Age | Commit message (Collapse) | Author | Files | Lines |
|
gdb/ChangeLog:
* solib-svr4.c (svr4_exec_displacement): Rename outer "displacement"
to "exec_displacement" to avoid confusion with inner use of the name.
|
|
This fixes lbeg/lend/lcount registers handling through gdbserver.
2015-04-17 Max Filippov <jcmvbkbc@gmail.com>
gdb/gdbserver/
* linux-xtensa-low.c (xtensa_fill_gregset)
(xtensa_store_gregset): Check XCHAL_HAVE_LOOPS instead of
XCHAL_HAVE_LOOP.
|
|
xtensa_usrregs_info refers to undefined variables xtensa_num_regs and
xtensa_regmap. Drop xtensa_usrregs_info and replace pointer to usrregs
in regs_info with NULL since all registers are read/set through regsets.
2015-04-17 Max Filippov <jcmvbkbc@gmail.com>
gdb/gdbserver/
* linux-xtensa-low.c (xtensa_usrregs_info): Remove.
(regs_info): Replace usrregs pointer with NULL.
|
|
This patch is to cherry-pick part of Pedro's patch here
https://sourceware.org/ml/gdb-patches/2015-04/msg00527.html in which
zero is returned if the HW point isn't supported.
In arm-linux native gdb testing on a board doesn't support HW breakpoint,
without this patch, the output in gdb.base/breakpoint-in-ro-region.exp is like:
(gdb) hbreak *0x83bc^M
Hardware breakpoints used exceeds limit.^M
(gdb) PASS: gdb.base/breakpoint-in-ro-region.exp: probe hbreak support (support)
with this patch, the output becomes:
(gdb) hbreak *0x83bc^M
No hardware breakpoint support in the target.^M
(gdb) PASS: gdb.base/breakpoint-in-ro-region.exp: probe hbreak support (no support)
As a result, the following fails are fixed.
-FAIL: gdb.base/breakpoint-in-ro-region.exp: always-inserted off: auto-hw on: step in ro region (cannot insert hw break)
-FAIL: gdb.base/breakpoint-in-ro-region.exp: always-inserted off: auto-hw on: thread advanced
-FAIL: gdb.base/breakpoint-in-ro-region.exp: always-inserted on: auto-hw on: step in ro region (cannot insert hw break)
-FAIL: gdb.base/breakpoint-in-ro-region.exp: always-inserted on: auto-hw on: thread advanced
gdb:
2015-04-17 Pedro Alves <palves@redhat.com>
* arm-linux-nat.c (arm_linux_can_use_hw_breakpoint): Return zero
if HW point of TYPE isn't supported.
|
|
The return value of target_can_use_hardware_watchpoint isn't well
documented, so this patch is to update the comments to reflect the
fact. This patch also removes a trailing ";" which is picked up
from Pedro's patch https://sourceware.org/ml/gdb-patches/2015-04/msg00527.html
gdb:
2015-04-17 Yao Qi <yao.qi@linaro.org>
Pedro Alves <palves@redhat.com>
* target.h (target_can_use_hardware_watchpoint): Update comments.
Remove trailing ";".
|
|
This commit modifies remote_add_inferior to take an extra argument
try_open_exec. If this is nonzero, remote_add_inferior will attempt
to open this inferior's executable as the main executable if no main
executable is open already. Callers are updated appropriately.
With this commit, remote debugging can now be initiated using only a
"target remote" or "target extended-remote" command; no "set sysroot"
or "file" commands are required, e.g.
bash$ gdb -q
(gdb) target remote | gdbserver - /bin/sh
Remote debugging using | gdbserver - /bin/sh
Process /bin/sh created; pid = 32166
stdin/stdout redirected
Remote debugging using stdio
Reading symbols from target:/bin/bash...
One testcase required updating as a result of this commit. The test
checked that GDB's "info files" command does not crash if no main
executable is open, and relied on GDB's inability to access the main
executable over the remote protocol. The test was updated to inhibit
this new behavior.
gdb/ChangeLog:
* remote.c (remote_add_inferior): New argument try_open_exec.
If nonzero, attempt to open the inferior's executable file as
the main executable if no main executable is open already.
All callers updated.
