/* BFD semi-generic back-end for a.out binaries. Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc. Written by Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* SECTION a.out backends DESCRIPTION BFD supports a number of different flavours of a.out format, though the major differences are only the sizes of the structures on disk, and the shape of the relocation information. The support is split into a basic support file @file{aoutx.h} and other files which derive functions from the base. One derivation file is @file{aoutf1.h} (for a.out flavour 1), and adds to the basic a.out functions support for sun3, sun4, 386 and 29k a.out files, to create a target jump vector for a specific target. This information is further split out into more specific files for each machine, including @file{sunos.c} for sun3 and sun4, @file{newsos3.c} for the Sony NEWS, and @file{demo64.c} for a demonstration of a 64 bit a.out format. The base file @file{aoutx.h} defines general mechanisms for reading and writing records to and from disk and various other methods which BFD requires. It is included by @file{aout32.c} and @file{aout64.c} to form the names <>, <>, etc. As an example, this is what goes on to make the back end for a sun4, from @file{aout32.c}: | #define ARCH_SIZE 32 | #include "aoutx.h" Which exports names: | ... | aout_32_canonicalize_reloc | aout_32_find_nearest_line | aout_32_get_lineno | aout_32_get_reloc_upper_bound | ... from @file{sunos.c}: | #define ARCH 32 | #define TARGET_NAME "a.out-sunos-big" | #define VECNAME sunos_big_vec | #include "aoutf1.h" requires all the names from @file{aout32.c}, and produces the jump vector | sunos_big_vec The file @file{host-aout.c} is a special case. It is for a large set of hosts that use ``more or less standard'' a.out files, and for which cross-debugging is not interesting. It uses the standard 32-bit a.out support routines, but determines the file offsets and addresses of the text, data, and BSS sections, the machine architecture and machine type, and the entry point address, in a host-dependent manner. Once these values have been determined, generic code is used to handle the object file. When porting it to run on a new system, you must supply: | HOST_PAGE_SIZE | HOST_SEGMENT_SIZE | HOST_MACHINE_ARCH (optional) | HOST_MACHINE_MACHINE (optional) | HOST_TEXT_START_ADDR | HOST_STACK_END_ADDR in the file @file{../include/sys/h-@var{XXX}.h} (for your host). These values, plus the structures and macros defined in @file{a.out.h} on your host system, will produce a BFD target that will access ordinary a.out files on your host. To configure a new machine to use @file{host-aout.c}, specify: | TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec | TDEPFILES= host-aout.o trad-core.o in the @file{config/@var{XXX}.mt} file, and modify @file{configure.in} to use the @file{@var{XXX}.mt} file (by setting "<>") when your configuration is selected. */ /* Some assumptions: * Any BFD with D_PAGED set is ZMAGIC, and vice versa. Doesn't matter what the setting of WP_TEXT is on output, but it'll get set on input. * Any BFD with D_PAGED clear and WP_TEXT set is NMAGIC. * Any BFD with both flags clear is OMAGIC. (Just want to make these explicit, so the conditions tested in this file make sense if you're more familiar with a.out than with BFD.) */ #define KEEPIT flags #define KEEPITTYPE int #include #include /* For strchr and friends */ #include "bfd.h" #include #include "bfdlink.h" #include "libaout.h" #include "libbfd.h" #include "aout/aout64.h" #include "aout/stab_gnu.h" #include "aout/ar.h" static boolean translate_symbol_table PARAMS ((bfd *, aout_symbol_type *, struct external_nlist *, bfd_size_type, char *, bfd_size_type, boolean dynamic)); /* SUBSECTION Relocations DESCRIPTION The file @file{aoutx.h} provides for both the @emph{standard} and @emph{extended} forms of a.out relocation records. The standard records contain only an address, a symbol index, and a type field. The extended records (used on 29ks and sparcs) also have a full integer for an addend. */ #define CTOR_TABLE_RELOC_IDX 2 #define howto_table_ext NAME(aout,ext_howto_table) #define howto_table_std NAME(aout,std_howto_table) reloc_howto_type howto_table_ext[] = { /* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone */ HOWTO(RELOC_8, 0, 0, 8, false, 0, complain_overflow_bitfield,0,"8", false, 0,0x000000ff, false), HOWTO(RELOC_16, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"16", false, 0,0x0000ffff, false), HOWTO(RELOC_32, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"32", false, 0,0xffffffff, false), HOWTO(RELOC_DISP8, 0, 0, 8, true, 0, complain_overflow_signed,0,"DISP8", false, 0,0x000000ff, false), HOWTO(RELOC_DISP16, 0, 1, 16, true, 0, complain_overflow_signed,0,"DISP16", false, 0,0x0000ffff, false), HOWTO(RELOC_DISP32, 0, 2, 32, true, 0, complain_overflow_signed,0,"DISP32", false, 0,0xffffffff, false), HOWTO(RELOC_WDISP30,2, 2, 30, true, 0, complain_overflow_signed,0,"WDISP30", false, 0,0x3fffffff, false), HOWTO(RELOC_WDISP22,2, 2, 22, true, 0, complain_overflow_signed,0,"WDISP22", false, 0,0x003fffff, false), HOWTO(RELOC_HI22, 10, 2, 22, false, 0, complain_overflow_bitfield,0,"HI22", false, 0,0x003fffff, false), HOWTO(RELOC_22, 0, 2, 22, false, 0, complain_overflow_bitfield,0,"22", false, 0,0x003fffff, false), HOWTO(RELOC_13, 0, 2, 13, false, 0, complain_overflow_bitfield,0,"13", false, 0,0x00001fff, false), HOWTO(RELOC_LO10, 0, 2, 10, false, 0, complain_overflow_dont,0,"LO10", false, 0,0x000003ff, false), HOWTO(RELOC_SFA_BASE,0, 2, 32, false, 0, complain_overflow_bitfield,0,"SFA_BASE", false, 0,0xffffffff, false), HOWTO(RELOC_SFA_OFF13,0,2, 32, false, 0, complain_overflow_bitfield,0,"SFA_OFF13",false, 0,0xffffffff, false), HOWTO(RELOC_BASE10, 0, 2, 16, false, 0, complain_overflow_bitfield,0,"BASE10", false, 0,0x0000ffff, false), HOWTO(RELOC_BASE13, 0, 2, 13, false, 0, complain_overflow_bitfield,0,"BASE13", false, 0,0x00001fff, false), HOWTO(RELOC_BASE22, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"BASE22", false, 0,0x00000000, false), HOWTO(RELOC_PC10, 0, 2, 10, false, 0, complain_overflow_bitfield,0,"PC10", false, 0,0x000003ff, false), HOWTO(RELOC_PC22, 0, 2, 22, false, 0, complain_overflow_bitfield,0,"PC22", false, 0,0x003fffff, false), HOWTO(RELOC_JMP_TBL,0, 2, 32, false, 0, complain_overflow_bitfield,0,"JMP_TBL", false, 0,0xffffffff, false), HOWTO(RELOC_SEGOFF16,0, 2, 0, false, 0, complain_overflow_bitfield,0,"SEGOFF16", false, 0,0x00000000, false), HOWTO(RELOC_GLOB_DAT,0, 2, 0, false, 0, complain_overflow_bitfield,0,"GLOB_DAT", false, 0,0x00000000, false), HOWTO(RELOC_JMP_SLOT,0, 2, 0, false, 0, complain_overflow_bitfield,0,"JMP_SLOT", false, 0,0x00000000, false), HOWTO(RELOC_RELATIVE,0, 2, 0, false, 0, complain_overflow_bitfield,0,"RELATIVE", false, 0,0x00000000, false), }; /* Convert standard reloc records to "arelent" format (incl byte swap). */ reloc_howto_type howto_table_std[] = { /* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone */ HOWTO( 0, 0, 0, 8, false, 0, complain_overflow_bitfield,0,"8", true, 0x000000ff,0x000000ff, false), HOWTO( 1, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"16", true, 0x0000ffff,0x0000ffff, false), HOWTO( 2, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"32", true, 0xffffffff,0xffffffff, false), HOWTO( 3, 0, 4, 64, false, 0, complain_overflow_bitfield,0,"64", true, 0xdeaddead,0xdeaddead, false), HOWTO( 4, 0, 0, 8, true, 0, complain_overflow_signed, 0,"DISP8", true, 0x000000ff,0x000000ff, false), HOWTO( 5, 0, 1, 16, true, 0, complain_overflow_signed, 0,"DISP16", true, 0x0000ffff,0x0000ffff, false), HOWTO( 6, 0, 2, 32, true, 0, complain_overflow_signed, 0,"DISP32", true, 0xffffffff,0xffffffff, false), HOWTO( 7, 0, 4, 64, true, 0, complain_overflow_signed, 0,"DISP64", true, 0xfeedface,0xfeedface, false), { -1 }, HOWTO( 9, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"BASE16", false,0xffffffff,0xffffffff, false), HOWTO(10, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"BASE32", false,0xffffffff,0xffffffff, false), }; #define TABLE_SIZE(TABLE) (sizeof(TABLE)/sizeof(TABLE[0])) CONST struct reloc_howto_struct * NAME(aout,reloc_type_lookup) (abfd,code) bfd *abfd; bfd_reloc_code_real_type code; { #define EXT(i,j) case i: return &howto_table_ext[j] #define STD(i,j) case i: return &howto_table_std[j] int ext = obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE; if (code == BFD_RELOC_CTOR) switch (bfd_get_arch_info (abfd)->bits_per_address) { case 32: code = BFD_RELOC_32; break; } if (ext) switch (code) { EXT (BFD_RELOC_32, 2); EXT (BFD_RELOC_HI22, 8); EXT (BFD_RELOC_LO10, 11); EXT (BFD_RELOC_32_PCREL_S2, 6); EXT (BFD_RELOC_SPARC_WDISP22, 7); default: return (CONST struct reloc_howto_struct *) 0; } else /* std relocs */ switch (code) { STD (BFD_RELOC_16, 1); STD (BFD_RELOC_32, 2); STD (BFD_RELOC_8_PCREL, 4); STD (BFD_RELOC_16_PCREL, 5); STD (BFD_RELOC_32_PCREL, 6); STD (BFD_RELOC_16_BASEREL, 9); STD (BFD_RELOC_32_BASEREL, 10); default: return (CONST struct reloc_howto_struct *) 0; } } /* SUBSECTION Internal entry points DESCRIPTION @file{aoutx.h} exports several routines for accessing the contents of an a.out file, which are gathered and exported in turn by various format specific files (eg sunos.c). */ /* FUNCTION aout_@var{size}_swap_exec_header_in SYNOPSIS void aout_@var{size}_swap_exec_header_in, (bfd *abfd, struct external_exec *raw_bytes, struct internal_exec *execp); DESCRIPTION Swap the information in an executable header @var{raw_bytes} taken from a raw byte stream memory image into the internal exec header structure @var{execp}. */ #ifndef NAME_swap_exec_header_in void NAME(aout,swap_exec_header_in) (abfd, raw_bytes, execp) bfd *abfd; struct external_exec *raw_bytes; struct internal_exec *execp; { struct external_exec *bytes = (struct external_exec *)raw_bytes; /* The internal_exec structure has some fields that are unused in this configuration (IE for i960), so ensure that all such uninitialized fields are zero'd out. There are places where two of these structs are memcmp'd, and thus the contents do matter. */ memset ((PTR) execp, 0, sizeof (struct internal_exec)); /* Now fill in fields in the execp, from the bytes in the raw data. */ execp->a_info = bfd_h_get_32 (abfd, bytes->e_info); execp->a_text = GET_WORD (abfd, bytes->e_text); execp->a_data = GET_WORD (abfd, bytes->e_data); execp->a_bss = GET_WORD (abfd, bytes->e_bss); execp->a_syms = GET_WORD (abfd, bytes->e_syms); execp->a_entry = GET_WORD (abfd, bytes->e_entry); execp->a_trsize = GET_WORD (abfd, bytes->e_trsize); execp->a_drsize = GET_WORD (abfd, bytes->e_drsize); } #define NAME_swap_exec_header_in NAME(aout,swap_exec_header_in) #endif /* FUNCTION aout_@var{size}_swap_exec_header_out SYNOPSIS void aout_@var{size}_swap_exec_header_out (bfd *abfd, struct internal_exec *execp, struct external_exec *raw_bytes); DESCRIPTION Swap the information in an internal exec header structure @var{execp} into the buffer @var{raw_bytes} ready for writing to disk. */ void NAME(aout,swap_exec_header_out) (abfd, execp, raw_bytes) bfd *abfd; struct internal_exec *execp; struct external_exec *raw_bytes; { struct external_exec *bytes = (struct external_exec *)raw_bytes; /* Now fill in fields in the raw data, from the fields in the exec struct. */ bfd_h_put_32 (abfd, execp->a_info , bytes->e_info); PUT_WORD (abfd, execp->a_text , bytes->e_text); PUT_WORD (abfd, execp->a_data , bytes->e_data); PUT_WORD (abfd, execp->a_bss , bytes->e_bss); PUT_WORD (abfd, execp->a_syms , bytes->e_syms); PUT_WORD (abfd, execp->a_entry , bytes->e_entry); PUT_WORD (abfd, execp->a_trsize, bytes->e_trsize); PUT_WORD (abfd, execp->a_drsize, bytes->e_drsize); } /* FUNCTION aout_@var{size}_some_aout_object_p SYNOPSIS bfd_target *aout_@var{size}_some_aout_object_p (bfd *abfd, bfd_target *(*callback_to_real_object_p)()); DESCRIPTION Some a.out variant thinks that the file open in @var{abfd} checking is an a.out file. Do some more checking, and set up for access if it really is. Call back to the calling environment's "finish up" function just before returning, to handle any last-minute setup. */ bfd_target * NAME(aout,some_aout_object_p) (abfd, execp, callback_to_real_object_p) bfd *abfd; struct internal_exec *execp; bfd_target *(*callback_to_real_object_p) PARAMS ((bfd *)); { struct aout_data_struct *rawptr, *oldrawptr; bfd_target *result; rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, sizeof (struct aout_data_struct )); if (rawptr == NULL) { bfd_set_error (bfd_error_no_memory); return 0; } oldrawptr = abfd->tdata.aout_data; abfd->tdata.aout_data = rawptr; /* Copy the contents of the old tdata struct. In particular, we want the subformat, since for hpux it was set in hp300hpux.c:swap_exec_header_in and will be used in hp300hpux.c:callback. */ if (oldrawptr != NULL) *abfd->tdata.aout_data = *oldrawptr; abfd->tdata.aout_data->a.hdr = &rawptr->e; *(abfd->tdata.aout_data->a.hdr) = *execp; /* Copy in the internal_exec struct */ execp = abfd->tdata.aout_data->a.hdr; /* Set the file flags */ abfd->flags = NO_FLAGS; if (execp->a_drsize || execp->a_trsize) abfd->flags |= HAS_RELOC; /* Setting of EXEC_P has been deferred to the bottom of this function */ if (execp->a_syms) abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS; if (N_DYNAMIC(*execp)) abfd->flags |= DYNAMIC; if (N_MAGIC (*execp) == ZMAGIC) { abfd->flags |= D_PAGED|WP_TEXT; adata(abfd).magic = z_magic; } else if (N_MAGIC (*execp) == NMAGIC) { abfd->flags |= WP_TEXT; adata(abfd).magic = n_magic; } else adata(abfd).magic = o_magic; bfd_get_start_address (abfd) = execp->a_entry; obj_aout_symbols (abfd) = (aout_symbol_type *)NULL; bfd_get_symcount (abfd) = execp->a_syms / sizeof (struct external_nlist); /* The default relocation entry size is that of traditional V7 Unix. */ obj_reloc_entry_size (abfd) = RELOC_STD_SIZE; /* The default symbol entry size is that of traditional Unix. */ obj_symbol_entry_size (abfd) = EXTERNAL_NLIST_SIZE; obj_aout_external_syms (abfd) = NULL; obj_aout_external_strings (abfd) = NULL; obj_aout_sym_hashes (abfd) = NULL; /* Create the sections. This is raunchy, but bfd_close wants to reclaim them. */ obj_textsec (abfd) = bfd_make_section_old_way (abfd, ".text"); obj_datasec (abfd) = bfd_make_section_old_way (abfd, ".data"); obj_bsssec (abfd) = bfd_make_section_old_way (abfd, ".bss"); #if 0 (void)bfd_make_section (abfd, ".text"); (void)bfd_make_section (abfd, ".data"); (void)bfd_make_section (abfd, ".bss"); #endif obj_datasec (abfd)->_raw_size = execp->a_data; obj_bsssec (abfd)->_raw_size = execp->a_bss; /* If this object is dynamically linked, we assume that both sections have relocs. This does no real harm, even though it may not be true. */ obj_textsec (abfd)->flags = (execp->a_trsize != 0 || (abfd->flags & DYNAMIC) != 0 ? (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_RELOC) : (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)); obj_datasec (abfd)->flags = (execp->a_drsize != 0 || (abfd->flags & DYNAMIC) != 0 ? (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS | SEC_RELOC) : (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS)); obj_bsssec (abfd)->flags = SEC_ALLOC; #ifdef THIS_IS_ONLY_DOCUMENTATION /* The common code can't fill in these things because they depend on either the start address of the text segment, the rounding up of virtual