Age | Commit message (Collapse) | Author | Files | Lines |
|
This changes windows_thread_info::name to be a unique_xmalloc_ptr,
removing some manual memory management.
gdb/ChangeLog
2020-04-08 Tom Tromey <tromey@adacore.com>
* windows-nat.c (handle_exception)
(windows_nat_target::thread_name): Update.
* nat/windows-nat.h (windows_thread_info): Remove destructor.
<name>: Now unique_xmalloc_ptr.
|
|
This changes a couple of fields of windows_thread_info to have type
"bool". It also updates the comment of another field, to clarify the
possible values it can hold.
gdb/ChangeLog
2020-04-08 Tom Tromey <tromey@adacore.com>
* windows-nat.c (thread_rec)
(windows_nat_target::fetch_registers): Update.
* nat/windows-nat.h (struct windows_thread_info) <suspended>:
Update comment.
<debug_registers_changed, reload_context>: Now bool.
gdbserver/ChangeLog
2020-04-08 Tom Tromey <tromey@adacore.com>
* win32-i386-low.c (update_debug_registers)
(i386_prepare_to_resume, i386_thread_added): Update.
|
|
This adds a constructor, destructor, and member initializers to
windows_thread_info, and changes gdb and gdbserver to use new and
delete.
gdb/ChangeLog
2020-04-08 Tom Tromey <tromey@adacore.com>
* windows-nat.c (windows_add_thread): Use new.
(windows_init_thread_list, windows_delete_thread): Use delete.
(get_windows_debug_event): Update.
* nat/windows-nat.h (struct windows_thread_info): Add constructor,
destructor, and initializers.
gdbserver/ChangeLog
2020-04-08 Tom Tromey <tromey@adacore.com>
* win32-low.c (child_add_thread): Use new.
(delete_thread_info): Use delete.
|
|
This introduces a new file, nat/windows-nat.h, which holds the
definition of windows_thread_info. This is now shared between gdb and
gdbserver.
Note that the two implementations different slightly. gdb had a
couple of fields ("name" and "reload_context") that gdbserver did not;
while gdbserver had one field ("base_context") that gdb did not, plus
better comments. The new file preserves all the fields, and the
comments.
gdb/ChangeLog
2020-04-08 Tom Tromey <tromey@adacore.com>
* windows-nat.c (struct windows_thread_info): Remove.
* nat/windows-nat.h: New file.
gdbserver/ChangeLog
2020-04-08 Tom Tromey <tromey@adacore.com>
* win32-low.h (struct windows_thread_info): Remove.
|
|
This changes the name of a field in windows_thread_info, bringing gdb
and gdbserver closer into sync.
gdb/ChangeLog
2020-04-08 Tom Tromey <tromey@adacore.com>
* windows-nat.c (struct windows_thread_info) <tid>: Rename from "id".
(thread_rec, windows_add_thread, windows_delete_thread)
(windows_continue): Update.
|
|
This changes windows_thread_info to remove the "next" field, replacing
the linked list of threads with a vector. This is a prerequisite to
sharing this structure with gdbserver, which manages threads
differently.
gdb/ChangeLog
2020-04-08 Tom Tromey <tromey@adacore.com>
* windows-nat.c (struct windows_thread_info): Remove typedef.
(thread_head): Remove.
(thread_list): New global.
(thread_rec, windows_add_thread, windows_init_thread_list)
(windows_delete_thread, windows_continue): Update.
|
|
The signal enumeration in windows-tdep.c is defined differently whether
it is compiled on Cygwin or not. This is problematic, since the code in
tdep files is not supposed to be influenced by the host platform (the
platform GDB itself runs on).
This makes a difference in windows_gdb_signal_to_target. An obvious
example of clash is SIGABRT. Let's pretend we are cross-debugging a
Cygwin process from a MinGW (non-Cygwin Windows) GDB. If GDB needs to
translate the gdb signal number GDB_SIGNAL_ABRT into a target
equivalent, it would obtain the MinGW number (22), despite the target
being a Cygwin process. Conversely, if debugging a MinGW process from a
Cygwin-hosted GDB, GDB_SIGNAL_ABRT would be converted to a Cygwin signal
number (6) despite the target being a MinGW process. This is wrong,
since we want the result to depend on the target's platform, not GDB's
platform.
This known flaw was accepted because at the time we had a single OS ABI
(called Cygwin) for all Windows binaries (Cygwin ones and non-Cygwin
ones). This limitation is now lifted, as we now have separate Windows
and Cygwin OS ABIs. This means we are able to detect at runtime whether
the binary we are debugging is a Cygwin one or non-Cygwin one.
This patch splits the signal enum in two, one for the MinGW flavors and
one for Cygwin, removing all the ifdefs that made it depend on the host
platform. It then makes two separate gdb_signal_to_target gdbarch
methods, that are used according to the OS ABI selected at runtime.
There is a bit of re-shuffling needed in how the gdbarch'es are
initialized, but nothing major.
gdb/ChangeLog:
* windows-tdep.h (windows_init_abi): Add comment.
(cygwin_init_abi): New declaration.
* windows-tdep.c: Split signal enumeration in two, one for
Windows and one for Cygwin.
(windows_gdb_signal_to_target): Only deal with signal of the
Windows OS ABI.
(cygwin_gdb_signal_to_target): New function.
(windows_init_abi): Rename to windows_init_abi_common, don't set
gdb_signal_to_target gdbarch method. Add new new function with
this name.
(cygwin_init_abi): New function.
* amd64-windows-tdep.c (amd64_windows_init_abi_common): Add
comment. Don't call windows_init_abi.
(amd64_windows_init_abi): Add comment, call windows_init_abi.
(amd64_cygwin_init_abi): Add comment, call cygwin_init_abi.