* NEWS: Mention that GDB now supports automatic location and
retrieval of executable + files from remote targets.
gdb/doc/ChangeLog:
* gdb.texinfo (Connecting to a Remote Target): Mention that
GDB can access program files from remote targets that support
qXfer:exec-file:read and Host I/O packets.
gdb/testsuite/ChangeLog:
* gdb.server/server-exec-info.exp: Inhibit GDB from accessing
the main executable over the remote protocol.
|
|
This commit implements the "qXfer:exec-file:read" packet in gdbserver.
gdb/gdbserver/ChangeLog:
* target.h (struct target_ops) <pid_to_exec_file>: New field.
* linux-low.c (linux_target_ops): Initialize pid_to_exec_file.
* server.c (handle_qxfer_exec_file): New function.
(qxfer_packets): Add exec-file entry.
(handle_query): Report qXfer:exec-file:read as supported packet.
|
|
This commit adds a new packet "qXfer:exec-file:read" to the remote
protocol that can be used to obtain the pathname of the file that
was executed to create a process on the remote system. Support for
this packet is added to GDB and remote_ops.to_pid_to_exec_file is
implemented using it.
gdb/ChangeLog:
* target.h (TARGET_OBJECT_EXEC_FILE): New enum value.
* remote.c (PACKET_qXfer_exec_file): Likewise.
(remote_protocol_features): Register the
"qXfer:exec-file:read" feature.
(remote_xfer_partial): Handle TARGET_OBJECT_EXEC_FILE.
(remote_pid_to_exec_file): New function.
(init_remote_ops): Initialize to_pid_to_exec_file.
(_initialize_remote): Register new "set/show remote
pid-to-exec-file-packet" command.
* NEWS: Announce new qXfer:exec-file:read packet.
gdb/doc/ChangeLog:
* gdb.texinfo (Remote Configuration): Document the "set/show
remote pid-to-exec-file-packet" command.
(General Query Packets): Document the qXfer:exec-file:read
qSupported features. Document the qXfer:exec-file:read packet.
|
|
This commit introduces a new function linux_proc_pid_to_exec_file
that shared Linux code can use to discover the filename of the
executable that was run to create a process on the system.
gdb/ChangeLog:
* nat/linux-procfs.h (linux_proc_pid_to_exec_file):
New declaration.
* nat/linux-procfs.c (linux_proc_pid_to_exec_file):
New function, factored out from...
* linux-nat.c (linux_child_pid_to_exec_file): ...here.
|
|
This commit updates exec_file_locate_attach to use exec_file_find
to compute the full pathname of the main executable in some cases.
The net effect of this is that the main executable's path will be
prefixed with gdb_sysroot in the same way that shared library paths
currently are.
gdb/ChangeLog:
* exec.c (solist.h): New include.
(exec_file_locate_attach): Prefix absolute executable
paths with gdb_sysroot if set.
* NEWS: Mention that executable paths may be prepended
with sysroot.
gdb/doc/ChangeLog:
* gdb.texinfo (set sysroot): Document that "set sysroot" also
applies to executable paths if supplied to GDB as absolute.
|
|
This commit adds a new function, exec_file_find, which computes the
full pathname of the main executable in much the same way solib_find
does for pathnames of shared libraries. The bulk of the existing
solib_find was moved into a new static function solib_find_1, with
exec_file_find and solib_find being small wrappers for solib_find_1.
gdb/ChangeLog:
* solist.h (exec_file_find): New declaration.
* solib.c (solib_find_1): New function, factored out from...
(solib_find): ...here.
(exec_file_find): New function.
|
|
This commit adds a new function, exec_file_locate_attach, which works
like exec_file_attach except that, instead of a filename argument, it
takes an integer process ID and attempts to determine the executable
filename from that.
gdb/ChangeLog:
* gdbcore.h (exec_file_locate_attach): New declaration.
* exec.c (exec_file_locate_attach): New function, factored
out from...
* infcmd.c (attach_command_post_wait): ...here.
|
|
|
|
Fixes:
-FAIL: gdb.trace/mi-tracepoint-changed.exp: reconnect: break-info 1
+PASS: gdb.trace/mi-tracepoint-changed.exp: reconnect: tracepoint created
+PASS: gdb.trace/mi-tracepoint-changed.exp: reconnect: tracepoint on marker is installed
+PASS: gdb.trace/mi-tracepoint-changed.exp: reconnect: break-info 1
-FAIL: gdb.trace/mi-tsv-changed.exp: upload: tsv1 created
-FAIL: gdb.trace/mi-tsv-changed.exp: upload: tsv2 created
+PASS: gdb.trace/mi-tsv-changed.exp: upload: tsv1 created
+PASS: gdb.trace/mi-tsv-changed.exp: upload: tsv2 created
These tests do something like this:
#0 - start gdb/gdbserver normally
#1 - setup some things in the debug session
#2 - disconnect from gdbserver
#3 - restart gdb
#4 - reconnect to gdbserver
The problem is that the native-extended-gdbserver board always spawns
a new gdbserver instance in #3 (and has gdb connect to that). So when
the test gets to #4, it connects to that new instance instead of the
old one:
(gdb) spawn ../gdbserver/gdbserver --multi :2354
Listening on port 2354
target extended-remote localhost:2354
Remote debugging using localhost:2354
...
