/* BFD back-end data structures for ELF files. Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc. Written by Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef _LIBELF_H_ #define _LIBELF_H_ 1 #include "elf/common.h" #include "elf/external.h" #include "elf/internal.h" #include "bfdlink.h" /* The number of entries in a section is its size divided by the size of a single entry. This is normally only applicable to reloc and symbol table sections. PR 9934: It is possible to have relocations that do not refer to symbols, thus it is also possible to have a relocation section in an object file, but no symbol table. */ #define NUM_SHDR_ENTRIES(shdr) ((shdr)->sh_entsize > 0 ? (shdr)->sh_size / (shdr)->sh_entsize : 0) /* If size isn't specified as 64 or 32, NAME macro should fail. */ #ifndef NAME #if ARCH_SIZE == 64 #define NAME(x, y) x ## 64 ## _ ## y #endif #if ARCH_SIZE == 32 #define NAME(x, y) x ## 32 ## _ ## y #endif #endif #ifndef NAME #define NAME(x, y) x ## NOSIZE ## _ ## y #endif #define ElfNAME(X) NAME(Elf,X) #define elfNAME(X) NAME(elf,X) /* Information held for an ELF symbol. The first field is the corresponding asymbol. Every symbol is an ELF file is actually a pointer to this structure, although it is often handled as a pointer to an asymbol. */ typedef struct { /* The BFD symbol. */ asymbol symbol; /* ELF symbol information. */ Elf_Internal_Sym internal_elf_sym; /* Backend specific information. */ union { unsigned int hppa_arg_reloc; void *mips_extr; void *any; } tc_data; /* Version information. This is from an Elf_Internal_Versym structure in a SHT_GNU_versym section. It is zero if there is no version information. */ unsigned short version; } elf_symbol_type; struct elf_strtab_hash; struct got_entry; struct plt_entry; union gotplt_union { bfd_signed_vma refcount; bfd_vma offset; struct got_entry *glist; struct plt_entry *plist; }; struct elf_link_virtual_table_entry { /* Virtual table entry use information. This array is nominally of size size/sizeof(target_void_pointer), though we have to be able to assume and track a size while the symbol is still undefined. It is indexed via offset/sizeof(target_void_pointer). */ size_t size; bfd_boolean *used; /* Virtual table derivation info. */ struct elf_link_hash_entry *parent; }; /* ELF linker hash table entries. */ struct elf_link_hash_entry { struct bfd_link_hash_entry root; /* Symbol index in output file. This is initialized to -1. It is set to -2 if the symbol is used by a reloc. */ long indx; /* Symbol index as a dynamic symbol. Initialized to -1, and remains -1 if this is not a dynamic symbol. */ /* ??? Note that this is consistently used as a synonym for tests against whether we can perform various simplifying transformations to the code. (E.g. changing a pc-relative jump to a PLT entry into a pc-relative jump to the target function.) That test, which is often relatively complex, and someplaces wrong or incomplete, should really be replaced by a predicate in elflink.c. End result: this field -1 does not indicate that the symbol is not in the dynamic symbol table, but rather that the symbol is not visible outside this DSO. */ long dynindx; /* If this symbol requires an entry in the global offset table, the processor specific backend uses this field to track usage and final offset. Two schemes are supported: The first assumes that a symbol may only have one GOT entry, and uses REFCOUNT until size_dynamic_sections, at which point the contents of the .got is fixed. Afterward, if OFFSET is -1, then the symbol does not require a global offset table entry. The second scheme allows multiple GOT entries per symbol, managed via a linked list pointed to by GLIST. */ union gotplt_union got; /* Same, but tracks a procedure linkage table entry. */ union gotplt_union plt; /* Symbol size. */ bfd_size_type size; /* Symbol type (STT_NOTYPE, STT_OBJECT, etc.). */ unsigned int type : 8; /* Symbol st_other value, symbol visibility. */ unsigned int other : 8; /* The symbol's st_target_internal value (see Elf_Internal_Sym). */ unsigned int target_internal : 8; /* Symbol is referenced by a non-shared object (other than the object in which it is defined). */ unsigned int ref_regular : 1; /* Symbol is defined by a non-shared object. */ unsigned int def_regular : 1; /* Symbol is referenced by a shared object. */ unsigned int ref_dynamic : 1; /* Symbol is defined by a shared object. */ unsigned int def_dynamic : 1; /* Symbol has a non-weak reference from a non-shared object (other than the object in which it is defined). */ unsigned int ref_regular_nonweak : 1; /* Dynamic symbol has been adjustd. */ unsigned int dynamic_adjusted : 1; /* Symbol needs a copy reloc. */ unsigned int needs_copy : 1; /* Symbol needs a procedure linkage table entry. */ unsigned int needs_plt : 1; /* Symbol appears in a non-ELF input file. */ unsigned int non_elf : 1; /* Symbol should be marked as hidden in the version information. */ unsigned int hidden : 1; /* Symbol was forced to local scope due to a version script file. */ unsigned int forced_local : 1; /* Symbol was forced to be dynamic due to a version script file. */ unsigned int dynamic : 1; /* Symbol was marked during garbage collection. */ unsigned int mark : 1; /* Symbol is referenced by a non-GOT/non-PLT relocation. This is not currently set by all the backends. */ unsigned int non_got_ref : 1; /* Symbol has a definition in a shared object. FIXME: There is no real need for this field if def_dynamic is never cleared and all places that test def_dynamic also test def_regular. */ unsigned int dynamic_def : 1; /* Symbol has a non-weak reference from a shared object. */ unsigned int ref_dynamic_nonweak : 1; /* Symbol is referenced with a relocation where C/C++ pointer equality matters. */ unsigned int pointer_equality_needed : 1; /* Symbol is a unique global symbol. */ unsigned int unique_global : 1; /* String table index in .dynstr if this is a dynamic symbol. */ unsigned long dynstr_index; union { /* If this is a weak defined symbol from a dynamic object, this field points to a defined symbol with the same value, if there is one. Otherwise it is NULL. */ struct elf_link_hash_entry *weakdef; /* Hash value of the name computed using the ELF hash function. Used part way through size_dynamic_sections, after we've finished with weakdefs. */ unsigned long elf_hash_value; } u; /* Version information. */ union { /* This field is used for a symbol which is not defined in a regular object. It points to the version information read in from the dynamic object. */ Elf_Internal_Verdef *verdef; /* This field is used for a symbol which is defined in a regular object. It is set up in size_dynamic_sections. It points to the version information we should write out for this symbol. */ struct bfd_elf_version_tree *vertree; } verinfo; struct elf_link_virtual_table_entry *vtable; }; /* Will references to this symbol always reference the symbol in this object? */ #define SYMBOL_REFERENCES_LOCAL(INFO, H) \ _bfd_elf_symbol_refs_local_p (H, INFO, 0) /* Will _calls_ to this symbol always call the version in this object? */ #define SYMBOL_CALLS_LOCAL(INFO, H) \ _bfd_elf_symbol_refs_local_p (H, INFO, 1) /* Common symbols that are turned into definitions don't have the DEF_REGULAR flag set, so they might appear to be undefined. */ #define ELF_COMMON_DEF_P(H) \ (!(H)->def_regular \ && !(H)->def_dynamic \ && (H)->root.type == bfd_link_hash_defined) /* Records local symbols to be emitted in the dynamic symbol table. */ struct elf_link_local_dynamic_entry { struct elf_link_local_dynamic_entry *next; /* The input bfd this symbol came from. */ bfd *input_bfd; /* The index of the local symbol being copied. */ long input_indx; /* The index in the outgoing dynamic symbol table. */ long dynindx; /* A copy of the input symbol. */ Elf_Internal_Sym isym; }; struct elf_link_loaded_list { struct elf_link_loaded_list *next; bfd *abfd; }; /* Structures used by the eh_frame optimization code. */ struct eh_cie_fde { union { struct { /* If REMOVED == 1, this is the CIE that the FDE originally used. The CIE belongs to the same .eh_frame input section as the FDE. If REMOVED == 0, this is the CIE that we have chosen to use for the output FDE. The CIE's REMOVED field is also 0, but the CIE might belong to a different .eh_frame input section from the FDE. */ struct eh_cie_fde *cie_inf; struct eh_cie_fde *next_for_section; } fde; struct { /* CIEs have three states: - REMOVED && !MERGED: Slated for removal because we haven't yet proven that an FDE needs it. FULL_CIE, if nonnull, points to more detailed information about the CIE. - REMOVED && MERGED: We have merged this CIE with MERGED_WITH, which may not belong to the same input section. - !REMOVED: We have decided to keep this CIE. SEC is the .eh_frame input section that contains the CIE. */ union { struct cie *full_cie; struct eh_cie_fde *merged_with; asection *sec; } u; /* The offset of the personality data from the start of the CIE, or 0 if the CIE doesn't have any. */ unsigned int personality_offset : 8; /* True if we have marked relocations associated with this CIE. */ unsigned int gc_mark : 1; /* True if we have decided to turn an absolute LSDA encoding into a PC-relative one. */ unsigned int make_lsda_relative : 1; /* True if we have decided to turn an absolute personality encoding into a PC-relative one. */ unsigned int make_per_encoding_relative : 1; /* True if the CIE contains personality data and if that data uses a PC-relative encoding. Always true when make_per_encoding_relative is. */ unsigned int per_encoding_relative : 1; /* True if we need to add an 'R' (FDE encoding) entry to the CIE's augmentation data. */ unsigned int add_fde_encoding : 1; /* True if we have merged this CIE with another. */ unsigned int merged : 1; /* Unused bits. */ unsigned int pad1 : 18; } cie; } u; unsigned int reloc_index; unsigned int size; unsigned int offset; unsigned int new_offset; unsigned int fde_encoding : 8; unsigned int lsda_encoding : 8; unsigned int lsda_offset : 8; /* True if this entry represents a CIE, false if it represents an FDE. */ unsigned int cie : 1; /* True if this entry is currently marked for removal. */ unsigned int removed : 1; /* True if we need to add a 'z' (augmentation size) entry to the CIE's augmentation data, and an associated byte to each of the CIE's FDEs. */ unsigned int add_augmentation_size : 1; /* True if we have decided to convert absolute FDE relocations into relative ones. This applies to the first relocation in the FDE, which is against the code that the FDE describes. */ unsigned int make_relative : 1; /* Unused bits. */ unsigned int pad1 : 4; unsigned int *set_loc; }; struct eh_frame_sec_info { unsigned int count; struct cie *cies; struct eh_cie_fde entry[1]; }; struct eh_frame_array_ent { bfd_vma initial_loc; bfd_vma fde; }; struct htab; struct eh_frame_hdr_info { struct htab *cies; asection *hdr_sec; unsigned int fde_count, array_count; struct eh_frame_array_ent *array; /* TRUE