* i386-windows-tdep.c (i386_windows_init_abi): Rename to
i386_windows_init_abi_common, don't call windows_init_abi. Add
a new function of this name.
(i386_cygwin_init_abi): New function.
(_initialize_i386_windows_tdep): Bind i386_cygwin_init_abi to
OS ABI Cygwin.
|
|
I noticed this was unused, so remove it.
gdb/ChangeLog:
* dwarf2/read.c (read_gdb_index_from_buffer): Remove objfile
parameter.c.
(dwarf2_read_gdb_index): Update.
|
|
The test-case gdb.dwarf2/imported-unit.exp contains a test testing partial
symbols, so when we run the test-case using either target board readnow,
cc-with-gdb-index or cc-with-debug-names, we run into:
...
FAIL: gdb.dwarf2/imported-unit.exp: no static partial symbols in importing unit
...
Fix this by marking the test unsupported if there are no partial symbols.
Tested on x86_64-linux.
gdb/testsuite/ChangeLog:
2020-04-08 Tom de Vries <tdevries@suse.de>
* lib/gdb.exp (psymtabs_p): New proc.
* gdb.dwarf2/imported-unit.exp: Mark "no static partial symbols in
importing unit" unsupported if there are no partial symbols.
|
|
When running test-case gdb.ada/call_pn.exp with target board
unix/-flto/-O0/-flto-partition=none/-ffat-lto-objects, we run into:
...
(gdb) print last_node_id^M
Multiple matches for last_node_id^M
[0] cancel^M
[1] pck.last_node_id at gdb/testsuite/gdb.ada/call_pn/pck.adb:17^M
[2] pck.last_node_id at gdb/testsuite/gdb.ada/call_pn/foo.adb:17^M
> FAIL: gdb.ada/call_pn.exp: print last_node_id after calling pn (timeout)
...
This failure is due to a gcc bug that declares two instead of one symbols,
filed as PR gcc/94469.
Add an xfail at this test. Also add a similar xfail at an earlier test, that
only triggers with -readnow. Stabilize test results by making sure the
earlier xfail is always triggered, using "maint expand-symtabs".
Tested on x86_64-linux.
gdb/testsuite/ChangeLog:
2020-04-08 Tom de Vries <tdevries@suse.de>
PR testsuite/25760
* gdb.ada/call_pn.exp: Call "maint expand-symtabs". Add xfails.
|
|
gdb/ChangeLog:
* nbsd-tdep.c: Include "objfiles.h".
(nbsd_skip_solib_resolver): New.
(nbsd_init_abi): Call set_gdbarch_skip_solib_resolver().
|
|
GDB throws the error 'Unrecognized DWARF opcode 0x02 at 2' when running
Info address command with the executable file compiled with -gdwarf-5 flag.
This patch fixes this error.
Tested by running the testsuite before and after the patch and there is
no increase in the number of test cases that fails. Tested with both
-gdwarf-4 and -gdwarf-5 flags. Also tested -gslit-dwarf along with
-gdwarf-4 as well as -gdwarf-5 flags. Used clang version 10.0.0.
This is the test case used-
void bar(int arr[], int l, int m, int r) {
int i, j, k, n1= m - l + 1, n2= r - m, L[n1], R[n2];
for (i = 0; i < n1; i++)
L[i] = arr[l + i];
for (j = 0; j < n2; j++)
R[j] = arr[m + 1+ j];
}
int main()
{
int arr[] = {12, 11};
bar(arr,0,1,2);
return 0;
}
clang -gdwarf-5 test.c -o test.out
gdb test.out
gdb> start
gdb> step
gdb> step
gdb> step
gdb> step
gdb> info address L
Symbol "L" is multi-location:
Range 0x7c04007902bc5084-0x67fb876440700: a complex DWARF expression:
0: DW_OP_breg16 1 [$rip]
Unrecognized DWARF opcode 0x02 at 2
gdb/ChangeLog:
2020-04-07 Nitika Achra <Nitika.Achra@amd.com>
* dwarf2/loc.c (loclist_describe_location): Call the function decode_debug_loclists_
addresses if DWARF version is 5 or more because DW_LLE_start* or DW_LLE_offset_pair
with DW_LLE_base_addressx are being emitted in DWARFv5.
Add the newly added kind DW_LOC_OFFSET_PAIR also.
The length of location description is an unsigned ULEB integer in DWARFv5 instead of
unsigned integer.
|
|
GDB throws the error '<error reading variable: dwarf2_find_location_
expression: Corrupted DWARF expression.>' while printing the variable
value with executable file compiled with -gdwarf-5 and -gdwarf-split
flags. This is because DW_LLE_start* or DW_LLE_offset_pair with
DW_LLE_base_addressx are being emitted in DWARFv5 location list instead of
DW_LLE_GNU*. This patch fixes this error.
Tested by running the testsuite before and after the patch and there is no
increase in the number of test cases that fails. Tested with both -gdwarf-4
and -gdwarf-5 flags. Also tested -gslit-dwarf along with -gdwarf-4 as well as
-gdwarf-5 flags. Used clang version 10.0.0. This is the test case used-
void bar(int arr[], int l, int m, int r) {
int i, j, k, n1= m - l + 1, n2= r - m, L[n1], R[n2];
for (i = 0; i < n1; i++)
L[i] = arr[l + i];
for (j = 0; j < n2; j++)
R[j] = arr[m + 1+ j];
}
int main()
{
int arr[] = {12, 11};
bar(arr,0,1,2);
return 0;
}
clang -gdwarf-5 -gsplit-dwarf test.c -o test.out
gdb test.out
gdb> start
gdb> step
gdb> step
gdb> step
gdb> step
gdb> p L[0]
dwarf2_find_location_expression: Corrupted DWARF expression.
gdb/ChangeLog:
2020-04-07 Nitika Achra <Nitika.Achra@amd.com>
* dwarf2/loc.c (enum debug_loc_kind): Add a new kind DEBUG_LOC_OFFSET_PAIR.
