Age | Commit message (Collapse) | Author | Files | Lines |
|
On some targets, the DT_RELR section size can be computed only after all
symbols addresses can be determined. Update ldelf_map_segments to pass
need_layout to _bfd_elf_map_sections_to_segments which will size DT_RELR
section and set need_layout to true if the DT_RELR section size is changed.
bfd/
* elf-bfd.h (_bfd_elf_map_sections_to_segments): Add a bool
pointer argument.
* elf.c (_bfd_elf_map_sections_to_segments): Add a bool pointer
argument to indicate if section layout needs update.
(assign_file_positions_for_load_sections): Pass NULL to
_bfd_elf_map_sections_to_segments.
* elflink.c (_bfd_elf_strip_zero_sized_dynamic_sections): Pass
NULL to _bfd_elf_map_sections_to_segments.
ld/
* ldelfgen.c (ldelf_map_segments): Pass &need_layout to
_bfd_elf_map_sections_to_segments.
|
|
* ldelfgen.c (ldelf_map_segments): Add the missing newline to
einfo.
|
|
The result of running etc/update-copyright.py --this-year, fixing all
the files whose mode is changed by the script, plus a build with
--enable-maintainer-mode --enable-cgen-maint=yes, then checking
out */po/*.pot which we don't update frequently.
The copy of cgen was with commit d1dd5fcc38ead reverted as that commit
breaks building of bfp opcodes files.
|
|
In a cross toolchain for nios2-elf target and x86_64-w64-mingw32 host
using binutils 2.37, we observed a failure that didn't show up on
x86_64-linux-gnu host: testcase pr25490-5.s was failing with
C:\path\to\nios2-elf-ld.exe: looping in map_segments
FAIL: __patchable_function_entries section 5
* ldelfgen.c (compare_link_order): Don't use section id in
sorting. Keep original ordering instead. Update comments.
|
|
* ldelfgen.c (compare_link_order): Ignore section size when
performing a relocateable link.
|
|
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* configure.ac (elf_list_options, elf_shlib_list_options=false),
(elf_plt_unwind_list_options=false): Replace FALSE with false,
and TRUE with true.
* emulparams/call_nop.sh, * emulparams/cet.sh,
* emulparams/dynamic_undefined_weak.sh,
* emulparams/elf32b4300.sh, * emulparams/elf32lm32.sh,
* emulparams/elf32lr5900.sh, * emulparams/elf32lr5900n32.sh,
* emulparams/elf32visium.sh, * emulparams/elf_x86_64.sh,
* emulparams/extern_protected_data.sh, * emulparams/plt_unwind.sh,
* emulparams/reloc_overflow.sh, * emulparams/static.sh,
* emulparams/x86-64-lam.sh, * emultempl/aarch64elf.em,
* emultempl/aix.em, * emultempl/alphaelf.em,
* emultempl/armcoff.em, * emultempl/armelf.em,
* emultempl/avrelf.em, * emultempl/beos.em, * emultempl/bfin.em,
* emultempl/cr16elf.em, * emultempl/crxelf.em,
* emultempl/cskyelf.em, * emultempl/elf.em, * emultempl/genelf.em,
* emultempl/hppaelf.em, * emultempl/linux.em,
* emultempl/m68hc1xelf.em, * emultempl/metagelf.em,
* emultempl/mipself.em, * emultempl/mmix-elfnmmo.em,
* emultempl/mmixelf.em, * emultempl/mmo.em, * emultempl/msp430.em,
* emultempl/nios2elf.em, * emultempl/pdp11.em, * emultempl/pe.em,
* emultempl/pep.em, * emultempl/ppc32elf.em,
* emultempl/ppc64elf.em, * emultempl/rxelf.em,
* emultempl/rxlinux.em, * emultempl/scoreelf.em,
* emultempl/solaris2.em, * emultempl/spuelf.em,
* emultempl/ticoff.em, * emultempl/v850elf.em, * emultempl/vms.em,
* emultempl/xtensaelf.em, * emultempl/z80.em, * ld.h,
* ldbuildid.c, * ldbuildid.h, * ldcref.c, * ldctor.c, * ldctor.h,
* ldelf.c, * ldelf.h, * ldelfgen.c, * ldelfgen.h, * ldemul.c,
* ldemul.h, * ldexp.c, * ldexp.h, * ldfile.c, * ldfile.h,
* ldgram.y, * ldlang.c, * ldlang.h, * ldmain.c, * ldmain.h,
* ldmisc.c, * ldmisc.h, * ldwrite.c, * lexsup.c, * mri.c,
* pe-dll.c, * pe-dll.h, * pep-dll.h, * plugin.c, * plugin.h,
* testplug.c, * testplug2.c, * testplug3.c, * testplug4.c: Replace
bfd_boolean with bool, FALSE with false, and TRUE with true.