if we should try to merge CIEs between input sections. */ bfd_boolean merge_cies; /* TRUE if all .eh_frames have been parsd. */ bfd_boolean parsed_eh_frames; /* TRUE if .eh_frame_hdr should contain the sorted search table. We build it if we successfully read all .eh_frame input sections and recognize them. */ bfd_boolean table; }; /* Enum used to identify target specific extensions to the elf_obj_tdata and elf_link_hash_table structures. Note the enums deliberately start from 1 so that we can detect an uninitialized field. The generic value is last so that additions to this enum do not need to modify more than one line. */ enum elf_target_id { AARCH64_ELF_DATA = 1, ALPHA_ELF_DATA, ARM_ELF_DATA, AVR_ELF_DATA, BFIN_ELF_DATA, CRIS_ELF_DATA, FRV_ELF_DATA, HPPA32_ELF_DATA, HPPA64_ELF_DATA, I386_ELF_DATA, IA64_ELF_DATA, LM32_ELF_DATA, M32R_ELF_DATA, M68HC11_ELF_DATA, M68K_ELF_DATA, METAG_ELF_DATA, MICROBLAZE_ELF_DATA, MIPS_ELF_DATA, MN10300_ELF_DATA, PPC32_ELF_DATA, PPC64_ELF_DATA, S390_ELF_DATA, SH_ELF_DATA, SPARC_ELF_DATA, SPU_ELF_DATA, TIC6X_ELF_DATA, X86_64_ELF_DATA, XTENSA_ELF_DATA, XGATE_ELF_DATA, TILEGX_ELF_DATA, TILEPRO_ELF_DATA, GENERIC_ELF_DATA }; /* ELF linker hash table. */ struct elf_link_hash_table { struct bfd_link_hash_table root; /* An identifier used to distinguish different target specific extensions to this structure. */ enum elf_target_id hash_table_id; /* Whether we have created the special dynamic sections required when linking against or generating a shared object. */ bfd_boolean dynamic_sections_created; /* True if this target has relocatable executables, so needs dynamic section symbols. */ bfd_boolean is_relocatable_executable; /* The BFD used to hold special sections created by the linker. This will be the first BFD found which requires these sections to be created. */ bfd *dynobj; /* The value to use when initialising got.refcount/offset and plt.refcount/offset in an elf_link_hash_entry. Set to zero when the values are refcounts. Set to init_got_offset/init_plt_offset in size_dynamic_sections when the values may be offsets. */ union gotplt_union init_got_refcount; union gotplt_union init_plt_refcount; /* The value to use for got.refcount/offset and plt.refcount/offset when the values may be offsets. Normally (bfd_vma) -1. */ union gotplt_union init_got_offset; union gotplt_union init_plt_offset; /* The number of symbols found in the link which must be put into the .dynsym section. */ bfd_size_type dynsymcount; /* The string table of dynamic symbols, which becomes the .dynstr section. */ struct elf_strtab_hash *dynstr; /* The number of buckets in the hash table in the .hash section. This is based on the number of dynamic symbols. */ bfd_size_type bucketcount; /* A linked list of DT_NEEDED names found in dynamic objects included in the link. */ struct bfd_link_needed_list *needed; /* Sections in the output bfd that provides a section symbol to be used by relocations emitted against local symbols. Most targets will not use data_index_section. */ asection *text_index_section; asection *data_index_section; /* The _GLOBAL_OFFSET_TABLE_ symbol. */ struct elf_link_hash_entry *hgot; /* The _PROCEDURE_LINKAGE_TABLE_ symbol. */ struct elf_link_hash_entry *hplt; /* The _DYNAMIC symbol. */ struct elf_link_hash_entry *hdynamic; /* A pointer to information used to merge SEC_MERGE sections. */ void *merge_info; /* Used to link stabs in sections. */ struct stab_info stab_info; /* Used by eh_frame code when editing .eh_frame. */ struct eh_frame_hdr_info eh_info; /* A linked list of local symbols to be added to .dynsym. */ struct elf_link_local_dynamic_entry *dynlocal; /* A linked list of DT_RPATH/DT_RUNPATH names found in dynamic objects included in the link. */ struct bfd_link_needed_list *runpath; /* Cached first output tls section and size of PT_TLS segment. */ asection *tls_sec; bfd_size_type tls_size; /* A linked list of BFD's loaded in the link. */ struct elf_link_loaded_list *loaded; /* Short-cuts to get to dynamic linker sections. */ asection *sgot; asection *sgotplt; asection *srelgot; asection *splt; asection *srelplt; asection *igotplt; asection *iplt; asection *irelplt; asection *irelifunc; }; /* Look up an entry in an ELF linker hash table. */ #define elf_link_hash_lookup(table, string, create, copy, follow) \ ((struct elf_link_hash_entry *) \ bfd_link_hash_lookup (&(table)->root, (string), (create), \ (copy), (follow))) /* Traverse an ELF linker hash table. */ #define elf_link_hash_traverse(table, func, info) \ (bfd_link_hash_traverse \ (&(table)->root, \ (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (func), \ (info))) /* Get the ELF linker hash table from a link_info structure. */ #define elf_hash_table(p) ((struct elf_link_hash_table *) ((p)->hash)) #define elf_hash_table_id(table) ((table) -> hash_table_id) /* Returns TRUE if the hash table is a struct elf_link_hash_table. */ #define is_elf_hash_table(htab) \ (((struct bfd_link_hash_table *) (htab))->type == bfd_link_elf_hash_table) /* Used by bfd_sym_from_r_symndx to cache a small number of local symbols. */ #define LOCAL_SYM_CACHE_SIZE 32 struct sym_cache { bfd *abfd; unsigned long indx[LOCAL_SYM_CACHE_SIZE]; Elf_Internal_Sym sym[LOCAL_SYM_CACHE_SIZE]; }; /* Constant information held for an ELF backend. */ struct elf_size_info { unsigned char sizeof_ehdr, sizeof_phdr, sizeof_shdr; unsigned char sizeof_rel, sizeof_rela, sizeof_sym, sizeof_dyn, sizeof_note; /* The size of entries in the .hash section. */ unsigned char sizeof_hash_entry; /* The number of internal relocations to allocate per external relocation entry. */ unsigned char int_rels_per_ext_rel; /* We use some fixed size arrays. This should be large enough to handle all back-ends. */ #define MAX_INT_RELS_PER_EXT_REL 3 unsigned char arch_size, log_file_align; unsigned char elfclass, ev_current; int (*write_out_phdrs) (bfd *, const Elf_Internal_Phdr *, unsigned int); bfd_boolean (*write_shdrs_and_ehdr) (bfd *); bfd_boolean (*checksum_contents) (bfd * , void (*) (const void *, size_t, void *), void *); void (*write_relocs) (bfd *, asection *, void *); bfd_boolean (*swap_symbol_in) (bfd *, const void *, const void *, Elf_Internal_Sym *); void (*swap_symbol_out) (bfd *, const Elf_Internal_Sym *, void *, void *); bfd_boolean (*slurp_reloc_table) (bfd *, asection *, asymbol **, bfd_boolean); long (*slurp_symbol_table) (bfd *, asymbol **, bfd_boolean); void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); void (*swap_dyn_out) (bfd *, const Elf_Internal_Dyn *, void *); /* This function is called to swap in a REL relocation. If an external relocation corresponds to more than one internal relocation, then all relocations are swapped in at once. */ void (*swap_reloc_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); /* This function is called to swap out a REL relocation. */ void (*swap_reloc_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); /* This function is called to swap in a RELA relocation. If an external relocation corresponds to more than one internal relocation, then all relocations are swapped in at once. */ void (*swap_reloca_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); /* This function is called to swap out a RELA relocation. */ void (*swap_reloca_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); }; #define elf_symbol_from(ABFD,S) \ (((S)->the_bfd->xvec->flavour == bfd_target_elf_flavour \ && (S)->the_bfd->tdata.elf_obj_data != 0) \ ? (elf_symbol_type *) (S) \ : 0) enum elf_reloc_type_class { reloc_class_normal, reloc_class_relative, reloc_class_plt, reloc_class_copy }; struct elf_reloc_cookie { Elf_Internal_Rela *rels, *rel, *relend; Elf_Internal_Sym *locsyms; bfd *abfd; size_t locsymcount; size_t extsymoff; struct elf_link_hash_entry **sym_hashes; int r_sym_shift; bfd_boolean bad_symtab; }; /* The level of IRIX compatibility we're striving for. */ typedef enum { ict_none, ict_irix5, ict_irix6 } irix_compat_t; /* Mapping of ELF section names and types. */ struct bfd_elf_special_section { const char *prefix; int prefix_length; /* 0 means name must match PREFIX exactly. -1 means name must start with PREFIX followed by an arbitrary string. -2 means name must match PREFIX exactly or consist of PREFIX followed by a dot then anything. > 0 means name must start with the first PREFIX_LENGTH chars of PREFIX and finish with the last SUFFIX_LENGTH chars of PREFIX. */ int suffix_length; int type; bfd_vma attr; }; enum action_discarded { COMPLAIN = 1, PRETEND = 2 }; typedef asection * (*elf_gc_mark_hook_fn) (asection *, struct bfd_link_info *, Elf_Internal_Rela *, struct elf_link_hash_entry *, Elf_Internal_Sym *); struct elf_backend_data { /* The architecture for this backend. */ enum bfd_architecture arch; /* An identifier used to distinguish different target specific extensions to elf_obj_tdata and elf_link_hash_table structures. */ enum elf_target_id target_id; /* The ELF machine code (EM_xxxx) for this backend. */ int elf_machine_code; /* EI_OSABI. */ int elf_osabi; /* The maximum page size for this backend. */ bfd_vma maxpagesize; /* The minimum page size for this backend. An input object will not be considered page aligned unless its sections are correctly aligned for pages at least this large. May be smaller than maxpagesize. */ bfd_vma minpagesize; /* The common page size for this backend. */ bfd_vma commonpagesize; /* The BFD flags applied to sections created for dynamic linking. */ flagword dynamic_sec_flags; /* Architecture-specific data for this backend. This is actually a pointer to some type like struct elf_ARCH_data. */ const void *arch_data; /* A function to translate an ELF RELA relocation to a BFD arelent structure. */ void (*elf_info_to_howto) (bfd *, arelent *, Elf_Internal_Rela *); /* A function to translate an ELF REL relocation to a BFD arelent structure. */ void (*elf_info_to_howto_rel) (bfd *, arelent *, Elf_Internal_Rela *); /* A function to determine whether a symbol is global when partitioning the symbol table into local and global symbols. This should be NULL for most targets, in which case the correct thing will be done. MIPS ELF, at least on the Irix 5, has special requirements. */ bfd_boolean (*elf_backend_sym_is_global) (bfd *, asymbol *); /* The remaining functions are hooks which are called only if they are not NULL. */ /* A function to permit a backend specific check on whether a particular BFD format is relevant for an object file, and to permit the backend to set any global information it wishes. When this is called elf_elfheader is set, but anything else should be used with caution. If this returns FALSE, the check_format routine will return a bfd_error_wrong_format error. */ bfd_boolean (*elf_backend_object_p) (bfd *); /* A function to do additional symbol processing when reading the ELF symbol table. This is where any processor-specific special section indices are handled. */ void (*elf_backend_symbol_processing) (bfd *, asymbol *); /* A function to do additional symbol processing