(dwarf2_find_location_expression): Call the function decode_debug_loclists_
addresses if DWARF version is 5 or more. DW_LLE_start* or DW_LLE_offset_pair
with DW_LLE_base_addressx are being emitted in DWARFv5 instead of DW_LLE_GNU*.
Add applicable base address if the entry is DW_LLE_offset_pair from DWO.
(decode_debug_loclists_addresses): Return DEBUG_LOC_OFFSET_PAIR instead of
DEBUG_LOC_START_END in case of DW_LLE_offset_pair.
|
|
Hi Tom,
This is the updated series with ChangeLogs edits.
Regards,
Nitika
|
|
I noticed that only one of the two dwarf2_psymtab constructors are
actually used. The one that is used accepts an `addr` parameter (the
base text offset), but its sole caller passes a constant, 0. We want to
keep calling the three-arguments standard_psymtab constructor form,
however, since it differs from the two-arguments form in subtle ways.
Also, I believe the dwarf2_per_cu_data associated to the created
dwarf2_psymtab should be passed as a constructor argument. That will
help me in a future patchset, to convince myself that the `per_cu_data`
field can't be NULL.
So this patch:
- Removes the two-parameters constructor of dwarf2_psymtab, as it is
unused.
- Removes the `addr` parameter of the remaining constructor, passing 0
directly to the base class' constructor.
- Adds a `per_cu` parameter, to assign the `per_cu_data` field at
construction.
gdb/ChangeLog:
* dwarf2/read.h (struct dwarf2_psymtab): Remove two-parameters
constructor. Remove `addr` parameter from other constructor and
add `per_cu` parameter.
* dwarf2/read.c (create_partial_symtab): Update.
|
|
Consider the test-case added in this patch, with resulting dwarf (related to
variable aaa):
...
<0><d2>: Abbrev Number: 2 (DW_TAG_partial_unit)
<1><eb>: Abbrev Number: 4 (DW_TAG_variable)
<ec> DW_AT_name : aaa
<f0> DW_AT_type : <0xe4>
<f4> DW_AT_const_value : 1
<0><10c>: Abbrev Number: 2 (DW_TAG_compile_unit)
<10e> DW_AT_name : <artificial>
<1><11b>: Abbrev Number: 3 (DW_TAG_variable)
<11c> DW_AT_abstract_origin: <0xeb>
...
When running the test-case, we see:
...
(gdb) p aaa^M
No symbol "aaa" in current context.^M
(gdb) FAIL: gdb.dwarf2/imported-unit-abstract-const-value.exp: p aaa
...
while with target board readnow.exp, we have:
...
(gdb) p aaa^M
$1 = 1^M
...
This is due to the fact that there's no aaa symbol in the partial symtabs:
...
Partial symtab for source file <artificial>@0x101 (object 0x351cf40)^M
...
Global partial symbols:^M
`main', function, 0x4004a7^M
^M
...
which is due to the fact that when attempting to add the symbol corresponding
to DIE 0x11b in add_partial_symbol:
...
(gdb) p /x pdi->sect_off
$4 = 0x11b
(gdb) p pdi.has_const_value
$5 = 0
...
it seems the DW_AT_const_value was not inherited from DIE 0xeb, and
consequently we leave without adding a partial symbol.
Fix this by making sure that partial_die_info::has_const_value is inherited
in partial_die_info::fixup.
Build and reg-tested on x86_64-linux.
Tested test-case with target boards readnow, cc-with-gdb-index and
cc-with-debug-names. The "print aaa" test fails for cc-with-gdb-index, that's
PR25791, the test passes when applying the corresponding proposed patch.
gdb/ChangeLog:
2020-04-07 Tom de Vries <tdevries@suse.de>
PR symtab/25796
* dwarf2/read.c (can_have_DW_AT_const_value_p): New function.
(partial_die_info::fixup): Inherit has_const_value.
gdb/testsuite/ChangeLog:
2020-04-07 Tom de Vries <tdevries@suse.de>
PR symtab/25796
* gdb.dwarf2/imported-unit-abstract-const-value.exp: New file.
|
|
Consider test-case inline.c, containing an inline function foo:
...
static inline int foo (void) { return 0; }
int main (void) { return foo (); }
...
And the test-case compiled with -O2 and debug info:
...
$ gcc -g inline.c -O2
...
This results in a DWARF entry for foo without pc info:
...
<1><114>: Abbrev Number: 4 (DW_TAG_subprogram)
<115> DW_AT_name : foo
<119> DW_AT_decl_file : 1
<11a> DW_AT_decl_line : 2
<11b> DW_AT_prototyped : 1
<11b> DW_AT_type : <0x10d>
<11f> DW_AT_inline : 3 (declared as inline and inlined)
...
When loading the executable in gdb, we create a partial symbol for foo, but
after expansion into a full symbol table no actual symbol is created,
resulting in a maint check-psymtab failure:
...
(gdb) maint check-psymtab
Static symbol `foo' only found in inline.c psymtab
...
Fix this by skipping this type of partial symbol during the check.
Note that we're not fixing this by not creating the partial symbol, because
this breaks setting a breakpoint on an inlined inline function in a CU for
which the partial symtab has not been expanded (test-case
gdb.dwarf2/break-inline-psymtab.exp).
Tested on x86_64-linux.
gdb/ChangeLog:
2020-04-07 Tom de Vries <tdevries@suse.de>
* psymtab.c (maintenance_check_psymtabs): Skip static LOC_BLOCK
symbols without address.
gdb/testsuite/ChangeLog:
2020-04-07 Tom de Vries <tdevries@suse.de>
* gdb.base/check-psymtab.c: New test.
