From c906108c21474dfb4ed285bcc0ac6fe02cd400cc Mon Sep 17 00:00:00 2001 From: Stan Shebs Date: Fri, 16 Apr 1999 01:35:26 +0000 Subject: Initial creation of sourceware repository --- gdb/rs6000-tdep.c | 1800 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1800 insertions(+) create mode 100644 gdb/rs6000-tdep.c (limited to 'gdb/rs6000-tdep.c') diff --git a/gdb/rs6000-tdep.c b/gdb/rs6000-tdep.c new file mode 100644 index 0000000..57f1df1 --- /dev/null +++ b/gdb/rs6000-tdep.c @@ -0,0 +1,1800 @@ +/* Target-dependent code for GDB, the GNU debugger. + Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997 + Free Software Foundation, Inc. + +This file is part of GDB. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +#include "defs.h" +#include "frame.h" +#include "inferior.h" +#include "symtab.h" +#include "target.h" +#include "gdbcore.h" +#include "gdbcmd.h" +#include "symfile.h" +#include "objfiles.h" +#include "xcoffsolib.h" + +extern int errno; + +/* Breakpoint shadows for the single step instructions will be kept here. */ + +static struct sstep_breaks { + /* Address, or 0 if this is not in use. */ + CORE_ADDR address; + /* Shadow contents. */ + char data[4]; +} stepBreaks[2]; + +/* Hook for determining the TOC address when calling functions in the + inferior under AIX. The initialization code in rs6000-nat.c sets + this hook to point to find_toc_address. */ + +CORE_ADDR (*find_toc_address_hook) PARAMS ((CORE_ADDR)) = NULL; + +/* Static function prototypes */ + +static CORE_ADDR branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, + CORE_ADDR safety)); + +static void frame_get_saved_regs PARAMS ((struct frame_info *fi, + struct rs6000_framedata *fdatap)); + +static void pop_dummy_frame PARAMS ((void)); + +static CORE_ADDR frame_initial_stack_address PARAMS ((struct frame_info *)); + +/* Fill in fi->saved_regs */ + +struct frame_extra_info +{ + /* Functions calling alloca() change the value of the stack + pointer. We need to use initial stack pointer (which is saved in + r31 by gcc) in such cases. If a compiler emits traceback table, + then we should use the alloca register specified in traceback + table. FIXME. */ + CORE_ADDR initial_sp; /* initial stack pointer. */ +}; + +void +rs6000_init_extra_frame_info (fromleaf, fi) + int fromleaf; + struct frame_info *fi; +{ + fi->extra_info = (struct frame_extra_info*) + frame_obstack_alloc (sizeof (struct frame_extra_info)); + fi->extra_info->initial_sp = 0; + if (fi->next != (CORE_ADDR) 0 + && fi->pc < TEXT_SEGMENT_BASE) + /* We're in get_prev_frame_info */ + /* and this is a special signal frame. */ + /* (fi->pc will be some low address in the kernel, */ + /* to which the signal handler returns). */ + fi->signal_handler_caller = 1; +} + + +void +rs6000_frame_init_saved_regs (fi) + struct frame_info *fi; +{ + frame_get_saved_regs (fi, NULL); +} + +CORE_ADDR +rs6000_frame_args_address (fi) + struct frame_info *fi; +{ + if (fi->extra_info->initial_sp != 0) + return fi->extra_info->initial_sp; + else + return frame_initial_stack_address (fi); +} + + +/* Calculate the destination of a branch/jump. Return -1 if not a branch. */ + +static CORE_ADDR +branch_dest (opcode, instr, pc, safety) + int opcode; + int instr; + CORE_ADDR pc; + CORE_ADDR safety; +{ + CORE_ADDR dest; + int immediate; + int absolute; + int ext_op; + + absolute = (int) ((instr >> 1) & 1); + + switch (opcode) { + case 18 : + immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ + if (absolute) + dest = immediate; + else + dest = pc + immediate; + break; + + case 16 : + immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ + if (absolute) + dest = immediate; + else + dest = pc + immediate; + break; + + case 19 : + ext_op = (instr>>1) & 0x3ff; + + if (ext_op == 16) /* br conditional register */ + { + dest = read_register (LR_REGNUM) & ~3; + + /* If we are about to return from a signal handler, dest is + something like 0x3c90. The current frame is a signal handler + caller frame, upon completion of the sigreturn system call + execution will return to the saved PC in the frame. */ + if (dest < TEXT_SEGMENT_BASE) + { + struct frame_info *fi; + + fi = get_current_frame (); + if (fi != NULL) + dest = read_memory_integer (fi->frame + SIG_FRAME_PC_OFFSET, + 4); + } + } + + else if (ext_op == 528) /* br cond to count reg */ + { + dest = read_register (CTR_REGNUM) & ~3; + + /* If we are about to execute a system call, dest is something + like 0x22fc or 0x3b00. Upon completion the system call + will return to the address in the link register. */ + if (dest < TEXT_SEGMENT_BASE) + dest = read_register (LR_REGNUM) & ~3; + } + else return -1; + break; + + default: return -1; + } + return (dest < TEXT_SEGMENT_BASE) ? safety : dest; +} + + +/* Sequence of bytes for breakpoint instruction. */ + +#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 } +#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d } + +unsigned char * +rs6000_breakpoint_from_pc (bp_addr, bp_size) + CORE_ADDR *bp_addr; + int *bp_size; +{ + static unsigned char big_breakpoint[] = BIG_BREAKPOINT; + static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT; + *bp_size = 4; + if (TARGET_BYTE_ORDER == BIG_ENDIAN) + return big_breakpoint; + else + return little_breakpoint; +} + + +/* AIX does not support PT_STEP. Simulate it. */ + +void +rs6000_software_single_step (signal, insert_breakpoints_p) + unsigned int signal; + int insert_breakpoints_p; +{ +#define INSNLEN(OPCODE) 4 + + static char le_breakp[] = LITTLE_BREAKPOINT; + static char be_breakp[] = BIG_BREAKPOINT; + char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp; + int ii, insn; + CORE_ADDR loc; + CORE_ADDR breaks[2]; + int opcode; + + if (insert_breakpoints_p) { + + loc = read_pc (); + + insn = read_memory_integer (loc, 4); + + breaks[0] = loc + INSNLEN(insn); + opcode = insn >> 26; + breaks[1] = branch_dest (opcode, insn, loc, breaks[0]); + + /* Don't put two breakpoints on the same address. */ + if (breaks[1] == breaks[0]) + breaks[1] = -1; + + stepBreaks[1].address = 0; + + for (ii=0; ii < 2; ++ii) { + + /* ignore invalid breakpoint. */ + if ( breaks[ii] == -1) + continue; + + read_memory (breaks[ii], stepBreaks[ii].data, 4); + + write_memory (breaks[ii], breakp, 4); + stepBreaks[ii].address = breaks[ii]; + } + + } else { + + /* remove step breakpoints. */ + for (ii=0; ii < 