "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB", "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE", "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM", }; /* ELF relocs are against symbols. If we are producing relocateable output, and the reloc is against an external symbol, and nothing has given us any additional addend, the resulting reloc will also be against the same symbol. In such a case, we don't want to change anything about the way the reloc is handled, since it will all be done at final link time. Rather than put special case code into bfd_perform_relocation, all the reloc types use this howto function. It just short circuits the reloc if producing relocateable output against an external symbol. */ bfd_reloc_status_type bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd ATTRIBUTE_UNUSED; arelent *reloc_entry; asymbol *symbol; PTR data ATTRIBUTE_UNUSED; asection *input_section; bfd *output_bfd; char **error_message ATTRIBUTE_UNUSED; { if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } return bfd_reloc_continue; } /* Finish SHF_MERGE section merging. */ boolean _bfd_elf_merge_sections (abfd, info) bfd *abfd; struct bfd_link_info *info; { if (elf_hash_table (info)->merge_info) _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info); return true; } /* Print out the program headers. */ boolean _bfd_elf_print_private_bfd_data (abfd, farg) bfd *abfd; PTR farg; { FILE *f = (FILE *) farg; Elf_Internal_Phdr *p; asection *s; bfd_byte *dynbuf = NULL; p = elf_tdata (abfd)->phdr; if (p != NULL) { unsigned int i, c; fprintf (f, _("\nProgram Header:\n")); c = elf_elfheader (abfd)->e_phnum; for (i = 0; i < c; i++, p++) { const char *s; char buf[20]; switch (p->p_type) { case PT_NULL: s = "NULL"; break; case PT_LOAD: s = "LOAD"; break; case PT_DYNAMIC: s = "DYNAMIC"; break; case PT_INTERP: s = "INTERP"; break; case PT_NOTE: s = "NOTE"; break; case PT_SHLIB: s = "SHLIB"; break; case PT_PHDR: s = "PHDR"; break; default: sprintf (buf, "0x%lx", p->p_type); s = buf; break; } fprintf (f, "%8s off 0x", s); fprintf_vma (f, p->p_offset); fprintf (f, " vaddr 0x"); fprintf_vma (f, p->p_vaddr); fprintf (f, " paddr 0x"); fprintf_vma (f, p->p_paddr); fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align)); fprintf (f, " filesz 0x"); fprintf_vma (f, p->p_filesz); fprintf (f, " memsz 0x"); fprintf_vma (f, p->p_memsz); fprintf (f, " flags %c%c%c", (p->p_flags & PF_R) != 0 ? 'r' : '-', (p->p_flags & PF_W) != 0 ? 'w' : '-', (p->p_flags & PF_X) != 0 ? 'x' : '-'); if ((p->p_flags &~ (PF_R | PF_W | PF_X)) != 0) fprintf (f, " %lx", p->p_flags &~ (PF_R | PF_W | PF_X)); fprintf (f, "\n"); } } s = bfd_get_section_by_name (abfd, ".dynamic"); if (s != NULL) { int elfsec; unsigned long link; bfd_byte *extdyn, *extdynend; size_t extdynsize; void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *)); fprintf (f, _("\nDynamic Section:\n")); dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size); if (dynbuf == NULL) goto error_return; if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0, s->_raw_size)) goto error_return; elfsec = _bfd_elf_section_from_bfd_section (abfd, s); if (elfsec == -1) goto error_return; link = elf_elfsections (abfd)[elfsec]->sh_link; extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; extdyn = dynbuf; extdynend = extdyn + s->_raw_size; for (; extdyn < extdynend; extdyn += extdynsize) { Elf_Internal_Dyn dyn; const char *name; char ab[20]; boolean stringp; (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn); if (dyn.d_tag == DT_NULL) break; stringp = false; switch (dyn.d_tag) { default: sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag); name = ab; break; case DT_NEEDED: name = "NEEDED"; stringp = true; break; case DT_PLTRELSZ: name = "PLTRELSZ"; break; case DT_PLTGOT: name = "PLTGOT"; break; case DT_HASH: name = "HASH"; break; case DT_STRTAB: name = "STRTAB"; break; case DT_SYMTAB: name = "SYMTAB"; break; case DT_RELA: name = "RELA"; break; case DT_RELASZ: name = "RELASZ"; break; case DT_RELAENT: name = "RELAENT"; break; case DT_STRSZ: name = "STRSZ"; break; case DT_SYMENT: name = "SYMENT"; break; case DT_INIT: name = "INIT"; break; case DT_FINI: name = "FINI"; break; case DT_SONAME: name = "SONAME"; stringp = true; break; case DT_RPATH: name = "RPATH"; stringp = true; break; case DT_SYMBOLIC: name = "SYMBOLIC"; break; case DT_REL: name = "REL"; break; case DT_RELSZ: name = "RELSZ"; break; case DT_RELENT: name = "RELENT"; break; case DT_PLTREL: name = "PLTREL"; break; case DT_DEBUG: name = "DEBUG"; break; case DT_TEXTREL: name = "TEXTREL"; break; case DT_JMPREL: name = "JMPREL"; break; case DT_BIND_NOW: name = "BIND_NOW"; break; case DT_INIT_ARRAY: name = "INIT_ARRAY"; break; case DT_FINI_ARRAY: name = "FINI_ARRAY"; break; case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break; case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break; case DT_RUNPATH: name = "RUNPATH"; stringp = true; break; case DT_FLAGS: name = "FLAGS"; break; case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break; case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break; case DT_CHECKSUM: name = "CHECKSUM"; break; case DT_PLTPADSZ: name = "PLTPADSZ"; break; case DT_MOVEENT: name = "MOVEENT"; break; case DT_MOVESZ: name = "MOVESZ"; break; case DT_FEATURE: name = "FEATURE"; break; case DT_POSFLAG_1: name = "POSFLAG_1"; break; case DT_SYMINSZ: name = "SYMINSZ"; break; case DT_SYMINENT: name = "SYMINENT"; break; case DT_CONFIG: name = "CONFIG"; stringp = true; break; case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break; case DT_AUDIT: name = "AUDIT"; stringp = true; break; case DT_PLTPAD: name = "PLTPAD"; break; case DT_MOVETAB: name = "MOVETAB"; break; case DT_SYMINFO: name = "SYMINFO"; break; case DT_RELACOUNT: name = "RELACOUNT"; break; case DT_RELCOUNT: name = "RELCOUNT"; break; case DT_FLAGS_1: name = "FLAGS_1"; break; case DT_VERSYM: name = "VERSYM"; break; case DT_VERDEF: name = "VERDEF"; break; case DT_VERDEFNUM: name = "VERDEFNUM"; break; case DT_VERNEED: name = "VERNEED"; break; case DT_VERNEEDNUM: name = "VERNEEDNUM"; break; case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break; case DT_USED: name = "USED"; break; case DT_FILTER: name = "FILTER"; stringp = true; break; } fprintf (f, " %-11s ", name); if (! stringp) fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val); else { const char *string; string = bfd_elf_string_from_elf_section (abfd, link, dyn.d_un.d_val); if (string == NULL) goto error_return; fprintf (f, "%s", string); } fprintf (f, "\n"); } free (dynbuf); dynbuf = NULL; } if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL) || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL)) { if (! _bfd_elf_slurp_version_tables (abfd)) return false; } if (elf_dynverdef (abfd) != 0) { Elf_Internal_Verdef *t; fprintf (f, _("\nVersion definitions:\n")); for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef) { fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx, t->vd_flags, t->vd_hash, t->vd_nodename); if (t->vd_auxptr->vda_nextptr != NULL) { Elf_Internal_Verdaux *a; fprintf (f, "\t"); for (a = t->vd_auxptr->vda_nextptr; a != NULL; a = a->vda_nextptr) fprintf (f, "%s ", a->vda_nodename); fprintf (f, "\n"); } } } if (elf_dynverref (abfd) != 0) { Elf_Internal_Verneed *t; fprintf (f, _("\nVersion References:\n")); for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref) { Elf_Internal_Vernaux *a; fprintf (f, _(" required from %s:\n"), t->vn_filename); for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash, a->vna_flags, a->vna_other, a->vna_nodename); } } return true; error_return: if (dynbuf != NULL) free (dynbuf); return false; } /* Display ELF-specific fields of a symbol. */ void bfd_elf_print_symbol (abfd, filep, symbol, how) bfd *abfd; PTR filep; asymbol *symbol; bfd_print_symbol_type how; { FILE *file = (FILE *) filep; switch (how) { case bfd_print_symbol_name: fprintf (file, "%s", symbol->name); break; case bfd_print_symbol_more: fprintf (file, "elf "); fprintf_vma (file, symbol->value); fprintf (file, " %lx", (long) symbol->flags); break; case bfd_print_symbol_all: { const char *section_name; const char *name = NULL; struct elf_backend_data *bed; unsigned char st_other; section_name = symbol->section ? symbol->section->name : "(*none*)"; bed = get_elf_backend_data (abfd); if (bed->elf_backend_print_symbol_all) name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol); if (name == NULL) { name = symbol->name; bfd_print_symbol_vandf ((PTR) file, symbol); } fprintf (file, " %s\t", section_name); /* Print the "other" value for a symbol. For common symbols, we've already printed the size; now print the alignment. For other symbols, we have no specified alignment, and we've printed the address; now print the size. */ fprintf_vma (file, (bfd_is_com_section (symbol->section) ? ((elf_symbol_type *) symbol)->internal_elf_sym.st_value : ((elf_symbol_type *) symbol)->internal_elf_sym.st_size)); /* If we have version information, print it. */ if (elf_tdata (abfd)->dynversym_section != 0 && (elf_tdata (abfd)->dynverdef_section != 0 || elf_tdata (abfd)->dynverref_section != 0)) { unsigned int vernum; const char *version_string; vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION; if (vernum == 0) version_string = ""; else if (vernum == 1) version_string = "Base"; else if (vernum <= elf_tdata (abfd)->cverdefs) version_string = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; else { Elf_Internal_Verneed *t; version_string = ""; for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref) { Elf_Internal_Vernaux *a; for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) { if (a->vna_other == vernum) { version_string = a->vna_nodename; break; } } } } if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0) fprintf (file, " %-11s", version_string); else { int i; fprintf (file, " (%s)", version_string); for (i = 10 - strlen (version_string); i > 0; --i) putc (' ', file); } } /* If the st_other field is not zero, print it. */ st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other; switch (st_other) { case 0: break; case STV_INTERNAL: fprintf (file, " .internal"); break; case STV_HIDDEN: fprintf (file, " .hidden"); break; case STV_PROTECTED: fprintf (file, " .protected"); break; default: /* Some other non-defined flags are also present, so print everything hex. */ fprintf (file, " 0x%02x", (unsigned int) st_other); } fprintf (file, " %s", name); } break; } } /* Create an entry in an ELF linker hash table. */ struct bfd_hash_entry * _bfd_elf_link_hash_newfunc (entry, table, string) struct bfd_hash_entry *entry; struct bfd_hash_table *table; const char *string; { struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == (struct elf_link_hash_entry *) NULL) ret = ((struct elf_link_hash_entry *) bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry))); if (ret == (struct elf_link_hash_entry *) NULL) return (struct bfd_hash_entry *) ret; /* Call the allocation method of the superclass. */ ret = ((struct elf_link_hash_entry *) _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret != (struct elf_link_hash_entry *) NULL) { /* Set local fields. */ ret->indx = -1; ret->size = 0; ret->dynindx = -1; ret->dynstr_index = 0; ret->weakdef = NULL; ret->got.offset = (bfd_vma) -1; ret->plt.offset = (bfd_vma) -1; ret->linker_section_pointer = (elf_linker_section_pointers_t *)0; ret->verinfo.verdef = NULL; ret->vtable_entries_used = NULL; ret->vtable_entries_size = 0; ret->vtable_parent = NULL; ret->type = STT_NOTYPE; ret->other = 0; /* Assume that we have been called by a non-ELF symbol reader. This flag is then reset by the code which reads an ELF input file. This ensures that a symbol created by a non-ELF symbol reader will have the flag set correctly. */ ret->elf_link_hash_flags = ELF_LINK_NON_ELF; } return (struct bfd_hash_entry *) ret; } /* Copy data from an indirect symbol to its direct symbol, hiding the old indirect symbol. */ void _bfd_elf_link_hash_copy_indirect (dir, ind) struct elf_link_hash_entry *dir, *ind; { /* Copy down any references that we may have already seen to the symbol which just became indirect. */ dir->elf_link_hash_flags |= (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR | ELF_LINK_HASH_REF_REGULAR_NONWEAK | ELF_LINK_NON_GOT_REF)); /* Copy over the global and procedure linkage table offset entries. These may have been already set up by a check_relocs routine. */ if (dir->got.offset == (bfd_vma) -1) { dir->got.offset = ind->got.offset; ind->got.offset = (bfd_vma) -1; } BFD_ASSERT (ind->got.offset == (bfd_vma) -1); if (dir->plt.offset == (bfd_vma) -1) { dir->plt.offset = ind->plt.offset; ind->plt.offset = (bfd_vma) -1; } BFD_ASSERT (ind->plt.offset == (bfd_vma) -1); if (dir->dynindx == -1) { dir->dynindx = ind->dynindx; dir->dynstr_index = ind->dynstr_index; ind->dynindx = -1; ind->dynstr_index = 0; } BFD_ASSERT (ind->dynindx == -1); } void _bfd_elf_link_hash_hide_symbol (info, h) struct bfd_link_info *info ATTRIBUTE_UNUSED; struct elf_link_hash_entry *h; { h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; h->plt.offset = (bfd_vma) -1; if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) h->dynindx = -1; } /* Initialize an ELF linker hash table. */ boolean _bfd_elf_link_hash_table_init (table, abfd, newfunc) struct elf_link_hash_table *table; bfd *abfd; struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); { table->dynamic_sections_created = false; table->dynobj = NULL; /* The first dynamic symbol is a dummy. */ table->dynsymcount = 1; table->dynstr = NULL; table->bucketcount = 0; table->needed = NULL; table->runpath = NULL; table->hgot = NULL; table->stab_info = NULL; table->merge_info = NULL; table->dynlocal = NULL; return _bfd_link_hash_table_init (&table->root, abfd, newfunc); } /* Create an ELF linker hash table. */ struct bfd_link_hash_table * _bfd_elf_link_hash_table_create (abfd) bfd *abfd; { struct elf_link_hash_table *ret; ret = ((struct elf_link_hash_table *) bfd_alloc (abfd, sizeof (struct elf_link_hash_table))); if (ret == (struct elf_link_hash_table *) NULL) return NULL; if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc)) { bfd_release (abfd, ret); return NULL; } return &ret->root; } /* This is a hook for the ELF emulation code in the generic linker to tell the backend linker what file name to use for the DT_NEEDED entry for a dynamic object. The generic linker passes name as an empty string to indicate that no DT_NEEDED entry should be made. */ void bfd_elf_set_dt_needed_name (abfd, name) bfd *abfd; const char *name; { if (bfd_get_flavour (abfd) == bfd_target_elf_flavour && bfd_get_format (abfd) == bfd_object) elf_dt_name (abfd) = name; } void bfd_elf_set_dt_needed_soname (abfd, name) bfd *abfd; const char *name; { if (bfd_get_flavour (abfd) == bfd_target_elf_flavour && bfd_get_format (abfd) == bfd_object) elf_dt_soname (abfd) = name; } /* Get the list of DT_NEEDED entries for a link. This is a hook for the linker ELF emulation code. */ struct bfd_link_needed_list * bfd_elf_get_needed_list (abfd, info) bfd *abfd ATTRIBUTE_UNUSED; struct bfd_link_info *info; { if (info->hash->creator->flavour != bfd_target_elf_flavour) return NULL; return elf_hash_table (info)->needed; } /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a hook for the linker ELF emulation code. */ struct bfd_link_needed_list * bfd_elf_get_runpath_list (abfd, info) bfd *abfd ATTRIBUTE_UNUSED; struct bfd_link_info *info; { if (info->hash->creator->flavour != bfd_target_elf_flavour) return NULL; return elf_hash_table (info)->runpath; } /* Get the name actually used for a dynamic object for a link. This is the SONAME entry if there is one. Otherwise, it is the string passed to bfd_elf_set_dt_needed_name, or it is the filename. */ const char * bfd_elf_get_dt_soname (abfd) bfd *abfd; { if (bfd_get_flavour (abfd) == bfd_target_elf_flavour && bfd_get_format (abfd) == bfd_object) return elf_dt_name (abfd); return NULL; } /* Get the list of DT_NEEDED entries from a BFD. This is a hook for the ELF linker emulation code. */ boolean bfd_elf_get_bfd_needed_list (abfd, pneeded) bfd *abfd; struct bfd_link_needed_list **pneeded; { asection *s; bfd_byte *dynbuf = NULL; int elfsec; unsigned long link; bfd_byte *extdyn, *extdynend; size_t extdynsize; void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *)); *pneeded = NULL; if (bfd_get_flavour (abfd) != bfd_target_elf_flavour || bfd_get_format (abfd) != bfd_object) return true; s = bfd_get_section_by_name (abfd, ".dynamic"); if (s == NULL || s->_raw_size == 0) return true; dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size); if (dynbuf == NULL) goto error_return; if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0, s->_raw_size)) goto error_return; elfsec = _bfd_elf_section_from_bfd_section (abfd, s); if (elfsec == -1) goto error_return; link = elf_elfsections (abfd)[elfsec]->sh_link; extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; extdyn = dynbuf; extdynend = extdyn + s->_raw_size; for (; extdyn < extdynend; extdyn += extdynsize) { Elf_Internal_Dyn dyn; (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn); if (dyn.d_tag == DT_NULL) break; if (dyn.d_tag == DT_NEEDED) { const char *string; struct bfd_link_needed_list *l; string = bfd_elf_string_from_elf_section (abfd, link, dyn.d_un.d_val); if (string == NULL) goto error_return; l = (struct bfd_link_needed_list *) bfd_alloc (abfd, sizeof *l); if (l == NULL) goto error_return; l->by = abfd; l->name = string; l->next = *pneeded; *pneeded = l; } } free (dynbuf); return true; error_return: if (dynbuf != NULL) free (dynbuf); return false; } /* Allocate an ELF string table--force the first byte to be zero. */ struct bfd_strtab_hash * _bfd_elf_stringtab_init () { struct bfd_strtab_hash *ret; ret = _bfd_stringtab_init (); if (ret != NULL) { bfd_size_type loc; loc = _bfd_stringtab_add (ret, "", true, false); BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1); if (loc == (bfd_size_type) -1) { _bfd_stringtab_free (ret); ret = NULL; } } return ret; } /* ELF .o/exec file reading */ /* Create a new bfd section from an ELF section header. */ boolean bfd_section_from_shdr (abfd, shindex) bfd *abfd; unsigned int shindex; { Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex]; Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); struct elf_backend_data *bed = get_elf_backend_data (abfd); char *name; name = elf_string_from_elf_strtab (abfd, hdr->sh_name); switch (hdr->sh_type) { case SHT_NULL: /* Inactive section. Throw it away. */ return true; case SHT_PROGBITS: /* Normal section with contents. */ case SHT_DYNAMIC: /* Dynamic linking information. */ case SHT_NOBITS: /* .bss section. */ case SHT_HASH: /* .hash section. */ case SHT_NOTE: /* .note section. */ return _bfd_elf_make_section_from_shdr (abfd, hdr, name); case SHT_SYMTAB: /* A symbol table */ if (elf_onesymtab (abfd) == shindex) return true; BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym); BFD_ASSERT (elf_onesymtab (abfd) == 0); elf_onesymtab (abfd) = shindex; elf_tdata (abfd)->symtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr; abfd->flags |= HAS_SYMS; /* Sometimes a shared object will map in the symbol table. If SHF_ALLOC is set, and this is a shared object, then we also treat this section as a BFD section. We can not base the decision purely on SHF_ALLOC, because that flag is sometimes set in a relocateable object file, which would confuse the linker. */ if ((hdr->sh_flags & SHF_ALLOC) != 0 && (abfd->flags & DYNAMIC) != 0 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) return false; return true; case SHT_DYNSYM: /* A dynamic symbol table */ if (elf_dynsymtab (abfd) == shindex) return true; BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym); BFD_ASSERT (elf_dynsymtab (abfd) == 0); elf_dynsymtab (abfd) = shindex; elf_tdata (abfd)->dynsymtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr; abfd->flags |= HAS_SYMS; /* Besides being a symbol table, we also treat this as a regular section, so that objcopy can handle it. */ return _bfd_elf_make_section_from_shdr (abfd, hdr, name); case SHT_STRTAB: /* A string table */ if (hdr->bfd_section != NULL) return true; if (ehdr->e_shstrndx == shindex) { elf_tdata (abfd)->shstrtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; return true; } { unsigned int i; for (i = 1; i < ehdr->e_shnum; i++) { Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; if (hdr2->sh_link == shindex) { if (! bfd_section_from_shdr (abfd, i)) return false; if (elf_onesymtab (abfd) == i) { elf_tdata (abfd)->strtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr; return true; } if (elf_dynsymtab (abfd) == i) { elf_tdata (abfd)->dynstrtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynstrtab_hdr; /* We also treat this as a regular section, so that objcopy can handle it. */ break; } #if 0 /* Not handling other string tables specially right now. */ hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */ /* We have a strtab for some random other section. */ newsect = (asection *) hdr2->bfd_section; if (!newsect) break; hdr->bfd_section = newsect; hdr2 = &elf_section_data (newsect)->str_hdr; *hdr2 = *hdr; elf_elfsections (abfd)[shindex] = hdr2; #endif } } } return _bfd_elf_make_section_from_shdr (abfd, hdr, name); case SHT_REL: case SHT_RELA: /* *These* do a lot of work -- but build no sections! */ { asection *target_sect; Elf_Internal_Shdr *hdr2; /* Check for a bogus link to avoid crashing. */ if (hdr->sh_link >= ehdr->e_shnum) { ((*_bfd_error_handler) (_("%s: invalid link %lu for reloc section %s (index %u)"), bfd_get_filename (abfd), hdr->sh_link, name, shindex)); return _bfd_elf_make_section_from_shdr (abfd, hdr, name); } /* For some incomprehensible reason Oracle distributes libraries for Solaris in which some of the objects have bogus sh_link fields. It would be nice if we could just reject them, but, unfortunately, some people need to use them. We scan through the section headers; if we find only one suitable symbol table, we clobber the sh_link to point to it. I hope this doesn't break anything. */ if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM) { int scan; int found; found = 0; for (scan = 1; scan < ehdr->e_shnum; scan++) { if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM) { if (found != 0) { found = 0; break; } found = scan; } } if (found != 0) hdr->sh_link = found; } /* Get the symbol table. */ if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB && ! bfd_section_from_shdr (abfd, hdr->sh_link)) return false; /* If this reloc section does not use the main symbol table we don't treat it as a reloc section. BFD can't adequately represent such a section, so at least for now, we don't try. We just present it as a normal section. We also can't use it as a reloc section if it points to the null section. */ if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF) return _bfd_elf_make_section_from_shdr (abfd, hdr, name); if (! bfd_section_from_shdr (abfd, hdr->sh_info)) return false; target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info); if (target_sect == NULL) return false; if ((target_sect->flags & SEC_RELOC) == 0 || target_sect->reloc_count == 0) hdr2 = &elf_section_data (target_sect)->rel_hdr; else { BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL); hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2)); elf_section_data (target_sect)->rel_hdr2 = hdr2; } *hdr2 = *hdr; elf_elfsections (abfd)[shindex] = hdr2; target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr); target_sect->flags |= SEC_RELOC; target_sect->relocation = NULL; target_sect->rel_filepos = hdr->sh_offset; /* In the section to which the relocations apply, mark whether its relocations are of the REL or RELA variety. */ if (hdr->sh_size != 0) elf_section_data (target_sect)->use_rela_p = (hdr->sh_type == SHT_RELA); abfd->flags |= HAS_RELOC; return true; } break; case SHT_GNU_verdef: elf_dynverdef (abfd) = shindex; elf_tdata (abfd)->dynverdef_hdr = *hdr; return _bfd_elf_make_section_from_shdr (abfd, hdr, name); break; case SHT_GNU_versym: elf_dynversym (abfd) = shindex; elf_tdata (abfd)->dynversym_hdr = *hdr; return _bfd_elf_make_section_from_shdr (abfd, hdr, name); break; case SHT_GNU_verneed: elf_dynverref (abfd) = shindex; elf_tdata (abfd)->dynverref_hdr = *hdr; return _bfd_elf_make_section_from_shdr (abfd, hdr, name); break; case SHT_SHLIB: return true; default: /* Check for any processor-specific section types. */ { if (bed->elf_backend_section_from_shdr) (*bed->elf_backend_section_from_shdr) (abfd, hdr, name); } break; } return true; } /* Given an ELF section number, retrieve the corresponding BFD section. */ asection * bfd_section_from_elf_index (abfd, index) bfd *abfd; unsigned int index; { BFD_ASSERT (index > 0 && index < SHN_LORESERVE); if (index >= elf_elfheader (abfd)->e_shnum) return NULL; return elf_elfsections (abfd)[index]->bfd_section; } boolean _bfd_elf_new_section_hook (abfd, sec) bfd *abfd; asection *sec; { struct bfd_elf_section_data *sdata; sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, sizeof (*sdata)); if (!sdata) return false; sec->used_by_bfd = (PTR) sdata; /* Indicate whether or not this section should use RELA relocations. */ sdata->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p; return true; } /* Create a new bfd section from an ELF program header. Since program segments have no names, we generate a synthetic name of the form segment, where NUM is generally the index in the program header table. For segments that are split (see below) we generate the names segmenta and segmentb. Note that some program segments may have a file size that is different than (less than) the memory size. All this means is that at execution the system must allocate the amount of memory specified by the memory size, but only initialize it with the first "file size" bytes read from the file. This would occur for example, with program segments consisting of combined data+bss. To handle the above situation, this routine generates TWO bfd sections for the single program segment. The first has the length specified by the file size of the segment, and the second has the length specified by the difference between the two sizes. In effect, the segment is split into it's initialized and uninitialized parts. */ boolean _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename) bfd *abfd; Elf_Internal_Phdr *hdr; int index; const char *typename; { asection *newsect; char *name; char namebuf[64]; int split; split = ((hdr->p_memsz > 0) && (hdr->p_filesz > 0) && (hdr->p_memsz > hdr->p_filesz)); sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : ""); name = bfd_alloc (abfd, strlen (namebuf) + 1); if (!name) return false; strcpy (name, namebuf); newsect = bfd_make_section (abfd, name); if (newsect == NULL) return false; newsect->vma = hdr->p_vaddr; newsect->lma = hdr->p_paddr; newsect->_raw_size = hdr->p_filesz; newsect->filepos = hdr->p_offset; newsect->flags |= SEC_HAS_CONTENTS; if (hdr->p_type == PT_LOAD) { newsect->flags |= SEC_ALLOC; newsect->flags |= SEC_LOAD; if (hdr->p_flags & PF_X) { /* FIXME: all we known is that it has execute PERMISSION, may be data. */ newsect->flags |= SEC_CODE; } } if (!(hdr->p_flags & PF_W)) { newsect->flags |= SEC_READONLY; } if (split) { sprintf (namebuf, "%s%db", typename, index); name = bfd_alloc (abfd, strlen (namebuf) + 1); if (!name) return false; strcpy (name, namebuf); newsect = bfd_make_section (abfd, name); if (newsect == NULL) return false; newsect->vma = hdr->p_vaddr + hdr->p_filesz; newsect->lma = hdr->p_paddr + hdr->p_filesz; newsect->_raw_size = hdr->p_memsz - hdr->p_filesz; if (hdr->p_type == PT_LOAD) { newsect->flags |= SEC_ALLOC; if (hdr->p_flags & PF_X) newsect->flags |= SEC_CODE; } if (!(hdr->p_flags & PF_W)) newsect->flags |= SEC_READONLY; } return true; } boolean bfd_section_from_phdr (abfd, hdr, index) bfd *abfd; Elf_Internal_Phdr *hdr; int index; { struct elf_backend_data *bed; switch (hdr->p_type) { case PT_NULL: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null"); case PT_LOAD: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load"); case PT_DYNAMIC: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic"); case PT_INTERP: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp"); case PT_NOTE: if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note")) return false; if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz)) return false; return true; case PT_SHLIB: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib"); case PT_PHDR: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr"); default: /* Check for any processor-specific program segment types. If no handler for them, default to making "segment" sections. */ bed = get_elf_backend_data (abfd); if (bed->elf_backend_section_from_phdr) return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index); else return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment"); } } /* Initialize REL_HDR, the section-header for new section, containing relocations against ASECT. If USE_RELA_P is true, we use RELA relocations; otherwise, we use REL relocations. */ boolean _bfd_elf_init_reloc_shdr (abfd, rel_hdr, asect, use_rela_p) bfd *abfd; Elf_Internal_Shdr *rel_hdr; asection *asect; boolean use_rela_p; { char *name; struct elf_backend_data *bed; bed = get_elf_backend_data (abfd); name = bfd_alloc (abfd, sizeof ".rela" + strlen (asect->name)); if (name == NULL) return false; sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name); rel_hdr->sh_name = (unsigned int) _bfd_stringtab_add (elf_shstrtab (abfd), name, true, false); if (rel_hdr->sh_name == (unsigned int) -1) return false; rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; rel_hdr->sh_entsize = (use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel); rel_hdr->sh_addralign = bed->s->file_align; rel_hdr->sh_flags = 0; rel_hdr->sh_addr = 0; rel_hdr->sh_size = 0; rel_hdr->sh_offset = 0; return true; } /* Set up an ELF internal section header for a section. */ static void elf_fake_sections (abfd, asect, failedptrarg) bfd *abfd; asection *asect; PTR failedptrarg; { struct elf_backend_data *bed = get_elf_backend_data (abfd); boolean *failedptr = (boolean *) failedptrarg; Elf_Internal_Shdr *this_hdr; if (*failedptr) { /* We already failed; just get out of the bfd_map_over_sections loop. */ return; } this_hdr = &elf_section_data (asect)->this_hdr; this_hdr->sh_name = (unsigned long) _bfd_stringtab_add (elf_shstrtab (abfd), asect->name, true, false); if (this_hdr->sh_name == (unsigned long) -1) { *failedptr = true; return; } this_hdr->sh_flags = 0; if ((asect->flags & SEC_ALLOC) != 0 || asect->user_set_vma) this_hdr->sh_addr = asect->vma; else this_hdr->sh_addr = 0; this_hdr->sh_offset = 0; this_hdr->sh_size = asect->_raw_size; this_hdr->sh_link = 0; this_hdr->sh_addralign = 1 << asect->alignment_power; /* The sh_entsize and sh_info fields may have been set already by copy_private_section_data. */ this_hdr->bfd_section = asect; this_hdr->contents = NULL; /* FIXME: This should not be based on section names. */ if (strcmp (asect->name, ".dynstr") == 0) this_hdr->sh_type = SHT_STRTAB; else if (strcmp (asect->name, ".hash") == 0) { this_hdr->sh_type = SHT_HASH; this_hdr->sh_entsize = bed->s->sizeof_hash_entry; } else if (strcmp (asect->name, ".dynsym") == 0) { this_hdr->sh_type = SHT_DYNSYM; this_hdr->sh_entsize = bed->s->sizeof_sym; } else if (strcmp (asect->name, ".dynamic") == 0) { this_hdr->sh_type = SHT_DYNAMIC; this_hdr->sh_entsize = bed->s->sizeof_dyn; } else if (strncmp (asect->name, ".rela", 5) == 0 && get_elf_backend_data (abfd)->may_use_rela_p) { this_hdr->sh_type = SHT_RELA; this_hdr->sh_entsize = bed->s->sizeof_rela; } else if (strncmp (asect->name, ".rel", 4) == 0 && get_elf_backend_data (abfd)->may_use_rel_p) { this_hdr->sh_type = SHT_REL; this_hdr->sh_entsize = bed->s->sizeof_rel; } else if (strncmp (asect->name, ".note", 5) == 0) this_hdr->sh_type = SHT_NOTE; else if (strncmp (asect->name, ".stab", 5) == 0 && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0) this_hdr->sh_type = SHT_STRTAB; else if (strcmp (asect->name, ".gnu.version") == 0) { this_hdr->sh_type = SHT_GNU_versym; this_hdr->sh_entsize = sizeof (Elf_External_Versym); } else if (strcmp (asect->name, ".gnu.version_d") == 0) { this_hdr->sh_type = SHT_GNU_verdef; this_hdr->sh_entsize = 0; /* objcopy or strip will copy over sh_info, but may not set cverdefs. The linker will set cverdefs, but sh_info will be zero. */ if (this_hdr->sh_info == 0) this_hdr->sh_info = elf_tdata (abfd)->cverdefs; else BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs); } else if (strcmp (asect->name, ".gnu.version_r") == 0) { this_hdr->sh_type = SHT_GNU_verneed; this_hdr->sh_entsize = 0; /* objcopy or strip will copy over sh_info, but may not set cverrefs. The linker will set cverrefs, but sh_info will be zero. */ if (this_hdr->sh_info == 0) this_hdr->sh_info = elf_tdata (abfd)->cverrefs; else BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs); } else if ((asect->flags & SEC_ALLOC) != 0 && ((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)) this_hdr->sh_type = SHT_NOBITS; else this_hdr->sh_type = SHT_PROGBITS; if ((asect->flags & SEC_ALLOC) != 0) this_hdr->sh_flags |= SHF_ALLOC; if ((asect->flags & SEC_READONLY) == 0) this_hdr->sh_flags |= SHF_WRITE; if ((asect->flags & SEC_CODE) != 0) this_hdr->sh_flags |= SHF_EXECINSTR; if ((asect->flags & SEC_MERGE) != 0) { this_hdr->sh_flags |= SHF_MERGE; this_hdr->sh_entsize = asect->entsize; if ((asect->flags & SEC_STRINGS) != 0) this_hdr->sh_flags |= SHF_STRINGS; } /* Check for processor-specific section types. */ if (bed->elf_backend_fake_sections) (*bed->elf_backend_fake_sections) (abfd, this_hdr, asect); /* If the section has relocs, set up a section header for the SHT_REL[A] section. If two relocation sections are required for this section, it is up to the processor-specific back-end to create the other. */ if ((asect->flags & SEC_RELOC) != 0 && !