* gdb.base/check-psymtab.exp: New file.
|
|
Use sysctl(3) as the portable interface to prompt NetBSD threads on
all supported NetBSD versions. In future newer versions could switch
to PT_LWPSTATUS ptrace(2) API that will be supported on NetBSD 10.0
and newer.
Implement as part of nbsd_nat_target:
- thread_name() - read descriptive thread name
- thread_alive() - check whether a thread is alive
- post_attach() - updates the list of threads after attach
- update_thread_list() - updates the list of threads
- pid_to_str() - translates ptid to a descriptive string
There are two local static functions:
- nbsd_thread_lister() - generic LWP lister for a specified pid
- nbsd_add_threads() - utility to update the list of threads
Now, GDB on NetBSD can attach to a multithreaded process, spawn
a multithreaded process, list threads, print their LWP+PID numbers
and descriptive thread names.
gdb/ChangeLog:
* nbsd-nat.h (struct thread_info): Add forward declaration.
(nbsd_nat_target::thread_alive): Add.
(nbsd_nat_target::thread_name): Likewise.
(nbsd_nat_target::update_thread_list): Likewise.
(update_thread_list::post_attach): Likewise.
(post_attach::pid_to_str): Likewise.
* nbsd-nat.c: Include "gdbthread.h" and "inferior.h".
(nbsd_thread_lister): Add.
(nbsd_nat_target::thread_alive): Likewise.
(nbsd_nat_target::thread_name): Likewise.
(nbsd_add_threads): Likewise.
(update_thread_list::post_attach): Likewise.
(nbsd_nat_target::update_thread_list): Likewise.
(post_attach::pid_to_str): Likewise.
|
|
When I updated the Ada variant-printing code to be value-based, I
neglected a couple of issues. First, print_variant_part must first
extract the variant field before finding the active component; second,
print_field_values should pass in the field value as the outer value
when recursing.
This patch fixes both of these issues.
gdb/ChangeLog
2020-04-06 Tom Tromey <tromey@adacore.com>
* ada-valprint.c (print_variant_part): Extract the variant field.
(print_field_values): Use the field as the outer value when
recursing.
gdb/testsuite/ChangeLog
2020-04-06 Tom Tromey <tromey@adacore.com>
* gdb.ada/variant-record/proc.adb: New file.
* gdb.ada/variant-record/value.adb: New file.
* gdb.ada/variant-record/value.s: New file.
* gdb.ada/variant-record.exp: New file.
|
|
A recent patch caused some build failures in NetBSD tdep files. I saw
this failure in my --enable-target=all build.
This patch fixes the problems. Tested by rebuilding.
I am going to check this in.
gdb/ChangeLog
2020-04-06 Tom Tromey <tromey@adacore.com>
* sh-nbsd-tdep.c: Include nbsd-tdep.h.
* ppc-nbsd-tdep.c: Include nbsd-tdep.h.
* mips-nbsd-tdep.c (mipsnbsd_init_abi): Add missing ";".
* arm-nbsd-tdep.c: Include nbsd-tdep.h.
* hppa-nbsd-tdep.c: Include nbsd-tdep.h.
|
|
It turns out there was one more bug in the earlier complex series:
read_base_type could cause an assertion failure on some platforms. I
found this running the AdaCore internal test suite, but you can also
see it by running gdb's "gdb.cp" tests for x86 (not x86-64).
In particular, the DW_ATE_complex_float case calls
dwarf2_init_complex_target_type, which calls dwarf2_init_float_type,
which can return a type using TYPE_CODE_ERROR.
This patch changes the DWARF reader to handle this case, the same way
that the f-lang.c patch did. Perhaps init_complex_type really should
be changed to allow TYPE_CODE_ERROR? I was not sure.
Tested on x86-64 Fedora 30, using an x86 build. I'm checking this in.
gdb/ChangeLog
2020-04-06 Tom Tromey <tromey@adacore.com>
* dwarf2/read.c (read_base_type) <DW_ATE_complex_float>: Handle
TYPE_CODE_ERROR.
|
|
gdb/ChangeLog:
* nbsd-tdep.c: Include "gdbarch.h".
Define enum with NetBSD signal numbers.
(nbsd_gdb_signal_from_target, nbsd_gdb_signal_to_target): New.
* alpha-nbsd-tdep.c (alphanbsd_init_abi): Call nbsd_init_abi().
* amd64-nbsd-tdep.c (amd64nbsd_init_abi): Likewise.
* arm-nbsd-tdep.c (arm_netbsd_elf_init_abi): Likewise.
* hppa-nbsd-tdep.c (hppanbsd_init_abi): Likewise.
* i386-nbsd-tdep.c (i386nbsd_init_abi): Likewise.
* mips-nbsd-tdep.c (nbsd_init_abi): Likewise.
* ppc-nbsd-tdep.c (ppcnbsd_init_abi): Likewise.
* sh-nbsd-tdep.c (shnbsd_init_abi): Likewise.
* sparc-nbsd-tdep.c (sparc32nbsd_init_abi): Likewise.
* sparc64-nbsd-tdep.c (sparc64nbsd_init_abi): Likewise.
* vax-nbsd-tdep.c (vaxnbsd_elf_init_abi): Likewise.
|
|
For this enum:
typedef unsigned char byte;
enum byte_enum : byte
{
byte_val = 128
};
The unsigned attribute is not set:
(gdb) p byte_val
$1 = -128
That's because it uses the attributes of the 'byte' typedef for the enum.