after reading the entire ELF symbol table. */ bfd_boolean (*elf_backend_symbol_table_processing) (bfd *, elf_symbol_type *, unsigned int); /* A function to set the type of the info field. Processor-specific types should be handled here. */ int (*elf_backend_get_symbol_type) (Elf_Internal_Sym *, int); /* A function to return the linker hash table entry of a symbol that might be satisfied by an archive symbol. */ struct elf_link_hash_entry * (*elf_backend_archive_symbol_lookup) (bfd *, struct bfd_link_info *, const char *); /* Return true if local section symbols should have a non-null st_name. NULL implies false. */ bfd_boolean (*elf_backend_name_local_section_symbols) (bfd *); /* A function to do additional processing on the ELF section header just before writing it out. This is used to set the flags and type fields for some sections, or to actually write out data for unusual sections. */ bfd_boolean (*elf_backend_section_processing) (bfd *, Elf_Internal_Shdr *); /* A function to handle unusual section types when creating BFD sections from ELF sections. */ bfd_boolean (*elf_backend_section_from_shdr) (bfd *, Elf_Internal_Shdr *, const char *, int); /* A function to convert machine dependent ELF section header flags to BFD internal section header flags. */ bfd_boolean (*elf_backend_section_flags) (flagword *, const Elf_Internal_Shdr *); /* A function that returns a struct containing ELF section flags and type for the given BFD section. */ const struct bfd_elf_special_section * (*get_sec_type_attr) (bfd *, asection *); /* A function to handle unusual program segment types when creating BFD sections from ELF program segments. */ bfd_boolean (*elf_backend_section_from_phdr) (bfd *, Elf_Internal_Phdr *, int, const char *); /* A function to set up the ELF section header for a BFD section in preparation for writing it out. This is where the flags and type fields are set for unusual sections. */ bfd_boolean (*elf_backend_fake_sections) (bfd *, Elf_Internal_Shdr *, asection *); /* A function to get the ELF section index for a BFD section. If this returns TRUE, the section was found. If it is a normal ELF section, *RETVAL should be left unchanged. If it is not a normal ELF section *RETVAL should be set to the SHN_xxxx index. */ bfd_boolean (*elf_backend_section_from_bfd_section) (bfd *, asection *, int *retval); /* If this field is not NULL, it is called by the add_symbols phase of a link just before adding a symbol to the global linker hash table. It may modify any of the fields as it wishes. If *NAME is set to NULL, the symbol will be skipped rather than being added to the hash table. This function is responsible for handling all processor dependent symbol bindings and section indices, and must set at least *FLAGS and *SEC for each processor dependent case; failure to do so will cause a link error. */ bfd_boolean (*elf_add_symbol_hook) (bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *, const char **name, flagword *flags, asection **sec, bfd_vma *value); /* If this field is not NULL, it is called by the elf_link_output_sym phase of a link for each symbol which will appear in the object file. On error, this function returns 0. 1 is returned when the symbol should be output, 2 is returned when the symbol should be discarded. */ int (*elf_backend_link_output_symbol_hook) (struct bfd_link_info *info, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *); /* The CREATE_DYNAMIC_SECTIONS function is called by the ELF backend linker the first time it encounters a dynamic object in the link. This function must create any sections required for dynamic linking. The ABFD argument is a dynamic object. The .interp, .dynamic, .dynsym, .dynstr, and .hash functions have already been created, and this function may modify the section flags if desired. This function will normally create the .got and .plt sections, but different backends have different requirements. */ bfd_boolean (*elf_backend_create_dynamic_sections) (bfd *abfd, struct bfd_link_info *info); /* When creating a shared library, determine whether to omit the dynamic symbol for the section. */ bfd_boolean (*elf_backend_omit_section_dynsym) (bfd *output_bfd, struct bfd_link_info *info, asection *osec); /* Return TRUE if relocations of targets are compatible to the extent that CHECK_RELOCS will properly process them. PR 4424. */ bfd_boolean (*relocs_compatible) (const bfd_target *, const bfd_target *); /* The CHECK_RELOCS function is called by the add_symbols phase of the ELF backend linker. It is called once for each section with relocs of an object file, just after the symbols for the object file have been added to the global linker hash table. The function must look through the relocs and do any special handling required. This generally means allocating space in the global offset table, and perhaps allocating space for a reloc. The relocs are always passed as Rela structures; if the section actually uses Rel structures, the r_addend field will always be zero. */ bfd_boolean (*check_relocs) (bfd *abfd, struct bfd_link_info *info, asection *o, const Elf_Internal_Rela *relocs); /* The CHECK_DIRECTIVES function is called once per input file by the add_symbols phase of the ELF backend linker. The function must inspect the bfd and create any additional symbols according to any custom directives in the bfd. */ bfd_boolean (*check_directives) (bfd *abfd, struct bfd_link_info *info); /* The AS_NEEDED_CLEANUP function is called once per --as-needed input file that was not needed by the add_symbols phase of the ELF backend linker. The function must undo any target specific changes in the symbol hash table. */ bfd_boolean (*as_needed_cleanup) (bfd *abfd, struct bfd_link_info *info); /* The ADJUST_DYNAMIC_SYMBOL function is called by the ELF backend linker for every symbol which is defined by a dynamic object and referenced by a regular object. This is called after all the input files have been seen, but before the SIZE_DYNAMIC_SECTIONS function has been called. The hash table entry should be bfd_link_hash_defined ore bfd_link_hash_defweak, and it should be defined in a section from a dynamic object. Dynamic object sections are not included in the final link, and this function is responsible for changing the value to something which the rest of the link can deal with. This will normally involve adding an entry to the .plt or .got or some such section, and setting the symbol to point to that. */ bfd_boolean (*elf_backend_adjust_dynamic_symbol) (struct bfd_link_info *info, struct elf_link_hash_entry *h); /* The ALWAYS_SIZE_SECTIONS function is called by the backend linker after all the linker input files have been seen but before the section sizes have been set. This is called after ADJUST_DYNAMIC_SYMBOL, but before SIZE_DYNAMIC_SECTIONS. */ bfd_boolean (*elf_backend_always_size_sections) (bfd *output_bfd, struct bfd_link_info *info); /* The SIZE_DYNAMIC_SECTIONS function is called by the ELF backend linker after all the linker input files have been seen but before the sections sizes have been set. This is called after ADJUST_DYNAMIC_SYMBOL has been called on all appropriate symbols. It is only called when linking against a dynamic object. It must set the sizes of the dynamic sections, and may fill in their contents as well. The generic ELF linker can handle the .dynsym, .dynstr and .hash sections. This function must handle the .interp section and any sections created by the CREATE_DYNAMIC_SECTIONS entry point. */ bfd_boolean (*elf_backend_size_dynamic_sections) (bfd *output_bfd, struct bfd_link_info *info); /* Set TEXT_INDEX_SECTION and DATA_INDEX_SECTION, the output sections we keep to use as a base for relocs and symbols. */ void (*elf_backend_init_index_section) (bfd *output_bfd, struct bfd_link_info *info); /* The RELOCATE_SECTION function is called by the ELF backend linker to handle the relocations for a section. The relocs are always passed as Rela structures; if the section actually uses Rel structures, the r_addend field will always be zero. This function is responsible for adjust the section contents as necessary, and (if using Rela relocs and generating a relocatable output file) adjusting the reloc addend as necessary. This function does not have to worry about setting the reloc address or the reloc symbol index. LOCAL_SYMS is a pointer to the swapped in local symbols. LOCAL_SECTIONS is an array giving the section in the input file corresponding to the st_shndx field of each local symbol. The global hash table entry for the global symbols can be found via elf_sym_hashes (input_bfd). When generating relocatable output, this function must handle STB_LOCAL/STT_SECTION symbols specially. The output symbol is going to be the section symbol corresponding to the output section, which means that the addend must be adjusted accordingly. Returns FALSE on error, TRUE on success, 2 if successful and relocations should be written for this section. */ int (*elf_backend_relocate_section) (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections); /* The FINISH_DYNAMIC_SYMBOL function is called by the ELF backend linker just before it writes a symbol out to the .dynsym section. The processor backend may make any required adjustment to the symbol. It may also take the opportunity to set contents of the dynamic sections. Note that FINISH_DYNAMIC_SYMBOL is called on all .dynsym symbols, while ADJUST_DYNAMIC_SYMBOL is only called on those symbols which are defined by a dynamic object. */ bfd_boolean (*elf_backend_finish_dynamic_symbol) (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym); /* The FINISH_DYNAMIC_SECTIONS function is called by the ELF backend linker just before it writes all the dynamic sections out to the output file. The FINISH_DYNAMIC_SYMBOL will have been called on all dynamic symbols. */ bfd_boolean (*elf_backend_finish_dynamic_sections) (bfd *output_bfd, struct bfd_link_info *info); /* A function to do any beginning processing needed for the ELF file before building the ELF headers and computing file positions. */ void (*elf_backend_begin_write_processing) (bfd *, struct bfd_link_info *); /* A function to do any final processing needed for the ELF file before writing it out. The LINKER argument is TRUE if this BFD was created by the ELF backend linker. */ void (*elf_backend_final_write_processing) (bfd *, bfd_boolean linker); /* This function is called by get_program_header_size. It should return the number of additional program segments which this BFD will need. It should return -1 on error. */ int (*elf_backend_additional_program_headers) (bfd *, struct bfd_link_info *); /* This function is called to modify an existing segment map in a backend specific fashion. */ bfd_boolean (*elf_backend_modify_segment_map) (bfd *, struct bfd_link_info *); /* This function is called to modify program headers just before they are written. */ bfd_boolean (*elf_backend_modify_program_headers) (bfd *, struct bfd_link_info *); /* This function