_bfd_elf_init_reloc_shdr (abfd, &elf_section_data (asect)->rel_hdr, asect, elf_section_data (asect)->use_rela_p)) *failedptr = true; } /* Assign all ELF section numbers. The dummy first section is handled here too. The link/info pointers for the standard section types are filled in here too, while we're at it. */ static boolean assign_section_numbers (abfd) bfd *abfd; { struct elf_obj_tdata *t = elf_tdata (abfd); asection *sec; unsigned int section_number; Elf_Internal_Shdr **i_shdrp; section_number = 1; for (sec = abfd->sections; sec; sec = sec->next) { struct bfd_elf_section_data *d = elf_section_data (sec); d->this_idx = section_number++; if ((sec->flags & SEC_RELOC) == 0) d->rel_idx = 0; else d->rel_idx = section_number++; if (d->rel_hdr2) d->rel_idx2 = section_number++; else d->rel_idx2 = 0; } t->shstrtab_section = section_number++; elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section; t->shstrtab_hdr.sh_size = _bfd_stringtab_size (elf_shstrtab (abfd)); if (bfd_get_symcount (abfd) > 0) { t->symtab_section = section_number++; t->strtab_section = section_number++; } elf_elfheader (abfd)->e_shnum = section_number; /* Set up the list of section header pointers, in agreement with the indices. */ i_shdrp = ((Elf_Internal_Shdr **) bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *))); if (i_shdrp == NULL) return false; i_shdrp[0] = ((Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (Elf_Internal_Shdr))); if (i_shdrp[0] == NULL) { bfd_release (abfd, i_shdrp); return false; } memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr)); elf_elfsections (abfd) = i_shdrp; i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr; if (bfd_get_symcount (abfd) > 0) { i_shdrp[t->symtab_section] = &t->symtab_hdr; i_shdrp[t->strtab_section] = &t->strtab_hdr; t->symtab_hdr.sh_link = t->strtab_section; } for (sec = abfd->sections; sec; sec = sec->next) { struct bfd_elf_section_data *d = elf_section_data (sec); asection *s; const char *name; i_shdrp[d->this_idx] = &d->this_hdr; if (d->rel_idx != 0) i_shdrp[d->rel_idx] = &d->rel_hdr; if (d->rel_idx2 != 0) i_shdrp[d->rel_idx2] = d->rel_hdr2; /* Fill in the sh_link and sh_info fields while we're at it. */ /* sh_link of a reloc section is the section index of the symbol table. sh_info is the section index of the section to which the relocation entries apply. */ if (d->rel_idx != 0) { d->rel_hdr.sh_link = t->symtab_section; d->rel_hdr.sh_info = d->this_idx; } if (d->rel_idx2 != 0) { d->rel_hdr2->sh_link = t->symtab_section; d->rel_hdr2->sh_info = d->this_idx; } switch (d->this_hdr.sh_type) { case SHT_REL: case SHT_RELA: /* A reloc section which we are treating as a normal BFD section. sh_link is the section index of the symbol table. sh_info is the section index of the section to which the relocation entries apply. We assume that an allocated reloc section uses the dynamic symbol table. FIXME: How can we be sure? */ s = bfd_get_section_by_name (abfd, ".dynsym"); if (s != NULL) d->this_hdr.sh_link = elf_section_data (s)->this_idx; /* We look up the section the relocs apply to by name. */ name = sec->name; if (d->this_hdr.sh_type == SHT_REL) name += 4; else name += 5; s = bfd_get_section_by_name (abfd, name); if (s != NULL) d->this_hdr.sh_info = elf_section_data (s)->this_idx; break; case SHT_STRTAB: /* We assume that a section named .stab*str is a stabs string section. We look for a section with the same name but without the trailing ``str'', and set its sh_link field to point to this section. */ if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) { size_t len; char *alc; len = strlen (sec->name); alc = (char *) bfd_malloc (len - 2); if (alc == NULL) return false; strncpy (alc, sec->name, len - 3); alc[len - 3] = '\0'; s = bfd_get_section_by_name (abfd, alc); free (alc); if (s != NULL) { elf_section_data (s)->this_hdr.sh_link = d->this_idx; /* This is a .stab section. */ elf_section_data (s)->this_hdr.sh_entsize = 4 + 2 * bfd_get_arch_size (abfd) / 8; } } break; case SHT_DYNAMIC: case SHT_DYNSYM: case SHT_GNU_verneed: case SHT_GNU_verdef: /* sh_link is the section header index of the string table used for the dynamic entries, or the symbol table, or the version strings. */ s = bfd_get_section_by_name (abfd, ".dynstr"); if (s != NULL) d->this_hdr.sh_link = elf_section_data (s)->this_idx; break; case SHT_HASH: case SHT_GNU_versym: /* sh_link is the section header index of the symbol table this hash table or version table is for. */ s = bfd_get_section_by_name (abfd, ".dynsym"); if (s != NULL) d->this_hdr.sh_link = elf_section_data (s)->this_idx; break; } } return true; } /* Map symbol from it's internal number to the external number, moving all local symbols to be at the head of the list. */ static INLINE int sym_is_global (abfd, sym) bfd *abfd; asymbol *sym; { /* If the backend has a special mapping, use it. */ if (get_elf_backend_data (abfd)->elf_backend_sym_is_global) return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global) (abfd, sym)); return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 || bfd_is_und_section (bfd_get_section (sym)) || bfd_is_com_section (bfd_get_section (sym))); } static boolean elf_map_symbols (abfd) bfd *abfd; { int symcount = bfd_get_symcount (abfd); asymbol **syms = bfd_get_outsymbols (abfd); asymbol **sect_syms; int num_locals = 0; int num_globals = 0; int num_locals2 = 0; int num_globals2 = 0; int max_index = 0; int num_sections = 0; int idx; asection *asect; asymbol **new_syms; asymbol *sym; #ifdef DEBUG fprintf (stderr, "elf_map_symbols\n"); fflush (stderr); #endif /* Add a section symbol for each BFD section. FIXME: Is this really necessary? */ for (asect = abfd->sections; asect; asect = asect->next) { if (max_index < asect->index) max_index = asect->index; } max_index++; sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *)); if (sect_syms == NULL) return false; elf_section_syms (abfd) = sect_syms; for (idx = 0; idx < symcount; idx++) { sym = syms[idx]; if ((sym->flags & BSF_SECTION_SYM) != 0 && sym->value == 0) { asection *sec; sec = sym->section; if (sec->owner != NULL) { if (sec->owner != abfd) { if (sec->output_offset != 0) continue; sec = sec->output_section; /* Empty sections in the input files may have had a section symbol created for them. (See the comment near the end of _bfd_generic_link_output_symbols in linker.c). If the linker script discards such sections then we will reach this point. Since we know that we cannot avoid this case, we detect it and skip the abort and the assignment to the sect_syms array. To reproduce this particular case try running the linker testsuite test ld-scripts/weak.exp for an ELF port that uses the generic linker. */ if (sec->owner == NULL) continue; BFD_ASSERT (sec->owner == abfd); } sect_syms[sec->index] = syms[idx]; } } } for (asect = abfd->sections; asect; asect = asect->next) { if (sect_syms[asect->index] != NULL) continue; sym = bfd_make_empty_symbol (abfd); if (sym == NULL) return false; sym->the_bfd = abfd; sym->name = asect->name; sym->value = 0; /* Set the flags to 0 to indicate that this one was newly added. */ sym->flags = 0; sym->section = asect; sect_syms[asect->index] = sym; num_sections++; #ifdef DEBUG fprintf (stderr, _("creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n"), asect->name, (long) asect->vma, asect->index, (long) asect); #endif } /* Classify all of the symbols. */ for (idx = 0; idx < symcount; idx++) { if (!sym_is_global (abfd, syms[idx])) num_locals++; else num_globals++; } for (asect = abfd->sections; asect; asect = asect->next) { if (sect_syms[asect->index] != NULL && sect_syms[asect->index]->flags == 0) { sect_syms[asect->index]->flags = BSF_SECTION_SYM; if (!sym_is_global (abfd, sect_syms[asect->index])) num_locals++; else num_globals++; sect_syms[asect->index]->flags = 0; } } /* Now sort the symbols so the local symbols are first. */ new_syms = ((asymbol **) bfd_alloc (abfd, (num_locals + num_globals) * sizeof (asymbol *))); if (new_syms == NULL) return false; for (idx = 0; idx < symcount; idx++) { asymbol *sym = syms[idx]; int i; if (!sym_is_global (abfd, sym)) i = num_locals2++; else i = num_locals + num_globals2++; new_syms[i] = sym; sym->udata.i = i + 1; } for (asect = abfd->sections; asect; asect = asect->next) { if (sect_syms[asect->index] != NULL && sect_syms[asect->index]->flags == 0) { asymbol *sym = sect_syms[asect->index]; int i; sym->flags = BSF_SECTION_SYM; if (!sym_is_global (abfd, sym)) i = num_locals2++; else i = num_locals + num_globals2++; new_syms[i] = sym; sym->udata.i = i + 1; } } bfd_set_symtab (abfd, new_syms, num_locals + num_globals); elf_num_locals (abfd) = num_locals; elf_num_globals (abfd) = num_globals; return true; } /* Align to the maximum file alignment that could be required for any ELF data structure. */ static INLINE file_ptr align_file_position PARAMS ((file_ptr, int)); static INLINE file_ptr align_file_position (off, align) file_ptr off; int align; { return (off + align - 1) & ~(align - 1); } /* Assign a file position to a section, optionally aligning to the required section alignment. */ INLINE file_ptr _bfd_elf_assign_file_position_for_section (i_shdrp, offset, align) Elf_Internal_Shdr *i_shdrp; file_ptr offset; boolean align; { if (align) { unsigned int al; al = i_shdrp->sh_addralign; if (al > 1) offset = BFD_ALIGN (offset, al); } i_shdrp->sh_offset = offset; if (i_shdrp->bfd_section != NULL) i_shdrp->bfd_section->filepos = offset; if (i_shdrp->sh_type != SHT_NOBITS) offset += i_shdrp->sh_size; return offset; } /* Compute the file positions we are going to put the sections at, and otherwise prepare to begin writing out the ELF file. If LINK_INFO is not NULL, this is being called by the ELF backend linker. */ boolean _bfd_elf_compute_section_file_positions (abfd, link_info) bfd *abfd; struct bfd_link_info *link_info; { struct elf_backend_data *bed = get_elf_backend_data (abfd); boolean failed; struct bfd_strtab_hash *strtab; Elf_Internal_Shdr *shstrtab_hdr; if (abfd->output_has_begun) return true; /* Do any elf backend specific processing first. */ if (bed->elf_backend_begin_write_processing) (*bed->elf_backend_begin_write_processing) (abfd, link_info); if (! prep_headers (abfd)) return false; /* Post process the headers if necessary. */ if (bed->elf_backend_post_process_headers) (*bed->elf_backend_post_process_headers) (abfd, link_info); failed = false; bfd_map_over_sections (abfd, elf_fake_sections, &failed); if (failed) return false; if (!assign_section_numbers (abfd)) return false; /* The backend linker builds symbol table information itself. */ if (link_info == NULL && bfd_get_symcount (abfd) > 0) { /* Non-zero if doing a relocatable link. */ int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC)); if (! swap_out_syms (abfd, &strtab, relocatable_p)) return false; } shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; /* sh_name was set in prep_headers. */ shstrtab_hdr->sh_type = SHT_STRTAB; shstrtab_hdr->sh_flags = 0; shstrtab_hdr->sh_addr = 0; shstrtab_hdr->sh_size = _bfd_stringtab_size (elf_shstrtab (abfd)); shstrtab_hdr->sh_entsize = 0; shstrtab_hdr->sh_link = 0; shstrtab_hdr->sh_info = 0; /* sh_offset is set in assign_file_positions_except_relocs. */ shstrtab_hdr->sh_addralign = 1; if (!assign_file_positions_except_relocs (abfd)) return false; if (link_info == NULL && bfd_get_symcount (abfd) > 0) { file_ptr off; Elf_Internal_Shdr *hdr; off = elf_tdata (abfd)->next_file_pos; hdr = &elf_tdata (abfd)->symtab_hdr; off = _bfd_elf_assign_file_position_for_section (hdr, off, true); hdr = &elf_tdata (abfd)->strtab_hdr; off = _bfd_elf_assign_file_position_for_section (hdr, off, true); elf_tdata (abfd)->next_file_pos = off; /* Now that we know where the .strtab section goes, write it out. */ if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 || ! _bfd_stringtab_emit (abfd, strtab)) return false; _bfd_stringtab_free (strtab); } abfd->output_has_begun = true; return true; } /* Create a mapping from a set of sections to a program segment. */ static INLINE struct elf_segment_map * make_mapping (abfd, sections, from, to, phdr) bfd *abfd; asection **sections; unsigned int from; unsigned int to; boolean phdr; { struct elf_segment_map *m; unsigned int i; asection **hdrpp; m = ((struct elf_segment_map *) bfd_zalloc (abfd, (sizeof (struct elf_segment_map) + (to - from - 1) * sizeof (asection *)))); if (m == NULL) return NULL; m->next = NULL; m->p_type = PT_LOAD; for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++) m->sections[i - from] = *hdrpp; m->count = to - from; if (from == 0 && phdr) { /* Include the headers in the first PT_LOAD segment. */ m->includes_filehdr = 1; m->includes_phdrs = 1; } return m; } /* Set up a mapping from BFD sections to program segments. */ static boolean map_sections_to_segments (abfd) bfd *abfd; { asection **sections = NULL; asection *s; unsigned int i; unsigned int count; struct elf_segment_map *mfirst; struct elf_segment_map **pm; struct elf_segment_map *m; asection *last_hdr; unsigned int phdr_index; bfd_vma maxpagesize; asection **hdrpp; boolean phdr_in_segment = true; boolean writable; asection *dynsec; if (elf_tdata (abfd)->segment_map != NULL) return true; if (bfd_count_sections (abfd) == 0) return true; /* Select the allocated sections, and sort them. */ sections = (asection **) bfd_malloc (bfd_count_sections (abfd) * sizeof (asection *)); if (sections == NULL) goto error_return; i = 0; for (s = abfd->sections; s != NULL; s = s->next) { if ((s->flags & SEC_ALLOC) != 0) { sections[i] = s; ++i; } } BFD_ASSERT (i <= bfd_count_sections (abfd)); count = i; qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections); /* Build the mapping. */ mfirst = NULL; pm = &mfirst; /* If we have a .interp section, then create a PT_PHDR segment for the program headers and a PT_INTERP segment for the .interp section. */ s = bfd_get_section_by_name (abfd, ".interp"); if (s != NULL && (s->flags & SEC_LOAD) != 0) { m = ((struct elf_segment_map *) bfd_zalloc (abfd, sizeof (struct elf_segment_map))); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_PHDR; /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */ m->p_flags = PF_R | PF_X; m->p_flags_valid = 1; m->includes_phdrs = 1; *pm = m; pm = &m->next; m = ((struct elf_segment_map *) bfd_zalloc (abfd, sizeof (struct elf_segment_map))); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_INTERP; m->count = 1; m->sections[0] = s; *pm = m; pm = &m->next; } /* Look through the sections. We put sections in the same program segment when the start of the second section can be placed within a few bytes of the end of the first section. */ last_hdr = NULL; phdr_index = 0; maxpagesize = get_elf_backend_data (abfd)->maxpagesize; writable = false; dynsec = bfd_get_section_by_name (abfd, ".dynamic"); if (dynsec != NULL && (dynsec->flags & SEC_LOAD) == 0) dynsec = NULL; /* Deal with -Ttext or something similar such that the first section is not adjacent to the program headers. This is an approximation, since at this point we don't know exactly how many program headers we will need. */ if (count > 0) { bfd_size_type phdr_size; phdr_size = elf_tdata (abfd)->program_header_size; if (phdr_size == 0) phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr; if ((abfd->flags & D_PAGED) == 0 || sections[0]->lma < phdr_size || sections[0]->lma % maxpagesize < phdr_size % maxpagesize) phdr_in_segment = false; } for (i = 0, hdrpp = sections; i < count; i++, hdrpp++) { asection *hdr; boolean new_segment; hdr = *hdrpp; /* See if this section and the last one will fit in the same segment. */ if (last_hdr == NULL) { /* If we don't have a segment yet, then we don't need a new one (we build the last one after this loop). */ new_segment = false; } else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma) { /* If this section has a different relation between the virtual address and the load address, then we need a new segment. */ new_segment = true; } else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize) < BFD_ALIGN (hdr->lma, maxpagesize)) { /* If putting this section in this segment would force us to skip a page in the segment, then we need a new segment. */ new_segment = true; } else if ((last_hdr->flags & SEC_LOAD) == 0 && (hdr->flags & SEC_LOAD) != 0) { /* We don't want to put a loadable section after a nonloadable section in the same segment. */ new_segment = true; } else if ((abfd->flags & D_PAGED) == 0) { /* If the file is not demand paged, which means that we don't require the sections to be correctly aligned in the file, then there is no other reason for a new segment. */ new_segment = false; } else if (! writable && (hdr->flags & SEC_READONLY) == 0 && (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize) == hdr->lma)) { /* We don't want to put a writable section in a read only segment, unless they are on the same page in memory anyhow. We already know that the last section does not bring us past the current section on the page, so the only case in which the new section is not on the same page as the previous section is when the previous section ends precisely on a page boundary. */ new_segment = true; } else { /* Otherwise, we can use the same segment. */ new_segment = false; } if (! new_segment) { if ((hdr->flags & SEC_READONLY) == 0) writable = true; last_hdr = hdr; continue; } /* We need a new program segment. We must create a new program header holding all the sections from phdr_index until hdr. */ m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); if (m == NULL) goto error_return; *pm = m; pm = &m->next; if ((hdr->flags & SEC_READONLY) == 0) writable = true; else writable = false; last_hdr = hdr; phdr_index = i; phdr_in_segment = false; } /* Create a final PT_LOAD program segment. */ if (last_hdr != NULL) { m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); if (m == NULL) goto error_return; *pm = m; pm = &m->next; } /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */ if (dynsec != NULL) { m = ((struct elf_segment_map *) bfd_zalloc (abfd, sizeof (struct elf_segment_map))); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_DYNAMIC; m->count = 1; m->sections[0] = dynsec; *pm = m; pm = &m->next; } /* For each loadable .note section, add a PT_NOTE segment. We don't use bfd_get_section_by_name, because if we link together nonloadable .note sections and loadable .note sections, we will generate two .note sections in the output file. FIXME: Using names for section types is bogus anyhow. */ for (s = abfd->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LOAD) != 0 && strncmp (s->name, ".note", 5) == 0) { m = ((struct elf_segment_map *) bfd_zalloc (abfd, sizeof (struct elf_segment_map))); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_NOTE; m->count = 1; m->sections[0] = s; *pm = m; pm = &m->next; } } free (sections); sections = NULL; elf_tdata (abfd)->segment_map = mfirst; return true; error_return: if (sections != NULL) free (sections); return false; } /* Sort sections by address. */ static int elf_sort_sections (arg1, arg2) const PTR arg1; const PTR arg2; { const asection *sec1 = *(const asection **) arg1; const asection *sec2 = *(const asection **) arg2; /* Sort by LMA first, since this is the address used to place the section into a segment. */ if (sec1->lma < sec2->lma) return -1; else if (sec1->lma > sec2->lma) return 1; /* Then sort by VMA. Normally the LMA and the VMA will be the same, and this will do nothing. */ if (sec1->vma < sec2->vma) return -1; else if (sec1->vma > sec2->vma) return 1; /* Put !SEC_LOAD sections after SEC_LOAD ones. */ #define TOEND(x) (((x)->flags & SEC_LOAD) == 0) if (TOEND (sec1)) { if (TOEND (sec2)) { /* If the indicies are the same, do not return 0 here, but continue to try the next comparison. */ if (sec1->target_index - sec2->target_index != 0) return sec1->target_index - sec2->target_index; } else return 1; } else if (TOEND (sec2)) return -1; #undef TOEND /* Sort by size, to put zero sized sections before others at the same address. */ if (sec1->_raw_size < sec2->_raw_size) return -1; if (sec1->_raw_size > sec2->_raw_size) return 1; return sec1->target_index - sec2->target_index; } /* Assign file positions to the sections based on the mapping from sections to segments. This function also sets up some fields in the file header, and writes out the program headers. */ static boolean assign_file_positions_for_segments (abfd) bfd *abfd; { const struct elf_backend_data *bed = get_elf_backend_data (abfd); unsigned int count; struct elf_segment_map *m; unsigned int alloc; Elf_Internal_Phdr *phdrs; file_ptr off, voff; bfd_vma filehdr_vaddr, filehdr_paddr; bfd_vma phdrs_vaddr, phdrs_paddr; Elf_Internal_Phdr *p; if (elf_tdata (abfd)->segment_map == NULL) { if (! map_sections_to_segments (abfd)) return false; } if (bed->elf_backend_modify_segment_map) { if (! (*bed->elf_backend_modify_segment_map) (abfd)) return false; } count = 0; for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) ++count; elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr; elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr; elf_elfheader (abfd)->e_phnum = count; if (count == 0) return true; /* If we already counted the number of program segments, make sure that we allocated enough space. This happens when SIZEOF_HEADERS is used in a linker script. */ alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr; if (alloc != 0 && count > alloc) { ((*_bfd_error_handler) (_("%s: Not enough room for program headers (allocated %u, need %u)"), bfd_get_filename (abfd), alloc, count)); bfd_set_error (bfd_error_bad_value); return false; } if (alloc == 0) alloc = count; phdrs = ((Elf_Internal_Phdr *) bfd_alloc (abfd, alloc * sizeof (Elf_Internal_Phdr))); if (phdrs == NULL) return false; off = bed->s->sizeof_ehdr; off += alloc * bed->s->sizeof_phdr; filehdr_vaddr = 0; filehdr_paddr = 0; phdrs_vaddr = 0; phdrs_paddr = 0; for (m = elf_tdata (abfd)->segment_map, p = phdrs; m != NULL; m = m->next, p++) { unsigned int i; asection **secpp; /* If elf_segment_map is not from map_sections_to_segments, the sections may not be correctly ordered. */ if (m->count > 0) qsort (m->sections, (size_t) m->count, sizeof (asection *), elf_sort_sections); p->p_type = m->p_type; p->p_flags = m->p_flags; if (p->p_type == PT_LOAD && m->count > 0 && (m->sections[0]->flags & SEC_ALLOC) != 0) { if ((abfd->flags & D_PAGED) != 0) off += (m->sections[0]->vma - off) % bed->maxpagesize; else { bfd_size_type align; align = 0; for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) { bfd_size_type secalign; secalign = bfd_get_section_alignment (abfd, *secpp); if (secalign > align) align = secalign; } off += (m->sections[0]->vma - off) % (1 << align); } } if (m->count == 0) p->p_vaddr = 0; else p->p_vaddr = m->sections[0]->vma; if (m->p_paddr_valid) p->p_paddr = m->p_paddr; else if (m->count == 0) p->p_paddr = 0; else p->p_paddr = m->sections[0]->lma; if (p->p_type == PT_LOAD && (abfd->flags & D_PAGED) != 0) p->p_align = bed->maxpagesize; else if (m->count == 0) p->p_align = bed->s->file_align; else p->p_align = 0; p->p_offset = 0; p->p_filesz = 0; p->p_memsz = 0; if (m->includes_filehdr) { if (! m->p_flags_valid) p->p_flags |= PF_R; p->p_offset = 0; p->p_filesz = bed->s->sizeof_ehdr; p->p_memsz = bed->s->sizeof_ehdr; if (m->count > 0) { BFD_ASSERT (p->p_type == PT_LOAD); if (p->p_vaddr < (bfd_vma) off) { _bfd_error_handler (_("%s: Not enough room for program headers, try linking with -N"), bfd_get_filename (abfd)); bfd_set_error (bfd_error_bad_value); return false; } p->p_vaddr -= off; if (! m->p_paddr_valid) p->p_paddr -= off; } if (p->p_type == PT_LOAD) { filehdr_vaddr = p->p_vaddr; filehdr_paddr = p->p_paddr; } } if (m->includes_phdrs) { if (! m->p_flags_valid) p->p_flags |= PF_R; if (m->includes_filehdr) { if (p->p_type == PT_LOAD) { phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr; phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr; } } else { p->p_offset = bed->s->sizeof_ehdr; if (m->count > 0) { BFD_ASSERT (p->p_type == PT_LOAD); p->p_vaddr -= off - p->p_offset; if (! m->p_paddr_valid) p->p_paddr -= off - p->p_offset; } if (p->p_type == PT_LOAD) { phdrs_vaddr = p->p_vaddr; phdrs_paddr = p->p_paddr; } else phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr; } p->p_filesz += alloc * bed->s->sizeof_phdr; p->p_memsz += alloc * bed->s->sizeof_phdr; } if (p->p_type == PT_LOAD || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)) { if (! m->includes_filehdr && ! m->includes_phdrs) p->p_offset = off; else { file_ptr adjust; adjust = off - (p->p_offset + p->p_filesz); p->p_filesz += adjust; p->p_memsz += adjust; } } voff = off; for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) { asection *sec; flagword flags; bfd_size_type align; sec = *secpp; flags = sec->flags; align = 1 << bfd_get_section_alignment (abfd, sec); /* The section may have artificial alignment forced by a link script. Notice this case by the gap between the cumulative phdr vma and the section's vma. */ if (p->p_vaddr + p->p_memsz < sec->vma) { bfd_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz); p->p_memsz += adjust; off += adjust; voff += adjust; if ((flags & SEC_LOAD) != 0) p->p_filesz += adjust; } if (p->p_type == PT_LOAD) { bfd_signed_vma adjust; if ((flags & SEC_LOAD) != 0) { adjust = sec->lma - (p->p_paddr + p->p_memsz); if (adjust < 0) adjust = 0; } else if ((flags & SEC_ALLOC) != 0) { /* The section VMA must equal the file position modulo the page size. FIXME: I'm not sure if this adjustment is really necessary. We used to not have the SEC_LOAD case just above, and then this was necessary, but now I'm not sure. */ if ((abfd->flags & D_PAGED) != 0) adjust = (sec->vma - voff) % bed->maxpagesize; else adjust = (sec->vma - voff) % align; } else adjust = 0; if (adjust != 0) { if (i == 0) { (* _bfd_error_handler) (_("Error: First section in segment (%s) starts at 0x%x"), bfd_section_name (abfd, sec), sec->lma); (* _bfd_error_handler) (_(" whereas segment starts at 0x%x"), p->p_paddr); return false; } p->p_memsz += adjust; off += adjust; voff += adjust; if ((flags & SEC_LOAD) != 0) p->p_filesz += adjust; } sec->filepos = off; /* We check SEC_HAS_CONTENTS here because if NOLOAD is used in a linker script we may have a section with SEC_LOAD clear but which is supposed to have contents. */ if ((flags & SEC_LOAD) != 0 || (flags & SEC_HAS_CONTENTS) != 0) off += sec->_raw_size; if ((flags & SEC_ALLOC) != 0) voff += sec->_raw_size; } if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core) { /* The actual "note" segment has i == 0. This is the one that actually contains everything. */ if (i == 0) { sec->filepos = off; p->p_filesz = sec->_raw_size; off += sec->_raw_size; voff = off; } else { /* Fake sections -- don't need to be written. */ sec->filepos = 0; sec->_raw_size = 0; flags = sec->flags = 0; } p->p_memsz = 0; p->p_align = 1; } else { p->p_memsz += sec->_raw_size; if ((flags & SEC_LOAD) != 0) p->p_filesz += sec->_raw_size; if (align > p->p_align && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0)) p->p_align = align; } if (! m->p_flags_valid) { p->p_flags |= PF_R; if ((flags & SEC_CODE) != 0) p->p_flags |= PF_X; if ((flags & SEC_READONLY) == 0) p->p_flags |= PF_W; } } } /* Now that we have set the section file positions, we can set up the file positions for the non PT_LOAD segments. */ for (m = elf_tdata (abfd)->segment_map, p = phdrs; m != NULL; m = m->next, p++) { if (p->p_type != PT_LOAD && m->count > 0) { BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs); p->p_offset = m->sections[0]->filepos; } if (m->count == 0) { if (m->includes_filehdr) { p->p_vaddr = filehdr_vaddr; if (! m->p_paddr_valid) p->p_paddr = filehdr_paddr; } else if (m->includes_phdrs) { p->p_vaddr = phdrs_vaddr; if (! m->p_paddr_valid) p->p_paddr = phdrs_paddr; } } } /* Clear out any program headers we allocated but did not use. */ for (; count < alloc; count++, p++) { memset (p, 0, sizeof *p); p->p_type = PT_NULL; } elf_tdata (abfd)->phdr = phdrs; elf_tdata (abfd)->next_file_pos = off; /* Write out the program headers. */ if (bfd_seek (abfd, bed->s->sizeof_ehdr, SEEK_SET) != 0 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0) return false; return true; } /* Get the size of the program header. If this is called by the linker before any of the section VMA's are set, it can't calculate the correct value for a strange memory layout. This only happens when SIZEOF_HEADERS is used in a linker script. In this case, SORTED_HDRS is NULL and we assume the normal scenario of one text and one data segment (exclusive of .interp and .dynamic). ??? User written scripts must either not use SIZEOF_HEADERS, or assume there will be two segments. */ static bfd_size_type get_program_header_size (abfd) bfd *abfd; { size_t segs; asection *s; struct elf_backend_data *bed = get_elf_backend_data (abfd); /* We can't return a different result each time we're called. */ if (elf_tdata (abfd)->program_header_size != 0) return elf_tdata (abfd)->program_header_size; if (elf_tdata (abfd)->segment_map != NULL) { struct elf_segment_map *m; segs = 0; for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) ++segs; elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr; return elf_tdata (abfd)->program_header_size; } /* Assume we will need exactly two PT_LOAD segments: one for text and one for data. */ segs = 2; s = bfd_get_section_by_name (abfd, ".interp"); if (s != NULL && (s->flags & SEC_LOAD) != 0) { /* If we have a loadable interpreter section, we need a PT_INTERP segment. In this case, assume we also need a PT_PHDR segment, although that may not be true for all targets. */ segs += 2; } if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) { /* We need a PT_DYNAMIC segment. */ ++segs; } for (s = abfd->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LOAD) != 0 && strncmp (s->name, ".note", 5) == 0) { /* We need a PT_NOTE segment. */ ++segs; } } /* Let the backend count up any program headers it might need. */ if (bed->elf_backend_additional_program_headers) { int a; a = (*bed->elf_backend_additional_program_headers) (abfd); if (a == -1) abort (); segs += a; } elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr; return elf_tdata (abfd)->program_header_size; } /* Work out the file positions of all the sections. This is called by _bfd_elf_compute_section_file_positions. All the section sizes and VMAs must be known before this is called. We do not consider reloc sections at this point, unless they form part of the loadable image. Reloc sections are assigned file positions in assign_file_positions_for_relocs, which is called by write_object_contents and final_link. We also don't set the positions of the .symtab and .strtab here. */ static boolean assign_file_positions_except_relocs (abfd) bfd *abfd; { struct elf_obj_tdata * const tdata = elf_tdata (abfd); Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd); Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); file_ptr off; struct elf_backend_data *bed = get_elf_backend_data (abfd); if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 && bfd_get_format (abfd) != bfd_core) { Elf_Internal_Shdr **hdrpp; unsigned int i; /* Start after the ELF header. */ off = i_ehdrp->e_ehsize; /* We are not creating an executable, which means that we are not creating a program header, and that the actual order of the sections in the file is unimportant. */ for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++) { Elf_Internal_Shdr *hdr; hdr = *hdrpp; if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) { hdr->sh_offset = -1; continue; } if (i == tdata->symtab_section || i == tdata->strtab_section) { hdr->sh_offset = -1; continue; } off = _bfd_elf_assign_file_position_for_section (hdr, off, true); } } else { unsigned int i; Elf_Internal_Shdr **hdrpp; /* Assign file positions for the loaded sections based on the assignment of sections to segments. */ if (! assign_file_positions_for_segments (abfd)) return false; /* Assign file positions for the other sections. */ off = elf_tdata (abfd)->next_file_pos; for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++) { Elf_Internal_Shdr *hdr; hdr = *hdrpp; if (hdr->bfd_section != NULL && hdr->bfd_section->filepos != 0) hdr->sh_offset = hdr->bfd_section->filepos; else if ((hdr->sh_flags & SHF_ALLOC) != 0) { ((*_bfd_error_handler) (_("%s: warning: allocated section `%s' not in segment"), bfd_get_filename (abfd), (hdr->bfd_section == NULL ? "*unknown*" : hdr->bfd_section->name))); if ((abfd->flags & D_PAGED) != 0) off += (hdr->sh_addr - off) % bed->maxpagesize; else off += (hdr->sh_addr - off) % hdr->sh_addralign; off = _bfd_elf_assign_file_position_for_section (hdr, off, false); } else if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA || hdr == i_shdrpp[tdata->symtab_section] || hdr == i_shdrpp[tdata->strtab_section]) hdr->sh_offset = -1; else off = _bfd_elf_assign_file_position_for_section (hdr, off, true); } } /* Place the section headers. */ off = align_file_position (off, bed->s->file_align); i_ehdrp->e_shoff = off; off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; elf_tdata (abfd)->next_file_pos = off; return true; } static boolean prep_headers (abfd) bfd *abfd; { Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */ Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */ int count; struct bfd_strtab_hash *shstrtab; struct elf_backend_data *bed = get_elf_backend_data (abfd); i_ehdrp = elf_elfheader (abfd); i_shdrp = elf_elfsections (abfd); shstrtab = _bfd_elf_stringtab_init (); if (shstrtab == NULL) return false; elf_shstrtab (abfd) = shstrtab; i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass; i_ehdrp->e_ident[EI_DATA] = bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB; i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current; i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NONE; i_ehdrp->e_ident[EI_ABIVERSION] = 0; for (count = EI_PAD; count < EI_NIDENT; count++) i_ehdrp->e_ident[count] = 0; if ((abfd->flags & DYNAMIC) != 0) i_ehdrp->e_type = ET_DYN; else if ((abfd->flags & EXEC_P) != 0) i_ehdrp->e_type = ET_EXEC; else if (bfd_get_format (abfd) == bfd_core) i_ehdrp->e_type = ET_CORE; else i_ehdrp->e_type = ET_REL; switch (bfd_get_arch (abfd)) { case bfd_arch_unknown: i_ehdrp->e_machine = EM_NONE; break; case bfd_arch_sparc: if (bfd_get_arch_size (abfd) == 64) i_ehdrp->e_machine = EM_SPARCV9; else i_ehdrp->e_machine = EM_SPARC; break; case bfd_arch_i370: i_ehdrp->e_machine = EM_S370; break; case bfd_arch_i386: if (bfd_get_arch_size (abfd) == 64) i_ehdrp->e_machine = EM_X86_64; else i_ehdrp->e_machine = EM_386; break; case bfd_arch_ia64: i_ehdrp->e_machine = EM_IA_64; break; case bfd_arch_m68hc11: i_ehdrp->e_machine = EM_68HC11; break; case bfd_arch_m68hc12: i_ehdrp->e_machine = EM_68HC12; break; case bfd_arch_s390: i_ehdrp->e_machine = EM_S390; break; case bfd_arch_m68k: i_ehdrp->e_machine = EM_68K; break; case bfd_arch_m88k: i_ehdrp->e_machine = EM_88K; break; case bfd_arch_i860: i_ehdrp->e_machine = EM_860; break; case bfd_arch_i960: i_ehdrp->e_machine = EM_960; break; case bfd_arch_mips: /* MIPS Rxxxx */ i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */ break; case bfd_arch_hppa: i_ehdrp->e_machine = EM_PARISC; break; case bfd_arch_powerpc: i_ehdrp->e_machine = EM_PPC; break; case bfd_arch_alpha: i_ehdrp->e_machine = EM_ALPHA; break; case bfd_arch_sh: i_ehdrp->e_machine = EM_SH; break; case bfd_arch_d10v: i_ehdrp->e_machine = EM_CYGNUS_D10V; break; case bfd_arch_d30v: i_ehdrp->e_machine = EM_CYGNUS_D30V; break; case bfd_arch_fr30: i_ehdrp->e_machine = EM_CYGNUS_FR30; break; case bfd_arch_mcore: i_ehdrp->e_machine = EM_MCORE; break; case bfd_arch_avr: i_ehdrp->e_machine = EM_AVR; break; case bfd_arch_v850: switch (bfd_get_mach (abfd)) { default: case 0: i_ehdrp->e_machine = EM_CYGNUS_V850; break; } break; case bfd_arch_arc: i_ehdrp->e_machine = EM_CYGNUS_ARC; break; case bfd_arch_arm: i_ehdrp->e_machine = EM_ARM; break; case bfd_arch_m32r: i_ehdrp->e_machine = EM_CYGNUS_M32R; break; case bfd_arch_mn10200: i_ehdrp->e_machine = EM_CYGNUS_MN10200; break; case bfd_arch_mn10300: i_ehdrp->e_machine = EM_CYGNUS_MN10300; break; case bfd_arch_pj: i_ehdrp->e_machine = EM_PJ; break; case bfd_arch_cris: i_ehdrp->e_machine = EM_CRIS; break; case bfd_arch_openrisc: i_ehdrp->e_machine = EM_OPENRISC; break; /* Also note that EM_M32, AT&T WE32100 is unknown to bfd. */ default: i_ehdrp->e_machine = EM_NONE; } i_ehdrp->e_version = bed->s->ev_current; i_ehdrp->e_ehsize = bed->s->sizeof_ehdr; /* No program header, for now. */ i_ehdrp->e_phoff = 0; i_ehdrp->e_phentsize = 0; i_ehdrp->e_phnum = 0; /* Each bfd section is section header entry. */ i_ehdrp->e_entry = bfd_get_start_address (abfd); i_ehdrp->e_shentsize = bed->s->sizeof_shdr; /* If we're building an executable, we'll need a program header table. */ if (abfd->flags & EXEC_P) { /* It all happens later. */ #if 0 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr); /* elf_build_phdrs() returns a (NULL-terminated) array of Elf_Internal_Phdrs. */ i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum); i_ehdrp->e_phoff = outbase; outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum; #endif } else { i_ehdrp->e_phentsize = 0; i_phdrp = 0; i_ehdrp->e_phoff = 0; } elf_tdata (abfd)->symtab_hdr.sh_name = (unsigned int) _bfd_stringtab_add (shstrtab, ".symtab", true, false); elf_tdata (abfd)->strtab_hdr.sh_name = (unsigned int) _bfd_stringtab_add (shstrtab, ".strtab", true, false); elf_tdata (abfd)->shstrtab_hdr.sh_name = (unsigned int) _bfd_stringtab_add (shstrtab, ".shstrtab", true, false); if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) return false; return true; } /* Assign file positions for all the reloc sections which are not part of the loadable file image. */ void _bfd_elf_assign_file_positions_for_relocs (abfd) bfd *abfd; { file_ptr off; unsigned int i; Elf_Internal_Shdr **shdrpp; off = elf_tdata (abfd)->next_file_pos; for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < elf_elfheader (abfd)->e_shnum; i++, shdrpp++) { Elf_Internal_Shdr *shdrp; shdrp = *shdrpp; if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA) && shdrp->sh_offset == -1) off = _bfd_elf_assign_file_position_for_section (shdrp, off, true); } elf_tdata (abfd)->next_file_pos = off; } boolean _bfd_elf_write_object_contents (abfd) bfd *abfd; { struct elf_backend_data *bed = get_elf_backend_data (abfd); Elf_Internal_Ehdr *i_ehdrp; Elf_Internal_Shdr **i_shdrp; boolean failed; unsigned int count; if (! abfd->output_has_begun && ! _bfd_elf_compute_section_file_positions (abfd, (struct bfd_link_info *) NULL)) return false; i_shdrp = elf_elfsections (abfd); i_ehdrp = elf_elfheader (abfd); failed = false; bfd_map_over_sections (abfd, bed->s->write_relocs, &failed); if (failed) return false; _bfd_elf_assign_file_positions_for_relocs (abfd); /* After writing the headers, we need to write the sections too... */ for (count = 1; count < i_ehdrp->e_shnum; count++) { if (bed->elf_backend_section_processing) (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]); if (i_shdrp[count]->contents) { if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 || (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size, 1, abfd) != i_shdrp[count]->sh_size)) return false; } } /* Write out the section header names. */ if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0 || ! _bfd_stringtab_emit (abfd, elf_shstrtab (abfd))) return false; if (bed->elf_backend_final_write_processing) (*bed->elf_backend_final_write_processing) (abfd, elf_tdata (abfd)->linker); return bed->s->write_shdrs_and_ehdr (abfd); } boolean _bfd_elf_write_corefile_contents (abfd) bfd *abfd; { /* Hopefully this can be done just like an object file. */ return _bfd_elf_write_object_contents (abfd); } /* Given a section, search the header to find them. */ int _bfd_elf_section_from_bfd_section (abfd, asect) bfd *abfd; struct sec *asect; { struct elf_backend_data *bed = get_elf_backend_data (abfd); Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd); int index; Elf_Internal_Shdr *hdr; int maxindex = elf_elfheader (abfd)->e_shnum; for (index = 0; index < maxindex; index++) { hdr = i_shdrp[index]; if (hdr->bfd_section == asect) return index; } if (bed->elf_backend_section_from_bfd_section) { for (index = 0; index < maxindex; index++) { int retval; hdr = i_shdrp[index]; retval = index; if ((*bed->elf_backend_section_from_bfd_section) (abfd, hdr, asect, &retval)) return retval; } } if (bfd_is_abs_section (asect)) return SHN_ABS; if (bfd_is_com_section (asect)) return SHN_COMMON; if (bfd_is_und_section (asect)) return SHN_UNDEF; bfd_set_error (bfd_error_nonrepresentable_section); return -1; } /* Given a BFD symbol, return the index in the ELF symbol table, or -1 on error. */ int _bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr) bfd *abfd; asymbol **asym_ptr_ptr; { asymbol *asym_ptr = *asym_ptr_ptr; int idx; flagword flags = asym_ptr->flags; /* When gas creates relocations against local labels, it creates its own symbol for the section, but does put the symbol into the symbol chain, so udata is 0. When the linker is generating relocatable output, this section symbol may be for one of the input sections rather than the output section. */ if (asym_ptr->udata.i == 0 && (flags & BSF_SECTION_SYM) && asym_ptr->section) { int indx; if (asym_ptr->section->output_section != NULL) indx = asym_ptr->section->output_section->index; else indx = asym_ptr->section->index; if (elf_section_syms (abfd)[indx]) asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i; } idx = asym_ptr->udata.i; if (idx == 0) { /* This case can occur when using --strip-symbol on a symbol which is used in a relocation entry. */ (*_bfd_error_handler) (_("%s: symbol `%s' required but not present"), bfd_get_filename (abfd), bfd_asymbol_name (asym_ptr)); bfd_set_error (bfd_error_no_symbols); return -1; } #if DEBUG & 4 { fprintf (stderr, _("elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n"), (long) asym_ptr, asym_ptr->name, idx, flags, elf_symbol_flags (flags)); fflush (stderr); } #endif return idx; } /* Copy private BFD data. This copies any program header information. */ static boolean copy_private_bfd_data (ibfd, obfd) bfd *ibfd; bfd *obfd; { Elf_Internal_Ehdr * iehdr; struct elf_segment_map * map; struct elf_segment_map * map_first; struct elf_segment_map ** pointer_to_map; Elf_Internal_Phdr * segment; asection * section; unsigned int i; unsigned int num_segments; boolean phdr_included = false; bfd_vma maxpagesize; struct elf_segment_map * phdr_adjust_seg = NULL; unsigned int phdr_adjust_num = 0; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return true; if (elf_tdata (ibfd)->phdr == NULL) return true; iehdr = elf_elfheader (ibfd); map_first = NULL; pointer_to_map = &map_first; num_segments = elf_elfheader (ibfd)->e_phnum; maxpagesize = get_elf_backend_data (obfd)->maxpagesize; /* Returns the end address of the segment + 1. */ #define SEGMENT_END(segment, start) \ (start + (segment->p_memsz > segment->p_filesz \ ? segment->p_memsz : segment->p_filesz)) /* Returns true if the given section is contained within the given segment. VMA addresses are compared. */ #define IS_CONTAINED_BY_VMA(section, segment) \ (section->vma >= segment->p_vaddr \ && (section->vma + section->_raw_size) \ <= (SEGMENT_END (segment, segment->p_vaddr))) /* Returns true if the given section is contained within the given segment. LMA addresses are compared. */ #define IS_CONTAINED_BY_LMA(section, segment, base) \ (section->lma >= base \ && (section->lma + section->_raw_size) \ <= SEGMENT_END (segment, base)) /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */ #define IS_COREFILE_NOTE(p, s) \ (p->p_type == PT_NOTE \ && bfd_get_format (ibfd) == bfd_core \ && s->vma == 0 && s->lma == 0 \ && (bfd_vma) s->filepos >= p->p_offset \ && (bfd_vma) s->filepos + s->_raw_size \ <= p->p_offset + p->p_filesz) /* The complicated case when p_vaddr is 0 is to handle the Solaris linker, which generates a PT_INTERP section with p_vaddr and p_memsz set to 0. */ #define IS_SOLARIS_PT_INTERP(p, s) \ ( p->p_vaddr == 0 \ && p->p_filesz > 0 \ && (s->flags & SEC_HAS_CONTENTS) != 0 \ && s->_raw_size > 0 \ && (bfd_vma) s->filepos >= p->p_offset \ && ((bfd_vma) s->filepos + s->_raw_size \ <= p->p_offset + p->p_filesz)) /* Decide if the given section should be included in the given segment. A section will be included if: 1. It is within the address space of the segment, 2. It is an allocated segment, 3. There is an output section associated with it, 4. The section has not already been allocated to a previous segment. */ #define INCLUDE_SECTION_IN_SEGMENT(section, segment) \ ((((IS_CONTAINED_BY_VMA (section, segment) \ || IS_SOLARIS_PT_INTERP (segment, section)) \ && (section->flags & SEC_ALLOC) != 0) \ || IS_COREFILE_NOTE (segment, section)) \ && section->output_section != NULL \ && section->segment_mark == false) /* Returns true iff seg1 starts after the end of seg2. */ #define SEGMENT_AFTER_SEGMENT(seg1, seg2) \ (seg1->p_vaddr >= SEGMENT_END (seg2, seg2->p_vaddr)) /* Returns true iff seg1 and seg2 overlap. */ #define SEGMENT_OVERLAPS(seg1, seg2) \ (!(SEGMENT_AFTER_SEGMENT (seg1, seg2) || SEGMENT_AFTER_SEGMENT (seg2, seg1))) /* Initialise the segment mark field. */ for (section = ibfd->sections; section != NULL; section = section->next) section->segment_mark = false; /* Scan through the segments specified in the program header of the input BFD. For this first scan we look for overlaps in the loadable segments. These can be created by wierd parameters to objcopy. */ for (i = 0, segment = elf_tdata (ibfd)->phdr; i < num_segments; i++, segment++) { unsigned int j; Elf_Internal_Phdr *segment2; if (segment->p_type != PT_LOAD) continue; /* Determine if this segment overlaps any previous segments. */ for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++) { bfd_signed_vma extra_length; if (segment2->p_type != PT_LOAD || ! SEGMENT_OVERLAPS (segment, segment2)) continue; /* Merge the two segments together. */ if (segment2->p_vaddr < segment->p_vaddr) { /* Extend SEGMENT2 to include SEGMENT and then delete SEGMENT. */ extra_length = SEGMENT_END (segment, segment->p_vaddr) - SEGMENT_END (segment2, segment2->p_vaddr); if (extra_length > 0) { segment2->p_memsz += extra_length; segment2->p_filesz += extra_length; } segment->p_type = PT_NULL; /* Since we have deleted P we must restart the outer loop. */ i = 0; segment = elf_tdata (ibfd)->phdr; break; } else { /* Extend SEGMENT to include SEGMENT2 and then delete SEGMENT2. */ extra_length = SEGMENT_END (segment2, segment2->p_vaddr) - SEGMENT_END (segment, segment->p_vaddr); if (extra_length > 0) { segment->p_memsz += extra_length; segment->p_filesz += extra_length; } segment2->p_type = PT_NULL; } } } /* The second scan attempts to assign sections to segments. */ for (i = 0, segment = elf_tdata (ibfd)->phdr; i < num_segments; i ++, segment ++) { unsigned int section_count; asection ** sections; asection * output_section; unsigned int isec; bfd_vma matching_lma; bfd_vma suggested_lma; unsigned int j; if (segment->p_type == PT_NULL) continue; /* Compute how many sections might be placed into this segment. */ section_count = 0; for (section = ibfd->sections; section != NULL; section = section->next) if (INCLUDE_SECTION_IN_SEGMENT (section, segment)) ++section_count; /* Allocate a segment map big enough to contain all of the sections we have selected. */ map = ((struct elf_segment_map *) bfd_alloc (obfd, (sizeof (struct elf_segment_map) + ((size_t) section_count - 1) * sizeof (asection *)))); if (map == NULL) return false; /* Initialise the fields of the segment map. Default to using the physical address of the segment in the input BFD. */ map->next = NULL; map->p_type = segment->p_type; map->p_flags = segment->p_flags; map->p_flags_valid = 1; map->p_paddr = segment->p_paddr; map->p_paddr_valid = 1; /* Determine if this segment contains the ELF file header and if it contains the program headers themselves. */ map->includes_filehdr = (segment->p_offset == 0 && segment->p_filesz >= iehdr->e_ehsize); map->includes_phdrs = 0; if (! phdr_included || segment->p_type != PT_LOAD) { map->includes_phdrs = (segment->p_offset <= (bfd_vma) iehdr->e_phoff && (segment->p_offset + segment->p_filesz >= ((bfd_vma) iehdr->e_phoff + iehdr->e_phnum * iehdr->e_phentsize))); if (segment->p_type == PT_LOAD && map->includes_phdrs) phdr_included = true; } if (section_count == 0) { /* Special segments, such as the PT_PHDR segment, may contain no sections, but ordinary, loadable segments should contain something. */ if (segment->p_type == PT_LOAD) _bfd_error_handler (_("%s: warning: Empty loadable segment detected\n"), bfd_get_filename (ibfd)); map->count = 0; *pointer_to_map = map; pointer_to_map = &map->next; continue; } /* Now scan the sections in the input BFD again and attempt to add their corresponding output sections to the segment map. The problem here is how to handle an output section which has been moved (ie had its LMA changed). There are four possibilities: 1. None of the sections have been moved. In this case we can continue to use the segment LMA from the input BFD. 2. All of the sections have been moved by the same amount. In this case we can change the segment's LMA to match the LMA of the first section. 