2; ++ii) + if (stepBreaks[ii].address != 0) + write_memory + (stepBreaks[ii].address, stepBreaks[ii].data, 4); + + } + errno = 0; /* FIXME, don't ignore errors! */ + /* What errors? {read,write}_memory call error(). */ +} + + +/* return pc value after skipping a function prologue and also return + information about a function frame. + + in struct rs6000_framedata fdata: + - frameless is TRUE, if function does not have a frame. + - nosavedpc is TRUE, if function does not save %pc value in its frame. + - offset is the initial size of this stack frame --- the amount by + which we decrement the sp to allocate the frame. + - saved_gpr is the number of the first saved gpr. + - saved_fpr is the number of the first saved fpr. + - alloca_reg is the number of the register used for alloca() handling. + Otherwise -1. + - gpr_offset is the offset of the first saved gpr from the previous frame. + - fpr_offset is the offset of the first saved fpr from the previous frame. + - lr_offset is the offset of the saved lr + - cr_offset is the offset of the saved cr +*/ + +#define SIGNED_SHORT(x) \ + ((sizeof (short) == 2) \ + ? ((int)(short)(x)) \ + : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) + +#define GET_SRC_REG(x) (((x) >> 21) & 0x1f) + +CORE_ADDR +skip_prologue (pc, fdata) + CORE_ADDR pc; + struct rs6000_framedata *fdata; +{ + CORE_ADDR orig_pc = pc; + char buf[4]; + unsigned long op; + long offset = 0; + int lr_reg = 0; + int cr_reg = 0; + int reg; + int framep = 0; + int minimal_toc_loaded = 0; + static struct rs6000_framedata zero_frame; + + *fdata = zero_frame; + fdata->saved_gpr = -1; + fdata->saved_fpr = -1; + fdata->alloca_reg = -1; + fdata->frameless = 1; + fdata->nosavedpc = 1; + + if (target_read_memory (pc, buf, 4)) + return pc; /* Can't access it -- assume no prologue. */ + + /* Assume that subsequent fetches can fail with low probability. */ + pc -= 4; + for (;;) + { + pc += 4; + op = read_memory_integer (pc, 4); + + if ((op & 0xfc1fffff) == 0x7c0802a6) { /* mflr Rx */ + lr_reg = (op & 0x03e00000) | 0x90010000; + continue; + + } else if ((op & 0xfc1fffff) == 0x7c000026) { /* mfcr Rx */ + cr_reg = (op & 0x03e00000) | 0x90010000; + continue; + + } else if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */ + reg = GET_SRC_REG (op); + if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) { + fdata->saved_fpr = reg; + fdata->fpr_offset = SIGNED_SHORT (op) + offset; + } + continue; + + } else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ + ((op & 0xfc1f0000) == 0x90010000 && /* st rx,NUM(r1), + rx >= r13 */ + (op & 0x03e00000) >= 0x01a00000)) { + + reg = GET_SRC_REG (op); + if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) { + fdata->saved_gpr = reg; + fdata->gpr_offset = SIGNED_SHORT (op) + offset; + } + continue; + + } else if ((op & 0xffff0000) == 0x3c000000) { /* addis 0,0,NUM, used + for >= 32k frames */ + fdata->offset = (op & 0x0000ffff) << 16; + fdata->frameless = 0; + continue; + + } else if ((op & 0xffff0000) == 0x60000000) { /* ori 0,0,NUM, 2nd ha + lf of >= 32k frames */ + fdata->offset |= (op & 0x0000ffff); + fdata->frameless = 0; + continue; + + } else if ((op & 0xffff0000) == lr_reg) { /* st Rx,NUM(r1) + where Rx == lr */ + fdata->lr_offset = SIGNED_SHORT (op) + offset; + fdata->nosavedpc = 0; + lr_reg = 0; + continue; + + } else if ((op & 0xffff0000) == cr_reg) { /* st Rx,NUM(r1) + where Rx == cr */ + fdata->cr_offset = SIGNED_SHORT (op) + offset; + cr_reg = 0; + continue; + + } else if (op == 0x48000005) { /* bl .+4 used in + -mrelocatable */ + continue; + + } else if (op == 0x48000004) { /* b .+4 (xlc) */ + break; + + } else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used + in V.4 -mrelocatable */ + op == 0x7fc0f214) && /* add r30,r0,r30, used + in V.4 -mrelocatable */ + lr_reg == 0x901e0000) { + continue; + + } else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used + in V.4 -mminimal-toc */ + (op & 0xffff0000) == 0x3bde0000) { /* addi 30,30,foo@l */ + continue; + + } else if ((op & 0xfc000000) == 0x48000000) { /* bl foo, + to save fprs??? */ + + fdata->frameless = 0; + /* Don't skip over the subroutine call if it is not within the first + three instructions of the prologue. */ + if ((pc - orig_pc) > 8) + break; + + op = read_memory_integer (pc+4, 4); + + /* At this point, make sure this is not a trampoline function + (a function that simply calls another functions, and nothing else). + If the next is not a nop, this branch was part of the function + prologue. */ + + if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ + break; /* don't skip over + this branch */ + continue; + + /* update stack pointer */ + } else if ((op & 0xffff0000) == 0x94210000) { /* stu r1,NUM(r1) */ + fdata->frameless = 0; + fdata->offset = SIGNED_SHORT (op); + offset = fdata->offset; + continue; + + } else if (op == 0x7c21016e) { /* stwux 1,1,0 */ + fdata->frameless = 0; + offset = fdata->offset; + continue; + + /* Load up minimal toc pointer */ + } else if ((op >> 22) == 0x20f + && ! minimal_toc_loaded) { /* l r31,... or l r30,... */ + minimal_toc_loaded = 1; + continue; + + /* store parameters in stack */ + } else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ + (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */ + (op & 0xfc1f0000) == 0xfc010000) { /* frsp, fp?,NUM(r1) */ + continue; + + /* store parameters in stack via frame pointer */ + } else if (framep && + ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */ + (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */ + (op & 0xfc1f0000) == 0xfc1f0000)) { /* frsp, fp?,NUM(r1) */ + continue; + + /* Set up frame pointer */ + } else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ + || op == 0x7c3f0b78) { /* mr r31, r1 */ + fdata->frameless = 0; + framep = 1; + fdata->alloca_reg = 31; + continue; + + /* Another way to set up the frame pointer. */ + } else if ((op & 0xfc1fffff) == 0x38010000) { /* addi rX, r1, 0x0 */ + fdata->frameless = 0; + framep = 1; + fdata->alloca_reg = (op & ~0x38010000) >> 21; + continue; + + } else { + break; + } + } + +#if 0 +/* I have problems with skipping over __main() that I need to address + * sometime. Previously, I used to use misc_function_vector which + * didn't work as well as I wanted to be. -MGO */ + + /* If the first thing after skipping a prolog is a branch to a function, + this