Age | Commit message (Collapse) | Author | Files | Lines |
|
gas/ChangeLog:
* NEWS: Add support for Intel PREFETCHI instruction.
* config/tc-i386.c (load_insn_p): Use prefetch* to fold all prefetches.
(md_assemble): Add warning for illegal input of PREFETCHI.
* doc/c-i386.texi: Document .prefetchi.
* testsuite/gas/i386/i386.exp: Run PREFETCHI tests.
* testsuite/gas/i386/x86-64-lfence-load.d: Add PREFETCHI.
* testsuite/gas/i386/x86-64-lfence-load.s: Likewise.
* testsuite/gas/i386/x86-64-prefetch.d: New test.
* testsuite/gas/i386/x86-64-prefetchi-intel.d: Likewise.
* testsuite/gas/i386/x86-64-prefetchi-inval-register.d: Likewise..
* testsuite/gas/i386/x86-64-prefetchi-inval-register.s: Likewise.
* testsuite/gas/i386/x86-64-prefetchi-warn.l: Likewise.
* testsuite/gas/i386/x86-64-prefetchi-warn.s: Likewise.
* testsuite/gas/i386/x86-64-prefetchi.d: Likewise.
* testsuite/gas/i386/x86-64-prefetchi.s: Likewise.
opcodes/ChangeLog:
* i386-dis.c (reg_table): Add MOD_0F18_REG_6 and MOD_0F18_REG_7
(x86_64_table): Add X86_64_0F18_REG_6_MOD_0 and X86_64_0F18_REG_7_MOD_0.
(mod_table): Add MOD_0F18_REG_6 and MOD_0F18_REG_7.
(prefix_table): Add PREFIX_0F18_REG_6_MOD_0_X86_64 and
PREFIX_0F18_REG_7_MOD_0_X86_64.
(PREFETCHI_Fixup): New.
* i386-gen.c (cpu_flag_init): Add CPU_PREFETCHI_FLAGS.
(cpu_flags): Add CpuPREFETCHI.
* i386-opc.h (CpuPREFETCHI): New.
(i386_cpu_flags): Add cpuprefetchi.
* i386-opc.tbl: Add Intel PREFETCHI instructions.
* i386-init.h: Regenerated.
* i386-tbl.h: Likewise.
|
|
|
|
RISC-V Psabi pr196,
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/196
bfd/
* elfxx-riscv.c (riscv_release_subset_list): Free arch_str if needed.
(riscv_copy_subset_list): Copy arch_str as well.
* elfxx-riscv.h (riscv_subset_list_t): Store arch_str for each subset list.
gas/
* config/tc-riscv.c (riscv_reset_subsets_list_arch_str): Update the
architecture string in the subset_list.
(riscv_set_arch): Call riscv_reset_subsets_list_arch_str after parsing new
architecture string.
(s_riscv_option): Likewise.
(need_arch_map_symbol): New boolean, used to indicate if .option
directives do affect instructions.
(make_mapping_symbol): New boolean parameter reset_seg_arch_str. Need to
generate $x+arch for MAP_INSN, and then store it into tc_segment_info_data
if reset_seg_arch_str is true.
(riscv_mapping_state): Decide if we need to add $x+arch for MAP_INSN. For
now, only add $x+arch if the architecture strings in subset list and segment
are different. Besides, always add $x+arch at the start of section, and do
not add $x+arch for code alignment, since rvc for alignment can be judged
from addend of R_RISCV_ALIGN.
(riscv_remove_mapping_symbol): If current and previous mapping symbol have
same value, then remove the current $x only if the previous is $x+arch;
Otherwise, always remove previous.
(riscv_add_odd_padding_symbol): Updated.
(riscv_check_mapping_symbols): Don't need to add any $x+arch if
need_arch_map_symbol is false, so changed them to $x.
(riscv_frag_align_code): Updated since riscv_mapping_state is changed.
(riscv_init_frag): Likewise.
(s_riscv_insn): Likewise.
(riscv_elf_final_processing): Call riscv_release_subset_list to release
subset_list of riscv_rps_as, rather than only release arch_str in the
riscv_write_out_attrs.
(riscv_write_out_attrs): No need to call riscv_arch_str, just get arch_str
from subset_list of riscv_rps_as.