* configure: Regenerate.
|
|
This is a tricky one. BFD, on the linker's behalf, reports symbols to
libctf via the ctf_new_symbol and ctf_new_dynsym callbacks, which
ultimately call ctf_link_add_linker_symbol. But while this happens
after strtab offsets are finalized, it happens before the .dynstr is
actually laid out, so we can't iterate over it at this stage and
it is not clear what the reported symbols are actually called. So
a second callback, examine_strtab, is called after the .dynstr is
finalized, which calls ctf_link_add_strtab and ultimately leads
to ldelf_ctf_strtab_iter_cb being called back repeatedly until the
offsets of every string in the .dynstr is passed to libctf.
libctf can then use this to get symbol names out of the input (which
usually stores symbol types in the form of a name -> type mapping at
this stage) and extract the types of those symbols, feeding them back
into their final form as a 1:1 association with the real symtab's
STT_OBJ and STT_FUNC symbols (with a few skipped, see
ctf_symtab_skippable).
This representation is compact, but has one problem: if libctf somehow
gets confused about the st_type of a symbol, it'll stick an entry into
the function symtypetab when it should put it into the object
symtypetab, or vice versa, and *every symbol from that one on* will have
the wrong CTF type because it's actually looking up the type for a
different symbol.
And we have just such a bug. ctf_link_add_strtab was not taking the
refcounts of strings into consideration, so even strings that had been
eliminated from the strtab by virtue of being in objects eliminated via
--as-needed etc were being reported. This is harmful because it can
lead to multiple strings with the same apparent offset, and if the last
duplicate to be reported relates to an eliminated symbol, we look up the
wrong symbol from the input and gets its type wrong: if it's unlucky and
the eliminated symbol is also of the wrong st_type, we will end up with
a corrupted symtypetab.
Thankfully the wrong-st_type case is already diagnosed by a
this-can-never-happen paranoid warning:
CTF warning: Symbol 61a added to CTF as a function but is of type 1
or the converse
* CTF warning: Symbol a3 added to CTF as a data object but is of type 2
so at least we can tell when the corruption has spread to more than one
symbol's type.
Skipping zero-refcounted strings is easy: teach _bfd_elf_strtab_str to
skip them, and ldelf_ctf_strtab_iter_cb to loop over skipped strings
until it falls off the end or finds one that isn't skipped.
bfd/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* elf-strtab.c (_bfd_elf_strtab_str): Skip strings with zero refcount.
ld/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* ldelfgen.c (ldelf_ctf_strtab_iter_cb): Skip zero-refcount strings.
libctf/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* ctf-create.c (symtypetab_density): Report the symbol name as
well as index in the name != object error; note the likely
consequences.
* ctf-link.c (ctf_link_shuffle_syms): Report the symbol index
as well as name.
|
|
PR 27160
* ldelfgen.c (compare_link_order): Protect access of ELF section
data.
(add_link_order_input_section): Remove redundant NULL check.
Use bfd_get_flavour.
(ldelf_map_segments): Use bfd_get_flavour.
|
|
commit b209b5a6b8a accesses ELF section data without checking if input is
ELF. It caused:
sh: line 1: 1355479 Segmentation fault (core dumped) /export/build/gnu/tools-build/binutils-gitlab-x32/build-x86_64-linux-gnux32/ld/ld-new -o tmpdir/pe-x86-64-1 -z norelro -L/export/gnu/import/git/gitlab/x86-binutils/ld/testsuite/ld-x86-64 -m elf_x86_64 --entry=begin tmpdir/pe-x86-64-1a.obj tmpdir/pe-x86-64-1b.obj tmpdir/pe-x86-64-1c.obj 2>&1
FAIL: Build pe-x86-64-1
on Linux/x86-64 with PE/x86-64 inputs. Add check for ELF input before
accessing ELF section data.
* ldelfgen.c (add_link_order_input_section): Check for ELF input
before accessing ELF section data.
|
|
This moves the SHF_LINK_ORDER sorting from bfd_elf_final_link to
the linker which means generic ELF targets now support SHF_LINK_ORDER
and we cope with odd cases that require resizing of output sections.
The patch also fixes two bugs in the current implementation,
introduced by commit cd6d537c48fa. The pattern test used by that
commit meant that sections matching something like
"*(.IA_64.unwind* .gnu.linkonce.ia64unw.*)" would not properly sort a
mix of sections matching the two wildcards. That commit also assumed
a stable qsort.
bfd/
PR 27160
* section.c (struct bfd_section): Remove pattern field.
