aboutsummaryrefslogtreecommitdiff
path: root/libiberty
AgeCommit message (Expand)AuthorFilesLines
2006-10-26merge from gccDJ Delorie3-7/+15
2006-10-25merge from gccDJ Delorie2-1/+5
2006-10-11merge from gccDJ Delorie3-3/+12
2006-09-22merge from gccDJ Delorie3-0/+13
2006-09-13merge from gccDJ Delorie1-11/+11
2006-08-30 * configure.ac: Add case for Mingw as host.Corinna Vinschen3-0/+256
2006-08-28merge from gccDJ Delorie9-14/+69
2006-07-27merge from gccDJ Delorie2-1/+28
2006-07-04ChangeLog:Alexandre Oliva2-2/+6
2006-06-02merge from gccDJ Delorie2-1/+6
2006-06-01merge from gccDJ Delorie9-36/+201
2006-05-28merge from gccDJ Delorie2-1/+9
2006-05-12merge from gccDJ Delorie2-1/+6
2006-04-24 * floatformat.c (floatformat_to_double): Fix (biased) exponent=0 case.Julian Brown2-1/+5
2006-04-12merge from gccDJ Delorie9-52/+343
2006-04-07merge from gccDJ Delorie5-5/+81
2006-03-31merge from gccDJ Delorie2-258/+335
2006-03-24merge from gccDJ Delorie2-11/+8
2006-03-13merge from gccDJ Delorie3-13/+44
2006-02-21merge from gccDJ Delorie2-1/+5
2006-02-21merge from gccDJ Delorie3-1/+10
2006-02-12merge from gccDJ Delorie2-1/+18
2006-01-29merge from gccDJ Delorie3-68/+205
2006-01-21merge from gccDJ Delorie4-5/+327
2005-12-17merge from gccDJ Delorie2-3/+10
2005-12-11merge from gccDJ Delorie4-7/+68
2005-11-07merge from gccDJ Delorie2-111/+87
2005-10-31merge from gccDJ Delorie2-0/+29
2005-10-07 * at-file.texi: Fix typo.Mark Mitchell2-3/+6
2005-10-04 * at-file.texi: New file.Mark Mitchell2-0/+20
2005-09-27 * argv.c (expandargv): Do not use xmalloc_failed.Mark Mitchell2-3/+8
2005-09-26 * libiberty.h (expandargv): New function.Mark Mitchell3-8/+128
2005-09-15merge from gccDJ Delorie2-14/+307
2005-08-17merge from gccDJ Delorie2-17/+30
2005-08-172005-08-17 Kelley Cook <kcook@gcc.gnu.org>Kelley Cook5-6/+13
2005-07-23merge from gccDJ Delorie2-1/+5
2005-07-22merge from gccDJ Delorie3-5/+17
2005-07-22merge from gccDJ Delorie4-10/+8
2005-07-22merge from gccDJ Delorie4-125/+145
2005-07-22merge from gccDJ Delorie4-145/+125
2005-07-22 * configure.ac: Check for a getopt(3) declaration.Ben Elliston4-125/+145
2005-07-15merge from gccDJ Delorie2-2/+8
2005-07-12merge from gccDJ Delorie4-3/+20
2005-07-09merge from gccDJ Delorie4-6/+10
2005-07-09 * memcpy.c: Remove ANSI_PROTOTYPES conditional code.Ben Elliston4-10/+6
2005-07-072005-07-07 Kelley Cook <kcook@gcc.gnu.org>Kelley Cook5-71/+146
2005-07-072005-07-07 Kelley Cook <kcook@gcc.gnu.org>Kelley Cook2-0/+11
2005-07-03merge from gccDJ Delorie4-1/+40
2005-06-30merge from gccDJ Delorie2-32/+28
2005-06-21Index: include/ChangeLogGeoffrey Keating6-12/+311
'n585' href='#n585'>585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
/* Target-dependent code for GDB, the GNU debugger.

   Copyright 2001, 2002 Free Software Foundation, Inc.

   Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
   for IBM Deutschland Entwicklung GmbH, IBM Corporation.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
   02111-1307, USA.  */

#define S390_TDEP		/* for special macros in tm-s390.h */
#include <defs.h>
#include "arch-utils.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "symfile.h"
#include "objfiles.h"
#include "tm.h"
#include "../bfd/bfd.h"
#include "floatformat.h"
#include "regcache.h"
#include "value.h"
#include "gdb_assert.h"




/* Number of bytes of storage in the actual machine representation
   for register N.  */
int
s390_register_raw_size (int reg_nr)
{
  if (S390_FP0_REGNUM <= reg_nr
      && reg_nr < S390_FP0_REGNUM + S390_NUM_FPRS)
    return S390_FPR_SIZE;
  else
    return 4;
}

int
s390x_register_raw_size (int reg_nr)
{
  return (reg_nr == S390_FPC_REGNUM)
    || (reg_nr >= S390_FIRST_ACR && reg_nr <= S390_LAST_ACR) ? 4 : 8;
}

int
s390_cannot_fetch_register (int regno)
{
  return (regno >= S390_FIRST_CR && regno < (S390_FIRST_CR + 9)) ||
    (regno >= (S390_FIRST_CR + 12) && regno <= S390_LAST_CR);
}

int
s390_register_byte (int reg_nr)
{
  if (reg_nr <= S390_GP_LAST_REGNUM)
    return reg_nr * S390_GPR_SIZE;
  if (reg_nr <= S390_LAST_ACR)
    return S390_ACR0_OFFSET + (((reg_nr) - S390_FIRST_ACR) * S390_ACR_SIZE);
  if (reg_nr <= S390_LAST_CR)
    return S390_CR0_OFFSET + (((reg_nr) - S390_FIRST_CR) * S390_CR_SIZE);
  if (reg_nr == S390_FPC_REGNUM)
    return S390_FPC_OFFSET;
  else
    return S390_FP0_OFFSET + (((reg_nr) - S390_FP0_REGNUM) * S390_FPR_SIZE);
}

#ifndef GDBSERVER
#define S390_MAX_INSTR_SIZE (6)
#define S390_SYSCALL_OPCODE (0x0a)
#define S390_SYSCALL_SIZE   (2)
#define S390_SIGCONTEXT_SREGS_OFFSET (8)
#define S390X_SIGCONTEXT_SREGS_OFFSET (8)
#define S390_SIGREGS_FP0_OFFSET       (144)
#define S390X_SIGREGS_FP0_OFFSET      (216)
#define S390_UC_MCONTEXT_OFFSET    (256)
#define S390X_UC_MCONTEXT_OFFSET   (344)
#define S390_STACK_FRAME_OVERHEAD  (GDB_TARGET_IS_ESAME ? 160:96)
#define S390_SIGNAL_FRAMESIZE  (GDB_TARGET_IS_ESAME ? 160:96)
#define s390_NR_sigreturn          119
#define s390_NR_rt_sigreturn       173



struct frame_extra_info
{
  int initialised;
  int good_prologue;
  CORE_ADDR function_start;
  CORE_ADDR skip_prologue_function_start;
  CORE_ADDR saved_pc_valid;
  CORE_ADDR saved_pc;
  CORE_ADDR sig_fixed_saved_pc_valid;
  CORE_ADDR sig_fixed_saved_pc;
  CORE_ADDR frame_pointer_saved_pc;	/* frame pointer needed for alloca */
  CORE_ADDR stack_bought;	/* amount we decrement the stack pointer by */
  CORE_ADDR sigcontext;
};


static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi);

int
s390_readinstruction (bfd_byte instr[], CORE_ADDR at,
		      struct disassemble_info *info)
{
  int instrlen;

