Age | Commit message (Collapse) | Author | Files | Lines |
|
This test fails on PPC64 because PPC64 prints the value of 3.5 with
more significant digits than on Intel. The patch updates the regular
expression to allow for more significant digits on the constant.
gdb/testsuite/ChangeLog
* gdb.mi/mi-reverse.exp: mi_execute_to exec-step reverse add check
for additional digits.
|
|
The gdb build was broken on Windows after the patch to change
get_inferior_cwd. This patch fixes the build.
|
|
The "val_print_type_code_flags ()" function is responsible for
extraction of fields for "flags" data type. These data types are
used when describing a custom register type in a target description
XML. The logic used for the extraction though is not sound:
unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
ULONGEST field_val
= val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
TYPE_FIELD_BITSIZE: The bit length of the field to be extracted.
TYPE_FIELD_BITPOS: The starting position of the field; 0 is LSB.
val: The register value.
Imagine you have a field that starts at position 1 and its length
is 4 bits. According to the third line of the code snippet the
shifting right would become "val >> -2", or "val >> 0xfff...fe"
to be precise. That will result in a "field_val" of 0.
The correct extraction should be:
ULONGEST field_val = val >> TYPE_FIELD_BITPOS (type, field);
The rest of the algorithm that masks out the higher bits is OK.
Co-Authored-By: Simon Marchi <simon.marchi@efficios.com>
|
|
In commit:
commit f069ea46a03ae868581d1c852da28e979ea1245a
Date: Sat Jul 3 16:29:08 2021 -0700
Rename gdb/ChangeLog to gdb/ChangeLog-2021
The gdb/ChangeLog file was renamed, but all of the other ChangeLog
files relating to gdb were left in place.
As I understand things, the no ChangeLogs policy applies to all the
GDB related directories, so this commit renames all of the remaining
GDB related ChangeLog files.
As with the original commit, the intention behind this commit is to
hopefully stop people merging ChangeLog entries by mistake.
The renames carried out in this commit are:
gdb/doc/ChangeLog -> gdb/doc/ChangeLog-1991-2021
gdb/stubs/ChangeLog -> gdb/stubs/ChangeLog-2012-2020
gdb/testsuite/ChangeLog -> gdb/testsuite/ChangeLog-2014-2021
gdbserver/ChangeLog -> gdbserver/ChangeLog-2002-2021
gdbsupport/ChangeLog -> gdbsupport/ChangeLog-2020-2021
|
|
As reported in PR gdb/28076 [1], passing no condition argument to the
-break-condition command (e.g.: "-break-condition 2") should clear the
condition for breakpoint 2, just like CLI's "condition 2", but instead
an error message is returned:
^error,msg="-break-condition: Missing the <number> and/or <expr> argument"
The current implementation of the -break-condition command's argument
handling (79aabb7308c "gdb/mi: add a '--force' flag to the
'-break-condition' command") was done according to the documentation,
where the condition argument seemed mandatory. However, the
-break-condition command originally (i.e. before the 79aabb7308c
patch) used the CLI's "cond" command, and back then not passing a
condition argument was clearing out the condition. So, this is a
regression in terms of the behavior.
Fix the argument handling of the -break-condition command to allow not
having a condition argument, and also update the document to make the
behavior clear. Also add test cases to test the scenarios which were
previously not covered.
[1] https://sourceware.org/bugzilla/show_bug.cgi?id=28076
|
|
Generated from sys/sys/syscall.h revision 1.319.
We can safely remove the _lwp_gettid syscall, which was never exposed
in libc and never made it into a release.
gdb/ChangeLog:
2021-07-23 Frederic Cambus <fred@statdns.com>
* syscalls/netbsd.xml: Regenerate.
|
|
When creating a parameter in Guile, you have to create it using
make-parameter and then register it with GDB with register-parameter!.
In between, it's still possible (though not documented) to set the
parameter's value. I broke this use case by mistake while writing this
series, so thought it would be good to have a test for it.
I suppose that people could use this "feature" to give their parameter
an initial value, even though make-parameter has an initial-value
parameter for this. Nevertheless, changing this behavior could break
some scripts, which is why I think it's important for it to be tested.
Change-Id: I5b2103e3cec0cfdcccf7ffb00eb05fed8626e66d
|
|
I don't understand what the sfunc function type in
cmd_list_element::function is for. Compared to cmd_simple_func_ftype,
it has an extra cmd_list_element parameter, giving the callback access
to the cmd_list_element for the command being invoked. This allows
registering the same callback with many commands, and alter the behavior
using the cmd_list_element's context.
From the comment in cmd_list_element, it sounds like at some point it
was the callback function type for set and show functions, hence the
"s". But nowadays, it's used for many more commands that need to access
the cmd_list_element object (see add_catch_command for example).
I don't really see the point of having sfunc at all, since do_sfunc is
just a trivial shim that changes the order of the arguments. All
commands using sfunc could just as well set cmd_list_element::func to
their callback directly.
Therefore, remove the sfunc field in cmd_list_element and everything
that goes with it. Rename cmd_const_sfunc_ftype to cmd_func_ftype and
use it for cmd_list_element::func, as well as for the add_setshow
commands.
Change-Id: I1eb96326c9b511c293c76996cea0ebc51c70fac0
|
|
After browsing the CLI code for quite a while and trying really hard, I
reached the conclusion that I can't give a meaningful explanation of
what "sfunc" and "cfunc" functions are, in cmd_list_element. I don't
see a logic at all. That makes it very difficult to do any kind of
change. Unless somebody can make sense out of all that, I'd like to try
to retro-fit some logic in the cmd_list_element callback function code
so that we can understand what is going on, do some cleanups and add new
features.
The first change is about "cfunc". I can't figure out what the "c" in
cfunc means. It's not const, because there's already "const" in
"cmd_const_cfunc_ftype", and the previous "cmd_cfunc_ftype" had nothing
const.. It's not "cmd" or "command", because there's already "cmd" in
"cmd_const_cfunc_ftype".
The "main" command callback, cmd_list_element::func, has three
parameters, whereas cfunc has two. It is missing the cmd_list_element
parameter. So the only reason I see for cfunc to exist is to be a shim
between the three and two parameter versions. Most commands don't need
to receive the cmd_list_element object, so adding it everywhere would be
long and would just add more unnecessary boilerplate. So since this is
the "simple" version of the callback, compared to the "full", I suggest
renaming cmd_const_cfunc_ftype into cmd_simple_func_ftype, as well as
everything (like the utility functions) that goes with it.
Change-Id: I4e46cacfd77a66bc1cbf683f6a362072504b7868
|
|
Same idea as the previous patch, but for m_terminal.
Change-Id: If9367d5db8c976a4336680adca4ea5bc31ab64d2
|
|
Same idea as the previous patch, but for m_cwd.
To keep things consistent across the board, change get_inferior_cwd as
well, which is shared with GDBserver. So update the related GDBserver
code too.
Change-Id: Ia2c047fda738d45f3d18bc999eb67ceb8400ce4e
|
|
With the current code, both a NULL pointer and an empty string can mean
"no arguments". We don't need this distinction. Changing to a string
has the advantage that there is now a single state for that (an empty
string), which makes the code a bit simpler in my opinion.
Change-Id: Icdc622820f7869478791dbaa84b4a1c7fec21ced
|
|
Add cwd/set_cwd to the inferior class, remove set_inferior_args.
Keep get_inferior_args, because it is used from fork_inferior, in shared
code. The cwd could eventually be passed as a parameter eventually,
though, I think that would be cleaner.
Change-Id: Ifb72ea865d7e6f9a491308f0d5c1595579d8427e
|
|
Add args/set_args to the inferior class, remove the set_inferior_args
and get_inferior_args functions, that would just be wrappers around
them.