addresses between segments, or the starting file position of the text segment -- all of which varies among different versions of a.out. */ /* Call back to the format-dependent code to fill in the rest of the fields and do any further cleanup. Things that should be filled in by the callback: */ struct exec *execp = exec_hdr (abfd); obj_textsec (abfd)->size = N_TXTSIZE(*execp); obj_textsec (abfd)->raw_size = N_TXTSIZE(*execp); /* data and bss are already filled in since they're so standard */ /* The virtual memory addresses of the sections */ obj_textsec (abfd)->vma = N_TXTADDR(*execp); obj_datasec (abfd)->vma = N_DATADDR(*execp); obj_bsssec (abfd)->vma = N_BSSADDR(*execp); /* The file offsets of the sections */ obj_textsec (abfd)->filepos = N_TXTOFF(*execp); obj_datasec (abfd)->filepos = N_DATOFF(*execp); /* The file offsets of the relocation info */ obj_textsec (abfd)->rel_filepos = N_TRELOFF(*execp); obj_datasec (abfd)->rel_filepos = N_DRELOFF(*execp); /* The file offsets of the string table and symbol table. */ obj_str_filepos (abfd) = N_STROFF (*execp); obj_sym_filepos (abfd) = N_SYMOFF (*execp); /* Determine the architecture and machine type of the object file. */ switch (N_MACHTYPE (*exec_hdr (abfd))) { default: abfd->obj_arch = bfd_arch_obscure; break; } adata(abfd)->page_size = PAGE_SIZE; adata(abfd)->segment_size = SEGMENT_SIZE; adata(abfd)->exec_bytes_size = EXEC_BYTES_SIZE; return abfd->xvec; /* The architecture is encoded in various ways in various a.out variants, or is not encoded at all in some of them. The relocation size depends on the architecture and the a.out variant. Finally, the return value is the bfd_target vector in use. If an error occurs, return zero and set bfd_error to the appropriate error code. Formats such as b.out, which have additional fields in the a.out header, should cope with them in this callback as well. */ #endif /* DOCUMENTATION */ result = (*callback_to_real_object_p)(abfd); /* Now that the segment addresses have been worked out, take a better guess at whether the file is executable. If the entry point is within the text segment, assume it is. (This makes files executable even if their entry point address is 0, as long as their text starts at zero.) At some point we should probably break down and stat the file and declare it executable if (one of) its 'x' bits are on... */ if ((execp->a_entry >= obj_textsec(abfd)->vma) && (execp->a_entry < obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size)) abfd->flags |= EXEC_P; if (result) { #if 0 /* These should be set correctly anyways. */ abfd->sections = obj_textsec (abfd); obj_textsec (abfd)->next = obj_datasec (abfd); obj_datasec (abfd)->next = obj_bsssec (abfd); #endif } else { free (rawptr); abfd->tdata.aout_data = oldrawptr; } return result; } /* FUNCTION aout_@var{size}_mkobject SYNOPSIS boolean aout_@var{size}_mkobject, (bfd *abfd); DESCRIPTION Initialize BFD @var{abfd} for use with a.out files. */ boolean NAME(aout,mkobject) (abfd) bfd *abfd; { struct aout_data_struct *rawptr; bfd_set_error (bfd_error_system_call); /* Use an intermediate variable for clarity */ rawptr = (struct aout_data_struct *)bfd_zalloc (abfd, sizeof (struct aout_data_struct )); if (rawptr == NULL) { bfd_set_error (bfd_error_no_memory); return false; } abfd->tdata.aout_data = rawptr; exec_hdr (abfd) = &(rawptr->e); /* For simplicity's sake we just make all the sections right here. */ obj_textsec (abfd) = (asection *)NULL; obj_datasec (abfd) = (asection *)NULL; obj_bsssec (abfd) = (asection *)NULL; bfd_make_section (abfd, ".text"); bfd_make_section (abfd, ".data"); bfd_make_section (abfd, ".bss"); bfd_make_section (abfd, BFD_ABS_SECTION_NAME); bfd_make_section (abfd, BFD_UND_SECTION_NAME); bfd_make_section (abfd, BFD_COM_SECTION_NAME); return true; } /* FUNCTION aout_@var{size}_machine_type SYNOPSIS enum machine_type aout_@var{size}_machine_type (enum bfd_architecture arch, unsigned long machine)); DESCRIPTION Keep track of machine architecture and machine type for a.out's. Return the <> for a particular architecture and machine, or <> if that exact architecture and machine can't be represented in a.out format. If the architecture is understood, machine type 0 (default) is always understood. */ enum machine_type NAME(aout,machine_type) (arch, machine) enum bfd_architecture arch; unsigned long machine; { enum machine_type arch_flags; arch_flags = M_UNKNOWN; switch (arch) { case bfd_arch_sparc: if (machine == 0) arch_flags = M_SPARC; break; case bfd_arch_m68k: switch (machine) { case 0: arch_flags = M_68010; break; case 68000: arch_flags = M_UNKNOWN; break; case 68010: arch_flags = M_68010; break; case 68020: arch_flags = M_68020; break; default: arch_flags = M_UNKNOWN; break; } break; case bfd_arch_i386: if (machine == 0) arch_flags = M_386; break; case bfd_arch_a29k: if (machine == 0) arch_flags = M_29K; break; case bfd_arch_mips: switch (machine) { case 0: case 2000: case 3000: arch_flags = M_MIPS1; break; case 4000: case 4400: case 6000: arch_flags = M_MIPS2; break; default: arch_flags = M_UNKNOWN; break; } break; default: arch_flags = M_UNKNOWN; } return arch_flags; } /* FUNCTION aout_@var{size}_set_arch_mach SYNOPSIS boolean aout_@var{size}_set_arch_mach, (bfd *, enum bfd_architecture arch, unsigned long machine)); DESCRIPTION Set the architecture and the machine of the BFD @var{abfd} to the values @var{arch} and @var{machine}. Verify that @var{abfd}'s format can support the architecture required. */ boolean NAME(aout,set_arch_mach) (abfd, arch, machine) bfd *abfd; enum bfd_architecture arch; unsigned long machine; { if (! bfd_default_set_arch_mach (abfd, arch, machine)) return false; if (arch != bfd_arch_unknown && NAME(aout,machine_type) (arch, machine) == M_UNKNOWN) return false; /* We can't represent this type */ /* Determine the size of a relocation entry */ switch (arch) { case bfd_arch_sparc: case bfd_arch_a29k: case bfd_arch_mips: obj_reloc_entry_size (abfd) = RELOC_EXT_SIZE; break; default: obj_reloc_entry_size (abfd) = RELOC_STD_SIZE; break; } return (*aout_backend_info(abfd)->set_sizes) (abfd); } static void adjust_o_magic (abfd, execp) bfd *abfd; struct internal_exec *execp; { file_ptr pos = adata (abfd).exec_bytes_size; bfd_vma vma = 0; int pad = 0; /* Text. */ obj_textsec(abfd)->filepos = pos; pos += obj_textsec(abfd)->_raw_size; vma += obj_textsec(abfd)->_raw_size; /* Data. */ if (!obj_datasec(abfd)->user_set_vma) { #if 0 /* ?? Does alignment in the file image really matter? */ pad = align_power (vma, obj_datasec(abfd)->alignment_power) - vma; #endif obj_textsec(abfd)->_raw_size += pad; pos += pad; vma += pad; obj_datasec(abfd)->vma = vma; } obj_datasec(abfd)->filepos = pos; pos += obj_datasec(abfd)->_raw_size; vma += obj_datasec(abfd)->_raw_size; /* BSS. */ if (!obj_bsssec(abfd)->user_set_vma) { #if 0 pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma; #endif obj_datasec(abfd)->_raw_size += pad; pos += pad; vma += pad; obj_bsssec(abfd)->vma = vma; } obj_bsssec(abfd)->filepos = pos; /* Fix up the exec header. */ execp->a_text = obj_textsec(abfd)->_raw_size; execp->a_data = obj_datasec(abfd)->_raw_size; execp->a_bss = obj_bsssec(abfd)->_raw_size; N_SET_MAGIC (*execp, OMAGIC); } static void adjust_z_magic (abfd, execp) bfd *abfd; struct internal_exec *execp; { bfd_size_type data_pad, text_pad; file_ptr text_end; CONST struct aout_backend_data *abdp; int ztih; /* Nonzero if text includes exec header. */ abdp = aout_backend_info (abfd); /* Text. */ ztih = abdp && abdp->text_includes_header; obj_textsec(abfd)->filepos = (ztih ? adata(abfd).exec_bytes_size : adata(abfd).page_size); if (! obj_textsec(abfd)->user_set_vma) /* ?? Do we really need to check for relocs here? */ obj_textsec(abfd)->vma = ((abfd->flags & HAS_RELOC) ? 0 : (ztih ? (abdp->default_text_vma + adata(abfd).exec_bytes_size) : abdp->default_text_vma)); /* Could take strange alignment of text section into account here? */ /* Find start of data. */ text_end = obj_textsec(abfd)->filepos + obj_textsec(abfd)->_raw_size; text_pad = BFD_ALIGN (text_end, adata(abfd).page_size) - text_end; obj_textsec(abfd)->_raw_size += text_pad; text_end += text_pad; /* Data. */ if (!obj_datasec(abfd)->user_set_vma) { bfd_vma vma; vma = obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size; obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size); } if (abdp && abdp->zmagic_mapped_contiguous) { text_pad = (obj_datasec(abfd)->vma - obj_textsec(abfd)->vma - obj_textsec(abfd)->_raw_size); obj_textsec(abfd)->_raw_size += text_pad; } obj_datasec(abfd)->filepos = (obj_textsec(abfd)->filepos + obj_textsec(abfd)->_raw_size); /* Fix up exec header while we're at it. */ execp->a_text = obj_textsec(abfd)->_raw_size; if (ztih && (!abdp || (abdp && !abdp->exec_header_not_counted))) execp->a_text += adata(abfd).exec_bytes_size; N_SET_MAGIC (*execp, ZMAGIC); /* Spec says data section should be rounded up to page boundary. */ obj_datasec(abfd)->_raw_size = align_power (obj_datasec(abfd)->_raw_size, obj_bsssec(abfd)->alignment_power); execp->a_data = BFD_ALIGN (obj_datasec(abfd)->_raw_size, adata(abfd).page_size); data_pad = execp->a_data - obj_datasec(abfd)->_raw_size; /* BSS. */ if (!obj_bsssec(abfd)->user_set_vma) obj_bsssec(abfd)->vma = (obj_datasec(abfd)->vma + obj_datasec(abfd)->_raw_size); /* If the BSS immediately follows the data section and extra space in the page is left after the data section, fudge data in the header so that the bss section looks smaller by that amount. We'll start the bss section there, and lie to the OS. (Note that a linker script, as well as the above assignment, could have explicitly set the BSS vma to immediately follow the data section.) */ if (align_power (obj_bsssec(abfd)->vma, obj_bsssec(abfd)->alignment_power) == obj_datasec(abfd)->vma + obj_datasec(abfd)->_raw_size) execp->a_bss = (data_pad > obj_bsssec(abfd)->_raw_size) ? 0 : obj_bsssec(abfd)->_raw_size - data_pad; else execp->a_bss = obj_bsssec(abfd)->_raw_size; } static void adjust_n_magic (abfd, execp) bfd *abfd; struct internal_exec *execp; { file_ptr pos = adata(abfd).exec_bytes_size; bfd_vma vma = 0; int pad; /* Text. */ obj_textsec(abfd)->filepos = pos; if (!obj_textsec(abfd)->user_set_vma) obj_textsec(abfd)->vma = vma; else vma = obj_textsec(abfd)->vma; pos += obj_textsec(abfd)->_raw_size; vma += obj_textsec(abfd)->_raw_size; /* Data. */ obj_datasec(abfd)->filepos = pos; if (!obj_datasec(abfd)->user_set_vma) obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size); vma = obj_datasec(abfd)->vma; /* Since BSS follows data immediately, see if it needs alignment. */ vma += obj_datasec(abfd)->_raw_size; pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma; obj_datasec(abfd)->_raw_size += pad; pos += obj_datasec(abfd)->_raw_size; /* BSS. */ if (!obj_bsssec(abfd)->user_set_vma) obj_bsssec(abfd)->vma = vma; else vma = obj_bsssec(abfd)->vma; /* Fix up exec header. */ execp->a_text = obj_textsec(abfd)->_raw_size; execp->a_data = obj_datasec(abfd)->_raw_size; execp->a_bss = obj_bsssec(abfd)->_raw_size; N_SET_MAGIC (*execp, NMAGIC); } boolean NAME(aout,adjust_sizes_and_vmas) (abfd, text_size, text_end) bfd *abfd; bfd_size_type *text_size; file_ptr *text_end; { struct internal_exec *execp = exec_hdr (abfd); if ((obj_textsec (abfd) == NULL) || (obj_datasec (abfd) == NULL)) { bfd_set_error (bfd_error_invalid_operation); return false; } if (adata(abfd).magic != undecided_magic) return true; obj_textsec(abfd)->_raw_size = align_power(obj_textsec(abfd)->_raw_size, obj_textsec(abfd)->alignment_power); *text_size = obj_textsec (abfd)->_raw_size; /* Rule (heuristic) for when to pad to a new page. Note that there are (at least) two ways demand-paged (ZMAGIC) files have been handled. Most Berkeley-based systems start the text segment at (PAGE_SIZE). However, newer versions of SUNOS start the text segment right after the exec header; the latter is counted in the text segment size, and is paged in by the kernel with the rest of the text. */ /* This perhaps isn't the right way to do this, but made it simpler for me to understand enough to implement it. Better would probably be to go right from BFD flags to alignment/positioning characteristics. But the old code was sloppy enough about handling the flags, and had enough other magic, that it was a little hard for me to understand. I think I understand it better now, but I haven't time to do the cleanup this minute. */ if (abfd->flags & D_PAGED) /* Whether or not WP_TEXT is set -- let D_PAGED override. */ /* @@ What about QMAGIC? */ adata(abfd).magic = z_magic; else if (abfd->flags & WP_TEXT) adata(abfd).magic = n_magic; else adata(abfd).magic = o_magic; #ifdef BFD_AOUT_DEBUG /* requires gcc2 */ #if __GNUC__ >= 2 fprintf (stderr, "%s text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x,%x>\n", ({ char *str; switch (adata(abfd).magic) { case n_magic: str = "NMAGIC"; break; case o_magic: str = "OMAGIC"; break; case z_magic: str = "ZMAGIC"; break; default: abort (); } str; }), obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size, obj_textsec(abfd)->alignment_power, obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size, obj_datasec(abfd)->alignment_power, obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size, obj_bsssec(abfd)->alignment_power); #endif #endif switch (adata(abfd).magic) { case o_magic: adjust_o_magic (abfd, execp); break; case z_magic: adjust_z_magic (abfd, execp); break; case n_magic: adjust_n_magic (abfd, execp); break; default: abort (); } #ifdef BFD_AOUT_DEBUG fprintf (stderr, " text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x>\n", obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size, obj_textsec(abfd)->filepos, obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size, obj_datasec(abfd)->filepos, obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size); #endif return true; } /* FUNCTION aout_@var{size}_new_section_hook SYNOPSIS boolean aout_@var{size}_new_section_hook, (bfd *abfd, asection *newsect)); DESCRIPTION Called by the BFD in response to a @code{bfd_make_section} request. */ boolean NAME(aout,new_section_hook) (abfd, newsect) bfd *abfd; asection *newsect; { /* align to double at least */ newsect->alignment_power = bfd_get_arch_info(abfd)->section_align_power; if (bfd_get_format (abfd) == bfd_object) { if (obj_textsec(abfd) == NULL && !strcmp(newsect->name, ".text")) { obj_textsec(abfd)= newsect; newsect->target_index = N_TEXT | N_EXT; return true; } if (obj_datasec(abfd) == NULL && !strcmp(newsect->name, ".data")) { obj_datasec(abfd) = newsect; newsect->target_index = N_DATA | N_EXT; return true; } if (obj_bsssec(abfd) == NULL && !strcmp(newsect->name, ".bss")) { obj_bsssec(abfd) = newsect; newsect->target_index = N_BSS | N_EXT; return true; } } /* We allow more than three sections internally */ return true; } boolean NAME(aout,set_section_contents) (abfd, section, location, offset, count) bfd *abfd; sec_ptr section; PTR location; file_ptr offset; bfd_size_type count; { file_ptr text_end; bfd_size_type text_size; if (abfd->output_has_begun == false) { if (NAME(aout,adjust_sizes_and_vmas) (abfd, &text_size, &text_end) == false) return false; } /* regardless, once we know what we're doing, we might as well get going */ if (section != obj_bsssec(abfd)) { bfd_seek (abfd, section->filepos + offset, SEEK_SET); if (count) { return (bfd_write ((PTR)location, 