Age | Commit message (Collapse) | Author | Files | Lines |
|
The rhES5 build failed due to an upstream import a while back. The
bug here is that, while the 'personality' function exists,
ADDR_NO_RANDOMIZE is only defined in <linux/personality.h>, not
<sys/personality.h>.
However, <linux/personality.h> does not declare the 'personality'
function, and <sys/personality.h> and <linux/personality.h> cannot
both be included.
This patch restores one of the removed configure checks and updates
the code to check it.
We had this as a local patch at AdaCore, because it seemed like there
was no interest upstream. However, now it turns out that this fixes
PR build/28555, so I'm sending it now.
|
|
I get some diffs when running autoconf in gdbserver, probably leftovers
from commit 5dfe4bfcb969 ("Fix format_pieces selftest on Windows").
Re-generate configure in that directory.
Change-Id: Icdc9906af95fbaf1047a579914b2983f8ec5db08
|
|
The next patch will make the use of sigtimedwait conditional to whether
the platform provides it. Start by adding a configure check for it.
gdbsupport/ChangeLog:
* common.m4 (GDB_AC_COMMON): Check for sigtimedwait.
* config.in, configure: Re-generate.
gdb/ChangeLog:
* config.in, configure: Re-generate.
gdbserver/ChangeLog:
* config.in, configure: Re-generate.
Change-Id: Ic7613fe14521b966b4d991bbcd0933ab14629c05
|
|
Currently, in order to tell whether support for disabling address
space randomization on Linux is available, GDB checks if the
personality syscall works, at configure time. I.e., it does a run
test, instead of a compile/link test:
AC_RUN_IFELSE([PERSONALITY_TEST],
[have_personality=true],
[have_personality=false],
This is a bit bogus, because the machine the build is done on may not
(and is when you consider distro gdbs) be the machine that eventually
runs gdb. It would be better if this were a compile/link test
instead, and then at runtime, GDB coped with the personality syscall
failing. Actually, GDB already copes.
One environment where this is problematic is building GDB in a Docker
container -- by default, Docker runs the container with seccomp, with
a profile that disables the personality syscall. You can tell Docker
to use a less restricted seccomp profile, but I think we should just
fix it in GDB.
"man 2 personality" says:
This system call first appeared in Linux 1.1.20 (and thus first
in a stable kernel release with Linux 1.2.0); library support
was added in glibc 2.3.
...
ADDR_NO_RANDOMIZE (since Linux 2.6.12)
With this flag set, disable address-space-layout randomization.
glibc 2.3 was released in 2002.
Linux 2.6.12 was released in 2005.
The original patch that added the configure checks was submitted in
2008. The first version of the patch that was submitted to the list
called personality from common code:
https://sourceware.org/pipermail/gdb-patches/2008-June/058204.html
and then was moved to Linux-specific code:
https://sourceware.org/pipermail/gdb-patches/2008-June/058209.html
Since HAVE_PERSONALITY is only checked in Linux code, and
ADDR_NO_RANDOMIZE exists for over 15 years, I propose just completely
removing the configure checks.
If for some odd reason, some remotely modern system still needs a
configure check, then we can revert this commit but drop the
AC_RUN_IFELSE in favor of always doing the AC_LINK_IFELSE
cross-compile fallback.
gdb/ChangeLog:
* linux-nat.c (linux_nat_target::supports_disable_randomization):
Remove references to HAVE_PERSONALITY.
* nat/linux-personality.c: Remove references to HAVE_PERSONALITY.
(maybe_disable_address_space_randomization)
(~maybe_disable_address_space_randomizatio): Remove references to
HAVE_PERSONALITY.
* config.in, configure: Regenerate.
gdbserver/ChangeLog:
* linux-low.cc:
(linux_process_target::supports_disable_randomization): Remove
reference to HAVE_PERSONALITY.