Change-Id: If87d52f3402ce08be26c32897ae8915d9f6d1ea3
|
|
There are currently two states that the inferior args can be stored.
The main one is the `args` field, where they are stored as a single
string. The other one is the `argc`/`argv` fields.
This last one is only used for arguments passed in GDB's
command line. And the only outcome is that when get_inferior_args is
called, `argc`/`argv` are serialized into `args`. So really,
`argc`/`argv` is just a staging area before moving the arguments in
`args`.
Simplify this by only keeping the `args` field. Change
set_inferior_args_vector to immediately serialize the arguments into
`args`, work that would be done in get_inferior_args later anyway.
The only time where this work would be "wasted" is when the user passes
some arguments on the command line, but does not end up running the
program. But that just seems unlikely. And it's not that much work.
Change-Id: Ica0b9859397c095f6530350c8fb3c36905f2044a
|
|
The declaration of set_inferior_cwd is currently shared between gdb and
gdbserver, in gdbsupport/common-inferior.h. It doesn't need to be, as
set_inferior_cwd is not called from common code. Only get_inferior_cwd
needs to.
The motivation for this is that a future patch will change the prototype
of set_inferior_cwd in gdb, and I don't want to change it for gdbserver
unnecessarily. I see this as a good cleanup in any case, to reduce to
just the essential what is shared between GDB and GDBserver.
Change-Id: I3127d27d078f0503ebf5ccc6fddf14f212426a73
|
|
Fix:
DUPLICATE: gdb.base/setshow.exp: test_setshow_args: show args
by giving some explicit test names.
Change-Id: I2a738d3d3675ab9b45929e71f5aee0ea6bf92072
|
|
Split in multiple procs, one per topic, and start with a fresh GDB in
each. I find it easier to work on a test with multiple smaller
independent test procedures. For example, it's possible to comment all
but one when working on one. It's also easier to add things without
having to think about the impact on existing tests, and vice-versa.
Change-Id: I19691eed8f9bcb975b2eeff7577cac66251bcbe2
|
|
Using save_vars is a bit better than what we have now, as it ensures the
variable gets restored if the code within it throws an error.
Change-Id: I3bd6836e5b7efb61b078acadff1a1c8182c19a27
|
|
Split the file into multiple independent test procs, where each proc
starts with a fresh GDB. I find it easier to understand what a test is
doing when each part of the test is isolated and self-contained. It
makes it easier to comment out some parts of the test while working /
debugging a specific part. It also makes it easier to add new things
(which a subsequent patch will do) without fear of impacting another part
of the test.
Change-Id: I8b4d52ac82b1492d79b679e13914ed177d8a836d
|
|
Not all systems have hardware breakpoint support. Add a check
to see if the system supports hardware breakpoints.
gdb/testsuite/ChangeLog
* gdb.python/py-breakpoint.exp (test_hardware_breakpoints): Add
check for hardware breakpoint support.
|
|
In spawn_capture_tty_name (lib/gdb.exp) we either set or unset
last_spawn_tty_name depending on whether spawn_out(slave,name) exists
or not.
One situation that might cause spawn_out(slave,name) to not exists is
if the spawn function is called with the argument -leaveopen, which is
how it is called when processes are created as part of a pipeline, the
created process has no tty, instead its output is written to a file
descriptor.
If a pipeline is created consisting of multiple processes then there
will be multiple sequential calls to spawn, all using -leaveopen. The
first of these calls is fine, spawn_out(slave,name) is not set, and so
in spawn_capture_tty_name we unset last_spawn_tty_name. However, on
the second call to spawn, spawn_out(slave,name) is still not set and
so in spawn_capture_tty_name we again try to unset
last_spawn_tty_name, this now throws an error (as last_spawn_tty_name
is already unset).
Fix this issue by using -nocomplain with the call to unset in
spawn_capture_tty_name.
Before this commit I was seeing gdb.base/gnu-debugdata.exp report 1
pass, and 1 unsupported test. After this commit I now see 16 passes
from this test script.
I have also improved the code that used to do this:
if { [info exists spawn_out] } {
set ::last_spawn_tty_name $spawn_out(slave,name)
} else {
...
}
The problem here is that we check for the existence of spawn_out, and
then unconditionally read spawn_out(slave,name). A situation could
arise where some other element of spawn_out is set,
e.g. spawn_out(foo), in which case we would enter the if block and try
to read a non-existent variable. After this commit we now check
specifically for spawn_out(slave,name).
Finally, it is worth noting that before this issue was fixed runtest
itself, or rather the expect process behind runtest, would segfault
while exiting. I haven't looked at all into what the problem is here
that caused expect to crash, as fixing the bug in GDB's testing
scripts made the segfault go away.
|
|
When running test-case gdb.ada/formatted_ref.exp with gcc-11 and target board
unix/gdb:debug_flags=-gdwarf-4 we run into:
...
(gdb) print/x s^M
No definition of "s" in current context.^M
(gdb) FAIL: gdb.ada/formatted_ref.exp: print/x s
...
which is caused by "runto defs.adb:20" taking us to defs__struct1IP:
...
(gdb) break defs.adb:20^M
Breakpoint 1 at 0x402cfd: defs.adb:20. (2 locations)^M
(gdb) run ^M
Starting program: formatted_ref ^M
^M
Breakpoint 1, defs__struct1IP () at defs.adb:20^M
20 return s.x; -- Set breakpoint marker here.^M
(gdb) print s1'access^M
...
instead of the expected defs.f1:
...
(gdb) break defs.adb:20^M
Breakpoint 1 at 0x402d0e: file defs.adb, line 20.^M
(gdb) run ^M
Starting program: formatted_ref ^M
^M
Breakpoint 1, defs.f1 (s=...) at defs.adb:20^M
20 return s.x; -- Set breakpoint marker here.^M
...
This is caused by incorrect line info due to gcc PR 101575 - "[gcc-11,
-gdwarf-4] Missing .file <n> directive causes invalid line info".
Fix this by when landing in defs__struct1IP:
- xfailing the runto, and
- issuing a continue to land in defs.f1.
Likewise in a few other test-cases.
Tested on x86_64-linux, with:
- system gcc.
- gcc-11 and target boards unix/gdb:debug_flags=-gdwarf-4 and
unix/gdb:debug_flags=-gdwarf-5.
gdb/testsuite/ChangeLog:
2021-07-22 Tom de Vries <tdevries@suse.de>
* gdb.ada/formatted_ref.exp: Add xfail for PR gcc/101575.
* gdb.ada/iwide.exp: Same.
* gdb.ada/pkd_arr_elem.exp: Same.
|
|
When running test-case gdb.cp/step-and-next-inline.exp with gcc-11, I run
into:
...
KPASS: gdb.cp/step-and-next-inline.exp: no_header: next step 1 \
(PRMS symtab/25507)
FAIL: gdb.cp/step-and-next-inline.exp: no_header: next step 2
KPASS: gdb.cp/step-and-next-inline.exp: no_header: next step 3 \
(PRMS symtab/25507)
...
[ Note that I get the same result with gcc-11 and target board
unix/gdb:debug_flags=-gdwarf-4, so this is not a dwarf 4 vs 5 issue. ]
With gcc-10, I have this trace:
...
64 get_alias_set (&xx);
get_alias_set (t=0x601038 <xx>) at step-and-next-inline.cc:51
51 if (t != NULL
40 if (t->x != i)
52 && TREE_TYPE (t).z != 1
43 return x;
53 && TREE_TYPE (t).z != 2
43 return x;
54 && TREE_TYPE (t).z != 3)
43 return x;
main () at step-and-next-inline.cc:65
65 return 0;
...
and with gcc-11, I have instead:
...