1, count, abfd) == count) ? true : false; } return true; } return true; } /* Classify stabs symbols */ #define sym_in_text_section(sym) \ (((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_TEXT) #define sym_in_data_section(sym) \ (((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_DATA) #define sym_in_bss_section(sym) \ (((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_BSS) /* Symbol is undefined if type is N_UNDF|N_EXT and if it has zero in the "value" field. Nonzeroes there are fortrancommon symbols. */ #define sym_is_undefined(sym) \ ((sym)->type == (N_UNDF | N_EXT) && (sym)->symbol.value == 0) /* Symbol is a global definition if N_EXT is on and if it has a nonzero type field. */ #define sym_is_global_defn(sym) \ (((sym)->type & N_EXT) && (sym)->type & N_TYPE) /* Symbol is debugger info if any bits outside N_TYPE or N_EXT are on. */ #define sym_is_debugger_info(sym) \ (((sym)->type & ~(N_EXT | N_TYPE)) || (sym)->type == N_FN) #define sym_is_fortrancommon(sym) \ (((sym)->type == (N_EXT)) && (sym)->symbol.value != 0) /* Symbol is absolute if it has N_ABS set */ #define sym_is_absolute(sym) \ (((sym)->type & N_TYPE)== N_ABS) #define sym_is_indirect(sym) \ (((sym)->type & N_ABS)== N_ABS) /* Only in their own functions for ease of debugging; when sym flags have stabilised these should be inlined into their (single) caller */ static boolean translate_from_native_sym_flags (sym_pointer, cache_ptr, abfd) struct external_nlist *sym_pointer; aout_symbol_type * cache_ptr; bfd * abfd; { cache_ptr->symbol.section = 0; switch (cache_ptr->type & N_TYPE) { case N_SETA: case N_SETA | N_EXT: case N_SETT: case N_SETT | N_EXT: case N_SETD: case N_SETD | N_EXT: case N_SETB: case N_SETB | N_EXT: { char *copy = bfd_alloc (abfd, strlen (cache_ptr->symbol.name) + 1); asection *section; asection *into_section; arelent_chain *reloc = (arelent_chain *) bfd_alloc (abfd, sizeof (arelent_chain)); if (!copy || !reloc) { bfd_set_error (bfd_error_no_memory); return false; } strcpy (copy, cache_ptr->symbol.name); /* Make sure that this bfd has a section with the right contructor name */ section = bfd_get_section_by_name (abfd, copy); if (!section) section = bfd_make_section (abfd, copy); /* Build a relocation entry for the constructor */ switch ((cache_ptr->type & N_TYPE)) { case N_SETA: case N_SETA | N_EXT: into_section = &bfd_abs_section; cache_ptr->type = N_ABS; break; case N_SETT: case N_SETT | N_EXT: into_section = (asection *) obj_textsec (abfd); cache_ptr->type = N_TEXT; break; case N_SETD: case N_SETD | N_EXT: into_section = (asection *) obj_datasec (abfd); cache_ptr->type = N_DATA; break; case N_SETB: case N_SETB | N_EXT: into_section = (asection *) obj_bsssec (abfd); cache_ptr->type = N_BSS; break; default: bfd_set_error (bfd_error_bad_value); return false; } /* Build a relocation pointing into the constuctor section pointing at the symbol in the set vector specified */ reloc->relent.addend = cache_ptr->symbol.value; cache_ptr->symbol.section = into_section->symbol->section; reloc->relent.sym_ptr_ptr = into_section->symbol_ptr_ptr; /* We modify the symbol to belong to a section depending upon the name of the symbol - probably __CTOR__ or __DTOR__ but we don't really care, and add to the size of the section to contain a pointer to the symbol. Build a reloc entry to relocate to this symbol attached to this section. */ section->flags = SEC_CONSTRUCTOR; section->reloc_count++; section->alignment_power = 2; reloc->next = section->constructor_chain; section->constructor_chain = reloc; reloc->relent.address = section->_raw_size; section->_raw_size += sizeof (int *); reloc->relent.howto = (obj_reloc_entry_size(abfd) == RELOC_EXT_SIZE ? howto_table_ext : howto_table_std) + CTOR_TABLE_RELOC_IDX; cache_ptr->symbol.flags |= BSF_CONSTRUCTOR; } break; default: if (cache_ptr->type == N_WARNING) { /* This symbol is the text of a warning message, the next symbol is the symbol to associate the warning with */ cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_WARNING; /* @@ Stuffing pointers into integers is a no-no. We can usually get away with it if the integer is large enough though. */ if (sizeof (cache_ptr + 1) > sizeof (bfd_vma)) abort (); cache_ptr->symbol.value = (bfd_vma) ((cache_ptr + 1)); /* We don't use a warning symbol's section, but we need it to be nonzero for the sanity check below, so pick one arbitrarily. */ cache_ptr->symbol.section = &bfd_abs_section; /* We furgle with the next symbol in place. We don't want it to be undefined, we'll trample the type */ (sym_pointer + 1)->e_type[0] = 0xff; break; } if ((cache_ptr->type | N_EXT) == (N_INDR | N_EXT)) { /* Two symbols in a row for an INDR message. The first symbol contains the name we will match, the second symbol contains the name the first name is translated into. It is supplied to us undefined. This is good, since we want to pull in any files which define it */ cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_INDIRECT; /* @@ Stuffing pointers into integers is a no-no. We can usually get away with it if the integer is large enough though. */ if (sizeof (cache_ptr + 1) > sizeof (bfd_vma)) abort (); cache_ptr->symbol.value = (bfd_vma) ((cache_ptr + 1)); cache_ptr->symbol.section = &bfd_ind_section; } else if (sym_is_debugger_info (cache_ptr)) { cache_ptr->symbol.flags = BSF_DEBUGGING; /* Work out the section correct for this symbol */ switch (cache_ptr->type & N_TYPE) { case N_TEXT: case N_FN: cache_ptr->symbol.section = obj_textsec (abfd); cache_ptr->symbol.value -= obj_textsec (abfd)->vma; break; case N_DATA: cache_ptr->symbol.value -= obj_datasec (abfd)->vma; cache_ptr->symbol.section = obj_datasec (abfd); break; case N_BSS: cache_ptr->symbol.section = obj_bsssec (abfd); cache_ptr->symbol.value -= obj_bsssec (abfd)->vma; break; default: case N_ABS: cache_ptr->symbol.section = &bfd_abs_section; break; } } else { if (sym_is_fortrancommon (cache_ptr)) { cache_ptr->symbol.flags = 0; cache_ptr->symbol.section = &bfd_com_section; } else { } /* In a.out, the value of a symbol is always relative to the * start of the file, if this is a data symbol we'll subtract * the size of the text section to get the section relative * value. If this is a bss symbol (which would be strange) * we'll subtract the size of the previous two sections * to find the section relative address. */ if (sym_in_text_section (cache_ptr)) { cache_ptr->symbol.value -= obj_textsec (abfd)->vma; cache_ptr->symbol.section = obj_textsec (abfd); } else if (sym_in_data_section (cache_ptr)) { cache_ptr->symbol.value -= obj_datasec (abfd)->vma; cache_ptr->symbol.section = obj_datasec (abfd); } else if (sym_in_bss_section (cache_ptr)) { cache_ptr->symbol.section = obj_bsssec (abfd); cache_ptr->symbol.value -= obj_bsssec (abfd)->vma; } else if (sym_is_undefined (cache_ptr)) { cache_ptr->symbol.flags = 0; cache_ptr->symbol.section = &bfd_und_section; } else if (sym_is_absolute (cache_ptr)) { cache_ptr->symbol.section = &bfd_abs_section; } if (sym_is_global_defn (cache_ptr)) { cache_ptr->symbol.flags = BSF_GLOBAL | BSF_EXPORT; } else if (! sym_is_undefined (cache_ptr)) { cache_ptr->symbol.flags = BSF_LOCAL; } } } if (cache_ptr->symbol.section == 0) abort (); return true; } static boolean translate_to_native_sym_flags (sym_pointer, cache_ptr, abfd) struct external_nlist *sym_pointer; asymbol *cache_ptr; bfd *abfd; { bfd_vma value = cache_ptr->value; /* mask out any existing type bits in case copying from one section to another */ sym_pointer->e_type[0] &= ~N_TYPE; /* We attempt to order these tests by decreasing frequency of success, according to tcov when linking the linker. */ if (bfd_get_output_section(cache_ptr) == &bfd_abs_section) { sym_pointer->e_type[0] |= N_ABS; } else if (bfd_get_output_section(cache_ptr) == obj_textsec (abfd)) { sym_pointer->e_type[0] |= N_TEXT; } else if (bfd_get_output_section(cache_ptr) == obj_datasec (abfd)) { sym_pointer->e_type[0] |= N_DATA; } else if (bfd_get_output_section(cache_ptr) == obj_bsssec (abfd)) { sym_pointer->e_type[0] |= N_BSS; } else if (bfd_get_output_section(cache_ptr) == &bfd_und_section) { sym_pointer->e_type[0] = (N_UNDF | N_EXT); } else if (bfd_get_output_section(cache_ptr) == &bfd_ind_section) { sym_pointer->e_type[0] = N_INDR; } else if (bfd_get_output_section(cache_ptr) == NULL) { /* Protect the bfd_is_com_section call. This case occurs, e.g., for the *DEBUG* section of a COFF file. */ bfd_set_error (bfd_error_nonrepresentable_section); return false; } else if (bfd_is_com_section (bfd_get_output_section (cache_ptr))) { sym_pointer->e_type[0] = (N_UNDF | N_EXT); } else { bfd_set_error (bfd_error_nonrepresentable_section); return false; } /* Turn the symbol from section relative to absolute again */ value += cache_ptr->section->output_section->vma + cache_ptr->section->output_offset ; if (cache_ptr->flags & (BSF_WARNING)) { sym_pointer->e_type[0] = N_WARNING; (sym_pointer+1)->e_type[0] = 1; } if (cache_ptr->flags & BSF_DEBUGGING) { sym_pointer->e_type[0] = ((aout_symbol_type *)cache_ptr)->type; } else if (cache_ptr->flags & (BSF_GLOBAL | BSF_EXPORT)) { sym_pointer->e_type[0] |= N_EXT; } if (cache_ptr->flags & BSF_CONSTRUCTOR) { int type = ((aout_symbol_type *)cache_ptr)->type; switch (type) { case N_ABS: type = N_SETA; break; case N_TEXT: type = N_SETT; break; case N_DATA: type = N_SETD; break; case N_BSS: type = N_SETB; break; } sym_pointer->e_type[0] = type; } PUT_WORD(abfd, value, sym_pointer->e_value); return true; } /* Native-level interface to symbols. */ asymbol * NAME(aout,make_empty_symbol) (abfd) bfd *abfd; { aout_symbol_type *new = (aout_symbol_type *)bfd_zalloc (abfd, sizeof (aout_symbol_type)); if (!new) { bfd_set_error (bfd_error_no_memory); return NULL; } new->symbol.the_bfd = abfd; return &new->symbol; } /* Translate a set of internal symbols into external symbols. */ static boolean translate_symbol_table (abfd, in, ext, count, str, strsize, dynamic) bfd *abfd; aout_symbol_type *in; struct external_nlist *ext; bfd_size_type count; char *str; bfd_size_type strsize; boolean dynamic; { struct external_nlist *ext_end; ext_end = ext + count; for (; ext < ext_end; ext++, in++) { bfd_vma x; x = GET_WORD (abfd, ext->e_strx); in->symbol.the_bfd = abfd; /* For the normal symbols, the zero index points at the number of bytes in the string table but is to be interpreted as the null string. For the dynamic symbols, the number of bytes in the string table is stored in the __DYNAMIC structure and the zero index points at an actual string. */ if (x == 0 && ! dynamic) in->symbol.name = ""; else if (x < strsize) in->symbol.name = str + x; else return false; in->symbol.value = GET_SWORD (abfd, ext->e_value); in->desc = bfd_h_get_16 (abfd, ext->e_desc); in->other = bfd_h_get_8 (abfd, ext->e_other); in->type = bfd_h_get_8 (abfd, ext->e_type); in->symbol.udata = 0; if (!translate_from_native_sym_flags (ext, in, abfd)) return false; if (dynamic) in->symbol.flags |= BSF_DYNAMIC; } return true; } /* We read the symbols into a buffer, which is discarded when this function exits. We read the strings into a buffer large enough to hold them all plus all the cached symbol entries. */ boolean NAME(aout,slurp_symbol_table) (abfd) bfd *abfd; { bfd_size_type symbol_size; bfd_size_type string_size; unsigned char string_chars[BYTES_IN_WORD]; struct external_nlist *syms; char *strings; aout_symbol_type *cached; bfd_size_type dynsym_count = 0; struct external_nlist *dynsyms = NULL; char *dynstrs = NULL; bfd_size_type dynstr_size; /* If there's no work to be done, don't do any */ if (obj_aout_symbols (abfd) != (aout_symbol_type *)NULL) return true; symbol_size = exec_hdr(abfd)->a_syms; if (symbol_size == 0) { bfd_set_error (bfd_error_no_symbols); return false; } bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET); if (bfd_read ((PTR)string_chars, BYTES_IN_WORD, 1, abfd) != BYTES_IN_WORD) return false; string_size = GET_WORD (abfd, string_chars); /* If this is a dynamic object, see if we can get the dynamic symbol table. */ if ((bfd_get_file_flags (abfd) & DYNAMIC) != 0 && aout_backend_info (abfd)->read_dynamic_symbols) { dynsym_count = ((*aout_backend_info (abfd)->read_dynamic_symbols) (abfd, &dynsyms, &dynstrs, &dynstr_size)); if (dynsym_count == (bfd_size_type) -1) return false; } strings = (char *) bfd_alloc (abfd, string_size + 1); cached = ((aout_symbol_type *) bfd_zalloc (abfd, ((bfd_get_symcount (abfd) + dynsym_count) * sizeof (aout_symbol_type)))); /* Don't allocate on the obstack, so we can free it easily. */ syms = (struct external_nlist *) malloc(symbol_size); if (!strings || !cached || !syms) { bfd_set_error (bfd_error_no_memory); return false; } bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET); if (bfd_read ((PTR)syms, 1, symbol_size, abfd) != symbol_size) { bailout: if (syms) free (syms); if (cached) bfd_release (abfd, cached); if (strings) bfd_release (abfd, strings); return false; } bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET); if (bfd_read ((PTR)strings, 1, string_size, abfd) != string_size) { goto bailout; } strings[string_size] = 0; /* Just in case. */ /* OK, now walk the new symtable, cacheing symbol properties */ if (! translate_symbol_table (abfd, cached, syms, bfd_get_symcount (abfd), strings, string_size, false)) goto bailout; if (dynsym_count > 0) { if (! translate_symbol_table (abfd, cached + bfd_get_symcount (abfd), dynsyms, dynsym_count, dynstrs, dynstr_size, true)) goto bailout; bfd_get_symcount (abfd) += dynsym_count; } obj_aout_symbols (abfd) = cached; free((PTR)syms); return true; } /* Possible improvements: + look for strings matching trailing substrings of other strings + better data structures? balanced trees? + smaller per-string or per-symbol data? re-use some of the symbol's data fields? + also look at reducing memory use elsewhere -- maybe if we didn't have to construct the entire symbol table at once, we could get by with smaller amounts of VM? (What effect does that have on the string table reductions?) + rip this out of here, put it into its own file in bfd or libiberty, so coff and elf can use it too. I'll work on this soon, but have more pressing tasks right now. A hash table might(?) be more efficient for handling exactly the cases that are handled now, but for trailing substring matches, I think we want to examine the `nearest' values (reverse-)lexically, not merely impose a strict order, nor look only for exact-match or not-match. I don't think a hash table would be very useful for that, and I don't feel like fleshing out two completely different implementations. [raeburn:930419.0331EDT] */ struct stringtab_entry { /* Hash value for this string. Only useful so long as we aren't doing substring matches. */ unsigned int hash; /* Next node to look at, depending on whether the hash value of the string being searched for is less than or greater than the hash value of the current node. For now, `equal to' is lumped in with `greater than', for space efficiency. It's not a common enough case to warrant another field to be used for all nodes. */ struct stringtab_entry *less; struct stringtab_entry *greater; /* The string itself. */ CONST char *string; /* The index allocated for this string. */ bfd_size_type index; #ifdef GATHER_STATISTICS /* How many references have there been to this string? (Not currently used; could be dumped out for anaylsis, if anyone's