aboutsummaryrefslogtreecommitdiff
path: root/libctf/ctf-create.c
AgeCommit message (Collapse)AuthorFilesLines
2019-10-03libctf: allow the header to change between versionsNick Alcock1-14/+38
libctf supports dynamic upgrading of the type table as file format versions change, but before now has not supported changes to the CTF header. Doing this is complicated by the baroque storage method used: the CTF header is kept prepended to the rest of the CTF data, just as when read from the file, and written out from there, and is endian-flipped in place. This makes accessing it needlessly hard and makes it almost impossible to make the header larger if we add fields. The general storage machinery around the malloced ctf pointer (the 'ctf_base') is also overcomplicated: the pointer is sometimes malloced locally and sometimes assigned from a parameter, so freeing it requires checking to see if that parameter was used, needlessly coupling ctf_bufopen and ctf_file_close together. So split the header out into a new ctf_file_t.ctf_header, which is written out explicitly: squeeze it out of the CTF buffer whenever we reallocate it, and use ctf_file_t.ctf_buf to skip past the header when we do not need to reallocate (when no upgrading or endian-flipping is required). We now track whether the CTF base can be freed explicitly via a new ctf_dynbase pointer which is non-NULL only when freeing is possible. With all this done, we can upgrade the header on the fly and add new fields as desired, via a new upgrade_header function in ctf-open. As with other forms of upgrading, libctf upgrades older headers automatically to the latest supported version at open time. For a first use of this field, we add a new string field cth_cuname, and a corresponding setter/getter pair ctf_cuname_set and ctf_cuname: this is used by debuggers to determine whether a CTF section's types relate to a single compilation unit, or to all compilation units in the program. (Types with ambiguous definitions in different CUs have only one of these types placed in the top-level shared .ctf container: the rest are placed in much smaller per-CU containers, which have the shared container as their parent. Since CTF must be useful in the absence of DWARF, we store the names of the relevant CUs ourselves, so the debugger can look them up.) v5: fix tabdamage. include/ * ctf-api.h (ctf_cuname): New function. (ctf_cuname_set): Likewise. * ctf.h: Improve comment around upgrading, no longer implying that v2 is the target of upgrades (it is v3 now). (ctf_header_v2_t): New, old-format header for backward compatibility. (ctf_header_t): Add cth_cuname: this is the first of several header changes in format v3. libctf/ * ctf-impl.h (ctf_file_t): New fields ctf_header, ctf_dynbase, ctf_cuname, ctf_dyncuname: ctf_base and ctf_buf are no longer const. * ctf-open.c (ctf_set_base): Preserve the gap between ctf_buf and ctf_base: do not assume that it is always sizeof (ctf_header_t). Print out ctf_cuname: only print out ctf_parname if set. (ctf_free_base): Removed, ctf_base is no longer freed: free ctf_dynbase instead. (ctf_set_version): Fix spacing. (upgrade_header): New, in-place header upgrading. (upgrade_types): Rename to... (upgrade_types_v1): ... this. Free ctf_dynbase, not ctf_base. No longer track old and new headers separately. No longer allow for header sizes explicitly: squeeze the headers out on upgrade (they are preserved in fp->ctf_header). Set ctf_dynbase, ctf_base and ctf_buf explicitly. Use ctf_free, not ctf_free_base. (upgrade_types): New, also handle ctf_parmax updating. (flip_header): Flip ctf_cuname. (flip_types): Flip BUF explicitly rather than deriving BUF from BASE. (ctf_bufopen): Store the header in fp->ctf_header. Correct minimum required alignment of objtoff and funcoff. No longer store it in the ctf_buf unless that buf is derived unmodified from the input. Set ctf_dynbase where ctf_base is dynamically allocated. Drop locals that duplicate fields in ctf_file: move allocation of ctf_file further up instead. Call upgrade_header as needed. Move version-specific ctf_parmax initialization into upgrade_types. More concise error handling. (ctf_file_close): No longer test for null pointers before freeing. Free ctf_dyncuname, ctf_dynbase, and ctf_header. Do not call ctf_free_base. (ctf_cuname): New. (ctf_cuname_set): New. * ctf-create.c (ctf_update): Populate ctf_cuname. (ctf_gzwrite): Write out the header explicitly. Remove obsolescent comment. (ctf_write): Likewise. (ctf_compress_write): Get the header from ctf_header, not ctf_base. Fix the compression length: fp->ctf_size never counted the CTF header. Simplify the compress call accordingly.