  static int s390_instrlen[] = {
    2,
    4,
    4,
    6
  };
  if ((*info->read_memory_func) (at, &instr[0], 2, info))
    return -1;
  instrlen = s390_instrlen[instr[0] >> 6];
  if (instrlen > 2)
    {
      if ((*info->read_memory_func) (at + 2, &instr[2], instrlen - 2, info))
        return -1;
    }
  return instrlen;
}

static void
s390_memset_extra_info (struct frame_extra_info *fextra_info)
{
  memset (fextra_info, 0, sizeof (struct frame_extra_info));
}



const char *
s390_register_name (int reg_nr)
{
  static char *register_names[] = {
    "pswm", "pswa",
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
    "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15",
    "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
    "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
    "fpc",
    "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
    "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
  };

  if (reg_nr <= S390_LAST_REGNUM)
    return register_names[reg_nr];
  else
    return NULL;
}




int
s390_stab_reg_to_regnum (int regno)
{
  return regno >= 64 ? S390_PSWM_REGNUM - 64 :
    regno >= 48 ? S390_FIRST_ACR - 48 :
    regno >= 32 ? S390_FIRST_CR - 32 :
    regno <= 15 ? (regno + 2) :
    S390_FP0_REGNUM + ((regno - 16) & 8) + (((regno - 16) & 3) << 1) +
    (((regno - 16) & 4) >> 2);
}


/* Return true if REGIDX is the number of a register used to pass
     arguments, false otherwise.  */
static int
is_arg_reg (int regidx)
{
  return 2 <= regidx && regidx <= 6;
}


/* s390_get_frame_info based on Hartmuts
   prologue definition in
   gcc-2.8.1/config/l390/linux.c 

   It reads one instruction at a time & based on whether
   it looks like prologue code or not it makes a decision on
   whether the prologue is over, there are various state machines
   in the code to determine if the prologue code is possilby valid.
   
   This is done to hopefully allow the code survive minor revs of
   calling conventions.

 */

int
s390_get_frame_info (CORE_ADDR pc, struct frame_extra_info *fextra_info,
		     struct frame_info *fi, int init_extra_info)
{
#define CONST_POOL_REGIDX 13
#define GOT_REGIDX        12
  bfd_byte instr[S390_MAX_INSTR_SIZE];
  CORE_ADDR test_pc = pc, test_pc2;
  CORE_ADDR orig_sp = 0, save_reg_addr = 0, *saved_regs = NULL;
  int valid_prologue, good_prologue = 0;
  int gprs_saved[S390_NUM_GPRS];
  int fprs_saved[S390_NUM_FPRS];
  int regidx, instrlen;
  int const_pool_state;
  int varargs_state;
  int loop_cnt, gdb_gpr_store, gdb_fpr_store;
  int offset, expected_offset;
  int err = 0;
  disassemble_info info;

  /* Have we seen an instruction initializing the frame pointer yet?
     If we've seen an `lr %r11, %r15', then frame_pointer_found is
     non-zero, and frame_pointer_regidx == 11.  Otherwise,
     frame_pointer_found is zero and frame_pointer_regidx is 15,
     indicating that we're using the stack pointer as our frame
     pointer.  */
  int frame_pointer_found = 0;
  int frame_pointer_regidx = 0xf;

  /* What we've seen so far regarding saving the back chain link:
     0 -- nothing yet; sp still has the same value it had at the entry
          point.  Since not all functions allocate frames, this is a
          valid state for the prologue to finish in.
     1 -- We've saved the original sp in some register other than the
          frame pointer (hard-coded to be %r11, yuck).
          save_link_regidx is the register we saved it in.
     2 -- We've seen the initial `bras' instruction of the sequence for
          reserving more than 32k of stack:
                bras %rX, .+8
                .long N
                s %r15, 0(%rX)
          where %rX is not the constant pool register.
          subtract_sp_regidx is %rX, and fextra_info->stack_bought is N.
     3 -- We've reserved space for a new stack frame.  This means we
          either saw a simple `ahi %r15,-N' in state 1, or the final
          `s %r15, ...' in state 2.
     4 -- The frame and link are now fully initialized.  We've
          reserved space for the new stack frame, and stored the old
          stack pointer captured in the back chain pointer field.  */
  int save_link_state = 0;
  int save_link_regidx, subtract_sp_regidx;

  /* What we've seen so far regarding r12 --- the GOT (Global Offset
     Table) pointer.  We expect to see `l %r12, N(%r13)', which loads
     r12 with the offset from the constant pool to the GOT, and then
     an `ar %r12, %r13', which adds the constant pool address,
     yielding the GOT's address.  Here's what got_state means:
     0 -- seen nothing
     1 -- seen `l %r12, N(%r13)', but no `ar'
     2 -- seen load and add, so GOT pointer is totally initialized
     When got_state is 1, then got_load_addr is the address of the
     load instruction, and got_load_len is the length of that
     instruction.  */
  int got_state= 0;
  CORE_ADDR got_load_addr = 0, got_load_len = 0;

  const_pool_state = varargs_state = 0;

  memset (gprs_saved, 0, sizeof (gprs_saved));
  memset (fprs_saved, 0, sizeof (fprs_saved));
  info.read_memory_func = dis_asm_read_memory;

  save_link_regidx = subtract_sp_regidx = 0;
  if (fextra_info)
    {
      if (fi && fi->frame)
	{
          orig_sp = fi->frame;
          if (! init_extra_info && fextra_info->initialised)
            orig_sp += fextra_info->stack_bought;
	  saved_regs = fi->saved_regs;
	}
      if (init_extra_info || !fextra_info->initialised)
	{
	  s390_memset_extra_info (fextra_info);
	  fextra_info->function_start = pc;
	  fextra_info->initialised = 1;
	}
    }
  instrlen = 0;
  do
    {
      valid_prologue = 0;
      test_pc += instrlen;
      /* add the previous instruction len */
      instrlen = s390_readinstruction (instr, test_pc, &info);
      if (instrlen < 0)
	{
	  good_prologue = 0;
	  err = -1;
	  break;
	}
      /* We probably are in a glibc syscall */
      if (instr[0] == S390_SYSCALL_OPCODE && test_pc == pc)
	{
	  good_prologue = 1;
	  if (saved_regs && fextra_info && fi->next && fi->next->extra_info
	      && fi->next->extra_info->sigcontext)
	    {
	      /* We are backtracing from a signal handler */
	      save_reg_addr = fi->next->extra_info->sigcontext +
		REGISTER_BYTE (S390_GP0_REGNUM);
	      for (regidx = 0; regidx < S390_NUM_GPRS; regidx++)
		{
		  saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
		  save_reg_addr += S390_GPR_SIZE;
		}
	      save_reg_addr = fi->next->extra_info->sigcontext +
		(GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET :
		 S390_SIGREGS_FP0_OFFSET);
	      for (regidx = 0; regidx < S390_NUM_FPRS; regidx++)
		{
		  saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
		  save_reg_addr += S390_FPR_SIZE;
		}
	    }
	  break;
	}
      if (save_link_state == 0)
	{
	  /* check for a stack relative STMG or STM */
	  if (((GDB_TARGET_IS_ESAME &&
		((instr[0] == 0xeb) && (instr[5] == 0x24))) ||
	       (instr[0] == 0x90)) && ((instr[2] >> 4) == 0xf))
	    {
	      regidx = (instr[1] >> 4);
	      if (regidx < 6)
		varargs_state = 1;
	      offset = ((instr[2] & 0xf) << 8) + instr[3];
	      expected_offset =
		S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
	      if (offset != expected_offset)
		{
		  good_prologue = 0;
		  break;
		}
	      if (saved_regs)
		save_reg_addr = orig_sp + offset;
	      for (; regidx <= (instr[1] & 0xf); regidx++)
		{
		  if (gprs_saved[regidx])
		    {
		      good_prologue = 0;
		      break;
		    }
		  good_prologue = 1;
		  gprs_saved[regidx] = 1;
		  if (saved_regs)
		    {
		      saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
		      save_reg_addr += S390_GPR_SIZE;
		    }
		}
	      valid_prologue = 1;
	      continue;
	    }
	}
      /* check for a stack relative STG or ST */
      if ((save_link_state == 0 || save_link_state == 3) &&
	  ((GDB_TARGET_IS_ESAME &&
	    ((instr[0] == 0xe3) && (instr[5] == 0x24))) ||
	   (instr[0] == 0x50)) && ((instr[2] >> 4) == 0xf))
	{
	  regidx = instr[1] >> 4;
	  offset = ((instr[2] & 0xf) << 8) + instr[3];
	  if (offset == 0)
	    {
	      if (save_link_state == 3 && regidx == save_link_regidx)
		{
		  save_link_state = 4;
		  valid_prologue = 1;
		  continue;
		}
	      else
		break;
	    }
	  if (regidx < 6)
	    varargs_state = 1;
	  expected_offset =
	    S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
	  if (offset != expected_offset)
	    {
	      good_prologue = 0;
	      break;
	    }
	  if (gprs_saved[regidx])
	    {
	      good_prologue = 0;
	      break;
	    }
	  good_prologue = 1;
	  gprs_saved[regidx] = 1;
	  if (saved_regs)
	    {
	      save_reg_addr = orig_sp + offset;
	      saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
	    }
	  valid_prologue = 1;
	  continue;
	}