64 get_alias_set (&xx);
get_alias_set (t=0x601038 <xx>) at step-and-next-inline.cc:51
51 if (t != NULL
52 && TREE_TYPE (t).z != 1
43 return x;
53 && TREE_TYPE (t).z != 2
43 return x;
54 && TREE_TYPE (t).z != 3)
43 return x;
main () at step-and-next-inline.cc:65
65 return 0;
...
and with clang-10, I have instead:
...
64 get_alias_set (&xx);
get_alias_set (t=0x601034 <xx>) at step-and-next-inline.cc:51
51 if (t != NULL
52 && TREE_TYPE (t).z != 1
53 && TREE_TYPE (t).z != 2
54 && TREE_TYPE (t).z != 3)
51 if (t != NULL
57 }
main () at step-and-next-inline.cc:65
65 return 0;
...
The test-case tries to verify that we don't step into inlined function
tree_check (lines 40-43) (so, with the clang trace we get that right).
The test-case then tries to kfail the problems when using gcc, but this is
done in such a way that the testing still gets out of sync after a failure.
That is: the "next step 2" check that is supposed to match
"TREE_TYPE (t).z != 2" is actually matching "TREE_TYPE (t).z != 1":
...
(gdb) next^M
52 && TREE_TYPE (t).z != 1^M
(gdb) PASS: gdb.cp/step-and-next-inline.exp: no_header: next step 2
...
Fix this by issuing extra nexts to arrive at the required lines.
Tested on x86_64-linux, with gcc-8, gcc-9, gcc-10, gcc-11, clang-8, clang-10
and clang-12.
gdb/testsuite/ChangeLog:
2021-07-20 Tom de Vries <tdevries@suse.de>
* gdb.cp/step-and-next-inline.cc (tree_check, get_alias_set, main):
Tag closing brace with comment.
* gdb.cp/step-and-next-inline.h: Update to keep identical with
step-and-next-inline.cc.
* gdb.cp/step-and-next-inline.exp: Issue extra next when required.
|
|
When running test-case gdb.base/ptype-offsets.exp with gcc-11 (with -gdwarf-5
default) or gcc-10 with target board unix/gdb:debug_flags=-gdwarf-5 we run
into this regression:
...
(gdb) ptype/o static_member^M
/* offset | size */ type = struct static_member {^M
- static static_member Empty;^M
/* 0 | 4 */ int abc;^M
^M
/* total size (bytes): 4 */^M
}^M
-(gdb) PASS: gdb.base/ptype-offsets.exp: ptype/o static_member
+(gdb) FAIL: gdb.base/ptype-offsets.exp: ptype/o static_member
...
This is caused by missing debug info, which I filed as gcc PR101452 - "[debug,
dwarf-5] undefined static member removed by
-feliminate-unused-debug-symbols".
It's not clear yet whether this is a bug or a feature, but work around this in
the test-cases by:
- defining the static member
- adding additional_flags=-fno-eliminate-unused-debug-types.
Tested on x86_64-linux.
gdb/testsuite/ChangeLog:
2021-07-20 Tom de Vries <tdevries@suse.de>
* lib/gdb.exp (gcc_major_version): New proc.
* gdb.base/ptype-offsets.cc: Define static member static_member::Empty.
* gdb.cp/templates.exp: Define static member using -DGCC_BUG.
* gdb.cp/m-static.exp: Add
additional_flags=-fno-eliminate-unused-debug-types.
* gdb.cp/pr-574.exp: Same.
* gdb.cp/pr9167.exp: Same.
|
|
With gcc-11 we run into:
...
(gdb) print pa_ptr.all^M
That operation is not available on integers of more than 8 bytes.^M
(gdb) KFAIL: gdb.ada/arrayptr.exp: scenario=all: print pa_ptr.all (PRMS: gdb/20991)
...
This is due to PR exp/20991 - "__int128 type support". Mark this and similar
FAILs as KFAIL.
Also mark this FAIL:
....
(gdb) print pa_ptr(3)^M
cannot subscript or call something of type `foo__packed_array_ptr'^M
(gdb) FAIL: gdb.ada/arrayptr.exp: scenario=minimal: print pa_ptr(3)
...
as a KFAIL for PR ada/28115 - "Support packed array encoded as
DW_TAG_subrange_type".
Tested on x86_64-linux, with gcc-10 and gcc-11.
gdb/testsuite/ChangeLog:
2021-07-21 Tom de Vries <tdevries@suse.de>
* gdb.ada/arrayptr.exp: Add KFAILs for PR20991 and PR28115.
* gdb.ada/exprs.exp: Add KFAILs for PR20991.
* gdb.ada/packed_array_assign.exp: Same.
|
|
netbsdpe was deprecated in c2ce831330e10dab4703094491f80b6b9a5c2289.
Since then, a release has passed (2.37), and it was marked obselete in
5c9cbf07f3f972ecffe13d858010b3179df17b32. Unless I am mistaken, that
means we can now remove support altogether.
All branches in the "active" code are remove, and the target is
additionally marked as obsolete next to the other removed ones for
libbfd and gdb.
Per [1] from the NetBSD toolchain list, PE/COFF support was removed a
decade ago. Furthermore, the sole mention of this target in the binutils
commit history was in 2002. Together, I'm led to believe this target
hasn't seen much attention in quite a while.
[1]: https://mail-index.netbsd.org/tech-toolchain/2021/06/16/msg003996.html
bfd/
* config.bfd: Remove netbsdpe entry.
binutils/
* configure.ac: Remove netbsdpe entry.
* testsuite/lib/binutils-common.exp (is_pecoff_format): Likewise.
* configure: Regenerate.
gas/
* configure.tgt: Remove netbsdpe entry.
gdb/
* configure.tgt: Add netbsdpe to removed targets.
ld/
* configure.tgt: Remove netbsdpe entry.
* testsuite/ld-bootstrap/bootstrap.exp: Likewise.
|
|
When the architecture supports memory tagging, we handle
pointer/reference types in a special way, so we can validate tags and
show mismatches.
Unfortunately, the currently implementation errors out when the user
prints non-address values: composite types, floats, references, member
functions and other things.
Vector registers:
(gdb) p $v0
Value can't be converted to integer.
Non-existent internal variables:
(gdb) p $foo
Value can't be converted to integer.
The same happens for complex types and printing struct/union types.
There are a few problems here.
The first one is that after print_command_1 evaluates the expression
to print, the tag validation code call value_as_address
unconditionally, without making sure we have have a suitable type
where it makes to sense to call it. That results in value_as_address
(if it isn't given a pointer-like type) trying to treat the value as
an integer and convert it to an address, which #1 - doesn't make sense
(i.e., no sense in validating tags after "print 1"), and throws for
non-integer-convertible types. We fix this by making sure we have a
pointer or reference type first, and only if so then proceed to check
if the address-like value has tags.
The second is that we're calling value_as_address even if we have an
optimized out or unavailable value, which throws, because the value's
contents aren't fully accessible/readable. This error currently
escapes out and aborts the print. This case is fixed by checking for
optimized out / unavailable explicitly.
Third, the tag checking process does not gracefully handle exceptions.
If any exception is thrown from the tag validation code, we abort the
print. E.g., the target may fail to access tags via a running thread.
Or the needed /proc files aren't available. Or some other untold
reason. This is a bit too rigid. This commit changes print_command_1
to catch errors, print them, and still continue with the normal
expression printing path instead of erroring out and printing nothing
useful.