* config/tc-riscv.h (riscv_segment_info_type): Record current $x+arch mapping
symbol of each segment.
* testsuite/gas/riscv/mapping-0*: Merged and replaced by mapping.s.
* testsuite/gas/riscv/mapping.s: New testcase, to test most of the cases in
one file.
* testsuite/gas/riscv/mapping-symbols.d: Likewise.
* testsuite/gas/riscv/mapping-dis.d: Likewise.
* testsuite/gas/riscv/mapping-non-arch.s: New testcase for the case that
does need any $x+arch.
* testsuite/gas/riscv/mapping-non-arch.d: Likewise.
* testsuite/gas/riscv/option-arch-01a.d: Updated.
opcodes/
* riscv-dis.c (riscv_disassemble_insn): Set riscv_fpr_names back to
riscv_fpr_names_abi or riscv_fpr_names_numeric when zfinx is disabled
for some specfic code region.
(riscv_get_map_state): Recognized mapping symbols $x+arch, and then reset
the architecture string once the ISA is different.
|
|
gas/
* config/tc-ppc.c (md_assemble): Only check for prefix opcodes.
* testsuite/gas/ppc/rfc02658.s: New test.
* testsuite/gas/ppc/rfc02658.d: Likewise.
* testsuite/gas/ppc/ppc.exp: Run it.
opcodes/
* ppc-opc.c (XMSK8, P_GERX4_MASK, P_GERX2_MASK, XX3GERX_MASK): New.
(powerpc_opcodes): Add dmxvi8gerx4pp, dmxvi8gerx4, dmxvf16gerx2pp,
dmxvf16gerx2, dmxvbf16gerx2pp, dmxvf16gerx2np, dmxvbf16gerx2,
dmxvi8gerx4spp, dmxvbf16gerx2np, dmxvf16gerx2pn, dmxvbf16gerx2pn,
dmxvf16gerx2nn, dmxvbf16gerx2nn, pmdmxvi8gerx4pp, pmdmxvi8gerx4,
pmdmxvf16gerx2pp, pmdmxvf16gerx2, pmdmxvbf16gerx2pp, pmdmxvf16gerx2np,
pmdmxvbf16gerx2, pmdmxvi8gerx4spp, pmdmxvbf16gerx2np, pmdmxvf16gerx2pn,
pmdmxvbf16gerx2pn, pmdmxvf16gerx2nn, pmdmxvbf16gerx2nn.
|
|
gas/
* config/tc-ppc.c (pre_defined_registers): Add dense math registers.
(md_assemble): Check dmr specified in correct operand.
* testsuite/gas/ppc/outerprod.s <dmsetaccz, dmxvbf16ger2,
dmxvbf16ger2nn, dmxvbf16ger2np, dmxvbf16ger2pn, dmxvbf16ger2pp,
dmxvf16ger2, dmxvf16ger2nn, dmxvf16ger2np, dmxvf16ger2pn, dmxvf16ger2pp,
dmxvf32ger, dmxvf32gernn, dmxvf32gernp, dmxvf32gerpn, dmxvf32gerpp,
dmxvf64ger, dmxvf64gernn, dmxvf64gernp, dmxvf64gerpn, dmxvf64gerpp,
dmxvi16ger2, dmxvi16ger2pp, dmxvi16ger2s, dmxvi16ger2spp, dmxvi4ger8,
dmxvi4ger8pp, dmxvi8ger4, dmxvi8ger4pp, dmxvi8ger4spp, dmxxmfacc,
dmxxmtacc, pmdmxvbf16ger2, pmdmxvbf16ger2nn, pmdmxvbf16ger2np,
pmdmxvbf16ger2pn, pmdmxvbf16ger2pp, pmdmxvf16ger2, pmdmxvf16ger2nn,
pmdmxvf16ger2np, pmdmxvf16ger2pn, pmdmxvf16ger2pp, pmdmxvf32ger,
pmdmxvf32gernn, pmdmxvf32gernp, pmdmxvf32gerpn, pmdmxvf32gerpp,
pmdmxvf64ger, pmdmxvf64gernn, pmdmxvf64gernp, pmdmxvf64gerpn,
pmdmxvf64gerpp, pmdmxvi16ger2, pmdmxvi16ger2pp, pmdmxvi16ger2s,
pmdmxvi16ger2spp, pmdmxvi4ger8, pmdmxvi4ger8pp, pmdmxvi8ger4,
pmdmxvi8ger4pp, pmdmxvi8ger4spp>: Add new tests.