is called before section garbage collection to mark entry symbol sections. */ void (*gc_keep) (struct bfd_link_info *); /* This function is called during section garbage collection to mark sections that define global symbols. */ bfd_boolean (*gc_mark_dynamic_ref) (struct elf_link_hash_entry *, void *); /* This function is called during section gc to discover the section a particular relocation refers to. */ elf_gc_mark_hook_fn gc_mark_hook; /* This function, if defined, is called after the first gc marking pass to allow the backend to mark additional sections. */ bfd_boolean (*gc_mark_extra_sections) (struct bfd_link_info *, elf_gc_mark_hook_fn); /* This function, if defined, is called during the sweep phase of gc in order that a backend might update any data structures it might be maintaining. */ bfd_boolean (*gc_sweep_hook) (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *); /* This function, if defined, is called after the ELF headers have been created. This allows for things like the OS and ABI versions to be changed. */ void (*elf_backend_post_process_headers) (bfd *, struct bfd_link_info *); /* This function, if defined, prints a symbol to file and returns the name of the symbol to be printed. It should return NULL to fall back to default symbol printing. */ const char *(*elf_backend_print_symbol_all) (bfd *, void *, asymbol *); /* This function, if defined, is called after all local symbols and global symbols converted to locals are emitted into the symtab section. It allows the backend to emit special local symbols not handled in the hash table. */ bfd_boolean (*elf_backend_output_arch_local_syms) (bfd *, struct bfd_link_info *, void *, bfd_boolean (*) (void *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *)); /* This function, if defined, is called after all symbols are emitted into the symtab section. It allows the backend to emit special global symbols not handled in the hash table. */ bfd_boolean (*elf_backend_output_arch_syms) (bfd *, struct bfd_link_info *, void *, bfd_boolean (*) (void *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *)); /* Copy any information related to dynamic linking from a pre-existing symbol to a newly created symbol. Also called to copy flags and other back-end info to a weakdef, in which case the symbol is not newly created and plt/got refcounts and dynamic indices should not be copied. */ void (*elf_backend_copy_indirect_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, struct elf_link_hash_entry *); /* Modify any information related to dynamic linking such that the symbol is not exported. */ void (*elf_backend_hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean); /* A function to do additional symbol fixup, called by _bfd_elf_fix_symbol_flags. */ bfd_boolean (*elf_backend_fixup_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *); /* Merge the backend specific symbol attribute. */ void (*elf_backend_merge_symbol_attribute) (struct elf_link_hash_entry *, const Elf_Internal_Sym *, bfd_boolean, bfd_boolean); /* This function, if defined, will return a string containing the name of a target-specific dynamic tag. */ char *(*elf_backend_get_target_dtag) (bfd_vma); /* Decide whether an undefined symbol is special and can be ignored. This is the case for OPTIONAL symbols on IRIX. */ bfd_boolean (*elf_backend_ignore_undef_symbol) (struct elf_link_hash_entry *); /* Emit relocations. Overrides default routine for emitting relocs, except during a relocatable link, or if all relocs are being emitted. */ bfd_boolean (*elf_backend_emit_relocs) (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *, struct elf_link_hash_entry **); /* Count relocations. Not called for relocatable links or if all relocs are being preserved in the output. */ unsigned int (*elf_backend_count_relocs) (struct bfd_link_info *, asection *); /* This function, if defined, is called when an NT_PRSTATUS note is found in a core file. */ bfd_boolean (*elf_backend_grok_prstatus) (bfd *, Elf_Internal_Note *); /* This function, if defined, is called when an NT_PSINFO or NT_PRPSINFO note is found in a core file. */ bfd_boolean (*elf_backend_grok_psinfo) (bfd *, Elf_Internal_Note *); /* This function, if defined, is called to write a note to a corefile. */ char *(*elf_backend_write_core_note) (bfd *abfd, char *buf, int *bufsiz, int note_type, ...); /* This function, if defined, is called to convert target-specific section flag names into hex values. */ flagword (*elf_backend_lookup_section_flags_hook) (char *); /* This function returns class of a reloc type. */ enum elf_reloc_type_class (*elf_backend_reloc_type_class) (const Elf_Internal_Rela *); /* This function, if defined, removes information about discarded functions from other sections which mention them. */ bfd_boolean (*elf_backend_discard_info) (bfd *, struct elf_reloc_cookie *, struct bfd_link_info *); /* This function, if defined, signals that the function above has removed the discarded relocations for this section. */ bfd_boolean (*elf_backend_ignore_discarded_relocs) (asection *); /* What to do when ld finds relocations against symbols defined in discarded sections. */ unsigned int (*action_discarded) (asection *); /* This function returns the width of FDE pointers in bytes, or 0 if that can't be determined for some reason. The default definition goes by the bfd's EI_CLASS. */ unsigned int (*elf_backend_eh_frame_address_size) (bfd *, asection *); /* These functions tell elf-eh-frame whether to attempt to turn absolute or lsda encodings into pc-relative ones. The default definition enables these transformations. */ bfd_boolean (*elf_backend_can_make_relative_eh_frame) (bfd *, struct bfd_link_info *, asection *); bfd_boolean (*elf_backend_can_make_lsda_relative_eh_frame) (bfd *, struct bfd_link_info *, asection *); /* This function returns an encoding after computing the encoded value (and storing it in ENCODED) for the given OFFSET into OSEC, to be stored in at LOC_OFFSET into the LOC_SEC input section. The default definition chooses a 32-bit PC-relative encoding. */ bfd_byte (*elf_backend_encode_eh_address) (bfd *abfd, struct bfd_link_info *info, asection *osec, bfd_vma offset, asection *loc_sec, bfd_vma loc_offset, bfd_vma *encoded); /* This function, if defined, may write out the given section. Returns TRUE if it did so and FALSE if the caller should. */ bfd_boolean (*elf_backend_write_section) (bfd *, struct bfd_link_info *, asection *, bfd_byte *); /* The level of IRIX compatibility we're striving for. MIPS ELF specific function. */ irix_compat_t (*elf_backend_mips_irix_compat) (bfd *); reloc_howto_type *(*elf_backend_mips_rtype_to_howto) (unsigned int, bfd_boolean); /* The swapping table to use when dealing with ECOFF information. Used for the MIPS ELF .mdebug section. */ const struct ecoff_debug_swap *elf_backend_ecoff_debug_swap; /* This function implements `bfd_elf_bfd_from_remote_memory'; see elf.c, elfcode.h. */ bfd *(*elf_backend_bfd_from_remote_memory) (bfd *templ, bfd_vma ehdr_vma, bfd_vma *loadbasep, int (*target_read_memory) (bfd_vma vma, bfd_byte *myaddr, bfd_size_type len)); /* This function is used by `_bfd_elf_get_synthetic_symtab'; see elf.c. */ bfd_vma (*plt_sym_val) (bfd_vma, const asection *, const arelent *); /* Is symbol defined in common section? */ bfd_boolean (*common_definition) (Elf_Internal_Sym *); /* Return a common section index for section. */ unsigned int (*common_section_index) (asection *); /* Return a common section for section. */ asection *(*common_section) (asection *); /* Return TRUE if we can merge 2 definitions. */ bfd_boolean (*merge_symbol) (struct bfd_link_info *, struct elf_link_hash_entry **, struct elf_link_hash_entry *, Elf_Internal_Sym *, asection **, bfd_vma *, unsigned int *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd *, asection **, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd *, asection **); /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ bfd_boolean (*elf_hash_symbol) (struct elf_link_hash_entry *); /* Return TRUE if type is a function symbol type. */ bfd_boolean (*is_function_type) (unsigned int type); /* If the ELF symbol SYM might be a function in SEC, return the function size and set *CODE_OFF to the function's entry point, otherwise return zero. */ bfd_size_type (*maybe_function_sym) (const asymbol *sym, asection *sec, bfd_vma *code_off); /* Used to handle bad SHF_LINK_ORDER input. */ bfd_error_handler_type link_order_error_handler; /* Name of the PLT relocation section. */ const char *relplt_name; /* Alternate EM_xxxx machine codes for this backend. */ int elf_machine_alt1; int elf_machine_alt2; const struct elf_size_info *s; /* An array of target specific special sections. */ const struct bfd_elf_special_section *special_sections; /* The size in bytes of the header for the GOT. This includes the so-called reserved entries on some systems. */ bfd_vma got_header_size; /* The size of the GOT entry for the symbol pointed to by H if non-NULL, otherwise by the local symbol with index SYMNDX in IBFD. */ bfd_vma (*got_elt_size) (bfd *, struct bfd_link_info *, struct elf_link_hash_entry *h, bfd *ibfd, unsigned long symndx); /* The vendor name to use for a processor-standard attributes section. */ const char *obj_attrs_vendor; /* The section name to use for a processor-standard attributes section. */ const char *obj_attrs_section; /* Return 1, 2 or 3 to indicate what type of arguments a processor-specific tag takes. */ int (*obj_attrs_arg_type) (int); /* The section type to use for an attributes section. */ unsigned int obj_attrs_section_type; /* This function determines the order in which any attributes are written. It must be defined for input in the range LEAST_KNOWN_OBJ_ATTRIBUTE..NUM_KNOWN_OBJ_ATTRIBUTES-1 (this range is used in order to make unity easy). The returned value is the actual tag number to place in the input position. */ int (*obj_attrs_order) (int); /* Handle merging unknown attributes; either warn and return TRUE, or give an error and return FALSE. */ bfd_boolean (*obj_attrs_handle_unknown) (bfd *, int); /* This is non-zero if static TLS segments require a special alignment. */ unsigned static_tls_alignment; /* Alignment for the PT_GNU_STACK segment. */ unsigned stack_align; /* This is TRUE if the linker should act like collect and gather global constructors and destructors by name. This is TRUE for MIPS ELF because the Irix 5 tools can not handle the .init section. */ unsigned collect : 1; /* This is TRUE if the linker should ignore changes to the type of a symbol. This is TRUE for MIPS ELF because some Irix 5 objects record undefined functions as STT_OBJECT although the definitions are STT_FUNC. */ unsigned type_change_ok : 1; /* Whether the backend may use REL relocations. (Some backends use both REL and RELA relocations, and this flag is set for those backends.) */ unsigned may_use_rel_p : 1; /* Whether the backend may use RELA relocations. (Some backends use both REL and RELA relocations, and