With this patch, printing works correctly again:
(gdb) p $v0
$1 = {d = {f = {2.0546950501119882e-81, 2.0546950501119882e-81}, u = {3399988123389603631, 3399988123389603631}, s = {
3399988123389603631, 3399988123389603631}}, s = {f = {1.59329203e-10, 1.59329203e-10, 1.59329203e-10, 1.59329203e-10}, u = {
791621423, 791621423, 791621423, 791621423}, s = {791621423, 791621423, 791621423, 791621423}}, h = {bf = {1.592e-10,
1.592e-10, 1.592e-10, 1.592e-10, 1.592e-10, 1.592e-10, 1.592e-10, 1.592e-10}, f = {0.11224, 0.11224, 0.11224, 0.11224, 0.11224,
0.11224, 0.11224, 0.11224}, u = {12079, 12079, 12079, 12079, 12079, 12079, 12079, 12079}, s = {12079, 12079, 12079, 12079,
12079, 12079, 12079, 12079}}, b = {u = {47 <repeats 16 times>}, s = {47 <repeats 16 times>}}, q = {u = {
62718710765820030520700417840365121327}, s = {62718710765820030520700417840365121327}}}
(gdb) p $foo
$2 = void
(gdb) p 2 + 2i
$3 = 2 + 2i
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28110
|
|
As documented in bug 28086, test gdb.btrace/enable-new-thread.exp
started failing with commit 0618ae414979 ("gdb: optimize
all_matching_threads_iterator"):
(gdb) record btrace^M
(gdb) PASS: gdb.btrace/enable-new-thread.exp: record btrace
break 24^M
Breakpoint 2 at 0x555555555175: file /home/smarchi/src/binutils-gdb/gdb/testsuite/gdb.btrace/enable-new-thread.c, line 24.^M
(gdb) continue^M
Continuing.^M
/home/smarchi/src/binutils-gdb/gdb/inferior.c:303: internal-error: inferior* find_inferior_pid(process_stratum_target*, int): Assertion `pid != 0' failed.^M
A problem internal to GDB has been detected,^M
further debugging may prove unreliable.^M
Quit this debugging session? (y or n) FAIL: gdb.btrace/enable-new-thread.exp: continue to breakpoint: cont to bp.1 (GDB internal error)
Note that I only see the failure if GDB is compiled without libipt
support. This is because GDB then makes use BTS instead of PT, so
exercises different code paths.
I think that the commit above just exposed an existing problem. The
stack trace of the internal error is:
#8 0x0000561cb81e404e in internal_error (file=0x561cb83aa2f8 "/home/smarchi/src/binutils-gdb/gdb/inferior.c", line=303, fmt=0x561cb83aa099 "%s: Assertion `%s' failed.") at /home/smarchi/src/binutils-gdb/gdbsupport/errors.cc:55
#9 0x0000561cb7b5c031 in find_inferior_pid (targ=0x561cb8aafb60 <the_amd64_linux_nat_target>, pid=0) at /home/smarchi/src/binutils-gdb/gdb/inferior.c:303
#10 0x0000561cb7b5c102 in find_inferior_ptid (targ=0x561cb8aafb60 <the_amd64_linux_nat_target>, ptid=...) at /home/smarchi/src/binutils-gdb/gdb/inferior.c:317
#11 0x0000561cb7f1d1c3 in find_thread_ptid (targ=0x561cb8aafb60 <the_amd64_linux_nat_target>, ptid=...) at /home/smarchi/src/binutils-gdb/gdb/thread.c:487
#12 0x0000561cb7f1b921 in all_matching_threads_iterator::all_matching_threads_iterator (this=0x7ffc4ee34678, filter_target=0x561cb8aafb60 <the_amd64_linux_nat_target>, filter_ptid=...) at /home/smarchi/src/binutils-gdb/gdb/thread-iter.c:125
#13 0x0000561cb77bc462 in filtered_iterator<all_matching_threads_iterator, non_exited_thread_filter>::filtered_iterator<process_stratum_target* const&, ptid_t const&> (this=0x7ffc4ee34670) at /home/smarchi/src/binutils-gdb/gdb/../gdbsupport/filtered-iterator.h:42
#14 0x0000561cb77b97cb in all_non_exited_threads_range::begin (this=0x7ffc4ee34650) at /home/smarchi/src/binutils-gdb/gdb/thread-iter.h:243
#15 0x0000561cb7d8ba30 in record_btrace_target::record_is_replaying (this=0x561cb8aa6250 <record_btrace_ops>, ptid=...) at /home/smarchi/src/binutils-gdb/gdb/record-btrace.c:1411
#16 0x0000561cb7d8bb83 in record_btrace_target::xfer_partial (this=0x561cb8aa6250 <record_btrace_ops>, object=TARGET_OBJECT_MEMORY, annex=0x0, readbuf=0x7ffc4ee34c58 "\260g\343N\374\177", writebuf=0x0, offset=140737352774277, len=1, xfered_len=0x7ffc4ee34ad8) at /home/smarchi/src/binutils-gdb/gdb/record-btrace.c:1437
#17 0x0000561cb7ef73a9 in raw_memory_xfer_partial (ops=0x561cb8aa6250 <record_btrace_ops>, readbuf=0x7ffc4ee34c58 "\260g\343N\374\177", writebuf=0x0, memaddr=140737352774277, len=1, xfered_len=0x7ffc4ee34ad8) at /home/smarchi/src/binutils-gdb/gdb/target.c:1504
#18 0x0000561cb7ef77da in memory_xfer_partial_1 (ops=0x561cb8aa6250 <record_btrace_ops>, object=TARGET_OBJECT_CODE_MEMORY, readbuf=0x7ffc4ee34c58 "\260g\343N\374\177", writebuf=0x0, memaddr=140737352774277, len=1, xfered_len=0x7ffc4ee34ad8) at /home/smarchi/src/binutils-gdb/gdb/target.c:1635
#19 0x0000561cb7ef78b5 in memory_xfer_partial (ops=0x561cb8aa6250 <record_btrace_ops>, object=TARGET_OBJECT_CODE_MEMORY, readbuf=0x7ffc4ee34c58 "\260g\343N\374\177", writebuf=0x0, memaddr=140737352774277, len=1, xfered_len=0x7ffc4ee34ad8) at /home/smarchi/src/binutils-gdb/gdb/target.c:1664
#20 0x0000561cb7ef7ba4 in target_xfer_partial (ops=0x561cb8aa6250 <record_btrace_ops>, object=TARGET_OBJECT_CODE_MEMORY, annex=0x0, readbuf=0x7ffc4ee34c58 "\260g\343N\374\177", writebuf=0x0, offset=140737352774277, len=1, xfered_len=0x7ffc4ee34ad8) at /home/smarchi/src/binutils-gdb/gdb/target.c:1721
#21 0x0000561cb7ef8503 in target_read_partial (ops=0x561cb8aa6250 <record_btrace_ops>, object=TARGET_OBJECT_CODE_MEMORY, annex=0x0, buf=0x7ffc4ee34c58 "\260g\343N\374\177", offset=140737352774277, len=1, xfered_len=0x7ffc4ee34ad8) at /home/smarchi/src/binutils-gdb/gdb/target.c:1974
#22 0x0000561cb7ef861f in target_read (ops=0x561cb8aa6250 <record_btrace_ops>, object=TARGET_OBJECT_CODE_MEMORY, annex=0x0, buf=0x7ffc4ee34c58 "\260g\343N\374\177", offset=140737352774277, len=1) at /home/smarchi/src/binutils-gdb/gdb/target.c:2014
#23 0x0000561cb7ef809f in target_read_code (memaddr=140737352774277, myaddr=0x7ffc4ee34c58 "\260g\343N\374\177", len=1) at /home/smarchi/src/binutils-gdb/gdb/target.c:1869
#24 0x0000561cb7937f4d in gdb_disassembler::dis_asm_read_memory (memaddr=140737352774277, myaddr=0x7ffc4ee34c58 "\260g\343N\374\177", len=1, info=0x7ffc4ee34e88) at /home/smarchi/src/binutils-gdb/gdb/disasm.c:139
#25 0x0000561cb80ab66d in fetch_data (info=0x7ffc4ee34e88, addr=0x7ffc4ee34c59 "g\343N\374\177") at /home/smarchi/src/binutils-gdb/opcodes/i386-dis.c:194
#26 0x0000561cb80ab7e2 in ckprefix () at /home/smarchi/src/binutils-gdb/opcodes/i386-dis.c:8628
#27 0x0000561cb80adbd8 in print_insn (pc=140737352774277, info=0x7ffc4ee34e88) at /home/smarchi/src/binutils-gdb/opcodes/i386-dis.c:9587