* config.in, configure: Regenerate.
gdbsupport/ChangeLog:
* common.m4 (personality test): Remove.
|
|
I get this diff when I re-generate the configure script in gdbserver,
probably leftovers from e911c6663bb8 ("Require kinfo_get_file and
kinfo_get_vmmap for FreeBSD hosts").
gdbserver/ChangeLog:
* config.in: Re-generate.
* configure: Re-generate.
Change-Id: Id19a72ea9f3e7c7b4fdb0f319c9c0bbad0e39aeb
|
|
GDB currently doesn't build on 32-bit Solaris:
* On Solaris 11.4/x86:
In file included from /usr/include/sys/procfs.h:26,
from /vol/src/gnu/gdb/hg/master/dist/gdb/i386-sol2-nat.c:24:
/usr/include/sys/old_procfs.h:31:2: error: #error "Cannot use procfs in the large file compilation environment"
#error "Cannot use procfs in the large file compilation environment"
^~~~~
* On Solaris 11.3/x86 there are several more instances of this.
The interaction between procfs and large-file support historically has
been a royal mess on Solaris:
* There are two versions of the procfs interface:
** The old ioctl-based /proc, deprecated and not used any longer in
either gdb or binutils.
** The `new' (introduced in Solaris 2.6, 1997) structured /proc.
* There are two headers one can possibly include:
** <procfs.h> which only provides the structured /proc, definining
_STRUCTURED_PROC=1 and then including ...
** <sys/procfs.h> which defaults to _STRUCTURED_PROC=0, the ioctl-based
/proc, but provides structured /proc if _STRUCTURED_PROC == 1.
* procfs and the large-file environment didn't go well together:
** Until Solaris 11.3, <sys/procfs.h> would always #error in 32-bit
compilations when the large-file environment was active
(_FILE_OFFSET_BITS == 64).
** In both Solaris 11.4 and Illumos, this restriction was lifted for
structured /proc.
So one has to be careful always to define _STRUCTURED_PROC=1 when
testing for or using <sys/procfs.h> on Solaris. As the errors above
show, this isn't always the case in binutils-gdb right now.
Also one may need to disable large-file support for 32-bit compilations
on Solaris. config/largefile.m4 meant to do this by wrapping the
AC_SYS_LARGEFILE autoconf macro with appropriate checks, yielding
ACX_LARGEFILE. Unfortunately the macro doesn't always succeed because
it neglects the _STRUCTURED_PROC part.
To make things even worse, since GCC 9 g++ predefines
_FILE_OFFSET_BITS=64 on Solaris. So even if largefile.m4 deciced not to
enable large-file support, this has no effect, breaking the gdb build.
This patch addresses all this as follows:
* All tests for the <sys/procfs.h> header are made with
_STRUCTURED_PROC=1, the definition going into the various config.h
files instead of having to make them (and sometimes failing) in the
affected sources.
* To cope with the g++ predefine of _FILE_OFFSET_BITS=64,
-U_FILE_OFFSET_BITS is added to various *_CPPFLAGS variables. It had
been far easier to have just
#undef _FILE_OFFSET_BITS
in config.h, but unfortunately such a construct in config.in is
commented by config.status irrespective of indentation and whitespace
if large-file support is disabled. I found no way around this and
putting the #undef in several global headers for bfd, binutils, ld,
and gdb seemed way more invasive.
* Last, the applicability check in largefile.m4 was modified only to
disable largefile support if really needed. To do so, it checks if
<sys/procfs.h> compiles with _FILE_OFFSET_BITS=64 defined. If it
doesn't, the disabling only happens if gdb exists in-tree and isn't
disabled, otherwise (building binutils from a tarball), there's no
conflict.
What initially confused me was the check for $plugins here, which
originally caused the disabling not to take place. Since AC_PLUGINGS
does enable plugin support if <dlfcn.h> exists (which it does on
Solaris), the disabling never happened.