spawn ../gdbserver/gdbserver --multi :2355
Listening on port 2355
47-target-select extended-remote localhost:2355
=tsv-created,name="trace_timestamp",initial="0"\n
47^connected
(gdb)
...
47-target-select extended-remote localhost:2355
47^connected
(gdb)
FAIL: gdb.trace/mi-tsv-changed.exp: upload: tsv1 created
FAIL: gdb.trace/mi-tsv-changed.exp: upload: tsv2 created
testsuite/ChangeLog:
2015-04-16 Pedro Alves <palves@redhat.com>
* boards/native-extended-gdbserver.exp (mi_gdb_start): Don't start
a new gdbserver if gdbserver_reconnect_p is set.
|
|
Commit 6423214f (testsuite: Don't use expect_background to reap
gdbserver) broke a couple tests that set gdbserver_reconnect_p and
restart gdb before reconnecting, because a gdb_exit (e.g., through
clean_restart) exits gdbserver unconditionally.
Fixes, with --target_board=native-gdbserver:
-FAIL: gdb.trace/mi-tracepoint-changed.exp: reconnect: break-info 1
+PASS: gdb.trace/mi-tracepoint-changed.exp: reconnect: tracepoint created
+PASS: gdb.trace/mi-tracepoint-changed.exp: reconnect: tracepoint on marker is installed
+PASS: gdb.trace/mi-tracepoint-changed.exp: reconnect: break-info 1
-FAIL: gdb.trace/mi-tsv-changed.exp: upload: tsv1 created
-FAIL: gdb.trace/mi-tsv-changed.exp: upload: tsv2 created
+PASS: gdb.trace/mi-tsv-changed.exp: upload: tsv1 created
+PASS: gdb.trace/mi-tsv-changed.exp: upload: tsv2 created
gdb/testsuite/
2015-04-16 Pedro Alves <palves@redhat.com>
* lib/gdbserver-support.exp (gdb_exit): If gdbserver_reconnect_p
is set, don't exit gdbserver.
|
|
Hi,
When I run gdb.threads/non-stop-fair-events.exp on arm-linux target,
I see the following message in the debugging log,
displaced: breakpoint is gone: Thread 22518, step(1)^M
Sending packet: $vCont;s:p57f3.57f6#9d...
^^^^^^^^^
GDB sends vCont;s by mistake, and GDBserver fails on assert. GDB
doesn't consider software single step in infrun.c:displaced_step_fixup,
/* Go back to what we were trying to do. */
step = currently_stepping (tp);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: breakpoint is gone: %s, step(%d)\n",
target_pid_to_str (tp->ptid), step);
target_resume (ptid, step, GDB_SIGNAL_0);
The patch is to let GDB consider software single step here. It fixes
fails in gdb.threads/non-stop-fair-events.exp on arm.
gdb:
2015-04-16 Yao Qi <yao.qi@linaro.org>
* infrun.c (maybe_software_singlestep): Declare.
(displaced_step_fixup): Call maybe_software_singlestep.
|
|
The test case s390-vregs.exp yields compile errors on 31-bit targets
as well as when using a GCC that defaults to an older "-march=". This
patch fixes these issues.
gdb/testsuite/ChangeLog:
* gdb.arch/s390-vregs.S (change_vrs): Replace exrl by an
appropriate .insn, such that an older assembler can be used.
* gdb.arch/s390-vregs.exp: Add the compile flag -mzarch, to enable
the z/Architecture instruction set on 31-bit targets as well.
|
|
On s390x targets some of the Go test cases fail because the first
breakpoint happens to be at the same spot as the breakpoint at
main.main. When such a test case tries to continue to the first
breakpoint, the program runs until the end instead, and the test fails
like this:
FAIL: gdb.go/handcall.exp: Going to first breakpoint (the program exited)
This patch removes all the handling related to the first breakpoint in
those cases. After applying the patch, the tests run successfully on
s390x.
gdb/testsuite/ChangeLog:
* gdb.go/handcall.exp: Remove all logic related to the first
breakpoint and rely on go_runto_main instead.