      /* Check for an fp-relative STG, ST, or STM.  This is probably
          spilling an argument from a register out into a stack slot.
          This could be a user instruction, but if we haven't included
          any other suspicious instructions in the prologue, this
          could only be an initializing store, which isn't too bad to
          skip.  The consequences of not including arg-to-stack spills
          are more serious, though --- you don't see the proper values
          of the arguments.  */
      if ((save_link_state == 3 || save_link_state == 4)
          && ((instr[0] == 0x50      /* st %rA, D(%rX,%rB) */
               && (instr[1] & 0xf) == 0 /* %rX is zero, no index reg */
               && is_arg_reg ((instr[1] >> 4) & 0xf)
               && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx)
              || (instr[0] == 0x90 /* stm %rA, %rB, D(%rC) */
                  && is_arg_reg ((instr[1] >> 4) & 0xf)
                  && is_arg_reg (instr[1] & 0xf)
                  && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx)))
        {
          valid_prologue = 1;
          continue;
        }

      /* check for STD */
      if (instr[0] == 0x60 && (instr[2] >> 4) == 0xf)
	{
	  regidx = instr[1] >> 4;
	  if (regidx == 0 || regidx == 2)
	    varargs_state = 1;
	  if (fprs_saved[regidx])
	    {
	      good_prologue = 0;
	      break;
	    }
	  fprs_saved[regidx] = 1;
	  if (saved_regs)
	    {
	      save_reg_addr = orig_sp + (((instr[2] & 0xf) << 8) + instr[3]);
	      saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
	    }
	  valid_prologue = 1;
	  continue;
	}


      if (const_pool_state == 0)
	{

	  if (GDB_TARGET_IS_ESAME)
	    {
	      /* Check for larl CONST_POOL_REGIDX,offset on ESAME */
	      if ((instr[0] == 0xc0)
		  && (instr[1] == (CONST_POOL_REGIDX << 4)))
		{
		  const_pool_state = 2;
		  valid_prologue = 1;
		  continue;
		}
	    }
	  else
	    {
	      /* Check for BASR gpr13,gpr0 used to load constant pool pointer to r13 in old compiler */
	      if (instr[0] == 0xd && (instr[1] & 0xf) == 0
		  && ((instr[1] >> 4) == CONST_POOL_REGIDX))
		{
		  const_pool_state = 1;
		  valid_prologue = 1;
		  continue;
		}
	    }
	  /* Check for new fangled bras %r13,newpc to load new constant pool */
	  /* embedded in code, older pre abi compilers also emitted this stuff.  */
	  if ((instr[0] == 0xa7) && ((instr[1] & 0xf) == 0x5) &&
	      ((instr[1] >> 4) == CONST_POOL_REGIDX)
	      && ((instr[2] & 0x80) == 0))
	    {
	      const_pool_state = 2;
	      test_pc +=
		(((((instr[2] & 0xf) << 8) + instr[3]) << 1) - instrlen);
	      valid_prologue = 1;
	      continue;
	    }
	}
      /* Check for AGHI or AHI CONST_POOL_REGIDX,val */
      if (const_pool_state == 1 && (instr[0] == 0xa7) &&
	  ((GDB_TARGET_IS_ESAME &&
	    (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xb))) ||
	   (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xa))))
	{
	  const_pool_state = 2;
	  valid_prologue = 1;
	  continue;
	}
      /* Check for LGR or LR gprx,15 */
      if ((GDB_TARGET_IS_ESAME &&
	   instr[0] == 0xb9 && instr[1] == 0x04 && (instr[3] & 0xf) == 0xf) ||
	  (instr[0] == 0x18 && (instr[1] & 0xf) == 0xf))
	{
	  if (GDB_TARGET_IS_ESAME)
	    regidx = instr[3] >> 4;
	  else
	    regidx = instr[1] >> 4;
	  if (save_link_state == 0 && regidx != 0xb)
	    {
	      /* Almost defintely code for
	         decrementing the stack pointer 
	         ( i.e. a non leaf function 
	         or else leaf with locals ) */
	      save_link_regidx = regidx;
	      save_link_state = 1;
	      valid_prologue = 1;
	      continue;
	    }
	  /* We use this frame pointer for alloca
	     unfortunately we need to assume its gpr11
	     otherwise we would need a smarter prologue
	     walker. */
	  if (!frame_pointer_found && regidx == 0xb)
	    {
	      frame_pointer_regidx = 0xb;
	      frame_pointer_found = 1;
	      if (fextra_info)
		fextra_info->frame_pointer_saved_pc = test_pc;
	      valid_prologue = 1;
	      continue;
	    }
	}
      /* Check for AHI or AGHI gpr15,val */
      if (save_link_state == 1 && (instr[0] == 0xa7) &&
	  ((GDB_TARGET_IS_ESAME && (instr[1] == 0xfb)) || (instr[1] == 0xfa)))
	{
	  if (fextra_info)
	    fextra_info->stack_bought =
	      -extract_signed_integer (&instr[2], 2);
	  save_link_state = 3;
	  valid_prologue = 1;
	  continue;
	}
      /* Alternatively check for the complex construction for
         buying more than 32k of stack
         BRAS gprx,.+8
         long val
         s    %r15,0(%gprx)  gprx currently r1 */
      if ((save_link_state == 1) && (instr[0] == 0xa7)
	  && ((instr[1] & 0xf) == 0x5) && (instr[2] == 0)
	  && (instr[3] == 0x4) && ((instr[1] >> 4) != CONST_POOL_REGIDX))
	{
	  subtract_sp_regidx = instr[1] >> 4;
	  save_link_state = 2;
	  if (fextra_info)
	    target_read_memory (test_pc + instrlen,
				(char *) &fextra_info->stack_bought,
				sizeof (fextra_info->stack_bought));
	  test_pc += 4;
	  valid_prologue = 1;
	  continue;
	}
      if (save_link_state == 2 && instr[0] == 0x5b
	  && instr[1] == 0xf0 &&
	  instr[2] == (subtract_sp_regidx << 4) && instr[3] == 0)
	{
	  save_link_state = 3;
	  valid_prologue = 1;
	  continue;
	}
      /* check for LA gprx,offset(15) used for varargs */
      if ((instr[0] == 0x41) && ((instr[2] >> 4) == 0xf) &&
	  ((instr[1] & 0xf) == 0))
	{
	  /* some code uses gpr7 to point to outgoing args */
	  if (((instr[1] >> 4) == 7) && (save_link_state == 0) &&
	      ((instr[2] & 0xf) == 0)
	      && (instr[3] == S390_STACK_FRAME_OVERHEAD))
	    {
	      valid_prologue = 1;
	      continue;
	    }
	  if (varargs_state == 1)
	    {
	      varargs_state = 2;
	      valid_prologue = 1;
	      continue;
	    }
	}
      /* Check for a GOT load */