#28 0x0000561cb80abe4f in print_insn_i386 (pc=140737352774277, info=0x7ffc4ee34e88) at /home/smarchi/src/binutils-gdb/opcodes/i386-dis.c:8894
#29 0x0000561cb7744a19 in default_print_insn (memaddr=140737352774277, info=0x7ffc4ee34e88) at /home/smarchi/src/binutils-gdb/gdb/arch-utils.c:1029
#30 0x0000561cb7b33067 in i386_print_insn (pc=140737352774277, info=0x7ffc4ee34e88) at /home/smarchi/src/binutils-gdb/gdb/i386-tdep.c:4013
#31 0x0000561cb7acd8f4 in gdbarch_print_insn (gdbarch=0x561cbae2fb60, vma=140737352774277, info=0x7ffc4ee34e88) at /home/smarchi/src/binutils-gdb/gdb/gdbarch.c:3478
#32 0x0000561cb793a32d in gdb_disassembler::print_insn (this=0x7ffc4ee34e80, memaddr=140737352774277, branch_delay_insns=0x0) at /home/smarchi/src/binutils-gdb/gdb/disasm.c:795
#33 0x0000561cb793a5b0 in gdb_print_insn (gdbarch=0x561cbae2fb60, memaddr=140737352774277, stream=0x561cb8ac99f8 <null_stream>, branch_delay_insns=0x0) at /home/smarchi/src/binutils-gdb/gdb/disasm.c:850
#34 0x0000561cb793a631 in gdb_insn_length (gdbarch=0x561cbae2fb60, addr=140737352774277) at /home/smarchi/src/binutils-gdb/gdb/disasm.c:859
#35 0x0000561cb77f53f4 in btrace_compute_ftrace_bts (tp=0x561cbba11210, btrace=0x7ffc4ee35188, gaps=...) at /home/smarchi/src/binutils-gdb/gdb/btrace.c:1107
#36 0x0000561cb77f55f5 in btrace_compute_ftrace_1 (tp=0x561cbba11210, btrace=0x7ffc4ee35180, cpu=0x0, gaps=...) at /home/smarchi/src/binutils-gdb/gdb/btrace.c:1527
#37 0x0000561cb77f5705 in btrace_compute_ftrace (tp=0x561cbba11210, btrace=0x7ffc4ee35180, cpu=0x0) at /home/smarchi/src/binutils-gdb/gdb/btrace.c:1560
#38 0x0000561cb77f583b in btrace_add_pc (tp=0x561cbba11210) at /home/smarchi/src/binutils-gdb/gdb/btrace.c:1589
#39 0x0000561cb77f5a86 in btrace_enable (tp=0x561cbba11210, conf=0x561cb8ac6878 <record_btrace_conf>) at /home/smarchi/src/binutils-gdb/gdb/btrace.c:1629
#40 0x0000561cb7d88d26 in record_btrace_enable_warn (tp=0x561cbba11210) at /home/smarchi/src/binutils-gdb/gdb/record-btrace.c:294
#41 0x0000561cb7c603dc in std::__invoke_impl<void, void (*&)(thread_info*), thread_info*> (__f=@0x561cbb6c4878: 0x561cb7d88cdc <record_btrace_enable_warn(thread_info*)>) at /usr/include/c++/10/bits/invoke.h:60
#42 0x0000561cb7c5e5a6 in std::__invoke_r<void, void (*&)(thread_info*), thread_info*> (__fn=@0x561cbb6c4878: 0x561cb7d88cdc <record_btrace_enable_warn(thread_info*)>) at /usr/include/c++/10/bits/invoke.h:153
#43 0x0000561cb7c5dc92 in std::_Function_handler<void (thread_info*), void (*)(thread_info*)>::_M_invoke(std::_Any_data const&, thread_info*&&) (__functor=..., __args#0=@0x7ffc4ee35310: 0x561cbba11210) at /usr/include/c++/10/bits/std_function.h:291
#44 0x0000561cb7f2600f in std::function<void (thread_info*)>::operator()(thread_info*) const (this=0x561cbb6c4878, __args#0=0x561cbba11210) at /usr/include/c++/10/bits/std_function.h:622
#45 0x0000561cb7f23dc8 in gdb::observers::observable<thread_info*>::notify (this=0x561cb8ac5aa0 <gdb::observers::new_thread>, args#0=0x561cbba11210) at /home/smarchi/src/binutils-gdb/gdb/../gdbsupport/observable.h:150
#46 0x0000561cb7f1c436 in add_thread_silent (targ=0x561cb8aafb60 <the_amd64_linux_nat_target>, ptid=...) at /home/smarchi/src/binutils-gdb/gdb/thread.c:263
#47 0x0000561cb7f1c479 in add_thread_with_info (targ=0x561cb8aafb60 <the_amd64_linux_nat_target>, ptid=..., priv=0x561cbb3f7ab0) at /home/smarchi/src/binutils-gdb/gdb/thread.c:272
#48 0x0000561cb7bfa1d0 in record_thread (info=0x561cbb0413a0, tp=0x0, ptid=..., th_p=0x7ffc4ee35610, ti_p=0x7ffc4ee35620) at /home/smarchi/src/binutils-gdb/gdb/linux-thread-db.c:1380
#49 0x0000561cb7bf7a2a in thread_from_lwp (stopped=0x561cba81db20, ptid=...) at /home/smarchi/src/binutils-gdb/gdb/linux-thread-db.c:429
#50 0x0000561cb7bf7ac5 in thread_db_notice_clone (parent=..., child=...) at /home/smarchi/src/binutils-gdb/gdb/linux-thread-db.c:447
#51 0x0000561cb7bdc9a2 in linux_handle_extended_wait (lp=0x561cbae25720, status=4991) at /home/smarchi/src/binutils-gdb/gdb/linux-nat.c:1981
#52 0x0000561cb7bdf0f3 in linux_nat_filter_event (lwpid=435403, status=198015) at /home/smarchi/src/binutils-gdb/gdb/linux-nat.c:2920
#53 0x0000561cb7bdfed6 in linux_nat_wait_1 (ptid=..., ourstatus=0x7ffc4ee36398, target_options=...) at /home/smarchi/src/binutils-gdb/gdb/linux-nat.c:3202
#54 0x0000561cb7be0b68 in linux_nat_target::wait (this=0x561cb8aafb60 <the_amd64_linux_nat_target>, ptid=..., ourstatus=0x7ffc4ee36398, target_options=...) at /home/smarchi/src/binutils-gdb/gdb/linux-nat.c:3440
#55 0x0000561cb7bfa2fc in thread_db_target::wait (this=0x561cb8a9acd0 <the_thread_db_target>, ptid=..., ourstatus=0x7ffc4ee36398, options=...) at /home/smarchi/src/binutils-gdb/gdb/linux-thread-db.c:1412
#56 0x0000561cb7d8e356 in record_btrace_target::wait (this=0x561cb8aa6250 <record_btrace_ops>, ptid=..., status=0x7ffc4ee36398, options=...) at /home/smarchi/src/binutils-gdb/gdb/record-btrace.c:2547
#57 0x0000561cb7ef996d in target_wait (ptid=..., status=0x7ffc4ee36398, options=...) at /home/smarchi/src/binutils-gdb/gdb/target.c:2608
#58 0x0000561cb7b6d297 in do_target_wait_1 (inf=0x561cba6d8780, ptid=..., status=0x7ffc4ee36398, options=...) at /home/smarchi/src/binutils-gdb/gdb/infrun.c:3640
#59 0x0000561cb7b6d43e in operator() (__closure=0x7ffc4ee36190, inf=0x561cba6d8780) at /home/smarchi/src/binutils-gdb/gdb/infrun.c:3701
#60 0x0000561cb7b6d7b2 in do_target_wait (ecs=0x7ffc4ee36370, options=...) at /home/smarchi/src/binutils-gdb/gdb/infrun.c:3720
#61 0x0000561cb7b6e67d in fetch_inferior_event () at /home/smarchi/src/binutils-gdb/gdb/infrun.c:4069
#62 0x0000561cb7b4659b in inferior_event_handler (event_type=INF_REG_EVENT) at /home/smarchi/src/binutils-gdb/gdb/inf-loop.c:41
#63 0x0000561cb7be25f7 in handle_target_event (error=0, client_data=0x0) at /home/smarchi/src/binutils-gdb/gdb/linux-nat.c:4227
#64 0x0000561cb81e4ee2 in handle_file_event (file_ptr=0x561cbae24e10, ready_mask=1) at /home/smarchi/src/binutils-gdb/gdbsupport/event-loop.cc:575
#65 0x0000561cb81e5490 in gdb_wait_for_event (block=0) at /home/smarchi/src/binutils-gdb/gdbsupport/event-loop.cc:701
#66 0x0000561cb81e41be in gdb_do_one_event () at /home/smarchi/src/binutils-gdb/gdbsupport/event-loop.cc:212
#67 0x0000561cb7c18096 in start_event_loop () at /home/smarchi/src/binutils-gdb/gdb/main.c:421
#68 0x0000561cb7c181e0 in captured_command_loop () at /home/smarchi/src/binutils-gdb/gdb/main.c:481