(BFD_FAKE_SECTION): Adjust to suit.
* bfd-in2.h: Regenerate.
* elflink.c (compare_link_order, elf_fixup_link_order): Delete.
(bfd_elf_final_link): Don't call elf_fixup_link_order.
ld/
PR 27160
* ldlang.h (lang_output_section_statement_type): Add data field.
(lang_input_section_type, lang_section_bst_type): Add pattern field.
(statement_list): Declare.
(lang_add_section): Adjust prototype.
* emultempl/aarch64elf.em: Adjust lang_add_section calls.
* emultempl/armelf.em: Likewise.
* emultempl/beos.em: Likewise.
* emultempl/cskyelf.em: Likewise.
* emultempl/hppaelf.em: Likewise.
* emultempl/m68hc1xelf.em: Likewise.
* emultempl/metagelf.em: Likewise.
* emultempl/mipself.em: Likewise.
* emultempl/mmo.em: Likewise.
* emultempl/msp430.em: Likewise.
* emultempl/nios2elf.em: Likewise.
* emultempl/pe.em: Likewise.
* emultempl/pep.em: Likewise.
* emultempl/ppc64elf.em: Likewise.
* emultempl/spuelf.em: Likewise.
* emultempl/vms.em: Likewise.
* ldelf.c: Likewise.
* ldelfgen.c: Include ldctor.h.
(struct os_sections): New.
(add_link_order_input_section, link_order_scan): New functions.
(compare_link_order, fixup_link_order): New functions.
(ldelf_map_segments): Call link_order_scan and fixup_link_order.
* ldlang.c (statement_list): Make global.
(output_section_callback_fast): Save pattern in tree node.
(lang_add_section): Add pattern parameter, save in lang_input_section.
(output_section_callback_tree_to_list): Adjust lang_add_section calls.
(lang_insert_orphan, output_section_callback): Likewise.
(ldlang_place_orphan): Likewise.
(gc_section_callback): Don't set section->pattern
* testsuite/ld-elf/pr26256-2a.d: Don't xfail generic.
* testsuite/ld-elf/pr26256-3b.d: Likewise.
* testsuite/ld-elf/pr26256-2b.d: Likewise. notarget xgate.
|
|
|
|
This is embarrassing.
The whole point of CTF is that it remains intact even after a binary is
stripped, providing a compact mapping from symbols to types for
everything in the externally-visible interface of an ELF object: it has
connections to the symbol table for that purpose, and to the string
table to avoid duplicating symbol names. So it's a shame that the hooks
I implemented last year served to hook it up to the .symtab and .strtab,
which obviously disappear on strip, leaving any accompanying the CTF
dict containing references to strings (and, soon, symbols) which don't
exist any more because their containing strtab has been vaporized. The
original Solaris design used .dynsym and .dynstr (well, actually,
.ldynsym, which has more symbols) which do not disappear. So should we.
Thankfully the work we did before serves as guide rails, and adjusting
things to use the .dynstr and .dynsym was fast and easy. The only
annoyance is that the dynsym is assembled inside elflink.c in a fairly
piecemeal fashion, so that the easiest way to get the symbols out was to
hook in before every call to swap_symbol_out (we also leave in a hook in
front of symbol additions to the .symtab because it seems plausible that
we might want to hook them in future too: for now that hook is unused).
We adjust things so that rather than being offered a whole hash table of
symbols at once, libctf is now given symbols one at a time, with st_name
indexes already resolved and pointing at their final .dynstr offsets:
it's now up to libctf to resolve these to names as needed using the
strtab info we pass it separately.
Some bits might be contentious. The ctf_new_dynstr callback takes an
elf_internal_sym, and this remains an elf_internal_sym right down
through the generic emulation layers into ldelfgen. This is no worse
than the elf_sym_strtab we used to pass down, but in the future when we
gain non-ELF CTF symtab support we might want to lower the
elf_internal_sym to some other representation (perhaps a
ctf_link_symbol) in bfd or in ldlang_ctf_new_dynsym. We rename the
'apply_strsym' hooks to 'acquire_strings' instead, becuse they no longer
have anything to do with symbols.
There are some API changes to pieces of API which are technically public
but actually totally unused by anything and/or unused by anything but ld
so they can change freely: the ctf_link_symbol gains new fields to allow
symbol names to be given as strtab offsets as well as strings, and a
symidx so that the symbol index can be passed in. ctf_link_shuffle_syms
loses its callback parameter: the idea now is that linkers call the new
ctf_link_add_linker_symbol for every symbol in .dynsym, feed in all the
strtab entries with ctf_link_add_strtab, and then a call to
ctf_link_shuffle_syms will apply both and arrange to use them to reorder
the CTF symtab at CTF serialization time (which is coming in the next
commit).