      if (GDB_TARGET_IS_ESAME)
	{
	  /* Check for larl  GOT_REGIDX, on ESAME */
	  if ((got_state == 0) && (instr[0] == 0xc0)
	      && (instr[1] == (GOT_REGIDX << 4)))
	    {
	      got_state = 2;
	      valid_prologue = 1;
	      continue;
	    }
	}
      else
	{
	  /* check for l GOT_REGIDX,x(CONST_POOL_REGIDX) */
	  if (got_state == 0 && const_pool_state == 2 && instr[0] == 0x58
	      && (instr[2] == (CONST_POOL_REGIDX << 4))
	      && ((instr[1] >> 4) == GOT_REGIDX))
	    {
	      got_state = 1;
              got_load_addr = test_pc;
              got_load_len = instrlen;
	      valid_prologue = 1;
	      continue;
	    }
	  /* Check for subsequent ar got_regidx,basr_regidx */
	  if (got_state == 1 && instr[0] == 0x1a &&
	      instr[1] == ((GOT_REGIDX << 4) | CONST_POOL_REGIDX))
	    {
	      got_state = 2;
	      valid_prologue = 1;
	      continue;
	    }
	}
    }
  while (valid_prologue && good_prologue);
  if (good_prologue)
    {
      /* If this function doesn't reference the global offset table,
         then the compiler may use r12 for other things.  If the last
         instruction we saw was a load of r12 from the constant pool,
         with no subsequent add to make the address PC-relative, then
         the load was probably a genuine body instruction; don't treat
         it as part of the prologue.  */
      if (got_state == 1
          && got_load_addr + got_load_len == test_pc)
        {
          test_pc = got_load_addr;
          instrlen = got_load_len;
        }
        
      good_prologue = (((const_pool_state == 0) || (const_pool_state == 2)) &&
		       ((save_link_state == 0) || (save_link_state == 4)) &&
		       ((varargs_state == 0) || (varargs_state == 2)));
    }
  if (fextra_info)
    {
      fextra_info->good_prologue = good_prologue;
      fextra_info->skip_prologue_function_start =
	(good_prologue ? test_pc : pc);
    }
  if (saved_regs)
    /* The SP's element of the saved_regs array holds the old SP,
       not the address at which it is saved.  */
    saved_regs[S390_SP_REGNUM] = orig_sp;
  return err;
}


int
s390_check_function_end (CORE_ADDR pc)
{
  bfd_byte instr[S390_MAX_INSTR_SIZE];
  disassemble_info info;
  int regidx, instrlen;

  info.read_memory_func = dis_asm_read_memory;
  instrlen = s390_readinstruction (instr, pc, &info);
  if (instrlen < 0)
    return -1;
  /* check for BR */
  if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf)
    return 0;
  regidx = instr[1] & 0xf;
  /* Check for LMG or LG */
  instrlen =
    s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4), &info);
  if (instrlen < 0)
    return -1;
  if (GDB_TARGET_IS_ESAME)
    {

      if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4)
	return 0;
    }
  else if (instrlen != 4 || instr[0] != 0x98)
    {
      return 0;
    }
  if ((instr[2] >> 4) != 0xf)
    return 0;
  if (regidx == 14)
    return 1;
  instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8),
				   &info);
  if (instrlen < 0)
    return -1;
  if (GDB_TARGET_IS_ESAME)
    {
      /* Check for LG */
      if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4)
	return 0;
    }
  else
    {
      /* Check for L */
      if (instrlen != 4 || instr[0] != 0x58)
	return 0;
    }
  if (instr[2] >> 4 != 0xf)
    return 0;
  if (instr[1] >> 4 != regidx)
    return 0;
  return 1;
}

static CORE_ADDR
s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi)
{
  CORE_ADDR function_start, test_function_start;
  int loop_cnt, err, function_end;
  struct frame_extra_info fextra_info;
  function_start = get_pc_function_start (pc);

  if (function_start == 0)
    {
      test_function_start = pc;
      if (test_function_start & 1)
	return 0;		/* This has to be bogus */
      loop_cnt = 0;
      do
	{

	  err =
	    s390_get_frame_info (test_function_start, &fextra_info, fi, 1);
	  loop_cnt++;
	  test_function_start -= 2;
	  function_end = s390_check_function_end (test_function_start);
	}
      while (!(function_end == 1 || err || loop_cnt >= 4096 ||
	       (fextra_info.good_prologue)));
      if (fextra_info.good_prologue)
	function_start = fextra_info.function_start;
      else if (function_end == 1)
	function_start = test_function_start;
    }
  return function_start;
}



CORE_ADDR
s390_function_start (struct frame_info *fi)
{
  CORE_ADDR function_start = 0;

  if (fi->extra_info && fi->extra_info->initialised)
    function_start = fi->extra_info->function_start;
  else if (fi->pc)
    function_start = get_pc_function_start (fi->pc);
  return function_start;
}




int
s390_frameless_function_invocation (struct frame_info *fi)
{
  struct frame_extra_info fextra_info, *fextra_info_ptr;
  int frameless = 0;

  if (fi->next == NULL)		/* no may be frameless */
    {
      if (fi->extra_info)
	fextra_info_ptr = fi->extra_info;
      else
	{
	  fextra_info_ptr = &fextra_info;
	  s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
			       fextra_info_ptr, fi, 1);
	}
      frameless = ((fextra_info_ptr->stack_bought == 0));
    }
  return frameless;

}


static int
s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi,
		   CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc)
{
  bfd_byte instr[S390_MAX_INSTR_SIZE];
  disassemble_info info;
  int instrlen;
  CORE_ADDR scontext;
  int retval = 0;
  CORE_ADDR orig_sp;
  CORE_ADDR temp_sregs;

  scontext = temp_sregs = 0;

  info.read_memory_func = dis_asm_read_memory;
  instrlen = s390_readinstruction (instr, pc, &info);
  if (sigcaller_pc)
    *sigcaller_pc = 0;
  if (((instrlen == S390_SYSCALL_SIZE) &&
       (instr[0] == S390_SYSCALL_OPCODE)) &&
      ((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn)))
    {
      if (sighandler_fi)
	{
	  if (s390_frameless_function_invocation (sighandler_fi))
	    orig_sp = sighandler_fi->frame;
	  else
	    orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR)
					read_memory_integer (sighandler_fi->
							     frame,
							     S390_GPR_SIZE));
	  if (orig_sp && sigcaller_pc)
	    {
	      scontext = orig_sp + S390_SIGNAL_FRAMESIZE;
	      if (pc == scontext && instr[1] == s390_NR_rt_sigreturn)
		{
		  /* We got a new style rt_signal */
		  /* get address of read ucontext->uc_mcontext */
		  temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ?
					  S390X_UC_MCONTEXT_OFFSET :
					  S390_UC_MCONTEXT_OFFSET);
		}
	      else
		{
		  /* read sigcontext->sregs */
		  temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR)
						 read_memory_integer (scontext
								      +
								      (GDB_TARGET_IS_ESAME
								       ?
								       S390X_SIGCONTEXT_SREGS_OFFSET
								       :
								       S390_SIGCONTEXT_SREGS_OFFSET),
								      S390_GPR_SIZE));