* testsuite/gas/ppc/outerprod.d: Likewise.
* testsuite/gas/ppc/rfc02653.s: New test.
* testsuite/gas/ppc/rfc02653.d: Likewise.
* testsuite/gas/ppc/ppc.exp: Run it.
include/
* opcode/ppc.h (PPC_OPERAND_DMR): Define. Renumber following
PPC_OPERAND defines.
opcodes/
* ppc-dis.c (print_insn_powerpc): Prepend 'dm' when printing DMR regs.
* ppc-opc.c (insert_p2, (extract_p2, (insert_xa5, (extract_xa5,
insert_xb5, (extract_xb5): New functions.
(insert_xa6a, extract_xa6a, insert_xb6a, extract_xb6a): Disallow
operand overlap only on Power10.
(DMR, DMRAB, P1, P2, XA5p, XB5p, XDMR_MASK, XDMRDMR_MASK, XX2ACC_MASK,
XX2DMR_MASK, XX3DMR_MASK): New defines.
(powerpc_opcodes): Add dmmr, dmsetaccz, dmsetdmrz, dmxor, dmxvbf16ger2,
dmxvbf16ger2nn, dmxvbf16ger2np, dmxvbf16ger2pn, dmxvbf16ger2pp,
dmxvf16ger2, dmxvf16ger2nn, dmxvf16ger2np, dmxvf16ger2pn, dmxvf16ger2pp,
dmxvf32ger, dmxvf32gernn, dmxvf32gernp, dmxvf32gerpn, dmxvf32gerpp,
dmxvf64ger, dmxvf64gernn, dmxvf64gernp, dmxvf64gerpn, dmxvf64gerpp,
dmxvi16ger2, dmxvi16ger2pp, dmxvi16ger2s, dmxvi16ger2spp, dmxvi4ger8,
dmxvi4ger8pp, dmxvi8ger4, dmxvi8ger4pp, dmxvi8ger4spp, dmxxextfdmr256,
dmxxextfdmr512, dmxxinstdmr256, dmxxinstdmr512, dmxxmfacc, dmxxmtacc,
pmdmxvbf16ger2, pmdmxvbf16ger2nn, pmdmxvbf16ger2np, pmdmxvbf16ger2pn,
pmdmxvbf16ger2pp, pmdmxvf16ger2, pmdmxvf16ger2nn, pmdmxvf16ger2np,
pmdmxvf16ger2pn, pmdmxvf16ger2pp, pmdmxvf32ger, pmdmxvf32gernn,
pmdmxvf32gernp, pmdmxvf32gerpn, pmdmxvf32gerpp, pmdmxvf64ger,
pmdmxvf64gernn, pmdmxvf64gernp, pmdmxvf64gerpn, pmdmxvf64gerpp,
pmdmxvi16ger2, pmdmxvi16ger2pp, pmdmxvi16ger2s, pmdmxvi16ger2spp,
pmdmxvi4ger8, pmdmxvi4ger8pp, pmdmxvi8ger4, pmdmxvi8ger4pp,
pmdmxvi8ger4spp.
|
|
When no AVX512-specific functionality is in use, the disassembly of
AVX512VL insns is indistinguishable from their AVX counterparts (if such
exist). Emit the {evex} pseudo-prefix in such cases.
Where applicable drop stray uses of PREFIX_OPCODE from table entries.
|
|
gas/
* NEWS: Add support for Intel AMX-FP16 instruction.
* config/tc-i386.c: Add amx_fp16.
* doc/c-i386.texi: Document .amx_fp16.
* testsuite/gas/i386/i386.exp: Add AMX-FP16 tests.
* testsuite/gas/i386/x86-64-amx-fp16-intel.d: New test.
* testsuite/gas/i386/x86-64-amx-fp16.d: Likewise.
* testsuite/gas/i386/x86-64-amx-fp16.s: Likewise.
* testsuite/gas/i386/x86-64-amx-fp16-bad.d: Likewise.