Inside libctf we have a new preamble flag CTF_F_DYNSTR which is always
set in v3-format CTF dicts from this commit forwards: CTF dicts without
this flag are associated with .strtab like they used to be, so that old
dicts' external strings don't turn to garbage when loaded by new libctf.
Dicts with this flag are associated with .dynstr and .dynsym instead.
(The flag is not the next in sequence because this commit was written
quite late: the missing flags will be filled in by the next commit.)
Tests forthcoming in a later commit in this series.
bfd/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* elflink.c (elf_finalize_dynstr): Call examine_strtab after
dynstr finalization.
(elf_link_swap_symbols_out): Don't call it here. Call
ctf_new_symbol before swap_symbol_out.
(elf_link_output_extsym): Call ctf_new_dynsym before
swap_symbol_out.
(bfd_elf_final_link): Likewise.
* elf.c (swap_out_syms): Pass in bfd_link_info. Call
ctf_new_symbol before swap_symbol_out.
(_bfd_elf_compute_section_file_positions): Adjust.
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* readelf.c (dump_section_as_ctf): Use .dynsym and .dynstr, not
.symtab and .strtab.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* bfdlink.h (struct elf_sym_strtab): Replace with...
(struct elf_internal_sym): ... this.
(struct bfd_link_callbacks) <examine_strtab>: Take only a
symstrtab argument.
<ctf_new_symbol>: New.
<ctf_new_dynsym>: Likewise.
* ctf-api.h (struct ctf_link_sym) <st_symidx>: New.
<st_nameidx>: Likewise.
<st_nameidx_set>: Likewise.
(ctf_link_iter_symbol_f): Removed.
(ctf_link_shuffle_syms): Remove most parameters, just takes a
ctf_dict_t now.
(ctf_link_add_linker_symbol): New, split from
ctf_link_shuffle_syms.
* ctf.h (CTF_F_DYNSTR): New.
(CTF_F_MAX): Adjust.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldelfgen.c (struct ctf_strsym_iter_cb_arg): Rename to...
(struct ctf_strtab_iter_cb_arg): ... this, changing fields:
<syms>: Remove.
<symcount>: Remove.
<symstrtab>: Rename to...
<strtab>: ... this.
(ldelf_ctf_strtab_iter_cb): Adjust.
(ldelf_ctf_symbols_iter_cb): Remove.
(ldelf_new_dynsym_for_ctf): New, tell libctf about a single
symbol.
(ldelf_examine_strtab_for_ctf): Rename to...
(ldelf_acquire_strings_for_ctf): ... this, only doing the strtab
portion and not symbols.
* ldelfgen.h: Adjust declarations accordingly.
* ldemul.c (ldemul_examine_strtab_for_ctf): Rename to...
(ldemul_acquire_strings_for_ctf): ... this.
(ldemul_new_dynsym_for_ctf): New.
* ldemul.h: Adjust declarations accordingly.
* ldlang.c (ldlang_ctf_apply_strsym): Rename to...
(ldlang_ctf_acquire_strings): ... this.
(ldlang_ctf_new_dynsym): New.
(lang_write_ctf): Call ldemul_new_dynsym_for_ctf with NULL to do
the actual symbol shuffle.
* ldlang.h (struct elf_strtab_hash): Adjust accordingly.
* ldmain.c (bfd_link_callbacks): Wire up new/renamed callbacks.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-link.c (ctf_link_shuffle_syms): Adjust.
(ctf_link_add_linker_symbol): New, unimplemented stub.
* libctf.ver: Add it.
* ctf-create.c (ctf_serialize): Set CTF_F_DYNSTR on newly-serialized
dicts.
* ctf-open-bfd.c (ctf_bfdopen_ctfsect): Check for the flag: open the
symtab/strtab if not present, dynsym/dynstr otherwise.
* ctf-archive.c (ctf_arc_bufpreamble): New, get the preamble from
some arbitrary member of a CTF archive.
* ctf-impl.h (ctf_arc_bufpreamble): Declare it.
|
|
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
|
|
This unfortunately means conditionalizing out all the libctf code, but
the result is not too unbearably ugly, if a bit repetitive. I have
stubbed out code in the !ENABLE_LIBCTF path to avoid extra redundant
ifdefs where it seems that might be helpful. (The stubs are not too
disruptive, but I've tried to keep them on one line where possible to
avoid filling up the screen with stubs that nobody would care about.
If this is too much of a coding style violation I can change it.)