So this changes it to use the attributes of the underlying 'unsigned char'
instead.
gdb/ChangeLog:
2020-04-03 Hannes Domani <ssbssa@yahoo.de>
PR gdb/25325
* dwarf2/read.c (read_enumeration_type): Fix typed enum attributes.
gdb/testsuite/ChangeLog:
2020-04-03 Hannes Domani <ssbssa@yahoo.de>
PR gdb/25325
* gdb.cp/typed-enum.cc: New test.
* gdb.cp/typed-enum.exp: New file.
|
|
While debugging another issue, I noticed that disassembling a DWARF
expression using DW_OP_const_type did not work.
disassemble_dwarf_expression was not properly decoding this operation.
This patch fixes the problem. Tested by re-debugging gdb.
I didn't write a test case because that seemed like overkill for
what's essentially a maintainer's helper.
The expression evaluator does decode this properly, so no other change
was needed.
gdb/ChangeLog
2020-04-03 Tom Tromey <tromey@adacore.com>
* dwarf2/loc.c (disassemble_dwarf_expression) <DW_OP_const_type>:
Read constant block.
|
|
is_linked_with_cygwin_dll
The function is_linked_with_cygwin_dll currently uses
gdb_bfd_map_section to get some section contents. This is not ideal
because that memory, which is only used in this function, can't be
released. Instead, it was suggested to use
bfd_get_full_section_contents.
However, bfd_get_full_section_contents returns a newly allocated buffer,
which is not very practical to use with C++ automatic memory management
constructs. I decided to make gdb_bfd_get_full_section_contents, a
small alternative to bfd_get_full_section_contents. It is a small
wrapper around bfd_get_section_contents which returns the full contents
of the section in a gdb::byte_vector.
gdb_bfd_get_full_section_contents could be used at many places that
already allocate a vector of the size of the section and then call
bfd_get_section_contents. I think these call sites can be updated over
time.
gdb/ChangeLog:
* gdb_bfd.h: Include gdbsupport/byte-vector.h.
(gdb_bfd_get_full_section_contents): New declaration.
* gdb_bfd.c (gdb_bfd_get_full_section_contents): New function.
* windows-tdep.c (is_linked_with_cygwin_dll): Use
gdb_bfd_get_full_section_contents.
|
|
There are a few spots using the pattern:
if (condition)
internal_error (__FILE__, __LINE__,
_("failed internal consistency check"));
The message brings no value, since it's pretty the description of a
failed assertion. Replace a few of these that are obvious with
gdb_assert.
gdb/ChangeLog:
* exec.c (build_section_table): Replace internal_error with
gdb_assert.
(section_table_xfer_memory_partial): Likewise.
* mdebugread.c (parse_partial_symbols): Likewise.
* psymtab.c (lookup_partial_symbol): Likewise.
* utils.c (wrap_here): Likewise.
|
|
Tankut Baris Aktemur pointed out that the recent series to change how
complex types are handled introduced a regression.
This assert in init_complex_type was firing:
gdb_assert (TYPE_CODE (target_type) == TYPE_CODE_INT
|| TYPE_CODE (target_type) == TYPE_CODE_FLT);
The problem was that f-lang.c could call init_complex_type with a type
whose code was TYPE_CODE_ERROR.
It seemed best to me to fix this in f-lang.c, rather than to change
init_complex_type to accept error types.
Tested on x86-64 Fedora 30. I'm checking this in.
gdb/ChangeLog
2020-04-02 Tom Tromey <tromey@adacore.com>
* f-lang.c (build_fortran_types): Use arch_type to initialize
builtin_complex_s32 in the TYPE_CODE_ERROR case.
|
|
While profiling the DWARF reader, I noticed that
partial_die_info::read creates a vector to store attributes. However,
the vector is not needed, as this code only processes a single
attribute at a time.
This patch removes the vector. On my machine, this improves the time
of "./gdb ./gdb" from 2.22 seconds to 1.92 seconds (mean times over 10
runs).
Note that the attribute is initialized by read_attribute, so it does
not need any special initialization. Avoiding this also improves
performance a bit.
Tested on x86-64 Fedora 30. I'm checking this in.
gdb/ChangeLog
2020-04-02 Tom Tromey <tromey@adacore.com>
* dwarf2/read.c (partial_die_info::read): Do not create a vector
of attributes.
|
|
In this commit:
commit 8c95582da858ac981f689a6f599acacb8c5c490f
Date: Mon Dec 30 21:04:51 2019 +0000
gdb: Add support for tracking the DWARF line table is-stmt field
A change was made in buildsym_compunit::record_line to remove
duplicate line table entries in some cases. This was an invalid
change, as these duplicate line table entries are used in _some_ cases
as part of prologue detection (see skip_prologue_using_sal).
It might be possible to identify those line table entries that are
required by skip_prologue_using_sal and only keep those duplicates
around, however, I have not done this here. The original duplicate
removal was done because (a) it was easy to implement, and (b) it
seemed obviously harmless.
As (b) is now known to be false, and implementation would be more
complex, and so (a) is also false. As such, it seems better to keep
all duplicates until an actual reason presents itself for why we
should remove any.
The original regression was spotted on RISC-V, which makes use of
skip_prologue_using_sal as part of riscv_skip_prologue. Originally I
created the test gdb.dwarf2/dw2-inline-small-func.exp, however, this
test will not compile on RISC-V as this target doesn't support
.uleb128 or .sleb128 assembler directives containing complex
expressions. As a result I added the gdb.opt/inline-small-func.exp
test, which exposes the bug on RISC-V, but obviously depends on the
compiler to produce specific DWARF information in order to expose the
bug. Still this test does ensure we always get the desired result,
even if the DWARF changes.
Originally the gdb.dwarf2/dw2-inline-small-func.exp test passed on
x86-64 even with the duplicate line table entries incorrectly
removed. The reason for this is that when a compilation unit doesn't
have a 'producer' string then skip_prologue_using_sal is not used,
instead the prologue is always skipped using analysis of the assembler
code.