interested.) */ unsigned long count; #endif /* Next node in linked list, in suggested output order. */ struct stringtab_entry *next_to_output; }; struct stringtab_data { /* Tree of string table entries. */ struct stringtab_entry *strings; /* Fudge factor used to center top node of tree. */ int hash_zero; /* Next index value to issue. */ bfd_size_type index; /* Index used for empty strings. Cached here because checking for them is really easy, and we can avoid searching the tree. */ bfd_size_type empty_string_index; /* These fields indicate the two ends of a singly-linked list that indicates the order strings should be written out in. Use this order, and no seeking will need to be done, so output efficiency should be maximized. */ struct stringtab_entry **end; struct stringtab_entry *output_order; #ifdef GATHER_STATISTICS /* Number of strings which duplicate strings already in the table. */ unsigned long duplicates; /* Number of bytes saved by not having to write all the duplicate strings. */ unsigned long bytes_saved; /* Number of zero-length strings. Currently, these all turn into references to the null byte at the end of the first string. In some cases (possibly not all? explore this...), it should be possible to simply write out a zero index value. */ unsigned long empty_strings; /* Number of times the hash values matched but the strings were different. Note that this includes the number of times the other string(s) occurs, so there may only be two strings hashing to the same value, even if this number is very large. */ unsigned long bad_hash_matches; /* Null strings aren't counted in this one. This will probably only be nonzero if we've got an input file which was produced by `ld -r' (i.e., it's already been processed through this code). Under some operating systems, native tools may make all empty strings have the same index; but the pointer check won't catch those, because to get to that stage we'd already have to compute the checksum, which requires reading the string, so we short-circuit that case with empty_string_index above. */ unsigned long pointer_matches; /* Number of comparisons done. I figure with the algorithms in use below, the average number of comparisons done (per symbol) should be roughly log-base-2 of the number of unique strings. */ unsigned long n_compares; #endif }; /* Some utility functions for the string table code. */ /* For speed, only hash on the first this many bytes of strings. This number was chosen by profiling ld linking itself, with -g. */ #define HASHMAXLEN 25 #define HASH_CHAR(c) (sum ^= sum >> 20, sum ^= sum << 7, sum += (c)) static INLINE unsigned int hash (string, len) unsigned char *string; register unsigned int len; { register unsigned int sum = 0; if (len > HASHMAXLEN) { HASH_CHAR (len); len = HASHMAXLEN; } while (len--) { HASH_CHAR (*string++); } return sum; } static INLINE void stringtab_init (tab) struct stringtab_data *tab; { tab->strings = 0; tab->output_order = 0; tab->hash_zero = 0; tab->end = &tab->output_order; /* Initial string table length includes size of length field. */ tab->index = BYTES_IN_WORD; tab->empty_string_index = -1; #ifdef GATHER_STATISTICS tab->duplicates = 0; tab->empty_strings = 0; tab->bad_hash_matches = 0; tab->pointer_matches = 0; tab->bytes_saved = 0; tab->n_compares = 0; #endif } static INLINE int compare (entry, str, hash) struct stringtab_entry *entry; CONST char *str; unsigned int hash; { return hash - entry->hash; } #ifdef GATHER_STATISTICS /* Don't want to have to link in math library with all bfd applications... */ static INLINE double log2 (num) int num; { double d = num; int n = 0; while (d >= 2.0) n++, d /= 2.0; return ((d > 1.41) ? 0.5 : 0) + n; } #endif /* Main string table routines. */ /* Returns index in string table. Whether or not this actually adds an entry into the string table should be irrelevant -- it just has to return a valid index. */ static bfd_size_type add_to_stringtab (abfd, str, tab) bfd *abfd; CONST char *str; struct stringtab_data *tab; { struct stringtab_entry **ep; register struct stringtab_entry *entry; unsigned int hashval, len; if (str[0] == 0) { bfd_size_type index; CONST bfd_size_type minus_one = -1; #ifdef GATHER_STATISTICS tab->empty_strings++; #endif index = tab->empty_string_index; if (index != minus_one) { got_empty: #ifdef GATHER_STATISTICS tab->bytes_saved++; tab->duplicates++; #endif return index; } /* Need to find it. */ entry = tab->strings; if (entry) { index = entry->index + strlen (entry->string); tab->empty_string_index = index; goto got_empty; } len = 0; } else len = strlen (str); /* The hash_zero value is chosen such that the first symbol gets a value of zero. With a balanced tree, this wouldn't be very useful, but without it, we might get a more even split at the top level, instead of skewing it badly should hash("/usr/lib/crt0.o") (or whatever) be far from zero. */ hashval = hash (str, len) ^ tab->hash_zero; ep = &tab->strings; if (!*ep) { tab->hash_zero = hashval; hashval = 0; goto add_it; } while (*ep) { register int cmp; entry = *ep; #ifdef GATHER_STATISTICS tab->n_compares++; #endif cmp = compare (entry, str, hashval); /* The not-equal cases are more frequent, so check them first. */ if (cmp > 0) ep = &entry->greater; else if (cmp < 0) ep = &entry->less; else { if (entry->string == str) { #ifdef GATHER_STATISTICS tab->pointer_matches++; #endif goto match; } /* Compare the first bytes to save a function call if they don't match. */ if (entry->string[0] == str[0] && !strcmp (entry->string, str)) { match: #ifdef GATHER_STATISTICS entry->count++; tab->bytes_saved += len + 1; tab->duplicates++; #endif /* If we're in the linker, and the new string is from a new input file which might have already had these reductions run over it, we want to keep the new string pointer. I don't think we're likely to see any (or nearly as many, at least) cases where a later string is in the same location as an earlier one rather than this one. */ entry->string = str; return entry->index; } #ifdef GATHER_STATISTICS tab->bad_hash_matches++; #endif ep = &entry->greater; } } /* If we get here, nothing that's in the table already matched. EP points to the `next' field at the end of the chain; stick a new entry on here. */ add_it: entry = (struct stringtab_entry *) bfd_alloc_by_size_t (abfd, sizeof (struct stringtab_entry)); if (!entry) { bfd_set_error (bfd_error_no_memory); abort(); /* FIXME */ } entry->less = entry->greater = 0; entry->hash = hashval; entry->index = tab->index; entry->string = str; entry->next_to_output = 0; #ifdef GATHER_STATISTICS entry->count = 1; #endif assert (*tab->end == 0); *(tab->end) = entry; tab->end = &entry->next_to_output; assert (*tab->end == 0); { tab->index += len + 1; if (len == 0) tab->empty_string_index = entry->index; } assert (*ep == 0); *ep = entry; return entry->index; } static void emit_strtab (abfd, tab) bfd *abfd; struct stringtab_data *tab; { struct stringtab_entry *entry; #ifdef GATHER_STATISTICS int count = 0; #endif /* Be sure to put string length into correct byte ordering before writing it out. */ char buffer[BYTES_IN_WORD]; PUT_WORD (abfd, tab->index, (unsigned char *) buffer); bfd_write ((PTR) buffer, 1, BYTES_IN_WORD, abfd); for (entry = tab->output_order; entry; entry = entry->next_to_output) { bfd_write ((PTR) entry->string, 1, strlen (entry->string) + 1, abfd); #ifdef GATHER_STATISTICS count++; #endif } #ifdef GATHER_STATISTICS /* Short form only, for now. To do: Specify output file. Conditionalize on environment? Detailed analysis if desired. */ { int n_syms = bfd_get_symcount (abfd); fprintf (stderr, "String table data for output file:\n"); fprintf (stderr, " %8d symbols output\n", n_syms); fprintf (stderr, " %8d duplicate strings\n", tab->duplicates); fprintf (stderr, " %8d empty strings\n", tab->empty_strings); fprintf (stderr, " %8d unique strings output\n", count); fprintf (stderr, " %8d pointer matches\n", tab->pointer_matches); fprintf (stderr, " %8d bytes saved\n", tab->bytes_saved); fprintf (stderr, " %8d bad hash matches\n", tab->bad_hash_matches); fprintf (stderr, " %8d hash-val comparisons\n", tab->n_compares); if (n_syms) { double n_compares = tab->n_compares; double avg_compares = n_compares / n_syms; /* The second value here should usually be near one. */ fprintf (stderr, "\t average %f comparisons per symbol (%f * log2 nstrings)\n", avg_compares, avg_compares / log2 (count)); } } #endif /* Old code: unsigned int count; generic = bfd_get_outsymbols(abfd); for (count = 0; count < bfd_get_symcount(abfd); count++) { asymbol *g = *(generic++); if (g->name) { size_t length = strlen(g->name)+1; bfd_write((PTR)g->name, 1, length, abfd); } g->KEEPIT = (KEEPITTYPE) count; } */ } boolean NAME(aout,write_syms) (abfd) bfd *abfd; { unsigned int count ; asymbol **generic = bfd_get_outsymbols (abfd); struct stringtab_data strtab; stringtab_init (&strtab); for (count = 0; count < bfd_get_symcount (abfd); count++) { asymbol *g = generic[count]; struct external_nlist nsp; if (g->name) PUT_WORD (abfd, add_to_stringtab (abfd, g->name, &strtab), (unsigned char *) nsp.e_strx); else PUT_WORD (abfd, 0, (unsigned char *)nsp.e_strx); if (bfd_asymbol_flavour(g) == abfd->xvec->flavour) { bfd_h_put_16(abfd, aout_symbol(g)->desc, nsp.e_desc); bfd_h_put_8(abfd, aout_symbol(g)->other, nsp.e_other); bfd_h_put_8(abfd, aout_symbol(g)->type, nsp.e_type); } else { bfd_h_put_16(abfd,0, nsp.e_desc); bfd_h_put_8(abfd, 0, nsp.e_other); bfd_h_put_8(abfd, 0, nsp.e_type); } if (! translate_to_native_sym_flags (&nsp, g, abfd)) return false; if (bfd_write((PTR)&nsp,1,EXTERNAL_NLIST_SIZE, abfd) != EXTERNAL_NLIST_SIZE) return false; /* NB: `KEEPIT' currently overlays `flags', so set this only here, at the end. */ g->KEEPIT = count; } emit_strtab (abfd, &strtab); return true; } unsigned int NAME(aout,get_symtab) (abfd, location) bfd *abfd; asymbol **location; { unsigned int counter = 0; aout_symbol_type *symbase; if (!NAME(aout,slurp_symbol_table)(abfd)) return 0; for (symbase = obj_aout_symbols(abfd); counter++ < bfd_get_symcount (abfd);) *(location++) = (asymbol *)( symbase++); *location++ =0; return bfd_get_symcount (abfd); } /* Standard reloc stuff */ /* Output standard relocation information to a file in target byte order. */ void NAME(aout,swap_std_reloc_out) (abfd, g, natptr) bfd *abfd; arelent *g; struct reloc_std_external *natptr; { int r_index; asymbol *sym = *(g->sym_ptr_ptr); int r_extern; unsigned int r_length; int r_pcrel; int r_baserel, r_jmptable, r_relative; asection *output_section = sym->section->output_section; PUT_WORD(abfd, g->address, natptr->r_address); r_length = g->howto->size ; /* Size as a power of two */ r_pcrel = (int) g->howto->pc_relative; /* Relative to PC? */ /* XXX This relies on relocs coming from a.out files. */ r_baserel = (g->howto->type & 8) != 0; /* r_jmptable, r_relative??? FIXME-soon */ r_jmptable = 0; r_relative = 0; #if 0 /* For a standard reloc, the addend is in the object file. */ r_addend = g->addend + (*(g->sym_ptr_ptr))->section->output_section->vma; #endif /* name was clobbered by aout_write_syms to be symbol index */ /* If this relocation is relative to a symbol then set the r_index to the symbols index, and the r_extern bit. Absolute symbols can come in in two ways, either as an offset from the abs section, or as a symbol which has an abs value. check for that here */ if (bfd_is_com_section (output_section) || output_section == &bfd_abs_section || output_section == &bfd_und_section) { if (bfd_abs_section.symbol == sym) { /* Whoops, looked like an abs symbol, but is really an offset from the abs section */ r_index = 0; r_extern = 0; } else { /* Fill in symbol */ r_extern = 1; r_index = stoi((*(g->sym_ptr_ptr))->KEEPIT); } } else { /* Just an ordinary section */ r_extern = 0; r_index = output_section->target_index; } /* now the fun stuff */ if (abfd->xvec->header_byteorder_big_p != false) { natptr->r_index[0] = r_index >> 16; natptr->r_index[1] = r_index >> 8; natptr->r_index[2] = r_index; natptr->r_type[0] = (r_extern? RELOC_STD_BITS_EXTERN_BIG: 0) | (r_pcrel? RELOC_STD_BITS_PCREL_BIG: 0) | (r_baserel? RELOC_STD_BITS_BASEREL_BIG: 0) | (r_jmptable? RELOC_STD_BITS_JMPTABLE_BIG: 0) | (r_relative? RELOC_STD_BITS_RELATIVE_BIG: 0) | (r_length << RELOC_STD_BITS_LENGTH_SH_BIG); } else { natptr->r_index[2] = r_index >> 16; natptr->r_index[1] = r_index >> 8; natptr->r_index[0] = r_index; natptr->r_type[0] = (r_extern? RELOC_STD_BITS_EXTERN_LITTLE: 0) | (r_pcrel? RELOC_STD_BITS_PCREL_LITTLE: 0) | (r_baserel? RELOC_STD_BITS_BASEREL_LITTLE: 0) | (r_jmptable? RELOC_STD_BITS_JMPTABLE_LITTLE: 0) | (r_relative? RELOC_STD_BITS_RELATIVE_LITTLE: 0) | (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE); } } /* Extended stuff */ /* Output extended relocation information to a file in target byte order. */ void NAME(aout,swap_ext_reloc_out) (abfd, g, natptr) bfd *abfd; arelent *g; register struct reloc_ext_external *natptr; { int r_index; int r_extern; unsigned int r_type; unsigned int r_addend; asymbol *sym = *(g->sym_ptr_ptr); asection *output_section = sym->section->output_section; PUT_WORD (abfd, g->address, natptr->r_address); r_type = (unsigned int) g->howto->type; r_addend = g->addend + (*(g->sym_ptr_ptr))->section->output_section->vma; /* If this relocation is relative to a symbol then set the r_index to the symbols index, and the r_extern bit. Absolute symbols can come in in two ways, either as an offset from the abs section, or as a symbol which has an abs value. check for that here. */ if (bfd_is_com_section (output_section) || output_section == &bfd_abs_section || output_section == &bfd_und_section) { if (bfd_abs_section.symbol == sym) { /* Whoops, looked like an abs symbol, but is really an offset from the abs section */ r_index = 0; r_extern = 0; } else { r_extern = 1; r_index = stoi((*(g->sym_ptr_ptr))->KEEPIT); } } else { /* Just an ordinary section */ r_extern = 0; r_index = output_section->target_index; } /* now the fun stuff */ if (abfd->xvec->header_byteorder_big_p != false) { natptr->r_index[0] = r_index >> 16; natptr->r_index[1] = r_index >> 8; natptr->r_index[2] = r_index; natptr->r_type[0] = ((r_extern? RELOC_EXT_BITS_EXTERN_BIG: 0) | (r_type << RELOC_EXT_BITS_TYPE_SH_BIG)); } else { natptr->r_index[2] = r_index >> 16; natptr->r_index[1] = r_index >> 8; natptr->r_index[0] = r_index; natptr->r_type[0] = (r_extern? RELOC_EXT_BITS_EXTERN_LITTLE: 0) | (r_type << RELOC_EXT_BITS_TYPE_SH_LITTLE); } PUT_WORD (abfd, r_addend, natptr->r_addend); } /* BFD deals internally with all things based from the section they're in. so, something in 10 bytes into a text section with a base of 50 would have a symbol (.text+10) and know .text vma was 50. Aout keeps all it's symbols based from zero, so the symbol would contain 60. This macro subs the base of each section from the value to give the true offset from the section */ #define MOVE_ADDRESS(ad) \ if (r_extern) { \ /* undefined symbol */ \ cache_ptr->sym_ptr_ptr = symbols + r_index; \ cache_ptr->addend = ad; \ } else { \ /* defined, section relative. replace symbol with pointer to \ symbol which points to section */ \ switch (r_index) { \ case N_TEXT: \ case N_TEXT | N_EXT: \ cache_ptr->sym_ptr_ptr = obj_textsec(abfd)->symbol_ptr_ptr; \ cache_ptr->addend = ad - su->textsec->vma; \ break; \ case N_DATA: \ case N_DATA | N_EXT: \ cache_ptr->sym_ptr_ptr = obj_datasec(abfd)->symbol_ptr_ptr; \ cache_ptr->addend = ad - su->datasec->vma; \ break; \ case N_BSS: \ case N_BSS | N_EXT: \ cache_ptr->sym_ptr_ptr = obj_bsssec(abfd)->symbol_ptr_ptr; \ cache_ptr->addend = ad - su->bsssec->vma; \ break; \ default: \ case N_ABS: \ case N_ABS | N_EXT: \ cache_ptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr; \ cache_ptr->addend = ad; \ break; \ } \ } \ void NAME(aout,swap_ext_reloc_in) (abfd, bytes, cache_ptr, symbols) bfd *abfd; struct reloc_ext_external *bytes; arelent *cache_ptr; asymbol **symbols; { int r_index; int r_extern; unsigned int r_type; struct aoutdata *su = &(abfd->tdata.aout_data->a); cache_ptr->address = (GET_SWORD (abfd, bytes->r_address)); /* now the fun stuff */ if (abfd->xvec->header_byteorder_big_p != false) { r_index = (bytes->r_index[0] << 16) | (bytes->r_index[1] << 8) | bytes->r_index[2]; r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG)); r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) >> RELOC_EXT_BITS_TYPE_SH_BIG; } else { r_index = (bytes->r_index[2] << 16) | (bytes->r_index[1] << 8) | bytes->r_index[0]; r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE)); r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) >> RELOC_EXT_BITS_TYPE_SH_LITTLE; } cache_ptr->howto = howto_table_ext + r_type; MOVE_ADDRESS(GET_SWORD(abfd, bytes->r_addend)); } void NAME(aout,swap_std_reloc_in) (abfd, bytes, cache_ptr, symbols) bfd *abfd; struct reloc_std_external *bytes; arelent *cache_ptr; asymbol **symbols; { int r_index; int r_extern; unsigned int r_length; int r_pcrel; int r_baserel, r_jmptable, r_relative; struct aoutdata *su = &(abfd->tdata.aout_data->a); int howto_idx; cache_ptr->address = bfd_h_get_32 (abfd, bytes->r_address); /* now the fun stuff */ if (abfd->xvec->header_byteorder_big_p != false) { r_index = (bytes->r_index[0] << 16) | (bytes->r_index[1] << 8) | bytes->r_index[2]; r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_BIG)); r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_BIG)); r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_BIG)); r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG)); r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG)); r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_BIG) >> RELOC_STD_BITS_LENGTH_SH_BIG; } else { r_index = (bytes->r_index[2] << 16) | (bytes->r_index[1] << 8) | bytes->r_index[0]; r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE)); r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE)); r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE)); r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE)); r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE)); r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE) >> RELOC_STD_BITS_LENGTH_SH_LITTLE; } howto_idx = r_length + 4 * r_pcrel + 8 * r_baserel; BFD_ASSERT (howto_idx < TABLE_SIZE (howto_table_std)); cache_ptr->howto = howto_table_std + howto_idx; BFD_ASSERT (cache_ptr->howto->type != -1); BFD_ASSERT (r_jmptable == 0); BFD_ASSERT (r_relative == 0); /* FIXME-soon: Roll jmptable, relative bits into howto setting */ MOVE_ADDRESS(0); } /* Reloc hackery */ boolean NAME(aout,slurp_reloc_table) (abfd, asect, symbols) bfd *abfd; sec_ptr asect; asymbol **symbols; { unsigned int count; bfd_size_type reloc_size; PTR relocs; bfd_size_type dynrel_count = 0; PTR dynrels = NULL; arelent *reloc_cache; size_t each_size; unsigned int counter = 0; arelent *cache_ptr; if (asect->relocation) return true; if (asect->flags & SEC_CONSTRUCTOR) return true; if (asect == obj_datasec (abfd)) reloc_size = exec_hdr(abfd)->a_drsize; else if (asect == obj_textsec (abfd)) reloc_size = exec_hdr(abfd)->a_trsize; else { bfd_set_error (bfd_error_invalid_operation); return false; } if ((bfd_get_file_flags (abfd) & DYNAMIC) != 0 && aout_backend_info (abfd)->read_dynamic_relocs) { dynrel_count = ((*aout_backend_info (abfd)->read_dynamic_relocs) (abfd, &dynrels)); if (dynrel_count == (bfd_size_type) -1) return false; } bfd_seek (abfd, asect->rel_filepos, SEEK_SET); each_size = obj_reloc_entry_size (abfd); count = reloc_size / each_size; reloc_cache = ((arelent *) bfd_zalloc (abfd, (size_t) ((count + dynrel_count) * sizeof (arelent)))); if (!reloc_cache) { nomem: bfd_set_error (bfd_error_no_memory); return false; } relocs = (PTR) bfd_alloc (abfd, reloc_size); if (!relocs) { bfd_release (abfd, reloc_cache); goto nomem; } if (bfd_read (relocs, 1, reloc_size, abfd) != reloc_size) { bfd_release (abfd, relocs); bfd_release (abfd, reloc_cache); bfd_set_error (bfd_error_system_call); return false; } cache_ptr = reloc_cache; if (each_size == RELOC_EXT_SIZE) { register struct reloc_ext_external *rptr = (struct reloc_ext_external *) relocs; for (; counter < count; counter++, rptr++, cache_ptr++) NAME(aout,swap_ext_reloc_in) (abfd, rptr, cache_ptr, symbols); } else { register struct reloc_std_external *rptr = (struct reloc_std_external *) relocs; for (; counter < count; counter++, rptr++, cache_ptr++) NAME(aout,swap_std_reloc_in) (abfd, rptr, cache_ptr, symbols); } if (dynrel_count > 0) { asymbol **dynsyms; /* The dynamic symbols are at the end of the symbol table. */ for (dynsyms = symbols; *dynsyms != NULL && ((*dynsyms)->flags & BSF_DYNAMIC) == 0; ++dynsyms) ; /* Swap in the dynamic relocs. These relocs may be for either section, so we must discard ones we don't want. */ counter = 0; if (each_size == RELOC_EXT_SIZE) { register struct reloc_ext_external *rptr = (struct reloc_ext_external *) dynrels; for (; counter < dynrel_count; counter++, rptr++, cache_ptr++) { NAME(aout,swap_ext_reloc_in) (abfd, rptr, cache_ptr, dynsyms); cache_ptr->address -= bfd_get_section_vma (abfd, asect); if (cache_ptr->address >= bfd_section_size (abfd, asect)) --cache_ptr; } } else { register struct reloc_std_external *rptr = (struct reloc_std_external *) dynrels; for (; counter < dynrel_count; counter++, rptr++, cache_ptr++) { NAME(aout,swap_std_reloc_in) (abfd, rptr, cache_ptr, dynsyms); cache_ptr->address -= bfd_get_section_vma (abfd, asect); if (cache_ptr->address >= bfd_section_size (abfd, asect)) --cache_ptr; } } } bfd_release (abfd,relocs); asect->relocation = reloc_cache; asect->reloc_count = cache_ptr - reloc_cache; return true; } /* Write out a relocation section into an object file. */ boolean NAME(aout,squirt_out_relocs) (abfd, section) bfd *abfd; asection *section; { arelent **generic; unsigned char *native, *natptr; size_t each_size; unsigned int count = section->reloc_count; size_t natsize; if (count == 0) return true; each_size = obj_reloc_entry_size (abfd); natsize = each_size * count; native = (unsigned char *) bfd_zalloc (abfd, natsize); if (!native) { bfd_set_error (bfd_error_no_memory); return false; } generic = section->orelocation; if (each_size == RELOC_EXT_SIZE) { for (natptr = native; count != 0; --count, natptr += each_size, ++generic) NAME(aout,swap_ext_reloc_out) (abfd, *generic, (struct reloc_ext_external *)natptr); } else { for (natptr = native; count != 0; --count, natptr += each_size, ++generic) NAME(aout,swap_std_reloc_out)(abfd, *generic, (struct reloc_std_external *)natptr); } if ( bfd_write ((PTR) native, 1, natsize, abfd) != natsize) { bfd_release(abfd, native); return false; } bfd_release (abfd, native); return true; } /* This is stupid. This function should be a boolean predicate */ unsigned int NAME(aout,canonicalize_reloc) (abfd, section, relptr, symbols) bfd *abfd; sec_ptr section; arelent **relptr; asymbol **symbols; { arelent *tblptr = section->relocation; unsigned int count; if (!(tblptr || NAME(aout,slurp_reloc_table)(abfd, section, symbols))) return 0; if (section->flags & SEC_CONSTRUCTOR) { arelent_chain *chain = section->constructor_chain; for (count = 0; count < section->reloc_count; count ++) { *relptr ++ = &chain->relent; chain = chain->next; } } else { tblptr = section->relocation; if (!tblptr) return 0; for (count = 0; count++ < section->reloc_count;) { *relptr++ = tblptr++; } } *relptr = 0; return section->reloc_count; } unsigned int NAME(aout,get_reloc_upper_bound) (abfd, asect) bfd *abfd; sec_ptr asect; { bfd_size_type dynrel_count = 0; if (bfd_get_format (abfd) != bfd_object) { bfd_set_error (bfd_error_invalid_operation); return 0; } if (asect->flags & SEC_CONSTRUCTOR) { return (sizeof (arelent *) * (asect->reloc_count+1)); } if ((bfd_get_file_flags (abfd) & DYNAMIC) != 0 && aout_backend_info (abfd)->read_dynamic_relocs) { PTR dynrels; dynrel_count = ((*aout_backend_info (abfd)->read_dynamic_relocs) (abfd, &dynrels)); if (dynrel_count == (bfd_size_type) -1) return 0; } if (asect == obj_datasec (abfd)) return (sizeof (arelent *) * ((exec_hdr(abfd)->a_drsize / obj_reloc_entry_size (abfd)) + dynrel_count + 1)); if (asect == obj_textsec (abfd)) return (sizeof (arelent *) * ((exec_hdr(abfd)->a_trsize / obj_reloc_entry_size (abfd)) + dynrel_count + 1)); bfd_set_error (bfd_error_invalid_operation); return 0; } unsigned int NAME(aout,get_symtab_upper_bound) (abfd) bfd *abfd; { if (!NAME(aout,slurp_symbol_table)(abfd)) return 0; return (bfd_get_symcount (abfd)+1) * (sizeof (aout_symbol_type *)); } /*ARGSUSED*/ alent * NAME(aout,get_lineno) (ignore_abfd, ignore_symbol) bfd *ignore_abfd; asymbol *ignore_symbol; { return (alent *)NULL; } /*ARGSUSED*/ void NAME(aout,get_symbol_info) (ignore_abfd, symbol, ret) bfd *ignore_abfd; asymbol *symbol; symbol_info *ret; { bfd_symbol_info (symbol, ret); if (ret->type == '?') { int type_code = aout_symbol(symbol)->type & 0xff; CONST char *stab_name = aout_stab_name(type_code); static char buf[10]; if (stab_name == NULL) { sprintf(buf, "(%d)", type_code); stab_name = buf; } ret->type = '-'; ret->stab_other = (unsigned)(aout_symbol(symbol)->other & 0xff); ret->stab_desc = (unsigned)(aout_symbol(symbol)->desc & 0xffff); ret->stab_name = stab_name; } } /*ARGSUSED*/ void NAME(aout,print_symbol) (ignore_abfd, afile, symbol, how) bfd *ignore_abfd; PTR afile; asymbol *symbol; bfd_print_symbol_type how; { FILE *file = (FILE *)afile; switch (how) { case bfd_print_symbol_name: if (symbol->name) fprintf(file,"%s", symbol->name); break; case bfd_print_symbol_more: fprintf(file,"%4x %2x %2x",(unsigned)(aout_symbol(symbol)->desc & 0xffff), (unsigned)(aout_symbol(symbol)->other & 0xff), (unsigned)(aout_symbol(symbol)->type)); break; case bfd_print_symbol_all: { CONST char *section_name = symbol->section->name; bfd_print_symbol_vandf((PTR)file,symbol); fprintf(file," %-5s %04x %02x %02x", section_name, (unsigned)(aout_symbol(symbol)->desc & 0xffff), (unsigned)(aout_symbol(symbol)->other & 0xff), (unsigned)(aout_symbol(symbol)->type & 0xff)); if (symbol->name) fprintf(file," %s", symbol->name); } break; } } /* provided a BFD, a section and an offset into the section, calculate and return the name of the source file and the line nearest to the wanted location. */ boolean NAME(aout,find_nearest_line) (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr) bfd *abfd; asection *section; asymbol **symbols; bfd_vma offset; CONST char **filename_ptr; CONST char **functionname_ptr; unsigned int *line_ptr; { /* Run down the file looking for the filename, function and linenumber */ asymbol **p; static char buffer[100]; static char filename_buffer[200]; CONST char *directory_name = NULL; CONST char *main_file_name = NULL; CONST char *current_file_name = NULL; CONST char *line_file_name = NULL; /* Value of current_file_name at line number. */ bfd_vma high_line_vma = ~0; bfd_vma low_func_vma = 0; asymbol *func = 0; *filename_ptr = abfd->filename; *functionname_ptr = 0; *line_ptr = 0; if (symbols != (asymbol **)NULL) { for (p = symbols; *p; p++) { aout_symbol_type *q = (aout_symbol_type *)(*p); next: switch (q->type){ case N_SO: main_file_name = current_file_name = q->symbol.name; /* Look ahead to next symbol to check if that too is an N_SO. */ p++; if (*p == NULL) break; q = (aout_symbol_type *)(*p); if (q->type != (int)N_SO) goto next; /* Found a second N_SO First is directory; second is filename. */ directory_name = current_file_name; main_file_name = current_file_name = q->symbol.name; if (obj_textsec(abfd) != section) goto done; break; case N_SOL: current_file_name = q->symbol.name; break; case N_SLINE: case N_DSLINE: case N_BSLINE: /* We'll keep this if it resolves nearer than the one we have already */ if (q->symbol.value >= offset && q->symbol.value < high_line_vma) { *line_ptr = q->desc; high_line_vma = q->symbol.value; line_file_name = current_file_name; } break; case N_FUN: { /* We'll keep this if it is nearer than the one we have already */ if (q->symbol.value >= low_func_vma && q->symbol.value <= offset) { low_func_vma = q->symbol.value; func = (asymbol *)q; } if (*line_ptr && func) { CONST char *function = func->name; char *p; strncpy(buffer, function, sizeof(buffer)-1); buffer[sizeof(buffer)-1] = 0; /* Have to remove : stuff */ p = strchr(buffer,':'); if (p != NULL) { *p = '\0'; } *functionname_ptr = buffer; goto done; } } break; } } } done: if (*line_ptr) main_file_name = line_file_name; if (main_file_name) { if (main_file_name[0] == '/' || directory_name == NULL) *filename_ptr = main_file_name; else { sprintf(filename_buffer, "%.140s%.50s", directory_name, main_file_name); *filename_ptr = filename_buffer; } } return true; } /*ARGSUSED*/ int NAME(aout,sizeof_headers) (abfd, execable) bfd *abfd; boolean execable; { return adata(abfd).exec_bytes_size; } /* a.out link code. */ /* a.out linker hash table entries. */ struct aout_link_hash_entry { struct bfd_link_hash_entry root; /* Symbol index in output file. */ int indx; }; /* a.out linker hash table. */ struct aout_link_hash_table { struct bfd_link_hash_table root; }; static struct bfd_hash_entry *aout_link_hash_newfunc PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string)); static boolean aout_link_add_object_symbols PARAMS ((bfd *, struct bfd_link_info *)); static boolean aout_link_check_archive_element PARAMS ((bfd *, struct bfd_link_info *, boolean *)); static boolean aout_link_get_symbols PARAMS ((bfd *)); static boolean aout_link_free_symbols PARAMS ((bfd *)); static boolean aout_link_check_ar_symbols PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded)); static boolean aout_link_add_symbols PARAMS ((bfd *, struct bfd_link_info *)); /* Routine to create an entry in an a.out link hash table. */ static struct bfd_hash_entry * aout_link_hash_newfunc (entry, table, string) struct bfd_hash_entry *entry; struct bfd_hash_table *table; const char *string; { struct aout_link_hash_entry *ret = (struct aout_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == (struct aout_link_hash_entry *) NULL) ret = ((struct aout_link_hash_entry *) bfd_hash_allocate (table, sizeof (struct aout_link_hash_entry))); if (ret == (struct aout_link_hash_entry *) NULL) { bfd_set_error (bfd_error_no_memory); return (struct bfd_hash_entry *) ret; } /* Call the allocation method of the superclass. */ ret = ((struct aout_link_hash_entry *) _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret) /* Set local fields. */ ret->indx = -1; return (struct bfd_hash_entry *) ret; } /* Create an a.out link hash table. */ struct bfd_link_hash_table * NAME(aout,link_hash_table_create) (abfd) bfd *abfd; { struct aout_link_hash_table *ret; ret = ((struct aout_link_hash_table *) malloc (sizeof (struct aout_link_hash_table))); if (ret == (struct aout_link_hash_table *) NULL) { bfd_set_error (bfd_error_no_memory); return (struct bfd_link_hash_table *) NULL; } if (! _bfd_link_hash_table_init (&ret->root, abfd, aout_link_hash_newfunc)) { free (ret); return (struct bfd_link_hash_table *) NULL; } return &ret->root; } /* Look up an entry in an a.out link hash table. */ #define aout_link_hash_lookup(table, string, create, copy, follow) \ ((struct aout_link_hash_entry *) \ bfd_link_hash_lookup (&(table)->root, (string), (create), (copy), (follow))) /* Traverse an a.out link hash table. */ #define aout_link_hash_traverse(table, func, info) \ (bfd_link_hash_traverse \ (&(table)->root, \ (boolean (*) PARAMS ((struct bfd_link_hash_entry *, PTR))) (func), \ (info))) /* Get the a.out link hash table from the info structure. This is just a cast. */ #define aout_hash_table(p) ((struct aout_link_hash_table *) ((p)->hash)) /* Given an a.out BFD, add symbols to the global hash table as appropriate. */ boolean NAME(aout,link_add_symbols) (abfd, info) bfd *abfd; struct bfd_link_info *info; { switch (bfd_get_format (abfd)) { case bfd_object: return aout_link_add_object_symbols (abfd, info); case bfd_archive: return _bfd_generic_link_add_archive_symbols (abfd, info, aout_link_check_archive_element); default: bfd_set_error (bfd_error_wrong_format); return false; } } /* Add symbols from an a.out object file. */ static boolean aout_link_add_object_symbols (abfd, info) bfd *abfd; struct bfd_link_info *info; { if (! aout_link_get_symbols (abfd)) return false; if (! aout_link_add_symbols (abfd, info)) return false; if (! info->keep_memory) { if (! aout_link_free_symbols (abfd)) return false; } return true; } /* Check a single archive element to see if we need to include it in the link. *PNEEDED is set according to whether this element is needed in the link or not. This is called from _bfd_generic_link_add_archive_symbols. */ static boolean aout_link_check_archive_element (abfd, info, pneeded) bfd *abfd; struct bfd_link_info *info; boolean *pneeded; { if (! aout_link_get_symbols (abfd)) return false; if (! aout_link_check_ar_symbols (abfd, info, pneeded)) return false; if (*pneeded) { if (! aout_link_add_symbols (abfd, info)) return false; } /* We keep around the symbols even if we aren't going to use this object file, because we may want to reread it. This doesn't waste too much memory, because it isn't all that common to read an archive element but not need it. */ if (! info->keep_memory) { if (! aout_link_free_symbols (abfd)) return false; } return true; } /* Read the internal symbols from an a.out file. */ static boolean aout_link_get_symbols (abfd) bfd *abfd; { bfd_size_type count; struct external_nlist *syms; unsigned char string_chars[BYTES_IN_WORD]; bfd_size_type stringsize; char *strings; if (obj_aout_external_syms (abfd) != (struct external_nlist *) NULL) { /* We already have them. */ return true; } count = exec_hdr (abfd)->a_syms / EXTERNAL_NLIST_SIZE; /* We allocate using malloc to make the values easy to free later on. If we put them on the obstack it might not be possible to free them. */ syms = ((struct external_nlist *) malloc ((size_t) count * EXTERNAL_NLIST_SIZE)); if (syms == (struct external_nlist *) NULL && count != 0) { bfd_set_error (bfd_error_no_memory); return false; } if (bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET) != 0 || (bfd_read ((PTR) syms, 1, exec_hdr (abfd)->a_syms, abfd) != exec_hdr (abfd)->a_syms)) return false; /* Get the size of the strings. */ if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0 || (bfd_read ((PTR) string_chars, BYTES_IN_WORD, 1, abfd) != BYTES_IN_WORD)) return false; stringsize = GET_WORD (abfd, string_chars); strings = (char *) malloc ((size_t) stringsize); if (strings == NULL && stringsize != 0) { bfd_set_error (bfd_error_no_memory); return false; } /* Skip space for the string count in the buffer for convenience when using indexes. */ if (bfd_read (strings + BYTES_IN_WORD, 1, stringsize - BYTES_IN_WORD, abfd) != stringsize - BYTES_IN_WORD) return false; /* Save the data. */ obj_aout_external_syms (abfd) = syms; obj_aout_external_sym_count (abfd) = count; obj_aout_external_strings (abfd) = strings; return true; } /* Free up the internal symbols read from an a.out file. */ static boolean aout_link_free_symbols (abfd) bfd *abfd; { if (obj_aout_external_syms (abfd) != (struct external_nlist *) NULL) { free ((PTR) obj_aout_external_syms (abfd)); obj_aout_external_syms (abfd) = (struct external_nlist *) NULL; } if (obj_aout_external_strings (abfd) != (char *) NULL) { free ((PTR) obj_aout_external_strings (abfd)); obj_aout_external_strings (abfd) = (char *) NULL; } return true; } /* Look through the internal symbols to see if this object file should be included in the link. We should include this object file if it defines any symbols which are currently undefined. If this object file defines a common symbol, then we may adjust the size of the known symbol but we do not include the object file in the link (unless there is some other reason to include it). */ static boolean aout_link_check_ar_symbols (abfd, info, pneeded) bfd *abfd; struct bfd_link_info *info; boolean *pneeded; { register struct external_nlist *p; struct external_nlist *pend; char *strings; *pneeded = false; /* Look through all the symbols. */ p = obj_aout_external_syms (abfd); pend = p + obj_aout_external_sym_count (abfd); strings = obj_aout_external_strings (abfd); for (; p < pend; p++) { int type = bfd_h_get_8 (abfd, p->e_type); const char *name; struct bfd_link_hash_entry *h; /* Ignore symbols that are not externally visible. */ if ((type & N_EXT) == 0) { if (type == N_WARNING || type == N_INDR) ++p; continue; } name = strings + GET_WORD (abfd, p->e_strx); h = bfd_link_hash_lookup (info->hash, name, false, false, true); /* We are only interested in symbols that are currently undefined or common. */ if (h == (struct bfd_link_hash_entry *) NULL || (h->type != bfd_link_hash_undefined && h->type != bfd_link_hash_common)) { if (type == (N_INDR | N_EXT)) ++p; continue; } if (type == (N_TEXT | N_EXT) || type == (N_DATA | N_EXT) || type == (N_BSS | N_EXT) || type == (N_ABS | N_EXT) || type == (N_INDR | N_EXT)) { /* This object file defines this symbol. We must link it in. This is true regardless of whether the current definition of the symbol is undefined or common. If the current definition is common, we have a case in which we have already seen an object file including int a; and this object file from the archive includes int a = 5; In such a case we must include this object file. */ if (! (*info->callbacks->add_archive_element) (info, abfd, name)) return false; *pneeded = true; return true; } if (type == (N_UNDF | N_EXT)) { bfd_vma value; value = GET_WORD (abfd, p->e_value); if (value != 0) { /* This symbol is common in the object from the archive file. */ if (h->type == bfd_link_hash_undefined) { bfd *symbfd; symbfd = h->u.undef.abfd; if (symbfd == (bfd *) NULL) { /* This symbol was created as undefined from outside BFD. We assume that we should link in the object file. This is done for the -u option in the linker. */ if (! (*info->callbacks->add_archive_element) (info, abfd, name)) return false; *pneeded = true; return true; } /* Turn the current link symbol into a common symbol. It is already on the undefs list. */ h->type = bfd_link_hash_common; h->u.c.size = value; h->u.c.section = bfd_make_section_old_way (symbfd, "COMMON"); } else { /* Adjust the size of the common symbol if necessary. */ if (value > h->u.c.size) h->u.c.size = value; } } } } /* We do not need this object file. */ return true; } /* Add all symbols from an object file to the hash table. */ static boolean aout_link_add_symbols (abfd, info) bfd *abfd; struct bfd_link_info *info; { bfd_size_type sym_count; char *strings; boolean copy; struct aout_link_hash_entry **sym_hash; register struct external_nlist *p; struct external_nlist *pend; sym_count = obj_aout_external_sym_count (abfd); strings = obj_aout_external_strings (abfd); if (info->keep_memory) copy = false; else copy = true; /* We keep a list of the linker hash table entries that correspond to particular symbols. We could just look them up in the hash table, but keeping the list is more efficient. Perhaps this should be conditional on info->keep_memory. */ sym_hash = ((struct aout_link_hash_entry **) bfd_alloc (abfd, ((size_t) sym_count * sizeof (struct aout_link_hash_entry *)))); if (!sym_hash) { bfd_set_error (bfd_error_no_memory); return false; } obj_aout_sym_hashes (abfd) = sym_hash; p = obj_aout_external_syms (abfd); pend = p + sym_count; for (; p < pend; p++, sym_hash++) { int type; const char *name; bfd_vma value; asection *section; flagword flags; const char *string; *sym_hash = NULL; type = bfd_h_get_8 (abfd, p->e_type); /* Ignore debugging symbols. */ if ((type & N_STAB) != 0) continue; /* Ignore symbols that are not external. */ if ((type & N_EXT) == 0 && type != N_WARNING && type != N_SETA && type != N_SETT && type != N_SETD && type != N_SETB) { /* If this is an N_INDR symbol we must skip the next entry, which is the symbol to indirect to (actually, an N_INDR symbol without N_EXT set is pretty useless). */ if (type == N_INDR) { ++p; ++sym_hash; } continue; } /* Ignore N_FN symbols (these appear to have N_EXT set). */ if (type == N_FN) continue; name = strings + GET_WORD (abfd, p->e_strx); value = GET_WORD (abfd, p->e_value); flags = BSF_GLOBAL; string = NULL; switch (type) { default: abort (); case N_UNDF | N_EXT: if (value != 0) section = &bfd_com_section; else section = &bfd_und_section; break; case N_ABS | N_EXT: section = &bfd_abs_section; break; case N_TEXT | N_EXT: section = obj_textsec (abfd); value -= bfd_get_section_vma (abfd, section); break; case N_DATA | N_EXT: section = obj_datasec (abfd); value -= bfd_get_section_vma (abfd, section); break; case N_BSS | N_EXT: section = obj_bsssec (abfd); value -= bfd_get_section_vma (abfd, section); break; case N_INDR | N_EXT: /* An indirect symbol. The next symbol is the symbol which this one really is. */ BFD_ASSERT (p + 1 < pend); ++p; string = strings + GET_WORD (abfd, p->e_strx); section = &bfd_ind_section; flags |= BSF_INDIRECT; break; case N_COMM | N_EXT: section = &bfd_com_section; break; case N_SETA: case N_SETA | N_EXT: section = &bfd_abs_section; flags |= BSF_CONSTRUCTOR; break; case N_SETT: case N_SETT | N_EXT: section = obj_textsec (abfd); flags |= BSF_CONSTRUCTOR; value -= bfd_get_section_vma (abfd, section); break; case N_SETD: case N_SETD | N_EXT: section = obj_datasec (abfd); flags |= BSF_CONSTRUCTOR; value -= bfd_get_section_vma (abfd, section); break; case N_SETB: case N_SETB | N_EXT: section = obj_bsssec (abfd); flags |= BSF_CONSTRUCTOR; value -= bfd_get_section_vma (abfd, section); break; case N_WARNING: /* A warning symbol. The next symbol is the one to warn about. */ BFD_ASSERT (p + 1 < pend); ++p; string = name; name = strings + GET_WORD (abfd, p->e_strx); section = &bfd_und_section; flags |= BSF_WARNING; break; } if (! (_bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value, string, copy, false, ARCH_SIZE, (struct bfd_link_hash_entry **) sym_hash))) return false; if (type == (N_INDR | N_EXT) || type == N_WARNING) ++sym_hash; } return true; } /* During the final link step we need to pass around a bunch of information, so we do it in an instance of this structure. */ struct aout_final_link_info { /* General link information. */ struct bfd_link_info *info; /* Output bfd. */ bfd *output_bfd; /* Reloc file positions. */ file_ptr treloff, dreloff; /* File position of symbols. */ file_ptr symoff; /* String table. */ struct stringtab_data strtab; }; static boolean aout_link_input_bfd PARAMS ((struct aout_final_link_info *, bfd *input_bfd)); static boolean aout_link_write_symbols PARAMS ((struct aout_final_link_info *, bfd *input_bfd, int *symbol_map)); static boolean aout_link_write_other_symbol PARAMS ((struct aout_link_hash_entry *, PTR)); static boolean aout_link_input_section PARAMS ((struct aout_final_link_info *, bfd *input_bfd, asection *input_section, file_ptr *reloff_ptr, bfd_size_type rel_size, int *symbol_map)); static boolean aout_link_input_section_std PARAMS ((struct aout_final_link_info *, bfd *input_bfd, asection *input_section, struct reloc_std_external *, bfd_size_type rel_size, bfd_byte *contents, int *symbol_map)); static boolean aout_link_input_section_ext PARAMS ((struct aout_final_link_info *, bfd *input_bfd, asection *input_section, struct reloc_ext_external *, bfd_size_type rel_size, bfd_byte *contents, int *symbol_map)); static INLINE asection *aout_reloc_index_to_section PARAMS ((bfd *, int)); /* Do the final link step. This is called on the output BFD. The INFO structure should point to a list of BFDs linked through the link_next field which can be used to find each BFD which takes part in the output. Also, each section in ABFD should point to a list of bfd_link_order structures which list all the input sections for the output section. */ boolean NAME(aout,final_link) (abfd, info, callback) bfd *abfd; struct bfd_link_info *info; void (*callback) PARAMS ((bfd *, file_ptr *, file_ptr *, file_ptr *)); { struct aout_final_link_info aout_info; register bfd *sub; bfd_size_type text_size; file_ptr text_end; register struct bfd_link_order *p; asection *o; aout_info.info = info; aout_info.output_bfd = abfd; if (! info->relocateable) { exec_hdr (abfd)->a_trsize = 0; exec_hdr (abfd)->a_drsize = 0; } else { bfd_size_type trsize, drsize; /* Count up the relocation sizes. */ trsize = 0; drsize = 0; for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next) { if (bfd_get_flavour (abfd) == bfd_target_aout_flavour) { trsize += exec_hdr (sub)->a_trsize; drsize += exec_hdr (sub)->a_drsize; } else { /* FIXME: We need to identify the .text and .data sections and call get_reloc_upper_bound and canonicalize_reloc to work out the number of relocs needed, and then multiply by the reloc size. */ abort (); } } exec_hdr (abfd)->a_trsize = trsize; exec_hdr (abfd)->a_drsize = drsize; } exec_hdr (abfd)->a_entry = bfd_get_start_address (abfd); /* Adjust the section sizes and vmas according to the magic number. This sets a_text, a_data and a_bss in the exec_hdr and sets the filepos for each section. */ if (! NAME(aout,adjust_sizes_and_vmas) (abfd, &text_size, &text_end)) return false; /* The relocation and symbol file positions differ among a.out targets. We are passed a callback routine from the backend specific code to handle this. FIXME: At this point we do not know how much space the symbol table will require. This will not work for any (nonstandard) a.out target that needs to know the symbol table size before it can compute the relocation file positions. This may or may not be the case for the hp300hpux target, for example. */ (*callback) (abfd, &aout_info.treloff, &aout_info.dreloff, &aout_info.symoff); obj_textsec (abfd)->rel_filepos = aout_info.treloff; obj_datasec (abfd)->rel_filepos = aout_info.dreloff; obj_sym_filepos (abfd) = aout_info.symoff; /* We keep a count of the symbols as we output them. */ obj_aout_external_sym_count (abfd) = 0; /* We accumulate the string table as we write out the symbols. */ stringtab_init (&aout_info.strtab); /* The most time efficient way to do the link would be to read all the input object files into memory and then sort out the information into the output file. Unfortunately, that will probably use too much memory. Another method