this flag is set for those backends.) */ unsigned may_use_rela_p : 1; /* Whether the default relocation type is RELA. If a backend with this flag set wants REL relocations for a particular section, it must note that explicitly. Similarly, if this flag is clear, and the backend wants RELA relocations for a particular section. */ unsigned default_use_rela_p : 1; /* True if PLT and copy relocations should be RELA by default. */ unsigned rela_plts_and_copies_p : 1; /* Set if RELA relocations for a relocatable link can be handled by generic code. Backends that set this flag need do nothing in the backend relocate_section routine for relocatable linking. */ unsigned rela_normal : 1; /* TRUE if addresses "naturally" sign extend. This is used when swapping in from Elf32 when BFD64. */ unsigned sign_extend_vma : 1; unsigned want_got_plt : 1; unsigned plt_readonly : 1; unsigned want_plt_sym : 1; unsigned plt_not_loaded : 1; unsigned plt_alignment : 4; unsigned can_gc_sections : 1; unsigned can_refcount : 1; unsigned want_got_sym : 1; unsigned want_dynbss : 1; /* Targets which do not support physical addressing often require that the p_paddr field in the section header to be set to zero. This field indicates whether this behavior is required. */ unsigned want_p_paddr_set_to_zero : 1; /* True if an object file lacking a .note.GNU-stack section should be assumed to be requesting exec stack. At least one other file in the link needs to have a .note.GNU-stack section for a PT_GNU_STACK segment to be created. */ unsigned default_execstack : 1; }; /* Information about reloc sections associated with a bfd_elf_section_data structure. */ struct bfd_elf_section_reloc_data { /* The ELF header for the reloc section associated with this section, if any. */ Elf_Internal_Shdr *hdr; /* The number of relocations currently assigned to HDR. */ unsigned int count; /* The ELF section number of the reloc section. Only used for an output file. */ int idx; /* Used by the backend linker to store the symbol hash table entries associated with relocs against global symbols. */ struct elf_link_hash_entry **hashes; }; /* Information stored for each BFD section in an ELF file. This structure is allocated by elf_new_section_hook. */ struct bfd_elf_section_data { /* The ELF header for this section. */ Elf_Internal_Shdr this_hdr; /* INPUT_SECTION_FLAGS if specified in the linker script. */ struct flag_info *section_flag_info; /* Information about the REL and RELA reloc sections associated with this section, if any. */ struct bfd_elf_section_reloc_data rel, rela; /* The ELF section number of this section. */ int this_idx; /* Used by the backend linker when generating a shared library to record the dynamic symbol index for a section symbol corresponding to this section. A value of 0 means that there is no dynamic symbol for this section. */ int dynindx; /* A pointer to the linked-to section for SHF_LINK_ORDER. */ asection *linked_to; /* A pointer to the swapped relocs. If the section uses REL relocs, rather than RELA, all the r_addend fields will be zero. This pointer may be NULL. It is used by the backend linker. */ Elf_Internal_Rela *relocs; /* A pointer to a linked list tracking dynamic relocs copied for local symbols. */ void *local_dynrel; /* A pointer to the bfd section used for dynamic relocs. */ asection *sreloc; union { /* Group name, if this section is a member of a group. */ const char *name; /* Group signature sym, if this is the SHT_GROUP section. */ struct bfd_symbol *id; } group; /* For a member of a group, points to the SHT_GROUP section. NULL for the SHT_GROUP section itself and non-group sections. */ asection *sec_group; /* A linked list of member sections in the group. Circular when used by the linker. For the SHT_GROUP section, points at first member. */ asection *next_in_group; /* The FDEs associated with this section. The u.fde.next_in_section field acts as a chain pointer. */ struct eh_cie_fde *fde_list; /* A pointer used for various section optimizations. */ void *sec_info; }; #define elf_section_data(sec) ((struct bfd_elf_section_data*)(sec)->used_by_bfd) #define elf_linked_to_section(sec) (elf_section_data(sec)->linked_to) #define elf_section_type(sec) (elf_section_data(sec)->this_hdr.sh_type) #define elf_section_flags(sec) (elf_section_data(sec)->this_hdr.sh_flags) #define elf_group_name(sec) (elf_section_data(sec)->group.name) #define elf_group_id(sec) (elf_section_data(sec)->group.id) #define elf_next_in_group(sec) (elf_section_data(sec)->next_in_group) #define elf_fde_list(sec) (elf_section_data(sec)->fde_list) #define elf_sec_group(sec) (elf_section_data(sec)->sec_group) #define xvec_get_elf_backend_data(xvec) \ ((const struct elf_backend_data *) (xvec)->backend_data) #define get_elf_backend_data(abfd) \ xvec_get_elf_backend_data ((abfd)->xvec) /* The least object attributes (within an attributes subsection) known for any target. Some code assumes that the value 0 is not used and the field for that attribute can instead be used as a marker to indicate that attributes have been initialized. */ #define LEAST_KNOWN_OBJ_ATTRIBUTE 2 /* The maximum number of known object attributes for any target. */ #define NUM_KNOWN_OBJ_ATTRIBUTES 71 /* The value of an object attribute. The type indicates whether the attribute holds and integer, a string, or both. It can also indicate that there can be no default (i.e. all values must be written to file, even zero). */ typedef struct obj_attribute { #define ATTR_TYPE_FLAG_INT_VAL (1 << 0) #define ATTR_TYPE_FLAG_STR_VAL (1 << 1) #define ATTR_TYPE_FLAG_NO_DEFAULT (1 << 2) #define ATTR_TYPE_HAS_INT_VAL(TYPE) ((TYPE) & ATTR_TYPE_FLAG_INT_VAL) #define ATTR_TYPE_HAS_STR_VAL(TYPE) ((TYPE) & ATTR_TYPE_FLAG_STR_VAL) #define ATTR_TYPE_HAS_NO_DEFAULT(TYPE) ((TYPE) & ATTR_TYPE_FLAG_NO_DEFAULT) int type; unsigned int i; char *s; } obj_attribute; typedef struct obj_attribute_list { struct obj_attribute_list *next; int tag; obj_attribute attr; } obj_attribute_list; /* Object attributes may either be defined by the processor ABI, index OBJ_ATTR_PROC in the *_obj_attributes arrays, or be GNU-specific (and possibly also processor-specific), index OBJ_ATTR_GNU. */ #define OBJ_ATTR_PROC 0 #define OBJ_ATTR_GNU 1 #define OBJ_ATTR_FIRST OBJ_ATTR_PROC #define OBJ_ATTR_LAST OBJ_ATTR_GNU /* The following object attribute tags are taken as generic, for all targets and for "gnu" where there is no target standard. */ enum { Tag_NULL = 0, Tag_File = 1, Tag_Section = 2, Tag_Symbol = 3, Tag_compatibility = 32 }; /* The following struct stores information about every SystemTap section found in the object file. */ struct sdt_note { struct sdt_note *next; bfd_size_type size; bfd_byte data[1]; }; /* Some private data is stashed away for future use using the tdata pointer in the bfd structure. */ struct elf_obj_tdata { Elf_Internal_Ehdr elf_header[1]; /* Actual data, but ref like ptr */ Elf_Internal_Shdr **elf_sect_ptr; Elf_Internal_Phdr *phdr; struct elf_segment_map *segment_map; struct elf_strtab_hash *strtab_ptr; int num_locals; int num_globals; unsigned int num_elf_sections; /* elf_sect_ptr size */ int num_section_syms; asymbol **section_syms; /* STT_SECTION symbols for each section */ Elf_Internal_Shdr symtab_hdr; Elf_Internal_Shdr shstrtab_hdr; Elf_Internal_Shdr strtab_hdr; Elf_Internal_Shdr dynsymtab_hdr; Elf_Internal_Shdr dynstrtab_hdr; Elf_Internal_Shdr dynversym_hdr; Elf_Internal_Shdr dynverref_hdr; Elf_Internal_Shdr dynverdef_hdr; Elf_Internal_Shdr symtab_shndx_hdr; unsigned int symtab_section, shstrtab_section; unsigned int strtab_section, dynsymtab_section; unsigned int symtab_shndx_section; unsigned int dynversym_section, dynverdef_section, dynverref_section; file_ptr next_file_pos; bfd_vma gp; /* The gp value */ unsigned int gp_size; /* The gp size */ /* Information grabbed from an elf core file. */ int core_signal; int core_pid; int core_lwpid; char* core_program; char* core_command; /* A mapping from external symbols to entries in the linker hash table, used when linking. This is indexed by the symbol index minus the sh_info field of the symbol table header. */ struct elf_link_hash_entry **sym_hashes; /* Track usage and final offsets of GOT entries for local symbols. This array is indexed by symbol index. Elements are used identically to "got" in struct elf_link_hash_entry. */ union { bfd_signed_vma *refcounts; bfd_vma *offsets; struct got_entry **ents; } local_got; /* The linker ELF emulation code needs to let the backend ELF linker know what filename should be used for a dynamic object if the dynamic object is found using a search. The emulation code then sometimes needs to know what name was actually used. Until the file has been added to the linker symbol table, this field holds the name the linker wants. After it has been added, it holds the name actually used, which will be the DT_SONAME entry if there is one. */ const char *dt_name; /* The linker emulation needs to know what audit libs are used by a dynamic object. */ const char *dt_audit; /* Records the result of `get_program_header_size'. */ bfd_size_type program_header_size; /* Used by find_nearest_line entry point. */ void *line_info; /* Used by MIPS ELF find_nearest_line entry point. The structure could be included directly in this one, but there's no point to wasting the memory just for the infrequently called find_nearest_line. */ struct mips_elf_find_line *find_line_info; /* A place to stash dwarf1 info for this bfd. */ struct dwarf1_debug *dwarf1_find_line_info; /* A place to stash dwarf2 info for this bfd. */ void *dwarf2_find_line_info; /* An array of stub sections indexed by symbol number, used by the MIPS ELF linker. FIXME: We should figure out some way to only include this field for a MIPS ELF target. */ asection **local_stubs; asection **local_call_stubs; /* Used to determine if PT_GNU_EH_FRAME segment header should be created. */ asection *eh_frame_hdr; Elf_Internal_Shdr **group_sect_ptr; int num_group; /* Number of symbol version definitions we are about to emit. */ unsigned int cverdefs; /* Number of symbol version references we are about to emit. */ unsigned int cverrefs; /* Segment flags for the PT_GNU_STACK segment. */ unsigned int stack_flags; /* Symbol version definitions in external objects. */ Elf_Internal_Verdef *verdef; /* Symbol version references to external objects. */ Elf_Internal_Verneed *verref; /* The Irix 5 support uses two virtual sections, which represent text/data symbols defined in dynamic objects. */ asymbol *elf_data_symbol; asymbol *elf_text_symbol; asection *elf_data_section; asection *elf_text_section; /* A pointer to the .eh_frame section. */ asection *eh_frame_section; /* Whether a dyanmic object was specified normally on the linker command line, or was specified when --as-needed was in effect, or was found via a DT_NEEDED entry. */ enum dynamic_lib_link_class dyn_lib_class; /* This is set to TRUE if the object was created by the backend linker. */ bfd_boolean linker; /* Irix 5 