However, for Clang on x86-64 skip_prologue_using_sal is used, so I
modified the gdb.dwarf2/dw2-inline-small-func.exp test to include a
'producer' string that names the Clang compiler. With this done the
test would fail on x86-64.
One thing to note is that the gdb.opt/inline-small-func.exp test might
fail on some targets. For example, if we compare sparc to risc-v by
looking at sparc32_skip_prologue we see that this function doesn't use
skip_prologue_using_sal, but instead uses find_pc_partial_function
directly. I don't know the full history behind why the code is like
it is, but it feels like sparc32_skip_prologue is an attempt to
duplicate some of the functionality of skip_prologue_using_sal, but
without all of the special cases. If this is true then the new test
could easily fail on this target, this would suggest that sparc should
consider switching to use skip_prologue_using_sal like risc-v does.
gdb/ChangeLog:
* buildsym.c (buildsym_compunit::record_line): Remove
deduplication code.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/dw2-inline-small-func-lbls.c: New file.
* gdb.dwarf2/dw2-inline-small-func.c: New file.
* gdb.dwarf2/dw2-inline-small-func.exp: New file.
* gdb.dwarf2/dw2-inline-small-func.h: New file.
* gdb.opt/inline-small-func.c: New file.
* gdb.opt/inline-small-func.exp: New file.
* gdb.opt/inline-small-func.h: New file.
|
|
Extend the Dejagnu DWARF compiler to support DW_LNS_set_file opcode.
This will be used in a later commit. There should be no change in the
testsuite after this commit.
gdb/testsuite/ChangeLog:
* lib/dwarf.exp (Dwarf::lines::program::DW_LNS_set_file): New
function.
|
|
When using the Dejagnu DWARF compiler tests will often use the
function_range helper function to extract the extents of a function.
If the plan is to compiler the file with non-default compiler flags
then we must pass those same compiler flags through to the
function_range helper function.
This will be used in a later commit, there should be no change in the
testsuite behaviour after this commit.
gdb/testsuite/ChangeLog:
* lib/dwarf.exp (function_range): Allow compiler options to be
specified.
|
|
In test-case gdb.dwarf2/break-inline-psymtab.exp we use O2 to enable inlining
of bar into foo in break-inline-psymtab-2.c.
Instead, enforce inlining using __attribute__((always_inline)), to avoid any
optimization-related test issues.
Tested on x86_64-linux.
gdb/testsuite/ChangeLog:
2020-04-02 Tom de Vries <tdevries@suse.de>
* gdb.dwarf2/break-inline-psymtab-2.c (bar): Add
__attribute__((always_inline)).
* gdb.dwarf2/break-inline-psymtab.exp: Don't use -O2.
|
|
While running test-case gdb.multi/multi-target.exp, I observed a silent
timeout related to "monitor exit".
By making the timeout explicit in an expect clause in gdbserver_gdb_exit:
...
+ timeout {
+ warning "Timed out waiting for EOF in server after $monitor_exit"
+ }
...
we get in the log:
...
monitor exit^M
"monitor" command not supported by this target.^M
(gdb) WARNING: Timed out waiting for EOF in server after monitor exit
...
What happens is the following:
- the inferior 5 is selected
- a breakpoint is set in inferior 1
- the breakpoint triggers and we switch to inferior 1
- setup is called by test_continue, which calls clean_restart, which calls
gdbserver_gdb_exit (due to load_lib gdbserver-support.exp)
- gdbserver_gdb_exit issues "monitor exit"
- gdb responds with "not supported by this target" because inferior 1 is
native
Fix this by keeping a list of server_spawn_id, and cleaning those up before
calling gdbserver_gdb_exit.
This reduces testing time from 1m22s to 32s.
gdb/testsuite/ChangeLog:
2020-04-02 Tom de Vries <tdevries@suse.de>
* lib/gdbserver-support.exp (gdbserver_exit): Factor out of ...
(gdbserver_gdb_exit): ... here. Add timeout warning.
* gdb.multi/multi-target.exp (server_spawn_ids): New global var.
(connect_target_extended_remote): Append new server_spawn_id to
server_spawn_ids.
(cleanup): New proc.
(setup, <toplevel>): Call cleanup.
|
|
When running test-case gdb.ada/access_to_packed_array we have:
...
(gdb) print pack.a^M
$1 = (0 => 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)^M
...
but with target board readnow.exp, we have instead:
...
(gdb) print pack.a^M
'pack.a' has unknown type; cast it to its declared type^M
...
The symbol is normally found by the map_matching_symbols call in
ada-lang.c:add_nonlocal_symbols:
...
for (objfile *objfile : current_program_space->objfiles ())
{
data.objfile = objfile;
objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
domain, global, callback,
(is_wild_match
? NULL : compare_names));
...
which maps onto psym_map_matching_symbols.
Function psym_map_matching_symbols iterates over all the partial symtabs,
and:
- if not expanded, searches in the partial symtab:
- if not found, continues to the next
- if found, expands into full symtab
- searches in the full symtab
However, with -readnow the call maps onto dw2_map_matching_symbols instead,
which is unimplemented, and consequently no symbol is found.
Fix this by detecting -readnow in dw2_map_matching_symbols, and handling that
appropriately given that partial symtabs are not present, and full symtabs
are: iterate over all the symtabs and search them.
Tested on x86_64-linux, with native and target board -readnow.
This removes 217 FAILs with board -readnow.
gdb/ChangeLog:
2020-04-02 Tom de Vries <tdevries@suse.de>
PR ada/24671
* dwarf2/read.c (dw2_map_matching_symbols): Handle -readnow.
|
|
When language is set to auto, part of loading an executable is to update the
language accordingly. This is implemented by set_initial_language.