would be to step through everything that composes the text section and write it out, and then everything that composes the data section and write it out, and then write out the relocs, and then write out the symbols. Unfortunately, that requires reading stuff from each input file several times, and we will not be able to keep all the input files open simultaneously, and reopening them will be slow. What we do is basically process one input file at a time. We do everything we need to do with an input file once--copy over the section contents, handle the relocation information, and write out the symbols--and then we throw away the information we read from it. This approach requires a lot of lseeks of the output file, which is unfortunate but still faster than reopening a lot of files. We use the output_has_begun field of the input BFDs to see whether we have already handled it. */ for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next) sub->output_has_begun = false; for (o = abfd->sections; o != (asection *) NULL; o = o->next) { for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { if (p->type == bfd_indirect_link_order && (bfd_get_flavour (p->u.indirect.section->owner) == bfd_target_aout_flavour)) { bfd *input_bfd; input_bfd = p->u.indirect.section->owner; if (! input_bfd->output_has_begun) { if (! aout_link_input_bfd (&aout_info, input_bfd)) return false; input_bfd->output_has_begun = true; } } else { if (! _bfd_default_link_order (abfd, info, o, p)) return false; } } } /* Write out any symbols that we have not already written out. */ aout_link_hash_traverse (aout_hash_table (info), aout_link_write_other_symbol, (PTR) &aout_info); /* Update the header information. */ abfd->symcount = obj_aout_external_sym_count (abfd); exec_hdr (abfd)->a_syms = abfd->symcount * EXTERNAL_NLIST_SIZE; obj_str_filepos (abfd) = obj_sym_filepos (abfd) + exec_hdr (abfd)->a_syms; obj_textsec (abfd)->reloc_count = exec_hdr (abfd)->a_trsize / obj_reloc_entry_size (abfd); obj_datasec (abfd)->reloc_count = exec_hdr (abfd)->a_drsize / obj_reloc_entry_size (abfd); /* Write out the string table. */ if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0) return false; emit_strtab (abfd, &aout_info.strtab); return true; } /* Link an a.out input BFD into the output file. */ static boolean aout_link_input_bfd (finfo, input_bfd) struct aout_final_link_info *finfo; bfd *input_bfd; { bfd_size_type sym_count; int *symbol_map = NULL; BFD_ASSERT (bfd_get_format (input_bfd) == bfd_object); /* Get the symbols. We probably have them already, unless finfo->info->keep_memory is false. */ if (! aout_link_get_symbols (input_bfd)) return false; sym_count = obj_aout_external_sym_count (input_bfd); symbol_map = (int *) malloc ((size_t) sym_count * sizeof (int)); if (symbol_map == NULL && sym_count != 0) { bfd_set_error (bfd_error_no_memory); return false; } /* Write out the symbols and get a map of the new indices. */ if (! aout_link_write_symbols (finfo, input_bfd, symbol_map)) goto error_return; /* Relocate and write out the sections. */ if (! aout_link_input_section (finfo, input_bfd, obj_textsec (input_bfd), &finfo->treloff, exec_hdr (input_bfd)->a_trsize, symbol_map) || ! aout_link_input_section (finfo, input_bfd, obj_datasec (input_bfd), &finfo->dreloff, exec_hdr (input_bfd)->a_drsize, symbol_map)) goto error_return; /* If we are not keeping memory, we don't need the symbols any longer. We still need them if we are keeping memory, because the strings in the hash table point into them. */ if (! finfo->info->keep_memory) { if (! aout_link_free_symbols (input_bfd)) goto error_return; } if (symbol_map != NULL) free (symbol_map); return true; error_return: if (symbol_map != NULL) free (symbol_map); return false; } /* Adjust and write out the symbols for an a.out file. Set the new symbol indices into a symbol_map. */ static boolean aout_link_write_symbols (finfo, input_bfd, symbol_map) struct aout_final_link_info *finfo; bfd *input_bfd; int *symbol_map; { bfd *output_bfd; bfd_size_type sym_count; char *strings; enum bfd_link_strip strip; enum bfd_link_discard discard; struct external_nlist *output_syms = NULL; struct external_nlist *outsym; register struct external_nlist *sym; struct external_nlist *sym_end; struct aout_link_hash_entry **sym_hash; boolean pass; boolean skip_indirect; output_bfd = finfo->output_bfd; sym_count = obj_aout_external_sym_count (input_bfd); strings = obj_aout_external_strings (input_bfd); strip = finfo->info->strip; discard = finfo->info->discard; output_syms = ((struct external_nlist *) malloc ((size_t) (sym_count + 1) * EXTERNAL_NLIST_SIZE)); if (output_syms == NULL) { bfd_set_error (bfd_error_no_memory); goto error_return; } outsym = output_syms; /* First write out a symbol for this object file, unless we are discarding such symbols. */ if (strip != strip_all && (strip != strip_some || bfd_hash_lookup (finfo->info->keep_hash, input_bfd->filename, false, false) != NULL) && discard != discard_all) { bfd_h_put_8 (output_bfd, N_TEXT, outsym->e_type); bfd_h_put_8 (output_bfd, 0, outsym->e_other); bfd_h_put_16 (output_bfd, (bfd_vma) 0, outsym->e_desc); PUT_WORD (output_bfd, add_to_stringtab (output_bfd, input_bfd->filename, &finfo->strtab), outsym->e_strx); PUT_WORD (output_bfd, (bfd_get_section_vma (output_bfd, obj_textsec (input_bfd)->output_section) + obj_textsec (input_bfd)->output_offset), outsym->e_value); ++obj_aout_external_sym_count (output_bfd); ++outsym; } pass = false; skip_indirect = false; sym = obj_aout_external_syms (input_bfd); sym_end = sym + sym_count; sym_hash = obj_aout_sym_hashes (input_bfd); for (; sym < sym_end; sym++, sym_hash++, symbol_map++) { const char *name; int type; boolean skip; asection *symsec; bfd_vma val = 0; *symbol_map = -1; type = bfd_h_get_8 (input_bfd, sym->e_type); name = strings + GET_WORD (input_bfd, sym->e_strx); if (pass) { /* Pass this symbol through. It is the target of an indirect or warning symbol. */ val = GET_WORD (input_bfd, sym->e_value); pass = false; } else if (skip_indirect) { /* Skip this symbol, which is the target of an indirect symbol that we have changed to no longer be an indirect symbol. */ skip_indirect = false; continue; } else { struct aout_link_hash_entry *h; struct aout_link_hash_entry *hresolve; /* We have saved the hash table entry for this symbol, if there is one. Note that we could just look it up again in the hash table, provided we first check that it is an external symbol. */ h = *sym_hash; /* If this is an indirect or warning symbol, then change hresolve to the base symbol. We also change *sym_hash so that the relocation routines relocate against the real symbol. */ hresolve = h; if (h != (struct aout_link_hash_entry *) NULL && (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning)) { hresolve = (struct aout_link_hash_entry *) h->root.u.i.link; while (hresolve->root.type == bfd_link_hash_indirect) hresolve = ((struct aout_link_hash_entry *) hresolve->root.u.i.link); *sym_hash = hresolve; } /* If the symbol has already been written out, skip it. */ if (h != (struct aout_link_hash_entry *) NULL && h->root.written) { *symbol_map = h->indx; continue; } /* See if we are stripping this symbol. */ skip = false; switch (strip) { case strip_none: break; case strip_debugger: if ((type & N_STAB) != 0) skip = true; break; case strip_some: if (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) == NULL) skip = true; break; case strip_all: skip = true; break; } if (skip) { if (h != (struct aout_link_hash_entry *) NULL) h->root.written = true; continue; } /* Get the value of the symbol. */ if ((type & N_TYPE) == N_TEXT) symsec = obj_textsec (input_bfd); else if ((type & N_TYPE) == N_DATA) symsec = obj_datasec (input_bfd); else if ((type & N_TYPE) == N_BSS) symsec = obj_bsssec (input_bfd); else if ((type & N_TYPE) == N_ABS) symsec = &bfd_abs_section; else if (((type & N_TYPE) == N_INDR && (hresolve == (struct aout_link_hash_entry *) NULL || (hresolve->root.type != bfd_link_hash_defined && hresolve->root.type != bfd_link_hash_common))) || type == N_WARNING) { /* Pass the next symbol through unchanged. The condition above for indirect symbols is so that if the indirect symbol was defined, we output it with the correct definition so the debugger will understand it. */ pass = true; val = GET_WORD (input_bfd, sym->e_value); symsec = NULL; } else if ((type & N_STAB) != 0) { val = GET_WORD (input_bfd, sym->e_value); symsec = NULL; } else { /* If we get here with an indirect symbol, it means that we are outputting it with a real definition. In such a case we do not want to output the next symbol, which is the target of the indirection. */ if ((type & N_TYPE) == N_INDR) skip_indirect = true; /* We need to get the value from the hash table. We use hresolve so that if we have defined an indirect symbol we output the final definition. */ if (h == (struct aout_link_hash_entry *) NULL) val = 0; else if (hresolve->root.type == bfd_link_hash_defined) { asection *input_section; asection *output_section; /* This case means a common symbol which was turned into a defined symbol. */ input_section = hresolve->root.u.def.section; output_section = input_section->output_section; BFD_ASSERT (output_section == &bfd_abs_section || output_section->owner == output_bfd); val = (hresolve->root.u.def.value + bfd_get_section_vma (output_bfd, output_section) + input_section->output_offset); /* Get the correct type based on the section. If this is a constructed set, force it to be globally visible. */ if (type == N_SETT || type == N_SETD || type == N_SETB || type == N_SETA) type |= N_EXT; type &=~ N_TYPE; if (output_section == obj_textsec (output_bfd)) type |= N_TEXT; else if (output_section == obj_datasec (output_bfd)) type |= N_DATA; else if (output_section == obj_bsssec (output_bfd)) type |= N_BSS; else type |= N_ABS; } else if (hresolve->root.type == bfd_link_hash_common) val = hresolve->root.u.c.size; else val = 0; symsec = NULL; } if (symsec != (asection *) NULL) val = (symsec->output_section->vma + symsec->output_offset + (GET_WORD (input_bfd, sym->e_value) - symsec->vma)); /* If this is a global symbol set the written flag, and if it is a local symbol see if we should discard it. */ if (h != (struct aout_link_hash_entry *) NULL) { h->root.written = true; h->indx = obj_aout_external_sym_count (output_bfd); } else { switch (discard) { case discard_none: break; case discard_l: if (*name == *finfo->info->lprefix && (finfo->info->lprefix_len == 1 || strncmp (name, finfo->info->lprefix, finfo->info->lprefix_len) == 0)) skip = true; break; case discard_all: skip = true; break; } if (skip) { pass = false; continue; } } } /* Copy this symbol into the list of symbols we are going to write out. */ bfd_h_put_8 (output_bfd, type, outsym->e_type); bfd_h_put_8 (output_bfd, bfd_h_get_8 (input_bfd, sym->e_other), outsym->e_other); bfd_h_put_16 (output_bfd, bfd_h_get_16 (input_bfd, sym->e_desc), outsym->e_desc); PUT_WORD (output_bfd, add_to_stringtab (output_bfd, name, &finfo->strtab), outsym->e_strx); PUT_WORD (output_bfd, val, outsym->e_value); *symbol_map = obj_aout_external_sym_count (output_bfd); ++obj_aout_external_sym_count (output_bfd); ++outsym; } /* Write out the output symbols we have just constructed. */ if (outsym > output_syms) { bfd_size_type outsym_count; if (bfd_seek (output_bfd, finfo->symoff, SEEK_SET) != 0) goto error_return; outsym_count = outsym - output_syms; if (bfd_write ((PTR) output_syms, (bfd_size_type) EXTERNAL_NLIST_SIZE, (bfd_size_type) outsym_count, output_bfd) != outsym_count * EXTERNAL_NLIST_SIZE) goto error_return; finfo->symoff += outsym_count * EXTERNAL_NLIST_SIZE; } if (output_syms != NULL) free (output_syms); return true; error_return: if (output_syms != NULL) free (output_syms); return false; } /* Write out a symbol that was not associated with an a.out input object. */ static boolean aout_link_write_other_symbol (h, data) struct aout_link_hash_entry *h; PTR data; { struct aout_final_link_info *finfo = (struct aout_final_link_info *) data; bfd *output_bfd; int type; bfd_vma val; struct external_nlist outsym; if (h->root.written) return true; h->root.written = true; if (finfo->info->strip == strip_all || (finfo->info->strip == strip_some && bfd_hash_lookup (finfo->info->keep_hash, h->root.root.string, false, false) == NULL)) return true; output_bfd = finfo->output_bfd; switch (h->root.type) { default: case bfd_link_hash_new: abort (); /* Avoid variable not initialized warnings. */ return true; case bfd_link_hash_undefined: type = N_UNDF | N_EXT; val = 0; break; case bfd_link_hash_defined: { asection *sec; sec = h->root.u.def.section; BFD_ASSERT (sec == &bfd_abs_section || sec->owner == output_bfd); if (sec == obj_textsec (output_bfd)) type = N_TEXT | N_EXT; else if (sec == obj_datasec (output_bfd)) type = N_DATA | N_EXT; else if (sec == obj_bsssec (output_bfd)) type = N_BSS | N_EXT; else type = N_ABS | N_EXT; val = (h->root.u.def.value + sec->output_section->vma + sec->output_offset); } break; case bfd_link_hash_common: type = N_UNDF | N_EXT; val = h->root.u.c.size; break; case bfd_link_hash_indirect: case bfd_link_hash_warning: /* FIXME: Ignore these for now. The circumstances under which they should be written out are not clear to me. */ return true; } bfd_h_put_8 (output_bfd, type, outsym.e_type); bfd_h_put_8 (output_bfd, 0, outsym.e_other); bfd_h_put_16 (output_bfd, 0, outsym.e_desc); PUT_WORD (output_bfd, add_to_stringtab (output_bfd, h->root.root.string, &finfo->strtab), outsym.e_strx); PUT_WORD (output_bfd, val, outsym.e_value); if (bfd_seek (output_bfd, finfo->symoff, SEEK_SET) != 0 || bfd_write ((PTR) &outsym, (bfd_size_type) EXTERNAL_NLIST_SIZE, (bfd_size_type) 1, output_bfd) != EXTERNAL_NLIST_SIZE) { /* FIXME: No way to handle errors. */ abort (); } finfo->symoff += EXTERNAL_NLIST_SIZE; h->indx = obj_aout_external_sym_count (output_bfd); ++obj_aout_external_sym_count (output_bfd); return true; } /* Link an a.out section into the output file. */ static boolean aout_link_input_section (finfo, input_bfd, input_section, reloff_ptr, rel_size, symbol_map) struct aout_final_link_info *finfo; bfd *input_bfd; asection *input_section; file_ptr *reloff_ptr; bfd_size_type rel_size; int *symbol_map; { bfd_size_type input_size; bfd_byte *contents = NULL; PTR relocs = NULL; /* Get the section contents. */ input_size = bfd_section_size (input_bfd, input_section); contents = (bfd_byte *) malloc (input_size); if (contents == NULL && input_size != 0) { bfd_set_error (bfd_error_no_memory); goto error_return; } if (! bfd_get_section_contents (input_bfd, input_section, (PTR) contents, (file_ptr) 0, input_size)) goto error_return; /* Read in the relocs. */ relocs = (PTR) malloc (rel_size); if (relocs == NULL && rel_size != 0) { bfd_set_error (bfd_error_no_memory); goto error_return; } if (bfd_seek (input_bfd, input_section->rel_filepos, SEEK_SET) != 0 || bfd_read (relocs, 1, rel_size, input_bfd) != rel_size) goto error_return; /* Relocate the section contents. */ if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE) { if (! aout_link_input_section_std (finfo, input_bfd, input_section, (struct reloc_std_external *) relocs, rel_size, contents, symbol_map)) goto error_return; } else { if (! aout_link_input_section_ext (finfo, input_bfd, input_section, (struct reloc_ext_external *) relocs, rel_size, contents, symbol_map)) return