/* BFD semi-generic back-end for a.out binaries. Copyright 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. Written by Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* SECTION a.out backends DESCRIPTION BFD supports a number of different flavours of a.out format, though the major differences are only the sizes of the structures on disk, and the shape of the relocation information. The support is split into a basic support file @file{aoutx.h} and other files which derive functions from the base. One derivation file is @file{aoutf1.h} (for a.out flavour 1), and adds to the basic a.out functions support for sun3, sun4, 386 and 29k a.out files, to create a target jump vector for a specific target. This information is further split out into more specific files for each machine, including @file{sunos.c} for sun3 and sun4, @file{newsos3.c} for the Sony NEWS, and @file{demo64.c} for a demonstration of a 64 bit a.out format. The base file @file{aoutx.h} defines general mechanisms for reading and writing records to and from disk and various other methods which BFD requires. It is included by @file{aout32.c} and @file{aout64.c} to form the names <>, <>, etc. As an example, this is what goes on to make the back end for a sun4, from @file{aout32.c}: | #define ARCH_SIZE 32 | #include "aoutx.h" Which exports names: | ... | aout_32_canonicalize_reloc | aout_32_find_nearest_line | aout_32_get_lineno | aout_32_get_reloc_upper_bound | ... from @file{sunos.c}: | #define TARGET_NAME "a.out-sunos-big" | #define VECNAME sunos_big_vec | #include "aoutf1.h" requires all the names from @file{aout32.c}, and produces the jump vector | sunos_big_vec The file @file{host-aout.c} is a special case. It is for a large set of hosts that use ``more or less standard'' a.out files, and for which cross-debugging is not interesting. It uses the standard 32-bit a.out support routines, but determines the file offsets and addresses of the text, data, and BSS sections, the machine architecture and machine type, and the entry point address, in a host-dependent manner. Once these values have been determined, generic code is used to handle the object file. When porting it to run on a new system, you must supply: | HOST_PAGE_SIZE | HOST_SEGMENT_SIZE | HOST_MACHINE_ARCH (optional) | HOST_MACHINE_MACHINE (optional) | HOST_TEXT_START_ADDR | HOST_STACK_END_ADDR in the file @file{../include/sys/h-@var{XXX}.h} (for your host). These values, plus the structures and macros defined in @file{a.out.h} on your host system, will produce a BFD target that will access ordinary a.out files on your host. To configure a new machine to use @file{host-aout.c}, specify: | TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec | TDEPFILES= host-aout.o trad-core.o in the @file{config/@var{XXX}.mt} file, and modify @file{configure.in} to use the @file{@var{XXX}.mt} file (by setting "<>") when your configuration is selected. */ /* Some assumptions: * Any BFD with D_PAGED set is ZMAGIC, and vice versa. Doesn't matter what the setting of WP_TEXT is on output, but it'll get set on input. * Any BFD with D_PAGED clear and WP_TEXT set is NMAGIC. * Any BFD with both flags clear is OMAGIC. (Just want to make these explicit, so the conditions tested in this file make sense if you're more familiar with a.out than with BFD.) */ #define KEEPIT udata.i #include /* For strchr and friends */ #include "bfd.h" #include #include "bfdlink.h" #include "libaout.h" #include "libbfd.h" #include "aout/aout64.h" #include "aout/stab_gnu.h" #include "aout/ar.h" static boolean aout_get_external_symbols PARAMS ((bfd *)); static boolean translate_from_native_sym_flags PARAMS ((bfd *, aout_symbol_type *)); static boolean translate_to_native_sym_flags PARAMS ((bfd *, asymbol *, struct external_nlist *)); /* SUBSECTION Relocations DESCRIPTION The file @file{aoutx.h} provides for both the @emph{standard} and @emph{extended} forms of a.out relocation records. The standard records contain only an address, a symbol index, and a type field. The extended records (used on 29ks and sparcs) also have a full integer for an addend. */ #ifndef CTOR_TABLE_RELOC_HOWTO #define CTOR_TABLE_RELOC_IDX 2 #define CTOR_TABLE_RELOC_HOWTO(BFD) ((obj_reloc_entry_size(BFD) == RELOC_EXT_SIZE \ ? howto_table_ext : howto_table_std) \ + CTOR_TABLE_RELOC_IDX) #endif #ifndef MY_swap_std_reloc_in #define MY_swap_std_reloc_in NAME(aout,swap_std_reloc_in) #endif #ifndef MY_swap_std_reloc_out #define MY_swap_std_reloc_out NAME(aout,swap_std_reloc_out) #endif #define howto_table_ext NAME(aout,ext_howto_table) #define howto_table_std NAME(aout,std_howto_table) reloc_howto_type howto_table_ext[] = { /* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone */ HOWTO(RELOC_8, 0, 0, 8, false, 0, complain_overflow_bitfield,0,"8", false, 0,0x000000ff, false), HOWTO(RELOC_16, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"16", false, 0,0x0000ffff, false), HOWTO(RELOC_32, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"32", false, 0,0xffffffff, false), HOWTO(RELOC_DISP8, 0, 0, 8, true, 0, complain_overflow_signed,0,"DISP8", false, 0,0x000000ff, false), HOWTO(RELOC_DISP16, 0, 1, 16, true, 0, complain_overflow_signed,0,"DISP16", false, 0,0x0000ffff, false), HOWTO(RELOC_DISP32, 0, 2, 32, true, 0, complain_overflow_signed,0,"DISP32", false, 0,0xffffffff, false), HOWTO(RELOC_WDISP30,2, 2, 30, true, 0, complain_overflow_signed,0,"WDISP30", false, 0,0x3fffffff, false), HOWTO(RELOC_WDISP22,2, 2, 22, true, 0, complain_overflow_signed,0,"WDISP22", false, 0,0x003fffff, false), HOWTO(RELOC_HI22, 10, 2, 22, false, 0, complain_overflow_bitfield,0,"HI22", false, 0,0x003fffff, false), HOWTO(RELOC_22, 0, 2, 22, false, 0, complain_overflow_bitfield,0,"22", false, 0,0x003fffff, false), HOWTO(RELOC_13, 0, 2, 13, false, 0, complain_overflow_bitfield,0,"13", false, 0,0x00001fff, false), HOWTO(RELOC_LO10, 0, 2, 10, false, 0, complain_overflow_dont,0,"LO10", false, 0,0x000003ff, false), HOWTO(RELOC_SFA_BASE,0, 2, 32, false, 0, complain_overflow_bitfield,0,"SFA_BASE", false, 0,0xffffffff, false), HOWTO(RELOC_SFA_OFF13,0,2, 32, false, 0, complain_overflow_bitfield,0,"SFA_OFF13",false, 0,0xffffffff, false), HOWTO(RELOC_BASE10, 0, 2, 16, false, 0, complain_overflow_bitfield,0,"BASE10", false, 0,0x0000ffff, false), HOWTO(RELOC_BASE13, 0, 2, 13, false, 0, complain_overflow_bitfield,0,"BASE13", false, 0,0x00001fff, false), HOWTO(RELOC_BASE22, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"BASE22", false, 0,0x00000000, false), HOWTO(RELOC_PC10, 0, 2, 10, true, 0, complain_overflow_dont,0,"PC10", false, 0,0x000003ff, true), HOWTO(RELOC_PC22, 10, 2, 22, true, 0, complain_overflow_signed,0,"PC22", false, 0,0x003fffff, true), HOWTO(RELOC_JMP_TBL,2, 2, 30, true, 0, complain_overflow_signed,0,"JMP_TBL", false, 0,0x3fffffff, false), HOWTO(RELOC_SEGOFF16,0, 2, 0, false, 0, complain_overflow_bitfield,0,"SEGOFF16", false, 0,0x00000000, false), HOWTO(RELOC_GLOB_DAT,0, 2, 0, false, 0, complain_overflow_bitfield,0,"GLOB_DAT", false, 0,0x00000000, false), HOWTO(RELOC_JMP_SLOT,0, 2, 0, false, 0, complain_overflow_bitfield,0,"JMP_SLOT", false, 0,0x00000000, false), HOWTO(RELOC_RELATIVE,0, 2, 0, false, 0, complain_overflow_bitfield,0,"RELATIVE", false, 0,0x00000000, false), }; /* Convert standard reloc records to "arelent" format (incl byte swap). */ reloc_howto_type howto_table_std[] = { /* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone */ HOWTO( 0, 0, 0, 8, false, 0, complain_overflow_bitfield,0,"8", true, 0x000000ff,0x000000ff, false), HOWTO( 1, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"16", true, 0x0000ffff,0x0000ffff, false), HOWTO( 2, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"32", true, 0xffffffff,0xffffffff, false), HOWTO( 3, 0, 4, 64, false, 0, complain_overflow_bitfield,0,"64", true, 0xdeaddead,0xdeaddead, false), HOWTO( 4, 0, 0, 8, true, 0, complain_overflow_signed, 0,"DISP8", true, 0x000000ff,0x000000ff, false), HOWTO( 5, 0, 1, 16, true, 0, complain_overflow_signed, 0,"DISP16", true, 0x0000ffff,0x0000ffff, false), HOWTO( 6, 0, 2, 32, true, 0, complain_overflow_signed, 0,"DISP32", true, 0xffffffff,0xffffffff, false), HOWTO( 7, 0, 4, 64, true, 0, complain_overflow_signed, 0,"DISP64", true, 0xfeedface,0xfeedface, false), HOWTO( 8, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"GOT_REL", false, 0,0x00000000, false), HOWTO( 9, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"BASE16", false,0xffffffff,0xffffffff, false), HOWTO(10, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"BASE32", false,0xffffffff,0xffffffff, false), { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, HOWTO(16, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"JMP_TABLE", false, 0,0x00000000, false), { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, HOWTO(32, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"RELATIVE", false, 0,0x00000000, false), { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, HOWTO(40, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"BASEREL", false, 0,0x00000000, false), }; #define TABLE_SIZE(TABLE) (sizeof(TABLE)/sizeof(TABLE[0])) reloc_howto_type * NAME(aout,reloc_type_lookup) (abfd,code) bfd *abfd; bfd_reloc_code_real_type code; { #define EXT(i,j) case i: return &howto_table_ext[j] #define STD(i,j) case i: return &howto_table_std[j] int ext = obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE; if (code == BFD_RELOC_CTOR) switch (bfd_get_arch_info (abfd)->bits_per_address) { case 32: code = BFD_RELOC_32; break; case 64: code = BFD_RELOC_64; break; } if (ext) switch (code) { EXT (BFD_RELOC_32, 2); EXT (BFD_RELOC_HI22, 8); EXT (BFD_RELOC_LO10, 11); EXT (BFD_RELOC_32_PCREL_S2, 6); EXT (BFD_RELOC_SPARC_WDISP22, 7); EXT (BFD_RELOC_SPARC13, 10); EXT (BFD_RELOC_SPARC_GOT10, 14); EXT (BFD_RELOC_SPARC_BASE13, 15); EXT (BFD_RELOC_SPARC_GOT13, 15); EXT (BFD_RELOC_SPARC_GOT22, 16); EXT (BFD_RELOC_SPARC_PC10, 17); EXT (BFD_RELOC_SPARC_PC22, 18); EXT (BFD_RELOC_SPARC_WPLT30, 19); default: return (reloc_howto_type *) NULL; } else /* std relocs */ switch (code) { STD (BFD_RELOC_16, 1); STD (BFD_RELOC_32, 2); STD (BFD_RELOC_8_PCREL, 4); STD (BFD_RELOC_16_PCREL, 5); STD (BFD_RELOC_32_PCREL, 6); STD (BFD_RELOC_16_BASEREL, 9); STD (BFD_RELOC_32_BASEREL, 10); default: return (reloc_howto_type *) NULL; } } /* SUBSECTION Internal entry points DESCRIPTION @file{aoutx.h} exports several routines for accessing the contents of an a.out file, which are gathered and exported in turn by various format specific files (eg sunos.c). */ /* FUNCTION aout_@var{size}_swap_exec_header_in SYNOPSIS void aout_@var{size}_swap_exec_header_in, (bfd *abfd, struct external_exec *raw_bytes, struct internal_exec *execp); DESCRIPTION Swap the information in an executable header @var{raw_bytes} taken from a raw byte stream memory image into the internal exec header structure @var{execp}. */ #ifndef NAME_swap_exec_header_in void NAME(aout,swap_exec_header_in) (abfd, raw_bytes, execp) bfd *abfd; struct external_exec *raw_bytes; struct internal_exec *execp; { struct external_exec *bytes = (struct external_exec *)raw_bytes; /* The internal_exec structure has some fields that are unused in this configuration (IE for i960), so ensure that all such uninitialized fields are zero'd out. There are places where two of these structs are memcmp'd, and thus the contents do matter. */ memset ((PTR) execp, 0, sizeof (struct internal_exec)); /* Now fill in fields in the execp, from the bytes in the raw data. */ execp->a_info = bfd_h_get_32 (abfd, bytes->e_info); execp->a_text = GET_WORD (abfd, bytes->e_text); execp->a_data = GET_WORD (abfd, bytes->e_data); execp->a_bss = GET_WORD (abfd, bytes->e_bss); execp->a_syms = GET_WORD (abfd, bytes->e_syms); execp->a_entry = GET_WORD (abfd, bytes->e_entry); execp->a_trsize = GET_WORD (abfd, bytes->e_trsize); execp->a_drsize = GET_WORD (abfd, bytes->e_drsize); } #define NAME_swap_exec_header_in NAME(aout,swap_exec_header_in) #endif /* FUNCTION aout_@var{size}_swap_exec_header_out SYNOPSIS void aout_@var{size}_swap_exec_header_out (bfd *abfd, struct internal_exec *execp, struct external_exec *raw_bytes); DESCRIPTION Swap the information in an internal exec header structure @var{execp} into the buffer @var{raw_bytes} ready for writing to disk. */ void NAME(aout,swap_exec_header_out) (abfd, execp, raw_bytes) bfd *abfd; struct internal_exec *execp; struct external_exec *raw_bytes; { struct external_exec *bytes = (struct external_exec *)raw_bytes; /* Now fill in fields in the raw data, from the fields in the exec struct. */ bfd_h_put_32 (abfd, execp->a_info , bytes->e_info); PUT_WORD (abfd, execp->a_text , bytes->e_text); PUT_WORD (abfd, execp->a_data , bytes->e_data); PUT_WORD (abfd, execp->a_bss , bytes->e_bss); PUT_WORD (abfd, execp->a_syms , bytes->e_syms); PUT_WORD (abfd, execp->a_entry , bytes->e_entry); PUT_WORD (abfd, execp->a_trsize, bytes->e_trsize); PUT_WORD (abfd, execp->a_drsize, bytes->e_drsize); } /* Make all the section for an a.out file. */ boolean NAME(aout,make_sections) (abfd) bfd *abfd; { if (obj_textsec (abfd) == (asection *) NULL && bfd_make_section (abfd, ".text") == (asection *) NULL) return false; if (obj_datasec (abfd) == (asection *) NULL && bfd_make_section (abfd, ".data") == (asection *) NULL) return false; if (obj_bsssec (abfd) == (asection *) NULL && bfd_make_section (abfd, ".bss") == (asection *) NULL) return false; return true; } /* FUNCTION aout_@var{size}_some_aout_object_p SYNOPSIS const bfd_target *aout_@var{size}_some_aout_object_p (bfd *abfd, const bfd_target *(*callback_to_real_object_p)()); DESCRIPTION Some a.out variant thinks that the file open in @var{abfd} checking is an a.out file. Do some more checking, and set up for access if it really is. Call back to the calling environment's "finish up" function just before returning, to handle any last-minute setup. */ const bfd_target * NAME(aout,some_aout_object_p) (abfd, execp, callback_to_real_object_p) bfd *abfd; struct internal_exec *execp; const bfd_target *(*callback_to_real_object_p) PARAMS ((bfd *)); { struct aout_data_struct *rawptr, *oldrawptr; const bfd_target *result; rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, sizeof (struct aout_data_struct )); if (rawptr == NULL) { bfd_set_error (bfd_error_no_memory); return 0; } oldrawptr = abfd->tdata.aout_data; abfd->tdata.aout_data = rawptr; /* Copy the contents of the old tdata struct. In particular, we want the subformat, since for hpux it was set in hp300hpux.c:swap_exec_header_in and will be used in hp300hpux.c:callback. */ if (oldrawptr != NULL) *abfd->tdata.aout_data = *oldrawptr; abfd->tdata.aout_data->a.hdr = &rawptr->e; *(abfd->tdata.aout_data->a.hdr) = *execp; /* Copy in the internal_exec struct */ execp = abfd->tdata.aout_data->a.hdr; /* Set the file flags */ abfd->flags = NO_FLAGS; if (execp->a_drsize || execp->a_trsize) abfd->flags |= HAS_RELOC; /* Setting of EXEC_P has been deferred to the bottom of this function */ if (execp->a_syms) abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS; if (N_DYNAMIC(*execp)) abfd->flags |= DYNAMIC; if (N_MAGIC (*execp) == ZMAGIC) { abfd->flags |= D_PAGED | WP_TEXT; adata (abfd).magic = z_magic; } else if (N_MAGIC (*execp) == QMAGIC) { abfd->flags |= D_PAGED | WP_TEXT; adata (abfd).magic = z_magic; adata (abfd).subformat = q_magic_format; } else if (N_MAGIC (*execp) == NMAGIC) { abfd->flags |= WP_TEXT; adata (abfd).magic = n_magic; } else if (N_MAGIC (*execp) == OMAGIC || N_MAGIC (*execp) == BMAGIC) adata (abfd).magic = o_magic; else { /* Should have been checked with N_BADMAG before this routine was called. */ abort (); } bfd_get_start_address (abfd) = execp->a_entry; obj_aout_symbols (abfd) = (aout_symbol_type *)NULL; bfd_get_symcount (abfd) = execp->a_syms / sizeof (struct external_nlist); /* The default relocation entry size is that of traditional V7 Unix. */ obj_reloc_entry_size (abfd) = RELOC_STD_SIZE; /* The default symbol entry size is that of traditional Unix. */ obj_symbol_entry_size (abfd) = EXTERNAL_NLIST_SIZE; obj_aout_external_syms (abfd) = NULL; obj_aout_external_strings (abfd) = NULL; obj_aout_sym_hashes (abfd) = NULL; if (! NAME(aout,make_sections) (abfd)) return NULL; obj_datasec (abfd)->_raw_size = execp->a_data; obj_bsssec (abfd)->_raw_size = execp->a_bss; obj_textsec (abfd)->flags = (execp->a_trsize != 0 ? (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_RELOC) : (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)); obj_datasec (abfd)->flags = (execp->a_drsize != 0 ? (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS | SEC_RELOC) : (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS)); obj_bsssec (abfd)->flags = SEC_ALLOC; #ifdef THIS_IS_ONLY_DOCUMENTATION /* The common code can't fill in these things because they depend on either the start address of the text segment, the rounding up of virtual addresses between segments, or the starting file position of the text segment -- all of which varies among different versions of a.out. */ /* Call back to