Changes since v2: use GCC_ENABLE rather than repeating all the
AC_ARG_ENABLE stuff over and over again.
ld/
* configure.ac [--enable-libctf]: New, default yes.
Set ENABLE_LIBCTF accordingly.
* Makefile.am [!ENABLE_LIBCTF]: Empty LIBCTF.
* configure: Regenerate.
* config.in: Regenerate.
* Makefile.in: Regenerate.
* aclocal.m4: Regenerate.
* ldlang.c (ctf_output): Conditionalize on ENABLE_LIBCTF.
(ldlang_open_ctf): Likewise.
(lang_merge_ctf): Likewise.
(ldlang_ctf_apply_strsym): Likewise.
(lang_write_ctf): Likewise.
(ldlang_write_ctf_late): Likewise.
(ldlang_open_ctf) [!ENABLE_LIBCTF]: Warn about the presence of CTF
sections.
(lang_merge_ctf) [!ENABLE_LIBCTF]: New stub.
(ldlang_ctf_apply_strsym) [!ENABLE_LIBCTF]: Likewise.
(lang_write_ctf) [!ENABLE_LIBCTF]: Likewise.
(ldlang_write_ctf_late) [!ENABLE_LIBCTF]: Likewise.
* ldelfgen.c (ldelf_emit_ctf_early): Conditionalize on
ENABLE_LIBCTF.
(struct ctf_strsym_iter_cb_arg): Likewise.
(ldelf_ctf_strtab_iter_cb): Likewise.
(ldelf_ctf_symbols_iter_cb): Likewise.
(ldelf_examine_strtab_for_ctf): Likewise.
(ldelf_emit_ctf_early) [!ENABLE_LIBCTF]: New stub.
(ldelf_examine_strtab_for_ctf) [!ENABLE_LIBCTF]: New stub.
binutils/
* configure.ac [--enable-libctf]: New, default yes.
Set ENABLE_LIBCTF accordingly.
* Makefile.am [!ENABLE_LIBCTF]: Empty LIBCTF and LIBCTF_NOBFD.
* configure: Regenerate.
* config.in: Regenerate.
* Makefile.in: Regenerate.
* aclocal.m4: Regenerate.
* objdump.c (usage): Conditionalize portions on ENABLE_LIBCTF.
(option_values): Likewise.
(long_options): Likewise.
(main): Likewise.
(dump_ctf_indent_lines): Conditionalize out when !ENABLE_LIBCTF.
(make_ctfsect): Likewise.
(dump_ctf_archive_member): Likewise.
(dump_ctf) [ENABLE_LIBCTF]: Likewise.
(dump_ctf) [!ENABLE_LIBCTF]: New empty stub.
* readelf.c (options): Conditionalize portions on ENABLE_LIBCTF.
(usage): Likewise.
(process_section_contents): Likewise.
(shdr_to_ctf_sect): Conditionalize out when !ENABLE_LIBCTF.
(dump_ctf_indent_lines): Likewise.
(dump_section_as_ctf) [ENABLE_LIBCTF]: Likewise.
|
|
ELF size_dynamic_sections is called by the ELF backend linker after all
the linker input files have been seen but before the section sizes have
been set. After the sections sizes have been set, target-specific,
global optimizations may make some dynamic sections zero-sized if they
are no longer needed.
Add ELF strip_zero_sized_dynamic_sections so that ELF backend linker can
strip zero-sized dynamic sections after the sections sizes have been set.
bfd/
PR ld/25849
* elf-bfd.h (elf_backend_data): Add
elf_backend_strip_zero_sized_dynamic_sections.
(_bfd_elf_strip_zero_sized_dynamic_sections): New prototype.
* elf64-alpha.c (elf_backend_strip_zero_sized_dynamic_sections):
New macro.
* elflink.c (_bfd_elf_strip_zero_sized_dynamic_sections): New
function.
* elfxx-target.h (elf_backend_strip_zero_sized_dynamic_sections):
New macro.
(elfNN_bed): Add elf_backend_strip_zero_sized_dynamic_sections.
ld/
PR ld/25849
* ldelfgen.c (ldelf_map_segments): Call
elf_backend_strip_zero_sized_dynamic_sections.
* testsuite/ld-alpha/tlsbinr.rd: Updated.
|
|
|
|
This is quite complicated because the CTF section's contents depend on
the final contents of the symtab and strtab, because it has two sections
whose contents are shuffled to be in 1:1 correspondence with the symtab,
and an internal strtab that gets deduplicated against the ELF strtab
(with offsets adjusted to point into the ELF strtab instead). It is
also compressed if large enough, so its size depends on its contents!
So we cannot construct it as early as most sections: we cannot even
*begin* construction until after the symtab and strtab are finalized.