often screws up the symbol table, sorting local symbols after global symbols. This flag is set if the symbol table in this BFD appears to be screwed up. If it is, we ignore the sh_info field in the symbol table header, and always read all the symbols. */ bfd_boolean bad_symtab; /* Used to determine if the e_flags field has been initialized */ bfd_boolean flags_init; /* Symbol buffer. */ void *symbuf; obj_attribute known_obj_attributes[2][NUM_KNOWN_OBJ_ATTRIBUTES]; obj_attribute_list *other_obj_attributes[2]; /* Called at the end of _bfd_elf_write_object_contents if not NULL. */ bfd_boolean (*after_write_object_contents) (bfd *); void *after_write_object_contents_info; /* NT_GNU_BUILD_ID note type. */ bfd_size_type build_id_size; bfd_byte *build_id; /* Linked-list containing information about every Systemtap section found in the object file. Each section corresponds to one entry in the list. */ struct sdt_note *sdt_note_head; /* True if the bfd contains symbols that have the STT_GNU_IFUNC symbol type or STB_GNU_UNIQUE binding. Used to set the osabi field in the ELF header structure. */ bfd_boolean has_gnu_symbols; /* An identifier used to distinguish different target specific extensions to this structure. */ enum elf_target_id object_id; }; #define elf_tdata(bfd) ((bfd) -> tdata.elf_obj_data) #define elf_object_id(bfd) (elf_tdata(bfd) -> object_id) #define elf_program_header_size(bfd) (elf_tdata(bfd) -> program_header_size) #define elf_elfheader(bfd) (elf_tdata(bfd) -> elf_header) #define elf_elfsections(bfd) (elf_tdata(bfd) -> elf_sect_ptr) #define elf_numsections(bfd) (elf_tdata(bfd) -> num_elf_sections) #define elf_shstrtab(bfd) (elf_tdata(bfd) -> strtab_ptr) #define elf_onesymtab(bfd) (elf_tdata(bfd) -> symtab_section) #define elf_symtab_shndx(bfd) (elf_tdata(bfd) -> symtab_shndx_section) #define elf_symtab_hdr(bfd) (elf_tdata(bfd) -> symtab_hdr) #define elf_dynsymtab(bfd) (elf_tdata(bfd) -> dynsymtab_section) #define elf_dynversym(bfd) (elf_tdata(bfd) -> dynversym_section) #define elf_dynverdef(bfd) (elf_tdata(bfd) -> dynverdef_section) #define elf_dynverref(bfd) (elf_tdata(bfd) -> dynverref_section) #define elf_eh_frame_section(bfd) \ (elf_tdata(bfd) -> eh_frame_section) #define elf_num_locals(bfd) (elf_tdata(bfd) -> num_locals) #define elf_num_globals(bfd) (elf_tdata(bfd) -> num_globals) #define elf_section_syms(bfd) (elf_tdata(bfd) -> section_syms) #define elf_num_section_syms(bfd) (elf_tdata(bfd) -> num_section_syms) #define core_prpsinfo(bfd) (elf_tdata(bfd) -> prpsinfo) #define core_prstatus(bfd) (elf_tdata(bfd) -> prstatus) #define elf_gp(bfd) (elf_tdata(bfd) -> gp) #define elf_gp_size(bfd) (elf_tdata(bfd) -> gp_size) #define elf_sym_hashes(bfd) (elf_tdata(bfd) -> sym_hashes) #define elf_local_got_refcounts(bfd) (elf_tdata(bfd) -> local_got.refcounts) #define elf_local_got_offsets(bfd) (elf_tdata(bfd) -> local_got.offsets) #define elf_local_got_ents(bfd) (elf_tdata(bfd) -> local_got.ents) #define elf_dt_name(bfd) (elf_tdata(bfd) -> dt_name) #define elf_dt_audit(bfd) (elf_tdata(bfd) -> dt_audit) #define elf_dyn_lib_class(bfd) (elf_tdata(bfd) -> dyn_lib_class) #define elf_bad_symtab(bfd) (elf_tdata(bfd) -> bad_symtab) #define elf_flags_init(bfd) (elf_tdata(bfd) -> flags_init) #define elf_known_obj_attributes(bfd) (elf_tdata (bfd) -> known_obj_attributes) #define elf_other_obj_attributes(bfd) (elf_tdata (bfd) -> other_obj_attributes) #define elf_known_obj_attributes_proc(bfd) \ (elf_known_obj_attributes (bfd) [OBJ_ATTR_PROC]) #define elf_other_obj_attributes_proc(bfd) \ (elf_other_obj_attributes (bfd) [OBJ_ATTR_PROC]) extern void _bfd_elf_swap_verdef_in (bfd *, const Elf_External_Verdef *, Elf_Internal_Verdef *); extern void _bfd_elf_swap_verdef_out (bfd *, const Elf_Internal_Verdef *, Elf_External_Verdef *); extern void _bfd_elf_swap_verdaux_in (bfd *, const Elf_External_Verdaux *, Elf_Internal_Verdaux *); extern void _bfd_elf_swap_verdaux_out (bfd *, const Elf_Internal_Verdaux *, Elf_External_Verdaux *); extern void _bfd_elf_swap_verneed_in (bfd *, const Elf_External_Verneed *, Elf_Internal_Verneed *); extern void _bfd_elf_swap_verneed_out (bfd *, const Elf_Internal_Verneed *, Elf_External_Verneed *); extern void _bfd_elf_swap_vernaux_in (bfd *, const Elf_External_Vernaux *, Elf_Internal_Vernaux *); extern void _bfd_elf_swap_vernaux_out (bfd *, const Elf_Internal_Vernaux *, Elf_External_Vernaux *); extern void _bfd_elf_swap_versym_in (bfd *, const Elf_External_Versym *, Elf_Internal_Versym *); extern void _bfd_elf_swap_versym_out (bfd *, const Elf_Internal_Versym *, Elf_External_Versym *); extern unsigned int _bfd_elf_section_from_bfd_section (bfd *, asection *); extern char *bfd_elf_string_from_elf_section (bfd *, unsigned, unsigned); extern Elf_Internal_Sym *bfd_elf_get_elf_syms (bfd *, Elf_Internal_Shdr *, size_t, size_t, Elf_Internal_Sym *, void *, Elf_External_Sym_Shndx *); extern const char *bfd_elf_sym_name (bfd *, Elf_Internal_Shdr *, Elf_Internal_Sym *, asection *); extern bfd_boolean _bfd_elf_copy_private_bfd_data (bfd *, bfd *); extern bfd_boolean _bfd_elf_print_private_bfd_data (bfd *, void *); extern void bfd_elf_print_symbol (bfd *, void *, asymbol *, bfd_print_symbol_type); extern unsigned int _bfd_elf_eh_frame_address_size (bfd *, asection *); extern bfd_byte _bfd_elf_encode_eh_address (bfd *abfd, struct bfd_link_info *info, asection *osec, bfd_vma offset, asection *loc_sec, bfd_vma loc_offset, bfd_vma *encoded); extern bfd_boolean _bfd_elf_can_make_relative (bfd *input_bfd, struct bfd_link_info *info, asection *eh_frame_section); extern enum elf_reloc_type_class _bfd_elf_reloc_type_class (const Elf_Internal_Rela *); extern bfd_vma _bfd_elf_rela_local_sym (bfd *, Elf_Internal_Sym *, asection **, Elf_Internal_Rela *); extern bfd_vma _bfd_elf_rel_local_sym (bfd *, Elf_Internal_Sym *, asection **, bfd_vma); extern bfd_vma _bfd_elf_section_offset (bfd *, struct bfd_link_info *, asection *, bfd_vma); extern unsigned long bfd_elf_hash (const char *); extern unsigned long bfd_elf_gnu_hash (const char *); extern bfd_reloc_status_type bfd_elf_generic_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); extern bfd_boolean bfd_elf_allocate_object (bfd *, size_t, enum elf_target_id); extern bfd_boolean bfd_elf_make_object (bfd *); extern bfd_boolean bfd_elf_mkcorefile (bfd *); extern bfd_boolean _bfd_elf_make_section_from_shdr (bfd *, Elf_Internal_Shdr *, const char *, int); extern bfd_boolean _bfd_elf_make_section_from_phdr (bfd *, Elf_Internal_Phdr *, int, const char *); extern struct bfd_hash_entry *_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); extern struct bfd_link_hash_table *_bfd_elf_link_hash_table_create (bfd *); extern void _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *, struct elf_link_hash_entry *, struct elf_link_hash_entry *); extern void _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean); extern bfd_boolean _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *, struct elf_link_hash_entry *); extern bfd_boolean _bfd_elf_link_hash_table_init (struct elf_link_hash_table *, bfd *, struct bfd_hash_entry *(*) (struct bfd_hash_entry *, struct bfd_hash_table *, const char *), unsigned int, enum elf_target_id); extern bfd_boolean _bfd_elf_slurp_version_tables (bfd *, bfd_boolean); extern bfd_boolean _bfd_elf_merge_sections (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_match_sections_by_type (bfd *, const asection *, bfd *, const asection *); extern bfd_boolean bfd_elf_is_group_section (bfd *, const struct bfd_section *); extern bfd_boolean _bfd_elf_section_already_linked (bfd *, asection *, struct bfd_link_info *); extern void bfd_elf_set_group_contents (bfd *, asection *, void *); extern asection *_bfd_elf_check_kept_section (asection *, struct bfd_link_info *); #define _bfd_elf_link_just_syms _bfd_generic_link_just_syms extern void _bfd_elf_copy_link_hash_symbol_type (bfd *, struct bfd_link_hash_entry *, struct bfd_link_hash_entry *); extern bfd_boolean _bfd_elf_size_group_sections (struct bfd_link_info *); extern bfd_boolean _bfd_elf_fixup_group_sections (bfd *, asection *); extern bfd_boolean _bfd_elf_copy_private_header_data (bfd *, bfd *); extern bfd_boolean _bfd_elf_copy_private_symbol_data (bfd *, asymbol *, bfd *, asymbol *); #define _bfd_generic_init_private_section_data \ _bfd_elf_init_private_section_data extern bfd_boolean _bfd_elf_init_private_section_data (bfd *, asection *, bfd *, asection *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_copy_private_section_data (bfd *, asection *, bfd *, asection *); extern bfd_boolean _bfd_elf_write_object_contents (bfd *); extern bfd_boolean _bfd_elf_write_corefile_contents (bfd *); extern bfd_boolean _bfd_elf_set_section_contents (bfd *, sec_ptr, const void *, file_ptr, bfd_size_type); extern long _bfd_elf_get_symtab_upper_bound (bfd *); extern long _bfd_elf_canonicalize_symtab (bfd *, asymbol **); extern long _bfd_elf_get_dynamic_symtab_upper_bound (bfd *); extern long _bfd_elf_canonicalize_dynamic_symtab (bfd *, asymbol **); extern long _bfd_elf_get_synthetic_symtab (bfd *, long, asymbol **, long, asymbol **, asymbol **); extern long _bfd_elf_get_reloc_upper_bound (bfd *, sec_ptr); extern long _bfd_elf_canonicalize_reloc (bfd *, sec_ptr, arelent **, asymbol **); extern asection * _bfd_elf_get_dynamic_reloc_section (bfd *, asection *, bfd_boolean); extern asection * _bfd_elf_make_dynamic_reloc_section (asection *, bfd *, unsigned int, bfd *, bfd_boolean); extern long _bfd_elf_get_dynamic_reloc_upper_bound (bfd *); extern long _bfd_elf_canonicalize_dynamic_reloc (bfd *, arelent **, asymbol **); extern asymbol *_bfd_elf_make_empty_symbol (bfd *); extern void _bfd_elf_get_symbol_info (bfd *, asymbol *, symbol_info *); extern bfd_boolean _bfd_elf_is_local_label_name (bfd *, const char *); extern alent *_bfd_elf_get_lineno (bfd *, asymbol *); extern bfd_boolean _bfd_elf_set_arch_mach (bfd *, enum bfd_architecture, unsigned long); extern bfd_boolean _bfd_elf_find_nearest_line (bfd *, asection *, asymbol **, bfd_vma, const char **, const char **, unsigned int *); extern bfd_boolean _bfd_elf_find_nearest_line_discriminator (bfd *, asection *, asymbol **, bfd_vma, const char **, const char **, unsigned int *, unsigned int *); extern bfd_boolean _bfd_elf_find_line (bfd *, asymbol **, asymbol *, const char **, unsigned int *); extern bfd_boolean _bfd_elf_find_line_discriminator (bfd *, asymbol **, asymbol *, const char **, unsigned int *, unsigned int *); #define _bfd_generic_find_line _bfd_elf_find_line #define _bfd_generic_find_nearest_line_discriminator \ _bfd_elf_find_nearest_line_discriminator extern bfd_boolean _bfd_elf_find_inliner_info (bfd *, const char **, const char **, unsigned int *); #define _bfd_elf_read_minisymbols _bfd_generic_read_minisymbols #define _bfd_elf_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol extern int _bfd_elf_sizeof_headers (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_new_section_hook (bfd *, asection *); extern