the format-dependent code to fill in the rest of the fields and do any further cleanup. Things that should be filled in by the callback: */ struct exec *execp = exec_hdr (abfd); obj_textsec (abfd)->size = N_TXTSIZE(*execp); obj_textsec (abfd)->raw_size = N_TXTSIZE(*execp); /* data and bss are already filled in since they're so standard */ /* The virtual memory addresses of the sections */ obj_textsec (abfd)->vma = N_TXTADDR(*execp); obj_datasec (abfd)->vma = N_DATADDR(*execp); obj_bsssec (abfd)->vma = N_BSSADDR(*execp); /* The file offsets of the sections */ obj_textsec (abfd)->filepos = N_TXTOFF(*execp); obj_datasec (abfd)->filepos = N_DATOFF(*execp); /* The file offsets of the relocation info */ obj_textsec (abfd)->rel_filepos = N_TRELOFF(*execp); obj_datasec (abfd)->rel_filepos = N_DRELOFF(*execp); /* The file offsets of the string table and symbol table. */ obj_str_filepos (abfd) = N_STROFF (*execp); obj_sym_filepos (abfd) = N_SYMOFF (*execp); /* Determine the architecture and machine type of the object file. */ switch (N_MACHTYPE (*exec_hdr (abfd))) { default: abfd->obj_arch = bfd_arch_obscure; break; } adata(abfd)->page_size = PAGE_SIZE; adata(abfd)->segment_size = SEGMENT_SIZE; adata(abfd)->exec_bytes_size = EXEC_BYTES_SIZE; return abfd->xvec; /* The architecture is encoded in various ways in various a.out variants, or is not encoded at all in some of them. The relocation size depends on the architecture and the a.out variant. Finally, the return value is the bfd_target vector in use. If an error occurs, return zero and set bfd_error to the appropriate error code. Formats such as b.out, which have additional fields in the a.out header, should cope with them in this callback as well. */ #endif /* DOCUMENTATION */ result = (*callback_to_real_object_p)(abfd); /* Now that the segment addresses have been worked out, take a better guess at whether the file is executable. If the entry point is within the text segment, assume it is. (This makes files executable even if their entry point address is 0, as long as their text starts at zero.). */ if ((execp->a_entry >= obj_textsec(abfd)->vma) && (execp->a_entry < obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size)) abfd->flags |= EXEC_P; #ifdef STAT_FOR_EXEC else { struct stat stat_buf; /* The original heuristic doesn't work in some important cases. The a.out file has no information about the text start address. For files (like kernels) linked to non-standard addresses (ld -Ttext nnn) the entry point may not be between the default text start (obj_textsec(abfd)->vma) and (obj_textsec(abfd)->vma) + text size. This is not just a mach issue. Many kernels are loaded at non standard addresses. */ if (abfd->iostream && (fstat(fileno((FILE *) (abfd->iostream)), &stat_buf) == 0) && ((stat_buf.st_mode & 0111) != 0)) abfd->flags |= EXEC_P; } #endif /* STAT_FOR_EXEC */ if (result) { #if 0 /* These should be set correctly anyways. */ abfd->sections = obj_textsec (abfd); obj_textsec (abfd)->next = obj_datasec (abfd); obj_datasec (abfd)->next = obj_bsssec (abfd); #endif } else { free (rawptr); abfd->tdata.aout_data = oldrawptr; } return result; } /* FUNCTION aout_@var{size}_mkobject SYNOPSIS boolean aout_@var{size}_mkobject, (bfd *abfd); DESCRIPTION Initialize BFD @var{abfd} for use with a.out files. */ boolean NAME(aout,mkobject) (abfd) bfd *abfd; { struct aout_data_struct *rawptr; bfd_set_error (bfd_error_system_call); /* Use an intermediate variable for clarity */ rawptr = (struct aout_data_struct *)bfd_zalloc (abfd, sizeof (struct aout_data_struct )); if (rawptr == NULL) { bfd_set_error (bfd_error_no_memory); return false; } abfd->tdata.aout_data = rawptr; exec_hdr (abfd) = &(rawptr->e); obj_textsec (abfd) = (asection *)NULL; obj_datasec (abfd) = (asection *)NULL; obj_bsssec (abfd) = (asection *)NULL; return true; } /* FUNCTION aout_@var{size}_machine_type SYNOPSIS enum machine_type aout_@var{size}_machine_type (enum bfd_architecture arch, unsigned long machine)); DESCRIPTION Keep track of machine architecture and machine type for a.out's. Return the <> for a particular architecture and machine, or <> if that exact architecture and machine can't be represented in a.out format. If the architecture is understood, machine type 0 (default) is always understood. */ enum machine_type NAME(aout,machine_type) (arch, machine, unknown) enum bfd_architecture arch; unsigned long machine; boolean *unknown; { enum machine_type arch_flags; arch_flags = M_UNKNOWN; *unknown = true; switch (arch) { case bfd_arch_sparc: if (machine == 0 || machine == bfd_mach_sparc || machine == bfd_mach_sparc64) arch_flags = M_SPARC; break; case bfd_arch_m68k: switch (machine) { case 0: arch_flags = M_68010; break; case 68000: arch_flags = M_UNKNOWN; *unknown = false; break; case 68010: arch_flags = M_68010; break; case 68020: arch_flags = M_68020; break; default: arch_flags = M_UNKNOWN; break; } break; case bfd_arch_i386: if (machine == 0) arch_flags = M_386; break; case bfd_arch_a29k: if (machine == 0) arch_flags = M_29K; break; case bfd_arch_arm: if (machine == 0) arch_flags = M_ARM; break; case bfd_arch_mips: switch (machine) { case 0: case 2000: case 3000: arch_flags = M_MIPS1; break; case 4000: /* mips3 */ case 4400: case 8000: /* mips4 */ /* real mips2: */ case 6000: arch_flags = M_MIPS2; break; default: arch_flags = M_UNKNOWN; break; } break; case bfd_arch_ns32k: switch (machine) { case 0: arch_flags = M_NS32532; break; case 32032: arch_flags = M_NS32032; break; case 32532: arch_flags = M_NS32532; break; default: arch_flags = M_UNKNOWN; break; } break; case bfd_arch_vax: *unknown = false; break; /* start-sanitize-rce */ case bfd_arch_rce: arch_flags = M_RCE; break; /* end-sanitize-rce */ default: arch_flags = M_UNKNOWN; } if (arch_flags != M_UNKNOWN) *unknown = false; return arch_flags; } /* FUNCTION aout_@var{size}_set_arch_mach SYNOPSIS boolean aout_@var{size}_set_arch_mach, (bfd *, enum bfd_architecture arch, unsigned long machine)); DESCRIPTION Set the architecture and the machine of the BFD @var{abfd} to the values @var{arch} and @var{machine}. Verify that @var{abfd}'s format can support the architecture required. */ boolean NAME(aout,set_arch_mach) (abfd, arch, machine) bfd *abfd; enum bfd_architecture arch; unsigned long machine; { if (! bfd_default_set_arch_mach (abfd, arch, machine)) return false; if (arch != bfd_arch_unknown) { boolean unknown; NAME(aout,machine_type) (arch, machine, &unknown); if (unknown) return false; } /* Determine the size of a relocation entry */ switch (arch) { case bfd_arch_sparc: case bfd_arch_a29k: case bfd_arch_mips: obj_reloc_entry_size (abfd) = RELOC_EXT_SIZE; break; default: obj_reloc_entry_size (abfd) = RELOC_STD_SIZE; break; } return (*aout_backend_info(abfd)->set_sizes) (abfd); } static void adjust_o_magic (abfd, execp) bfd *abfd; struct internal_exec *execp; { file_ptr pos = adata (abfd).exec_bytes_size; bfd_vma vma = 0; int pad = 0; /* Text. */ obj_textsec(abfd)->filepos = pos; if (!obj_textsec(abfd)->user_set_vma) obj_textsec(abfd)->vma = vma; else vma = obj_textsec(abfd)->vma; pos += obj_textsec(abfd)->_raw_size; vma += obj_textsec(abfd)->_raw_size; /* Data. */ if (!obj_datasec(abfd)->user_set_vma) { #if 0 /* ?? Does alignment in the file image really matter? */ pad = align_power (vma, obj_datasec(abfd)->alignment_power) - vma; #endif obj_textsec(abfd)->_raw_size += pad; pos += pad; vma += pad; obj_datasec(abfd)->vma = vma; } else vma = obj_datasec(abfd)->vma; obj_datasec(abfd)->filepos = pos; pos += obj_datasec(abfd)->_raw_size; vma += obj_datasec(abfd)->_raw_size; /* BSS. */ if (!obj_bsssec(abfd)->user_set_vma) { #if 0 pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma; #endif obj_datasec(abfd)->_raw_size += pad; pos += pad; vma += pad; obj_bsssec(abfd)->vma = vma; } else { /* The VMA of the .bss section is set by the the VMA of the .data section plus the size of the .data section. We may need to add padding bytes to make this true. */ pad = obj_bsssec (abfd)->vma - vma; if (pad > 0) { obj_datasec (abfd)->_raw_size += pad; pos += pad; } } obj_bsssec(abfd)->filepos = pos; /* Fix up the exec header. */ execp->a_text = obj_textsec(abfd)->_raw_size; execp->a_data = obj_datasec(abfd)->_raw_size; execp->a_bss = obj_bsssec(abfd)->_raw_size; N_SET_MAGIC (*execp, OMAGIC); } static void adjust_z_magic (abfd, execp) bfd *abfd; struct internal_exec *execp; { bfd_size_type data_pad, text_pad; file_ptr text_end; CONST struct aout_backend_data *abdp; int ztih; /* Nonzero if text includes exec header. */ abdp = aout_backend_info (abfd); /* Text. */ ztih = (abdp != NULL && (abdp->text_includes_header || obj_aout_subformat (abfd) == q_magic_format)); obj_textsec(abfd)->filepos = (ztih ? adata(abfd).exec_bytes_size : adata(abfd).zmagic_disk_block_size); if (! obj_textsec(abfd)->user_set_vma) { /* ?? Do we really need to check for relocs here? */ obj_textsec(abfd)->vma = ((abfd->flags & HAS_RELOC) ? 0 : (ztih ? (abdp->default_text_vma + adata(abfd).exec_bytes_size) : abdp->default_text_vma)); text_pad = 0; } else { /* The .text section is being loaded at an unusual address. We may need to pad it such that the .data section starts at a page boundary. */ if (ztih) text_pad = ((obj_textsec (abfd)->filepos - obj_textsec (abfd)->vma) & (adata (abfd).page_size - 1)); else text_pad = ((- obj_textsec (abfd)->vma) & (adata (abfd).page_size - 1)); } /* Find start of data. */ if (ztih) { text_end = obj_textsec (abfd)->filepos + obj_textsec (abfd)->_raw_size; text_pad += BFD_ALIGN (text_end, adata (abfd).page_size) - text_end; } else { /* Note that if page_size == zmagic_disk_block_size, then filepos == page_size, and this case is the same as the ztih case. */ text_end = obj_textsec (abfd)->_raw_size; text_pad += BFD_ALIGN (text_end, adata (abfd).page_size) - text_end; text_end += obj_textsec (abfd)->filepos; } obj_textsec(abfd)->_raw_size += text_pad; text_end += text_pad; /* Data. */ if (!obj_datasec(abfd)->user_set_vma) { bfd_vma vma; vma = obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size; obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size); } if (abdp && abdp->zmagic_mapped_contiguous) { text_pad = (obj_datasec(abfd)->vma - obj_textsec(abfd)->vma - obj_textsec(abfd)->_raw_size); obj_textsec(abfd)->_raw_size += text_pad; } obj_datasec(abfd)->filepos = (obj_textsec(abfd)->filepos + obj_textsec(abfd)->_raw_size); /* Fix up exec header while we're at it. */ execp->a_text = obj_textsec(abfd)->_raw_size; if (ztih && (!abdp || (abdp && !abdp->exec_header_not_counted))) execp->a_text += adata(abfd).exec_bytes_size; if (obj_aout_subformat (abfd) == q_magic_format) N_SET_MAGIC (*execp, QMAGIC); else N_SET_MAGIC (*execp, ZMAGIC); /* Spec says data section should be rounded up to page boundary. */ obj_datasec(abfd)->_raw_size = align_power (obj_datasec(abfd)->_raw_size, obj_bsssec(abfd)->alignment_power); execp->a_data = BFD_ALIGN (obj_datasec(abfd)->_raw_size, adata(abfd).page_size); data_pad = execp->a_data - obj_datasec(abfd)->_raw_size; /* BSS. */ if (!obj_bsssec(abfd)->user_set_vma) obj_bsssec(abfd)->vma = (obj_datasec(abfd)->vma + obj_datasec(abfd)->_raw_size); /* If the BSS immediately follows the data section and extra space in the page is left after the data section, fudge data in the header so that the bss section looks smaller by that amount. We'll start the bss section there, and lie to the OS. (Note that a linker script, as well as the above assignment, could have explicitly set the BSS vma to immediately follow the data section.) */ if (align_power (obj_bsssec(abfd)->vma, obj_bsssec(abfd)->alignment_power) == obj_datasec(abfd)->vma + obj_datasec(abfd)->_raw_size) execp->a_bss = (data_pad > obj_bsssec(abfd)->_raw_size) ? 0 : obj_bsssec(abfd)->_raw_size - data_pad; else execp->a_bss = obj_bsssec(abfd)->_raw_size; } static void adjust_n_magic (abfd, execp) bfd *abfd; struct internal_exec *execp; { file_ptr pos = adata(abfd).exec_bytes_size; bfd_vma vma = 0; int pad; /* Text. */ obj_textsec(abfd)->filepos = pos; if (!obj_textsec(abfd)->user_set_vma) obj_textsec(abfd)->vma = vma; else vma = obj_textsec(abfd)->vma; pos += obj_textsec(abfd)->_raw_size; vma += obj_textsec(abfd)->_raw_size; /* Data. */ obj_datasec(abfd)->filepos = pos; if (!obj_datasec(abfd)->user_set_vma) obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size); vma = obj_datasec(abfd)->vma; /* Since BSS follows data immediately, see if it needs alignment. */ vma += obj_datasec(abfd)->_raw_size; pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma; obj_datasec(abfd)->_raw_size += pad; pos += obj_datasec(abfd)->_raw_size; /* BSS. */ if (!obj_bsssec(abfd)->user_set_vma) obj_bsssec(abfd)->vma = vma; else vma = obj_bsssec(abfd)->vma; /* Fix up exec header. */ execp->a_text = obj_textsec(abfd)->_raw_size; execp->a_data = obj_datasec(abfd)->_raw_size; execp->a_bss = obj_bsssec(abfd)->_raw_size; N_SET_MAGIC (*execp, NMAGIC); } boolean NAME(aout,adjust_sizes_and_vmas) (abfd, text_size, text_end) bfd *abfd; bfd_size_type *text_size; file_ptr *text_end; { struct internal_exec *execp = exec_hdr (abfd); if (! NAME(aout,make_sections) (abfd)) return false; if (adata(abfd).magic != undecided_magic) return true; obj_textsec(abfd)->_raw_size = align_power(obj_textsec(abfd)->_raw_size, obj_textsec(abfd)->alignment_power); *text_size = obj_textsec (abfd)->_raw_size; /* Rule (heuristic) for when to pad to a new page. Note that there are (at least) two ways demand-paged (ZMAGIC) files have been handled. Most Berkeley-based systems start the text segment at (PAGE_SIZE). However, newer versions of SUNOS start the text segment right after the exec header; the latter is counted in the text segment size, and is paged in by the kernel with the rest of the text. */ /* This perhaps isn't the right way to do this, but made it simpler for me to understand enough to implement it. Better would probably be to go right from BFD flags to alignment/positioning characteristics. But the old code was sloppy enough about handling the flags, and had enough other magic, that it was a little hard for me to understand. I think I understand it better now, but I haven't time to do the cleanup this minute. */ if (abfd->flags & D_PAGED) /* Whether or not WP_TEXT is set -- let D_PAGED override. */ adata(abfd).magic = z_magic; else if (abfd->flags & WP_TEXT) adata(abfd).magic = n_magic; else adata(abfd).magic = o_magic; #ifdef BFD_AOUT_DEBUG /* requires gcc2 */ #if __GNUC__ >= 2 fprintf (stderr, "%s text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x,%x>\n", ({ char *str; switch (adata(abfd).magic) { case n_magic: str = "NMAGIC"; break; case o_magic: str = "OMAGIC"; break; case z_magic: str = "ZMAGIC"; break; default: abort (); } str; }), obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size, obj_textsec(abfd)->alignment_power, obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size, obj_datasec(abfd)->alignment_power, obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size, obj_bsssec(abfd)->alignment_power); #endif #endif switch (adata(abfd).magic) { case o_magic: adjust_o_magic (abfd, execp); break; case z_magic: adjust_z_magic (abfd, execp); break; case n_magic: adjust_n_magic (abfd, execp); break; default: abort (); } #ifdef BFD_AOUT_DEBUG fprintf (stderr, " text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x>\n", obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size, obj_textsec(abfd)->filepos, obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size, obj_datasec(abfd)->filepos, obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size); #endif return true; } /* FUNCTION aout_@var{size}_new_section_hook SYNOPSIS boolean aout_@var{size}_new_section_hook, (bfd *abfd, asection *newsect)); DESCRIPTION Called by the BFD in response to a @code{bfd_make_section} request. */ boolean NAME(aout,new_section_hook) (abfd, newsect) bfd *abfd; asection *newsect; { /* align to double at least */ newsect->alignment_power = bfd_get_arch_info(abfd)->section_align_power; if (bfd_get_format (abfd) == bfd_object) { if (obj_textsec(abfd) == NULL && !strcmp(newsect->name, ".text")) { obj_textsec(abfd)= newsect; newsect->target_index = N_TEXT; return true; } if (obj_datasec(abfd) == NULL && !strcmp(newsect->name, ".data")) { obj_datasec(abfd) = newsect; newsect->target_index = N_DATA; return true; } if (obj_bsssec(abfd) == NULL && !strcmp(newsect->name, ".bss")) { obj_bsssec(abfd) = newsect; newsect->target_index = N_BSS; return true; } } /* We allow more than three sections internally */ return true; } boolean NAME(aout,set_section_contents) (abfd, section, location, offset, count) bfd *abfd; sec_ptr section; PTR location; file_ptr offset; bfd_size_type count; { file_ptr text_end; bfd_size_type text_size; if (! abfd->output_has_begun) { if (! NAME(aout,adjust_sizes_and_vmas) (abfd, &text_size, &text_end)) return false; } if (section == obj_bsssec (abfd)) { bfd_set_error (bfd_error_no_contents); return false; } if (section != obj_textsec (abfd) && section != obj_datasec (abfd)) { bfd_set_error (bfd_error_nonrepresentable_section); return false; } if (count != 0) { if (bfd_seek (abfd, section->filepos + offset, SEEK_SET) != 0 || bfd_write (location, 1, count, abfd) != count) return false; } return true; } /* Read the external symbols from an a.out file. */ static boolean aout_get_external_symbols (abfd) bfd *abfd; { if (obj_aout_external_syms (abfd) == (struct external_nlist *) NULL) { bfd_size_type count; struct external_nlist *syms; count = exec_hdr (abfd)->a_syms / EXTERNAL_NLIST_SIZE; /* We allocate using malloc to make the values easy to free later on. If we put them on the obstack it might not be possible to free them. */ syms = ((struct external_nlist *) malloc ((size_t) count * EXTERNAL_NLIST_SIZE)); if (syms == (struct external_nlist *) NULL && count != 0) { bfd_set_error (bfd_error_no_memory); return false; } if (bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET) != 0 || (bfd_read (syms, 1, exec_hdr (abfd)->a_syms, abfd) != exec_hdr (abfd)->a_syms)) { free (syms); return false; } obj_aout_external_syms (abfd) = syms; obj_aout_external_sym_count (abfd) = count; } if (obj_aout_external_strings (abfd) == NULL && exec_hdr (abfd)->a_syms != 0) { unsigned char string_chars[BYTES_IN_WORD]; bfd_size_type stringsize; char *strings; /* Get the size of the strings. */ if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0 || (bfd_read ((PTR) string_chars, BYTES_IN_WORD, 1, abfd) != BYTES_IN_WORD)) return false; stringsize = GET_WORD (abfd, string_chars); strings = (char *) malloc ((size_t) stringsize + 1); if (strings == NULL) { bfd_set_error (bfd_error_no_memory); return false; } /* Skip space for the string count in the buffer for convenience when using indexes. */ if (bfd_read (strings + BYTES_IN_WORD, 1, stringsize - BYTES_IN_WORD, abfd) != stringsize - BYTES_IN_WORD) { free (strings); return false; } /* Ensure that a zero index yields an empty string. */ strings[0] = '\0'; /* Sanity preservation. */ strings[stringsize] = '\0'; obj_aout_external_strings (abfd) = strings; obj_aout_external_string_size (abfd) = stringsize; } return true; } /* Translate an a.out symbol into a BFD symbol. The desc, other, type and symbol->value fields of CACHE_PTR will be set from the a.out nlist structure. This function is responsible for setting symbol->flags and symbol->section, and adjusting symbol->value. */ static boolean translate_from_native_sym_flags (abfd, cache_ptr) bfd *abfd; aout_symbol_type *cache_ptr; { flagword visible; if ((cache_ptr->type & N_STAB) != 0 || cache_ptr->type == N_FN) { asection *sec; /* This is a debugging symbol. */ cache_ptr->symbol.flags = BSF_DEBUGGING; /* Work out the symbol section. */ switch (cache_ptr->type & N_TYPE) { case N_TEXT: case N_FN: sec = obj_textsec (abfd); break; case N_DATA: sec = obj_datasec (abfd); break; case N_BSS: sec = obj_bsssec (abfd); break; default: case N_ABS: sec = bfd_abs_section_ptr; break; } cache_ptr->symbol.section = sec; cache_ptr->symbol.value -= sec->vma; return true; } /* Get the default visibility. This does not apply to all types, so we just hold it in a local variable to use if wanted. */ if ((cache_ptr->type & N_EXT) == 0) visible = BSF_LOCAL; else visible = BSF_GLOBAL; switch (cache_ptr->type) { default: case N_ABS: case N_ABS | N_EXT: cache_ptr->symbol.section = bfd_abs_section_ptr; cache_ptr->symbol.flags = visible; break; case N_UNDF | N_EXT: if (cache_ptr->symbol.value != 0) { /* This is a common symbol. */ cache_ptr->symbol.flags = BSF_GLOBAL; cache_ptr->symbol.section = bfd_com_section_ptr; } else { cache_ptr->symbol.flags = 0; cache_ptr->symbol.section = bfd_und_section_ptr; } break; case N_TEXT: case N_TEXT | N_EXT: cache_ptr->symbol.section = obj_textsec (abfd); cache_ptr->symbol.value -= cache_ptr->symbol.section->vma; cache_ptr->symbol.flags = visible; break; /* N_SETV symbols used to represent set vectors placed in the data section. They are no longer generated. Theoretically, it was possible to extract the entries and combine them with new ones, although I don't know if that was ever actually done. Unless that feature is restored, treat them as data symbols. */ case N_SETV: case N_SETV | N_EXT: case N_DATA: case N_DATA | N_EXT: cache_ptr->symbol.section = obj_datasec (abfd); cache_ptr->symbol.value -= cache_ptr->symbol.section->vma; cache_ptr->symbol.flags = visible; break; case N_BSS: case N_BSS | N_EXT: cache_ptr->symbol.section = obj_bsssec (abfd); cache_ptr->symbol.value -= cache_ptr->symbol.section->vma; cache_ptr->symbol.flags = visible; break; case N_SETA: case N_SETA | N_EXT: case N_SETT: case N_SETT | N_EXT: case N_SETD: case N_SETD | N_EXT: case N_SETB: case N_SETB | N_EXT: { asection *section; arelent_chain *reloc; asection *into_section; /* This is a set symbol. The name of the symbol is the name of the set (e.g., __CTOR_LIST__). The value of the symbol is the value to add to the set. We create a section with the same name as the symbol, and add a reloc to insert the appropriate value into the section. This action is actually obsolete; it used to make the linker do the right thing, but the linker no longer uses this function. */ section = bfd_get_section_by_name (abfd, cache_ptr->symbol.name); if (section == NULL) { char *copy; copy = bfd_alloc (abfd, strlen (cache_ptr->symbol.name) + 1); if (copy == NULL) { bfd_set_error (bfd_error_no_memory); return false; } strcpy (copy, cache_ptr->symbol.name); section = bfd_make_section (abfd, copy); if (section == NULL) return false; } reloc = (arelent_chain *) bfd_alloc (abfd, sizeof (arelent_chain)); if (reloc == NULL) { bfd_set_error (bfd_error_no_memory); return false; } /* Build a relocation entry for the constructor. */ switch (cache_ptr->type & N_TYPE) { case N_SETA: into_section = bfd_abs_section_ptr; cache_ptr->type = N_ABS; break; case N_SETT: into_section = obj_textsec (abfd); cache_ptr->type = N_TEXT; break; case N_SETD: into_section = obj_datasec (abfd); cache_ptr->type = N_DATA; break; case N_SETB: into_section = obj_bsssec (abfd); cache_ptr->type = N_BSS; break; } /* Build a relocation pointing into the constructor section pointing at the symbol in the set vector specified. */ reloc->relent.addend = cache_ptr->symbol.value; cache_ptr->symbol.section = into_section; reloc->relent.sym_ptr_ptr = into_section->symbol_ptr_ptr; /* We modify the symbol to belong to a section depending upon the name of the symbol, and add to the size of the section to contain a pointer to the symbol. Build a reloc entry to relocate to this symbol attached to this section. */ section->flags = SEC_CONSTRUCTOR | SEC_RELOC; section->reloc_count++; section->alignment_power = 2; reloc->next = section->constructor_chain; section->constructor_chain = reloc; reloc->relent.address = section->_raw_size; section->_raw_size += BYTES_IN_WORD; reloc->relent.howto = CTOR_TABLE_RELOC_HOWTO(abfd); cache_ptr->symbol.flags |= BSF_CONSTRUCTOR; } break; case N_WARNING: /* This symbol is the text of a warning message. The next symbol is the symbol to associate the warning with. If a reference is made to that symbol, a warning is issued. */ cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_WARNING; /* @@ Stuffing pointers into integers is a no-no. We can usually get away with it if the integer is large enough though. */ if (sizeof (cache_ptr + 1) > sizeof (bfd_vma)) abort (); cache_ptr->symbol.value = (bfd_vma) (cache_ptr + 1); cache_ptr->symbol.section = bfd_abs_section_ptr; break; case N_INDR: case N_INDR | N_EXT: /* An indirect symbol. This consists of two symbols in a row. The first symbol is the name of the indirection. The second symbol is the name of the target. A reference to the first symbol becomes a reference to the second. */ cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_INDIRECT | visible; /* @@ Stuffing pointers into integers is a no-no. We can usually get away with it if the integer is large enough though. */ if (sizeof (cache_ptr + 1) > sizeof (bfd_vma)) abort (); cache_ptr->symbol.value = (bfd_vma) (cache_ptr + 1); cache_ptr->symbol.section = bfd_ind_section_ptr; break; case N_WEAKU: cache_ptr->symbol.section = bfd_und_section_ptr; cache_ptr->symbol.flags = BSF_WEAK; break; case N_WEAKA: cache_ptr->symbol.section = bfd_abs_section_ptr; cache_ptr->symbol.flags = BSF_WEAK; break; case N_WEAKT: cache_ptr->symbol.section = obj_textsec (abfd); cache_ptr->symbol.value -= cache_ptr->symbol.section->vma; cache_ptr->symbol.flags = BSF_WEAK; break; case N_WEAKD: cache_ptr->symbol.section = obj_datasec (abfd); cache_ptr->symbol.value -= cache_ptr->symbol.section->vma; cache_ptr->symbol.flags = BSF_WEAK; break; case N_WEAKB: cache_ptr->symbol.section = obj_bsssec (abfd); cache_ptr->symbol.value -= cache_ptr->symbol.section->vma; cache_ptr->symbol.flags = BSF_WEAK; break; } return true; } /* Set the fields of SYM_POINTER according to CACHE_PTR. */ static boolean translate_to_native_sym_flags (abfd, cache_ptr, sym_pointer) bfd *abfd; asymbol *cache_ptr; struct external_nlist *sym_pointer; { bfd_vma value = cache_ptr->value; asection *sec; bfd_vma off; /* Mask out any existing type bits in case copying from one section to another. */ sym_pointer->e_type[0] &= ~N_TYPE; sec = bfd_get_section (cache_ptr); off = 0; if (sec == NULL) { /* This case occurs, e.g., for the *DEBUG* section of a COFF file. */ bfd_set_error (bfd_error_nonrepresentable_section); return false; } if (sec->output_section != NULL) { off = sec->output_offset; sec = sec->output_section; } if (bfd_is_abs_section (sec)) sym_pointer->e_type[0] |= N_ABS; else if (sec == obj_textsec (abfd)) sym_pointer->e_type[0] |= N_TEXT; else if (sec == obj_datasec (abfd)) sym_pointer->e_type[0] |= N_DATA; else if (sec == obj_bsssec (abfd)) sym_pointer->e_type[0] |= N_BSS; else if (bfd_is_und_section (sec)) sym_pointer->e_type[0] = N_UNDF | N_EXT; else if (bfd_is_ind_section (sec)) sym_pointer->e_type[0] = N_INDR; else if (bfd_is_com_section (sec)) sym_pointer->e_type[0] = N_UNDF | N_EXT; else { bfd_set_error (bfd_error_nonrepresentable_section); return false; } /* Turn the symbol from section relative to absolute again */ value += sec->vma + off; if ((cache_ptr->flags & BSF_WARNING) != 0) sym_pointer->e_type[0] = N_WARNING; if ((cache_ptr->flags & BSF_DEBUGGING) != 0) sym_pointer->e_type[0] = ((aout_symbol_type *) cache_ptr)->type; else if ((cache_ptr->flags & BSF_GLOBAL) != 0) sym_pointer->e_type[0] |= N_EXT; if ((cache_ptr->flags & BSF_CONSTRUCTOR) != 0) { int type = ((aout_symbol_type *) cache_ptr)->type; switch (type) { case N_ABS: type = N_SETA; break; case N_TEXT: type = N_SETT; break; case N_DATA: type = N_SETD; break; case N_BSS: type = N_SETB; break; } sym_pointer->e_type[0] = type; } if ((cache_ptr->flags & BSF_WEAK) != 0) { int type; switch (sym_pointer->e_type[0] & N_TYPE) { default: case N_ABS: type = N_WEAKA; break; case N_TEXT: type = N_WEAKT; break; case N_DATA: type = N_WEAKD; break; case N_BSS: type = N_WEAKB; break; case N_UNDF: type = N_WEAKU; break; } sym_pointer->e_type[0] = type; } PUT_WORD(abfd, value, sym_pointer->e_value); return true; } /* Native-level interface to symbols. */ asymbol * NAME(aout,make_empty_symbol) (abfd) bfd *abfd; { aout_symbol_type *new = (aout_symbol_type *)bfd_zalloc (abfd, sizeof (aout_symbol_type)); if (!new) { bfd_set_error (bfd_error_no_memory); return NULL; } new->symbol.the_bfd = abfd; return &new->symbol; } /* Translate a set of internal symbols into external symbols. */ boolean NAME(aout,translate_symbol_table) (abfd, in, ext, count, str, strsize, dynamic) bfd *abfd; aout_symbol_type *in; struct external_nlist *ext; bfd_size_type count; char *str; bfd_size_type strsize; boolean dynamic; { struct external_nlist *ext_end; ext_end = ext + count; for (; ext < ext_end; ext++, in++) { bfd_vma x; x = GET_WORD (abfd, ext->e_strx); in->symbol.the_bfd = abfd; /* For the normal symbols, the zero index points at the number of bytes in the string table but is to be interpreted as the null string. For the dynamic symbols, the number of bytes in the string table is stored in the __DYNAMIC structure and the zero index points at an actual string. */ if (x == 0 && ! dynamic) in->symbol.name = ""; else if (x < strsize) in->symbol.name = str + x; else return false; in->symbol.value = GET_SWORD (abfd, ext->e_value); in->desc = bfd_h_get_16 (abfd, ext->e_desc); in->other = bfd_h_get_8 (abfd, ext->e_other); in->type = bfd_h_get_8 (abfd, ext->e_type); in->symbol.udata.p = NULL; if (! translate_from_native_sym_flags (abfd, in)) return false; if (dynamic) in->symbol.flags |= BSF_DYNAMIC; } return true; } /* We read the symbols into a buffer, which is discarded when this function exits. We read the strings into a buffer large enough to hold them all plus all the cached symbol entries. */ boolean NAME(aout,slurp_symbol_table) (abfd) bfd *abfd; { struct external_nlist *old_external_syms; aout_symbol_type *cached; size_t cached_size; /* If there's no work to be done, don't do any */ if (obj_aout_symbols (abfd) != (aout_symbol_type *) NULL) return true; old_external_syms = obj_aout_external_syms (abfd); if (! aout_get_external_symbols (abfd)) return false; cached_size = (obj_aout_external_sym_count (abfd) * sizeof (aout_symbol_type)); cached = (aout_symbol_type *) malloc (cached_size); if (cached == NULL && cached_size != 0) { bfd_set_error (bfd_error_no_memory); return false; } if (cached_size != 0) memset (cached, 0, cached_size); /* Convert from external symbol information to internal. */ if (! (NAME(aout,translate_symbol_table) (abfd, cached, obj_aout_external_syms (abfd), obj_aout_external_sym_count (abfd), obj_aout_external_strings (abfd), obj_aout_external_string_size (abfd), false))) { free (cached); return false; } bfd_get_symcount (abfd) = obj_aout_external_sym_count (abfd); obj_aout_symbols (abfd) = cached; /* It is very likely that anybody who calls this function will not want the external symbol information, so if it was allocated because of our call to aout_get_external_symbols, we free it up right away to save space. */ if (old_external_syms == (struct external_nlist *) NULL && obj_aout_external_syms (abfd) != (struct external_nlist *) NULL) { free (obj_aout_external_syms (abfd)); obj_aout_external_syms (abfd) = NULL; } return true; } /* We use a hash table when writing out symbols so that we only write out a particular string once. This helps particularly when the linker writes out stabs debugging entries, because each different contributing object file tends to have many duplicate stabs strings. This hash table code breaks dbx on SunOS 4.1.3, so we don't do it if BFD_TRADITIONAL_FORMAT is set. */ static bfd_size_type add_to_stringtab PARAMS ((bfd *, struct bfd_strtab_hash *, const char *, boolean)); static boolean emit_stringtab PARAMS ((bfd *, struct bfd_strtab_hash *)); /* Get the index of a string in a strtab, adding it if it is not already present. */ static INLINE bfd_size_type add_to_stringtab (abfd, tab, str, copy) bfd *abfd; struct bfd_strtab_hash *tab; const char *str; boolean copy; { boolean hash; bfd_size_type index; /* An index of 0 always means the empty string. */ if (str == 0 || *str == '\0') return 0; /* Don't hash if BFD_TRADITIONAL_FORMAT is set, because SunOS dbx doesn't understand a hashed string table. */ hash = true; if ((abfd->flags & BFD_TRADITIONAL_FORMAT) != 0) hash = false; index = _bfd_stringtab_add (tab, str, hash, copy); if (index != (bfd_size_type) -1) { /* Add BYTES_IN_WORD to the return value to account for the space taken up by the string table size. */ index += BYTES_IN_WORD; } return index; } /* Write out a strtab. ABFD is already at the right location in the file. */ static boolean emit_stringtab (abfd, tab) register bfd *abfd; struct bfd_strtab_hash *tab; { bfd_byte buffer[BYTES_IN_WORD]; /* The string table starts with the size. */ PUT_WORD (abfd, _bfd_stringtab_size (tab) + BYTES_IN_WORD, buffer); if (bfd_write ((PTR) buffer, 1, BYTES_IN_WORD, abfd) != BYTES_IN_WORD) return false; return _bfd_stringtab_emit (abfd, tab); } boolean NAME(aout,write_syms) (abfd) bfd *abfd; { unsigned int count ; asymbol **generic = bfd_get_outsymbols (abfd); struct bfd_strtab_hash *strtab; strtab = _bfd_stringtab_init (); if (strtab == NULL) return false; for (count = 0; count < bfd_get_symcount (abfd); count++) { asymbol *g = generic[count]; bfd_size_type indx; struct external_nlist nsp; indx = add_to_stringtab (abfd, strtab, g->name, false); if (indx == (bfd_size_type) -1) goto error_return; PUT_WORD (abfd, indx, (bfd_byte *) nsp.e_strx); if (bfd_asymbol_flavour(g) == abfd->xvec->flavour) { bfd_h_put_16(abfd, aout_symbol(g)->desc, nsp.e_desc); bfd_h_put_8(abfd, aout_symbol(g)->other, nsp.e_other); bfd_h_put_8(abfd, aout_symbol(g)->type, nsp.e_type); } else { bfd_h_put_16(abfd,0, nsp.e_desc); bfd_h_put_8(abfd, 0, nsp.e_other); bfd_h_put_8(abfd, 0, nsp.e_type); } if (! translate_to_native_sym_flags (abfd, g, &nsp)) goto error_return; if (bfd_write((PTR)&nsp,1,EXTERNAL_NLIST_SIZE, abfd) != EXTERNAL_NLIST_SIZE) goto