Thankfully there is already one section treated similarly: compressed
debugging sections: the only differences are that compressed debugging
sections have extra handling to deal with their changing name if
compressed (CTF sections are always called ".ctf" for now, though we
have reserved ".ctf.*" against future use), and that compressed
debugging sections have previously-uncompressed content which has to be
stashed away for later compression, while CTF sections have no content
at all until we generate it (very late).
BFD also cannot do the link itself: libctf knows how to do it, and BFD
cannot call libctf directly because libctf already depends on bfd for
file I/O. So we have to use a pair of callbacks, one, examine_strtab,
which allows a caller to examine the symtab and strtab after
finalization (called from elf_link_swap_symbols_out(), right before the
symtabs are written, and after the strtab has been finalized), and one
which actually does the emission (called emit_ctf simply because it is
grouped with a bunch of section-specific late-emission function calls at
the bottom of bfd_elf_final_link, and a section-specific name seems best
for that). emit_ctf is actually called *twice*: once from lang_process
if the emulation suggests that this bfd target does not examine the
symtab or strtab, and once via a bfd callback if it does. (This means
that non-ELF targets still get CTF emitted, even though the late CTF
emission stage is never called for them).
v2: merged with non-ELF support patch: slight commit message
adjustments.
v3: do not spend time merging CTF, or crash, if the CTF section is
explicitly discarded. Do not try to merge or compress CTF unless
linking.
v4: add CTF_COMPRESSION_THRESHOLD. Annul the freed input ctf_file_t's
after writeout: set SEC_IN_MEMORY on the output contents so a future
bfd enhancement knows it could free it. Add SEC_LINKER_CREATED |
SEC_KEEP to avoid having to add .ctf to the linker script. Drop
now-unnecessary ldlang.h-level elf-bfd.h include and hackery around
it. Adapt to elf32.em->elf.em and elf-generic.em->ldelf*.c
changes.
v5: fix tabdamage. Drop #inclusions in .h files: include in .c files,
.em files, and use struct forwards instead. Use bfd_section_is_ctf
inline function rather than SECTION_IS_CTF macro. Move a few
comments.
* Makefile.def (dependencies): all-ld depends on all-libctf.
* Makefile.in: Regenerated.
include/
* bfdlink.h (elf_strtab_hash): New forward.
(elf_sym_strtab): Likewise.
(struct bfd_link_callbacks <examine_strtab>): New.
(struct bfd_link_callbacks <emit_ctf>): Likewise.
bfd/
* elf-bfd.h (bfd_section_is_ctf): New inline function.
* elf.c (special_sections_c): Add ".ctf".
(assign_file_positions_for_non_load_sections): Note that
compressed debugging sections etc are not assigned here. Treat
CTF sections like SEC_ELF_COMPRESS sections when is_linker_output:
sh_offset -1.
(assign_file_positions_except_relocs): Likewise.
(find_section_in_list): Note that debugging and CTF sections, as
well as reloc sections, are assigned later.
(_bfd_elf_assign_file_positions_for_non_load): CTF sections get
their size and contents updated.
(_bfd_elf_set_section_contents): Skip CTF sections: unlike
compressed sections, they have no uncompressed content to copy at
this stage.
* elflink.c (elf_link_swap_symbols_out): Call the examine_strtab
callback right before the strtab is written out.
(bfd_elf_final_link): Don't cache the section contents of CTF
sections: they are not populated yet. Call the emit_ctf callback
right at the end, after all the symbols and strings are flushed
out.
ld/
* ldlang.h: (struct lang_input_statement_struct): Add the_ctf.
(struct elf_sym_strtab): Add forward.
(struct elf_strtab_hash): Likewise.
(ldlang_ctf_apply_strsym): Declare.
(ldlang_write_ctf_late): Likewise.
* ldemul.h (ldemul_emit_ctf_early): New.
(ldemul_examine_strtab_for_ctf): Likewise.
(ld_emulation_xfer_type) <emit_ctf_early>: Likewise.
(ld_emulation_xfer_type) <examine_strtab_for_ctf>: Likewise.
* ldemul.c (ldemul_emit_ctf_early): New.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldlang.c: Include ctf-api.h.
(CTF_COMPRESSION_THRESHOLD): New.
(ctf_output): New. Initialized in...
(ldlang_open_ctf): ... this new function. Open all the CTF
sections in the input files: mark them non-loaded and empty
so as not to copy their contents to the output, but linker-created
so the section gets created in the target.
(ldlang_merge_ctf): New, merge types via ctf_link_add_ctf and
ctf_link.