2019-07-01libctf: fix spurious error when rolling back to the first snapshotNick Alcock1-1/+1
The first ctf_snapshot called after CTF file creation yields a snapshot handle that always yields a spurious ECTF_OVERROLLBACK error ("Attempt to roll back past a ctf_update") on ctf_rollback(), even if ctf_update has never been called. The fix is to start with a ctf_snapshot value higher than the zero value that ctf_snapshot_lu ("last update CTF snapshot value") is initialized to. libctf/ * ctf-create.c (ctf_create): Fix off-by-one error.
2019-07-01libctf: deduplicate and sort the string tableNick Alcock1-108/+75
ctf.h states: > [...] the CTF string table does not contain any duplicated strings. Unfortunately this is entirely untrue: libctf has before now made no attempt whatsoever to deduplicate the string table. It computes the string table's length on the fly as it adds new strings to the dynamic CTF file, and ctf_update() just writes each string to the table and notes the current write position as it traverses the dynamic CTF file's data structures and builds the final CTF buffer. There is no global view of the strings and no deduplication. Fix this by erasing the ctf_dtvstrlen dead-reckoning length, and adding a new dynhash table ctf_str_atoms that maps unique strings to a list of references to those strings: a reference is a simple uint32_t * to some value somewhere in the under-construction CTF buffer that needs updating to note the string offset when the strtab is laid out. Adding a string is now a simple matter of calling ctf_str_add_ref(), which adds a new atom to the atoms table, if one doesn't already exist, and adding the location of the reference to this atom to the refs list attached to the atom: this works reliably as long as one takes care to only call ctf_str_add_ref() once the final location of the offset is known (so you can't call it on a temporary structure and then memcpy() that structure into place in the CTF buffer, because the ref will still point to the old location: ctf_update() changes accordingly). Generating the CTF string table is a matter of calling ctf_str_write_strtab(), which counts the length and number of elements in the atoms table using the ctf_dynhash_iter() function we just added, populating an array of pointers into the atoms table and sorting it into order (to help compressors), then traversing this table and emitting it, updating the refs to each atom as we go. The only complexity here is arranging to keep the null string at offset zero, since a lot of code in libctf depends on being able to leave strtab references at 0 to indicate 'no name'. Once the table is constructed and the refs updated, we know how long it is, so we can realloc() the partial CTF buffer we allocated earlier and can copy the table on to the end of it (and purge the refs because they're not needed any more and have been invalidated by the realloc() call in any case). The net effect of all this is a reduction in uncompressed strtab sizes of about 30% (perhaps a quarter to a half of all strings across the Linux kernel are eliminated as duplicates). Of course, duplicated strings are highly redundant, so the space saving after compression is only about 20%: when the other non-strtab sections are factored in, CTF sizes shrink by about 10%. No change in externally-visible API or file format (other than the reduction in pointless redundancy). libctf/ * ctf-impl.h: (struct ctf_strs_writable): New, non-const version of struct ctf_strs. (struct ctf_dtdef): Note that dtd_data.ctt_name is unpopulated. (struct ctf_str_atom): New, disambiguated single string. (struct ctf_str_atom_ref): New, points to some other location that references this string's offset. (struct ctf_file): New members ctf_str_atoms and ctf_str_num_refs. Remove