Age | Commit message (Collapse) | Author | Files | Lines |
|
Rdq, Rd, and MaskR can be replaced by Edq, Ed / Rm, and MaskE
respectively, as OP_R() doesn't enforce ModRM.mod == 3, and hence where
MOD matters but hasn't been decoded yet it needs to be anyway. (The case
of converting to Rm is temporary until a subsequent change.)
|
|
The only valid (embedded or explicit) prefix being the data size one
(which is a fairly common pattern), avoid going through prefix_table[].
Instead extend the "required prefix" logic to also handle PREFIX_DATA
alone in a table entry, now used to identify this case. This requires
moving the (adjusted) ->prefix_requirement logic ahead of the printing
of stray prefixes, as the latter needs to observe the new setting of
PREFIX_DATA in used_prefixes.
Also add PREFIX_OPCODE on related entries when previously there was
mistakenly no decode step through prefix_table[].
|
|
It was quite odd for the prior operand handling to have to clear this
flag for the actual operand handling to print nothing. Have the actual
operand handling determine whether the operand is actually present.
With this {d,q}_scalar_swap_mode become unused and hence also get dropped.
|
|
Unlike the earlier ones these also need their operands adjusted. Replace
the (mis-described: there's nothing "scalar" here) {b,w}_scalar_mode by
a single new mode, with the actual unit width controlled by EVEX.W.
|
|
The operands don't allow disambiguating the insn in 64-bit mode, and
hence suffixes need to be emitted not just in AT&T mode. Achieve this
by re-using %LQ while dropping PCMPESTR_Fixup().
|
|
There's no reason to have two functions and two tables, when the AVX
functionality here is a proper superset of the SSE one.
|
|
This parallels %LW and %XW.
|
|
Since we have these macros, there's no point having unnecessary table
depth.
VFPCLASSP{S,D} are now the first instance of using two %-prefixed
macros, which has pointed out a problem with the implementation. Instead
of using custom code in various case blocks, do the macro accumulation
centralized at the top of the main loop of putop(), and zap the
accumulated macros at the bottom of that loop once it has been
processed.
|
|
VBROADCAST{F,I}32x2 are the only exceptions here.
|
|
By doing the EVEX.W decode first, in various cases VEX table entries can
be re-used.
|
|
Just like (where they exist) their AVX counterparts do for VEX.L. For
all of them the 128-bit forms are invalid.
|
|
Just like their AVX counterparts do for VEX.L.
At this occasion also make EVEX.W have the same effect as VEX.W on the
printing of VPINSR{B,W}'s operands, bringing them also in sync with
VPEXTR{B,W}.
|
|
Unlike for the EVEX-encoded versions, the VEX ones failed to decode
VEX.W. Once the necessary adjustments are done, it becomes obvious that
the EVEX and VEX table entries for VCVTPS2PH are identical and can hence
be folded.
|
|
The duplication is not only space inefficient, but also risks entries
going out of sync (some of which that I became aware of while doing this
work will get addressed subsequently). Right here note that for
VGF2P8MULB this also addresses the prior lack of EVEX.W decoding (i.e. a
first example of out of sync entries).
This introduces EXxEVexR to some VEX templates, on the basis that this
operand is benign there and only relevant when EVEX encoding ends up
reaching these entries.
|
|
There's only a single user, that that one can do fine with the
alternative, as the "Vex" aspect of the other operand kind is meaningful
only on 3-operand insns.
While doing this I noticed that I didn't need to do the same adjustment
in the EVEX tables, and voilĂ - there was a bug, which gets fixed at the
same time (see the testsuite changes).
|
|
Along the lines of 4102be5cf925 ("x86: replace EXxmm_mdq by
EXVexWdqScalar"), but in the opposite direction, replace EXdScalar/
EXqScalar by EXxmm_md/EXxmm_mq respectively, rendering d_scalar_mode and
q_scalar_mode unused. The change is done this way to improve telling
apart operands affected here from ones using EXbScalar/EXwScalar, which
work sufficiently differently. Additionally this increases similarity
between several VEX-encoded insns and their EVEX-encoded counterparts.
|
|
For major opcodes allowing only packed FP kinds of operands, i.e. the
ones where legacy and AVX decoding uses the X macro, we can do so for
AVX512 as well, by attaching to the checking logic the "EVEX.W must
match presence of embedded 66 prefix" rule. (Encodings not following
this general pattern simply may not gain the PREFIX_OPCODE attribute.)