The implementation of set_initial_language works as follows:
- check if any objfile in the progspace has name_of_main/language_of_main
set, and if so, use the first one found. [ This is what you get f.i. when
using dwarf with DW_AT_main_subprogram. ]
- otherwise, check for known names in the minimal symbols, and either:
- use the associated language if any (f.i. for ada), or
- lookup the symbol in the symtab for the name and use the symbol language
(f.i. for c/c++).
The symbol lookup can be slow though.
In the case of the cc1 binary from PR23710 comment 1, getting to the initial
prompt takes ~8s:
...
$ time.sh gdb cc1 -batch -ex "show language"
The current source language is "auto; currently c++".
maxmem: 1272260
real: 8.05
user: 7.73
system: 0.38
...
but if we skip guessing the initial language by setting it instead, it takes
only ~4s:
...
$ time.sh gdb -iex "set language c++" cc1 -batch -ex "show language"
The current source language is "c++".
maxmem: 498272
real: 3.99
user: 3.90
system: 0.15
...
In both cases, we load the partial symbols for the executable, but in the
first case only we also do a lookup of main, which causes the corresponding
partial symtab to be expanded into a full symtab.
Ideally, we'd like to get the language of the symbol without triggering
expansion into a full symtab, and get the speedup without having to set the
language manually.
There's a related fixme in the header comment of set_initial_language:
...
/* Set the initial language.
FIXME: A better solution would be to record the language in the
psymtab when reading partial symbols, and then use it (if known) to
set the language. This would be a win for formats that encode the
language in an easily discoverable place, such as DWARF. For
stabs, we can jump through hoops looking for specially named
symbols or try to intuit the language from the specific type of
stabs we find, but we can't do that until later when we read in
full symbols. */
void
set_initial_language (void)
...
Since we're already tracking the language of partial symbols, use this to set
the language for the main symbol.
Note that this search in partial symbol tables is not guaranteed to yield the
same result as the lookup_symbol_in_language call currently done in
set_initial_language.
Build and reg-tested on x86_64-linux.
gdb/ChangeLog:
2020-04-02 Tom de Vries <tdevries@suse.de>
* dwarf2/read.c (dwarf2_gdb_index_functions,
dwarf2_debug_names_functions): Init lookup_global_symbol_language with
NULL.
* psymtab.c (psym_lookup_global_symbol_language): New function.
(psym_functions): Init psym_lookup_global_symbol_language with
psym_lookup_global_symbol_language.
* symfile-debug.c (debug_sym_quick_functions): Init
lookup_global_symbol_language with NULL.
* symfile.c (set_initial_language): Remove fixme comment.
* symfile.h (struct quick_symbol_functions): Add
lookup_global_symbol_language.
* symtab.c (find_quick_global_symbol_language): New function.
(find_main_name): Use find_quick_global_symbol_language.
gdb/testsuite/ChangeLog:
2020-04-02 Tom de Vries <tdevries@suse.de>
* gdb.base/main-psymtab.exp: New file.
|
|
Since commit 981c08ce72 "Change how complex types are printed in C", we see
these FAILs:
...
FAIL: gdb.fortran/mixed-lang-stack.exp: lang=auto: info args in frame #6
FAIL: gdb.fortran/mixed-lang-stack.exp: lang=c: info args in frame #6
FAIL: gdb.fortran/mixed-lang-stack.exp: lang=c: info args in frame #7
FAIL: gdb.fortran/mixed-lang-stack.exp: lang=c++: info args in frame #6
FAIL: gdb.fortran/mixed-lang-stack.exp: lang=c++: info args in frame #7
...
The problem is that printing of complex types has changed from:
...
d = 4 + 5 * I
...
to:
...
d = 4 + 5i
...
but the test-case still checks for the old printing style.
Fix this by updating the test-case to check for the new style.
gdb/testsuite/ChangeLog:
2020-04-02 Tom de Vries <tdevries@suse.de>
* gdb.fortran/mixed-lang-stack.exp: Accept new complex printing style.
|
|
gdb/ChangeLog:
* windows-tdep.c (is_linked_with_cygwin_dll): Fix style.
|
|
Additionally do not completely remove symbols
at the same PC than the end marker, instead
make them non-is-stmt breakpoints.
2020-04-01 Bernd Edlinger <bernd.edlinger@hotmail.de>
* buildsym.c (record_line): Fix undefined behavior and preserve
lines at eof.
|
|
That was wasting one element.
2020-04-01 Bernd Edlinger <bernd.edlinger@hotmail.de>
* buildsym.c (record_line): Fix the resizing condition.
|
|
Christian pointed out that the value_literal_complex was still a bit
weird; this patch rewrites it and moves it to value.h.
gdb/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
* value.h (value_literal_complex): Add comment.
* valops.c (value_literal_complex): Refer to value.h.
|
|
This changes the C parser to add support for complex types in casts.
gdb/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
* c-exp.y (FLOAT_KEYWORD, COMPLEX): New tokens.
(scalar_type): New rule, from typebase.
(typebase): Use scalar_type. Recognize complex types.
(field_name): Handle FLOAT_KEYWORD.
(ident_tokens): Add _Complex and __complex__.
gdb/testsuite/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
* gdb.base/complex-parts.exp: Add type tests.
|
|
This adds support for complex arithmetic to gdb. Now something like
"print 23 + 7i" will work.
Addition, subtraction, multiplication, division, and equality testing
are supported binary operations.
Unary +, negation, and complement are supported. Following GCC, the ~
operator computes the complex conjugate.
gdb/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
PR exp/25299:
* valarith.c (promotion_type, complex_binop): New functions.
(scalar_binop): Handle complex numbers. Use promotion_type.