3. Some of the sections have been moved, others have not. In this case those sections which have not been moved can be placed in the current segment which will have to have its size, and possibly its LMA changed, and a new segment or segments will have to be created to contain the other sections. 4. The sections have been moved, but not be the same amount. In this case we can change the segment's LMA to match the LMA of the first section and we will have to create a new segment or segments to contain the other sections. In order to save time, we allocate an array to hold the section pointers that we are interested in. As these sections get assigned to a segment, they are removed from this array. */ sections = (asection **) bfd_malloc (sizeof (asection *) * section_count); if (sections == NULL) return false; /* Step One: Scan for segment vs section LMA conflicts. Also add the sections to the section array allocated above. Also add the sections to the current segment. In the common case, where the sections have not been moved, this means that we have completely filled the segment, and there is nothing more to do. */ isec = 0; matching_lma = 0; suggested_lma = 0; for (j = 0, section = ibfd->sections; section != NULL; section = section->next) { if (INCLUDE_SECTION_IN_SEGMENT (section, segment)) { output_section = section->output_section; sections[j ++] = section; /* The Solaris native linker always sets p_paddr to 0. We try to catch that case here, and set it to the correct value. */ if (segment->p_paddr == 0 && segment->p_vaddr != 0 && isec == 0 && output_section->lma != 0 && (output_section->vma == (segment->p_vaddr + (map->includes_filehdr ? iehdr->e_ehsize : 0) + (map->includes_phdrs ? iehdr->e_phnum * iehdr->e_phentsize : 0)))) map->p_paddr = segment->p_vaddr; /* Match up the physical address of the segment with the LMA address of the output section. */ if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) || IS_COREFILE_NOTE (segment, section)) { if (matching_lma == 0) matching_lma = output_section->lma; /* We assume that if the section fits within the segment then it does not overlap any other section within that segment. */ map->sections[isec ++] = output_section; } else if (suggested_lma == 0) suggested_lma = output_section->lma; } } BFD_ASSERT (j == section_count); /* Step Two: Adjust the physical address of the current segment, if necessary. */ if (isec == section_count) { /* All of the sections fitted within the segment as currently specified. This is the default case. Add the segment to the list of built segments and carry on to process the next program header in the input BFD. */ map->count = section_count; *pointer_to_map = map; pointer_to_map = &map->next; free (sections); continue; } else { if (matching_lma != 0) { /* At least one section fits inside the current segment. Keep it, but modify its physical address to match the LMA of the first section that fitted. */ map->p_paddr = matching_lma; } else { /* None of the sections fitted inside the current segment. Change the current segment's physical address to match the LMA of the first section. */ map->p_paddr = suggested_lma; } /* Offset the segment physical address from the lma to allow for space taken up by elf headers. */ if (map->includes_filehdr) map->p_paddr -= iehdr->e_ehsize; if (map->includes_phdrs) { map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize; /* iehdr->e_phnum is just an estimate of the number of program headers that we will need. Make a note here of the number we used and the segment we chose to hold these headers, so that we can adjust the offset when we know the correct value. */ phdr_adjust_num = iehdr->e_phnum; phdr_adjust_seg = map; } } /* Step Three: Loop over the sections again, this time assigning those that fit to the current segment and remvoing them from the sections array; but making sure not to leave large gaps. Once all possible sections have been assigned to the current segment it is added to the list of built segments and if sections still remain to be assigned, a new segment is constructed before repeating the loop. */ isec = 0; do { map->count = 0; suggested_lma = 0; /* Fill the current segment with sections that fit. */ for (j = 0; j < section_count; j++) { section = sections[j]; if (section == NULL) continue; output_section = section->output_section; BFD_ASSERT (output_section != NULL); if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) || IS_COREFILE_NOTE (segment, section)) { if (map->count == 0) { /* If the first section in a segment does not start at the beginning of the segment, then something is wrong. */ if (output_section->lma != (map->p_paddr + (map->includes_filehdr ? iehdr->e_ehsize : 0) + (map->includes_phdrs ? iehdr->e_phnum * iehdr->e_phentsize : 0))) abort (); } else { asection * prev_sec; prev_sec = map->sections[map->count - 1]; /* If the gap between the end of the previous section and the start of this section is more than maxpagesize then we need to start a new segment. */ if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size, maxpagesize) < BFD_ALIGN (output_section->lma, maxpagesize)) || ((prev_sec->lma + prev_sec->_raw_size) > output_section->lma)) { if (suggested_lma == 0) suggested_lma = output_section->lma; continue; } } map->sections[map->count++] = output_section; ++isec; sections[j] = NULL; section->segment_mark = true; } else if (suggested_lma == 0) suggested_lma = output_section->lma; } BFD_ASSERT (map->count > 0); /* Add the current segment to the list of built segments. */ *pointer_to_map = map; pointer_to_map = &map->next; if (isec < section_count) { /* We still have not allocated all of the sections to segments. Create a new segment here, initialise it and carry on looping. */ map = ((struct elf_segment_map *) bfd_alloc (obfd, (sizeof (struct elf_segment_map) + ((size_t) section_count - 1) * sizeof (asection *)))); if (map == NULL) return false; /* Initialise the fields of the segment map. Set the physical physical address to the LMA of the first section that has not yet been assigned. */ map->next = NULL; map->p_type = segment->p_type; map->p_flags = segment->p_flags; map->p_flags_valid = 1; map->p_paddr = suggested_lma; map->p_paddr_valid = 1; map->includes_filehdr = 0; map->includes_phdrs = 0; } } while (isec < section_count); free (sections); } /* The Solaris linker creates program headers in which all the p_paddr fields are zero. When we try to objcopy or strip such a file, we get confused. Check for this case, and if we find it reset the p_paddr_valid fields. */ for (map = map_first; map != NULL; map = map->next) if (map->p_paddr != 0) break; if (map == NULL) { for (map = map_first; map != NULL; map = map->next) map->p_paddr_valid = 0; } elf_tdata (obfd)->segment_map = map_first; /* If we had to estimate the number of program headers that were going to be needed, then check our estimate know and adjust the offset if necessary. */ if (phdr_adjust_seg != NULL) { unsigned int count; for (count = 0, map = map_first; map != NULL; map = map->next) count++; if (count > phdr_adjust_num) phdr_adjust_seg->p_paddr -= (count - phdr_adjust_num) * iehdr->e_phentsize; } #if 0 /* Final Step: Sort the segments into ascending order of physical address. */ if (map_first != NULL) { struct elf_segment_map *prev; prev = map_first; for (map = map_first->next; map != NULL; prev = map, map = map->next) { /* Yes I know - its a bubble sort.... */ if (map->next != NULL && (map->next->p_paddr < map->p_paddr)) { /* Swap map and map->next. */ prev->next = map->next; map->next = map->next->next; prev->next->next = map; /* Restart loop. */ map = map_first; } } } #endif #undef SEGMENT_END #undef IS_CONTAINED_BY_VMA #undef IS_CONTAINED_BY_LMA #undef IS_COREFILE_NOTE #undef IS_SOLARIS_PT_INTERP #undef INCLUDE_SECTION_IN_SEGMENT #undef SEGMENT_AFTER_SEGMENT #undef SEGMENT_OVERLAPS return true; } /* Copy private section information. This copies over the entsize field, and sometimes the info field. */ boolean _bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec) bfd *ibfd; asection *isec; bfd *obfd; asection *osec; { Elf_Internal_Shdr *ihdr, *ohdr; if (ibfd->xvec->flavour != bfd_target_elf_flavour || obfd->xvec->flavour != bfd_target_elf_flavour) return true; /* Copy over private BFD data if it has not already been copied. This must be done here, rather than in the copy_private_bfd_data entry point, because the latter is called after the section contents have been set, which means that the program headers have already been worked out. */ if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL) { asection *s; /* Only set up the segments if there are no more SEC_ALLOC sections. FIXME: This won't do the right thing if objcopy is used to remove the last SEC_ALLOC section, since objcopy won't call this routine in that case. */ for (s = isec->next; s != NULL; s = s->next) if ((s->flags & SEC_ALLOC) != 0) break; if (s == NULL) { if (! copy_private_bfd_data (ibfd, obfd)) return false; } } ihdr = &elf_section_data (isec)->this_hdr; ohdr = &elf_section_data (osec)->this_hdr; ohdr->sh_entsize = ihdr->sh_entsize; if (ihdr->sh_type == SHT_SYMTAB || ihdr->sh_type == SHT_DYNSYM || ihdr->sh_type == SHT_GNU_verneed || ihdr->sh_type == SHT_GNU_verdef) ohdr->sh_info = ihdr->sh_info; elf_section_data (osec)->use_rela_p = elf_section_data (isec)->use_rela_p; return true; } /* Copy private symbol information. If this symbol is in a section which we did not map into a BFD section, try to map the section index correctly. We use special macro definitions for the mapped section indices; these definitions are interpreted by the swap_out_syms function. */ #define MAP_ONESYMTAB (SHN_LORESERVE - 1) #define MAP_DYNSYMTAB (SHN_LORESERVE - 2) #define MAP_STRTAB (SHN_LORESERVE - 3) #define MAP_SHSTRTAB (SHN_LORESERVE - 4) boolean _bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg) bfd *ibfd; asymbol *isymarg; bfd *obfd; asymbol *osymarg; { elf_symbol_type *isym, *osym; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return true; isym = elf_symbol_from (ibfd, isymarg); osym = elf_symbol_from (obfd, osymarg); if (isym != NULL && osym != NULL && bfd_is_abs_section (isym->symbol.section)) { unsigned int shndx; shndx = isym->internal_elf_sym.st_shndx; if (shndx == elf_onesymtab (ibfd)) shndx = MAP_ONESYMTAB; else if (shndx == elf_dynsymtab (ibfd)) shndx = MAP_DYNSYMTAB; else if (shndx == elf_tdata (ibfd)->strtab_section) shndx = MAP_STRTAB; else if (shndx == elf_tdata (ibfd)->shstrtab_section) shndx = MAP_SHSTRTAB; osym->internal_elf_sym.st_shndx = shndx; } return true; } /* Swap out the symbols. */ static boolean swap_out_syms (abfd, sttp, relocatable_p) bfd *abfd; struct bfd_strtab_hash **sttp; int relocatable_p; { struct elf_backend_data *bed = get_elf_backend_data (abfd); if (!elf_map_symbols (abfd)) return false; /* Dump out the symtabs. */ { int symcount = bfd_get_symcount (abfd); asymbol **syms = bfd_get_outsymbols (abfd); struct bfd_strtab_hash *stt; Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Shdr *symstrtab_hdr; char *outbound_syms; int idx; stt = _bfd_elf_stringtab_init (); if (stt == NULL) return false; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; symtab_hdr->sh_type = SHT_SYMTAB; symtab_hdr->sh_entsize = bed->s->sizeof_sym; symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); symtab_hdr->sh_info = elf_num_locals (abfd) + 1; symtab_hdr->sh_addralign = bed->s->file_align; symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; symstrtab_hdr->sh_type = SHT_STRTAB; outbound_syms = bfd_alloc (abfd, (1 + symcount) * bed->s->sizeof_sym); if (outbound_syms == NULL) return false; symtab_hdr->contents = (PTR) outbound_syms; /* now generate the data (for "contents") */ { /* Fill in zeroth symbol and swap it out. */ Elf_Internal_Sym sym; sym.st_name = 0; sym.st_value = 0; sym.st_size = 0; sym.st_info = 0; sym.st_other = 0; sym.st_shndx = SHN_UNDEF; bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms); outbound_syms += bed->s->sizeof_sym; } for (idx = 0; idx < symcount; idx++) { Elf_Internal_Sym sym; bfd_vma value = syms[idx]->value; elf_symbol_type *type_ptr; flagword flags = syms[idx]->flags; int type; if ((flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM) { /* Local section symbols have no name. */ sym.st_name = 0; } else { sym.st_name = (unsigned long) _bfd_stringtab_add (stt, syms[idx]->name, true, false); if (sym.st_name == (unsigned long) -1) return false; } type_ptr = elf_symbol_from (abfd, syms[idx]); if ((flags & BSF_SECTION_SYM) == 0 && bfd_is_com_section (syms[idx]->section)) { /* ELF common symbols put the alignment into the `value' field, and the size into the `size' field. This is backwards from how BFD handles it, so reverse it here. */ sym.st_size = value; if (type_ptr == NULL || type_ptr->internal_elf_sym.st_value == 0) sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value)); else sym.st_value = type_ptr->internal_elf_sym.st_value; sym.st_shndx = _bfd_elf_section_from_bfd_section (abfd, syms[idx]->section); } else { asection *sec = syms[idx]->section; int shndx; if (sec->output_section) { value += sec->output_offset; sec = sec->output_section; } /* Don't add in the section vma for relocatable output. */ if (! relocatable_p) value += sec->vma; sym.st_value = value; sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; if (bfd_is_abs_section (sec) && type_ptr != NULL && type_ptr->internal_elf_sym.st_shndx != 0) { /* This symbol is in a real ELF section which we did not create as a BFD section. Undo the mapping done by copy_private_symbol_data. */ shndx = type_ptr->internal_elf_sym.st_shndx; switch (shndx) { case MAP_ONESYMTAB: shndx = elf_onesymtab (abfd); break; case MAP_DYNSYMTAB: shndx = elf_dynsymtab (abfd); break; case MAP_STRTAB: shndx = elf_tdata (abfd)->strtab_section; break; case MAP_SHSTRTAB: shndx = elf_tdata (abfd)->shstrtab_section; break; default: break; } } else { shndx = _bfd_elf_section_from_bfd_section (abfd, sec); if (shndx == -1) { asection *sec2; /* Writing this would be a hell of a lot easier if we had some decent documentation on bfd, and knew what to expect of the library, and what to demand of applications. For example, it appears that `objcopy' might not set the section of a symbol to be a section that is actually in the output file. */ sec2 = bfd_get_section_by_name (abfd, sec->name); BFD_ASSERT (sec2 != 0); shndx = _bfd_elf_section_from_bfd_section (abfd, sec2); BFD_ASSERT (shndx != -1); } } sym.st_shndx = shndx; } if ((flags & BSF_FUNCTION) != 0) type = STT_FUNC; else if ((flags & BSF_OBJECT) != 0) type = STT_OBJECT; else type = STT_NOTYPE; /* Processor-specific types */ if (type_ptr != NULL && bed->elf_backend_get_symbol_type) type = (*bed->elf_backend_get_symbol_type) (&type_ptr->internal_elf_sym, type); if (flags & BSF_SECTION_SYM) { if (flags & BSF_GLOBAL) sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); else sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); } else if (bfd_is_com_section (syms[idx]->section)) sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); else if (bfd_is_und_section (syms[idx]->section)) sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK) ? STB_WEAK : STB_GLOBAL), type); else if (flags & BSF_FILE) sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); else { int bind = STB_LOCAL; if (flags & BSF_LOCAL) bind = STB_LOCAL; else if (flags & BSF_WEAK) bind = STB_WEAK; else if (flags & BSF_GLOBAL) bind = STB_GLOBAL; sym.st_info = ELF_ST_INFO (bind, type); } if (type_ptr != NULL) sym.st_other = type_ptr->internal_elf_sym.st_other; else sym.st_other = 0; bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms); outbound_syms += bed->s->sizeof_sym; } *sttp = stt; symstrtab_hdr->sh_size = _bfd_stringtab_size (stt); symstrtab_hdr->sh_type = SHT_STRTAB; symstrtab_hdr->sh_flags = 0; symstrtab_hdr->sh_addr = 0; symstrtab_hdr->sh_entsize = 0; symstrtab_hdr->sh_link = 0; symstrtab_hdr->sh_info = 0; symstrtab_hdr->sh_addralign = 1; } return true; } /* Return the number of bytes required to hold the symtab vector. Note that we base it on the count plus 1, since we will null terminate the vector allocated based on this size. However, the ELF symbol table always has a dummy entry as symbol #0, so it ends up even. */ long _bfd_elf_get_symtab_upper_bound (abfd) bfd *abfd; { long symcount; long symtab_size; Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); return symtab_size; } long _bfd_elf_get_dynamic_symtab_upper_bound (abfd) bfd *abfd; { long symcount; long symtab_size; Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; if (elf_dynsymtab (abfd) == 0) { bfd_set_error (bfd_error_invalid_operation); return -1; } symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); return symtab_size; } long _bfd_elf_get_reloc_upper_bound (abfd, asect) bfd *abfd ATTRIBUTE_UNUSED; sec_ptr asect; { return (asect->reloc_count + 1) * sizeof (arelent *); } /* Canonicalize the relocs. */ long _bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols) bfd *abfd; sec_ptr section; arelent **relptr; asymbol **symbols; { arelent *tblptr; unsigned int i; if (! get_elf_backend_data (abfd)->s->slurp_reloc_table (abfd, section, symbols, false)) return -1; tblptr = section->relocation; for (i = 0; i < section->reloc_count; i++) *relptr++ = tblptr++; *relptr = NULL; return section->reloc_count; } long _bfd_elf_get_symtab (abfd, alocation) bfd *abfd; asymbol **alocation; { long symcount = get_elf_backend_data (abfd)->s->slurp_symbol_table (abfd, alocation, false); if (symcount >= 0) bfd_get_symcount (abfd) = symcount; return symcount; } long _bfd_elf_canonicalize_dynamic_symtab (abfd, alocation) bfd *abfd; asymbol **alocation; { return get_elf_backend_data (abfd)->s->slurp_symbol_table (abfd, alocation, true); } /* Return the size required for the dynamic reloc entries. Any section that was actually installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the dynamic symbol table, is considered to be a dynamic reloc section. */ long _bfd_elf_get_dynamic_reloc_upper_bound (abfd) bfd *abfd; { long ret; asection *s; if (elf_dynsymtab (abfd) == 0) { bfd_set_error (bfd_error_invalid_operation); return -1; } ret = sizeof (arelent *); for (s = abfd->sections; s != NULL; s = s->next) if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) && (elf_section_data (s)->this_hdr.sh_type == SHT_REL || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize) * sizeof (arelent *)); return ret; } /* Canonicalize the dynamic relocation entries. Note that we return the dynamic relocations as a single block, although they are actually associated with particular sections; the interface, which was designed for SunOS style shared libraries, expects that there is only one set of dynamic relocs. Any section that was actually installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the dynamic symbol table, is considered to be a dynamic reloc section. */ long _bfd_elf_canonicalize_dynamic_reloc (abfd, storage, syms) bfd *abfd; arelent **storage; asymbol **syms; { boolean (*slurp_relocs) PARAMS ((bfd *, asection *, asymbol **, boolean)); asection *s; long ret; if (elf_dynsymtab (abfd) == 0) { bfd_set_error (bfd_error_invalid_operation); return -1; } slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; ret = 0; for (s = abfd->sections; s != NULL; s = s->next) { if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) && (elf_section_data (s)->this_hdr.sh_type == SHT_REL || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) { arelent *p; long count, i; if (! (*slurp_relocs) (abfd, s, syms, true)) return -1; count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize; p = s->relocation; for (i = 0; i < count; i++) *storage++ = p++; ret += count; } } *storage = NULL; return ret; } /* Read in the version information. */ boolean _bfd_elf_slurp_version_tables (abfd) bfd *abfd; { bfd_byte *contents = NULL; if (elf_dynverdef (abfd) != 0) { Elf_Internal_Shdr *hdr; Elf_External_Verdef *everdef; Elf_Internal_Verdef *iverdef; Elf_Internal_Verdef *iverdefarr; Elf_Internal_Verdef iverdefmem; unsigned int i; unsigned int maxidx; hdr = &elf_tdata (abfd)->dynverdef_hdr; contents = (bfd_byte *) bfd_malloc (hdr->sh_size); if (contents == NULL) goto error_return; if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 || bfd_read ((PTR) contents, 1, hdr->sh_size, abfd) != hdr->sh_size) goto error_return; /* We know the number of entries in the section but not the maximum index. Therefore we have to run through all entries and find the maximum. */ everdef = (Elf_External_Verdef *) contents; maxidx = 0; for (i = 0; i < hdr->sh_info; ++i) { _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx) maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION); everdef = ((Elf_External_Verdef *) ((bfd_byte *) everdef + iverdefmem.vd_next)); } elf_tdata (abfd)->verdef = ((Elf_Internal_Verdef *) bfd_zalloc (abfd, maxidx * sizeof (Elf_Internal_Verdef))); if (elf_tdata (abfd)->verdef == NULL) goto error_return; elf_tdata (abfd)->cverdefs = maxidx; everdef = (Elf_External_Verdef *) contents; iverdefarr = elf_tdata (abfd)->verdef; for (i = 0; i < hdr->sh_info; i++) { Elf_External_Verdaux *everdaux; Elf_Internal_Verdaux *iverdaux; unsigned int j; _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1]; memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef)); iverdef->vd_bfd = abfd; iverdef->vd_auxptr = ((Elf_Internal_Verdaux *) bfd_alloc (abfd, (iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux)))); if (iverdef->vd_auxptr == NULL) goto error_return; everdaux = ((Elf_External_Verdaux *) ((bfd_byte *) everdef + iverdef->vd_aux)); iverdaux = iverdef->vd_auxptr; for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++) { _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux); iverdaux->vda_nodename = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, iverdaux->vda_name); if (iverdaux->vda_nodename == NULL) goto error_return; if (j + 1 < iverdef->vd_cnt) iverdaux->vda_nextptr = iverdaux + 1; else iverdaux->vda_nextptr = NULL; everdaux = ((Elf_External_Verdaux *) ((bfd_byte *) everdaux + iverdaux->vda_next)); } iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename; if (i + 1 < hdr->sh_info) iverdef->vd_nextdef = iverdef + 1; else iverdef->vd_nextdef = NULL; everdef = ((Elf_External_Verdef *) ((bfd_byte *) everdef + iverdef->vd_next)); } free (contents); contents = NULL; } if (elf_dynverref (abfd) != 0) { Elf_Internal_Shdr *hdr; Elf_External_Verneed *everneed; Elf_Internal_Verneed *iverneed; unsigned int i; hdr = &elf_tdata (abfd)->dynverref_hdr; elf_tdata (abfd)->verref = ((Elf_Internal_Verneed *) bfd_zalloc (abfd, hdr->sh_info * sizeof (Elf_Internal_Verneed))); if (elf_tdata (abfd)->verref == NULL) goto error_return; elf_tdata (abfd)->cverrefs = hdr->sh_info; contents = (bfd_byte *) bfd_malloc (hdr->sh_size); if (contents == NULL) goto error_return; if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 || bfd_read ((PTR) contents, 1, hdr->sh_size, abfd) != hdr->sh_size) goto error_return; everneed = (Elf_External_Verneed *) contents; iverneed = elf_tdata (abfd)->verref; for (i = 0; i < hdr->sh_info; i++, iverneed++) { Elf_External_Vernaux *evernaux; Elf_Internal_Vernaux *ivernaux; unsigned int j; _bfd_elf_swap_verneed_in (abfd, everneed, iverneed); iverneed->vn_bfd = abfd; iverneed->vn_filename = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, iverneed->vn_file); if (iverneed->vn_filename == NULL) goto error_return; iverneed->vn_auxptr = ((Elf_Internal_Vernaux *) bfd_alloc (abfd, iverneed->vn_cnt * sizeof (Elf_Internal_Vernaux))); evernaux = ((Elf_External_Vernaux *) ((bfd_byte *) everneed + iverneed->vn_aux)); ivernaux = iverneed->vn_auxptr; for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++) { _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux); ivernaux->vna_nodename = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, ivernaux->vna_name); if (ivernaux->vna_nodename == NULL) goto error_return; if (j + 1 < iverneed->vn_cnt) ivernaux->vna_nextptr = ivernaux + 1; else ivernaux->vna_nextptr = NULL; evernaux = ((Elf_External_Vernaux *) ((bfd_byte *) evernaux + ivernaux->vna_next)); } if (i + 1 < hdr->sh_info) iverneed->vn_nextref = iverneed + 1; else iverneed->vn_nextref = NULL; everneed = ((Elf_External_Verneed *) ((bfd_byte *) everneed + iverneed->vn_next)); } free (contents); contents = NULL; } return true; error_return: if (contents == NULL) free (contents); return false; } asymbol * _bfd_elf_make_empty_symbol (abfd) bfd *abfd; { elf_symbol_type *newsym; newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type)); if (!newsym) return NULL; else { newsym->symbol.the_bfd = abfd; return &newsym->symbol; } } void _bfd_elf_get_symbol_info (ignore_abfd, symbol, ret) bfd *ignore_abfd ATTRIBUTE_UNUSED; asymbol *symbol; symbol_info *ret; { bfd_symbol_info (symbol, ret); } /* Return whether a symbol name implies a local symbol. Most targets use this function for the is_local_label_name entry point, but some override it. */ boolean _bfd_elf_is_local_label_name (abfd, name) bfd *abfd ATTRIBUTE_UNUSED; const char *name; { /* Normal local symbols start with ``.L''. */ if (name[0] == '.' && name[1] == 'L') return true; /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate DWARF debugging symbols starting with ``..''. */ if (name[0] == '.' && name[1] == '.') return true; /* gcc will sometimes generate symbols beginning with ``_.L_'' when emitting DWARF debugging output. I suspect this is actually a small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call ASM_GENERATE_INTERNAL_LABEL, and this causes the leading underscore to be emitted on some ELF targets). For ease of use, we treat such symbols as local. */ if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_') return true; return false; } alent * _bfd_elf_get_lineno (ignore_abfd, symbol) bfd *ignore_abfd ATTRIBUTE_UNUSED; asymbol *symbol ATTRIBUTE_UNUSED; { abort (); return NULL; } boolean _bfd_elf_set_arch_mach (abfd, arch, machine) bfd *abfd; enum bfd_architecture arch; unsigned long machine; { /* If this isn't the right architecture for this backend, and this isn't the generic backend, fail. */ if (arch != get_elf_backend_data (abfd)->arch && arch != bfd_arch_unknown && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) return false; return bfd_default_set_arch_mach (abfd, arch, machine); } /* Find the function to a particular section and offset, for error reporting. */ static boolean elf_find_function (abfd, section, symbols, offset, filename_ptr, functionname_ptr) bfd *abfd ATTRIBUTE_UNUSED; asection *section; asymbol **symbols; bfd_vma offset; const char **filename_ptr; const char **functionname_ptr; { const char *filename; asymbol *func; bfd_vma low_func; asymbol **p; filename = NULL; func = NULL; low_func = 0; for (p = symbols; *p != NULL; p++) { elf_symbol_type *q; q = (elf_symbol_type *) *p; if (bfd_get_section (&q->symbol) != section) continue; switch (ELF_ST_TYPE (q->internal_elf_sym.st_info)) { default: break; case STT_FILE: filename = bfd_asymbol_name (&q->symbol); break; case STT_NOTYPE: case STT_FUNC: if (q->symbol.section == section && q->symbol.value >= low_func && q->symbol.value <= offset) { func = (asymbol *) q; low_func = q->symbol.value; } break; } } if (func == NULL) return false; if (filename_ptr) *filename_ptr = filename; if (functionname_ptr) *functionname_ptr = bfd_asymbol_name (func); return true; } /* Find the nearest line to a particular section and offset, for error reporting. */ boolean _bfd_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr) bfd *abfd; asection *section; asymbol **symbols; bfd_vma offset; const char **filename_ptr; const char **functionname_ptr; unsigned int *line_ptr; { boolean found; if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)) { if (!*functionname_ptr) elf_find_function (abfd, section, symbols, offset, *filename_ptr ? NULL : filename_ptr, functionname_ptr); return true; } if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr, 0, &elf_tdata (abfd)->dwarf2_find_line_info)) { if (!*functionname_ptr) elf_find_function (abfd, section, symbols, offset, *filename_ptr ? NULL : filename_ptr, functionname_ptr); return true; } if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, &found, filename_ptr, functionname_ptr, line_ptr, &elf_tdata (abfd)->line_info)) return false; if (found) return true; if (symbols == NULL) return false; if (! elf_find_function (abfd, section, symbols, offset, filename_ptr, functionname_ptr)) return false; *line_ptr = 0; return true; } int _bfd_elf_sizeof_headers (abfd, reloc) bfd *abfd; boolean reloc; { int ret; ret = get_elf_backend_data (abfd)->s->sizeof_ehdr; if (! reloc) ret += get_program_header_size (abfd); return ret; } boolean _bfd_elf_set_section_contents (abfd, section, location, offset, count) bfd *abfd; sec_ptr section; PTR location; file_ptr offset; bfd_size_type count; { Elf_Internal_Shdr *hdr; if (! abfd->output_has_begun && ! _bfd_elf_compute_section_file_positions (abfd, (struct bfd_link_info *) NULL)) return false; hdr = &elf_section_data (section)->this_hdr; if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1) return false; if (bfd_write (location, 1, count, abfd) != count) return false; return true; } void _bfd_elf_no_info_to_howto (abfd, cache_ptr, dst) bfd *abfd ATTRIBUTE_UNUSED; arelent *cache_ptr ATTRIBUTE_UNUSED; Elf_Internal_Rela *dst ATTRIBUTE_UNUSED; { abort (); } #if 0 void _bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst) bfd *abfd; arelent *cache_ptr; Elf_Internal_Rel *dst; { abort (); } #endif /* Try to convert a non-ELF reloc into an ELF one. */ boolean _bfd_elf_validate_reloc (abfd, areloc) bfd *abfd; arelent *areloc; { /* Check whether we really have an ELF howto. */ if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec) { bfd_reloc_code_real_type code; reloc_howto_type *howto; /* Alien reloc: Try to determine its type to replace it with an equivalent ELF reloc. */ if (areloc->howto->pc_relative) { switch (areloc->howto->bitsize) { case 8: code = BFD_RELOC_8_PCREL; break; case 12: code = BFD_RELOC_12_PCREL; break; case 16: code = BFD_RELOC_16_PCREL; break; case 24: code = BFD_RELOC_24_PCREL; break; case 32: code = BFD_RELOC_32_PCREL; break; case 64: code = BFD_RELOC_64_PCREL; break; default: goto fail; } howto = bfd_reloc_type_lookup (abfd, code); if (areloc->howto->pcrel_offset != howto->pcrel_offset) { if (howto->pcrel_offset) areloc->addend += areloc->address; else areloc->addend -= areloc->address; /* addend is unsigned!! */ } } else { switch (areloc->howto->bitsize) { case 8: code = BFD_RELOC_8; break; case 14: code = BFD_RELOC_14; break; case 16: code = BFD_RELOC_16; break; case 26: code = BFD_RELOC_26; break; case 32: code = BFD_RELOC_32; break; case 64: code = BFD_RELOC_64; break; default: goto fail; } howto = bfd_reloc_type_lookup (abfd, code); } if (howto) areloc->howto = howto; else goto fail; } return true; fail: (*_bfd_error_handler) (_("%s: unsupported relocation type %s"), bfd_get_filename (abfd), areloc->howto->name); bfd_set_error (bfd_error_bad_value); return false; } boolean _bfd_elf_close_and_cleanup (abfd) bfd *abfd; { if (bfd_get_format (abfd) == bfd_object) { if (elf_shstrtab (abfd) != NULL) _bfd_stringtab_free (elf_shstrtab (abfd)); } return _bfd_generic_close_and_cleanup (abfd); } /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY in the relocation's offset. Thus we cannot allow any sort of sanity range-checking to interfere. There is nothing else to do in processing this reloc. */ bfd_reloc_status_type _bfd_elf_rel_vtable_reloc_fn (abfd, re, symbol, data, is, obfd, errmsg) bfd *abfd ATTRIBUTE_UNUSED; arelent *re ATTRIBUTE_UNUSED; struct symbol_cache_entry *symbol ATTRIBUTE_UNUSED; PTR data ATTRIBUTE_UNUSED; asection *is ATTRIBUTE_UNUSED; bfd *obfd ATTRIBUTE_UNUSED; char **errmsg ATTRIBUTE_UNUSED; { return bfd_reloc_ok; } /* Elf core file support. Much of this only works on native toolchains, since we rely on knowing the machine-dependent procfs structure in order to pick out details about the corefile. */ #ifdef HAVE_SYS_PROCFS_H # include #endif /* Define offsetof for those systems which lack it. */ #ifndef offsetof # define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER) #endif /* FIXME: this is kinda wrong, but it's what gdb wants. */ static int elfcore_make_pid (abfd) bfd *abfd; { return ((elf_tdata (abfd)->core_lwpid << 16) + (elf_tdata (abfd)->core_pid)); } /* If there isn't a section called NAME, make one, using data from SECT. Note, this function will generate a reference to NAME, so you shouldn't deallocate or overwrite it. */ static boolean elfcore_maybe_make_sect (abfd, name, sect) bfd *abfd; char *name; asection *sect; { asection *sect2; if (bfd_get_section_by_name (abfd, name) != NULL) return true; sect2 = bfd_make_section (abfd, name); if (sect2 == NULL) return false; sect2->_raw_size = sect->_raw_size; sect2->filepos = sect->filepos; sect2->flags = sect->flags; sect2->alignment_power = sect->alignment_power; return true; } /* Create a pseudosection containing SIZE bytes at FILEPOS. This actually creates up to two pseudosections: - For the single-threaded case, a section named NAME, unless such a section already exists. - For the multi-threaded case, a section named "NAME/PID", where PID is elfcore_make_pid (abfd). Both pseudosections have identical contents. */ boolean _bfd_elfcore_make_pseudosection (abfd, name, size, filepos) bfd *abfd; char *name; int size; int filepos; { char buf[100]; char *threaded_name; asection *sect; /* Build the section name. */ sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd)); threaded_name = bfd_alloc (abfd, strlen (buf) + 1); if (threaded_name == NULL) return false; strcpy (threaded_name, buf); sect = bfd_make_section (abfd, threaded_name); if (sect == NULL) return false; sect->_raw_size = size; sect->filepos = filepos; sect->flags = SEC_HAS_CONTENTS; sect->alignment_power = 2; return elfcore_maybe_make_sect (abfd, name, sect); } /* prstatus_t exists on: solaris 2.5+ linux 2.[01] + glibc unixware 4.2 */ #if defined (HAVE_PRSTATUS_T) static boolean elfcore_grok_prstatus PARAMS ((bfd *, Elf_Internal_Note *)); static boolean elfcore_grok_prstatus (abfd, note) bfd *abfd; Elf_Internal_Note *note; { int raw_size; int offset; if (note->descsz == sizeof (prstatus_t)) { prstatus_t prstat; raw_size = sizeof (prstat.pr_reg); offset = offsetof (prstatus_t, pr_reg); memcpy (&prstat, note->descdata, sizeof (prstat)); elf_tdata (abfd)->core_signal = prstat.pr_cursig; elf_tdata (abfd)->core_pid = prstat.pr_pid; /* pr_who exists on: solaris 2.5+ unixware 4.2 pr_who doesn't exist on: linux 2.[01] */ #if defined (HAVE_PRSTATUS_T_PR_WHO) elf_tdata (abfd)->core_lwpid = prstat.pr_who; #endif } #if defined (HAVE_PRSTATUS32_T) else if (note->descsz == sizeof (prstatus32_t)) { /* 64-bit host, 32-bit corefile */ prstatus32_t prstat; raw_size = sizeof (prstat.pr_reg); offset = offsetof (prstatus32_t, pr_reg); memcpy (&prstat, note->descdata, sizeof (prstat)); elf_tdata (abfd)->core_signal = prstat.pr_cursig; elf_tdata (abfd)->core_pid = prstat.pr_pid; /* pr_who exists on: solaris 2.5+ unixware 4.2 pr_who doesn't exist on: linux 2.[01] */ #if defined (HAVE_PRSTATUS32_T_PR_WHO) elf_tdata (abfd)->core_lwpid = prstat.pr_who; #endif } #endif /* HAVE_PRSTATUS32_T */ else { /* Fail - we don't know how to handle any other note size (ie. data object type). */ return true; } /* Make a ".reg/999" section and a ".reg" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", raw_size, note->descpos + offset); } #endif /* defined (HAVE_PRSTATUS_T) */ /* Create a pseudosection containing the exact contents of NOTE. */ static boolean elfcore_make_note_pseudosection (abfd, name, note) bfd *abfd; char *name; Elf_Internal_Note *note; { return _bfd_elfcore_make_pseudosection (abfd, name, note->descsz, note->descpos); } /* There isn't a consistent prfpregset_t across platforms, but it doesn't matter, because we don't have to pick this data structure apart. */ static boolean elfcore_grok_prfpreg (abfd, note) bfd *abfd; Elf_Internal_Note *note; { return elfcore_make_note_pseudosection (abfd, ".reg2", note); } /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note type of 5 (NT_PRXFPREG). Just include the whole note's contents literally. */ static boolean elfcore_grok_prxfpreg (abfd, note) bfd *abfd; Elf_Internal_Note *note; { return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); } #if defined (HAVE_PRPSINFO_T) typedef prpsinfo_t elfcore_psinfo_t; #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */ typedef prpsinfo32_t elfcore_psinfo32_t; #endif #endif #if defined (HAVE_PSINFO_T) typedef psinfo_t elfcore_psinfo_t; #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */ typedef psinfo32_t elfcore_psinfo32_t; #endif #endif /* return a malloc'ed copy of a string at START which is at most MAX bytes long, possibly without a terminating '\0'. the copy will always have a terminating '\0'. */ char * _bfd_elfcore_strndup (abfd, start, max) bfd *abfd; char *start; int max; { char *dup; char *end = memchr (start, '\0', max); int len; if (end == NULL) len = max; else len = end - start; dup = bfd_alloc (abfd, len + 1); if (dup == NULL) return NULL; memcpy (dup, start, len); dup[len] = '\0'; return dup; } #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) static boolean elfcore_grok_psinfo PARAMS ((bfd *, Elf_Internal_Note *)); static boolean elfcore_grok_psinfo (abfd, note) bfd *abfd; Elf_Internal_Note *note; { if (note->descsz == sizeof (elfcore_psinfo_t)) { elfcore_psinfo_t psinfo; memcpy (&psinfo, note->descdata, sizeof (psinfo)); elf_tdata (abfd)->core_program = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, sizeof (psinfo.pr_fname)); elf_tdata (abfd)->core_command = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, sizeof (psinfo.pr_psargs)); } #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) else if (note->descsz == sizeof (elfcore_psinfo32_t)) { /* 64-bit host, 32-bit corefile */ elfcore_psinfo32_t psinfo; memcpy (&psinfo, note->descdata, sizeof (psinfo)); elf_tdata (abfd)->core_program = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, sizeof (psinfo.pr_fname)); elf_tdata (abfd)->core_command = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, sizeof (psinfo.pr_psargs)); } #endif else { /* Fail - we don't know how to handle any other note size (ie. data object type). */ return true; } /* Note that for some reason, a spurious space is tacked onto the end of the args in some (at least one anyway) implementations, so strip it off if it exists. */ { char *command = elf_tdata (abfd)->core_command; int n = strlen (command); if (0 < n && command[n - 1] == ' ') command[n - 1] = '\0'; } return true; } #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */ #if defined (HAVE_PSTATUS_T) static boolean elfcore_grok_pstatus (abfd, note) bfd *abfd; Elf_Internal_Note *note; { if (note->descsz == sizeof (pstatus_t) #if defined (HAVE_PXSTATUS_T) || note->descsz == sizeof (pxstatus_t) #endif ) { pstatus_t pstat; memcpy (&pstat, note->descdata, sizeof (pstat)); elf_tdata (abfd)->core_pid = pstat.pr_pid; } #if defined (HAVE_PSTATUS32_T) else if (note->descsz == sizeof (pstatus32_t)) { /* 64-bit host, 32-bit corefile */ pstatus32_t pstat; memcpy (&pstat, note->descdata, sizeof (pstat)); elf_tdata (abfd)->core_pid = pstat.pr_pid; } #endif /* Could grab some more details from the "representative" lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an NT_LWPSTATUS note, presumably. */ return true; } #endif /* defined (HAVE_PSTATUS_T) */ #if defined (HAVE_LWPSTATUS_T) static boolean elfcore_grok_lwpstatus (abfd, note) bfd *abfd; Elf_Internal_Note *note; { lwpstatus_t lwpstat; char buf[100]; char *name; asection *sect; if (note->descsz != sizeof (lwpstat) #if defined (HAVE_LWPXSTATUS_T) && note->descsz != sizeof (lwpxstatus_t) #endif ) return true; memcpy (&lwpstat, note->descdata, sizeof (lwpstat)); elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid; elf_tdata (abfd)->core_signal = lwpstat.pr_cursig; /* Make a ".reg/999" section. */ sprintf (buf, ".reg/%d", elfcore_make_pid (abfd)); name = bfd_alloc (abfd, strlen (buf) + 1); if (name == NULL) return false; strcpy (name, buf); sect = bfd_make_section (abfd, name); if (sect == NULL) return false; #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs); sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs); #endif #if defined (HAVE_LWPSTATUS_T_PR_REG) sect->_raw_size = sizeof (lwpstat.pr_reg); sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg); #endif sect->flags = SEC_HAS_CONTENTS; sect->alignment_power = 2; if (!elfcore_maybe_make_sect (abfd, ".reg", sect)) return false; /* Make a ".reg2/999" section */ sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd)); name = bfd_alloc (abfd, strlen (buf) + 1); if (name == NULL) return false; strcpy (name, buf); sect = bfd_make_section (abfd, name); if (sect == NULL) return false; #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs); sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs); #endif #if defined (HAVE_LWPSTATUS_T_PR_FPREG) sect->_raw_size = sizeof (lwpstat.pr_fpreg); sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg); #endif sect->flags = SEC_HAS_CONTENTS; sect->alignment_power = 2; return elfcore_maybe_make_sect (abfd, ".reg2", sect); } #endif /* defined (HAVE_LWPSTATUS_T) */ #if defined (HAVE_WIN32_PSTATUS_T) static boolean elfcore_grok_win32pstatus (abfd, note) bfd *abfd; Elf_Internal_Note *note; { char buf[30]; char *name; asection *sect; win32_pstatus_t pstatus; if (note->descsz < sizeof (pstatus)) return true; memcpy (&pstatus, note->descdata, note->descsz); switch (pstatus.data_type) { case NOTE_INFO_PROCESS: /* FIXME: need to add ->core_command. */ elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal; elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid; break; case NOTE_INFO_THREAD: /* Make a ".reg/999" section. */ sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid); name = bfd_alloc (abfd, strlen (buf) + 1); if (name == NULL) return false; strcpy (name, buf); sect = bfd_make_section (abfd, name); if (sect == NULL) return false; sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context); sect->filepos = note->descpos + offsetof (struct win32_pstatus, data.thread_info.thread_context); sect->flags = SEC_HAS_CONTENTS; sect->alignment_power = 2; if (pstatus.data.thread_info.is_active_thread) if (! elfcore_maybe_make_sect (abfd, ".reg", sect)) return false; break; case NOTE_INFO_MODULE: /* Make a ".module/xxxxxxxx" section. */ sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address); name = bfd_alloc (abfd, strlen (buf) + 1); if (name == NULL) return false; strcpy (name, buf); sect = bfd_make_section (abfd, name); if (sect == NULL) return false; sect->_raw_size = note->descsz; sect->filepos = note->descpos; sect->flags = SEC_HAS_CONTENTS; sect->alignment_power = 2; break; default: return true; } return true; } #endif /* HAVE_WIN32_PSTATUS_T */ static boolean elfcore_grok_note (abfd, note) bfd *abfd; Elf_Internal_Note *note; { struct elf_backend_data *bed = get_elf_backend_data (abfd); switch (note->type) { default: return true; case NT_PRSTATUS: if (bed->elf_backend_grok_prstatus) if ((*bed->elf_backend_grok_prstatus) (abfd, note)) return true; #if defined (HAVE_PRSTATUS_T) return elfcore_grok_prstatus (abfd, note); #else return true; #endif #if defined (HAVE_PSTATUS_T) case NT_PSTATUS: return elfcore_grok_pstatus (abfd, note); #endif #if defined (HAVE_LWPSTATUS_T) case NT_LWPSTATUS: return elfcore_grok_lwpstatus (abfd, note); #endif case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */ return elfcore_grok_prfpreg (abfd, note); #if defined (HAVE_WIN32_PSTATUS_T) case NT_WIN32PSTATUS: return elfcore_grok_win32pstatus (abfd, note); #endif case NT_PRXFPREG: /* Linux SSE extension */ if (note->namesz == 5 && ! strcmp (note->namedata, "LINUX")) return elfcore_grok_prxfpreg (abfd, note); else return true; case NT_PRPSINFO: case NT_PSINFO: if (bed->elf_backend_grok_psinfo) if ((*bed->elf_backend_grok_psinfo) (abfd, note)) return true; #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) return elfcore_grok_psinfo (abfd, note); #else return true; #endif } } static boolean elfcore_read_notes (abfd, offset, size) bfd *abfd; bfd_vma offset; bfd_vma size; { char *buf; char *p; if (size <= 0) return true; if (bfd_seek (abfd, offset, SEEK_SET) == -1) return false; buf = bfd_malloc ((size_t) size); if (buf == NULL) return false; if (bfd_read (buf, size, 1, abfd) != size) { error: free (buf); return false; } p = buf; while (p < buf + size) { /* FIXME: bad alignment assumption. */ Elf_External_Note *xnp = (Elf_External_Note *) p; Elf_Internal_Note in; in.type = bfd_h_get_32 (abfd, (bfd_byte *) xnp->type); in.namesz = bfd_h_get_32 (abfd, (bfd_byte *) xnp->namesz); in.namedata = xnp->name; in.descsz = bfd_h_get_32 (abfd, (bfd_byte *) xnp->descsz); in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4); in.descpos = offset + (in.descdata - buf); if (! elfcore_grok_note (abfd, &in)) goto error; p = in.descdata + BFD_ALIGN (in.descsz, 4); } free (buf); return true; } /* Providing external access to the ELF program header table. */ /* Return an upper bound on the number of bytes required to store a copy of ABFD's program header table entries. Return -1 if an error occurs; bfd_get_error will return an appropriate code. */ long bfd_get_elf_phdr_upper_bound (abfd) bfd *abfd; { if (abfd->xvec->flavour != bfd_target_elf_flavour) { bfd_set_error (bfd_error_wrong_format); return -1; } return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr); } /* Copy ABFD's program header table entries to *PHDRS. The entries will be stored as an array of Elf_Internal_Phdr structures, as defined in include/elf/internal.h. To find out how large the buffer needs to be, call bfd_get_elf_phdr_upper_bound. Return the number of program header table entries read, or -1 if an error occurs; bfd_get_error will return an appropriate code. */ int bfd_get_elf_phdrs (abfd, phdrs) bfd *abfd; void *phdrs; { int num_phdrs; if (abfd->xvec->flavour != bfd_target_elf_flavour) { bfd_set_error (bfd_error_wrong_format); return -1; } num_phdrs = elf_elfheader (abfd)->e_phnum; memcpy (phdrs, elf_tdata (abfd)->phdr, num_phdrs * sizeof (Elf_Internal_Phdr)); return num_phdrs; } void bfd_elf_sprintf_vma (abfd, buf, value) bfd *abfd ATTRIBUTE_UNUSED; char *buf; bfd_vma value; { #ifdef BFD64 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ i_ehdrp = elf_elfheader (abfd); if (i_ehdrp == NULL) sprintf_vma (buf, value); else { if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64) { #if BFD_HOST_64BIT_LONG sprintf (buf, "%016lx", value); #else sprintf (buf, "%08lx%08lx", _bfd_int64_high (value), _bfd_int64_low (value)); #endif } else sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff)); } #else sprintf_vma (buf, value); #endif } void bfd_elf_fprintf_vma (abfd, stream, value) bfd *abfd ATTRIBUTE_UNUSED; PTR stream; bfd_vma value; { #ifdef BFD64 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ i_ehdrp = elf_elfheader (abfd); if (i_ehdrp == NULL) fprintf_vma ((FILE *) stream, value); else { if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64) { #if BFD_HOST_64BIT_LONG fprintf ((FILE *) stream, "%016lx", value); #else fprintf ((FILE *) stream, "%08lx%08lx", _bfd_int64_high (value), _bfd_int64_low (value)); #endif } else fprintf ((FILE *) stream, "%08lx", (unsigned long) (value & 0xffffffff)); } #else fprintf_vma ((FILE *) stream, value); #endif }