member ctf_dtvstrlen: we no longer track the total strlen as we add strings. (ctf_str_create_atoms): Declare new function in ctf-string.c. (ctf_str_free_atoms): Likewise. (ctf_str_add): Likewise. (ctf_str_add_ref): Likewise. (ctf_str_purge_refs): Likewise. (ctf_str_write_strtab): Likewise. (ctf_realloc): Declare new function in ctf-util.c. * ctf-open.c (ctf_bufopen): Create the atoms table. (ctf_file_close): Destroy it. * ctf-create.c (ctf_update): Copy-and-free it on update. No longer special-case the position of the parname string. Construct the strtab by calling ctf_str_add_ref and ctf_str_write_strtab after the rest of each buffer element is constructed, not via open-coding: realloc the CTF buffer and append the strtab to it. No longer maintain ctf_dtvstrlen. Sort the variable entry table later, after strtab construction. (ctf_copy_membnames): Remove: integrated into ctf_copy_{s,l,e}members. (ctf_copy_smembers): Drop the string offset: call ctf_str_add_ref after buffer element construction instead. (ctf_copy_lmembers): Likewise. (ctf_copy_emembers): Likewise. (ctf_create): No longer maintain the ctf_dtvstrlen. (ctf_dtd_delete): Likewise. (ctf_dvd_delete): Likewise. (ctf_add_generic): Likewise. (ctf_add_enumerator): Likewise. (ctf_add_member_offset): Likewise. (ctf_add_variable): Likewise. (membadd): Likewise. * ctf-util.c (ctf_realloc): New, wrapper around realloc that aborts if there are active ctf_str_num_refs. (ctf_strraw): Move to ctf-string.c. (ctf_strptr): Likewise. * ctf-string.c: New file, strtab manipulation. * Makefile.am (libctf_a_SOURCES): Add it. * Makefile.in: Regenerate.
2019-06-21libctf: drop mmap()-based CTF data allocatorNick Alcock1-8/+7
This allocator has the ostensible benefit that it lets us mprotect() the memory used for CTF storage: but in exchange for this it adds considerable complexity, since we have to track allocation sizes ourselves for use at freeing time, note whether the data we are storing was ctf_data_alloc()ed or not so we know if we can safely mprotect() it... and while the mprotect()ing has found few bugs, it *has* been the cause of more than one due to errors in all this tracking leading to us mprotect()ing bits of the heap and stuff like that. We are about to start composing CTF buffers from pieces so that we can do usage-based optimizations on the strtab. This means we need realloc(), which needs nonportable mremap() and *more* tracking of the *original* allocation size, and the complexity and bureaucracy of all of this is just too high for its negligible benefits. Drop the whole thing and just use malloc() like everyone else. It knows better than we do when it is safe to use mmap() under the covers, anyway. While we're at it, don't leak the entire buffer if ctf_compress_write() fails to compress it. libctf/ * ctf-subr.c (_PAGESIZE): Remove. (ctf_data_alloc): Likewise. (ctf_data_free): Likewise. (ctf_data_protect): Likewise. * ctf-impl.h: Remove declarations. * ctf-create.c (ctf_update): No longer call ctf_data_protect: use ctf_free, not ctf_data_free. (ctf_compress_write): Use ctf_data_alloc, not ctf_alloc. Free the buffer again on compression error. * ctf-open.c (ctf_set_base): No longer track the size: call ctf_free, not ctf_data_free. (upgrade_types): Likewise. Call ctf_alloc, not ctf_data_alloc. (ctf_bufopen): Likewise. No longer call ctf_data_protect.
2019-06-21libctf: handle errors on dynhash insertion betterNick Alcock1-10/+24
We were missing several cases where dynhash insertion might fail, likely due to OOM but possibly for other reasons. Pass the errors on. libctf/ * ctf-create.c (ctf_dtd_insert): Pass on error returns from ctf_dynhash_insert. (ctf_dvd_insert): Likewise. (ctf_add_generic): Likewise. (ctf_add_variable): Likewise. * ctf-impl.h: Adjust declarations.