#69 0x0000561cb7c19d7e in captured_main (data=0x7ffc4ee366a0) at /home/smarchi/src/binutils-gdb/gdb/main.c:1353
#70 0x0000561cb7c19df0 in gdb_main (args=0x7ffc4ee366a0) at /home/smarchi/src/binutils-gdb/gdb/main.c:1368
#71 0x0000561cb7693186 in main (argc=11, argv=0x7ffc4ee367b8) at /home/smarchi/src/binutils-gdb/gdb/gdb.c:32
At frame 45, the new_thread observable is fired. At this moment, the
new thread isn't the current thread, inferior_ptid is null_ptid. I
think this is ok: the new_thread observable doesn't give any guarantee
on the global context when observers are invoked. Frame 35,
btrace_compute_ftrace_bts, calls gdb_insn_length. gdb_insn_length
doesn't have a thread_info or other parameter what could indicate where
to read memory from, it implicitly uses the global context
(inferior_ptid).
So we reach the all_non_exited_threads_range in
record_btrace_target::record_is_replaying with a null inferior_ptid.
The previous implemention of all_non_exited_threads_range didn't care,
but the new one does. The problem of calling gdb_insn_length and
ultimately trying to read memory with a null inferior_ptid already
existed, but the commit mentioned above made it visible.
Something between frames 40 (record_btrace_enable_warn) and 35
(btrace_compute_ftrace_bts) needs to be switching the global context to
make TP the current thread. Since btrace_compute_ftrace_bts takes the
thread_info to work with as a parameter, that typically means that it
doesn't require its caller to also set the global current context
(current thread) when calling. If it needs to call other functions
that do require the global current thread to be set, then it needs to
temporarily change the current thread while calling these other
functions. Therefore, switch and restore the current thread in
btrace_compute_ftrace_bts.
By inspection, it looks like btrace_compute_ftrace_pt may also call
functions sensitive to the global context: it installs the
btrace_pt_readmem_callback callback in the PT instruction decoder. When
this function gets called, inferior_ptid must be set appropriately. Add
a switch and restore in there too.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28086
Change-Id: I407fbfe41aab990068bd102491aa3709b0a034b3
|
|
I'm debugging why GDB crashes on OpenBSD/amd64, turns out it's because
x86_dr_low.get_status is nullptr. It would have been useful to be able
to break on x86_dr_low_get_status, so I thought it would be a good
reason to convert these function-like macros into functions.
Change-Id: Ic200b50ef8455b4697bc518da0fa2bb704cf4721
|
|
When run with the gdb-index or debug-names target boards, dup-psym.exp
fails. This came up for me because my new DWARF scanner reuses this
part of the existing index code, and so it registers as a regression.
This is PR symtab/25834.
Looking into this, I found that the DWARF index code here is fairly
different from the psymtab code. I don't think there's a deep reason
for this, and in fact, it seemed to me that the index code could
simply mimic what the psymtab code already does.
That is what this patch implements. The DW_AT_name and DW_AT_comp_dir
are now stored in the quick file names table. This may require
allocating a quick file names table even when DW_AT_stmt_list does not
exist. Then, the functions that work with this data are changed to
use find_source_or_rewrite, just as the psymbol code does. Finally,
line_header::file_full_name is removed, as it is no longer needed.
Currently, the index maintains a hash table of "quick file names".
The hash table uses a deletion function to free the "real name"
components when necessary. There's also a second such function to
implement the forget_cached_source_info method.
This bug fix patch will create a quick file name object even when
there is no DW_AT_stmt_list, meaning that the object won't be entered
in the hash table. So, this patch changes the memory management
approach so that the entries are cleared when the per-BFD object is
destroyed. (A dwarf2_per_cu_data destructor is not introduced,
because we have been avoiding adding a vtable to that class.)
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=25834
|
|
map_symbol_filenames can skip type units -- in fact I think it has to,
due to the assertion at the top of dw2_get_file_names. This may be a
regression due to the TU/CU unification patch, I did not check.
|
|
The DWARF index file name caching code only records when a line table
has been read and the reading failed. However, the code would be
simpler if it recorded any attempt, which is what this patch
implements.
|
|
The final bug fix in this series would duplicate the logic in
psymtab_to_fullname, so this patch extracts the body of this function
into a new function.
|
|
file_and_directory carries a std::string in case the compilation
directory is computed, but a subsequent patch wants to preserve this
string without also having to maintain the storage for it. So, this
patch arranges for the compilation directory string to be stored in
the per-BFD string bcache instead.
|
|
This patch removes the redundant "comp_unit" parameter from
compute_include_file_name, and arranges to pass a file_and_directory
object from the readers down to this function. It also changes the
partial symtab reader to use find_file_and_directory, rather than
reimplement this functionality by hand.
|
|
In order to fix an index-related regression, I want to use
psymtab_include_file_name in the DWARF index file-handling code. This
patch renames this function and changes it to no longer require a
partial symtab to be passed in. A subsequent patch will further
refactor this code to remove the redundant parameter (which was always
there but is now more obvious).
|
|
Supported ISAs:
- Z80 (all undocumented instructions)
- Z180
- eZ80 (Z80 mode only)
Datasheets:
Z80: https://www.zilog.com/manage_directlink.php?filepath=docs/z80/um0080&extn=.pdf
Z180: https://www.zilog.com/manage_directlink.php?filepath=docs/z180/ps0140&extn=.pdf
eZ80: http://www.zilog.com/force_download.php?filepath=YUhSMGNEb3ZMM2QzZHk1NmFXeHZaeTVqYjIwdlpHOWpjeTlWVFRBd056Y3VjR1Jt
To debug Z80 programs using GDB you must configure and embed
z80-stub.c to your program (SDCC compiler is required). Or
you may use some simulator with GDB support.
gdb/ChangeLog:
* Makefile.in (ALL_TARGET_OBS): Add z80-tdep.c.
