aboutsummaryrefslogtreecommitdiff
path: root/libctf/ctf-impl.h
AgeCommit message (Collapse)AuthorFilesLines
2019-05-31libctf: fix a number of build problems found on Solaris and NetBSDJose E. Marchesi1-2/+3
- Use of nonportable <endian.h> - Use of qsort_r - Use of zlib without appropriate magic to pull in the binutils zlib - Use of off64_t without checking (fixed by dropping the unused fields that need off64_t entirely) - signedness problems due to long being too short a type on 32-bit platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be used only for functions that return ctf_id_t - One lingering use of bzero() and of <sys/errno.h> All fixed, using code from gnulib where possible. Relatedly, set cts_size in a couple of places it was missed (string table and symbol table loading upon ctf_bfdopen()). binutils/ * objdump.c (make_ctfsect): Drop cts_type, cts_flags, and cts_offset. * readelf.c (shdr_to_ctf_sect): Likewise. include/ * ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset. (ctf_id_t): This is now an unsigned type. (CTF_ERR): Cast it to ctf_id_t. Note that it should only be used for ctf_id_t-returning functions. libctf/ * Makefile.am (ZLIB): New. (ZLIBINC): Likewise. (AM_CFLAGS): Use them. (libctf_a_LIBADD): New, for LIBOBJS. * configure.ac: Check for zlib, endian.h, and qsort_r. * ctf-endian.h: New, providing htole64 and le64toh. * swap.h: Code style fixes. (bswap_identity_64): New. * qsort_r.c: New, from gnulib (with one added #include). * ctf-decls.h: New, providing a conditional qsort_r declaration, and unconditional definitions of MIN and MAX. * ctf-impl.h: Use it. Do not use <sys/errno.h>. (ctf_set_errno): Now returns unsigned long. * ctf-util.c (ctf_set_errno): Adjust here too. * ctf-archive.c: Use ctf-endian.h. (ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type, cts_flags and cts_offset. (ctf_arc_write): Drop debugging dependent on the size of off_t. * ctf-create.c: Provide a definition of roundup if not defined. (ctf_create): Drop cts_type, cts_flags and cts_offset. (ctf_add_reftype): Do not check if type IDs are below zero. (ctf_add_slice): Likewise. (ctf_add_typedef): Likewise. (ctf_add_member_offset): Cast error-returning ssize_t's to size_t when known error-free. Drop CTF_ERR usage for functions returning int. (ctf_add_member_encoded): Drop CTF_ERR usage for functions returning int. (ctf_add_variable): Likewise. (enumcmp): Likewise. (enumadd): Likewise. (membcmp): Likewise. (ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t when known error-free. * ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions returning int: use CTF_ERR for functions returning ctf_type_id. (ctf_dump_label): Likewise. (ctf_dump_objts): Likewise. * ctf-labels.c (ctf_label_topmost): Likewise. (ctf_label_iter): Likewise. (ctf_label_info): Likewise. * ctf-lookup.c (ctf_func_args): Likewise. * ctf-open.c (upgrade_types): Cast to size_t where appropriate. (ctf_bufopen): Likewise. Use zlib types as needed. * ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions returning int. (ctf_enum_iter): Likewise. (ctf_type_size): Likewise. (ctf_type_align): Likewise. Cast to size_t where appropriate. (ctf_type_kind_unsliced): Likewise. (ctf_type_kind): Likewise. (ctf_type_encoding): Likewise. (ctf_member_info): Likewise. (ctf_array_info): Likewise. (ctf_enum_value): Likewise. (ctf_type_rvisit): Likewise. * ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and cts_offset. (ctf_simple_open): Likewise. (ctf_bfdopen_ctfsect): Likewise. Set cts_size properly. * Makefile.in: Regenerate. * aclocal.m4: Likewise. * config.h: Likewise. * configure: Likewise.
2019-05-28libctf: library version enforcementNick Alcock1-0/+1
This old Solaris standard allows callers to specify that they are expecting one particular API and/or CTF file format from the library. libctf/ * ctf-impl.h (_libctf_version): New declaration. * ctf-subr.c (_libctf_version): Define it. (ctf_version): New. include/ * ctf-api.h (ctf_version): New.