might be a call to an initializer in main(), introduced by gcc2. + We'd like to skip over it as well. Fortunately, xlc does some extra + work before calling a function right after a prologue, thus we can + single out such gcc2 behaviour. */ + + + if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */ + op = read_memory_integer (pc+4, 4); + + if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */ + + /* check and see if we are in main. If so, skip over this initializer + function as well. */ + + tmp = find_pc_misc_function (pc); + if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main")) + return pc + 8; + } + } +#endif /* 0 */ + + fdata->offset = - fdata->offset; + return pc; +} + + +/************************************************************************* + Support for creating pushind a dummy frame into the stack, and popping + frames, etc. +*************************************************************************/ + +/* The total size of dummy frame is 436, which is; + + 32 gpr's - 128 bytes + 32 fpr's - 256 " + 7 the rest - 28 " + and 24 extra bytes for the callee's link area. The last 24 bytes + for the link area might not be necessary, since it will be taken + care of by push_arguments(). */ + +#define DUMMY_FRAME_SIZE 436 + +#define DUMMY_FRAME_ADDR_SIZE 10 + +/* Make sure you initialize these in somewhere, in case gdb gives up what it + was debugging and starts debugging something else. FIXMEibm */ + +static int dummy_frame_count = 0; +static int dummy_frame_size = 0; +static CORE_ADDR *dummy_frame_addr = 0; + +extern int stop_stack_dummy; + +/* push a dummy frame into stack, save all register. Currently we are saving + only gpr's and fpr's, which is not good enough! FIXMEmgo */ + +void +push_dummy_frame () +{ + /* stack pointer. */ + CORE_ADDR sp; + /* Same thing, target byte order. */ + char sp_targ[4]; + + /* link register. */ + CORE_ADDR pc; + /* Same thing, target byte order. */ + char pc_targ[4]; + + /* Needed to figure out where to save the dummy link area. + FIXME: There should be an easier way to do this, no? tiemann 9/9/95. */ + struct rs6000_framedata fdata; + + int ii; + + target_fetch_registers (-1); + + if (dummy_frame_count >= dummy_frame_size) { + dummy_frame_size += DUMMY_FRAME_ADDR_SIZE; + if (dummy_frame_addr) + dummy_frame_addr = (CORE_ADDR*) xrealloc + (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size)); + else + dummy_frame_addr = (CORE_ADDR*) + xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size)); + } + + sp = read_register(SP_REGNUM); + pc = read_register(PC_REGNUM); + store_address (pc_targ, 4, pc); + + skip_prologue (get_pc_function_start (pc), &fdata); + + dummy_frame_addr [dummy_frame_count++] = sp; + + /* Be careful! If the stack pointer is not decremented first, then kernel + thinks he is free to use the space underneath it. And kernel actually + uses that area for IPC purposes when executing ptrace(2) calls. So + before writing register values into the new frame, decrement and update + %sp first in order to secure your frame. */ + + /* FIXME: We don't check if the stack really has this much space. + This is a problem on the ppc simulator (which only grants one page + (4096 bytes) by default. */ + + write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE); + + /* gdb relies on the state of current_frame. We'd better update it, + otherwise things like do_registers_info() wouldn't work properly! */ + + flush_cached_frames (); + + /* save program counter in link register's space. */ + write_memory (sp + (fdata.lr_offset ? fdata.lr_offset : DEFAULT_LR_SAVE), + pc_targ, 4); + + /* save all floating point and general purpose registers here. */ + + /* fpr's, f0..f31 */ + for (ii = 0; ii < 32; ++ii) + write_memory (sp-8-(ii*8), ®isters[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8); + + /* gpr's r0..r31 */ + for (ii=1; ii <=32; ++ii) + write_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4); + + /* so far, 32*2 + 32 words = 384 bytes have been written. + 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */ + + for (ii=1; ii <= (LAST_UISA_SP_REGNUM-FIRST_UISA_SP_REGNUM+1); ++ii) { + write_memory (sp-384-(ii*4), + ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4); + } + + /* Save sp or so called back chain right here. */ + store_address (sp_targ, 4, sp); + write_memory (sp-DUMMY_FRAME_SIZE, sp_targ, 4); + sp -= DUMMY_FRAME_SIZE; + + /* And finally, this is the back chain. */ + write_memory (sp+8, pc_targ, 4); +} + + +/* Pop a dummy frame. + + In rs6000 when we push a dummy frame, we save all of the registers. This + is usually done before user calls a function explicitly. + + After a dummy frame is pushed, some instructions are copied into stack, + and stack pointer is decremented even more. Since we don't have a frame + pointer to get back to the parent frame of the dummy, we start having + trouble poping it. Therefore, we keep a dummy frame stack, keeping + addresses of dummy frames as such. When poping happens and when we + detect that was a dummy frame, we pop it back to its parent by using + dummy frame stack (`dummy_frame_addr' array). + +FIXME: This whole concept is broken. You should be able to detect +a dummy stack frame *on the user's stack itself*. When you do, +then you know the format of that stack frame -- including its +saved SP register! There should *not* be a separate stack in the +GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92 + */ + +static void +pop_dummy_frame () +{ + CORE_ADDR sp, pc; + int ii; + sp = dummy_frame_addr [--dummy_frame_count]; + + /* restore all fpr's. */ + for (ii = 1; ii <= 32; ++ii) + read_memory (sp-(ii*8), ®isters[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8); + + /* restore all gpr's */ + for (ii=1; ii <= 32; ++ii) { + read_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4); + } + + /* restore the rest of the registers. */ + for (ii=1; ii <=(LAST_UISA_SP_REGNUM-FIRST_UISA_SP_REGNUM+1); ++ii) + read_memory (sp-384-(ii*4), + ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4); + + read_memory (sp-(DUMMY_FRAME_SIZE-8), + ®isters [REGISTER_BYTE(PC_REGNUM)], 4); + + /* when a dummy frame was being pushed, we had to decrement %sp first, in + order to secure astack space. Thus, saved %sp (or %r1) value, is not the + one we should restore. Change it with the one we need. */ + + memcpy (®isters [REGISTER_BYTE(FP_REGNUM)], (char *) &sp, sizeof (int)); + + /* Now we can restore all registers. */ + + target_store_registers (-1); + pc = read_pc (); + flush_cached_frames (); +} + + +/* pop the innermost frame, go back to the caller. */ + +void +pop_frame () +{ + CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */ + struct rs6000_framedata fdata; + struct frame_info *frame = get_current_frame (); + int addr, ii; + + pc = read_pc (); + sp = FRAME_FP (frame); + + if (stop_stack_dummy) + { +#ifdef USE_GENERIC_DUMMY_FRAMES + generic_pop_dummy_frame (); + flush_cached_frames (); + return; +#else + if (dummy_frame_count) + pop_dummy_frame (); + return; +#endif + } + + /* Make sure that all registers are valid. */ + read_register_bytes (0, NULL, REGISTER_BYTES); + + /* figure out previous %pc value. If the function is frameless, it is + still in the link register, otherwise walk the frames and retrieve the + saved %pc value in the previous frame. */ + + addr = get_pc_function_start (frame->pc); + (void) skip_prologue (addr, &fdata); + + if (fdata.frameless) + prev_sp = sp; + else + prev_sp = read_memory_integer (sp, 4); + if (fdata.lr_offset == 0) + lr = read_register (LR_REGNUM); + else + lr = read_memory_integer (prev_sp + fdata.lr_offset, 4); + + /* reset %pc value. */ + write_register (PC_REGNUM, lr); + + /* reset register values if any was saved earlier. */ + + if (fdata.saved_gpr != -1) + { + addr = prev_sp + fdata.gpr_offset; + for (ii = fdata.saved_gpr; ii <= 31; ++ii) { + read_memory (addr, ®isters [REGISTER_BYTE (ii)], 4); + addr += 4; + } + } + + if (fdata.saved_fpr != -1) + { + addr = prev_sp + fdata.fpr_offset; + for (ii = fdata.saved_fpr; ii <= 31; ++ii) { + read_memory (addr, ®isters [REGISTER_BYTE (ii+FP0_REGNUM)], 8); + addr += 8; + } + } + + write_register (SP_REGNUM, prev_sp); + target_store_registers (-1); + flush_cached_frames (); +} + +/* fixup the call sequence of a dummy function, with the real function address. + its argumets will be passed by gdb. */ + +void +rs6000_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p) + char *dummyname; + CORE_ADDR pc; + CORE_ADDR fun; + int nargs; + value_ptr *args; + struct type *type; + int gcc_p; +{ +#define TOC_ADDR_OFFSET 20 +#define TARGET_ADDR_OFFSET 28 + + int ii; + CORE_ADDR target_addr; + + if (find_toc_address_hook != NULL) + { + CORE_ADDR tocvalue; + + tocvalue = (*find_toc_address_hook) (fun); + ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET); + ii = (ii & 0xffff0000) | (tocvalue >> 16); + *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii; + + ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4); + ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff); + *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii; + } + + target_addr = fun; + ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET); + ii = (ii & 0xffff0000) | (target_addr >> 16); + *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii; + + ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4); + ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff); + *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii; +} + +/* Pass the arguments in either registers, or in the stack. In RS6000, + the first eight words of the argument list (that might be less than + eight parameters if some parameters occupy more than one word) are + passed in r3..r11 registers. float and double parameters are + passed in fpr's, in addition to that. Rest of the parameters if any + are passed in user stack. There might be cases in which half of the + parameter is copied into registers, the other half is pushed into + stack. + + If the function is returning a structure, then the return address is passed + in r3, then the first 7 words of the parameters can be passed in registers, + starting from r4. */ + +CORE_ADDR +push_arguments (nargs, args, sp, struct_return, struct_addr) + int nargs; + value_ptr *args; + CORE_ADDR sp; + int struct_return; + CORE_ADDR struct_addr; +{ + int ii; + int len = 0; + int argno; /* current argument number */ + int argbytes; /* current argument byte */ + char tmp_buffer [50]; + int f_argno = 0; /* current floating point argno */ + + value_ptr arg = 0; + struct type *type; + + CORE_ADDR saved_sp; + +#ifndef USE_GENERIC_DUMMY_FRAMES + if ( dummy_frame_count <= 0) + printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n"); +#endif /* GENERIC_DUMMY_FRAMES */ + + /* The first eight words of ther arguments are passed in registers. Copy + them appropriately. + + If the function is returning a `struct', then the first word (which + will be passed in r3) is used for struct return address. In that + case we should advance one word and start from r4 register to copy + parameters. */ + + ii = struct_return ? 1 : 0; + +/* +effectively indirect call... gcc does... + +return_val example( float, int); + +eabi: + float in fp0, int in r3 + offset of stack on overflow 8/16 + for varargs, must go by type. +power open: + float in r3&r4, int in r5 + offset of stack on overflow different +both: + return in r3 or f0. If no float, must study how gcc emulates floats; + pay attention to arg promotion. + User may have to cast\args to handle promotion correctly + since gdb won't know if prototype supplied or not. +*/ + + for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) { + + arg = args[argno]; + type = check_typedef (VALUE_TYPE (arg)); + len = TYPE_LENGTH (type); + + if (TYPE_CODE (type) == TYPE_CODE_FLT) { + + /* floating point arguments are passed in fpr's, as well as gpr's. + There are 13 fpr's reserved for passing parameters. At this point + there is no way we would run out of them. */ + + if (len > 8) + printf_unfiltered ( +"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); + + memcpy (®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], + VALUE_CONTENTS (arg), + len); + ++f_argno; + } + + if (len > 4) { + + /* Argument takes more than one register. */ + while (argbytes < len) { + memset (®isters[REGISTER_BYTE(ii+3)], 0, sizeof(int)); + memcpy (®isters[REGISTER_BYTE(ii+3)], + ((char*)VALUE_CONTENTS (arg))+argbytes, + (len - argbytes) > 4 ? 