* NEWS: Mention z80 support.
* configure.tgt: Handle z80*.
* features/Makefile (XMLTOC): Add z80.xml.
* features/z80-cpu.xml: New.
* features/z80.c: Generate.
* features/z80.xml: New.
* z80-tdep.c: New file.
* z80-tdep.h: New file.
gdb/stubs/ChangeLog:
* z80-stub.c: New file.
Change-Id: Id0b7a6e210c3f93c6853c5e3031b7bcee47d0db9
|
|
The test gdb.threads/fork-plus-threads.exp fails since 08bdefb58b78
("gdb: make inferior_list use intrusive_list"):
FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: only inferior 1 left
Looking at the log, we see that we are left with a bunch of inferiors in
the detach-on-fork=off case:
info inferiors^M
Num Description Connection Executable ^M
* 1 <null> <snip>/fork-plus-threads ^M
2 <null> <snip>/fork-plus-threads ^M
3 <null> <snip>/fork-plus-threads ^M
4 <null> <snip>/fork-plus-threads ^M
5 <null> <snip>/fork-plus-threads ^M
6 <null> <snip>/fork-plus-threads ^M
7 <null> <snip>/fork-plus-threads ^M
8 <null> <snip>/fork-plus-threads ^M
9 <null> <snip>/fork-plus-threads ^M
10 <null> <snip>/fork-plus-threads ^M
11 <null> <snip>/fork-plus-threads ^M
(gdb) FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: only inferior 1 left
when we expect to have just one. The problem is prune_inferiors not
pruning inferiors. And this is caused by all_inferiors_safe not
actually iterating on inferiors. The current implementation:
inline all_inferiors_safe_range
all_inferiors_safe ()
{
return {};
}
default-constructs an all_inferiors_safe_range, which default-constructs
an all_inferiors_safe_iterator as its m_begin field, which
default-constructs a all_inferiors_iterator. A default-constructed
all_inferiors_iterator is an end iterator, which means we have
constructed an (end,end) all_inferiors_safe_range.
We actually need to pass down the list on which we want to iterator
(that is the inferior_list global), so that all_inferiors_iterator's
first constructor is chosen. We also pass nullptr as the proc_target
filter. In this case, we don't do any filtering, but if in the future
all_inferiors_safe needed to allow filtering on process target (like
all_inferiors does), we could pass down a process target pointer.
basic_safe_iterator's constructor needs to be changed to allow
constructing the wrapped iterator with multiple arguments, not just one.
With this, gdb.threads/fork-plus-threads.exp is passing once again for
me.
Change-Id: I650552ede596e3590c4b7606ce403690a0278a01
|
|
Currently, gdb cannot step outside of a signal handler on RISC-V
platforms. This causes multiple failures in gdb.base/sigstep.exp:
FAIL: gdb.base/sigstep.exp: continue to handler, nothing in handler, step from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: continue to handler, si+advance in handler, step from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: continue to handler, nothing in handler, next from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: continue to handler, si+advance in handler, next from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: stepi from handleri: leave signal trampoline
FAIL: gdb.base/sigstep.exp: nexti from handleri: leave signal trampoline
=== gdb Summary ===
# of expected passes 587
# of unexpected failures 6
This patch adds support for stepping outside of a signal handler on
riscv*-*-linux*.
Implementation is heavily inspired from mips_linux_syscall_next_pc and
surroundings as advised by Pedro Alves.
After this patch, all tests in gdb.base/sigstep.exp pass.
Build and tested on riscv64-linux-gnu.
|
|
Many tests fail in gdb/testsuite/gdb.base/sigstep.exp on
riscv64-linux-gnu. Those tests check that when stepping, if the
debuggee received a signal it should step inside the signal handler.
This feature requires hardware support for single stepping (or at least
kernel support), but none are available on riscv*-linux-gnu hosts, at
the moment at least.
This patch adds RISC-V to the list of configurations that does not
have hardware single step capability, disabling tests relying on such
feature.
Tested on riscv64-linux-gnu.
|
|
While working on my series to replace the DWARF psymbol reader, I
noticed that the expand_symtabs_matching has an undocumented
invariant. I think that, if this invariant is not followed, then GDB
will crash. So, this patch documents this in the relevant spots and
introduces some asserts to make it clear.
Regression tested on x86-64 Fedora 32.
|
|
Investigation of using the Python API with an Ada program showed that
an array of dynamic types was not being handled properly. I tracked
this down to an oddity of how array strides are handled.
In gdb, an array stride can be attached to the range type, via the
range_bounds object. However, the stride can also be put into the
array's first field. From create_range_type_with_stride:
else if (bit_stride > 0)
TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
It's hard to be sure why this is done, but I would guess a combination
of historical reasons plus a desire (mentioned in a comment somewhere)
to avoid modifying the range type.
This patch fixes the problem by changing type::bit_stride to
understand this convention. It also fixes one spot that reproduces
this logic.
Regression tested on x86-64 Fedora 32.
|
|
PR gdb/28093 points out that gdb crashes when language is set to
"unknown" and expression parsing is attempted. At first I thought
this was a regression due to the expression rewrite, but it turns out
that older versions crash as well.
This patch avoids the crash by changing the default expression parser
to throw an exception. I think this is preferable -- the current
behavior of silently doing nothing does not really make sense.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28093
|
|
This is a small cleanup I think would be nice, that I spotted while
doing the following patch.
gdb/ChangeLog:
* target.h (struct target_ops) <follow_fork>: Add ptid and
target_waitkind parameters.
(target_follow_fork): Likewise.
* target.c (default_follow_fork): Likewise.
(target_follow_fork): Likewise.
* fbsd-nat.h (class fbsd_nat_target) <follow_fork>: Likewise.
* fbsd-nat.c (fbsd_nat_target::follow_fork): Likewise.
* linux-nat.h (class linux_nat_target) <follow_fork>: Likewise.
* linux-nat.c (linux_nat_target::follow_fork): Likewise.
* obsd-nat.h (class obsd_nat_target) <follow_fork>: Likewise.
* obsd-nat.c (obsd_nat_target::follow_fork): Likewise.
* remote.c (class remote_target) <follow_fork>: Likewise.
* target-debug.h (target_debug_print_target_waitkind): New.
* target-delegates.c: Re-generate.
Change-Id: I5421a542f2e19100a22b74cc333d2b235d0de3c8
|
|
GDB doesn't handle well the case of an inferior using the JIT interface
to register JIT-ed objfiles and forking. If an inferior registers a
code object using the JIT interface and then forks, the child process
conceptually has the same code object loaded, so GDB should look it up
and learn about it (it currently doesn't).
To achieve this, I think it would make sense to have the
inferior_created observable called when an inferior is created due to a
fork in follow_fork_inferior. The inferior_created observable is
currently called both after starting a new inferior and after attaching
to an inferior, allowing various sub-components to learn about that new
executing inferior. We can see handling a fork child just like
attaching to it, so any work done when attaching should also be done in
the case of a fork child.
Instead of just calling the inferior_created observable, this patch
makes follow_fork_inferior call the whole post_create_inferior function.
This way, the attach and follow-fork code code paths are more alike.
Given that post_create_inferior calls solib_create_inferior_hook,
follow_fork_inferior doesn't need to do it itself, so those calls to
solib_create_inferior_hook are removed.
One question you may have: why not just call post_create_inferior at the
places where solib_create_inferior_hook is currently called, instead of
after target_follow_fork?