I could find no explanation why the linker plugin needs large-file
support but thought it would be enough if gld and GCC's lto-plugin
agreed on the _FILE_OFFSET_BITS value. Unfortunately, that's not
enough: lto-plugin uses the simple-object interface from libiberty,
which includes off_t arguments. So to fully disable large-file
support would mean also disabling it in libiberty and its users: gcc
and libstdc++-v3. This seems highly undesirable, so I decided to
disable the linker plugin instead if large-file support won't work.
The patch allows binutils+gdb to build on i386-pc-solaris2.11 (both
Solaris 11.3 and 11.4, using GCC 9.3.0 which is the worst case due to
predefined _FILE_OFFSET_BITS=64). Also regtested on
amd64-pc-solaris2.11 (again on Solaris 11.3 and 11.4),
x86_64-pc-linux-gnu and i686-pc-linux-gnu.
config:
* largefile.m4 (ACX_LARGEFILE) <sparc-*-solaris*|i?86-*-solaris*>:
Check for <sys/procfs.h> incompatilibity with large-file support
on Solaris.
Only disable large-file support and perhaps plugins if needed.
Set, substitute LARGEFILE_CPPFLAGS if so.
bfd:
* bfd.m4 (BFD_SYS_PROCFS_H): New macro.
(BFD_HAVE_SYS_PROCFS_TYPE): Require BFD_SYS_PROCFS_H.
Don't define _STRUCTURED_PROC.
(BFD_HAVE_SYS_PROCFS_TYPE_MEMBER): Likewise.
* elf.c [HAVE_SYS_PROCFS_H] (_STRUCTURED_PROC): Don't define.
* configure.ac: Use BFD_SYS_PROCFS_H to check for <sys/procfs.h>.
* configure, config.in: Regenerate.
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in, doc/Makefile.in: Regenerate.
binutils:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in, doc/Makefile.in: Regenerate.
* configure: Regenerate.
gas:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in, doc/Makefile.in: Regenerate.
* configure: Regenerate.
gdb:
* proc-api.c (_STRUCTURED_PROC): Don't define.
* proc-events.c: Likewise.
* proc-flags.c: Likewise.
* proc-why.c: Likewise.
* procfs.c: Likewise.
* Makefile.in (INTERNAL_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* configure, config.in: Regenerate.
gdbserver:
* configure, config.in: Regenerate.
gdbsupport:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* common.m4 (GDB_AC_COMMON): Use BFD_SYS_PROCFS_H to check for
<sys/procfs.h>.
* Makefile.in: Regenerate.
* configure, config.in: Regenerate.
gnulib:
* configure.ac: Run ACX_LARGEFILE before gl_EARLY.
* configure: Regenerate.
gprof:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in: Regenerate.
* configure: Regenerate.
ld:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in: Regenerate.
* configure: Regenerate.
|
|
The original configure-time tests in gdb/ and gdbserver/ failed to
detect that 'socklen_t' is defined in MinGW headers because the test
program included only sys/socket.h, which is absent in MinGW system
headers. However on MS-Windows this data type is declared in another
header, ws2tcpip.h. The modified test programs try using ws2tcpip.h
if sys/socket.h is unavailable.
Thanks to Joel Brobecker who helped me regenerate the configure
scripts and the config.in files.
gdb/ChangeLog:
2020-07-26 Eli Zaretskii <eliz@gnu.org>
* configure.ac (AC_CHECK_HEADERS): Check for sys/socket.h and
ws2tcpip.h. When checking whether socklen_t type is defined, use
ws2tcpip.h if it is available and sys/socket.h isn't.
* configure: Regenerate.
* config.in: Regenerate.
gdbserver/ChangeLog:
2020-07-26 Eli Zaretskii <eliz@gnu.org>
* configure.ac (AC_CHECK_HEADERS): Add ws2tcpip.h.
When checking whether socklen_t type is defined, use ws2tcpip.h if
it is available and sys/socket.h isn't.