4 : len - argbytes); + ++ii, argbytes += 4; + + if (ii >= 8) + goto ran_out_of_registers_for_arguments; + } + argbytes = 0; + --ii; + } + else { /* Argument can fit in one register. No problem. */ + memset (®isters[REGISTER_BYTE(ii+3)], 0, sizeof(int)); + memcpy (®isters[REGISTER_BYTE(ii+3)], VALUE_CONTENTS (arg), len); + } + ++argno; + } + +ran_out_of_registers_for_arguments: + +#ifdef USE_GENERIC_DUMMY_FRAMES + saved_sp = read_sp (); +#else + /* location for 8 parameters are always reserved. */ + sp -= 4 * 8; + + /* another six words for back chain, TOC register, link register, etc. */ + sp -= 24; +#endif /* GENERIC_DUMMY_FRAMES */ + /* if there are more arguments, allocate space for them in + the stack, then push them starting from the ninth one. */ + + if ((argno < nargs) || argbytes) { + int space = 0, jj; + + if (argbytes) { + space += ((len - argbytes + 3) & -4); + jj = argno + 1; + } + else + jj = argno; + + for (; jj < nargs; ++jj) { + value_ptr val = args[jj]; + space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4; + } + + /* add location required for the rest of the parameters */ + space = (space + 7) & -8; + sp -= space; + + /* This is another instance we need to be concerned about securing our + stack space. If we write anything underneath %sp (r1), we might conflict + with the kernel who thinks he is free to use this area. So, update %sp + first before doing anything else. */ + + write_register (SP_REGNUM, sp); + + /* if the last argument copied into the registers didn't fit there + completely, push the rest of it into stack. */ + + if (argbytes) { + write_memory (sp+24+(ii*4), + ((char*)VALUE_CONTENTS (arg))+argbytes, + len - argbytes); + ++argno; + ii += ((len - argbytes + 3) & -4) / 4; + } + + /* push the rest of the arguments into stack. */ + for (; argno < nargs; ++argno) { + + arg = args[argno]; + type = check_typedef (VALUE_TYPE (arg)); + len = TYPE_LENGTH (type); + + + /* float types should be passed in fpr's, as well as in the stack. */ + if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) { + + if (len > 8) + printf_unfiltered ( +"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); + + memcpy (®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], + VALUE_CONTENTS (arg), + len); + ++f_argno; + } + + write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len); + ii += ((len + 3) & -4) / 4; + } + } + else + /* Secure stack areas first, before doing anything else. */ + write_register (SP_REGNUM, sp); + +#ifndef USE_GENERIC_DUMMY_FRAMES +/* we want to copy 24 bytes of target's frame to dummy's frame, + then set back chain to point to new frame. */ + + saved_sp = dummy_frame_addr [dummy_frame_count - 1]; + read_memory (saved_sp, tmp_buffer, 24); + write_memory (sp, tmp_buffer, 24); +#endif /* GENERIC_DUMMY_FRAMES */ + + /* set back chain properly */ + store_address (tmp_buffer, 4, saved_sp); + write_memory (sp, tmp_buffer, 4); + + target_store_registers (-1); + return sp; +} +#ifdef ELF_OBJECT_FORMAT + +/* Function: ppc_push_return_address (pc, sp) + Set up the return address for the inferior function call. */ + +CORE_ADDR +ppc_push_return_address (pc, sp) + CORE_ADDR pc; + CORE_ADDR sp; +{ + write_register (LR_REGNUM, CALL_DUMMY_ADDRESS ()); + return sp; +} + +#endif + +/* a given return value in `regbuf' with a type `valtype', extract and copy its + value into `valbuf' */ + +void +extract_return_value (valtype, regbuf, valbuf) + struct type *valtype; + char regbuf[REGISTER_BYTES]; + char *valbuf; +{ + int offset = 0; + + if (TYPE_CODE (valtype) == TYPE_CODE_FLT) { + + double dd; float ff; + /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes. + We need to truncate the return value into float size (4 byte) if + necessary. */ + + if (TYPE_LENGTH (valtype) > 4) /* this is a double */ + memcpy (valbuf, + ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], + TYPE_LENGTH (valtype)); + else { /* float */ + memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8); + ff = (float)dd; + memcpy (valbuf, &ff, sizeof(float)); + } + } + else { + /* return value is copied starting from r3. */ + if (TARGET_BYTE_ORDER == BIG_ENDIAN + && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3)) + offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype); + + memcpy (valbuf, + regbuf + REGISTER_BYTE (3) + offset, + TYPE_LENGTH (valtype)); + } +} + + +/* keep structure return address in this variable. + FIXME: This is a horrid kludge which should not be allowed to continue + living. This only allows a single nested call to a structure-returning + function. Come on, guys! -- gnu@cygnus.com, Aug 92 */ + +CORE_ADDR rs6000_struct_return_address; + + +/* Indirect function calls use a piece of trampoline code to do context + switching, i.e. to set the new TOC table. Skip such code if we are on + its first instruction (as when we have single-stepped to here). + Also skip shared library trampoline code (which is different from + indirect function call trampolines). + Result is desired PC to step until, or NULL if we are not in + trampoline code. */ + +CORE_ADDR +skip_trampoline_code (pc) + CORE_ADDR pc; +{ + register unsigned int ii, op; + CORE_ADDR solib_target_pc; + + static unsigned trampoline_code[] = { + 0x800b0000, /* l r0,0x0(r11) */ + 0x90410014, /* st r2,0x14(r1) */ + 0x7c0903a6, /* mtctr r0 */ + 0x804b0004, /* l r2,0x4(r11) */ + 0x816b0008, /* l r11,0x8(r11) */ + 0x4e800420, /* bctr */ + 0x4e800020, /* br */ + 0 + }; + + /* If pc is in a shared library trampoline, return its target. */ + solib_target_pc = find_solib_trampoline_target (pc); + if (solib_target_pc) + return solib_target_pc; + + for (ii=0; trampoline_code[ii]; ++ii) { + op = read_memory_integer (pc + (ii*4), 4); + if (op != trampoline_code [ii]) + return 0; + } + ii = read_register (11); /* r11 holds destination addr */ + pc = read_memory_integer (ii, 4); /* (r11) value */ + return pc; +} + +/* Determines whether the function FI has a frame on the stack or not. */ + +int +frameless_function_invocation (fi) + struct frame_info *fi; +{ + CORE_ADDR func_start; + struct rs6000_framedata fdata; + + /* Don't even think about framelessness except on the innermost frame + or if the function was interrupted by a signal. */ + if (fi->next != NULL && !fi->next->signal_handler_caller) + return 0; + + func_start = get_pc_function_start (fi->pc); + + /* If we failed to find the start of the function, it is a mistake + to inspect the instructions. */ + + if (!func_start) + { + /* A frame with a zero PC is usually created