Note that testing of the thus altered decoding has already been put in
place by "x86: correct decoding of packed-FP-only AVX encodings".
This can also be at least partly applied to scalar-FP-only insns (i.e.
V{,U}COMIS{S,D}) as well as the vector-FP forms of insns also allowing
scalar encodings (e.g. VADDP{S,D}).
Take the opportunity and also fix EVEX-encoded VMOVNTP{S,D} as well as
to-memory forms of VMOV{L,H}PS and both forms of VMOV{L,H}PD to wrongly
disassemble with only register operands.
|
|
Just like their AVX counterparts they can utilize XMVexScalar /
EXdVexScalarS / EXqVexScalarS taking care of dropping the middle operand
for their memory forms.
|
|
Since not all vector lengths are supported by scatter/gather prefetch
instructions, decode them only with supported vector lengths.
gas/
PR binutils/24719
* testsuite/gas/i386/disassem.s: Add test for vgatherpf0dps
with invalid vector length.
* testsuite/gas/i386/x86-64-disassem.s: Likewise.
* testsuite/gas/i386/disassem.d: Updated.
* testsuite/gas/i386/x86-64-disassem.d: Likewise.
opcodes/
PR binutils/24719
* i386-dis-evex-len.h: Add EVEX_LEN_0F38C6_REG_1_PREFIX_2,
EVEX_LEN_0F38C6_REG_2_PREFIX_2, EVEX_LEN_0F38C6_REG_5_PREFIX_2,
EVEX_LEN_0F38C6_REG_6_PREFIX_2, EVEX_LEN_0F38C7_R_1_P_2_W_0,
EVEX_LEN_0F38C7_R_1_P_2_W_1, EVEX_LEN_0F38C7_R_2_P_2_W_0,
EVEX_LEN_0F38C7_R_2_P_2_W_1, EVEX_LEN_0F38C7_R_5_P_2_W_0,
EVEX_LEN_0F38C7_R_5_P_2_W_1, EVEX_LEN_0F38C7_R_6_P_2_W_0 and
EVEX_LEN_0F38C7_R_6_P_2_W_1.
* i386-dis-evex-prefix.h: Update PREFIX_EVEX_0F38C6_REG_1,
PREFIX_EVEX_0F38C6_REG_2, PREFIX_EVEX_0F38C6_REG_5 and
PREFIX_EVEX_0F38C6_REG_6 entries.
* i386-dis-evex-w.h: Update EVEX_W_0F38C7_R_1_P_2,
EVEX_W_0F38C7_R_2_P_2, EVEX_W_0F38C7_R_5_P_2 and
EVEX_W_0F38C7_R_6_P_2 entries.
* i386-dis.c: Add EVEX_LEN_0F38C6_REG_1_PREFIX_2,
EVEX_LEN_0F38C6_REG_2_PREFIX_2, EVEX_LEN_0F38C6_REG_5_PREFIX_2,
EVEX_LEN_0F38C6_REG_6_PREFIX_2, EVEX_LEN_0F38C7_R_1_P_2_W_0,
EVEX_LEN_0F38C7_R_1_P_2_W_1, EVEX_LEN_0F38C7_R_2_P_2_W_0,
EVEX_LEN_0F38C7_R_2_P_2_W_1, EVEX_LEN_0F38C7_R_5_P_2_W_0,
EVEX_LEN_0F38C7_R_5_P_2_W_1, EVEX_LEN_0F38C7_R_6_P_2_W_0 and
EVEX_LEN_0F38C7_R_6_P_2_W_1 enums.
|
|
I assume this mode was needed when EVEX.W handling wasn't really correct
yet for other than 64-bit mode. It's clearly not needed anymore. Its
elimination also allows dropping the EVEX.W split of VCVT{,U}SI2SS. (For
the record, the dropped mode would have been wrong if used in any table
entry not already guaranteeing EVEX.W=1.)
|
|
Break i386-dis-evex.h into small files such that each file is included
just once.
* i386-dis-evex.h: Break into ...
* i386-dis-evex-len.h: New file.
* i386-dis-evex-mod.h: Likewise.
* i386-dis-evex-prefix.h: Likewise.
* i386-dis-evex-reg.h: Likewise.
* i386-dis-evex-w.h: Likewise.
* i386-dis.c: Include i386-dis-evex-reg.h, i386-dis-evex-prefix.h,
i386-dis-evex.h, i386-dis-evex-len.h, i386-dis-evex-w.h and
i386-dis-evex-mod.h.
|