2019-05-28libctf: lookups by name and symbolNick Alcock1-0/+1
These functions allow you to look up types given a name in a simple subset of C declarator syntax (no function pointers), to look up the types of variables given a name, and to look up the types of data objects and the type signatures of functions given symbol table offsets. (Despite its name, one function in this commit, ctf_lookup_symbol_name(), is for the internal use of libctf only, and does not appear in any public header files.) libctf/ * ctf-lookup.c (isqualifier): New. (ctf_lookup_by_name): Likewise. (struct ctf_lookup_var_key): Likewise. (ctf_lookup_var): Likewise. (ctf_lookup_variable): Likewise. (ctf_lookup_symbol_name): Likewise. (ctf_lookup_by_symbol): Likewise. (ctf_func_info): Likewise. (ctf_func_args): Likewise. include/ * ctf-api.h (ctf_func_info): New. (ctf_func_args): Likewise. (ctf_lookup_by_symbol): Likewise. (ctf_lookup_by_symbol): Likewise. (ctf_lookup_variable): Likewise.
2019-05-28libctf: core type lookupNick Alcock1-0/+8
Finally we get to the functions used to actually look up and enumerate properties of types in a container (names, sizes, members, what type a pointer or cv-qual references, determination of whether two types are assignment-compatible, etc). With a very few exceptions these do not work for types newly added via ctf_add_*(): they only work on types in read-only containers, or types added before the most recent call to ctf_update(). This also adds support for lookup of "variables" (string -> type ID mappings) and for generation of C type names corresponding to a type ID. libctf/ * ctf-decl.c: New file. * ctf-types.c: Likewise. * ctf-impl.h: New declarations. include/ * ctf-api.h (ctf_visit_f): New definition. (ctf_member_f): Likewise. (ctf_enum_f): Likewise. (ctf_variable_f): Likewise. (ctf_type_f): Likewise. (ctf_type_isparent): Likewise. (ctf_type_ischild): Likewise. (ctf_type_resolve): Likewise. (ctf_type_aname): Likewise. (ctf_type_lname): Likewise. (ctf_type_name): Likewise. (ctf_type_sizee): Likewise. (ctf_type_align): Likewise. (ctf_type_kind): Likewise. (ctf_type_reference): Likewise. (ctf_type_pointer): Likewise. (ctf_type_encoding): Likewise. (ctf_type_visit): Likewise. (ctf_type_cmp): Likewise. (ctf_type_compat): Likewise. (ctf_member_info): Likewise. (ctf_array_info): Likewise. (ctf_enum_name): Likewise. (ctf_enum_value): Likewise. (ctf_member_iter): Likewise. (ctf_enum_iter): Likewise. (ctf_type_iter): Likewise. (ctf_variable_iter): Likewise.
2019-05-28libctf: ELF file opening via BFDNick Alcock1-0/+6
These functions let you open an ELF file with a customarily-named CTF section in it, automatically opening the CTF file or archive and associating the symbol and string tables in the ELF file with the CTF container, so that you can look up the types of symbols in the ELF file via ctf_lookup_by_symbol(), and so that strings can be shared between the ELF file and CTF container, to save space. It uses BFD machinery to do so. This has now been lightly tested and seems to work. In particular, if you already have a bfd you can pass it in to ctf_bfdopen(), and if you want a bfd made for you you can call ctf_open() or ctf_fdopen(), optionally specifying a target (or try once without a target and then again with one if you get ECTF_BFD_AMBIGUOUS back). We use a forward declaration for the struct bfd in ctf-api.h, so that ctf-api.h users are not required to pull in <bfd.h>. (This is mostly for the sake of readelf.) libctf/ * ctf-open-bfd.c: New file. * ctf-open.c (ctf_close): New. * ctf-impl.h: Include bfd.h. (ctf_file): New members ctf_data_mmapped, ctf_data_mmapped_len. (ctf_archive_internal): New members ctfi_abfd, ctfi_data, ctfi_bfd_close. (ctf_bfdopen_ctfsect): New declaration. (_CTF_SECTION): likewise. include/ * ctf-api.h (struct bfd): New forward. (ctf_fdopen): New. (ctf_bfdopen): Likewise. (ctf_open): Likewise. (ctf_arc_open): Likewise.