		}
	      /* read sigregs->psw.addr */
	      *sigcaller_pc =
		ADDR_BITS_REMOVE ((CORE_ADDR)
				  read_memory_integer (temp_sregs +
						       REGISTER_BYTE
						       (S390_PC_REGNUM),
						       S390_PSW_ADDR_SIZE));
	    }
	}
      retval = 1;
    }
  if (sregs)
    *sregs = temp_sregs;
  return retval;
}

/*
  We need to do something better here but this will keep us out of trouble
  for the moment.
  For some reason the blockframe.c calls us with fi->next->fromleaf
  so this seems of little use to us. */
void
s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi)
{
  CORE_ADDR sigcaller_pc;

  fi->pc = 0;
  if (next_fromleaf)
    {
      fi->pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
      /* fix signal handlers */
    }
  else if (fi->next && fi->next->pc)
    fi->pc = s390_frame_saved_pc_nofix (fi->next);
  if (fi->pc && fi->next && fi->next->frame &&
      s390_is_sigreturn (fi->pc, fi->next, NULL, &sigcaller_pc))
    {
      fi->pc = sigcaller_pc;
    }

}

void
s390_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
  fi->extra_info = frame_obstack_alloc (sizeof (struct frame_extra_info));
  if (fi->pc)
    s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
			 fi->extra_info, fi, 1);
  else
    s390_memset_extra_info (fi->extra_info);
}

/* If saved registers of frame FI are not known yet, read and cache them.
   &FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL,
   in which case the framedata are read.  */

void
s390_frame_init_saved_regs (struct frame_info *fi)
{

  int quick;

  if (fi->saved_regs == NULL)
    {
      /* zalloc memsets the saved regs */
      frame_saved_regs_zalloc (fi);
      if (fi->pc)
	{
	  quick = (fi->extra_info && fi->extra_info->initialised
		   && fi->extra_info->good_prologue);
	  s390_get_frame_info (quick ? fi->extra_info->function_start :
			       s390_sniff_pc_function_start (fi->pc, fi),
			       fi->extra_info, fi, !quick);
	}
    }
}



CORE_ADDR
s390_frame_args_address (struct frame_info *fi)
{

  /* Apparently gdb already knows gdb_args_offset itself */
  return fi->frame;
}


static CORE_ADDR
s390_frame_saved_pc_nofix (struct frame_info *fi)
{
  if (fi->extra_info && fi->extra_info->saved_pc_valid)
    return fi->extra_info->saved_pc;

  if (deprecated_generic_find_dummy_frame (fi->pc, fi->frame))
    return deprecated_read_register_dummy (fi->pc, fi->frame, S390_PC_REGNUM);

  s390_frame_init_saved_regs (fi);
  if (fi->extra_info)
    {
      fi->extra_info->saved_pc_valid = 1;
      if (fi->extra_info->good_prologue
          && fi->saved_regs[S390_RETADDR_REGNUM])
        fi->extra_info->saved_pc
          = ADDR_BITS_REMOVE (read_memory_integer
                              (fi->saved_regs[S390_RETADDR_REGNUM],
                               S390_GPR_SIZE));
      else
        fi->extra_info->saved_pc
          = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
      return fi->extra_info->saved_pc;
    }
  return 0;
}

CORE_ADDR
s390_frame_saved_pc (struct frame_info *fi)
{
  CORE_ADDR saved_pc = 0, sig_pc;

  if (fi->extra_info && fi->extra_info->sig_fixed_saved_pc_valid)
    return fi->extra_info->sig_fixed_saved_pc;
  saved_pc = s390_frame_saved_pc_nofix (fi);

  if (fi->extra_info)
    {
      fi->extra_info->sig_fixed_saved_pc_valid = 1;
      if (saved_pc)
	{
	  if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc))
	    saved_pc = sig_pc;
	}
      fi->extra_info->sig_fixed_saved_pc = saved_pc;
    }
  return saved_pc;
}




/* We want backtraces out of signal handlers so we don't
   set thisframe->signal_handler_caller to 1 */

CORE_ADDR
s390_frame_chain (struct frame_info *thisframe)
{
  CORE_ADDR prev_fp = 0;

  if (deprecated_generic_find_dummy_frame (thisframe->pc, thisframe->frame))
    return deprecated_read_register_dummy (thisframe->pc, thisframe->frame,
					   S390_SP_REGNUM);
  else
    {
      int sigreturn = 0;
      CORE_ADDR sregs = 0;
      struct frame_extra_info prev_fextra_info;

      memset (&prev_fextra_info, 0, sizeof (prev_fextra_info));
      if (thisframe->pc)
	{
	  CORE_ADDR saved_pc, sig_pc;

	  saved_pc = s390_frame_saved_pc_nofix (thisframe);
	  if (saved_pc)
	    {
	      if ((sigreturn =
		   s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc)))
		saved_pc = sig_pc;
	      s390_get_frame_info (s390_sniff_pc_function_start
				   (saved_pc, NULL), &prev_fextra_info, NULL,
				   1);
	    }
	}
      if (sigreturn)
	{
	  /* read sigregs,regs.gprs[11 or 15] */
	  prev_fp = read_memory_integer (sregs +
					 REGISTER_BYTE (S390_GP0_REGNUM +
							(prev_fextra_info.
							 frame_pointer_saved_pc
							 ? 11 : 15)),
					 S390_GPR_SIZE);
	  thisframe->extra_info->sigcontext = sregs;
	}
      else
	{
	  if (thisframe->saved_regs)
	    {
	      int regno;

              if (prev_fextra_info.frame_pointer_saved_pc
                  && thisframe->saved_regs[S390_FRAME_REGNUM])
                regno = S390_FRAME_REGNUM;
              else
                regno = S390_SP_REGNUM;

	      if (thisframe->saved_regs[regno])
                {
                  /* The SP's entry of `saved_regs' is special.  */
                  if (regno == S390_SP_REGNUM)
                    prev_fp = thisframe->saved_regs[regno];
                  else
                    prev_fp =
                      read_memory_integer (thisframe->saved_regs[regno],
                                           S390_GPR_SIZE);
                }
	    }
	}
    }
  return ADDR_BITS_REMOVE (prev_fp);
}

/*
  Whether struct frame_extra_info is actually needed I'll have to figure
  out as our frames are similar to rs6000 there is a possibility
  i386 dosen't need it. */



/* a given return value in `regbuf' with a type `valtype', extract and copy its
   value into `valbuf' */
void
s390_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
{
  /* floats and doubles are returned in fpr0. fpr's have a size of 8 bytes.
     We need to truncate the return value into float size (4 byte) if
     necessary. */
  int len = TYPE_LENGTH (valtype);

  if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
    memcpy (valbuf, &regbuf[REGISTER_BYTE (S390_FP0_REGNUM)], len);
  else
    {
      int offset = 0;
      /* return value is copied starting from r2. */
      if (TYPE_LENGTH (valtype) < S390_GPR_SIZE)
	offset = S390_GPR_SIZE - TYPE_LENGTH (valtype);
      memcpy (valbuf,
	      regbuf + REGISTER_BYTE (S390_GP0_REGNUM + 2) + offset,
	      TYPE_LENGTH (valtype));
    }
}


static char *
s390_promote_integer_argument (struct type *valtype, char *valbuf,
			       char *reg_buff, int *arglen)
{
  char *value = valbuf;
  int len = TYPE_LENGTH (valtype);