(ldlang_ctf_apply_strsym): New, an examine_strtab callback: wrap
ldemul_examine_strtab_for_ctf.
(lang_write_ctf): New, write out the CTF section.
(ldlang_write_ctf_late): New, late call via bfd's emit_ctf hook.
(lang_process): Call ldlang_open_ctf, ldlang_merge_ctf, and
lang_write_ctf.
* ldmain.c (link_callbacks): Add ldlang_ctf_apply_strsym,
ldlang_write_ctf_late.
* emultempl/aix.em: Add ctf-api.h.
* emultempl/armcoff.em: Likewise.
* emultempl/beos.em: Likewise.
* emultempl/elf.em: Likewise.
* emultempl/generic.em: Likewise.
* emultempl/linux.em: Likewise.
* emultempl/msp430.em: Likewise.
* emultempl/pe.em: Likewise.
* emultempl/pep.em: Likewise.
* emultempl/ticoff.em: Likewise.
* emultempl/vanilla.em: Likewise.
* ldcref.c: Likewise.
* ldctor.c: Likewise.
* ldelf.c: Likewise.
* ldelfgen.c: Likewise.
* ldemul.c: Likewise.
* ldexp.c: Likewise.
* ldfile.c: Likewise.
* ldgram.c: Likewise.
* ldlex.l: Likewise.
* ldmain.c: Likewise.
* ldmisc.c: Likewise.
* ldver.c: Likewise.
* ldwrite.c: Likewise.
* lexsup.c: Likewise.
* mri.c: Likewise.
* pe-dll.c: Likewise.
* plugin.c: Likewise.
* ldelfgen.c (ldelf_emit_ctf_early): New.
(ldelf_examine_strtab_for_ctf): tell libctf about the symtab and
strtab.
(struct ctf_strsym_iter_cb_arg): New, state to do so.
(ldelf_ctf_strtab_iter_cb): New: tell libctf about
each string in the strtab in turn.
(ldelf_ctf_symbols_iter_cb): New, tell libctf
about each symbol in the symtab in turn.
* ldelfgen.h (struct elf_sym_strtab): Add forward.
(struct elf_strtab_hash): Likewise.
(struct ctf_file): Likewise.
(ldelf_emit_ctf_early): Declare.
(ldelf_examine_strtab_for_ctf): Likewise.
* emultempl/elf-generic.em (LDEMUL_EMIT_CTF_EARLY): Set it.
(LDEMUL_EXAMINE_STRTAB_FOR_CTF): Likewise.
* emultempl/aix.em (ld_${EMULATION_NAME}_emulation): Add
emit_ctf_early and examine_strtab_for_ctf, NULL by default.
* emultempl/armcoff.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/beos.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/elf.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/generic.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/linux.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/msp430.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/pe.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/pep.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/ticoff.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/vanilla.em (ld_vanilla_emulation): Likewise.
* Makefile.am: Pull in libctf (and zlib, a transitive requirement
for compressed CTF section emission). Pass it on to DejaGNU.
* configure.ac: Add AM_ZLIB.
* aclocal.m4: Added zlib.m4.
* Makefile.in: Regenerated.
* testsuite/ld-bootstrap/bootstrap.exp: Use it when relinking ld.
|
|
bfd/
* bfd-in.h (enum notice_asneeded_action): Move to bfdlink.h.
Move most other elf declarations..
* elf-bfd.h: ..to here.
* bfd-in2.h: Regenerate.
include/
* bfdlink.h (enum notice_asneeded_action): Define.
ld/
* deffilep.y: Include bfdlink.h.
* ldelf.c: Likewise.
* ldelfgen.c: Likewise.
* ldver.c: Likewise.
* mri.c: Likewise.
* emultempl/irix.em: Don't include ld.h, ldmain.h, libiberty.h.
Comment.
|
|
Many ELF linker targets support multiple "emulations" and thus have
multiple copies of elf32.em being compiled and linked into ld. This
patch moves much of elf32.em and elf-generic.em into files which will
be compiled just once, resulting in a 20% decrease in ld size for
--enable-targets=all.
* Makefile.am (ALL_EMUL_EXTRA_OFILES): Add ldelf and ldelfgen.
(CFILES, HFILES, EXTRA_ld_new_SOURCES): Likewise.
* configure.tgt: Formatting.
(targ_extra_ofiles): Init to ldelf.o ldelfgen.o, reset to just
ldelfgen.o for generic ELF targets, and empty for non-ELF.
* emultempl/aarch64elf.em (gldaarch64_layout_sections_again): Use
ldelf_map_segments.
(gld${EMULATION_NAME}_after_allocation): Likewise.
(real_func, aarch64_for_each_input_file_wrapper),
(aarch64_lang_for_each_input_file): Delete.