* testsuite/gas/i386/x86-64-amx-fp16-bad.s: Likewise.
opcodes/
* i386-dis.c (MOD_VEX_0F385C_X86_64_P_3_W_0): New.
(VEX_LEN_0F385C_X86_64_P_3_W_0_M_0): Likewise.
(VEX_W_0F385C_X86_64_P_3): Likewise.
(prefix_table): Add VEX_W_0F385C_X86_64_P_3.
(vex_len_table): Add VEX_LEN_0F385C_X86_64_P_3_W_0_M_0.
(vex_w_table): Add VEX_W_0F385C_X86_64_P_3.
(mod_table): Add MOD_VEX_0F385C_X86_64_P_3_W_0.
* i386-gen.c (cpu_flag_init): Add AMX-FP16_FLAGS.
(CPU_ANY_AMX_TILE_FLAGS): Add CpuAMX_FP16.
(cpu_flags): Add CpuAMX-FP16.
* i386-opc.h (enum): Add CpuAMX-FP16.
(i386_cpu_flags): Add cpuamx_fp16.
* i386-opc.tbl: Add Intel AMX-FP16 instruction.
* i386-init.h: Regenerate.
* i386-tbl.h: Likewise.
|
|
By putting the templates after their AVX512 counterparts, the AVX512
flavors will be picked by default. That way the need to always use {vex}
ceases to exist once respective CPU features (AVX512-VNNI or AVX512VL as
a whole) have been disabled. This way the need for the PseudoVexPrefix
attribute also disappears.
|
|
Since AVX-VNNI requires AVX2, disable AVX-VNNI when disabling AVX2.
* i386-gen.c (cpu_flag_init): Add CpuAVX_VNNI to
CPU_ANY_AVX2_FLAGS.
* i386-init.h: Regenerate.
|
|
AMX-TILE is a prereq to these, as already correctly expressed by
CPU_ANY_AMX_TILE_FLAGS. Express the dependency also in the reverse
("positive") direction.
|
|
Omitting predicate size specifier in vector form of {sq, uq, }{decp, incp} is deprecated and will be prohibited in a future release of the aarch64,
see https://developer.arm.com/documentation/ddi0602/2021-09/SVE-Instructions/DECP--vector---Decrement-vector-by-count-of-true-predicate-elements-.
This allows explicit size specifier, e.g. `decp z0.h, p0.h`, for predicate operand of these SVE instructions.
The existing behaviour of not requiring the specifier is preserved.
And the disasembly is with the specifier with this patch.
The GAS tests passed under our local tests.
opcodes/
* aarch64-asm.c: Modify `sve_size_hsd` encoding.
* aarch64-tbl.h (aarch64_opcode_table): Add QUALS's type OP_SVE_Vv_HSD
for decp, incp, sqdecp, sqincp, uqdecp and uqincp.
gas/
* testsuite/gas/aarch64/sve-movprfx_23.s: Update movprfx_23 testcase's
test_sametwo macro, where take the predicate size specifier.
* testsuite/gas/aarch64/sve-movprfx_23.d: Update movprfx_23 testcase's
expected disassembly.
* testsuite/gas/aarch64/sve-movprfx_23.l: Update movprfx_23 testcase's
expected assembler messages.
* testsuite/gas/aarch64/sve.s: Add sve testcase's instructions for
decp, incp, sqdecp, sqincp, uqdecp and uqincp, which take the
predicate size specifier.
* testsuite/gas/aarch64/sve.d: Update sve testcase's expected
disassembly.
Signed-off-by: CaiJingtao <caijingtao@huawei.com>
|
|
Current F_STRICT qualifier checking is enforced after the fact
rather than as part of the match. This makes it impossible to
have, e.g.:
QLF2(S_D, S_D)
QLF2(S_D, NIL)
in the same list.
opcodes/
* aarch64-opc.c (aarch64_find_best_match): Handle F_STRICT here
rather than...
(match_operands_qualifier): ...here.
|
|
These require EVEX.W=0. Use %XS to facilitate the checking, even if for
the AVX512_4VNNIW ones this is kind of an abuse (as 's' there stands for
"signed", not "single").