2019-06-05libctf: eschew %zi format specifierNick Alcock1-3/+4
Too many platforms don't support it, and we can always safely use %lu or %li anyway, because the only uses are in debugging output. libctf/ * ctf-archive.c (ctf_arc_write): Eschew %zi format specifier. (ctf_arc_open_by_offset): Likewise. * ctf-create.c (ctf_add_type): Likewise.
2019-06-04Use CHAR_BIT instead of NBBY in libctfTom Tromey1-6/+8
On x86-64 Fedora 29, I tried to build a mingw-hosted gdb that targets ppc-linux. You can do this with: ../binutils-gdb/configure --host=i686-w64-mingw32 --target=ppc-linux \ --disable-{binutils,gas,gold,gprof,ld} The build failed with these errors in libctf: In file included from ../../binutils-gdb/libctf/ctf-create.c:20: ../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_encoded': ../../binutils-gdb/libctf/ctf-create.c:803:59: error: 'NBBY' undeclared (first use in this function) dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY); ^~~~ ../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP' #define P2ROUNDUP(x, align) (-(-(x) & -(align))) ^~~~~ ../../binutils-gdb/libctf/ctf-create.c:803:59: note: each undeclared identifier is reported only once for each function it appears in dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY); ^~~~ ../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP' #define P2ROUNDUP(x, align) (-(-(x) & -(align))) ^~~~~ ../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_slice': ../../binutils-gdb/libctf/ctf-create.c:862:59: error: 'NBBY' undeclared (first use in this function) dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY); ^~~~ ../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP' #define P2ROUNDUP(x, align) (-(-(x) & -(align))) ^~~~~ ../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_member_offset': ../../binutils-gdb/libctf/ctf-create.c:1341:21: error: 'NBBY' undeclared (first use in this function) off += lsize * NBBY; ^~~~ ../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_type': ../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: unknown conversion type character 'z' in format [-Wformat=] ctf_dprintf ("Conflict for type %s against ID %lx: " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../../binutils-gdb/libctf/ctf-create.c:1823:35: note: format string is defined here "union size differs, old %zi, new %zi\n", ^ ../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: unknown conversion type character 'z' in format [-Wformat=] ctf_dprintf ("Conflict for type %s against ID %lx: " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../../binutils-gdb/libctf/ctf-create.c:1823:44: note: format string is defined here "union size differs, old %zi, new %zi\n", ^ ../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: too many arguments for format [-Wformat-extra-args] ctf_dprintf ("Conflict for type %s against ID %lx: " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This patch fixes the actual errors in here. I did not try to fix the printf warnings, though I think someone ought to. Ok? libctf/ChangeLog 2019-06-04 Tom Tromey <tromey@adacore.com> * ctf-create.c (ctf_add_encoded, ctf_add_slice) (ctf_add_member_offset): Use CHAR_BIT, not NBBY.
2019-06-04libctf: look for BSD versus GNU qsort_r signaturesNick Alcock1-1/+1
We cannot just look for any declaration of qsort_r, because some operating systems have a qsort_r that has a different prototype but which still has a pair of pointers in the right places (the last two args are interchanged): so use AC_LINK_IFELSE to check for both known variants of qsort_r(), and swap their args into a consistent order in a suitable inline function. (The code for this is taken almost unchanged from gnulib.) (Now we are not using AC_LIBOBJ any more, we can use a better name for the qsort_r replacement as well.) libctf/ * qsort_r.c: Rename to... * ctf-qsort_r.c: ... this. (_quicksort): Define to ctf_qsort_r. * ctf-decls.h (qsort_r): Remove. (ctf_qsort_r): Add. (struct ctf_qsort_arg): New, transport the real ARG and COMPAR. (ctf_qsort_compar_thunk): Rearrange the arguments to COMPAR. * Makefile.am (libctf_a_LIBADD): Remove. (libctf_a_SOURCES): New, add ctf-qsort_r.c. * ctf-archive.c (ctf_arc_write): Call ctf_qsort_r, not qsort_r. * ctf-create.c (ctf_update): Likewise. * configure.ac: Check for BSD versus GNU qsort_r signature. * Makefile.in: Regenerate. * config.h.in: Likewise. * configure: Likewise.