- there's something fishy for the second solib_create_inferior_hook
call site: at this point we have switched the current program space
to the child's, but not the current inferior nor the current thread.
So solib_create_inferior_hook (and everything under, including
check_for_thread_db, for example) is called with inferior 1 as the
current inferior and inferior 2's program space as the current
program space. I think that's wrong, because at this point we are
setting up inferior 2, and all that code relies on the current
inferior. We could just add a switch_to_thread call before it to
make inferior 2 the current one, but there are other problems (see
below).
- solib_create_inferior_hook is currently not called on the
`follow_child && detach_fork` path. I think we need to call it,
because we still get a new inferior in that case (even though we
detach the parent). If we only call post_create_inferior where
solib_create_inferior_hook used to be called, then the JIT
subcomponent doesn't get informed about the new inferior, and that
introduces a failure in the new gdb.base/jit-elf-fork.exp test.
- if we try to put the post_create_inferior just after the
switch_to_thread that was originally at line 662, or just before the
call to target_follow_fork, we introduce a subtle failure in
gdb.threads/fork-thread-pending.exp. What happens then is that
libthread_db gets loaded (somewhere under post_create_inferior)
before the linux-nat target learns about the LWPs (which happens in
linux_nat_target::follow_fork). As a result, the ALL_LWPS loop in
try_thread_db_load_1 doesn't see the child LWP, and the thread-db
target doesn't have the chance to fill in thread_info::priv. A bit
later, when the test does "info threads", and
thread_db_target::pid_to_str is called, the thread-db target doesn't
recognize the thread as one of its own, and delegates the request to
the target below. Because the pid_to_str output is not the expected
one, the test fails.
This tells me that we need to call the process target's follow_fork
first, to make the process target create the necessary LWP and thread
structures. Then, we can call post_create_inferior to let the other
components of GDB do their thing.
But then you may ask: check_for_thread_db is already called today,
somewhere under solib_create_inferior_hook, and that is before
target_follow_fork, why don't we see this ordering problem!? Well,
because of the first bullet point: when check_for_thread_db /
thread_db_load are called, the current inferior is (erroneously)
inferior 1, the parent. Because libthread_db is already loaded for
the parent, thread_db_load early returns. check_for_thread_db later
gets called by linux_nat_target::follow_fork. At this point, the
current inferior is the correct one and the child's LWP exists, so
all is well.
Since we now call post_create_inferior after target_follow_fork, which
calls the inferior_created observable, which calls check_for_thread_db,
I don't think linux_nat_target needs to explicitly call
check_for_thread_db itself, so that is removed.
In terms of testing, this patch adds a new gdb.base/jit-elf-fork.exp
test. It makes an inferior register a JIT code object and then fork.
It then verifies that whatever the detach-on-fork and follow-fork-child
parameters are, GDB knows about the JIT code object in all the inferiors
that survive the fork. It verifies that the inferiors can unload that
code object.
There isn't currently a way to get visibility into GDB's idea of the JIT
code objects for each inferior. For the purpose of this test, add the
"maintenance info jit" command. There isn't much we can print about the
JIT code objects except their load address. So the output looks a bit
bare, but it's good enough for the test.
gdb/ChangeLog:
* NEWS: Mention "maint info jit" command.
* infrun.c (follow_fork_inferior): Don't call
solib_create_inferior_hook, call post_create_inferior if a new
inferior was created.
* jit.c (maint_info_jit_cmd): New.
(_initialize_jit): Register new command.
* linux-nat.c (linux_nat_target::follow_fork): Don't call
check_for_thread_db.
* linux-nat.h (check_for_thread_db): Remove declaration.
* linux-thread-db.c (check_thread_signals): Make static.
gdb/doc/ChangeLog:
* gdb.texinfo (Maintenance Commands): Mention "maint info jit".
gdb/testsuite/ChangeLog:
* gdb.base/jit-elf-fork-main.c: New test.
* gdb.base/jit-elf-fork-solib.c: New test.
* gdb.base/jit-elf-fork.exp: New test.
Change-Id: I9a192e55b8a451c00e88100669283fc9ca60de5c
|
|
It fixes a regression caused by commit
1edb66d856c82c389edfd7610143236a68c76846 where thread_info::suspend was
made private.
The public thread_info API has to be used to get stop signal and avoid
build failures.
gdb/ChangeLog:
2021-07-14 Libor Bukata <libor.bukata@oracle.com>
* gdb/procfs.c (find_stop_signal): Use thread_info API.
Change-Id: I53bc57a05cd0eca5f28ef0726d6faeeb306e7904
|
|
When running test-case gdb.base/gold-gdb-index.exp on openSUSE Tumbleweed,
I run into:
...
FAIL: gdb.base/gold-gdb-index.exp: maint info symtabs
...
This is due to a dummy .gdb_index:
...
Contents of the .gdb_index section:
Version 7
CU table:
TU table:
Address table:
Symbol table:
...
The dummy .gdb_index is ignored when loading the symbols, and instead partial
symbols are used. Consequently, we get the same result as if we'd removed
-Wl,--gdb-index from the compilation.
Presumably, gold fails to generate a proper .gdb_index because it lacks
DWARF5 support.
Anyway, without a proper .gdb_index we can't test the gdb behaviour we're
trying to excercise. Fix this by detecting whether we actually used a
.gdb_index for symbol loading.
Tested on x86_64-linux.
gdb/testsuite/ChangeLog:
2021-07-14 Tom de Vries <tdevries@suse.de>
* lib/gdb.exp (have_index): New proc.
* gdb.base/gold-gdb-index.exp: Use have_index.
|
|
When building gdb with --disable-tui, we run into:
...
(gdb) frame apply all -- -^M
Undefined command: "-". Try "help".^M
(gdb) ERROR: Undefined command "frame apply all -- -".
UNRESOLVED: gdb.base/options.exp: test-frame-apply: frame apply all -- -
...
Fix this by detecting whether tui is supported, and skipping the tui-related
tests otherwise. Same in some gdb.tui test-cases.
Tested on x86_64-linux.
gdb/testsuite/ChangeLog:
2021-07-13 Tom de Vries <tdevries@suse.de>
* gdb.base/options.exp: Skip tui-related tests when tui is not
supported.
* gdb.python/tui-window-disabled.exp: Same.
* gdb.python/tui-window.exp: Same.
|
|
While testing the NixOS[1] packaging for gdb-11.0.90.tar.xz, IĀ got the
following error:
[...]
CXX aarch32-tdep.o
CXX gdb.o
GEN init.c
/nix/store/26a78ync552m8j4sbjavhvkmnqir8c9y-bash-4.4-p23/bin/bash: ./make-init-c: /usr/bin/env: bad interpreter: No such file or directory
make[2]: *** [Makefile:1866: stamp-init] Error 126
make[2]: *** Waiting for unfinished jobs....
make[2]: Leaving directory '/build/gdb-11.0.90/gdb'
make[1]: *** [Makefile:9814: all-gdb] Error 2
make[1]: Leaving directory '/build/gdb-11.0.90'
make: *** [Makefile:903: all] Error 2
builder for '/nix/store/xs8my3rrc3l4kdlbpx0azh6q0v0jxphr-gdb-gdb-11.0.90.drv' failed with exit code 2
error: build of '/nix/store/xs8my3rrc3l4kdlbpx0azh6q0v0jxphr-gdb-gdb-11.0.90.drv' failed
In the nix build environment, /usr/bin/env is not present, only /bin/sh
is. This patch makes sure that gdb/make-init-c uses '/bin/sh' as
interpreter as this is the only one available on this platform.
I do not think this change will cause regressions on any other
configuration.
[1] https://nixos.org/
gdb/Changelog
* make-init-c: Use /bin/sh as shebang.
|