by dereferencing a NULL + function pointer, normally causing an immediate core dump of the + inferior. Mark function as frameless, as the inferior has no chance + of setting up a stack frame. */ + if (fi->pc == 0) + return 1; + else + return 0; + } + + (void) skip_prologue (func_start, &fdata); + return fdata.frameless; +} + +/* Return the PC saved in a frame */ + +unsigned long +frame_saved_pc (fi) + struct frame_info *fi; +{ + CORE_ADDR func_start; + struct rs6000_framedata fdata; + + if (fi->signal_handler_caller) + return read_memory_integer (fi->frame + SIG_FRAME_PC_OFFSET, 4); + +#ifdef USE_GENERIC_DUMMY_FRAMES + if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) + return generic_read_register_dummy(fi->pc, fi->frame, PC_REGNUM); +#endif /* GENERIC_DUMMY_FRAMES */ + + func_start = get_pc_function_start (fi->pc); + + /* If we failed to find the start of the function, it is a mistake + to inspect the instructions. */ + if (!func_start) + return 0; + + (void) skip_prologue (func_start, &fdata); + + if (fdata.lr_offset == 0 && fi->next != NULL) + { + if (fi->next->signal_handler_caller) + return read_memory_integer (fi->next->frame + SIG_FRAME_LR_OFFSET, 4); + else + return read_memory_integer (rs6000_frame_chain (fi) + DEFAULT_LR_SAVE, + 4); + } + + if (fdata.lr_offset == 0) + return read_register (LR_REGNUM); + + return read_memory_integer (rs6000_frame_chain (fi) + fdata.lr_offset, 4); +} + +/* If saved registers of frame FI are not known yet, read and cache them. + &FDATAP contains rs6000_framedata; TDATAP can be NULL, + in which case the framedata are read. */ + +static void +frame_get_saved_regs (fi, fdatap) + struct frame_info *fi; + struct rs6000_framedata *fdatap; +{ + int ii; + CORE_ADDR frame_addr; + struct rs6000_framedata work_fdata; + + if (fi->saved_regs) + return; + + if (fdatap == NULL) + { + fdatap = &work_fdata; + (void) skip_prologue (get_pc_function_start (fi->pc), fdatap); + } + + frame_saved_regs_zalloc (fi); + + /* If there were any saved registers, figure out parent's stack + pointer. */ + /* The following is true only if the frame doesn't have a call to + alloca(), FIXME. */ + + if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0 + && fdatap->lr_offset == 0 && fdatap->cr_offset == 0) + frame_addr = 0; + else if (fi->prev && fi->prev->frame) + frame_addr = fi->prev->frame; + else + frame_addr = read_memory_integer (fi->frame, 4); + + /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr. + All fpr's from saved_fpr to fp31 are saved. */ + + if (fdatap->saved_fpr >= 0) + { + int i; + int fpr_offset = frame_addr + fdatap->fpr_offset; + for (i = fdatap->saved_fpr; i < 32; i++) + { + fi->saved_regs [FP0_REGNUM + i] = fpr_offset; + fpr_offset += 8; + } + } + + /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr. + All gpr's from saved_gpr to gpr31 are saved. */ + + if (fdatap->saved_gpr >= 0) + { + int i; + int gpr_offset = frame_addr + fdatap->gpr_offset; + for (i = fdatap->saved_gpr; i < 32; i++) + { + fi->saved_regs [i] = gpr_offset; + gpr_offset += 4; + } + } + + /* If != 0, fdatap->cr_offset is the offset from the frame that holds + the CR. */ + if (fdatap->cr_offset != 0) + fi->saved_regs [CR_REGNUM] = frame_addr + fdatap->cr_offset; + + /* If != 0, fdatap->lr_offset is the offset from the frame that holds + the LR. */ + if (fdatap->lr_offset != 0) + fi->saved_regs [LR_REGNUM] = frame_addr + fdatap->lr_offset; +} + +/* Return the address of a frame. This is the inital %sp value when the frame + was first allocated. For functions calling alloca(), it might be saved in + an alloca register. */ + +static CORE_ADDR +frame_initial_stack_address (fi) + struct frame_info *fi; +{ + CORE_ADDR tmpaddr; + struct rs6000_framedata fdata; + struct frame_info *callee_fi; + + /* if the initial stack pointer (frame address) of this frame is known, + just return it. */ + + if (fi->extra_info->initial_sp) + return fi->extra_info->initial_sp; + + /* find out if this function is using an alloca register.. */ + + (void) skip_prologue (get_pc_function_start (fi->pc), &fdata); + + /* if saved registers of this frame are not known yet, read and cache them. */ + + if (!fi->saved_regs) + frame_get_saved_regs (fi, &fdata); + + /* If no alloca register used, then fi->frame is the value of the %sp for + this frame, and it is good enough. */ + + if (fdata.alloca_reg < 0) + { + fi->extra_info->initial_sp = fi->frame; + return fi->extra_info->initial_sp; + } + + /* This function has an alloca register. If this is the top-most frame + (with the lowest address), the value in alloca register is good. */ + + if (!fi->next) + return fi->extra_info->initial_sp = read_register (fdata.alloca_reg); + + /* Otherwise, this is a caller frame. Callee has usually already saved + registers, but there are exceptions (such as when the callee + has no parameters). Find the address in which caller's alloca + register is saved. */ + + for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) { + + if (!callee_fi->saved_regs) + frame_get_saved_regs (callee_fi, NULL); + + /* this is the address in which alloca register is saved. */ + + tmpaddr = callee_fi->saved_regs [fdata.alloca_reg]; + if (tmpaddr) { + fi->extra_info->initial_sp = read_memory_integer (tmpaddr, 4); + return fi->extra_info->initial_sp; + } + + /* Go look into deeper levels of the frame chain to see if any one of + the callees has saved alloca register. */ + } + + /* If alloca register was not saved, by the callee (or any of its callees) + then the value in the register is still good. */ + + fi->extra_info->initial_sp = read_register (fdata.alloca_reg); + return fi->extra_info->initial_sp; +} + +CORE_ADDR +rs6000_frame_chain (thisframe) + struct frame_info *thisframe; +{ + CORE_ADDR fp; + +#ifdef USE_GENERIC_DUMMY_FRAMES + if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame)) + return thisframe->frame; /* dummy frame same as caller's frame */ +#endif /* GENERIC_DUMMY_FRAMES */ + + if (inside_entry_file (thisframe->pc) || + thisframe->pc == entry_point_address ()) + return 0; + + if (thisframe->signal_handler_caller) + fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4); + else if (thisframe->next != NULL + && thisframe->next->signal_handler_caller + && frameless_function_invocation (thisframe)) + /* A frameless function interrupted by a signal did not