2019-05-31libctf: fix a number of build problems found on Solaris and NetBSDJose E. Marchesi1-22/+28
- Use of nonportable <endian.h> - Use of qsort_r - Use of zlib without appropriate magic to pull in the binutils zlib - Use of off64_t without checking (fixed by dropping the unused fields that need off64_t entirely) - signedness problems due to long being too short a type on 32-bit platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be used only for functions that return ctf_id_t - One lingering use of bzero() and of <sys/errno.h> All fixed, using code from gnulib where possible. Relatedly, set cts_size in a couple of places it was missed (string table and symbol table loading upon ctf_bfdopen()). binutils/ * objdump.c (make_ctfsect): Drop cts_type, cts_flags, and cts_offset. * readelf.c (shdr_to_ctf_sect): Likewise. include/ * ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset. (ctf_id_t): This is now an unsigned type. (CTF_ERR): Cast it to ctf_id_t. Note that it should only be used for ctf_id_t-returning functions. libctf/ * Makefile.am (ZLIB): New. (ZLIBINC): Likewise. (AM_CFLAGS): Use them. (libctf_a_LIBADD): New, for LIBOBJS. * configure.ac: Check for zlib, endian.h, and qsort_r. * ctf-endian.h: New, providing htole64 and le64toh. * swap.h: Code style fixes. (bswap_identity_64): New. * qsort_r.c: New, from gnulib (with one added #include). * ctf-decls.h: New, providing a conditional qsort_r declaration, and unconditional definitions of MIN and MAX. * ctf-impl.h: Use it. Do not use <sys/errno.h>. (ctf_set_errno): Now returns unsigned long. * ctf-util.c (ctf_set_errno): Adjust here too. * ctf-archive.c: Use ctf-endian.h. (ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type, cts_flags and cts_offset. (ctf_arc_write): Drop debugging dependent on the size of off_t. * ctf-create.c: Provide a definition of roundup if not defined. (ctf_create): Drop cts_type, cts_flags and cts_offset. (ctf_add_reftype): Do not check if type IDs are below zero. (ctf_add_slice): Likewise. (ctf_add_typedef): Likewise. (ctf_add_member_offset): Cast error-returning ssize_t's to size_t when known error-free. Drop CTF_ERR usage for functions returning int. (ctf_add_member_encoded): Drop CTF_ERR usage for functions returning int. (ctf_add_variable): Likewise. (enumcmp): Likewise. (enumadd): Likewise. (membcmp): Likewise. (ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t when known error-free. * ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions returning int: use CTF_ERR for functions returning ctf_type_id. (ctf_dump_label): Likewise. (ctf_dump_objts): Likewise. * ctf-labels.c (ctf_label_topmost): Likewise. (ctf_label_iter): Likewise. (ctf_label_info): Likewise. * ctf-lookup.c (ctf_func_args): Likewise. * ctf-open.c (upgrade_types): Cast to size_t where appropriate. (ctf_bufopen): Likewise. Use zlib types as needed. * ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions returning int. (ctf_enum_iter): Likewise. (ctf_type_size): Likewise. (ctf_type_align): Likewise. Cast to size_t where appropriate. (ctf_type_kind_unsliced): Likewise. (ctf_type_kind): Likewise. (ctf_type_encoding): Likewise. (ctf_member_info): Likewise. (ctf_array_info): Likewise. (ctf_enum_value): Likewise. (ctf_type_rvisit): Likewise. * ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and cts_offset. (ctf_simple_open): Likewise. (ctf_bfdopen_ctfsect): Likewise. Set cts_size properly. * Makefile.in: Regenerate. * aclocal.m4: Likewise. * config.h: Likewise. * configure: Likewise.