error_return; /* NB: `KEEPIT' currently overlays `udata.p', so set this only here, at the end. */ g->KEEPIT = count; } if (! emit_stringtab (abfd, strtab)) goto error_return; _bfd_stringtab_free (strtab); return true; error_return: _bfd_stringtab_free (strtab); return false; } long NAME(aout,get_symtab) (abfd, location) bfd *abfd; asymbol **location; { unsigned int counter = 0; aout_symbol_type *symbase; if (!NAME(aout,slurp_symbol_table)(abfd)) return -1; for (symbase = obj_aout_symbols(abfd); counter++ < bfd_get_symcount (abfd);) *(location++) = (asymbol *)( symbase++); *location++ =0; return bfd_get_symcount (abfd); } /* Standard reloc stuff */ /* Output standard relocation information to a file in target byte order. */ void NAME(aout,swap_std_reloc_out) (abfd, g, natptr) bfd *abfd; arelent *g; struct reloc_std_external *natptr; { int r_index; asymbol *sym = *(g->sym_ptr_ptr); int r_extern; unsigned int r_length; int r_pcrel; int r_baserel, r_jmptable, r_relative; asection *output_section = sym->section->output_section; PUT_WORD(abfd, g->address, natptr->r_address); r_length = g->howto->size ; /* Size as a power of two */ r_pcrel = (int) g->howto->pc_relative; /* Relative to PC? */ /* XXX This relies on relocs coming from a.out files. */ r_baserel = (g->howto->type & 8) != 0; r_jmptable = (g->howto->type & 16) != 0; r_relative = (g->howto->type & 32) != 0; #if 0 /* For a standard reloc, the addend is in the object file. */ r_addend = g->addend + (*(g->sym_ptr_ptr))->section->output_section->vma; #endif /* name was clobbered by aout_write_syms to be symbol index */ /* If this relocation is relative to a symbol then set the r_index to the symbols index, and the r_extern bit. Absolute symbols can come in in two ways, either as an offset from the abs section, or as a symbol which has an abs value. check for that here */ if (bfd_is_com_section (output_section) || bfd_is_abs_section (output_section) || bfd_is_und_section (output_section)) { if (bfd_abs_section_ptr->symbol == sym) { /* Whoops, looked like an abs symbol, but is really an offset from the abs section */ r_index = 0; r_extern = 0; } else { /* Fill in symbol */ r_extern = 1; r_index = (*(g->sym_ptr_ptr))->KEEPIT; } } else { /* Just an ordinary section */ r_extern = 0; r_index = output_section->target_index; } /* now the fun stuff */ if (abfd->xvec->header_byteorder_big_p != false) { natptr->r_index[0] = r_index >> 16; natptr->r_index[1] = r_index >> 8; natptr->r_index[2] = r_index; natptr->r_type[0] = (r_extern? RELOC_STD_BITS_EXTERN_BIG: 0) | (r_pcrel? RELOC_STD_BITS_PCREL_BIG: 0) | (r_baserel? RELOC_STD_BITS_BASEREL_BIG: 0) | (r_jmptable? RELOC_STD_BITS_JMPTABLE_BIG: 0) | (r_relative? RELOC_STD_BITS_RELATIVE_BIG: 0) | (r_length << RELOC_STD_BITS_LENGTH_SH_BIG); } else { natptr->r_index[2] = r_index >> 16; natptr->r_index[1] = r_index >> 8; natptr->r_index[0] = r_index; natptr->r_type[0] = (r_extern? RELOC_STD_BITS_EXTERN_LITTLE: 0) | (r_pcrel? RELOC_STD_BITS_PCREL_LITTLE: 0) | (r_baserel? RELOC_STD_BITS_BASEREL_LITTLE: 0) | (r_jmptable? RELOC_STD_BITS_JMPTABLE_LITTLE: 0) | (r_relative? RELOC_STD_BITS_RELATIVE_LITTLE: 0) | (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE); } } /* Extended stuff */ /* Output extended relocation information to a file in target byte order. */ void NAME(aout,swap_ext_reloc_out) (abfd, g, natptr) bfd *abfd; arelent *g; register struct reloc_ext_external *natptr; { int r_index; int r_extern; unsigned int r_type; unsigned int r_addend; asymbol *sym = *(g->sym_ptr_ptr); asection *output_section = sym->section->output_section; PUT_WORD (abfd, g->address, natptr->r_address); r_type = (unsigned int) g->howto->type; r_addend = g->addend; if ((sym->flags & BSF_SECTION_SYM) != 0) r_addend += (*(g->sym_ptr_ptr))->section->output_section->vma; /* If this relocation is relative to a symbol then set the r_index to the symbols index, and the r_extern bit. Absolute symbols can come in in two ways, either as an offset from the abs section, or as a symbol which has an abs value. check for that here. */ if (bfd_is_abs_section (bfd_get_section (sym))) { r_extern = 0; r_index = 0; } else if ((sym->flags & BSF_SECTION_SYM) == 0) { if (bfd_is_und_section (bfd_get_section (sym)) || (sym->flags & BSF_GLOBAL) != 0) r_extern = 1; else r_extern = 0; r_index = (*(g->sym_ptr_ptr))->KEEPIT; } else { /* Just an ordinary section */ r_extern = 0; r_index = output_section->target_index; } /* now the fun stuff */ if (abfd->xvec->header_byteorder_big_p != false) { natptr->r_index[0] = r_index >> 16; natptr->r_index[1] = r_index >> 8; natptr->r_index[2] = r_index; natptr->r_type[0] = ((r_extern? RELOC_EXT_BITS_EXTERN_BIG: 0) | (r_type << RELOC_EXT_BITS_TYPE_SH_BIG)); } else { natptr->r_index[2] = r_index >> 16; natptr->r_index[1] = r_index >> 8; natptr->r_index[0] = r_index; natptr->r_type[0] = (r_extern? RELOC_EXT_BITS_EXTERN_LITTLE: 0) | (r_type << RELOC_EXT_BITS_TYPE_SH_LITTLE); } PUT_WORD (abfd, r_addend, natptr->r_addend); } /* BFD deals internally with all things based from the section they're in. so, something in 10 bytes into a text section with a base of 50 would have a symbol (.text+10) and know .text vma was 50. Aout keeps all it's symbols based from zero, so the symbol would contain 60. This macro subs the base of each section from the value to give the true offset from the section */ #define MOVE_ADDRESS(ad) \ if (r_extern) { \ /* undefined symbol */ \ cache_ptr->sym_ptr_ptr = symbols + r_index; \ cache_ptr->addend = ad; \ } else { \ /* defined, section relative. replace symbol with pointer to \ symbol which points to section */ \ switch (r_index) { \ case N_TEXT: \ case N_TEXT | N_EXT: \ cache_ptr->sym_ptr_ptr = obj_textsec(abfd)->symbol_ptr_ptr; \ cache_ptr->addend = ad - su->textsec->vma; \ break; \ case N_DATA: \ case N_DATA | N_EXT: \ cache_ptr->sym_ptr_ptr = obj_datasec(abfd)->symbol_ptr_ptr; \ cache_ptr->addend = ad - su->datasec->vma; \ break; \ case N_BSS: \ case N_BSS | N_EXT: \ cache_ptr->sym_ptr_ptr = obj_bsssec(abfd)->symbol_ptr_ptr; \ cache_ptr->addend = ad - su->bsssec->vma; \ break; \ default: \ case N_ABS: \ case N_ABS | N_EXT: \ cache_ptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; \ cache_ptr->addend = ad; \ break; \ } \ } \ void NAME(aout,swap_ext_reloc_in) (abfd, bytes, cache_ptr, symbols, symcount) bfd *abfd; struct reloc_ext_external *bytes; arelent *cache_ptr; asymbol **symbols; bfd_size_type symcount; { unsigned int r_index; int r_extern; unsigned int r_type; struct aoutdata *su = &(abfd->tdata.aout_data->a); cache_ptr->address = (GET_SWORD (abfd, bytes->r_address)); /* now the fun stuff */ if (abfd->xvec->header_byteorder_big_p != false) { r_index = (bytes->r_index[0] << 16) | (bytes->r_index[1] << 8) | bytes->r_index[2]; r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG)); r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) >> RELOC_EXT_BITS_TYPE_SH_BIG; } else { r_index = (bytes->r_index[2] << 16) | (bytes->r_index[1] << 8) | bytes->r_index[0]; r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE)); r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) >> RELOC_EXT_BITS_TYPE_SH_LITTLE; } cache_ptr->howto = howto_table_ext + r_type; /* Base relative relocs are always against the symbol table, regardless of the setting of r_extern. r_extern just reflects whether the symbol the reloc is against is local or global. */ if (r_type == RELOC_BASE10 || r_type == RELOC_BASE13 || r_type == RELOC_BASE22) r_extern = 1; if (r_extern && r_index > symcount) { /* We could arrange to return an error, but it might be useful to see the file even if it is bad. */ r_extern = 0; r_index = N_ABS; } MOVE_ADDRESS(GET_SWORD(abfd, bytes->r_addend)); } void NAME(aout,swap_std_reloc_in) (abfd, bytes, cache_ptr, symbols, symcount) bfd *abfd; struct reloc_std_external *bytes; arelent *cache_ptr; asymbol **symbols; bfd_size_type symcount; { unsigned int r_index; int r_extern; unsigned int r_length; int r_pcrel; int r_baserel, r_jmptable, r_relative; struct aoutdata *su = &(abfd->tdata.aout_data->a); unsigned int howto_idx; cache_ptr->address = bfd_h_get_32 (abfd, bytes->r_address); /* now the fun stuff */ if (abfd->xvec->header_byteorder_big_p != false) { r_index = (bytes->r_index[0] << 16) | (bytes->r_index[1] << 8) | bytes->r_index[2]; r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_BIG)); r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_BIG)); r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_BIG)); r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG)); r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG)); r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_BIG) >> RELOC_STD_BITS_LENGTH_SH_BIG; } else { r_index = (bytes->r_index[2] << 16) | (bytes->r_index[1] << 8) | bytes->r_index[0]; r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE)); r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE)); r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE)); r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE)); r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE)); r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE) >> RELOC_STD_BITS_LENGTH_SH_LITTLE; } howto_idx = r_length + 4 * r_pcrel + 8 * r_baserel + 16 * r_jmptable + 32 * r_relative; BFD_ASSERT (howto_idx < TABLE_SIZE (howto_table_std)); cache_ptr->howto = howto_table_std + howto_idx; BFD_ASSERT (cache_ptr->howto->type != (unsigned int) -1); /* Base relative relocs are always against the symbol table, regardless of the setting of r_extern. r_extern just reflects whether the symbol the reloc is against is local or global. */ if (r_baserel) r_extern = 1; if (r_extern && r_index > symcount) { /* We could arrange to return an error, but it might be useful to see the file even if it is bad. */ r_extern = 0; r_index = N_ABS; } MOVE_ADDRESS(0); } /* Read and swap the relocs for a section. */ boolean NAME(aout,slurp_reloc_table) (abfd, asect, symbols) bfd *abfd; sec_ptr asect; asymbol **symbols; { unsigned int count; bfd_size_type reloc_size; PTR relocs; arelent *reloc_cache; size_t each_size; unsigned int counter = 0; arelent *cache_ptr; if (asect->relocation) return true; if (asect->flags & SEC_CONSTRUCTOR) return true; if (asect == obj_datasec (abfd)) reloc_size = exec_hdr(abfd)->a_drsize; else if (asect == obj_textsec (abfd)) reloc_size = exec_hdr(abfd)->a_trsize; else if (asect == obj_bsssec (abfd)) reloc_size = 0; else { bfd_set_error (bfd_error_invalid_operation); return false; } if (bfd_seek (abfd, asect->rel_filepos, SEEK_SET) != 0) return false; each_size = obj_reloc_entry_size (abfd); count = reloc_size / each_size; reloc_cache = (arelent *) malloc ((size_t) (count * sizeof (arelent))); if (reloc_cache == NULL && count != 0) { bfd_set_error (bfd_error_no_memory); return false; } memset (reloc_cache, 0, count * sizeof (arelent)); relocs = malloc ((size_t) reloc_size); if (relocs == NULL && reloc_size != 0) { free (reloc_cache); bfd_set_error (bfd_error_no_memory); return false; } if (bfd_read (relocs, 1, reloc_size, abfd) != reloc_size) { free (relocs); free (reloc_cache); return false; } cache_ptr = reloc_cache; if (each_size == RELOC_EXT_SIZE) { register struct reloc_ext_external *rptr = (struct reloc_ext_external *) relocs; for (; counter < count; counter++, rptr++, cache_ptr++) NAME(aout,swap_ext_reloc_in) (abfd, rptr, cache_ptr, symbols, bfd_get_symcount (abfd)); } else { register struct reloc_std_external *rptr = (struct reloc_std_external *) relocs; for (; counter < count; counter++, rptr++, cache_ptr++) MY_swap_std_reloc_in (abfd, rptr, cache_ptr, symbols, bfd_get_symcount (abfd)); } free (relocs); asect->relocation = reloc_cache; asect->reloc_count = cache_ptr - reloc_cache; return true; } /* Write out a relocation section into an object file. */ boolean NAME(aout,squirt_out_relocs) (abfd, section) bfd *abfd; asection *section; { arelent **generic; unsigned char *native, *natptr; size_t each_size; unsigned int count = section->reloc_count; size_t natsize; if (count == 0) return true; each_size = obj_reloc_entry_size (abfd); natsize = each_size * count; native = (unsigned char *) bfd_zalloc (abfd, natsize); if (!native) { bfd_set_error (bfd_error_no_memory); return false; } generic = section->orelocation; if (each_size == RELOC_EXT_SIZE) { for (natptr = native; count != 0; --count, natptr += each_size, ++generic) NAME(aout,swap_ext_reloc_out) (abfd, *generic, (struct reloc_ext_external *)natptr); } else { for (natptr = native; count != 0; --count, natptr += each_size, ++generic) MY_swap_std_reloc_out(abfd, *generic, (struct reloc_std_external *)natptr); } if ( bfd_write ((PTR) native, 1, natsize, abfd) != natsize) { bfd_release(abfd, native); return false; } bfd_release (abfd, native); return true; } /* This is stupid. This function should be a boolean predicate */ long NAME(aout,canonicalize_reloc) (abfd, section, relptr, symbols) bfd *abfd; sec_ptr section; arelent **relptr; asymbol **symbols; { arelent *tblptr = section->relocation; unsigned int count; if (section == obj_bsssec (abfd)) { *relptr = NULL; return 0; } if (!(tblptr || NAME(aout,slurp_reloc_table)(abfd, section, symbols))) return -1; if (section->flags & SEC_CONSTRUCTOR) { arelent_chain *chain = section->constructor_chain; for (count = 0; count < section->reloc_count; count ++) { *relptr ++ = &chain->relent; chain = chain->next; } } else { tblptr = section->relocation; for (count = 0; count++ < section->reloc_count;) { *relptr++ = tblptr++; } } *relptr = 0; return section->reloc_count; } long NAME(aout,get_reloc_upper_bound) (abfd, asect) bfd *abfd; sec_ptr asect; { if (bfd_get_format (abfd) != bfd_object) { bfd_set_error (bfd_error_invalid_operation); return -1; } if (asect->flags & SEC_CONSTRUCTOR) { return (sizeof (arelent *) * (asect->reloc_count+1)); } if (asect == obj_datasec (abfd)) return (sizeof (arelent *) * ((exec_hdr(abfd)->a_drsize / obj_reloc_entry_size (abfd)) + 1)); if (asect == obj_textsec (abfd)) return (sizeof (arelent *) * ((exec_hdr(abfd)->a_trsize / obj_reloc_entry_size (abfd)) + 1)); if (asect == obj_bsssec (abfd)) return sizeof (arelent *); if (asect == obj_bsssec (abfd)) return 0; bfd_set_error (bfd_error_invalid_operation); return -1; } long NAME(aout,get_symtab_upper_bound) (abfd) bfd *abfd; { if (!NAME(aout,slurp_symbol_table)(abfd)) return -1; return (bfd_get_symcount (abfd)+1) * (sizeof (aout_symbol_type *)); } /*ARGSUSED*/ alent * NAME(aout,get_lineno) (ignore_abfd, ignore_symbol) bfd *ignore_abfd; asymbol *ignore_symbol; { return (alent *)NULL; } /*ARGSUSED*/ void NAME(aout,get_symbol_info) (ignore_abfd, symbol, ret) bfd *ignore_abfd; asymbol *symbol; symbol_info *ret; { bfd_symbol_info (symbol, ret); if (ret->type == '?') { int type_code = aout_symbol(symbol)->type & 0xff; CONST char *stab_name = aout_stab_name(type_code); static char buf[10]; if (stab_name == NULL) { sprintf(buf, "(%d)", type_code); stab_name = buf; } ret->type = '-'; ret->stab_other = (unsigned)(aout_symbol(symbol)->other & 0xff); ret->stab_desc = (unsigned)(aout_symbol(symbol)->desc & 0xffff); ret->stab_name = stab_name; } } /*ARGSUSED*/ void NAME(aout,print_symbol) (ignore_abfd, afile, symbol, how) bfd *ignore_abfd; PTR afile; asymbol *symbol; bfd_print_symbol_type how; { FILE *file = (FILE *)afile; switch (how) { case bfd_print_symbol_name: if (symbol->name) fprintf(file,"%s", symbol->name); break; case bfd_print_symbol_more: fprintf(file,"%4x %2x %2x",(unsigned)(aout_symbol(symbol)->desc & 0xffff), (unsigned)(aout_symbol(symbol)->other & 0xff), (unsigned)(aout_symbol(symbol)->type)); break; case bfd_print_symbol_all: { CONST char *section_name = symbol->section->name; bfd_print_symbol_vandf((PTR)file,symbol); fprintf(file," %-5s %04x %02x %02x", section_name, (unsigned)(aout_symbol(symbol)->desc & 0xffff), (unsigned)(aout_symbol(symbol)->other & 0xff), (unsigned)(aout_symbol(symbol)->type & 0xff)); if (symbol->name) fprintf(file," %s", symbol->name); } break; } } /* If we don't have to allocate more than 1MB to hold the generic symbols, we use the generic minisymbol methord: it's faster, since it only translates the symbols once, not multiple times. */ #define MINISYM_THRESHOLD (1000000 / sizeof (asymbol)) /* Read minisymbols. For minisymbols, we use the unmodified a.out symbols. The minisymbol_to_symbol function translates these into BFD asymbol structures. */ long NAME(aout,read_minisymbols) (abfd, dynamic, minisymsp, sizep) bfd *abfd; boolean dynamic; PTR *minisymsp; unsigned int *sizep; { if (dynamic) { /* We could handle the dynamic symbols here as well, but it's easier to hand them off. */ return _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep); } if (! aout_get_external_symbols (abfd)) return -1; if (obj_aout_external_sym_count (abfd) < MINISYM_THRESHOLD) return _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep); *minisymsp = (PTR) obj_aout_external_syms (abfd); /* By passing the external symbols back from this routine, we are giving up control over the memory block. Clear