* configure: Regenerate.
* config.in: Regenerate.
|
|
I recently stumbled on this code mentioning Linux kernel 2.6.25, and
thought it could be time for some spring cleaning (newer GDBs probably
don't need to supports 12-year old kernels). I then found that the
"legacy" case is probably broken anyway, which gives an even better
motivation for its removal.
In short, this patch removes the configure checks that check if
user_regs_struct contains the fs_base/gs_base fields and adjusts all
uses of the HAVE_STRUCT_USER_REGS_STRUCT_{FS,GS}_BASE macros. The
longer explanation/rationale follows.
Apparently, Linux kernels since 2.6.25 (that's from 2008) have been
reliably providing fs_base and gs_base as part of user_regs_struct.
Commit df5d438e33d7 in the Linux kernel [1] seems related. This means
that we can get these values by reading registers with PTRACE_GETREGS.
Previously, these values were obtained using a separate
PTRACE_ARCH_PRCTL ptrace call.
First, I'm not even sure the configure check was really right in the
first place.
The user_regs_struct used by GDB comes from
/usr/include/x86_64-linux-gnu/sys/user.h (or equivalent on other
distros) and is provided by glibc. glibc has had the fs_base/gs_base
fields in there for a very long time, at least since this commit from
2001 [2]. The Linux kernel also has its version of user_regs_struct,
which I think was exported to user-space at some point. It included the
fs_base/gs_base fields since at least this 2002 commit [3]. In any
case, my conclusion is that the fields were there long before the
aforementioned Linux kernel commit. The kernel commit didn't add these
fields, it only made sure that they have reliable values when obtained
with PTRACE_GETREGS.
So, checking for the presence of the fs_base/gs_base fields in struct
user_regs_struct doesn't sound like a good way of knowing if we can
reliably get the fs_base/gs_base values from PTRACE_GETREGS. My guess
is that if we were using that strategy on a < 2.6.25 kernel, things
would not work correctly:
- configure would find that the user_regs_struct has the fs_base/gs_base
fields (which are probided by glibc anyway)
- we would be reading the fs_base/gs_base values using PTRACE_GETREGS,
for which the kernel would provide unreliable values
Second, I have tried to see how things worked by forcing GDB to not use
fs_base/gs_base from PTRACE_GETREGS (forcing it to use the "legacy"
code, by configuring with
ac_cv_member_struct_user_regs_struct_gs_base=no ac_cv_member_struct_user_regs_struct_fs_base=no
Doing so breaks writing registers back to the inferior. For example,
calling an inferior functions gives an internal error:
(gdb) p malloc(10)
/home/smarchi/src/binutils-gdb/gdb/i387-tdep.c:1408: internal-error: invalid i387 regnum 152
The relevant last frames where this error happens are:
#8 0x0000563123d262fc in internal_error (file=0x563123e93fd8 "/home/smarchi/src/binutils-gdb/gdb/i387-tdep.c", line=1408, fmt=0x563123e94482 "invalid i387 regnum %d") at /home/smarchi/src/binutils-gdb/gdbsupport/errors.cc:55
#9 0x0000563123047d0d in i387_collect_xsave (regcache=0x5631269453f0, regnum=152, xsave=0x7ffd38402a20, gcore=0) at /home/smarchi/src/binutils-gdb/gdb/i387-tdep.c:1408
#10 0x0000563122c69e8a in amd64_collect_xsave (regcache=0x5631269453f0, regnum=152, xsave=0x7ffd38402a20, gcore=0) at /home/smarchi/src/binutils-gdb/gdb/amd64-tdep.c:3448
#11 0x0000563122c5e94c in amd64_linux_nat_target::store_registers (this=0x56312515fd10 <the_amd64_linux_nat_target>, regcache=0x5631269453f0, regnum=152) at /home/smarchi/src/binutils-gdb/gdb/amd64-linux-nat.c:335