2019-05-28libctf: type copyingNick Alcock1-0/+485
ctf_add_type() allows you to copy types, and all the types they depend on, from one container to another (writable) container. This lets a program maintaining multiple distinct containers (not in a parent-child relationship) introduce types that depend on types in one container in another writable one, by copying the necessary types. libctf/ * ctf-create.c (enumcmp): New. (enumadd): Likewise. (membcmp): Likewise. (membadd): Likewise. (ctf_add_type): Likewise.
2019-05-28libctf: creation functionsNick Alcock1-0/+1547
The CTF creation process looks roughly like (error handling elided): int err; ctf_file_t *foo = ctf_create (&err); ctf_id_t type = ctf_add_THING (foo, ...); ctf_update (foo); ctf_*write (...); Some ctf_add_THING functions accept other type IDs as arguments, depending on the type: cv-quals, pointers, and structure and union members all take other types as arguments. So do 'slices', which let you take an existing integral type and recast it as a type with a different bitness or offset within a byte, for bitfields. One class of THING is not a type: "variables", which are mappings of names (in the internal string table) to types. These are mostly useful when encoding variables that do not appear in a symbol table but which some external user has some other way to figure out the address of at runtime (dynamic symbol lookup or querying a VM interpreter or something). You can snapshot the creation process at any point: rolling back to a snapshot deletes all types and variables added since that point. You can make arbitrary type queries on the CTF container during the creation process, but you must call ctf_update() first, which translates the growing dynamic container into a static one (this uses the CTF opening machinery, added in a later commit), which is quite expensive. This function must also be called after adding types and before writing the container out. Because addition of types involves looking up existing types, we add a little of the type lookup machinery here, as well: only enough to look up types in dynamic containers under construction. libctf/ * ctf-create.c: New file. * ctf-lookup.c: New file. include/ * ctf-api.h (zlib.h): New include. (ctf_sect_t): New. (ctf_sect_names_t): Likewise. (ctf_encoding_t): Likewise. (ctf_membinfo_t): Likewise. (ctf_arinfo_t): Likewise. (ctf_funcinfo_t): Likewise. (ctf_lblinfo_t): Likewise. (ctf_snapshot_id_t): Likewise. (CTF_FUNC_VARARG): Likewise. (ctf_simple_open): Likewise. (ctf_bufopen): Likewise. (ctf_create): Likewise. (ctf_add_array): Likewise. (ctf_add_const): Likewise. (ctf_add_enum_encoded): Likewise. (ctf_add_enum): Likewise. (ctf_add_float): Likewise. (ctf_add_forward): Likewise. (ctf_add_function): Likewise. (ctf_add_integer): Likewise. (ctf_add_slice): Likewise. (ctf_add_pointer): Likewise. (ctf_add_type): Likewise. (ctf_add_typedef): Likewise. (ctf_add_restrict): Likewise. (ctf_add_struct): Likewise. (ctf_add_union): Likewise. (ctf_add_struct_sized): Likewise. (ctf_add_union_sized): Likewise. (ctf_add_volatile): Likewise. (ctf_add_enumerator): Likewise. (ctf_add_member): Likewise. (ctf_add_member_offset): Likewise. (ctf_add_member_encoded): Likewise. (ctf_add_variable): Likewise. (ctf_set_array): Likewise. (ctf_update): Likewise. (ctf_snapshot): Likewise. (ctf_rollback): Likewise. (ctf_discard): Likewise. (ctf_write): Likewise. (ctf_gzwrite): Likewise. (ctf_compress_write): Likewise.