While there also correct the 3rd operand for the AVX512_4VNNIW entries:
Only the memory form is allowed (just like for AVX512_4FMAPS, where the
correct type is already in use).
|
|
Make %XV also print the separating blank in the VEX case, while making
it do nothing for EVEX-encoded insns. This way the AVX-VNNI entries
can be re-used for AVX512-VNNI, at the same time fixing the lack of
EVEX.W decoding.
For the AVX-VNNI ones further make sure only VEX.66 forms are actually
decoded.
|
|
I noticed recently that se_rfmci, a VLE mode instruction, was being
accepted by non-VLE cpus, and also that se_rfmci by itself in a
section did not cause SHF_PPC_VLE to be set. ie. both testcases added
by this patch fail without the changes to tc-ppc.c here.
Also, VLE, SPE2 and LSP insns were not accepted by the assembler with
-many nor were SPE2 and LSP being disassembled with -Many.
gas/
* config/tc-ppc.c (ppc_setup_opcodes): Wrap long lines. Add
vle_opcodes when PPC_OPCODE_VLE or PPC_OPCODE_ANY. Simplify
disassembler index segment checks. Add LSP and SPE2 opcodes
when PPC_OPCODE_ANY too.
(md_assemble): Correct logic adding PPC_APUINFO_VLE and
SHF_PPC_VLE.
* testsuite/gas/ppc/se_rfmci.s
* testsuite/gas/ppc/se_rfmci.d,
* testsuite/gas/ppc/se_rfmci_bad.d: New tests.
* testsuite/gas/ppc/ppc.exp: Run them.
opcodes/
* ppc-dis.c (print_insn_powerpc): Disassemble SPE2 and LSP insn
when -Many.
* ppc-opc.c (vle_opcodes <se_rfmci>): Comment.
|
|
Where sub and subf forms of an instruction exist we generally
disassemble to the extended insn sub form rather than the underlying
machine subf instruction. Do so for SPE evsubw and evsubiw too.
spe_ambiguous.d always was a bit too optimistic. There is no sensible
way to disassemble identical bytes back to different and original
source. Instead change the test to check -Mraw results.
gas/
* testsuite/gas/ppc/ppc.exp: Run spe_ambiguous test.
* testsuite/gas/ppc/spe.d: Expect evsubw and evsubiw rather than
evsubfw and evsubifw.
* testsuite/gas/ppc/spe_ambiguous.s: Test evnor form equivalent
to evnot.
* testsuite/gas/ppc/spe_ambiguous.d: Test Mraw.
opcodes/
* ppc-opc.c (powerpc_opcodes): Move evsubw before evsubfw and
evsubiw before evsubifw and mark EXT.
|
|
It has bothered me for a long time that we have disabled LSP (and SPE)
tests. Also the LSP test comment indicating there is something wrong
with get_powerpc_dialect. I don't think there is. Decoding of a VLE
instruction depends on whether the processor is in VLE mode (some
processors support both VLE and standard PPC) which we flag per
section with SHF_PPC_VLE for decoding when disassembling.
Background: Some versions of powerpc e200 have "Lightweight Signal
Processing" support, examples being e200z215 and e200z425. As far as
I can tell, LSP and SPE are mutually exclusive. This seems to be
borne out by insn encoding, for example LSP "zvaddih" and SPE "evaddw"
have the same encoding. So none of the processor descriptions in
ppc_opts ought to have both PPC_OPCODE_LSP and PPC_OPCODE_SPE/2, if we
want disassembly to work. I also could not find anything to suggest
that the LSP insns are enabled only in VLE mode, which means the LSP
insns should not be in vle_opcodes.
Fix all this by moving the LSP insns to their own table, and add a new
e200z2 cpu entry with LSP support, removing LSP from -me200z4 and from
-mvle. (Yes, I know, as I said above some of the e200z4 processors
have LSP. Others have SPE. It's hard to choose good options. Think
of z2 as meaning earlier, z4 as later.) Also add -mlsp to allow
adding the LSP insn set.
include/
* opcode/ppc.h (lsp_opcodes, lsp_num_opcodes): Declare.
(LSP_OP_TO_SEG): Define.
binutils/
* doc/binutils.texi: Update ppc docs.
gas/
* config/tc-ppc.c (ppc_setup_opcodes): Add lsp opcodes to ppc_hash.
* doc/c-ppc.texi: Document e200 and lsp.