#12 0x00005631234c8c80 in target_store_registers (regcache=0x5631269453f0, regno=152) at /home/smarchi/src/binutils-gdb/gdb/target.c:3485
#13 0x00005631232e8df7 in regcache::raw_write (this=0x5631269453f0, regnum=152, buf=0x56312759e468 "@\225\372\367\377\177") at /home/smarchi/src/binutils-gdb/gdb/regcache.c:765
#14 0x00005631232e8f0c in regcache::cooked_write (this=0x5631269453f0, regnum=152, buf=0x56312759e468 "@\225\372\367\377\177") at /home/smarchi/src/binutils-gdb/gdb/regcache.c:778
#15 0x00005631232e75ec in regcache::restore (this=0x5631269453f0, src=0x5631275eb130) at /home/smarchi/src/binutils-gdb/gdb/regcache.c:283
#16 0x0000563123083fc4 in infcall_suspend_state::restore (this=0x5631273ed930, gdbarch=0x56312718cf20, tp=0x5631270bca90, regcache=0x5631269453f0) at /home/smarchi/src/binutils-gdb/gdb/infrun.c:9103
#17 0x0000563123081eed in restore_infcall_suspend_state (inf_state=0x5631273ed930) at /home/smarchi/src/binutils-gdb/gdb/infrun.c:9151
The problem seems to be that amd64_linux_nat_target::store_registers
calls amd64_native_gregset_supplies_p to know whether gregset provides
fs_base. When !HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE,
amd64_native_gregset_supplies_p returns false. store_registers
therefore assumes that it must be an "xstate" register. This is of
course wrong, and that leads to the failed assertion when
i387_collect_xsave doesn't recognize the register.
amd64_linux_nat_target::store_registers could probably be fixed to
handle this case, but I don't think it's worth it, given that it would
only be to support very old kernels.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df5d438e33d7fc914ba9b6e0d6b019a8966c5fcc
[2] https://sourceware.org/git/?p=glibc.git;a=commit;h=c9cf6ddeebb7bb
[3] https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git/commit/?id=88e4bc32686ebd0b1111a94f93eba2d334241f68
gdb/ChangeLog:
* configure.ac: Remove check for fs_base/gs_base in
user_regs_struct.
* configure: Re-generate.
* config.in: Re-generate.
* amd64-nat.c (amd64_native_gregset_reg_offset): Adjust.
* amd64-linux-nat.c (amd64_linux_nat_target::fetch_registers,
amd64_linux_nat_target::store_registers, ps_get_thread_area, ): Adjust.
gdbserver/ChangeLog:
* configure.ac: Remove check for fs_base/gs_base in
user_regs_struct.
* configure: Re-generate.
* config.in: Re-generate.
* linux-x86-low.cc (x86_64_regmap, x86_fill_gregset,
x86_store_gregset): Adjust.
|
|
gdb_select.h and the event loop require some configure checks, so this
moves the needed checks to common.m4 and updates the configure
scripts.
gdb/ChangeLog
2020-04-13 Tom Tromey <tom@tromey.com>
* configure: Rebuild.
* configure.ac: Remove checks that are now in GDB_AC_COMMON.
gdbserver/ChangeLog
2020-04-13 Tom Tromey <tom@tromey.com>
* configure: Rebuild.
* config.in: Rebuild.
gdbsupport/ChangeLog
2020-04-13 Tom Tromey <tom@tromey.com>
* config.in, configure: Rebuild.
* common.m4 (GDB_AC_COMMON): Check for poll.h, sys/poll.h,
sys/select.h, and poll.
|
|
I stumbled on this snippet in nat/gdb_ptrace.h:
/* Some systems, in particular DEC OSF/1, Digital Unix, Compaq Tru64
or whatever it's called these days, don't provide a prototype for
ptrace. Provide one to silence compiler warnings. */
#ifndef HAVE_DECL_PTRACE
extern PTRACE_TYPE_RET ptrace();
#endif
I believe this is unnecessary today and should be removed. First, the
comment only mentions OSes we don't support (and to be honest, I had
never even heard of).