obj_aout_external_syms, so that we do not try to free it ourselves. */ obj_aout_external_syms (abfd) = NULL; *sizep = EXTERNAL_NLIST_SIZE; return obj_aout_external_sym_count (abfd); } /* Convert a minisymbol to a BFD asymbol. A minisymbol is just an unmodified a.out symbol. The SYM argument is a structure returned by bfd_make_empty_symbol, which we fill in here. */ asymbol * NAME(aout,minisymbol_to_symbol) (abfd, dynamic, minisym, sym) bfd *abfd; boolean dynamic; const PTR minisym; asymbol *sym; { if (dynamic || obj_aout_external_sym_count (abfd) < MINISYM_THRESHOLD) return _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym); memset (sym, 0, sizeof (aout_symbol_type)); /* We call translate_symbol_table to translate a single symbol. */ if (! (NAME(aout,translate_symbol_table) (abfd, (aout_symbol_type *) sym, (struct external_nlist *) minisym, (bfd_size_type) 1, obj_aout_external_strings (abfd), obj_aout_external_string_size (abfd), false))) return NULL; return sym; } /* provided a BFD, a section and an offset into the section, calculate and return the name of the source file and the line nearest to the wanted location. */ boolean NAME(aout,find_nearest_line) (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr) bfd *abfd; asection *section; asymbol **symbols; bfd_vma offset; CONST char **filename_ptr; CONST char **functionname_ptr; unsigned int *line_ptr; { /* Run down the file looking for the filename, function and linenumber */ asymbol **p; CONST char *directory_name = NULL; CONST char *main_file_name = NULL; CONST char *current_file_name = NULL; CONST char *line_file_name = NULL; /* Value of current_file_name at line number. */ bfd_vma low_line_vma = 0; bfd_vma low_func_vma = 0; asymbol *func = 0; size_t filelen, funclen; char *buf; *filename_ptr = abfd->filename; *functionname_ptr = 0; *line_ptr = 0; if (symbols != (asymbol **)NULL) { for (p = symbols; *p; p++) { aout_symbol_type *q = (aout_symbol_type *)(*p); next: switch (q->type){ case N_SO: main_file_name = current_file_name = q->symbol.name; /* Look ahead to next symbol to check if that too is an N_SO. */ p++; if (*p == NULL) break; q = (aout_symbol_type *)(*p); if (q->type != (int)N_SO) goto next; /* Found a second N_SO First is directory; second is filename. */ directory_name = current_file_name; main_file_name = current_file_name = q->symbol.name; if (obj_textsec(abfd) != section) goto done; break; case N_SOL: current_file_name = q->symbol.name; break; case N_SLINE: case N_DSLINE: case N_BSLINE: /* We'll keep this if it resolves nearer than the one we have already. */ if (q->symbol.value >= low_line_vma && q->symbol.value <= offset) { *line_ptr = q->desc; low_line_vma = q->symbol.value; line_file_name = current_file_name; } break; case N_FUN: { /* We'll keep this if it is nearer than the one we have already */ if (q->symbol.value >= low_func_vma && q->symbol.value <= offset) { low_func_vma = q->symbol.value; func = (asymbol *)q; } else if (q->symbol.value > offset) goto done; } break; } } } done: if (*line_ptr != 0) main_file_name = line_file_name; if (main_file_name == NULL || main_file_name[0] == '/' || directory_name == NULL) filelen = 0; else filelen = strlen (directory_name) + strlen (main_file_name); if (func == NULL) funclen = 0; else funclen = strlen (bfd_asymbol_name (func)); if (adata (abfd).line_buf != NULL) free (adata (abfd).line_buf); if (filelen + funclen == 0) adata (abfd).line_buf = buf = NULL; else { adata (abfd).line_buf = buf = (char *) malloc (filelen + funclen + 2); if (adata (abfd).line_buf == NULL) { bfd_set_error (bfd_error_no_memory); return false; } } if (main_file_name != NULL) { if (main_file_name[0] == '/' || directory_name == NULL) *filename_ptr = main_file_name; else { sprintf (buf, "%s%s", directory_name, main_file_name); *filename_ptr = buf; buf += filelen + 1; } } if (func) { const char *function = func->name; char *p; /* The caller expects a symbol name. We actually have a function name, without the leading underscore. Put the underscore back in, so that the caller gets a symbol name. */ if (bfd_get_symbol_leading_char (abfd) == '\0') strcpy (buf, function); else { buf[0] = bfd_get_symbol_leading_char (abfd); strcpy (buf + 1, function); } /* Have to remove : stuff */ p = strchr (buf, ':'); if (p != NULL) *p = '\0'; *functionname_ptr = buf; } return true; } /*ARGSUSED*/ int NAME(aout,sizeof_headers) (abfd, execable) bfd *abfd; boolean execable; { return adata(abfd).exec_bytes_size; } /* Free all information we have cached for this BFD. We can always read it again later if we need it. */ boolean NAME(aout,bfd_free_cached_info) (abfd) bfd *abfd; { asection *o; if (bfd_get_format (abfd) != bfd_object) return true; #define BFCI_FREE(x) if (x != NULL) { free (x); x = NULL; } BFCI_FREE (obj_aout_symbols (abfd)); BFCI_FREE (obj_aout_external_syms (abfd)); BFCI_FREE (obj_aout_external_strings (abfd)); for (o = abfd->sections; o != (asection *) NULL; o = o->next) BFCI_FREE (o->relocation); #undef BFCI_FREE return true; } /* a.out link code. */ static boolean aout_link_add_object_symbols PARAMS ((bfd *, struct bfd_link_info *)); static boolean aout_link_check_archive_element PARAMS ((bfd *, struct bfd_link_info *, boolean *)); static boolean aout_link_free_symbols PARAMS ((bfd *)); static boolean aout_link_check_ar_symbols PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded)); static boolean aout_link_add_symbols PARAMS ((bfd *, struct bfd_link_info *)); /* Routine to create an entry in an a.out link hash table. */ struct bfd_hash_entry * NAME(aout,link_hash_newfunc) (entry, table, string) struct bfd_hash_entry *entry; struct bfd_hash_table *table; const char *string; { struct aout_link_hash_entry *ret = (struct aout_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == (struct aout_link_hash_entry *) NULL) ret = ((struct aout_link_hash_entry *) bfd_hash_allocate (table, sizeof (struct aout_link_hash_entry))); if (ret == (struct aout_link_hash_entry *) NULL) { bfd_set_error (bfd_error_no_memory); return (struct bfd_hash_entry *) ret; } /* Call the allocation method of the superclass. */ ret = ((struct aout_link_hash_entry *) _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret) { /* Set local fields. */ ret->written = false; ret->indx = -1; } return (struct bfd_hash_entry *) ret; } /* Initialize an a.out link hash table. */ boolean NAME(aout,link_hash_table_init) (table, abfd, newfunc) struct aout_link_hash_table *table; bfd *abfd; struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); { return _bfd_link_hash_table_init (&table->root, abfd, newfunc); } /* Create an a.out link hash table. */ struct bfd_link_hash_table * NAME(aout,link_hash_table_create) (abfd) bfd *abfd; { struct aout_link_hash_table *ret; ret = ((struct aout_link_hash_table *) bfd_alloc (abfd, sizeof (struct aout_link_hash_table))); if (ret == NULL) { bfd_set_error (bfd_error_no_memory); return (struct bfd_link_hash_table *) NULL; } if (! NAME(aout,link_hash_table_init) (ret, abfd, NAME(aout,link_hash_newfunc))) { free (ret); return (struct bfd_link_hash_table *) NULL; } return &ret->root; } /* Given an a.out BFD, add symbols to the global hash table as appropriate. */ boolean NAME(aout,link_add_symbols) (abfd, info) bfd *abfd; struct bfd_link_info *info; { switch (bfd_get_format (abfd)) { case bfd_object: return aout_link_add_object_symbols (abfd, info); case bfd_archive: return _bfd_generic_link_add_archive_symbols (abfd, info, aout_link_check_archive_element); default: bfd_set_error (bfd_error_wrong_format); return false; } } /* Add symbols from an a.out object file. */ static boolean aout_link_add_object_symbols (abfd, info) bfd *abfd; struct bfd_link_info *info; { if (! aout_get_external_symbols (abfd)) return false; if (! aout_link_add_symbols (abfd, info)) return false; if (! info->keep_memory) { if (! aout_link_free_symbols (abfd)) return false; } return true; } /* Check a single archive element to see if we need to include it in the link. *PNEEDED is set according to whether this element is needed in the link or not. This is called from _bfd_generic_link_add_archive_symbols. */ static boolean aout_link_check_archive_element (abfd, info, pneeded) bfd *abfd; struct bfd_link_info *info; boolean *pneeded; { if (! aout_get_external_symbols (abfd)) return false; if (! aout_link_check_ar_symbols (abfd, info, pneeded)) return false; if (*pneeded) { if (! aout_link_add_symbols (abfd, info)) return false; } if (! info->keep_memory || ! *pneeded) { if (! aout_link_free_symbols (abfd)) return false; } return true; } /* Free up the internal symbols read from an a.out file. */ static boolean aout_link_free_symbols (abfd) bfd *abfd; { if (obj_aout_external_syms (abfd) != (struct external_nlist *) NULL) { free ((PTR) obj_aout_external_syms (abfd)); obj_aout_external_syms (abfd) = (struct external_nlist *) NULL; } if (obj_aout_external_strings (abfd) != (char *) NULL) { free ((PTR) obj_aout_external_strings (abfd)); obj_aout_external_strings (abfd) = (char *) NULL; } return true; } /* Look through the internal symbols to see if this object file should be included in the link. We should include this object file if it defines any symbols which are currently undefined. If this object file defines a common symbol, then we may adjust the size of the known symbol but we do not include the object file in the link (unless there is some other reason to include it). */ static boolean aout_link_check_ar_symbols (abfd, info, pneeded) bfd *abfd; struct bfd_link_info *info; boolean *pneeded; { register struct external_nlist *p; struct external_nlist *pend; char *strings; *pneeded = false; /* Look through all the symbols. */ p = obj_aout_external_syms (abfd); pend = p + obj_aout_external_sym_count (abfd); strings = obj_aout_external_strings (abfd); for (; p < pend; p++) { int type = bfd_h_get_8 (abfd, p->e_type); const char *name; struct bfd_link_hash_entry *h; /* Ignore symbols that are not externally visible. This is an optimization only, as we check the type more thoroughly below. */ if (((type & N_EXT) == 0 || (type & N_STAB) != 0 || type == N_FN) && type != N_WEAKA && type != N_WEAKT && type != N_WEAKD && type != N_WEAKB) { if (type == N_WARNING || type == N_INDR) ++p; continue; } name = strings + GET_WORD (abfd, p->e_strx); h = bfd_link_hash_lookup (info->hash, name, false, false, true); /* We are only interested in symbols that are currently undefined or common. */ if (h == (struct bfd_link_hash_entry *) NULL || (h->type != bfd_link_hash_undefined && h->type != bfd_link_hash_common)) { if (type == (N_INDR | N_EXT)) ++p; continue; } if (type == (N_TEXT | N_EXT) || type == (N_DATA | N_EXT) || type == (N_BSS | N_EXT) || type == (N_ABS | N_EXT) || type == (N_INDR | N_EXT)) { /* This object file defines this symbol. We must link it in. This is true regardless of whether the current definition of the symbol is undefined or common. If the current definition is common, we have a case in which we have already seen an object file including int a; and this object file from the archive includes int a = 5; In such a case we must include this object file. FIXME: The SunOS 4.1.3 linker will pull in the archive element if the symbol is defined in the .data section, but not if it is defined in the .text section. That seems a bit crazy to me, and I haven't implemented it. However, it might be correct. */ if (! (*info->callbacks->add_archive_element) (info, abfd, name)) return false; *pneeded = true; return true; } if (type == (N_UNDF | N_EXT)) { bfd_vma value; value = GET_WORD (abfd, p->e_value); if (value != 0) { /* This symbol is common in the object from the archive file. */ if (h->type == bfd_link_hash_undefined) { bfd *symbfd; unsigned int power; symbfd = h->u.undef.abfd; if (symbfd == (bfd *) NULL) { /* This symbol was created as undefined from outside BFD. We assume that we should link in the object file. This is done for the -u option in the linker. */ if (! (*info->callbacks->add_archive_element) (info, abfd, name)) return false; *pneeded = true; return true; } /* Turn the current link symbol into a common symbol. It is already on the undefs list. */ h->type = bfd_link_hash_common; h->u.c.p = ((struct bfd_link_hash_common_entry *) bfd_hash_allocate (&info->hash->table, sizeof (struct bfd_link_hash_common_entry))); if (h->u.c.p == NULL) return false; h->u.c.size = value; /* FIXME: This isn't quite right. The maximum alignment of a common symbol should be set by the architecture of the output file, not of the input file. */ power = bfd_log2 (value); if (power > bfd_get_arch_info (abfd)->section_align_power) power = bfd_get_arch_info (abfd)->section_align_power; h->u.c.p->alignment_power = power; h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON"); } else { /* Adjust the size of the common symbol if necessary. */ if (value > h->u.c.size) h->u.c.size = value; } } } if (type == N_WEAKA || type == N_WEAKT || type == N_WEAKD || type == N_WEAKB) { /* This symbol is weak but defined. We must pull it in if the current link symbol is undefined, but we don't want it if the current link symbol is common. */ if (h->type == bfd_link_hash_undefined) { if (! (*info->callbacks->add_archive_element) (info, abfd, name)) return false; *pneeded = true; return true; } } } /* We do not need this object file. */ return true; } /* Add all symbols from an object file to the hash table. */ static boolean aout_link_add_symbols (abfd, info) bfd *abfd; struct bfd_link_info *info; { boolean (*add_one_symbol) PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *, bfd_vma, const char *, boolean, boolean, struct bfd_link_hash_entry **)); struct external_nlist *syms; bfd_size_type sym_count; char *strings; boolean copy; struct aout_link_hash_entry **sym_hash; register struct external_nlist *p; struct external_nlist *pend; syms = obj_aout_external_syms (abfd); sym_count = obj_aout_external_sym_count (abfd); strings = obj_aout_external_strings (abfd); if (info->keep_memory) copy = false; else copy = true; if ((abfd->flags & DYNAMIC) != 0 && aout_backend_info (abfd)->add_dynamic_symbols != NULL) { if (! ((*aout_backend_info (abfd)->add_dynamic_symbols) (abfd, info, &syms, &sym_count, &strings))) return false; } /* We keep a list of the linker hash table entries that correspond to particular symbols. We could just look them up in the hash table, but keeping the list is more efficient. Perhaps this should be conditional on info->keep_memory. */ sym_hash = ((struct aout_link_hash_entry **) bfd_alloc (abfd, ((size_t) sym_count * sizeof (struct aout_link_hash_entry *)))); if (sym_hash == NULL && sym_count != 0) { bfd_set_error (bfd_error_no_memory); return false; } obj_aout_sym_hashes (abfd) = sym_hash; add_one_symbol = aout_backend_info (abfd)->add_one_symbol; if (add_one_symbol == NULL) add_one_symbol = _bfd_generic_link_add_one_symbol; p = syms; pend = p + sym_count; for (; p < pend; p++, sym_hash++) { int type; const char *name; bfd_vma value; asection *section; flagword flags; const char *string; *sym_hash = NULL; type = bfd_h_get_8 (abfd, p->e_type); /* Ignore debugging symbols. */ if ((type & N_STAB) != 0) continue; name = strings + GET_WORD (abfd, p->e_strx); value = GET_WORD (abfd, p->e_value); flags = BSF_GLOBAL; string = NULL; switch (type) { default: abort (); case N_UNDF: case N_ABS: case N_TEXT: case N_DATA: case N_BSS: case N_FN_SEQ: case N_COMM: case N_SETV: case N_FN: /* Ignore symbols that are not externally visible. */ continue; case N_INDR: /* Ignore local indirect symbol. */ ++p; ++sym_hash; continue; case N_UNDF | N_EXT: if (value == 0) { section = bfd_und_section_ptr; flags = 0; } else section = bfd_com_section_ptr; break; case N_ABS | N_EXT: section = bfd_abs_section_ptr; break; case N_TEXT | N_EXT: section = obj_textsec (abfd); value -= bfd_get_section_vma (abfd, section); break; case N_DATA | N_EXT: case N_SETV | N_EXT: /* Treat N_SETV symbols as N_DATA symbol; see comment in translate_from_native_sym_flags. */ section = obj_datasec (abfd); value -= bfd_get_section_vma (abfd, section); break; case N_BSS | N_EXT: section = obj_bsssec (abfd); value -= bfd_get_section_vma (abfd, section); break; case N_INDR | N_EXT: /* An indirect symbol. The next symbol is the symbol which this one really is. */ BFD_ASSERT (p + 1 < pend); ++p; string = strings + GET_WORD (abfd, p->e_strx); section = bfd_ind_section_ptr; flags |= BSF_INDIRECT; break; case N_COMM | N_EXT: section = bfd_com_section_ptr; break; case N_SETA: case N_SETA | N_EXT: section = bfd_abs_section_ptr; flags |= BSF_CONSTRUCTOR; break; case N_SETT: case N_SETT | N_EXT: section = obj_textsec (abfd); flags |= BSF_CONSTRUCTOR; value -= bfd_get_section_vma (abfd, section); break; case N_SETD: case N_SETD | N_EXT: section = obj_datasec (abfd); flags |= BSF_CONSTRUCTOR; value -= bfd_get_section_vma (abfd, section); break; case N_SETB: case N_SETB | N_EXT: section = obj_bsssec (abfd); flags |= BSF_CONSTRUCTOR; value -= bfd_get_section_vma (abfd, section); break; case N_WARNING: /* A warning symbol. The next symbol is the one to warn about. */ BFD_ASSERT (p + 1 < pend); ++p; string = name; name = strings + GET_WORD (abfd, p->e_strx); section = bfd_und_section_ptr; flags |= BSF_WARNING; break; case N_WEAKU: section = bfd_und_section_ptr; flags = BSF_WEAK; break; case N_WEAKA: section = bfd_abs_section_ptr; flags = BSF_WEAK; break; case N_WEAKT: section = obj_textsec (abfd); value -= bfd_get_section_vma (abfd, section); flags = BSF_WEAK; break; case N_WEAKD: section = obj_datasec (abfd); value -= bfd_get_section_vma (abfd, section); flags = BSF_WEAK; break; case N_WEAKB: section = obj_bsssec (abfd); value -= bfd_get_section_vma (abfd, section); flags = BSF_WEAK; break; } if (! ((*add_one_symbol) (info, abfd, name, flags, section, value, string, copy, false, (struct bfd_link_hash_entry **) sym_hash))) return false; /* Restrict the maximum alignment of a common symbol based on the architecture, since a.out has no way to represent alignment requirements of a section in a .o file. FIXME: This isn't quite right: it should use the architecture of the output file, not the input files. */ if ((*sym_hash)->root.type == bfd_link_hash_common && ((*sym_hash)->root.u.c.p->alignment_power > bfd_get_arch_info (abfd)->section_align_power)) (*sym_hash)->root.u.c.p->alignment_power = bfd_get_arch_info (abfd)->section_align_power; /* If this is a set symbol, and we are not building sets, then it is possible for the hash entry to not have been set. In such a case, treat the symbol as not globally defined. */ if ((*sym_hash)->root.type == bfd_link_hash_new) { BFD_ASSERT ((flags & BSF_CONSTRUCTOR) != 0); *sym_hash = NULL; } if (type == (N_INDR | N_EXT) || type == N_WARNING) ++sym_hash; } return true; } /* During the final link step we need to pass around a bunch of information, so we do it in an instance of this structure. */ struct aout_final_link_info { /* General link information. */ struct bfd_link_info *info; /* Output bfd. */ bfd *output_bfd; /* Reloc file positions. */ file_ptr treloff, dreloff; /* File position of symbols. */ file_ptr symoff; /* String table. */ struct bfd_strtab_hash *strtab; /* A buffer large enough to hold the contents of any section. */ bfd_byte *contents; /* A buffer large enough to hold the relocs of any section. */ PTR relocs; /* A buffer large enough to hold the symbol map of any input BFD. */ int *symbol_map; /* A buffer large enough to hold output symbols of any input BFD. */ struct external_nlist *output_syms; }; static boolean aout_link_input_bfd PARAMS ((struct aout_final_link_info *, bfd *input_bfd)); static boolean aout_link_write_symbols PARAMS ((struct aout_final_link_info *, bfd *input_bfd)); static boolean aout_link_write_other_symbol PARAMS ((struct aout_link_hash_entry *, PTR)); static boolean aout_link_input_section PARAMS ((struct aout_final_link_info *, bfd *input_bfd, asection *input_section, file_ptr *reloff_ptr, bfd_size_type rel_size)); static boolean aout_link_input_section_std PARAMS ((struct aout_final_link_info *, bfd *input_bfd, asection *input_section, struct reloc_std_external *, bfd_size_type rel_size, bfd_byte *contents)); static boolean aout_link_input_section_ext PARAMS ((struct aout_final_link_info *, bfd *input_bfd, asection *input_section, struct reloc_ext_external *, bfd_size_type rel_size, bfd_byte *contents)); static INLINE asection *aout_reloc_index_to_section PARAMS ((bfd *, int)); static boolean aout_link_reloc_link_order PARAMS ((struct aout_final_link_info *, asection *, struct bfd_link_order *)); /* Do the final link step. This is called on the output BFD. The INFO structure should point to a list of BFDs linked through the link_next field which can be used to find each BFD which takes part in the output. Also, each section in ABFD should point to a list of bfd_link_order structures which list all the input sections for the output section. */ boolean NAME(aout,final_link) (abfd, info, callback) bfd *abfd; struct bfd_link_info *info; void (*callback) PARAMS ((bfd *, file_ptr *, file_ptr *, file_ptr *)); { struct aout_final_link_info aout_info; register bfd *sub; bfd_size_type trsize, drsize; size_t max_contents_size; size_t max_relocs_size; size_t max_sym_count; bfd_size_type text_size; file_ptr text_end; register struct bfd_link_order *p; asection *o; boolean have_link_order_relocs; if (info->shared) abfd->flags |= DYNAMIC; aout_info.info = info; aout_info.output_bfd = abfd; aout_info.contents = NULL; aout_info.relocs = NULL; /* Figure out the largest section size. Also, if generating relocateable output, count the relocs. */ trsize = 0; drsize = 0; max_contents_size = 0; max_relocs_size = 0; max_sym_count = 0; for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) { size_t sz; if (info->relocateable) { if (bfd_get_flavour (sub) == bfd_target_aout_flavour) { trsize += exec_hdr (sub)->a_trsize; drsize += exec_hdr (sub)->a_drsize; } else { /* FIXME: We need to identify the .text and .data sections and call get_reloc_upper_bound and canonicalize_reloc to work out the number of relocs needed, and then multiply by the reloc size. */ abort (); } } if (bfd_get_flavour (sub) == bfd_target_aout_flavour) { sz = bfd_section_size (sub, obj_textsec (sub)); if (sz > max_contents_size) max_contents_size = sz; sz = bfd_section_size (sub, obj_datasec (sub)); if (sz > max_contents_size) max_contents_size = sz; sz = exec_hdr (sub)->a_trsize; if (sz > max_relocs_size) max_relocs_size = sz; sz = exec_hdr (sub)->a_drsize; if (sz > max_relocs_size) max_relocs_size = sz; sz = obj_aout_external_sym_count (sub); if (sz > max_sym_count) max_sym_count = sz; } } if (info->relocateable) { if (obj_textsec (abfd) != (asection *) NULL) trsize += (_bfd_count_link_order_relocs (obj_textsec (abfd) ->link_order_head) * obj_reloc_entry_size (abfd)); if (obj_datasec (abfd) != (asection *) NULL) drsize += (_bfd_count_link_order_relocs (obj_datasec (abfd) ->link_order_head) * obj_reloc_entry_size (abfd)); } exec_hdr (abfd)->a_trsize = trsize; exec_hdr (abfd)->a_drsize = drsize; exec_hdr (abfd)->a_entry = bfd_get_start_address (abfd); /* Adjust the section sizes and vmas according to the magic number. This sets a_text, a_data and a_bss in the exec_hdr and sets the filepos for each section. */ if (! NAME(aout,adjust_sizes_and_vmas) (abfd, &text_size, &text_end)) goto error_return; /* The relocation and symbol file positions differ among a.out targets. We are passed a callback routine from the backend specific code to handle this. FIXME: At this point we do not know how much space the symbol table will require. This will not work for any (nonstandard) a.out target that needs to know the symbol table size before it can compute the relocation file positions. This may or may not be the case for the hp300hpux target, for example. */ (*callback) (abfd, &aout_info.treloff, &aout_info.dreloff, &aout_info.symoff); obj_textsec (abfd)->rel_filepos = aout_info.treloff; obj_datasec (abfd)->rel_filepos = aout_info.dreloff; obj_sym_filepos (abfd) = aout_info.symoff; /* We keep a count of the symbols as we output them. */ obj_aout_external_sym_count (abfd) = 0; /* We accumulate the string table as we write out the symbols. */ aout_info.strtab = _bfd_stringtab_init (); if (aout_info.strtab == NULL) goto error_return; /* Allocate buffers to hold section contents and relocs. */ aout_info.contents = (bfd_byte *) malloc (max_contents_size); aout_info.relocs = (PTR) malloc (max_relocs_size); aout_info.symbol_map = (int *) malloc (max_sym_count * sizeof (int *)); aout_info.output_syms = ((struct external_nlist *) malloc ((max_sym_count + 1) * sizeof (struct external_nlist))); if ((aout_info.contents == NULL && max_contents_size != 0) || (aout_info.relocs == NULL && max_relocs_size != 0) || (aout_info.symbol_map == NULL && max_sym_count != 0) || aout_info.output_syms == NULL) { bfd_set_error (bfd_error_no_memory); goto error_return; } /* The most time efficient way to do the link would be to read all the input object files into memory and then sort out the information into the output file. Unfortunately, that will probably use too much memory. Another method would be to step through everything that composes the text section and write it out, and then everything that composes the data section and write it out, and then write out the relocs, and then write out the symbols. Unfortunately, that requires reading stuff from each input file several times, and we will not be able to keep all the input files open simultaneously, and reopening them will be slow. What we do is basically process one input file at a time. We do everything we need to do with an input file once--copy over the section contents, handle the relocation information, and write out the symbols--and then we throw away the information we read from it. This approach requires a lot of lseeks of the output file, which is unfortunate but still faster than reopening a lot of files. We use the output_has_begun field of the input BFDs to see whether we have already handled it. */ for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next) sub->output_has_begun = false; have_link_order_relocs = false; for (o = abfd->sections; o != (asection *) NULL; o = o->next) { for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { if (p->type == bfd_indirect_link_order && (bfd_get_flavour (p->u.indirect.section->owner) == bfd_target_aout_flavour)) { bfd *input_bfd; input_bfd = p->u.indirect.section->owner; if (! input_bfd->output_has_begun) { if (! aout_link_input_bfd (&aout_info, input_bfd)) goto error_return; input_bfd->output_has_begun = true; } } else if (p->type == bfd_section_reloc_link_order || p->type == bfd_symbol_reloc_link_order) { /* These are handled below. */ have_link_order_relocs = true; } else { if (! _bfd_default_link_order (abfd, info, o, p)) goto error_return; } } } /* Write out any symbols that we have not already written out. */ aout_link_hash_traverse (aout_hash_table (info), aout_link_write_other_symbol, (PTR) &aout_info); /* Now handle any relocs we were asked to create by the linker. These did not come from any input file. We must do these after we have written out all the symbols, so that we know the symbol indices to use. */ if (have_link_order_relocs) { for (o = abfd->sections; o != (asection *) NULL; o = o->next) { for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { if (p->type == bfd_section_reloc_link_order || p->type == bfd_symbol_reloc_link_order) { if (! aout_link_reloc_link_order (&aout_info, o, p)) goto error_return; } } } } if (aout_info.contents != NULL) { free (aout_info.contents); aout_info.contents = NULL; } if (aout_info.relocs != NULL) { free (aout_info.relocs); aout_info.relocs = NULL; } if (aout_info.symbol_map != NULL) { free (aout_info.symbol_map); aout_info.symbol_map = NULL; } if (aout_info.output_syms != NULL) { free (aout_info.output_syms); aout_info.output_syms = NULL; } /* Finish up any dynamic linking we may be doing. */ if (aout_backend_info (abfd)->finish_dynamic_link != NULL) { if (! (*aout_backend_info (abfd)->finish_dynamic_link) (abfd, info)) goto error_return; } /* Update the header information. */ abfd->symcount = obj_aout_external_sym_count (abfd); exec_hdr (abfd)->a_syms = abfd->symcount * EXTERNAL_NLIST_SIZE; obj_str_filepos (abfd) = obj_sym_filepos (abfd) + exec_hdr (abfd)->a_syms; obj_textsec (abfd)->reloc_count = exec_hdr (abfd)->a_trsize / obj_reloc_entry_size (abfd); obj_datasec (abfd)->reloc_count = exec_hdr (abfd)->a_drsize / obj_reloc_entry_size (abfd); /* Write out the string table. */ if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0) goto error_return; return emit_stringtab (abfd, aout_info.strtab); error_return: if (aout_info.contents != NULL) free (aout_info.contents); if (aout_info.relocs != NULL) free (aout_info.relocs); if (aout_info.symbol_map != NULL) free (aout_info.symbol_map); if (aout_info.output_syms != NULL) free (aout_info.output_syms); return false; } /* Link an a.out input BFD into the output file. */ static boolean aout_link_input_bfd (finfo, input_bfd) struct aout_final_link_info *finfo; bfd *input_bfd; { bfd_size_type sym_count; BFD_ASSERT (bfd_get_format (input_bfd) == bfd_object); /* If this is a dynamic object, it may need special handling. */ if ((input_bfd->flags & DYNAMIC) != 0 && aout_backend_info (input_bfd)->link_dynamic_object != NULL) { return ((*aout_backend_info (input_bfd)->link_dynamic_object) (finfo->info, input_bfd)); } /* Get the symbols. We probably have them already, unless finfo->info->keep_memory is false. */ if (! aout_get_external_symbols (input_bfd)) return false; sym_count = obj_aout_external_sym_count (input_bfd); /* Write out the symbols and get a map of the new indices. The map is placed into finfo->symbol_map. */ if (! aout_link_write_symbols (finfo, input_bfd)) return false; /* Relocate and write out the sections. These functions use the symbol map created by aout_link_write_symbols. */ if (! aout_link_input_section (finfo, input_bfd, obj_textsec (input_bfd), &finfo->treloff, exec_hdr (input_bfd)->a_trsize) || ! aout_link_input_section (finfo, input_bfd, obj_datasec (input_bfd), &finfo->dreloff, exec_hdr (input_bfd)->a_drsize)) return false; /* If we are not keeping memory, we don't need the symbols any longer. We still need them if we are keeping memory, because the strings in the hash table point into them. */ if (! finfo->info->keep_memory) { if (! aout_link_free_symbols (input_bfd)) return false; } return true; } /* Adjust and write out the symbols for an a.out file. Set the new symbol indices into a symbol_map. */ static boolean aout_link_write_symbols (finfo, input_bfd) struct aout_final_link_info *finfo; bfd *input_bfd; { bfd *output_bfd; bfd_size_type sym_count; char *strings; enum bfd_link_strip strip; enum bfd_link_discard discard; struct external_nlist *outsym; bfd_size_type strtab_index; register struct external_nlist *sym; struct external_nlist *sym_end; struct aout_link_hash_entry **sym_hash; int *symbol_map; boolean pass; boolean skip_next; output_bfd = finfo->output_bfd; sym_count = obj_aout_external_sym_count (input_bfd); strings = obj_aout_external_strings (input_bfd); strip = finfo->info->strip; discard = finfo->info->discard; outsym = finfo->output_syms; /* First write out a symbol for this object file, unless we are discarding such symbols. */ if (strip != strip_all && (strip != strip_some || bfd_hash_lookup (finfo->info->keep_hash, input_bfd->filename, false, false) != NULL) && discard != discard_all) { bfd_h_put_8 (output_bfd, N_TEXT, outsym->e_type); bfd_h_put_8 (output_bfd, 0, outsym->e_other); bfd_h_put_16 (output_bfd, (bfd_vma) 0, outsym->e_desc); strtab_index = add_to_stringtab (output_bfd, finfo->strtab, input_bfd->filename, false); if (strtab_index == (bfd_size_type) -1) return false; PUT_WORD (output_bfd, strtab_index, outsym->e_strx); PUT_WORD (output_bfd, (bfd_get_section_vma (output_bfd, obj_textsec (input_bfd)->output_section) + obj_textsec (input_bfd)->output_offset), outsym->e_value); ++obj_aout_external_sym_count (output_bfd); ++outsym; } pass = false; skip_next = false; sym = obj_aout_external_syms (input_bfd); sym_end = sym + sym_count; sym_hash = obj_aout_sym_hashes (input_bfd); symbol_map = finfo->symbol_map; for (; sym < sym_end; sym++, sym_hash++, symbol_map++) { const char *name; int type; struct aout_link_hash_entry *h; boolean skip; asection *symsec; bfd_vma val = 0; boolean copy; *symbol_map = -1; type = bfd_h_get_8 (input_bfd, sym->e_type); name = strings + GET_WORD (input_bfd, sym->e_strx); h = NULL; if (pass) { /* Pass this symbol through. It is the target of an indirect or warning symbol. */ val = GET_WORD (input_bfd, sym->e_value); pass = false; } else if (skip_next) { /* Skip this symbol, which is the target of an indirect symbol that we have changed to no longer be an indirect symbol. */ skip_next = false; continue; } else { struct aout_link_hash_entry *hresolve; /* We have saved the hash table entry for this symbol, if there is one. Note that we could just look it up again in the hash table, provided we first check that it is an external symbol. */ h = *sym_hash; /* If this is an indirect or warning symbol, then change hresolve to the base symbol. We also change *sym_hash so that the relocation routines relocate against the real symbol. */ hresolve = h; if (h != (struct aout_link_hash_entry *) NULL && (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning)) { hresolve = (struct aout_link_hash_entry *) h->root.u.i.link; while (hresolve->root.type == bfd_link_hash_indirect || hresolve->root.type == bfd_link_hash_warning) hresolve = ((struct aout_link_hash_entry *) hresolve->root.u.i.link); *sym_hash = hresolve; } /* If the symbol has already been written out, skip it. */ if (h != (struct aout_link_hash_entry *) NULL && h->root.type != bfd_link_hash_warning && h->written) { if ((type & N_TYPE) == N_INDR || type == N_WARNING) skip_next = true; *symbol_map = h->indx; continue; } /* See if we are stripping this symbol. */ skip = false; switch (strip) { case strip_none: break; case strip_debugger: if ((type & N_STAB) != 0) skip = true; break; case strip_some: if (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) == NULL) skip = true; break; case strip_all: skip = true; break; } if (skip) { if (h != (struct aout_link_hash_entry *) NULL) h->written = true; continue; } /* Get the value of the symbol. */ if ((type & N_TYPE) == N_TEXT || type == N_WEAKT) symsec = obj_textsec (input_bfd); else if ((type & N_TYPE) == N_DATA || type == N_WEAKD) symsec = obj_datasec (input_bfd); else if ((type & N_TYPE) == N_BSS || type == N_WEAKB) symsec = obj_bsssec (input_bfd); else if ((type & N_TYPE) == N_ABS || type == N_WEAKA) symsec = bfd_abs_section_ptr; else if (((type & N_TYPE) == N_INDR && (hresolve == (struct aout_link_hash_entry *) NULL || (hresolve->root.type != bfd_link_hash_defined && hresolve->root.type != bfd_link_hash_defweak && hresolve->root.type != bfd_link_hash_common))) || type == N_WARNING) { /* Pass the next symbol through unchanged. The condition above for indirect symbols is so that if the indirect symbol was defined, we output it with the correct definition so the debugger will understand it. */ pass = true; val = GET_WORD (input_bfd, sym->e_value); symsec = NULL; } else if ((type & N_STAB) != 0) { val = GET_WORD (input_bfd, sym->e_value); symsec = NULL; } else { /* If we get here with an indirect symbol, it means that we are outputting it with a real definition. In such a case we do not want to output the next symbol, which is the target of the indirection. */ if ((type & N_TYPE) == N_INDR) skip_next = true; symsec = NULL; /* We need to get the value from the hash table. We use hresolve so that if we have defined an indirect symbol we output the final definition. */ if (h == (struct aout_link_hash_entry *) NULL) { switch (type & N_TYPE) { case N_SETT: symsec = obj_textsec (input_bfd); break; case N_SETD: symsec = obj_datasec (input_bfd); break; case N_SETB: symsec = obj_bsssec (input_bfd); break; case N_SETA: symsec = bfd_abs_section_ptr; break; default: val = 0; break; } } else if (hresolve->root.type == bfd_link_hash_defined || hresolve->root.type == bfd_link_hash_defweak) { asection *input_section; asection *output_section; /* This case usually means a common symbol which was turned into a defined symbol. */ input_section = hresolve->root.u.def.section; output_section = input_section->output_section; BFD_ASSERT (bfd_is_abs_section (output_section) || output_section->owner == output_bfd); val = (hresolve->root.u.def.value + bfd_get_section_vma (output_bfd, output_section) + input_section->output_offset); /* Get the correct type based on the section. If this is a constructed set, force it to be globally visible. */ if (type == N_SETT || type == N_SETD || type == N_SETB || type == N_SETA) type |= N_EXT; type &=~ N_TYPE; if (output_section == obj_textsec (output_bfd)) type |= (hresolve->root.type == bfd_link_hash_defined ? N_TEXT : N_WEAKT); else if (output_section == obj_datasec (output_bfd)) type |= (hresolve->root.type == bfd_link_hash_defined ? N_DATA : N_WEAKD); else if (output_section == obj_bsssec (output_bfd)) type |= (hresolve->root.type == bfd_link_hash_defined ? N_BSS : N_WEAKB); else type |= (hresolve->root.type == bfd_link_hash_defined ? N_ABS : N_WEAKA); } else if (hresolve->root.type == bfd_link_hash_common) val = hresolve->root.u.c.size; else if (hresolve->root.type == bfd_link_hash_undefweak) { val = 0; type = N_WEAKU; } else val = 0; } if (symsec != (asection *) NULL) val = (symsec->output_section->vma + symsec->output_offset + (GET_WORD (input_bfd, sym->e_value) - symsec->vma)); /* If this is a global symbol set the written flag, and if it is a local symbol see if we should discard it. */ if (h != (struct aout_link_hash_entry *) NULL) { h->written = true; h->indx = obj_aout_external_sym_count (output_bfd); } else if ((type & N_TYPE) != N_SETT && (type & N_TYPE) != N_SETD && (type & N_TYPE) != N_SETB && (type & N_TYPE) != N_SETA) { switch (discard) { case discard_none: break; case discard_l: if (*name == *finfo->info->lprefix && (finfo->info->lprefix_len == 1 || strncmp (name, finfo->info->lprefix, finfo->info->lprefix_len) == 0)) skip = true; break; case discard_all: skip = true; break; } if (skip) { pass = false; continue; } } } /* Copy this symbol into the list of symbols we are going to write out. */ bfd_h_put_8 (output_bfd, type, outsym->e_type); bfd_h_put_8 (output_bfd, bfd_h_get_8 (input_bfd, sym->e_other), outsym->e_other); bfd_h_put_16 (output_bfd, bfd_h_get_16 (input_bfd, sym->e_desc), outsym->e_desc); copy = false; if (! finfo->info->keep_memory) { /* name points into a string table which we are going to free. If there is a hash table entry, use that string. Otherwise, copy name into memory. */ if (h != (struct aout_link_hash_entry *) NULL) name = h->root.root.string; else copy = true; } strtab_index = add_to_stringtab (output_bfd, finfo->strtab, name, copy); if (strtab_index == (bfd_size_type) -1) return false; PUT_WORD (output_bfd, strtab_index, outsym->e_strx); PUT_WORD (output_bfd, val, outsym->e_value); *symbol_map = obj_aout_external_sym_count (output_bfd); ++obj_aout_external_sym_count (output_bfd); ++outsym; } /* Write out the output symbols we have just constructed. */ if (outsym > finfo->output_syms) { bfd_size_type outsym_count; if (bfd_seek (output_bfd, finfo->symoff, SEEK_SET) != 0) return false; outsym_count = outsym - finfo->output_syms; if (bfd_write ((PTR) finfo->output_syms, (bfd_size_type) EXTERNAL_NLIST_SIZE, (bfd_size_type) outsym_count, output_bfd) != outsym_count * EXTERNAL_NLIST_SIZE) return false; finfo->symoff += outsym_count * EXTERNAL_NLIST_SIZE; } return true; } /* Write out a symbol that was not associated with an a.out input object. */ static boolean aout_link_write_other_symbol (h, data) struct aout_link_hash_entry *h; PTR data; { struct aout_final_link_info *finfo = (struct aout_final_link_info *) data; bfd *output_bfd; int type; bfd_vma val; struct external_nlist outsym; bfd_size_type indx; output_bfd = finfo->output_bfd; if (aout_backend_info (output_bfd)->write_dynamic_symbol != NULL) { if (! ((*aout_backend_info (output_bfd)->write_dynamic_symbol) (output_bfd, finfo->info, h))) { /* FIXME: No way to handle errors. */ abort (); } } if (h->written) return true; h->written = true; /* An indx of -2 means the symbol must be written. */ if (h->indx != -2 && (finfo->info->strip == strip_all || (finfo->info->strip == strip_some && bfd_hash_lookup (finfo->info->keep_hash, h->root.root.string, false, false) == NULL))) return true; switch (h->root.type) { default: abort (); /* Avoid variable not initialized warnings. */ return true; case bfd_link_hash_new: /* This can happen for set symbols when sets are not being built. */ return true; case bfd_link_hash_undefined: type = N_UNDF | N_EXT; val = 0; break; case bfd_link_hash_defined: case bfd_link_hash_defweak: { asection *sec; sec = h->root.u.def.section->output_section; BFD_ASSERT (bfd_is_abs_section (sec) || sec->owner == output_bfd); if (sec == obj_textsec (output_bfd)) type = h->root.type == bfd_link_hash_defined ? N_TEXT : N_WEAKT; else if (sec == obj_datasec (output_bfd)) type = h->root.type == bfd_link_hash_defined ? N_DATA : N_WEAKD; else if (sec == obj_bsssec (output_bfd)) type = h->root.type == bfd_link_hash_defined ? N_BSS : N_WEAKB; else type = h->root.type == bfd_link_hash_defined ? N_ABS : N_WEAKA; type |= N_EXT; val = (h->root.u.def.value + sec->vma + h->root.u.def.section->output_offset); } break; case bfd_link_hash_common: type = N_UNDF | N_EXT; val = h->root.u.c.size; break; case bfd_link_hash_undefweak: type = N_WEAKU; val = 0; case bfd_link_hash_indirect: case bfd_link_hash_warning: /* FIXME: Ignore these for now. The circumstances under which they should be written out are not clear to me. */ return true; } bfd_h_put_8 (output_bfd, type, outsym.e_type); bfd_h_put_8 (output_bfd, 0, outsym.e_other); bfd_h_put_16 (output_bfd, 0, outsym.e_desc); indx = add_to_stringtab (output_bfd, finfo->strtab, h->root.root.string, false); if (indx == (bfd_size_type) -1) { /* FIXME: No way to handle errors. */ abort (); } PUT_WORD (output_bfd, indx, outsym.e_strx); PUT_WORD (output_bfd, val, outsym.e_value); if (bfd_seek (output_bfd, finfo->symoff, SEEK_SET) != 0 || bfd_write ((PTR) &outsym, (bfd_size_type) EXTERNAL_NLIST_SIZE, (bfd_size_type) 1, output_bfd) != EXTERNAL_NLIST_SIZE) { /* FIXME: No way to handle errors. */ abort (); } finfo->symoff += EXTERNAL_NLIST_SIZE; h->indx = obj_aout_external_sym_count (output_bfd); ++obj_aout_external_sym_count (output_bfd); return true; } /* Link an a.out section into the output file. */ static boolean aout_link_input_section (finfo, input_bfd, input_section, reloff_ptr, rel_size) struct aout_final_link_info *finfo; bfd *input_bfd; asection *input_section; file_ptr *reloff_ptr; bfd_size_type rel_size; { bfd_size_type input_size; PTR relocs; /* Get the section contents. */ input_size = bfd_section_size (input_bfd, input_section); if (! bfd_get_section_contents (input_bfd, input_section, (PTR) finfo->contents, (file_ptr) 0, input_size)) return false; /* Read in the relocs if we haven't already done it. */ if (aout_section_data (input_section) != NULL && aout_section_data (input_section)->relocs != NULL) relocs = aout_section_data (input_section)->relocs; else { relocs = finfo->relocs; if (rel_size > 0) { if (bfd_seek (input_bfd, input_section->rel_filepos, SEEK_SET) != 0 || bfd_read (relocs, 1, rel_size, input_bfd) != rel_size) return false; } } /* Relocate the section contents. */ if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE) { if (! aout_link_input_section_std (finfo, input_bfd, input_section, (struct reloc_std_external *) relocs, rel_size, finfo->contents)) return false; } else { if (! aout_link_input_section_ext (finfo, input_bfd, input_section, (struct reloc_ext_external *) relocs, rel_size, finfo->contents)) return false; } /* Write out the section contents. */ if (! bfd_set_section_contents (finfo->output_bfd, input_section->output_section, (PTR) finfo->contents, input_section->output_offset, input_size)) return false; /* If we are producing relocateable output, the relocs were modified, and we now write them out. */ if (finfo->info->relocateable && rel_size > 0) { if (bfd_seek (finfo->output_bfd, *reloff_ptr, SEEK_SET) != 0) return false; if (bfd_write (relocs, (bfd_size_type) 1, rel_size, finfo->output_bfd) != rel_size) return false; *reloff_ptr += rel_size; /* Assert that the relocs have not run into the symbols, and that if these are the text relocs they have not run into the data relocs. */ BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (finfo->output_bfd) && (reloff_ptr != &finfo->treloff || (*reloff_ptr <= obj_datasec (finfo->output_bfd)->rel_filepos))); } return true; } /* Get the section corresponding to a reloc index. */ static INLINE asection * aout_reloc_index_to_section (abfd, indx) bfd *abfd; int indx; { switch (indx & N_TYPE) { case N_TEXT: return obj_textsec (abfd); case N_DATA: return obj_datasec (abfd); case N_BSS: return obj_bsssec (abfd); case N_ABS: case N_UNDF: return bfd_abs_section_ptr; default: abort (); } } /* Relocate an a.out section using standard a.out relocs. */ static boolean aout_link_input_section_std (finfo, input_bfd, input_section, relocs, rel_size, contents) struct aout_final_link_info *finfo; bfd *input_bfd; asection *input_section; struct reloc_std_external *relocs; bfd_size_type rel_size; bfd_byte *contents; { boolean (*check_dynamic_reloc) PARAMS ((struct bfd_link_info *, bfd *, asection *, struct aout_link_hash_entry *, PTR, bfd_byte *, boolean *, bfd_vma *)); bfd *output_bfd; boolean relocateable; struct external_nlist *syms; char *strings; struct aout_link_hash_entry **sym_hashes; int *symbol_map; bfd_size_type reloc_count; register struct reloc_std_external *rel; struct reloc_std_external *rel_end; output_bfd = finfo->output_bfd; check_dynamic_reloc = aout_backend_info (output_bfd)->check_dynamic_reloc; BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE); BFD_ASSERT (input_bfd->xvec->header_byteorder_big_p == output_bfd->xvec->header_byteorder_big_p); relocateable = finfo->info->relocateable; syms = obj_aout_external_syms (input_bfd); strings = obj_aout_external_strings (input_bfd); sym_hashes = obj_aout_sym_hashes (input_bfd); symbol_map = finfo->symbol_map; reloc_count = rel_size / RELOC_STD_SIZE; rel = relocs; rel_end = rel + reloc_count; for (; rel < rel_end; rel++) { bfd_vma r_addr; int r_index; int r_extern; int r_pcrel; int r_baserel = 0; reloc_howto_type *howto; struct aout_link_hash_entry *h = NULL; bfd_vma relocation; bfd_reloc_status_type r; r_addr = GET_SWORD (input_bfd, rel->r_address); #ifdef MY_reloc_howto howto = MY_reloc_howto(input_bfd, rel, r_index, r_extern, r_pcrel); #else { int r_jmptable; int r_relative; int r_length; unsigned int howto_idx; if (input_bfd->xvec->header_byteorder_big_p) { r_index = ((rel->r_index[0] << 16) | (rel->r_index[1] << 8) | rel->r_index[2]); r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG)); r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_BIG)); r_baserel = (0 != (rel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG)); r_jmptable= (0 != (rel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG)); r_relative= (0 != (rel->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG)); r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_BIG) >> RELOC_STD_BITS_LENGTH_SH_BIG); } else { r_index = ((rel->r_index[2] << 16) | (rel->r_index[1] << 8) | rel->r_index[0]); r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE)); r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE)); r_baserel = (0 != (rel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE)); r_jmptable= (0 != (rel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE)); r_relative= (0 != (rel->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE)); r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE) >> RELOC_STD_BITS_LENGTH_SH_LITTLE); } howto_idx = (r_length + 4 * r_pcrel + 8 * r_baserel + 16 * r_jmptable + 32 * r_relative); BFD_ASSERT (howto_idx < TABLE_SIZE (howto_table_std)); howto = howto_table_std + howto_idx; } #endif if (relocateable) { /* We are generating a relocateable output file, and must modify the reloc accordingly. */ if (r_extern) { /* If we know the symbol this relocation is against, convert it into a relocation against a section. This is what the native linker does. */ h = sym_hashes[r_index]; if (h != (struct aout_link_hash_entry *) NULL && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)) { asection *output_section; /* Change the r_extern value. */ if (output_bfd->xvec->header_byteorder_big_p) rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_BIG; else rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_LITTLE; /* Compute a new r_index. */ output_section = h->root.u.def.section->output_section; if (output_section == obj_textsec (output_bfd)) r_index = N_TEXT; else if (output_section == obj_datasec (output_bfd)) r_index = N_DATA; else if (output_section == obj_bsssec (output_bfd)) r_index = N_BSS; else r_index = N_ABS; /* Add the symbol value and the section VMA to the addend stored in the contents. */ relocation = (h->root.u.def.value + output_section->vma + h->root.u.def.section->output_offset); } else { /* We must change r_index according to the symbol map. */ r_index = symbol_map[r_index]; if (r_index == -1) { if (h != NULL) { /* We decided to strip this symbol, but it turns out that we can't. Note that we lose the other and desc information here. I don't think that will ever matter for a global symbol. */ if (h->indx < 0) { h->indx = -2; h->written = false; if (! aout_link_write_other_symbol (h, (PTR) finfo)) return false; } r_index = h->indx; } else { const char *name; name = strings + GET_WORD (input_bfd, syms[r_index].e_strx); if (! ((*finfo->info->callbacks->unattached_reloc) (finfo->info, name, input_bfd, input_section, r_addr))) return false; r_index = 0; } } relocation = 0; } /* Write out the new r_index value. */ if (output_bfd->xvec->header_byteorder_big_p) { rel->r_index[0] = r_index >> 16; rel->r_index[1] = r_index >> 8; rel->r_index[2] = r_index; } else { rel->r_index[2] = r_index >> 16; rel->r_index[1] = r_index >> 8; rel->r_index[0] = r_index; } } else { asection *section; /* This is a relocation against a section. We must adjust by the amount that the section moved. */ section = aout_reloc_index_to_section (input_bfd, r_index); relocation = (section->output_section->vma + section->output_offset - section->vma); } /* Change the address of the relocation. */ PUT_WORD (output_bfd, r_addr + input_section->output_offset, rel->r_address); /* Adjust a PC relative relocation by removing the reference to the original address in the section and including the reference to the new address. */ if (r_pcrel) relocation -= (input_section->output_section->vma + input_section->output_offset - input_section->vma); #ifdef MY_relocatable_reloc MY_relocatable_reloc (howto, output_bfd, rel, relocation, r_addr); #endif if (relocation == 0) r = bfd_reloc_ok; else r = _bfd_relocate_contents (howto, input_bfd, relocation, contents + r_addr); } else { boolean hundef; /* We are generating an executable, and must do a full relocation. */ hundef = false; if (r_extern) { h = sym_hashes[r_index]; if (h != (struct aout_link_hash_entry *) NULL && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)) { relocation = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } else if (h != (struct aout_link_hash_entry *) NULL && h->root.type == bfd_link_hash_undefweak) relocation = 0; else { hundef = true; relocation = 0; } } else { asection *section; section = aout_reloc_index_to_section (input_bfd, r_index); relocation = (section->output_section->vma + section->output_offset - section->vma); if (r_pcrel) relocation += input_section->vma; } if (check_dynamic_reloc != NULL) { boolean skip; if (! ((*check_dynamic_reloc) (finfo->info, input_bfd, input_section, h, (PTR) rel, contents, &skip, &relocation))) return false; if (skip) continue; } /* Now warn if a global symbol is undefined. We could not do this earlier, because check_dynamic_reloc might want to skip this reloc. */ if (hundef && ! finfo->info->shared && ! r_baserel) { const char *name; name = strings + GET_WORD (input_bfd, syms[r_index].e_strx); if (! ((*finfo->info->callbacks->undefined_symbol) (finfo->info, name, input_bfd, input_section, r_addr))) return false; } r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, r_addr, relocation, (bfd_vma) 0); } if (r != bfd_reloc_ok) { switch (r) { default: case bfd_reloc_outofrange: abort (); case bfd_reloc_overflow: { const char *name; if (r_extern) name = strings + GET_WORD (input_bfd, syms[r_index].e_strx); else { asection *s; s = aout_reloc_index_to_section (input_bfd, r_index); name = bfd_section_name (input_bfd, s); } if (! ((*finfo->info->callbacks->reloc_overflow) (finfo->info, name, howto->name, (bfd_vma) 0, input_bfd, input_section, r_addr))) return false; } break; } } } return true; } /* Relocate an a.out section using extended a.out relocs. */ static boolean aout_link_input_section_ext (finfo, input_bfd, input_section, relocs, rel_size, contents) struct aout_final_link_info *finfo; bfd *input_bfd; asection *input_section; struct reloc_ext_external *relocs; bfd_size_type rel_size; bfd_byte *contents; { boolean (*check_dynamic_reloc) PARAMS ((struct bfd_link_info *, bfd *, asection *, struct aout_link_hash_entry *, PTR, bfd_byte *, boolean *, bfd_vma *)); bfd *output_bfd; boolean relocateable; struct external_nlist *syms; char *strings; struct aout_link_hash_entry **sym_hashes; int *symbol_map; bfd_size_type reloc_count; register struct reloc_ext_external *rel; struct reloc_ext_external *rel_end; output_bfd = finfo->output_bfd; check_dynamic_reloc = aout_backend_info (output_bfd)->check_dynamic_reloc; BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_EXT_SIZE); BFD_ASSERT (input_bfd->xvec->header_byteorder_big_p == output_bfd->xvec->header_byteorder_big_p); relocateable = finfo->info->relocateable; syms = obj_aout_external_syms (input_bfd); strings = obj_aout_external_strings (input_bfd); sym_hashes = obj_aout_sym_hashes (input_bfd); symbol_map = finfo->symbol_map; reloc_count = rel_size / RELOC_EXT_SIZE; rel = relocs; rel_end = rel + reloc_count; for (; rel < rel_end; rel++) { bfd_vma r_addr; int r_index; int r_extern; unsigned int r_type; bfd_vma r_addend; struct aout_link_hash_entry *h = NULL; asection *r_section = NULL; bfd_vma relocation; r_addr = GET_SWORD (input_bfd, rel->r_address); if (input_bfd->xvec->header_byteorder_big_p) { r_index = ((rel->r_index[0] << 16) | (rel->r_index[1] << 8) | rel->r_index[2]); r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG)); r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) >> RELOC_EXT_BITS_TYPE_SH_BIG); } else { r_index = ((rel->r_index[2] << 16) | (rel->r_index[1] << 8) | rel->r_index[0]); r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE)); r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) >> RELOC_EXT_BITS_TYPE_SH_LITTLE); } r_addend = GET_SWORD (input_bfd, rel->r_addend); BFD_ASSERT (r_type < TABLE_SIZE (howto_table_ext)); if (relocateable) { /* We are generating a relocateable output file, and must modify the reloc accordingly. */ if (r_extern) { /* If we know the symbol this relocation is against, convert it into a relocation against a section. This is what the native linker does. */ h = sym_hashes[r_index]; if (h != (struct aout_link_hash_entry *) NULL && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)) { asection *output_section; /* Change the r_extern value. */ if (output_bfd->xvec->header_byteorder_big_p) rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_BIG; else rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_LITTLE; /* Compute a new r_index. */ output_section = h->root.u.def.section->output_section; if (output_section == obj_textsec (output_bfd)) r_index = N_TEXT; else if (output_section == obj_datasec (output_bfd)) r_index = N_DATA; else if (output_section == obj_bsssec (output_bfd)) r_index = N_BSS; else r_index = N_ABS; /* Add the symbol value and the section VMA to the addend. */ relocation = (h->root.u.def.value + output_section->vma + h->root.u.def.section->output_offset); /* Now RELOCATION is the VMA of the final destination. If this is a PC relative reloc, then ADDEND is the negative of the source VMA. We want to set ADDEND to the difference between the destination VMA and the source VMA, which means we must adjust RELOCATION by the change in the source VMA. This is done below. */ } else { /* We must change r_index according to the symbol map. */ r_index = symbol_map[r_index]; if (r_index == -1) { if (h != NULL) { /* We decided to strip this symbol, but it turns out that we can't. Note that we lose the other and desc information here. I don't think that will ever matter for a global symbol. */ if (h->indx < 0) { h->indx = -2; h->written = false; if (! aout_link_write_other_symbol (h, (PTR) finfo)) return false; } r_index = h->indx; } else { const char *name; name = strings + GET_WORD (input_bfd, syms[r_index].e_strx); if (! ((*finfo->info->callbacks->unattached_reloc) (finfo->info, name, input_bfd, input_section, r_addr))) return false; r_index = 0; } } relocation = 0; /* If this is a PC relative reloc, then the addend is the negative of the source VMA. We must adjust it by the change in the source VMA. This is done below. */ } /* Write out the new r_index value. */ if (output_bfd->xvec->header_byteorder_big_p) { rel->r_index[0] = r_index >> 16; rel->r_index[1] = r_index >> 8; rel->r_index[2] = r_index; } else { rel->r_index[2] = r_index >> 16; rel->r_index[1] = r_index >> 8; rel->r_index[0] = r_index; } } else { /* This is a relocation against a section. We must adjust by the amount that the section moved. */ r_section = aout_reloc_index_to_section (input_bfd, r_index); relocation = (r_section->output_section->vma + r_section->output_offset - r_section->vma); /* If this is a PC relative reloc, then the addend is the difference in VMA between the destination and the source. We have just adjusted for the change in VMA of the destination, so we must also adjust by the change in VMA of the source. This is done below. */ } /* As described above, we must always adjust a PC relative reloc by the change in VMA of the source. */ if (howto_table_ext[r_type].pc_relative) relocation -= (input_section->output_section->vma + input_section->output_offset - input_section->vma); /* Change the addend if necessary. */ if (relocation != 0) PUT_WORD (output_bfd, r_addend + relocation, rel->r_addend); /* Change the address of the relocation. */ PUT_WORD (output_bfd, r_addr + input_section->output_offset, rel->r_address); } else { boolean hundef; bfd_reloc_status_type r; /* We are generating an executable, and must do a full relocation. */ hundef = false; if (r_extern) { h = sym_hashes[r_index]; if (h != (struct aout_link_hash_entry *) NULL && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)) { relocation = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } else if (h != (struct aout_link_hash_entry *) NULL && h->root.type == bfd_link_hash_undefweak) relocation = 0; else { hundef = true; relocation = 0; } } else if (r_type == RELOC_BASE10 || r_type == RELOC_BASE13 || r_type == RELOC_BASE22) { struct external_nlist *sym; int type; /* For base relative relocs, r_index is always an index into the symbol table, even if r_extern is 0. */ sym = syms + r_index; type = bfd_h_get_8 (input_bfd, sym->e_type); if ((type & N_TYPE) == N_TEXT || type == N_WEAKT) r_section = obj_textsec (input_bfd); else if ((type & N_TYPE) == N_DATA || type == N_WEAKD) r_section = obj_datasec (input_bfd); else if ((type & N_TYPE) == N_BSS || type == N_WEAKB) r_section = obj_bsssec (input_bfd); else if ((type & N_TYPE) == N_ABS || type == N_WEAKA) r_section = bfd_abs_section_ptr; else abort (); relocation = (r_section->output_section->vma + r_section->output_offset + (GET_WORD (input_bfd, sym->e_value) - r_section->vma)); } else { r_section = aout_reloc_index_to_section (input_bfd, r_index); /* If this is a PC relative reloc, then R_ADDEND is the difference between the two vmas, or old_dest_sec + old_dest_off - (old_src_sec + old_src_off) where old_dest_sec == section->vma and old_src_sec == input_section->vma and old_src_off == r_addr _bfd_final_link_relocate expects RELOCATION + R_ADDEND to be the VMA of the destination minus r_addr (the minus r_addr is because this relocation is not pcrel_offset, which is a bit confusing and should, perhaps, be changed), or new_dest_sec where new_dest_sec == output_section->vma + output_offset We arrange for this to happen by setting RELOCATION to new_dest_sec + old_src_sec - old_dest_sec If this is not a PC relative reloc, then R_ADDEND is simply the VMA of the destination, so we set RELOCATION to the change in the destination VMA, or new_dest_sec - old_dest_sec */ relocation = (r_section->output_section->vma + r_section->output_offset - r_section->vma); if (howto_table_ext[r_type].pc_relative) relocation += input_section->vma; } if (check_dynamic_reloc != NULL) { boolean skip; if (! ((*check_dynamic_reloc) (finfo->info, input_bfd, input_section, h, (PTR) rel, contents, &skip, &relocation))) return false; if (skip) continue; } /* Now warn if a global symbol is undefined. We could not do this earlier, because check_dynamic_reloc might want to skip this reloc. */ if (hundef && ! finfo->info->shared && r_type != RELOC_BASE10 && r_type != RELOC_BASE13 && r_type != RELOC_BASE22) { const char *name; name = strings + GET_WORD (input_bfd, syms[r_index].e_strx); if (! ((*finfo->info->callbacks->undefined_symbol) (finfo->info, name, input_bfd, input_section, r_addr))) return false; } r = _bfd_final_link_relocate (howto_table_ext + r_type, input_bfd, input_section, contents, r_addr, relocation, r_addend); if (r != bfd_reloc_ok) { switch (r) { default: case bfd_reloc_outofrange: abort (); case bfd_reloc_overflow: { const char *name; if (r_extern || r_type == RELOC_BASE10 || r_type == RELOC_BASE13 || r_type == RELOC_BASE22) name = strings + GET_WORD (input_bfd, syms[r_index].e_strx); else { asection *s; s = aout_reloc_index_to_section (input_bfd, r_index); name = bfd_section_name (input_bfd, s); } if (! ((*finfo->info->callbacks->reloc_overflow) (finfo->info, name, howto_table_ext[r_type].name, r_addend, input_bfd, input_section, r_addr))) return false; } break; } } } } return true; } /* Handle a link order which is supposed to generate a reloc. */ static boolean aout_link_reloc_link_order (finfo, o, p) struct aout_final_link_info *finfo; asection *o; struct bfd_link_order *p; { struct bfd_link_order_reloc *pr; int r_index; int r_extern; reloc_howto_type *howto; file_ptr *reloff_ptr; struct reloc_std_external srel; struct reloc_ext_external erel; PTR rel_ptr; pr = p->u.reloc.p; if (p->type == bfd_section_reloc_link_order) { r_extern = 0; if (bfd_is_abs_section (pr->u.section)) r_index = N_ABS | N_EXT; else { BFD_ASSERT (pr->u.section->owner == finfo->output_bfd); r_index = pr->u.section->target_index; } } else { struct aout_link_hash_entry *h; BFD_ASSERT (p->type == bfd_symbol_reloc_link_order); r_extern = 1; h = aout_link_hash_lookup (aout_hash_table (finfo->info), pr->u.name, false, false, true); if (h != (struct aout_link_hash_entry *) NULL && h->indx >= 0) r_index = h->indx; else if (h != NULL) { /* We decided to strip this symbol, but it turns out that we can't. Note that we lose the other and desc information here. I don't think that will ever matter for a global symbol. */ h->indx = -2; h->written = false; if (! aout_link_write_other_symbol (h, (PTR) finfo)) return false; r_index = h->indx; } else { if (! ((*finfo->info->callbacks->unattached_reloc) (finfo->info, pr->u.name, (bfd *) NULL, (asection *) NULL, (bfd_vma) 0))) return false; r_index = 0; } } howto = bfd_reloc_type_lookup (finfo->output_bfd, pr->reloc); if (howto == 0) { bfd_set_error (bfd_error_bad_value); return false; } if (o == obj_textsec (finfo->output_bfd)) reloff_ptr = &finfo->treloff; else if (o == obj_datasec (finfo->output_bfd)) reloff_ptr = &finfo->dreloff; else abort (); if (obj_reloc_entry_size (finfo->output_bfd) == RELOC_STD_SIZE) { #ifdef MY_put_reloc MY_put_reloc(finfo->output_bfd, r_extern, r_index, p->offset, howto, &srel); #else { int r_pcrel; int r_baserel; int r_jmptable; int r_relative; int r_length; r_pcrel = howto->pc_relative; r_baserel = (howto->type & 8) != 0; r_jmptable = (howto->type & 16) != 0; r_relative = (howto->type & 32) != 0; r_length = howto->size; PUT_WORD (finfo->output_bfd, p->offset, srel.r_address); if (finfo->output_bfd->xvec->header_byteorder_big_p) { srel.r_index[0] = r_index >> 16; srel.r_index[1] = r_index >> 8; srel.r_index[2] = r_index; srel.r_type[0] = ((r_extern ? RELOC_STD_BITS_EXTERN_BIG : 0) | (r_pcrel ? RELOC_STD_BITS_PCREL_BIG : 0) | (r_baserel ? RELOC_STD_BITS_BASEREL_BIG : 0) | (r_jmptable ? RELOC_STD_BITS_JMPTABLE_BIG : 0) | (r_relative ? RELOC_STD_BITS_RELATIVE_BIG : 0) | (r_length << RELOC_STD_BITS_LENGTH_SH_BIG)); } else { srel.r_index[2] = r_index >> 16; srel.r_index[1] = r_index >> 8; srel.r_index[0] = r_index; srel.r_type[0] = ((r_extern ? RELOC_STD_BITS_EXTERN_LITTLE : 0) | (r_pcrel ? RELOC_STD_BITS_PCREL_LITTLE : 0) | (r_baserel ? RELOC_STD_BITS_BASEREL_LITTLE : 0) | (r_jmptable ? RELOC_STD_BITS_JMPTABLE_LITTLE : 0) | (r_relative ? RELOC_STD_BITS_RELATIVE_LITTLE : 0) | (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE)); } } #endif rel_ptr = (PTR) &srel; /* We have to write the addend into the object file, since standard a.out relocs are in place. It would be more reliable if we had the current contents of the file here, rather than assuming zeroes, but we can't read the file since it was opened using bfd_openw. */ if (pr->addend != 0) { bfd_size_type size; bfd_reloc_status_type r; bfd_byte *buf; boolean ok; size = bfd_get_reloc_size (howto); buf = (bfd_byte *) bfd_zmalloc (size); if (buf == (bfd_byte *) NULL) { bfd_set_error (bfd_error_no_memory); return false; } r = _bfd_relocate_contents (howto, finfo->output_bfd, pr->addend, buf); switch (r) { case bfd_reloc_ok: break; default: case bfd_reloc_outofrange: abort (); case bfd_reloc_overflow: if (! ((*finfo->info->callbacks->reloc_overflow) (finfo->info, (p->type == bfd_section_reloc_link_order ? bfd_section_name (finfo->output_bfd, pr->u.section) : pr->u.name), howto->name, pr->addend, (bfd *) NULL, (asection *) NULL, (bfd_vma) 0))) { free (buf); return false; } break; } ok = bfd_set_section_contents (finfo->output_bfd, o, (PTR) buf, (file_ptr) p->offset, size); free (buf); if (! ok) return false; } } else { PUT_WORD (finfo->output_bfd, p->offset, erel.r_address); if (finfo->output_bfd->xvec->header_byteorder_big_p) { erel.r_index[0] = r_index >> 16; erel.r_index[1] = r_index >> 8; erel.r_index[2] = r_index; erel.r_type[0] = ((r_extern ? RELOC_EXT_BITS_EXTERN_BIG : 0) | (howto->type << RELOC_EXT_BITS_TYPE_SH_BIG)); } else { erel.r_index[2] = r_index >> 16; erel.r_index[1] = r_index >> 8; erel.r_index[0] = r_index; erel.r_type[0] = (r_extern ? RELOC_EXT_BITS_EXTERN_LITTLE : 0) | (howto->type << RELOC_EXT_BITS_TYPE_SH_LITTLE); } PUT_WORD (finfo->output_bfd, pr->addend, erel.r_addend); rel_ptr = (PTR) &erel; } if (bfd_seek (finfo->output_bfd, *reloff_ptr, SEEK_SET) != 0 || (bfd_write (rel_ptr, (bfd_size_type) 1, obj_reloc_entry_size (finfo->output_bfd), finfo->output_bfd) != obj_reloc_entry_size (finfo->output_bfd))) return false; *reloff_ptr += obj_reloc_entry_size (finfo->output_bfd); /* Assert that the relocs have not run into the symbols, and that n the text relocs have not run into the data relocs. */ BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (finfo->output_bfd) && (reloff_ptr != &finfo->treloff || (*reloff_ptr <= obj_datasec (finfo->output_bfd)->rel_filepos))); return true; }