change the + frame pointer. */ + fp = FRAME_FP (thisframe); + else + fp = read_memory_integer ((thisframe)->frame, 4); + +#ifdef USE_GENERIC_DUMMY_FRAMES + { + CORE_ADDR fpp, lr; + + lr = read_register (LR_REGNUM); + if (lr == entry_point_address ()) + if (fp != 0 && (fpp = read_memory_integer (fp, 4)) != 0) + if (PC_IN_CALL_DUMMY (lr, fpp, fpp)) + return fpp; + } +#endif /* GENERIC_DUMMY_FRAMES */ + return fp; +} + +/* Return nonzero if ADDR (a function pointer) is in the data space and + is therefore a special function pointer. */ + +int +is_magic_function_pointer (addr) + CORE_ADDR addr; +{ + struct obj_section *s; + + s = find_pc_section (addr); + if (s && s->the_bfd_section->flags & SEC_CODE) + return 0; + else + return 1; +} + +#ifdef GDB_TARGET_POWERPC +int +gdb_print_insn_powerpc (memaddr, info) + bfd_vma memaddr; + disassemble_info *info; +{ + if (TARGET_BYTE_ORDER == BIG_ENDIAN) + return print_insn_big_powerpc (memaddr, info); + else + return print_insn_little_powerpc (memaddr, info); +} +#endif + +/* Function: get_saved_register + Just call the generic_get_saved_register function. */ + +#ifdef USE_GENERIC_DUMMY_FRAMES +void +get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) + char *raw_buffer; + int *optimized; + CORE_ADDR *addrp; + struct frame_info *frame; + int regnum; + enum lval_type *lval; +{ + generic_get_saved_register (raw_buffer, optimized, addrp, + frame, regnum, lval); +} +#endif + + + +/* Handling the various PowerPC/RS6000 variants. */ + + +/* The arrays here called register_names_MUMBLE hold names that + the rs6000_register_name function returns. + + For each family of PPC variants, I've tried to isolate out the + common registers and put them up front, so that as long as you get + the general family right, GDB will correctly identify the registers + common to that family. The common register sets are: + + For the 60x family: hid0 hid1 iabr dabr pir + + For the 505 and 860 family: eie eid nri + + For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi + tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1 + pbu1 pbl2 pbu2 + + Most of these register groups aren't anything formal. I arrived at + them by looking at the registers that occurred in more than one + processor. */ + +/* UISA register names common across all architectures, including POWER. */ + +#define COMMON_UISA_REG_NAMES \ + /* 0 */ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ + /* 8 */ "r8", "r9", "r10","r11","r12","r13","r14","r15", \ + /* 16 */ "r16","r17","r18","r19","r20","r21","r22","r23", \ + /* 24 */ "r24","r25","r26","r27","r28","r29","r30","r31", \ + /* 32 */ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \ + /* 40 */ "f8", "f9", "f10","f11","f12","f13","f14","f15", \ + /* 48 */ "f16","f17","f18","f19","f20","f21","f22","f23", \ + /* 56 */ "f24","f25","f26","f27","f28","f29","f30","f31", \ + /* 64 */ "pc", "ps" + +/* UISA-level SPR names for PowerPC. */ +#define PPC_UISA_SPR_NAMES \ + /* 66 */ "cr", "lr", "ctr", "xer", "" + +/* Segment register names, for PowerPC. */ +#define PPC_SEGMENT_REG_NAMES \ + /* 71 */ "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7", \ + /* 79 */ "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15" + +/* OEA SPR names for 32-bit PowerPC implementations. + The blank space is for "asr", which is only present on 64-bit + implementations. */ +#define PPC_32_OEA_SPR_NAMES \ + /* 87 */ "pvr", \ + /* 88 */ "ibat0u", "ibat0l", "ibat1u", "ibat1l", \ + /* 92 */ "ibat2u", "ibat2l", "ibat3u", "ibat3l", \ + /* 96 */ "dbat0u", "dbat0l", "dbat1u", "dbat1l", \ + /* 100 */ "dbat2u", "dbat2l", "dbat3u", "dbat3l", \ + /* 104 */ "sdr1", "", "dar", "dsisr", "sprg0", "sprg1", "sprg2", "sprg3",\ + /* 112 */ "srr0", "srr1", "tbl", "tbu", "dec", "dabr", "ear" + +/* For the RS6000, we only cover user-level SPR's. */ +char *register_names_rs6000[] = +{ + COMMON_UISA_REG_NAMES, + /* 66 */ "cnd", "lr", "cnt", "xer", "mq" +}; + +/* a UISA-only view of the PowerPC. */ +char *register_names_uisa[] = +{ + COMMON_UISA_REG_NAMES, + PPC_UISA_SPR_NAMES +}; + +char *register_names_403[] = +{ + COMMON_UISA_REG_NAMES, + PPC_UISA_SPR_NAMES, + PPC_SEGMENT_REG_NAMES, + PPC_32_OEA_SPR_NAMES, + /* 119 */ "icdbdr", "esr", "dear", "evpr", "cdbcr", "tsr", "tcr", "pit", + /* 127 */ "tbhi", "tblo", "srr2", "srr3", "dbsr", "dbcr", "iac1", "iac2", + /* 135 */ "dac1", "dac2", "dccr", "iccr", "pbl1", "pbu1", "pbl2", "pbu2" +}; + +char *register_names_403GC[] = +{ + COMMON_UISA_REG_NAMES, + PPC_UISA_SPR_NAMES, + PPC_SEGMENT_REG_NAMES, + PPC_32_OEA_SPR_NAMES, + /* 119 */ "icdbdr", "esr", "dear", "evpr", "cdbcr", "tsr", "tcr", "pit", + /* 127 */ "tbhi", "tblo", "srr2", "srr3", "dbsr", "dbcr", "iac1", "iac2", + /* 135 */ "dac1", "dac2", "dccr", "iccr", "pbl1", "pbu1", "pbl2", "pbu2", + /* 143 */ "zpr", "pid", "sgr", "dcwr", "tbhu", "tblu" +}; + +char *register_names_505[] = +{ + COMMON_UISA_REG_NAMES, + PPC_UISA_SPR_NAMES, + PPC_SEGMENT_REG_NAMES, + PPC_32_OEA_SPR_NAMES, + /* 119 */ "eie", "eid", "nri" +}; + +char *register_names_860[] = +{ + COMMON_UISA_REG_NAMES, + PPC_UISA_SPR_NAMES, + PPC_SEGMENT_REG_NAMES, + PPC_32_OEA_SPR_NAMES, + /* 119 */ "eie", "eid", "nri", "cmpa", "cmpb", "cmpc", "cmpd", "icr", + /* 127 */ "der", "counta", "countb", "cmpe", "cmpf", "cmpg", "cmph", + /* 134 */ "lctrl1", "lctrl2", "ictrl", "bar", "ic_cst", "ic_adr", "ic_dat", + /* 141 */ "dc_cst", "dc_adr", "dc_dat", "dpdr", "dpir", "immr", "mi_ctr", + /* 148 */ "mi_ap", "mi_epn", "mi_twc", "mi_rpn", "md_ctr", "m_casid", + /* 154 */ "md_ap", "md_epn", "md_twb", "md_twc", "md_rpn", "m_tw", + /* 160 */ "mi_dbcam", "mi_dbram0", "mi_dbram1", "md_dbcam", "md_dbram0", + /* 165 */ "md_dbram1" +}; + +/* Note that the 601 has different register numbers for reading and + writing RTCU and RTCL. However, how one reads and writes a + register is the stub's problem. */ +char *register_names_601[] = +{ + COMMON_UISA_REG_NAMES, + PPC_UISA_SPR_NAMES, + PPC_SEGMENT_REG_NAMES, + PPC_32_OEA_SPR_NAMES, + /* 119 */ "hid0", "hid1", "iabr", "dabr", "pir", "mq", "rtcu", + /* 126 */ "rtcl" +}; + +char *register_names_602[] = +{ + COMMON_UISA_REG_NAMES, + PPC_UISA_SPR_NAMES, + PPC_SEGMENT_REG_NAMES, + PPC_32_OEA_SPR_NAMES, + /* 119 */ "hid0", "hid1", "iabr", "", "", "tcr", "ibr", "esassr", "sebr", + /* 128 */ "ser", "sp", "lt" +}; + +char *register_names_603[] = +{ + COMMON_UISA_REG_NAMES, + PPC_UISA_SPR_NAMES, + PPC_SEGMENT_REG_NAMES, + PPC_32_OEA_SPR_NAMES, + /* 119 */ "hid0", "hid1", "iabr", "", "", "dmiss", "dcmp", "hash1", + /* 127 */ "hash2", "imiss", "icmp", "rpa" +}; + +char *register_names_604[] = +{ + COMMON_UISA_REG_NAMES, + PPC_UISA_SPR_NAMES, + PPC_SEGMENT_REG_NAMES, + PPC_32_OEA_SPR_NAMES, + /* 119 */ "hid0", "hid1", "iabr", "dabr", "pir", "mmcr0", "pmc1", "pmc2", + /* 127 */ "sia", "sda" +}; + +char *register_names_750[] = +{ + COMMON_UISA_REG_NAMES, + PPC_UISA_SPR_NAMES, + PPC_SEGMENT_REG_NAMES, + PPC_32_OEA_SPR_NAMES, + /* 119 */ "hid0", "hid1", "iabr", "dabr", "", "ummcr0", "upmc1", "upmc2", + /* 127 */ "usia", "ummcr1", "upmc3", "upmc4", "mmcr0", "pmc1", "pmc2", + /* 134 */ "sia", "mmcr1", "pmc3", "pmc4", "l2cr", "ictc", "thrm1", "thrm2", + /* 142 */ "thrm3" +}; + + +/* Information about a particular processor variant. */ +struct variant +{ + /* Name of this variant. */ + char *name; + + /* English description of the variant. */ + char *description; + + /* Table of register names; registers[R] is the name of the register + number R. */ + int num_registers; + char **registers; +}; + +#define num_registers(list) (sizeof (list) / sizeof((list)[0])) + + +/* Information in this table comes from the following web sites: + IBM: http://www.chips.ibm.com:80/products/embedded/ + Motorola: http://www.mot.com/SPS/PowerPC/ + + I'm sure I've got some of the variant descriptions not quite right. + Please report any inaccuracies you find to GDB's maintainer. + + If you add entries to this table, please be sure to allow the new + value as an argument to the --with-cpu flag, in configure.in. */ + +static struct variant +variants[] = +{ + { "ppc-uisa", "PowerPC UISA - a PPC processor as viewed by user-level code", + num_registers (register_names_uisa), register_names_uisa }, + { "rs6000", "IBM RS6000 (\"POWER\") architecture, user-level view", + num_registers (register_names_rs6000), register_names_rs6000 }, + { "403", "IBM PowerPC 403", + num_registers (register_names_403), register_names_403 }, + { "403GC", "IBM PowerPC 403GC", + num_registers (register_names_403GC), register_names_403GC }, + { "505", "Motorola PowerPC 505", + num_registers (register_names_505), register_names_505 }, + { "860", "Motorola PowerPC 860 or 850", + num_registers (register_names_860), register_names_860 }, + { "601", "Motorola PowerPC 601", + num_registers (register_names_601), register_names_601 }, + { "602", "Motorola PowerPC 602", + num_registers (register_names_602), register_names_602 }, + { "603", "Motorola/IBM PowerPC 603 or 603e", + num_registers (register_names_603), register_names_603 }, + { "604", "Motorola PowerPC 604 or 604e", + num_registers (register_names_604), register_names_604 }, + { "750", "Motorola/IBM PowerPC 750 or 750", + num_registers (register_names_750), register_names_750 }, + { 0, 0, 0, 0 } +}; + + +static struct variant *current_variant; + +char * +rs6000_register_name (int i) +{ + if (i < 0 || i >= NUM_REGS) + error ("GDB bug: rs6000-tdep.c (rs6000_register_name): strange register number"); + + return ((i < current_variant->num_registers) + ? current_variant->registers[i] + : ""); +} + + +static void +install_variant (struct variant *v) +{ + current_variant = v; +} + + +/* Look up the variant named NAME in the `variants' table. Return a + pointer to the struct variant, or null if we couldn't find it. */ +static struct variant * +find_variant_by_name (char *name) +{ + int i; + + for (i = 0; variants[i].name; i++) + if (! strcmp (name, variants[i].name)) + return &variants[i]; + + return 0; +} + + +/* Install the PPC/RS6000 variant named NAME in the `variants' table. + Return zero if we installed it successfully, or a non-zero value if + we couldn't do it. + + This might be useful to code outside this file, which doesn't want + to depend on the exact indices of the entries in the `variants' + table. Just make it non-static if you want that. */ +static int +install_variant_by_name (char *name) +{ + struct variant *v = find_variant_by_name (name); + + if (v) + { + install_variant (v); + return 0; + } + else + return 1; +} + + +static void +list_variants () +{ + int i; + + printf_filtered ("GDB knows about the following PowerPC and RS6000 variants:\n"); + + for (i = 0; variants[i].name; i++) + printf_filtered (" %-8s %s\n", + variants[i].name, variants[i].description); +} + + +static void +show_current_variant () +{ + printf_filtered ("PowerPC / RS6000 processor variant is set to `%s'.\n", + current_variant->name); +} + + +static void +set_processor (char *arg, int from_tty) +{ + int i; + + if (! arg || arg[0] == '\0') + { + list_variants (); + return; + } + + if (install_variant_by_name (arg)) + { + error_begin (); + fprintf_filtered (gdb_stderr, + "`%s' is not a recognized PowerPC / RS6000 variant name.\n\n", arg); + list_variants (); + return_to_top_level (RETURN_ERROR); + } + + show_current_variant (); +} + +static void +show_processor (char *arg, int from_tty) +{ + show_current_variant (); +} + + + +/* Initialization code. */ + +void +_initialize_rs6000_tdep () +{ + /* FIXME, this should not be decided via ifdef. */ +#ifdef GDB_TARGET_POWERPC + tm_print_insn = gdb_print_insn_powerpc; +#else + tm_print_insn = print_insn_rs6000; +#endif + + /* I don't think we should use the set/show command arrangement + here, because the way that's implemented makes it hard to do the + error checking we want in a reasonable way. So we just add them + as two separate commands. */ + add_cmd ("processor", class_support, set_processor, + "`set processor NAME' sets the PowerPC/RS6000 variant to NAME.\n\ +If you set this, GDB will know about the special-purpose registers that are\n\ +available on the given variant.\n\ +Type `set processor' alone for a list of recognized variant names.", + &setlist); + add_cmd ("processor", class_support, show_processor, + "Show the variant of the PowerPC or RS6000 processor in use.\n\ +Use `set processor' to change this.", + &showlist); + + /* Set the current PPC processor variant. */ + { + int status = 1; + +#ifdef TARGET_CPU_DEFAULT + status = install_variant_by_name (TARGET_CPU_DEFAULT); +#endif + + if (status) + { +#ifdef GDB_TARGET_POWERPC + install_variant_by_name ("ppc-uisa"); +#else + install_variant_by_name ("rs6000"); +#endif + } + } +} -- cgit v1.1