* testsuite/gas/ppc/lsp-checks.d: Assemble with -me200z2.
* testsuite/gas/ppc/lsp.d: Likewise, disassembly too.
* testsuite/gas/ppc/ppc.exp: Don't xfail lsp test.
opcodes/
* ppc-dis.c (ppc_opts): Add e200z2 and lsp. Don't set
PPC_OPCODE_LSP for e200z4 or vle.
(ppc_parse_cpu): Mutually exclude LSP and SPE.
(LSP_OPCD_SEGS): Define.
(lsp_opcd_indices): New array.
(disassemble_init_powerpc): Init lsp_opcd_indices.
(lookup_lsp): New function.
(print_insn_powerpc): Call it.
* ppc-opc.c: Include libiberty.h for ARRAY_SIZE and use throughout.
(vle_opcodes): Move LSP opcodes to..
(lsp_opcodes): ..here, and sort.
(lsp_num_opcodes): New.
|
|
Before changing the core disassembler, we take care of minor code clarity
issues and improve readability.
This commit removes unused variable last_map_state (set by the
print_insn_riscv function but not read anywhere else).
opcodes/ChangeLog:
* riscv-dis.c (last_map_state): Remove.
(print_insn_riscv): Remove setting last_map_state.
|
|
Before changing the core disassembler, we take care of minor code clarity
issues and improve readability.
Since xlen variable is not (and should not) used outside riscv-dis.c,
this commit makes this variable static.
opcodes/ChangeLog:
* riscv-dis.c (xlen): Make this variable static.
|
|
Before changing the core disassembler, we take care of minor code clarity
issues and improve readability.
This commit replaces uses of int with bool whenever possible.
opcodes/ChangeLog:
* riscv-dis.c (no_aliases) Change type to bool.
(set_default_riscv_dis_options): Use boolean.
(parse_riscv_dis_option_without_args): Likewise.
(riscv_disassemble_insn): Use boolean keywords.
|
|
Before changing the core disassembler, we take care of minor code clarity
issues and improve readability.
This commit takes care of improper spacing for code clarity.
opcodes/ChangeLog:
* riscv-dis.c (riscv_disassemble_insn): Tidying with spacing.
|
|
Before changing the core disassembler, we take care of minor code clarity
issues and improve readability.
First, we need to clarify the roles of variables and code portions.
opcodes/ChangeLog:
* riscv-dis.c (xlen): Move before default_isa_spec. Add comment.
(default_isa_spec, default_priv_spec): Add comment.
(riscv_gpr_names, riscv_fpr_names): Likewise.
(parse_riscv_dis_option_without_args): Likewise.
(parse_riscv_dis_option, parse_riscv_dis_options): Likewise.
(maybe_print_address): Likewise.
(riscv_disassemble_insn): Fix comment about the Zfinx "extension".
Add comment about the riscv_multi_subset_supports call.
|
|
Because all standard hints must be placed before corresponding instruction
for the disassembler, they may taint basic RVI instruction section.
This commit moves all standard hints before all basic RVI instructions
to improve maintainability.
opcodes/ChangeLog:
* riscv-opc.c (riscv_opcodes): Move all standard hints before all
standard instructions.
|
|
This is a part of small tidying (declare tables in riscv-opc.c).
include/ChangeLog:
* opcode/riscv.h (riscv_rm, riscv_pred_succ): Move declarations to
opcodes/riscv-opc.c. New non-static definitions.
opcodes/ChangeLog:
* riscv-opc.c (riscv_rm, riscv_pred_succ): Move from
include/opcode/riscv.h. Add description.
|
|
The operand type "Xl(...)" denotes that (...) is a literal. Specifically,
they are intended to be a constant immediate value.
This commit prints "Xl(...)" operand with dis_style_immediate style,
not dis_style_text.
opcodes/ChangeLog:
* riscv-dis.c (print_insn_args): Use dis_style_immediate on
the constant literal of the "Xl..." operand.
|
|
This commit fixes two minor typing-related issues for
T-Head immediate operands.
1. A signed type must be specified when printing with %i.
2. unsigned/signed int is not portable enough for max 32-bit immediates.
Instead, we should use unsigned/signed long.