  if (len < S390_GPR_SIZE)
    {
      /* We need to upgrade this value to a register to pass it correctly */
      int idx, diff = S390_GPR_SIZE - len, negative =
	(!TYPE_UNSIGNED (valtype) && value[0] & 0x80);
      for (idx = 0; idx < S390_GPR_SIZE; idx++)
	{
	  reg_buff[idx] = (idx < diff ? (negative ? 0xff : 0x0) :
			   value[idx - diff]);
	}
      value = reg_buff;
      *arglen = S390_GPR_SIZE;
    }
  else
    {
      if (len & (S390_GPR_SIZE - 1))
	{
	  fprintf_unfiltered (gdb_stderr,
			      "s390_promote_integer_argument detected an argument not "
			      "a multiple of S390_GPR_SIZE & greater than S390_GPR_SIZE "
			      "we might not deal with this correctly.\n");
	}
      *arglen = len;
    }

  return (value);
}

void
s390_store_return_value (struct type *valtype, char *valbuf)
{
  int arglen;
  char *reg_buff = alloca (max (S390_FPR_SIZE, REGISTER_SIZE)), *value;

  if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
    {
      if (TYPE_LENGTH (valtype) == 4
          || TYPE_LENGTH (valtype) == 8)
        deprecated_write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM),
					 valbuf, TYPE_LENGTH (valtype));
      else
        error ("GDB is unable to return `long double' values "
               "on this architecture.");
    }
  else
    {
      value =
	s390_promote_integer_argument (valtype, valbuf, reg_buff, &arglen);
      /* Everything else is returned in GPR2 and up. */
      deprecated_write_register_bytes (REGISTER_BYTE (S390_GP0_REGNUM + 2),
				       value, arglen);
    }
}
static int
gdb_print_insn_s390 (bfd_vma memaddr, disassemble_info * info)
{
  bfd_byte instrbuff[S390_MAX_INSTR_SIZE];
  int instrlen, cnt;

  instrlen = s390_readinstruction (instrbuff, (CORE_ADDR) memaddr, info);
  if (instrlen < 0)
    {
      (*info->memory_error_func) (instrlen, memaddr, info);
      return -1;
    }
  for (cnt = 0; cnt < instrlen; cnt++)
    info->fprintf_func (info->stream, "%02X ", instrbuff[cnt]);
  for (cnt = instrlen; cnt < S390_MAX_INSTR_SIZE; cnt++)
    info->fprintf_func (info->stream, "   ");
  instrlen = print_insn_s390 (memaddr, info);
  return instrlen;
}



/* Not the most efficent code in the world */
int
s390_fp_regnum (void)
{
  int regno = S390_SP_REGNUM;
  struct frame_extra_info fextra_info;

  CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM));

  s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info,
		       NULL, 1);
  if (fextra_info.frame_pointer_saved_pc)
    regno = S390_FRAME_REGNUM;
  return regno;
}

CORE_ADDR
s390_read_fp (void)
{
  return read_register (s390_fp_regnum ());
}


static void
s390_pop_frame_regular (struct frame_info *frame)
{
  int regnum;

  write_register (S390_PC_REGNUM, FRAME_SAVED_PC (frame));

  /* Restore any saved registers.  */
  if (frame->saved_regs)
    {
      for (regnum = 0; regnum < NUM_REGS; regnum++)
        if (frame->saved_regs[regnum] != 0)
          {
            ULONGEST value;
            
            value = read_memory_unsigned_integer (frame->saved_regs[regnum],
                                                  REGISTER_RAW_SIZE (regnum));
            write_register (regnum, value);
          }

      /* Actually cut back the stack.  Remember that the SP's element of
         saved_regs is the old SP itself, not the address at which it is
         saved.  */
      write_register (S390_SP_REGNUM, frame->saved_regs[S390_SP_REGNUM]);
    }

  /* Throw away any cached frame information.  */
  flush_cached_frames ();
}


/* Destroy the innermost (Top-Of-Stack) stack frame, restoring the 
   machine state that was in effect before the frame was created. 
   Used in the contexts of the "return" command, and of 
   target function calls from the debugger.  */
void
s390_pop_frame (void)
{
  /* This function checks for and handles generic dummy frames, and
     calls back to our function for ordinary frames.  */
  generic_pop_current_frame (s390_pop_frame_regular);
}


/* Return non-zero if TYPE is an integer-like type, zero otherwise.
   "Integer-like" types are those that should be passed the way
   integers are: integers, enums, ranges, characters, and booleans.  */
static int
is_integer_like (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_INT
          || code == TYPE_CODE_ENUM
          || code == TYPE_CODE_RANGE
          || code == TYPE_CODE_CHAR
          || code == TYPE_CODE_BOOL);
}


/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
   "Pointer-like" types are those that should be passed the way
   pointers are: pointers and references.  */
static int
is_pointer_like (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_PTR
          || code == TYPE_CODE_REF);
}


/* Return non-zero if TYPE is a `float singleton' or `double
   singleton', zero otherwise.

   A `T singleton' is a struct type with one member, whose type is
   either T or a `T singleton'.  So, the following are all float
   singletons:

   struct { float x };
   struct { struct { float x; } x; };
   struct { struct { struct { float x; } x; } x; };

   ... and so on.

   WHY THE HECK DO WE CARE ABOUT THIS???  Well, it turns out that GCC
   passes all float singletons and double singletons as if they were
   simply floats or doubles.  This is *not* what the ABI says it
   should do.  */
static int
is_float_singleton (struct type *type)
{
  return (TYPE_CODE (type) == TYPE_CODE_STRUCT
          && TYPE_NFIELDS (type) == 1
          && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT
              || is_float_singleton (TYPE_FIELD_TYPE (type, 0))));
}


/* Return non-zero if TYPE is a struct-like type, zero otherwise.
   "Struct-like" types are those that should be passed as structs are:
   structs and unions.

   As an odd quirk, not mentioned in the ABI, GCC passes float and
   double singletons as if they were a plain float, double, etc.  (The
   corresponding union types are handled normally.)  So we exclude
   those types here.  *shrug* */
static int
is_struct_like (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_UNION
          || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
}


/* Return non-zero if TYPE is a float-like type, zero otherwise.
   "Float-like" types are those that should be passed as
   floating-point values are.

   You'd think this would just be floats, doubles, long doubles, etc.
   But as an odd quirk, not mentioned in the ABI, GCC passes float and
   double singletons as if they were a plain float, double, etc.  (The
   corresponding union types are handled normally.)  So we exclude
   those types here.  *shrug* */
static int
is_float_like (struct type *type)
{
  return (TYPE_CODE (type) == TYPE_CODE_FLT
          || is_float_singleton (type));
}


/* Return non-zero if TYPE is considered a `DOUBLE_OR_FLOAT', as
   defined by the parameter passing conventions described in the
   "GNU/Linux for S/390 ELF Application Binary Interface Supplement".
   Otherwise, return zero.  */
static int
is_double_or_float (struct type *type)
{
  return (is_float_like (type)
          && (TYPE_LENGTH (type) == 4
              || TYPE_LENGTH (type) == 8));
}


/* Return non-zero if TYPE is considered a `SIMPLE_ARG', as defined by
   the parameter passing conventions described in the "GNU/Linux for
   S/390 ELF Application Binary Interface Supplement".  Return zero
   otherwise.  */
static int
is_simple_arg (struct type *type)
{
  unsigned length = TYPE_LENGTH (type);

  /* This is almost a direct translation of the ABI's language, except
     that we have to exclude 8-byte structs; those are DOUBLE_ARGs.  */
  return ((is_integer_like (type) && length <= 4)
          || is_pointer_like (type)
          || (is_struct_like (type) && length != 8)
          || (is_float_like (type) && length == 16));
}