false; } /* Write out the section contents. */ if (! bfd_set_section_contents (finfo->output_bfd, input_section->output_section, (PTR) contents, input_section->output_offset, input_size)) goto error_return; /* If we are producing relocateable output, the relocs were modified, and we now write them out. */ if (finfo->info->relocateable) { if (bfd_seek (finfo->output_bfd, *reloff_ptr, SEEK_SET) != 0) goto error_return; if (bfd_write (relocs, (bfd_size_type) 1, rel_size, finfo->output_bfd) != rel_size) goto error_return; *reloff_ptr += rel_size; /* Assert that the relocs have not run into the symbols, and that if these are the text relocs they have not run into the data relocs. */ BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (finfo->output_bfd) && (reloff_ptr != &finfo->treloff || (*reloff_ptr <= obj_datasec (finfo->output_bfd)->rel_filepos))); } if (relocs != NULL) free (relocs); if (contents != NULL) free (contents); return true; error_return: if (relocs != NULL) free (relocs); if (contents != NULL) free (contents); return false; } /* Get the section corresponding to a reloc index. */ static INLINE asection * aout_reloc_index_to_section (abfd, indx) bfd *abfd; int indx; { switch (indx & N_TYPE) { case N_TEXT: return obj_textsec (abfd); case N_DATA: return obj_datasec (abfd); case N_BSS: return obj_bsssec (abfd); case N_ABS: case N_UNDF: return &bfd_abs_section; default: abort (); } } /* Relocate an a.out section using standard a.out relocs. */ static boolean aout_link_input_section_std (finfo, input_bfd, input_section, relocs, rel_size, contents, symbol_map) struct aout_final_link_info *finfo; bfd *input_bfd; asection *input_section; struct reloc_std_external *relocs; bfd_size_type rel_size; bfd_byte *contents; int *symbol_map; { bfd *output_bfd; boolean relocateable; struct external_nlist *syms; char *strings; struct aout_link_hash_entry **sym_hashes; bfd_size_type reloc_count; register struct reloc_std_external *rel; struct reloc_std_external *rel_end; output_bfd = finfo->output_bfd; BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE); BFD_ASSERT (input_bfd->xvec->header_byteorder_big_p == output_bfd->xvec->header_byteorder_big_p); relocateable = finfo->info->relocateable; syms = obj_aout_external_syms (input_bfd); strings = obj_aout_external_strings (input_bfd); sym_hashes = obj_aout_sym_hashes (input_bfd); reloc_count = rel_size / RELOC_STD_SIZE; rel = relocs; rel_end = rel + reloc_count; for (; rel < rel_end; rel++) { bfd_vma r_addr; int r_index; int r_extern; int r_pcrel; int r_baserel; int r_jmptable; int r_relative; int r_length; int howto_idx; bfd_vma relocation; bfd_reloc_status_type r; r_addr = GET_SWORD (input_bfd, rel->r_address); if (input_bfd->xvec->header_byteorder_big_p) { r_index = ((rel->r_index[0] << 16) | (rel->r_index[1] << 8) | rel->r_index[2]); r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG)); r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_BIG)); r_baserel = (0 != (rel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG)); r_jmptable= (0 != (rel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG)); r_relative= (0 != (rel->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG)); r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_BIG) >> RELOC_STD_BITS_LENGTH_SH_BIG); } else { r_index = ((rel->r_index[2] << 16) | (rel->r_index[1] << 8) | rel->r_index[0]); r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE)); r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE)); r_baserel = (0 != (rel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE)); r_jmptable= (0 != (rel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE)); r_relative= (0 != (rel->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE)); r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE) >> RELOC_STD_BITS_LENGTH_SH_LITTLE); } howto_idx = r_length + 4 * r_pcrel + 8 * r_baserel; BFD_ASSERT (howto_idx < TABLE_SIZE (howto_table_std)); BFD_ASSERT (r_jmptable == 0); BFD_ASSERT (r_relative == 0); if (relocateable) { /* We are generating a relocateable output file, and must modify the reloc accordingly. */ if (r_extern) { struct aout_link_hash_entry *h; /* If we know the symbol this relocation is against, convert it into a relocation against a section. This is what the native linker does. */ h = sym_hashes[r_index]; if (h != (struct aout_link_hash_entry *) NULL && h->root.type == bfd_link_hash_defined) { asection *output_section; /* Change the r_extern value. */ if (output_bfd->xvec->header_byteorder_big_p) rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_BIG; else rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_LITTLE; /* Compute a new r_index. */ output_section = h->root.u.def.section->output_section; if (output_section == obj_textsec (output_bfd)) r_index = N_TEXT; else if (output_section == obj_datasec (output_bfd)) r_index = N_DATA; else if (output_section == obj_bsssec (output_bfd)) r_index = N_BSS; else r_index = N_ABS; /* Add the symbol value and the section VMA to the addend stored in the contents. */ relocation = (h->root.u.def.value + output_section->vma + h->root.u.def.section->output_offset); } else { /* We must change r_index according to the symbol map. */ r_index = symbol_map[r_index]; if (r_index == -1) { const char *name; name = strings + GET_WORD (input_bfd, syms[r_index].e_strx); if (! ((*finfo->info->callbacks->unattached_reloc) (finfo->info, name, input_bfd, input_section, r_addr))) return false; r_index = 0; } relocation = 0; } /* Write out the new r_index value. */ if (output_bfd->xvec->header_byteorder_big_p) { rel->r_index[0] = r_index >> 16; rel->r_index[1] = r_index >> 8; rel->r_index[2] = r_index; } else { rel->r_index[2] = r_index >> 16; rel->r_index[1] = r_index >> 8; rel->r_index[0] = r_index; } } else { asection *section; /* This is a relocation against a section. We must adjust by the amount that the section moved. */ section = aout_reloc_index_to_section (input_bfd, r_index); relocation = (section->output_section->vma + section->output_offset - section->vma); } /* Change the address of the relocation. */ PUT_WORD (output_bfd, r_addr + input_section->output_offset, rel->r_address); /* Adjust a PC relative relocation by removing the reference to the original address in the section and including the reference to the new address. */ if (r_pcrel) relocation -= (input_section->output_section->vma + input_section->output_offset - input_section->vma); if (relocation == 0) r = bfd_reloc_ok; else r = _bfd_relocate_contents (howto_table_std + howto_idx, input_bfd, relocation, contents + r_addr); } else { /* We are generating an executable, and must do a full relocation. */ if (r_extern) { struct aout_link_hash_entry *h; h = sym_hashes[r_index]; if (h != (struct aout_link_hash_entry *) NULL && h->root.type == bfd_link_hash_defined) { relocation = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } else { const char *name; name = strings + GET_WORD (input_bfd, syms[r_index].e_strx); if (! ((*finfo->info->callbacks->undefined_symbol) (finfo->info, name, input_bfd, input_section, r_addr))) return false; relocation = 0; } } else { asection *section; section = aout_reloc_index_to_section (input_bfd, r_index); relocation = (section->output_section->vma + section->output_offset - section->vma); if (r_pcrel) relocation += input_section->vma; } r = _bfd_final_link_relocate (howto_table_std + howto_idx, input_bfd, input_section, contents, r_addr, relocation, (bfd_vma) 0); } if (r != bfd_reloc_ok) { switch (r) { default: case bfd_reloc_outofrange: abort (); case bfd_reloc_overflow: { const char *name; if (r_extern) name = strings + GET_WORD (input_bfd, syms[r_index].e_strx); else { asection *s; s = aout_reloc_index_to_section (input_bfd, r_index); name = bfd_section_name (input_bfd, s); } if (! ((*finfo->info->callbacks->reloc_overflow) (finfo->info, name, howto_table_std[howto_idx].name, (bfd_vma) 0, input_bfd, input_section, r_addr))) return false; } break; } } } return true; } /* Relocate an a.out section using extended a.out relocs. */ static boolean aout_link_input_section_ext (finfo, input_bfd, input_section, relocs, rel_size, contents, symbol_map) struct aout_final_link_info *finfo; bfd *input_bfd; asection *input_section; struct reloc_ext_external *relocs; bfd_size_type rel_size; bfd_byte *contents; int *symbol_map; { bfd *output_bfd; boolean relocateable; struct external_nlist *syms; char *strings; struct aout_link_hash_entry **sym_hashes; bfd_size_type reloc_count; register struct reloc_ext_external *rel; struct reloc_ext_external *rel_end; output_bfd = finfo->output_bfd; BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_EXT_SIZE); BFD_ASSERT (input_bfd->xvec->header_byteorder_big_p == output_bfd->xvec->header_byteorder_big_p); relocateable = finfo->info->relocateable; syms = obj_aout_external_syms (input_bfd); strings = obj_aout_external_strings (input_bfd); sym_hashes = obj_aout_sym_hashes (input_bfd); reloc_count = rel_size / RELOC_EXT_SIZE; rel = relocs; rel_end = rel + reloc_count; for (; rel < rel_end; rel++) { bfd_vma r_addr; int r_index; int r_extern; int r_type; bfd_vma r_addend; bfd_vma relocation; r_addr = GET_SWORD (input_bfd, rel->r_address); if (input_bfd->xvec->header_byteorder_big_p) { r_index = ((rel->r_index[0] << 16) | (rel->r_index[1] << 8) | rel->r_index[2]); r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG)); r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) >> RELOC_EXT_BITS_TYPE_SH_BIG); } else { r_index = ((rel->r_index[2] << 16) | (rel->r_index[1] << 8) | rel->r_index[0]); r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE)); r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) >> RELOC_EXT_BITS_TYPE_SH_LITTLE); } r_addend = GET_SWORD (input_bfd, rel->r_addend); BFD_ASSERT (r_type >= 0 && r_type < TABLE_SIZE (howto_table_ext)); if (relocateable) { /* We are generating a relocateable output file, and must modify the reloc accordingly. */ if (r_extern) { struct aout_link_hash_entry *h; /* If we know the symbol this relocation is against, convert it into a relocation against a section. This is what the native linker does. */ h = sym_hashes[r_index]; if (h != (struct aout_link_hash_entry *) NULL && h->root.type == bfd_link_hash_defined) { asection *output_section; /* Change the r_extern value. */ if (output_bfd->xvec->header_byteorder_big_p) rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_BIG; else rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_LITTLE; /* Compute a new r_index. */ output_section = h->root.u.def.section->output_section; if (output_section == obj_textsec (output_bfd)) r_index = N_TEXT; else if (output_section == obj_datasec (output_bfd)) r_index = N_DATA; else if (output_section == obj_bsssec (output_bfd)) r_index = N_BSS; else r_index = N_ABS; /* Add the symbol value and the section VMA to the addend. */ relocation = (h->root.u.def.value + output_section->vma + h->root.u.def.section->output_offset); /* Now RELOCATION is the VMA of the final destination. If this is a PC relative reloc, then ADDEND is the negative of the source VMA. We want to set ADDEND to the difference between the destination VMA and the source VMA, which means we must adjust RELOCATION by the change in the source VMA. This is done below. */ } else { /* We must change r_index according to the symbol map. */ r_index = symbol_map[r_index]; if (r_index == -1) { const char *name; name = (strings + GET_WORD (input_bfd, syms[r_index].e_strx)); if (! ((*finfo->info->callbacks->unattached_reloc) (finfo->info, name, input_bfd, input_section, r_addr))) return false; r_index = 0; } relocation = 0; /* If this is a PC relative reloc, then the addend is the negative of the source VMA. We must adjust it by the change in the source VMA. This is done below. */ } /* Write out the new r_index value. */ if (output_bfd->xvec->header_byteorder_big_p) { rel->r_index[0] = r_index >> 16; rel->r_index[1] = r_index >> 8; rel->r_index[2] = r_index; } else { rel->r_index[2] = r_index >> 16; rel->r_index[1] = r_index >> 8; rel->r_index[0] = r_index; } } else { asection *section; /* This is a relocation against a section. We must adjust by the amount that the section moved. */ section = aout_reloc_index_to_section (input_bfd, r_index); relocation = (section->output_section->vma + section->output_offset - section->vma); /* If this is a PC relative reloc, then the addend is the difference in VMA between the destination and the source. We have just adjusted for the change in VMA of the destination, so we must also adjust by the change in VMA of the source. This is done below. */ } /* As described above, we must always adjust a PC relative reloc by the change in VMA of the source. */ if (howto_table_ext[r_type].pc_relative) relocation -= (input_section->output_section->vma + input_section->output_offset - input_section->vma); /* Change the addend if necessary. */ if (relocation != 0) PUT_WORD (output_bfd, r_addend + relocation, rel->r_addend); /* Change the address of the relocation. */ PUT_WORD (output_bfd, r_addr + input_section->output_offset, rel->r_address); } else { bfd_reloc_status_type r; /* We are generating an executable, and must do a full relocation. */ if (r_extern) { struct aout_link_hash_entry *h; h = sym_hashes[r_index]; if (h != (struct aout_link_hash_entry *) NULL && h->root.type == bfd_link_hash_defined) { relocation = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } else { const char *name; name = strings + GET_WORD (input_bfd, syms[r_index].e_strx); if (! ((*finfo->info->callbacks->undefined_symbol) (finfo->info, name, input_bfd, input_section, r_addr))) return false; relocation = 0; } } else { asection *section; section = aout_reloc_index_to_section (input_bfd, r_index); /* If this is a PC relative reloc, then R_ADDEND is the difference between the two vmas, or old_dest_sec + old_dest_off - (old_src_sec + old_src_off) where old_dest_sec == section->vma and old_src_sec == input_section->vma and old_src_off == r_addr _bfd_final_link_relocate expects RELOCATION + R_ADDEND to be the VMA of the destination minus r_addr (the minus r_addr is because this relocation is not pcrel_offset, which is a bit confusing and should, perhaps, be changed), or new_dest_sec where new_dest_sec == output_section->vma + output_offset We arrange for this to happen by setting RELOCATION to new_dest_sec + old_src_sec - old_dest_sec If this is not a PC relative reloc, then R_ADDEND is simply the VMA of the destination, so we set RELOCATION to the change in the destination VMA, or new_dest_sec - old_dest_sec */ relocation = (section->output_section->vma + section->output_offset - section->vma); if (howto_table_ext[r_type].pc_relative) relocation += input_section->vma; } r = _bfd_final_link_relocate (howto_table_ext + r_type, input_bfd, input_section, contents, r_addr, relocation, r_addend); if (r != bfd_reloc_ok) { switch (r) { default: case bfd_reloc_outofrange: abort (); case bfd_reloc_overflow: { const char *name; if (r_extern) name = strings + GET_WORD (input_bfd, syms[r_index].e_strx); else { asection *s; s = aout_reloc_index_to_section (input_bfd, r_index); name = bfd_section_name (input_bfd, s); } if (! ((*finfo->info->callbacks->reloc_overflow) (finfo->info, name, howto_table_ext[r_type].name, r_addend, input_bfd, input_section, r_addr))) return false; } break; } } } } return true; }