The format string is changed accordingly.
opcodes/ChangeLog:
* riscv-dis.c (print_insn_args): Fix T-Head immediate types on
printing.
|
|
On the RISC-V disassembler, some separators have non-text style when
printed with another word with another style.
This commit splits those, making sure that those comma and tabs are printed
with the "text" style.
opcodes/ChangeLog:
* riscv-dis.c (print_insn_args): Split and print the comma as
text. (riscv_disassemble_insn): Split and print tabs as text.
(riscv_disassemble_data): Likewise.
|
|
This commit makes types of printf arguments on riscv_disassemble_data
as small as possible (as long as we can preserve the portability) to reduce
the cost of printf (especially on 32-bit host).
opcodes/ChangeLog:
* riscv-dis.c (riscv_disassemble_data): Use smallest possible type
to printing data.
|
|
"%x" format specifier requires unsigned type, not int. This commit
fixes this issue on the RISC-V disassembler.
opcodes/ChangeLog:
* riscv-dis.c (print_insn_args): Fix printf argument types where
the format specifier is "%x".
|
|
This commit fixes certain print calls on immediate operands to have
dis_style_immediate.
opcodes/ChangeLog:
* riscv-dis.c (print_insn_args): Fix immediates to have
"immediate" style. (riscv_disassemble_data): Likewise.
|
|
While the Arm v8 ARM (rev I-a) still doesn't mention this alias, it is
(typically via a macro) already in use in kernels and alike.
|
|
Because riscv_insn_length started to support instructions up to 176-bit,
we need to increase packet buffer size to 176-bit in size.
include/ChangeLog:
* opcode/riscv.h (RISCV_MAX_INSN_LEN): Max instruction length for
use in buffer size.
opcodes/ChangeLog:
* riscv-dis.c (print_insn_riscv): Increase buffer size for max
176-bit length instructions.
|
|
Just added suffix _INX for those INSN_CLASS should be enough to represent
their fpr can be replaced by gpr.
|
|
While reviewing another patch I noticed that RISC-V CSR names are
given the text style, not the register style. This patch fixes this
mistake.
|
|
This location of supervisor instructions is out of place (because many other
privileged instructions are located at the tail but after the supervisor
instructions, we have many unprivileged instructions including bit
manipulation / crypto / vector instructions).
Not only that, this is harmful to implement pseudoinstructions in the latest
'P'-extension proposal (CLROV and RDOV). This commit moves supervisor
instructions after all unprivileged instructions.
opcodes/ChangeLog:
* riscv-opc.c (riscv_opcodes): Adjust indents. Move supervisor
instructions after all unprivileged instructions.
|
|
This commit relaxes requirements to "fmv.s" instructions from 'F' to ('F'
or 'Zfinx'). The same applies to "fmv.d" and "fmv.q". Note that 'Zhinx'
extension already contains "fmv.h" instruction (as well as 'Zfh').
gas/ChangeLog:
* testsuite/gas/riscv/zfinx.s: Add "fmv.s" instruction.
* testsuite/gas/riscv/zfinx.d: Likewise.
* testsuite/gas/riscv/zdinx.s: Add "fmv.d" instruction.
* testsuite/gas/riscv/zdinx.d: Likewise.
* testsuite/gas/riscv/zqinx.d: Add "fmv.q" instruction.
* testsuite/gas/riscv/zqinx.s: Likewise.
opcodes/ChangeLog:
* riscv-opc.c (riscv_opcodes): Relax requirements to "fmv.[sdq]"
instructions to support those in 'Zfinx'/'Zdinx'/'Zqinx'.
|
|
Pre- and post-increment/decrement are side effects, the behavior of
which is undefined when combined with passing an address of the accessed
variable in the same function invocation. There's no need for the
increments here - simply adding 1 achieves the intended effect without
triggering compiler diagnostics (which are fatal with -Werror).
|
|
FENCE.TSO isn't an alias. ZIP and UNZIP in the long run likely are, but
presently they aren't. This fixes disassembly of these insns with
-Mno-aliases.
|
|
For disassembly to pick up aliases in favor of underlying insns (helping
readability in the common case), the aliases need to come ahead of the
"base" insns. Slightly more code movement is needed because of insns
with the same name needing to stay next to each other.
Note that the "rorw" alias entry also has the missing INSN_ALIAS added
here.