But most importantly, in C++, a declaration with empty parenthesis
declares a function that accepts no arguments, unlike in C. So if this
declaration was really used, GDB wouldn't build, since all ptrace call
sites pass some arguments. Since we haven't heard anything about this
causing some build failures since we have transitioned to C++, I
conclude that it's not used.
This patch removes it as well as the corresponding configure check.
gdb/ChangeLog:
* ptrace.m4: Don't check for ptrace declaration.
* config.in: Re-generate.
* configure: Re-generate.
* nat/gdb_ptrace.h: Don't declare ptrace if HAVE_DECL_PTRACE is
not defined.
gdbserver/ChangeLog:
* config.in: Re-generate.
* configure: Re-generate.
gdbsupport/ChangeLog:
* config.in: Re-generate.
* configure: Re-generate.
|
|
gdbserver uses gdb's alloc.c, and this in turn can include headers
from intl via gdbsupport/gdb_locale.h. This can cause build failures
in some situations, for example if you build gdb and gdbserver on
mingw.
This patch restores the gdbsupport dependency on intl, and changes
gdbserver to use ZW_GNU_GETTEXT_SISTER_DIR. This fixes this build
problem.
ChangeLog
2020-03-12 Tom Tromey <tom@tromey.com>
* Makefile.in: Rebuild.
* Makefile.def (gdbsupport): Depend on intl.
gdbserver/ChangeLog
2020-03-12 Tom Tromey <tom@tromey.com>
* config.in, configure: Rebuild.
* configure.ac: Call ZW_GNU_GETTEXT_SISTER_DIR.
* acinclude.m4: Include gettext-sister.m4.
* Makefile.in (top_builddir, INTL, INTL_DEPS, INTL_CFLAGS): New
variables.
(INCLUDE_CFLAGS): Add INTL_CFLAGS.
(gdbserver$(EXEEXT), gdbreplay$(EXEEXT)): Use INTL_DEPS, INTL.
|
|
This patch moves gdbserver to the top level.
This patch is as close to a pure move as possible -- gdbserver still
builds its own variant of gnulib and gdbsupport. Changing this will
be done in a separate patch.
[v2] Note that, per Simon's review comment, this patch changes the
tree so that gdbserver is not built for or1k or score. This makes
sense, because there is apparently not actually a gdbserver port here.
[v3] This version of the patch also splits out some configury into a
new file, gdbserver/configure.host, so that the top-level configure
script can simply rely on it in order to decide whether gdbserver
should be built.
[v4] This version adds documentation and removes some unnecessary
top-level dependencies.
[v5] Update docs to mention "make all-gdbserver" and change how
top-level configure decides whether to build gdbserver, switching to a
single, shared script.
Tested by the buildbot.
ChangeLog
2020-02-07 Tom Tromey <tom@tromey.com>
Pedro Alves <palves@redhat.com>
* src-release.sh (GDB_SUPPORT_DIRS): Add gdbserver.
* gdbserver: New directory, moved from gdb/gdbserver.
* configure.ac (host_tools): Add gdbserver.
Only build gdbserver on certain systems.
* Makefile.in, configure: Rebuild.
* Makefile.def (host_modules, dependencies): Add gdbserver.
* MAINTAINERS: Add gdbserver.
gdb/ChangeLog
2020-02-07 Tom Tromey <tom@tromey.com>
* README: Update gdbserver documentation.
* gdbserver: Move to top level.
* configure.tgt (build_gdbserver): Remove.
* configure.ac: Remove --enable-gdbserver.
* configure: Rebuild.
* Makefile.in (distclean): Don't mention gdbserver.
Change-Id: I826b7565b54604711dc7a11edea0499cd51ff39e
|