/* Return non-zero if TYPE should be passed as a pointer to a copy,
   zero otherwise.  TYPE must be a SIMPLE_ARG, as recognized by
   `is_simple_arg'.  */
static int
pass_by_copy_ref (struct type *type)
{
  unsigned length = TYPE_LENGTH (type);

  return ((is_struct_like (type) && length != 1 && length != 2 && length != 4)
          || (is_float_like (type) && length == 16));
}


/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
   word as required for the ABI.  */
static LONGEST
extend_simple_arg (struct value *arg)
{
  struct type *type = VALUE_TYPE (arg);

  /* Even structs get passed in the least significant bits of the
     register / memory word.  It's not really right to extract them as
     an integer, but it does take care of the extension.  */
  if (TYPE_UNSIGNED (type))
    return extract_unsigned_integer (VALUE_CONTENTS (arg),
                                     TYPE_LENGTH (type));
  else
    return extract_signed_integer (VALUE_CONTENTS (arg),
                                   TYPE_LENGTH (type));
}


/* Return non-zero if TYPE is a `DOUBLE_ARG', as defined by the
   parameter passing conventions described in the "GNU/Linux for S/390
   ELF Application Binary Interface Supplement".  Return zero
   otherwise.  */
static int
is_double_arg (struct type *type)
{
  unsigned length = TYPE_LENGTH (type);

  return ((is_integer_like (type)
           || is_struct_like (type))
          && length == 8);
}


/* Round ADDR up to the next N-byte boundary.  N must be a power of
   two.  */
static CORE_ADDR
round_up (CORE_ADDR addr, int n)
{
  /* Check that N is really a power of two.  */
  gdb_assert (n && (n & (n-1)) == 0);
  return ((addr + n - 1) & -n);
}


/* Round ADDR down to the next N-byte boundary.  N must be a power of
   two.  */
static CORE_ADDR
round_down (CORE_ADDR addr, int n)
{
  /* Check that N is really a power of two.  */
  gdb_assert (n && (n & (n-1)) == 0);
  return (addr & -n);
}


/* Return the alignment required by TYPE.  */
static int
alignment_of (struct type *type)
{
  int alignment;

  if (is_integer_like (type)
      || is_pointer_like (type)
      || TYPE_CODE (type) == TYPE_CODE_FLT)
    alignment = TYPE_LENGTH (type);
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
           || TYPE_CODE (type) == TYPE_CODE_UNION)
    {
      int i;

      alignment = 1;
      for (i = 0; i < TYPE_NFIELDS (type); i++)
        {
          int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));

          if (field_alignment > alignment)
            alignment = field_alignment;
        }
    }
  else
    alignment = 1;

  /* Check that everything we ever return is a power of two.  Lots of
     code doesn't want to deal with aligning things to arbitrary
     boundaries.  */
  gdb_assert ((alignment & (alignment - 1)) == 0);

  return alignment;
}


/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
   place to be passed to a function, as specified by the "GNU/Linux
   for S/390 ELF Application Binary Interface Supplement".

   SP is the current stack pointer.  We must put arguments, links,
   padding, etc. whereever they belong, and return the new stack
   pointer value.
   
   If STRUCT_RETURN is non-zero, then the function we're calling is
   going to return a structure by value; STRUCT_ADDR is the address of
   a block we've allocated for it on the stack.

   Our caller has taken care of any type promotions needed to satisfy
   prototypes or the old K&R argument-passing rules.  */
CORE_ADDR
s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
		     int struct_return, CORE_ADDR struct_addr)
{
  int i;
  int pointer_size = (TARGET_PTR_BIT / TARGET_CHAR_BIT);

  /* The number of arguments passed by reference-to-copy.  */
  int num_copies;

  /* If the i'th argument is passed as a reference to a copy, then
     copy_addr[i] is the address of the copy we made.  */
  CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));

  /* Build the reference-to-copy area.  */
  num_copies = 0;
  for (i = 0; i < nargs; i++)
    {
      struct value *arg = args[i];
      struct type *type = VALUE_TYPE (arg);
      unsigned length = TYPE_LENGTH (type);

      if (is_simple_arg (type)
          && pass_by_copy_ref (type))
        {
          sp -= length;
          sp = round_down (sp, alignment_of (type));
          write_memory (sp, VALUE_CONTENTS (arg), length);
          copy_addr[i] = sp;
          num_copies++;
        }
    }

  /* Reserve space for the parameter area.  As a conservative
     simplification, we assume that everything will be passed on the
     stack.  */
  {
    int i;

    for (i = 0; i < nargs; i++)
      {
        struct value *arg = args[i];
        struct type *type = VALUE_TYPE (arg);
        int length = TYPE_LENGTH (type);
        
        sp = round_down (sp, alignment_of (type));

        /* SIMPLE_ARG values get extended to 32 bits.  Assume every
           argument is.  */
        if (length < 4) length = 4;
        sp -= length;
      }
  }

  /* Include space for any reference-to-copy pointers.  */
  sp = round_down (sp, pointer_size);
  sp -= num_copies * pointer_size;
    
  /* After all that, make sure it's still aligned on an eight-byte
     boundary.  */
  sp = round_down (sp, 8);

  /* Finally, place the actual parameters, working from SP towards
     higher addresses.  The code above is supposed to reserve enough
     space for this.  */
  {
    int fr = 0;
    int gr = 2;
    CORE_ADDR starg = sp;

    for (i = 0; i < nargs; i++)
      {
        struct value *arg = args[i];
        struct type *type = VALUE_TYPE (arg);
        
        if (is_double_or_float (type)
            && fr <= 2)
          {
            /* When we store a single-precision value in an FP register,
               it occupies the leftmost bits.  */
            deprecated_write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM + fr),
					     VALUE_CONTENTS (arg),
					     TYPE_LENGTH (type));
            fr += 2;
          }
        else if (is_simple_arg (type)
                 && gr <= 6)
          {
            /* Do we need to pass a pointer to our copy of this
               argument?  */
            if (pass_by_copy_ref (type))
              write_register (S390_GP0_REGNUM + gr, copy_addr[i]);
            else
              write_register (S390_GP0_REGNUM + gr, extend_simple_arg (arg));

            gr++;
          }
        else if (is_double_arg (type)
                 && gr <= 5)
          {
            deprecated_write_register_gen (S390_GP0_REGNUM + gr,
					   VALUE_CONTENTS (arg));
            deprecated_write_register_gen (S390_GP0_REGNUM + gr + 1,
					   VALUE_CONTENTS (arg) + 4);
            gr += 2;
          }
        else
          {
            /* The `OTHER' case.  */
            enum type_code code = TYPE_CODE (type);
            unsigned length = TYPE_LENGTH (type);
            
            /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
               in it, then don't go back and use it again later.  */
            if (is_double_arg (type) && gr == 6)
              gr = 7;

            if (is_simple_arg (type))
              {
                /* Simple args are always either extended to 32 bits,
                   or pointers.  */
                starg = round_up (starg, 4);

                /* Do we need to pass a pointer to our copy of this
                   argument?  */
                if (pass_by_copy_ref (type))
                  write_memory_signed_integer (starg, pointer_size,
                                               copy_addr[i]);
                else
                  /* Simple args are always extended to 32 bits.  */
                  write_memory_signed_integer (starg, 4,
                                               extend_simple_arg (arg));
                starg += 4;
              }
            else
              {
                /* You'd think we should say:
                   starg = round_up (starg, alignment_of (type));
                   Unfortunately, GCC seems to simply align the stack on
                   a four-byte boundary, even when passing doubles.  */
                starg = round_up (starg, 4);
                write_memory (starg, VALUE_CONTENTS (arg), length);
                starg += length;
              }
          }
      }
  }

  /* Allocate the standard frame areas: the register save area, the
     word reserved for the compiler (which seems kind of meaningless),
     and the back chain pointer.  */
  sp -= 96;