(lang_for_each_input_file): Don't define.
* emultempl/alphaelf.em (alpha_after_parse): Use ldelf_map_segments.
* emultempl/armelf.em (gldarm_layout_sections_again): Likewise.
(gld${EMULATION_NAME}_after_allocation): Likewise.
(real_func, arm_for_each_input_file_wrapper),
(arm_lang_for_each_input_file): Delete.
(lang_for_each_input_file): Don't define.
* emultempl/cr16elf.em (cr16elf_after_parse): Use ldelf_map_segments.
* emultempl/crxelf.em (crxelf_after_parse): Likewise. Delete
declaration.
* emultempl/cskyelf.em (gldcsky_layout_sections_again): Use
ldelf_map_segments.
(gld${EMULATION_NAME}_after_allocation): Likewise.
(real_func, csky_for_each_input_file_wrapper),
(csky_lang_for_each_input_file): Delete.
(lang_for_each_input_file): Don't define.
* emultempl/genelf.em: Include ldelfgen.h.
(gld${EMULATION_NAME}_before_allocation): Use ldelf_map_segments.
* emultempl/hppaelf.em (hppaelf_after_parse): Likewise.
(hppaelf_layout_sections_again): Likewise.
(gld${EMULATION_NAME}_after_allocation): Likewise.
(real_func, hppa_for_each_input_file_wrapper),
(hppa_lang_for_each_input_file): Delete.
(lang_for_each_input_file): Don't define.
* emultempl/ia64elf.em (ia64elf_after_parse): Use ldelf_map_segments.
* emultempl/m68hc1xelf.em (real_func),
(m68hc11_for_each_input_file_wrapper),
(m68hc11_lang_for_each_input_file): Delete.
(lang_for_each_input_file): Don't define.
* emultempl/metagelf.em (metagelf_layout_sections_again): Use
ldelf_map_segments.
(gld${EMULATION_NAME}_after_allocation): Likewise.
(real_func, metag_for_each_input_file_wrapper),
(metag_lang_for_each_input_file): Delete.
(lang_for_each_input_file): Don't define.
* emultempl/mipself.em (real_func),
(mips_for_each_input_file_wrapper),
(mips_lang_for_each_input_file): Delete.
(lang_for_each_input_file): Don't define.
* emultempl/mmo.em: Don't include elf-bfd.h, do include ldelfgen.h.
(gld${EMULATION_NAME}_after_allocation): Use ldelf_map_segments.
* emultempl/nds32elf.em (nds32_elf_after_parse): Use ldelf_after_parse.
(nds32_elf_after_allocation): Comment fix.
* emultempl/nios2elf.em (nios2elf_layout_sections_again): Use
ldelf_map_segments.
(gld${EMULATION_NAME}_after_allocation): Likewise.
(real_func, nios2_for_each_input_file_wrapper),
(nios2_lang_for_each_input_file): Delete.
(lang_for_each_input_file): Don't define.
* emultempl/ppc32elf.em (gld${EMULATION_NAME}_load_symbols): Delete
declaration.
(ppc_recognized_file): Call ldelf_load_symbols.
* emultempl/ppc64elf.em (ppc_layout_sections_again): Likewise.
(gld${EMULATION_NAME}_after_allocation): Likewise.
(real_func, ppc_for_each_input_file_wrapper),
(ppc_lang_for_each_input_file): Delete.
(lang_for_each_input_file): Don't define.
(gld${EMULATION_NAME}_load_symbols): Don't declare.
(ppc64_recognized_file): Call ldelf_load_symbols.
* emultempl/riscvelf.em (gld${EMULATION_NAME}_after_allocation):
Use ldelf_map_segments.
* emultempl/spuelf.em (spu_place_special_section): Use
ldelf_place_orphan.
* emultempl/tic6xdsbt.em (gld${EMULATION_NAME}_after_allocation):
Use ldelf_map_segments.
* emultempl/vms.em: Include ldelfgen.h.
(gld${EMULATION_NAME}_after_allocation): Use ldelf_map_segments.
* emultempl/elf32.em: Remove unnecessary headers, include ldelf.h
and ldelfgen.h. Move much of file content to..
* ldelf.c: ..here. New file.
* ldelf.h: New file.
* emultempl/elf-generic.em: Move gld${EMULATION_NAME}_map_segments..
* ldelfgen.c: ..to here.
* ldelfgen.h: New file.
* ldlang.c (lang_for_each_input_file): Adjust to only call func
on real files.
(lang_for_each_file): Likewise.
* po/SRC-POTFILES.in: Regenerate.
* Makefile.in: Regenerate.
|