Clone a few testcases to exercise -Mno-aliases some more, better
covering the differences between the default and that disassembly mode.
|
|
With the command in the rule merely being "echo", i386-tbl.h won't be
rebuilt if missing, when at the same time i386-init.h is present and
up-to-date. Use a pattern rule instead to express the multiple targets
correctly (the &: rule separator is supported only by GNU make 4.3 and
newer). Note that now, for the opposite case to work (i386-tbl.h is
up-to-date but i386-init.h is missing), i386-init.h also needs
mentioning as a dependency somewhere: Add a fake dependency for
i386-opc.lo ("fake" because i386-opc.c doesn't include that header).
At the same time use $(AM_V_GEN) in the actual rule, replacing the
earlier (open-coded) "echo". And while there also drop a duplicate
dependency of i386-gen.o on i386-opc.h.
|
|
While in some cases deriving an AT&T-style suffix from an Intel syntax
memory operand size specifier is necessary, in many cases this is not
only pointless, but has led to the introduction of various workarounds:
Excessive use of IgnoreSize and NoRex64 as well as the ToDword and
ToQword attributes. Suppress suffix derivation when we can clearly tell
that the memory operand's size isn't going to be needed to infer the
possible need for the low byte/word opcode bit or an operand size prefix
(0x66 or REX.W).
As a result ToDword and ToQword can be dropped entirely, plus a fair
number of IgnoreSize and NoRex64 can also be got rid of. Note that
IgnoreSize needs to remain on legacy encoded SIMD insns with GPR
operand, to avoid emitting an operand size prefix in 16-bit mode. (Since
16-bit code using SIMD insns isn't well tested, clone an existing
testcase just enough to cover a few insns which are potentially
problematic but are being touched here.)
Note that while folding the VCVT{,T}S{S,D}2SI templates, VCVT{,T}SH2SI
isn't included there. This is to fulfill the request of not allowing L
and Q suffixes there, despite the inconsistency with VCVT{,T}S{S,D}2SI.
|
|
PR 29626
* arm-dis.c (mapping_symbol_for_insn): Return false on zero
symtab_size. Delete later symtab_size test.
|
|
This patch adds support for the Zawrs ISA extension
("wrs.nto" and "wrs.sto" instructions).
The specification can be found here:
https://github.com/riscv/riscv-zawrs/blob/main/zawrs.adoc
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
|
|
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadMemPair extension, a collection of T-Head specific
two-GP-register memory operations.
The 'th' prefix and the "XTheadMemPair" extension are documented in a PR
for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
|
|
This patch introduces support for arbitrary literal instruction
arguments, that are not encoded in the opcode.
A typical use case for this feature would be an instruction that
applies an implicit shift by a constant value on an immediate
(that is a real operand). With this patch it is possible to make
this shift visible in the dissasembly and support such artificial
parameter as part of the asssembly code.
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
|
|
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadMemIdx extension, a collection of T-Head specific
GPR memory access instructions.
The 'th' prefix and the "XTheadMemIdx" extension are documented in a PR
for the RISC-V toolchain conventions ([1]).
In total XTheadCmo introduces the following 44 instructions
(BU,HU,WU only for loads (zero-extend instead of sign-extend)):
* {L,S}{D,W,WU,H,HU,B,BU}{IA,IB} rd, rs1, imm5, imm2
* {L,S}R{D,W,WU,H,HU,B,BU} rd, rs1, rs2, imm2
* {L,S}UR{D,W,WU,H,HU,B,BU} rd, rs1, rs2, imm2
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
|
|
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadFMemIdx extension, a collection of
T-Head-specific floating-point memory access instructions.
The 'th' prefix and the "XTheadFMemIdx" extension are documented
in a PR for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
|
|
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadMac extension, a collection of
T-Head-specific multiply-accumulate instructions.
The 'th' prefix and the "XTheadMac" extension are documented
in a PR for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
|
|
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadCondMov extension, a collection of
T-Head-specific conditional move instructions.
The 'th' prefix and the "XTheadCondMov" extension are documented
in a PR for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
|
|
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XThead{Ba,Bb,Bs} extensions, a collection of
T-Head-specific bitmanipulation instructions.
The 'th' prefix and the "XThead{Ba,Bb,Bs}" extension are documented
in a PR for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
|