  /* Write the back chain pointer into the first word of the stack
     frame.  This will help us get backtraces from within functions
     called from GDB.  */
  write_memory_unsigned_integer (sp, (TARGET_PTR_BIT / TARGET_CHAR_BIT),
                                 read_fp ());

  return sp;
}


static int
s390_use_struct_convention (int gcc_p, struct type *value_type)
{
  enum type_code code = TYPE_CODE (value_type);

  return (code == TYPE_CODE_STRUCT
          || code == TYPE_CODE_UNION);
}


/* Return the GDB type object for the "standard" data type
   of data in register N.  */
struct type *
s390_register_virtual_type (int regno)
{
  if (S390_FP0_REGNUM <= regno && regno < S390_FP0_REGNUM + S390_NUM_FPRS)
    return builtin_type_double;
  else
    return builtin_type_int;
}


struct type *
s390x_register_virtual_type (int regno)
{
  return (regno == S390_FPC_REGNUM) ||
    (regno >= S390_FIRST_ACR && regno <= S390_LAST_ACR) ? builtin_type_int :
    (regno >= S390_FP0_REGNUM) ? builtin_type_double : builtin_type_long;
}



void
s390_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
  write_register (S390_GP0_REGNUM + 2, addr);
}



const static unsigned char *
s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  static unsigned char breakpoint[] = { 0x0, 0x1 };

  *lenptr = sizeof (breakpoint);
  return breakpoint;
}

/* Advance PC across any function entry prologue instructions to reach some
   "real" code.  */
CORE_ADDR
s390_skip_prologue (CORE_ADDR pc)
{
  struct frame_extra_info fextra_info;

  s390_get_frame_info (pc, &fextra_info, NULL, 1);
  return fextra_info.skip_prologue_function_start;
}

/* Immediately after a function call, return the saved pc.
   Can't go through the frames for this because on some machines
   the new frame is not set up until the new function executes
   some instructions.  */
CORE_ADDR
s390_saved_pc_after_call (struct frame_info *frame)
{
  return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
}

static CORE_ADDR
s390_addr_bits_remove (CORE_ADDR addr)
{
  return (addr) & 0x7fffffff;
}


static CORE_ADDR
s390_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
  write_register (S390_RETADDR_REGNUM, CALL_DUMMY_ADDRESS ());
  return sp;
}

struct gdbarch *
s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  static LONGEST s390_call_dummy_words[] = { 0 };
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int elf_flags;

  /* First see if there is already a gdbarch that can satisfy the request.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* None found: is the request for a s390 architecture? */
  if (info.bfd_arch_info->arch != bfd_arch_s390)
    return NULL;		/* No; then it's not for us.  */

  /* Yes: create a new gdbarch for the specified machine type.  */
  gdbarch = gdbarch_alloc (&info, NULL);

  set_gdbarch_believe_pcc_promotion (gdbarch, 0);
  set_gdbarch_char_signed (gdbarch, 0);

  set_gdbarch_frame_args_skip (gdbarch, 0);
  set_gdbarch_frame_args_address (gdbarch, s390_frame_args_address);
  set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
  set_gdbarch_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs);
  set_gdbarch_frame_locals_address (gdbarch, s390_frame_args_address);
  /* We can't do this */
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
  set_gdbarch_store_struct_return (gdbarch, s390_store_struct_return);
  set_gdbarch_deprecated_extract_return_value (gdbarch, s390_extract_return_value);
  set_gdbarch_deprecated_store_return_value (gdbarch, s390_store_return_value);
  /* Amount PC must be decremented by after a breakpoint.
     This is often the number of bytes in BREAKPOINT
     but not always.  */
  set_gdbarch_decr_pc_after_break (gdbarch, 2);
  set_gdbarch_pop_frame (gdbarch, s390_pop_frame);
  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  /* Offset from address of function to start of its code.
     Zero on most machines.  */
  set_gdbarch_function_start_offset (gdbarch, 0);
  set_gdbarch_max_register_raw_size (gdbarch, 8);
  set_gdbarch_max_register_virtual_size (gdbarch, 8);
  set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
  set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
  set_gdbarch_init_extra_frame_info (gdbarch, s390_init_extra_frame_info);
  set_gdbarch_init_frame_pc_first (gdbarch, s390_init_frame_pc_first);
  set_gdbarch_read_fp (gdbarch, s390_read_fp);
  /* This function that tells us whether the function invocation represented
     by FI does not have a frame on the stack associated with it.  If it
     does not, FRAMELESS is set to 1, else 0.  */
  set_gdbarch_frameless_function_invocation (gdbarch,
					     s390_frameless_function_invocation);
  /* Return saved PC from a frame */
  set_gdbarch_frame_saved_pc (gdbarch, s390_frame_saved_pc);
  /* FRAME_CHAIN takes a frame's nominal address
     and produces the frame's chain-pointer. */
  set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
  set_gdbarch_saved_pc_after_call (gdbarch, s390_saved_pc_after_call);
  set_gdbarch_register_byte (gdbarch, s390_register_byte);
  set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
  set_gdbarch_fp_regnum (gdbarch, S390_FP_REGNUM);
  set_gdbarch_fp0_regnum (gdbarch, S390_FP0_REGNUM);
  set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
  set_gdbarch_cannot_fetch_register (gdbarch, s390_cannot_fetch_register);
  set_gdbarch_cannot_store_register (gdbarch, s390_cannot_fetch_register);
  set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
  set_gdbarch_use_struct_convention (gdbarch, s390_use_struct_convention);
  set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
  set_gdbarch_register_name (gdbarch, s390_register_name);
  set_gdbarch_stab_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
  set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
  set_gdbarch_deprecated_extract_struct_value_address
    (gdbarch, generic_cannot_extract_struct_value_address);

  /* Parameters for inferior function calls.  */
  set_gdbarch_call_dummy_p (gdbarch, 1);
  set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
  set_gdbarch_call_dummy_length (gdbarch, 0);
  set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
  set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
  set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
  set_gdbarch_push_arguments (gdbarch, s390_push_arguments);
  set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
  set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
  set_gdbarch_push_return_address (gdbarch, s390_push_return_address);
  set_gdbarch_sizeof_call_dummy_words (gdbarch,
                                       sizeof (s390_call_dummy_words));
  set_gdbarch_call_dummy_words (gdbarch, s390_call_dummy_words);
  set_gdbarch_coerce_float_to_double (gdbarch,
                                      standard_coerce_float_to_double);

  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_s390_31:
      set_gdbarch_register_size (gdbarch, 4);
      set_gdbarch_register_raw_size (gdbarch, s390_register_raw_size);
      set_gdbarch_register_virtual_size (gdbarch, s390_register_raw_size);
      set_gdbarch_register_virtual_type (gdbarch, s390_register_virtual_type);

      set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
      set_gdbarch_register_bytes (gdbarch, S390_REGISTER_BYTES);
      break;
    case bfd_mach_s390_64:
      set_gdbarch_register_size (gdbarch, 8);
      set_gdbarch_register_raw_size (gdbarch, s390x_register_raw_size);
      set_gdbarch_register_virtual_size (gdbarch, s390x_register_raw_size);
      set_gdbarch_register_virtual_type (gdbarch,
					 s390x_register_virtual_type);

      set_gdbarch_long_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_ptr_bit (gdbarch, 64);
      set_gdbarch_register_bytes (gdbarch, S390X_REGISTER_BYTES);
      break;
    }

  return gdbarch;
}



void
_initialize_s390_tdep (void)
{

  /* Hook us into the gdbarch mechanism.  */
  register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
  if (!tm_print_insn)		/* Someone may have already set it */
    tm_print_insn = gdb_print_insn_s390;
}

#endif /* GDBSERVER */