(value_pos, value_neg, value_complement): Handle complex numbers.
gdb/testsuite/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
* gdb.base/complex-parts.exp: Add arithmetic tests.
|
|
This changes the C parser to allow complex constants. Now something
like "print 23i" will work.
There are no tests in this patch; they come later.
gdb/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
* c-exp.y (COMPLEX_INT, COMPLEX_FLOAT): New tokens.
(exp) <COMPLEX_INT, COMPLEX_FLOAT>: New rules.
(parse_number): Handle complex numbers.
|
|
GCC accepts the "i" suffix for complex numbers. I think this is nicer
to read than the current output, so this patch changes the C code to
print complex numbers this way.
gdb/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
* c-valprint.c (c_decorations): Change complex suffix to "i".
gdb/testsuite/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
* gdb.compile/compile.exp: Update.
* gdb.compile/compile-cplus.exp: Update.
* gdb.base/varargs.exp: Update.
* gdb.base/floatn.exp: Update.
* gdb.base/endianity.exp: Update.
* gdb.base/callfuncs.exp (do_function_calls): Update.
* gdb.base/funcargs.exp (complex_args, complex_integral_args)
(complex_float_integral_args): Update.
* gdb.base/complex.exp: Update.
* gdb.base/complex-parts.exp: Update.
|
|
This introduces two new functions that make it simpler to access the
components of a complex number.
gdb/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
* valprint.c (generic_value_print_complex): Use accessors.
* value.h (value_real_part, value_imaginary_part): Declare.
* valops.c (value_real_part, value_imaginary_part): New
functions.
* value.c (creal_internal_fn, cimag_internal_fn): Use accessors.
|
|
This patch changes how complex types are created. init_complex_type
and arch_complex_type are unified, and complex types are reused, by
attaching them to the underlying scalar type.
gdb/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
* stabsread.c (rs6000_builtin_type, read_sun_floating_type)
(read_range_type): Update.
* mdebugread.c (basic_type): Update.
* go-lang.c (build_go_types): Use init_complex_type.
* gdbtypes.h (struct main_type) <complex_type>: New member.
(init_complex_type): Update.
(arch_complex_type): Don't declare.
* gdbtypes.c (init_complex_type): Remove "objfile" parameter.
Make name if none given. Use alloc_type_copy. Look for cached
complex type.
(arch_complex_type): Remove.
(gdbtypes_post_init): Use init_complex_type.
* f-lang.c (build_fortran_types): Use init_complex_type.
* dwarf2/read.c (read_base_type): Update.
* d-lang.c (build_d_types): Use init_complex_type.
* ctfread.c (read_base_type): Update.
|
|
I wanted to run the gdb.rust tests against older versions of the Rust
compiler, to ensure that changes I am making don't break debugging
when using older compilers.
However, this did not work because simple.rs now uses unchecked
unions, which were only added in Rust 1.19.
This patch splits the union code into its own file, so that simple.exp
can continue to work. I tested this with selected rust versions back
to 1.12.
gdb/testsuite/ChangeLog
2020-04-01 Tom Tromey <tromey@adacore.com>
* gdb.rust/union.rs: New file.
* gdb.rust/union.exp: New file.
* gdb.rust/simple.rs (Union, Union2): Move to union.rs.
(main): Update.
* gdb.rust/simple.exp: Move union tests to union.exp.
|
|
This removes the "y0" variable from simple.rs:main. This variable
isn't needed by the test case, and it uses a form of initialization
that was added in rust 1.17. Removing this makes it simpler to run
the gdb.rust tests against older versions of rustc.
gdb/testsuite/ChangeLog
2020-04-01 Tom Tromey <tromey@adacore.com>
* gdb.rust/simple.rs (main): Remove "y0".
|
|
Stop all threads not only if the current target is non-stop, but also
if there exists a non-stop target.
The multi-target patch (5b6d1e4fa4f "Multi-target support") made the
following change to gdb/inf-child.c:
void
inf_child_target::maybe_unpush_target ()
{
- if (!inf_child_explicitly_opened && !have_inferiors ())
+ if (!inf_child_explicitly_opened)
unpush_target (this);
}
If we are in all-stop mode with multiple inferiors, and an exit event
is received from an inferior, target_mourn_inferior() gets to this
point and without the have_inferiors() check, the target is unpushed.
This leads to having exec_ops as the top target.
Here is a test scenario. Two executables, ./a.out returns
immediately; ./sleepy just sleeps.
$ gdb ./sleepy
(gdb) start
...
(gdb) add-inferior -exec ./a.out
...
(gdb) inferior 2
[Switching to inferior 2..
(gdb) start
...
(gdb) set schedule-multiple on
(gdb) set debug infrun 1
(gdb) continue
At this point, the exit event is received from ./a.out. Normally,
this would lead to stop_all_threads() to also stop ./sleepy, but this
doesn't happen, because target_is_non_stop_p() returns false. And it
returns false because the top target is no longer the process target;
it is the exec_ops.
This patch modifies 'stop_waiting' to call 'stop_all_threads' if there
exists a non-stop target, not just when the current top target is
non-stop.
Tested on X86_64 Linux.
gdb/ChangeLog:
2020-04-01 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* infrun.c (stop_all_threads): Update assertion, plus when
stopping threads, take into account that we might be trying
to stop an all-stop target.
(stop_waiting): Call 'stop_all_threads' if there exists a
non-stop target.
gdb/testsuite/ChangeLog:
2020-04-01 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* gdb.multi/stop-all-on-exit.c: New test.
* gdb.multi/stop-all-on-exit.exp: New file.
|
|
Define a predicate function that returns true if there exists an
inferior with a non-stop target.
gdb/ChangeLog:
2020-04-01 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* target.h (exists_non_stop_target): New function declaration.
* target.c (exists_non_stop_target): New function.
|