bfd_boolean _bfd_elf_init_reloc_shdr (bfd *, struct bfd_elf_section_reloc_data *, asection *, bfd_boolean); extern const struct bfd_elf_special_section *_bfd_elf_get_special_section (const char *, const struct bfd_elf_special_section *, unsigned int); extern const struct bfd_elf_special_section *_bfd_elf_get_sec_type_attr (bfd *, asection *); /* If the target doesn't have reloc handling written yet: */ extern void _bfd_elf_no_info_to_howto (bfd *, arelent *, Elf_Internal_Rela *); extern bfd_boolean bfd_section_from_shdr (bfd *, unsigned int shindex); extern bfd_boolean bfd_section_from_phdr (bfd *, Elf_Internal_Phdr *, int); extern int _bfd_elf_symbol_from_bfd_symbol (bfd *, asymbol **); extern Elf_Internal_Sym *bfd_sym_from_r_symndx (struct sym_cache *, bfd *, unsigned long); extern asection *bfd_section_from_elf_index (bfd *, unsigned int); extern struct bfd_strtab_hash *_bfd_elf_stringtab_init (void); extern struct elf_strtab_hash * _bfd_elf_strtab_init (void); extern void _bfd_elf_strtab_free (struct elf_strtab_hash *); extern bfd_size_type _bfd_elf_strtab_add (struct elf_strtab_hash *, const char *, bfd_boolean); extern void _bfd_elf_strtab_addref (struct elf_strtab_hash *, bfd_size_type); extern void _bfd_elf_strtab_delref (struct elf_strtab_hash *, bfd_size_type); extern unsigned int _bfd_elf_strtab_refcount (struct elf_strtab_hash *, bfd_size_type); extern void _bfd_elf_strtab_clear_refs (struct elf_strtab_hash *, bfd_size_type); #define _bfd_elf_strtab_clear_all_refs(tab) \ do { _bfd_elf_strtab_clear_refs (tab, 1); } while (0) extern bfd_size_type _bfd_elf_strtab_size (struct elf_strtab_hash *); extern bfd_size_type _bfd_elf_strtab_offset (struct elf_strtab_hash *, bfd_size_type); extern bfd_boolean _bfd_elf_strtab_emit (bfd *, struct elf_strtab_hash *); extern void _bfd_elf_strtab_finalize (struct elf_strtab_hash *); extern void _bfd_elf_begin_eh_frame_parsing (struct bfd_link_info *info); extern void _bfd_elf_parse_eh_frame (bfd *, struct bfd_link_info *, asection *, struct elf_reloc_cookie *); extern void _bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info); extern bfd_boolean _bfd_elf_discard_section_eh_frame (bfd *, struct bfd_link_info *, asection *, bfd_boolean (*) (bfd_vma, void *), struct elf_reloc_cookie *); extern bfd_boolean _bfd_elf_discard_section_eh_frame_hdr (bfd *, struct bfd_link_info *); extern bfd_vma _bfd_elf_eh_frame_section_offset (bfd *, struct bfd_link_info *, asection *, bfd_vma); extern bfd_boolean _bfd_elf_write_section_eh_frame (bfd *, struct bfd_link_info *, asection *, bfd_byte *); extern bfd_boolean _bfd_elf_write_section_eh_frame_hdr (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_eh_frame_present (struct bfd_link_info *); extern bfd_boolean _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *); extern bfd_boolean _bfd_elf_merge_symbol (bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection **, bfd_vma *, bfd_boolean *, unsigned int *, struct elf_link_hash_entry **, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *); extern bfd_boolean _bfd_elf_hash_symbol (struct elf_link_hash_entry *); extern long _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *, bfd *, long); extern bfd_boolean _bfd_elf_compute_section_file_positions (bfd *, struct bfd_link_info *); extern void _bfd_elf_assign_file_positions_for_relocs (bfd *); extern file_ptr _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *, file_ptr, bfd_boolean); extern bfd_boolean _bfd_elf_validate_reloc (bfd *, arelent *); extern bfd_boolean _bfd_elf_link_create_dynamic_sections (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_link_omit_section_dynsym (bfd *, struct bfd_link_info *, asection *); extern bfd_boolean _bfd_elf_create_dynamic_sections (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_create_got_section (bfd *, struct bfd_link_info *); extern struct elf_link_hash_entry *_bfd_elf_define_linkage_sym (bfd *, struct bfd_link_info *, asection *, const char *); extern void _bfd_elf_init_1_index_section (bfd *, struct bfd_link_info *); extern void _bfd_elf_init_2_index_sections (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elfcore_make_pseudosection (bfd *, char *, size_t, ufile_ptr); extern char *_bfd_elfcore_strndup (bfd *, char *, size_t); extern Elf_Internal_Rela *_bfd_elf_link_read_relocs (bfd *, asection *, void *, Elf_Internal_Rela *, bfd_boolean); extern bfd_boolean _bfd_elf_link_output_relocs (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *, struct elf_link_hash_entry **); extern bfd_boolean _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *, asection *); extern bfd_boolean _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *, struct bfd_link_info *, bfd_boolean); extern bfd_boolean _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *, struct bfd_link_info *, bfd_boolean); extern bfd_reloc_status_type bfd_elf_perform_complex_relocation (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, bfd_vma); extern bfd_boolean _bfd_elf_setup_sections (bfd *); extern void _bfd_elf_set_osabi (bfd * , struct bfd_link_info *); extern const bfd_target *bfd_elf32_object_p (bfd *); extern const bfd_target *bfd_elf32_core_file_p (bfd *); extern char *bfd_elf32_core_file_failing_command (bfd *); extern int bfd_elf32_core_file_failing_signal (bfd *); extern bfd_boolean bfd_elf32_core_file_matches_executable_p (bfd *, bfd *); extern int bfd_elf32_core_file_pid (bfd *); extern bfd_boolean bfd_elf32_swap_symbol_in (bfd *, const void *, const void *, Elf_Internal_Sym *); extern void bfd_elf32_swap_symbol_out (bfd *, const Elf_Internal_Sym *, void *, void *); extern void bfd_elf32_swap_reloc_in (bfd *, const bfd_byte *, Elf_Internal_Rela *); extern void bfd_elf32_swap_reloc_out (bfd *, const Elf_Internal_Rela *, bfd_byte *); extern void bfd_elf32_swap_reloca_in (bfd *, const bfd_byte *, Elf_Internal_Rela *); extern void bfd_elf32_swap_reloca_out (bfd *, const Elf_Internal_Rela *, bfd_byte *); extern void bfd_elf32_swap_phdr_in (bfd *, const Elf32_External_Phdr *, Elf_Internal_Phdr *); extern void bfd_elf32_swap_phdr_out (bfd *, const Elf_Internal_Phdr *, Elf32_External_Phdr *); extern void bfd_elf32_swap_dyn_in (bfd *, const void *, Elf_Internal_Dyn *); extern void bfd_elf32_swap_dyn_out (bfd *, const Elf_Internal_Dyn *, void *); extern long bfd_elf32_slurp_symbol_table (bfd *, asymbol **, bfd_boolean); extern bfd_boolean bfd_elf32_write_shdrs_and_ehdr (bfd *); extern int bfd_elf32_write_out_phdrs (bfd *, const Elf_Internal_Phdr *, unsigned int); extern bfd_boolean bfd_elf32_checksum_contents (bfd * , void (*) (const void *, size_t, void *), void *); extern void bfd_elf32_write_relocs (bfd *, asection *, void *); extern bfd_boolean bfd_elf32_slurp_reloc_table (bfd *, asection *, asymbol **, bfd_boolean); extern const bfd_target *bfd_elf64_object_p (bfd *); extern const bfd_target *bfd_elf64_core_file_p (bfd *); extern char *bfd_elf64_core_file_failing_command (bfd *); extern int bfd_elf64_core_file_failing_signal (bfd *); extern bfd_boolean bfd_elf64_core_file_matches_executable_p (bfd *, bfd *); extern int bfd_elf64_core_file_pid (bfd *); extern bfd_boolean bfd_elf64_swap_symbol_in (bfd *, const void *, const void *, Elf_Internal_Sym *); extern void bfd_elf64_swap_symbol_out (bfd *, const Elf_Internal_Sym *, void *, void *); extern void bfd_elf64_swap_reloc_in (bfd *, const bfd_byte *, Elf_Internal_Rela *); extern void bfd_elf64_swap_reloc_out (bfd *, const Elf_Internal_Rela *, bfd_byte *); extern void bfd_elf64_swap_reloca_in (bfd *, const bfd_byte *, Elf_Internal_Rela *); extern void bfd_elf64_swap_reloca_out (bfd *, const Elf_Internal_Rela *, bfd_byte *); extern void bfd_elf64_swap_phdr_in (bfd *, const Elf64_External_Phdr *, Elf_Internal_Phdr *); extern void bfd_elf64_swap_phdr_out (bfd *, const Elf_Internal_Phdr *, Elf64_External_Phdr *); extern void bfd_elf64_swap_dyn_in (bfd *, const void *, Elf_Internal_Dyn *); extern void bfd_elf64_swap_dyn_out (bfd *, const Elf_Internal_Dyn *, void *); extern long bfd_elf64_slurp_symbol_table (bfd *, asymbol **, bfd_boolean); extern bfd_boolean bfd_elf64_write_shdrs_and_ehdr (bfd *); extern int bfd_elf64_write_out_phdrs (bfd *, const Elf_Internal_Phdr *, unsigned int); extern bfd_boolean bfd_elf64_checksum_contents (bfd * , void (*) (const void *, size_t, void *), void *); extern void bfd_elf64_write_relocs (bfd *, asection *, void *); extern bfd_boolean bfd_elf64_slurp_reloc_table (bfd *, asection *, asymbol **, bfd_boolean); extern bfd_boolean _bfd_elf_default_relocs_compatible (const bfd_target *, const bfd_target *); extern bfd_boolean _bfd_elf_relocs_compatible (const bfd_target *, const bfd_target *); extern struct elf_link_hash_entry *_bfd_elf_archive_symbol_lookup (bfd *, struct bfd_link_info *, const char *); extern bfd_boolean bfd_elf_link_add_symbols (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_add_dynamic_entry (struct bfd_link_info *, bfd_vma, bfd_vma); extern bfd_boolean bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *, struct elf_link_hash_entry *); extern int bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *, bfd *, long); extern bfd_boolean _bfd_elf_close_and_cleanup (bfd *); extern bfd_boolean _bfd_elf_common_definition (Elf_Internal_Sym *); extern unsigned int _bfd_elf_common_section_index (asection *); extern asection *_bfd_elf_common_section (asection *); extern bfd_vma _bfd_elf_default_got_elt_size (bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, bfd *, unsigned long); extern bfd_reloc_status_type _bfd_elf_rel_vtable_reloc_fn (bfd *, arelent *, struct bfd_symbol *, void *, asection *, bfd *, char **); extern bfd_boolean bfd_elf_final_link (bfd *, struct bfd_link_info *); extern void _bfd_elf_gc_keep (struct bfd_link_info *info); extern bfd_boolean bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf); extern bfd_boolean bfd_elf_gc_sections (bfd *, struct bfd_link_info *); extern bfd_boolean bfd_elf_gc_record_vtinherit (bfd *, asection *, struct elf_link_hash_entry *, bfd_vma); extern bfd_boolean bfd_elf_gc_record_vtentry (bfd *, asection *, struct elf_link_hash_entry *, bfd_vma); extern asection *_bfd_elf_gc_mark_hook (asection *, struct bfd_link_info *, Elf_Internal_Rela *, struct elf_link_hash_entry *, Elf_Internal_Sym *); extern asection *_bfd_elf_gc_mark_rsec (struct bfd_link_info *, asection *, elf_gc_mark_hook_fn, struct elf_reloc_cookie *); extern bfd_boolean _bfd_elf_gc_mark_reloc (struct bfd_link_info *, asection *, elf_gc_mark_hook_fn, struct elf_reloc_cookie *); extern bfd_boolean _bfd_elf_gc_mark_fdes (struct bfd_link_info *, asection *, asection *, elf_gc_mark_hook_fn, struct elf_reloc_cookie *); extern bfd_boolean _bfd_elf_gc_mark (struct bfd_link_info *, asection *, elf_gc_mark_hook_fn); extern bfd_boolean _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *, elf_gc_mark_hook_fn); extern bfd_boolean bfd_elf_gc_common_finalize_got_offsets (bfd *, struct bfd_link_info *); extern bfd_boolean bfd_elf_gc_common_final_link (bfd *, struct bfd_link_info *); extern bfd_boolean bfd_elf_reloc_symbol_deleted_p (bfd_vma, void *); extern struct elf_segment_map * _bfd_elf_make_dynamic_segment (bfd *, asection *); extern bfd_boolean _bfd_elf_map_sections_to_segments (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_is_function_type (unsigned int); extern bfd_size_type _bfd_elf_maybe_function_sym (const asymbol *, asection *, bfd_vma *); extern int bfd_elf_get_default_section_type (flagword); extern bfd_boolean bfd_elf_lookup_section_flags (struct bfd_link_info *, struct flag_info *, asection *); extern Elf_Internal_Phdr * _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section); /* Exported interface for writing elf corefile notes. */ extern char *elfcore_write_note (bfd *, char *, int *, const char *, int, const void *, int); extern char *elfcore_write_prpsinfo (bfd *, char *, int *, const char *, const char *); extern char *elfcore_write_prstatus (bfd *, char *, int *, long, int, const void *); extern char * elfcore_write_pstatus (bfd *, char *, int *, long, int, const void *); extern char *elfcore_write_prfpreg (bfd *, char *, int *, const void *, int); extern char *elfcore_write_prxfpreg (bfd *, char *, int *, const void *, int); extern char *elfcore_write_xstatereg (bfd *, char *, int *, const void *, int); extern char *elfcore_write_ppc_vmx (bfd *, char *, int *, const void *, int); extern char *elfcore_write_ppc_vsx (bfd *, char *, int *, const void *, int); extern char *elfcore_write_s390_timer (bfd *, char *, int *, const void *, int); extern char *elfcore_write_s390_todcmp (bfd *, char *, int *, const void *, int); extern char *elfcore_write_s390_todpreg (bfd *, char *, int *, const void *, int); extern char *elfcore_write_s390_ctrs (bfd *, char *, int *, const void *, int); extern char *elfcore_write_s390_prefix (bfd *, char *, int *, const void *, int); extern char *elfcore_write_s390_last_break (bfd *, char *, int *, const void *, int); extern char *elfcore_write_s390_system_call (bfd *, char *, int *, const void *, int); extern char *elfcore_write_arm_vfp (bfd *, char *, int *, const void *, int); extern char *elfcore_write_aarch_tls (bfd *, char *, int *, const void *, int); extern char *elfcore_write_aarch_hw_break (bfd *, char *, int *, const void *, int); extern char *elfcore_write_aarch_hw_watch (bfd *, char *, int *, const void *, int); extern char *elfcore_write_lwpstatus (bfd *, char *, int *, long, int, const void *); extern char *elfcore_write_register_note (bfd *, char *, int *, const char *, const void *, int); /* Internal structure which holds information to be included in the PRPSINFO section of Linux core files. This is an "internal" structure in the sense that it should be used to pass information to BFD (via the `elfcore_write_linux_prpsinfo' function), so things like endianess shouldn't be an issue. This structure will eventually be converted in one of the `elf_external_linux_*' structures and written out to an output bfd by one of the functions declared below. */ struct elf_internal_linux_prpsinfo { char pr_state; /* Numeric process state. */ char pr_sname; /* Char for pr_state. */ char pr_zomb; /* Zombie. */ char pr_nice; /* Nice val. */ unsigned long pr_flag; /* Flags. */ unsigned int pr_uid; unsigned int pr_gid; int pr_pid, pr_ppid, pr_pgrp, pr_sid; char pr_fname[16 + 1]; /* Filename of executable. */ char pr_psargs[80 + 1]; /* Initial part of arg list. */ }; /* Linux/most 32-bit archs. */ extern char *elfcore_write_linux_prpsinfo32 (bfd *, char *, int *, const struct elf_internal_linux_prpsinfo *); /* Linux/most 64-bit archs. */ extern char *elfcore_write_linux_prpsinfo64 (bfd *, char *, int *, const struct elf_internal_linux_prpsinfo *); /* Linux/PPC32 uses different layout compared to most archs. */ extern char *elfcore_write_ppc_linux_prpsinfo32 (bfd *, char *, int *, const struct elf_internal_linux_prpsinfo *); extern bfd *_bfd_elf32_bfd_from_remote_memory (bfd *templ, bfd_vma ehdr_vma, bfd_vma *loadbasep, int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type)); extern bfd *_bfd_elf64_bfd_from_remote_memory (bfd *templ, bfd_vma ehdr_vma, bfd_vma *loadbasep, int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type)); extern bfd_vma bfd_elf_obj_attr_size (bfd *); extern void bfd_elf_set_obj_attr_contents (bfd *, bfd_byte *, bfd_vma); extern int bfd_elf_get_obj_attr_int (bfd *, int, int); extern void bfd_elf_add_obj_attr_int (bfd *, int, int, unsigned int); #define bfd_elf_add_proc_attr_int(BFD, TAG, VALUE) \ bfd_elf_add_obj_attr_int ((BFD), OBJ_ATTR_PROC, (TAG), (VALUE)) extern void bfd_elf_add_obj_attr_string (bfd *, int, int, const char *); #define bfd_elf_add_proc_attr_string(BFD, TAG, VALUE) \ bfd_elf_add_obj_attr_string ((BFD), OBJ_ATTR_PROC, (TAG), (VALUE)) extern void bfd_elf_add_obj_attr_int_string (bfd *, int, int, unsigned int, const char *); #define bfd_elf_add_proc_attr_int_string(BFD, TAG, INTVAL, STRVAL) \ bfd_elf_add_obj_attr_int_string ((BFD), OBJ_ATTR_PROC, (TAG), \ (INTVAL), (STRVAL)) extern char *_bfd_elf_attr_strdup (bfd *, const char *); extern void _bfd_elf_copy_obj_attributes (bfd *, bfd *); extern int _bfd_elf_obj_attrs_arg_type (bfd *, int, int); extern void _bfd_elf_parse_attributes (bfd *, Elf_Internal_Shdr *); extern bfd_boolean _bfd_elf_merge_object_attributes (bfd *, bfd *); extern bfd_boolean _bfd_elf_merge_unknown_attribute_low (bfd *, bfd *, int); extern bfd_boolean _bfd_elf_merge_unknown_attribute_list (bfd *, bfd *); extern Elf_Internal_Shdr *_bfd_elf_single_rel_hdr (asection *sec); /* The linker may need to keep track of the number of relocs that it decides to copy as dynamic relocs in check_relocs for each symbol. This is so that it can later discard them if they are found to be unnecessary. We can store the information in a field extending the regular ELF linker hash table. */ struct elf_dyn_relocs { struct elf_dyn_relocs *next; /* The input section of the reloc. */ asection *sec; /* Total number of relocs copied for the input section. */ bfd_size_type count; /* Number of pc-relative relocs copied for the input section. */ bfd_size_type pc_count; }; extern bfd_boolean _bfd_elf_create_ifunc_sections (bfd *, struct bfd_link_info *); extern asection * _bfd_elf_create_ifunc_dyn_reloc (bfd *, struct bfd_link_info *, asection *sec, asection *sreloc, struct elf_dyn_relocs **); extern bfd_boolean _bfd_elf_allocate_ifunc_dyn_relocs (struct bfd_link_info *, struct elf_link_hash_entry *, struct elf_dyn_relocs **, unsigned int, unsigned int); extern void elf_append_rela (bfd *, asection *, Elf_Internal_Rela *); extern void elf_append_rel (bfd *, asection *, Elf_Internal_Rela *); extern bfd_vma elf64_r_info (bfd_vma, bfd_vma); extern bfd_vma elf64_r_sym (bfd_vma); extern bfd_vma elf32_r_info (bfd_vma, bfd_vma); extern bfd_vma elf32_r_sym (bfd_vma); /* Large common section. */ extern asection _bfd_elf_large_com_section; /* Hash for local symbol with the first section id, ID, in the input file and the local symbol index, SYM. */ #define ELF_LOCAL_SYMBOL_HASH(ID, SYM) \ (((((ID) & 0xff) << 24) | (((ID) & 0xff00) << 8)) \ ^ (SYM) ^ ((ID) >> 16)) /* This is the condition under which finish_dynamic_symbol will be called. If our finish_dynamic_symbol isn't called, we'll need to do something about initializing any .plt and .got entries in relocate_section. */ #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, SHARED, H) \ ((DYN) \ && ((SHARED) || !(H)->forced_local) \ && ((H)->dynindx != -1 || (H)->forced_local)) /* This macro is to avoid lots of duplicated code in the body of xxx_relocate_section() in the various elfxx-xxxx.c files. */ #define RELOC_FOR_GLOBAL_SYMBOL(info, input_bfd, input_section, rel, \ r_symndx, symtab_hdr, sym_hashes, \ h, sec, relocation, \ unresolved_reloc, warned) \ do \ { \ /* It seems this can happen with erroneous or unsupported \ input (mixing a.out and elf in an archive, for example.) */ \ if (sym_hashes == NULL) \ return FALSE; \ \ h = sym_hashes[r_symndx - symtab_hdr->sh_info]; \ \ while (h->root.type == bfd_link_hash_indirect \ || h->root.type == bfd_link_hash_warning) \ h = (struct elf_link_hash_entry *) h->root.u.i.link; \ \ warned = FALSE; \ unresolved_reloc = FALSE; \ relocation = 0; \ if (h->root.type == bfd_link_hash_defined \ || h->root.type == bfd_link_hash_defweak) \ { \ sec = h->root.u.def.section; \ if (sec == NULL \ || sec->output_section == NULL) \ /* Set a flag that will be cleared later if we find a \ relocation value for this symbol. output_section \ is typically NULL for symbols satisfied by a shared \ library. */ \ unresolved_reloc = TRUE; \ else \ relocation = (h->root.u.def.value \ + sec->output_section->vma \ + sec->output_offset); \ } \ else if (h->root.type == bfd_link_hash_undefweak) \ ; \ else if (info->unresolved_syms_in_objects == RM_IGNORE \ && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) \ ; \ else if (!info->relocatable) \ { \ bfd_boolean err; \ err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR \ || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT); \ if (!info->callbacks->undefined_symbol (info, \ h->root.root.string, \ input_bfd, \ input_section, \ rel->r_offset, err)) \ return FALSE; \ warned = TRUE; \ } \ (void) unresolved_reloc; \ (void) warned; \ } \ while (0) /* This macro is to avoid lots of duplicated code in the body of the loop over relocations in xxx_relocate_section() in the various elfxx-xxxx.c files. Handle relocations against symbols from removed linkonce sections, or sections discarded by a linker script. When doing a relocatable link, we remove such relocations. Otherwise, we just want the section contents zeroed and avoid any special processing. */ #define RELOC_AGAINST_DISCARDED_SECTION(info, input_bfd, input_section, \ rel, count, relend, \ howto, index, contents) \ { \ int i_; \ _bfd_clear_contents (howto, input_bfd, input_section, \ contents + rel[index].r_offset); \ \ if (info->relocatable \ && (input_section->flags & SEC_DEBUGGING)) \ { \ /* Only remove relocations in debug sections since other \ sections may require relocations. */ \ Elf_Internal_Shdr *rel_hdr; \ \ rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section); \ \ /* Avoid empty output section. */ \ if (rel_hdr->sh_size > count * rel_hdr->sh_entsize) \ { \ rel_hdr->sh_size -= count * rel_hdr->sh_entsize; \ rel_hdr = _bfd_elf_single_rel_hdr (input_section); \ rel_hdr->sh_size -= count * rel_hdr->sh_entsize; \ \ memmove (rel, rel + count, \ (relend - rel - count) * sizeof (*rel)); \ \ input_section->reloc_count -= count; \ relend -= count; \ rel--; \ continue; \ } \ } \ \ for (i_ = 0; i_ < count; i_++) \ { \ rel[i_].r_info = 0; \ rel[i_].r_addend = 0; \ } \ rel += count - 1; \ continue; \ } /* Will a symbol be bound to the definition within the shared library, if any. A unique symbol can never be bound locally. */ #define SYMBOLIC_BIND(INFO, H) \ (!(H)->unique_global \ && ((INFO)->symbolic || ((INFO)->dynamic && !(H)->dynamic))) #endif /* _LIBELF_H_ */