2019-05-28libctf: mmappable archivesNick Alcock1-0/+15
If you need to store a large number of CTF containers somewhere, this provides a dedicated facility for doing so: an mmappable archive format like a very simple tar or ar without all the system-dependent format horrors or need for heavy file copying, with built-in compression of files above a particular size threshold. libctf automatically mmap()s uncompressed elements of these archives, or uncompresses them, as needed. (If the platform does not support mmap(), copying into dynamically-allocated buffers is used.) Archive iteration operations are partitioned into raw and non-raw forms. Raw operations pass thhe raw archive contents to the callback: non-raw forms open each member with ctf_bufopen() and pass the resulting ctf_file_t to the iterator instead. This lets you manipulate the raw data in the archive, or the contents interpreted as a CTF file, as needed. It is not yet known whether we will store CTF archives in a linked ELF object in one of these (akin to debugdata) or whether they'll get one section per TU plus one parent container for types shared between them. (In the case of ELF objects with very large numbers of TUs, an archive of all of them would seem preferable, so we might just use an archive, and add lzma support so you can assume that .gnu_debugdata and .ctf are compressed using the same algorithm if both are present.) To make usage easier, the ctf_archive_t is not the on-disk representation but an abstraction over both ctf_file_t's and archives of many ctf_file_t's: users see both CTF archives and raw CTF files as ctf_archive_t's upon opening, the only difference being that a raw CTF file has only a single "archive member", named ".ctf" (the default if a null pointer is passed in as the name). The next commit will make use of this facility, in addition to providing the public interface to actually open archives. (In the future, it should be possible to have all CTF sections in an ELF file appear as an "archive" in the same fashion.) This machinery is also used to allow library-internal creators of ctf_archive_t's (such as the next commit) to stash away an ELF string and symbol table, so that all opens of members in a given archive will use them. This lets CTF archives exploit the ELF string and symbol table just like raw CTF files can. (All this leads to somewhat confusing type naming. The ctf_archive_t is a typedef for the opaque internal type, struct ctf_archive_internal: the non-internal "struct ctf_archive" is the on-disk structure meant for other libraries manipulating CTF files. It is probably clearest to use the struct name for struct ctf_archive_internal inside the program, and the typedef names outside.) libctf/ * ctf-archive.c: New. * ctf-impl.h (ctf_archive_internal): New type. (ctf_arc_open_internal): New declaration. (ctf_arc_bufopen): Likewise. (ctf_arc_close_internal): Likewise. include/ * ctf.h (CTFA_MAGIC): New. (struct ctf_archive): New. (struct ctf_archive_modent): Likewise. * ctf-api.h (ctf_archive_member_f): New. (ctf_archive_raw_member_f): Likewise. (ctf_arc_write): Likewise. (ctf_arc_close): Likewise. (ctf_arc_open_by_name): Likewise. (ctf_archive_iter): Likewise. (ctf_archive_raw_iter): Likewise. (ctf_get_arc): Likewise.
2019-05-28libctf: implementation definitions related to file creationNick Alcock1-0/+214
We now enter a series of commits that are sufficiently tangled that avoiding forward definitions is almost impossible: no attempt is made to make individual commits compilable (which is why the build system does not reference any of them yet): the only important thing is that they should form something like conceptual groups. But first, some definitions, including the core ctf_file_t itself. Uses of these definitions will be introduced in later commits. libctf/ * ctf-impl.h: New definitions and declarations for type creation and lookup.
2019-05-28libctf: hashingNick Alcock1-0/+29
libctf maintains two distinct hash ADTs, one (ctf_dynhash) for wrapping dynamically-generated unknown-sized hashes during CTF file construction, one (ctf_hash) for wrapping unchanging hashes whose size is known at creation time for reading CTF files that were previously created. In the binutils implementation, these are both fairly thin wrappers around libiberty hashtab. Unusually, this code is not kept synchronized with libdtrace-ctf, due to its dependence on libiberty hashtab. libctf/ * ctf-hash.c: New file. * ctf-impl.h: New declarations.
2019-05-28libctf: low-level list manipulation and helper utilitiesNick Alcock1-0/+33
These utilities are a bit of a ragbag of small things needed by more than one TU: list manipulation, ELF32->64 translators, routines to look up strings in string tables, dynamically-allocated string appenders, and routines to set the specialized errno values previously committed in <ctf-api.h>. We do still need to dig around in raw ELF symbol tables in places, because libctf allows the caller to pass in the contents of string and symbol sections without telling it where they come from, so we cannot use BFD to get the symbols (BFD reasonably demands the entire file). So extract minimal ELF definitions from glibc into a private header named libctf/elf.h: later, we use those to get symbols. (The start-of- copyright range on elf.h reflects this glibc heritage.) libctf/ * ctf-util.c: New file. * elf.h: Likewise. * ctf-impl.h: Include it, and add declarations.
2019-05-28libctf: lowest-level memory allocation and debug-dumping wrappersNick Alcock1-0/+78
The memory-allocation wrappers are simple things to allow malloc interposition: they are only used inconsistently at present, usually where malloc debugging was required in the past. These provide a default implementation that is environment-variable triggered (initialized on the first call to the libctf creation and file-opening functions, the first functions people will use), and a ctf_setdebug()/ctf_getdebug() pair that allows the caller to explicitly turn debugging off and on. If ctf_setdebug() is called, the automatic setting from an environment variable is skipped. libctf/ * ctf-impl.h: New file. * ctf-subr.c: New file. include/ * ctf-api.h (ctf_setdebug): New. (ctf_getdebug): Likewise.