* gdb.go/strings.exp: Likewise.
* gdb.go/unsafe.exp: Likewise.
* gdb.go/hello.exp: Likewise. Also rename the remaining
breakpoint marker to "breakpoint 1".
* gdb.go/handcall.go: Remove comment "set breakpoint 1 here".
* gdb.go/strings.go: Likewise.
* gdb.go/unsafe.go: Likewise.
* gdb.go/hello.go: Likewise. Also remove the second occurrence of
"set breakpoint 2 here" and rename the remaining breakpoint marker
to "breakpoint 1".
|
|
gdb/ChangeLog:
* psymtab.c (psym_expand_symtabs_matching): Add QUIT call.
|
|
"info fun foo" can be a pain when it's not interruptable,
especially if you're not exactly sure of what you're looking for
and provide something that matches too much.
gdb/ChangeLog:
* dwarf2read.c (dw2_expand_symtabs_matching): Add some QUIT calls.
|
|
Since commit d86d4aafd4fa22fa4cccb83253fb187b03f97f48, the pid
must be retrieved from current_thread.
The change has not been made in the function linux_read_offsets().
Fixes:
http://autobuild.buildroot.net/results/9e4/9e4df085319e346803c26c65478accb27eb950ae/build-end.log
2015-04-14 Romain Naour <romain.naour@openwide.fr> (tiny change)
* linux-low.c (linux_read_offsets): Remove get_thread_lwp.
Signed-off-by: Romain Naour <romain.naour@openwide.fr>
|
|
Some missing parentheses and one itertools.imap (Py2) vs map (Py3) issue.
gdb/ChangeLog:
* python/lib/gdb/command/unwinders.py: Add parentheses.
gdb/testsuite/ChangeLog:
* gdb.python/py-framefilter.py (ErrorFilter.filter): Use map function
if itertools.imap is not present.
* gdb.python/py-objfile.exp: Add parentheses.
* gdb.python/py-type.exp: Same.
* gdb.python/py-unwind-maint.py: Same.
|
|
When I "set debug displaced 1" to fix fail in
gdb.base/disp-step-syscall.exp, the debug message is wrong. This
patch is to fix it.
gdb:
2015-04-15 Yao Qi <yao.qi@linaro.org>
* arm-linux-tdep.c (arm_linux_copy_svc): Update debug message.
|
|
gdb:
2015-04-15 Yao Qi <yao.qi@linaro.org>
* arm-linux-tdep.c (arm_linux_copy_svc): Fix indentation.
|
|
Hi,
I see this fail on arm-linux target,
FAIL: gdb.base/disp-step-syscall.exp: fork: single step over fork final pc
which is caused by the PC isn't expected after displaced stepping the
svc instruction. The code is:
=> 0xb6ead9a4 <__libc_do_syscall+4>: svc 0
0xb6ead9a6 <__libc_do_syscall+6>: pop {r7, pc}
0xb6ead9a8: nop.w^M
0xb6ead9ac: nop.w
after single step svc instruction, pc should be 0xb6ead9a6, but the
actual value of pc is 0xb6ead9a8. The problem is illustrated by
turning on debug message of displaced stepping,
stepi^M
displaced: stepping Thread 12031 now^M
displaced: saved 0x8574: 02 bc 6a 46 04 b4 01 b4 df f8 10 c0 4d f8 04 cd 03 48 04 4b ff f7 d2 ef ff f7 e8 ef 0d 87 00 00 ^M
displaced: process thumb insn df00 at b6ead9a4^M
displaced: copying svc insn df00^M
displaced: read r7 value 00000078^M
displaced: sigreturn/rt_sigreturn SVC call not in signal trampoline frame^M
displaced: writing insn df00 at 00008574^M
displaced: copy 0xb6ead9a4->0x8574: displaced: check mode of b6ead9a4 instead of 00008574^M
displaced: displaced pc to 0x8574^M
displaced: run 0x8574: 00 df 01 de ^M
displaced: restored Thread 12031 0x8574^M
displaced: PC is apparently 00008576 after SVC step (within scratch space)^M
displaced: writing pc b6ead9a8 <----- WRONG ADDRESS
GDB writes the wrong address back to pc because GDB thinks the
instruction size is 4, which isn't true for thumb instruction.
This patch is to replace 4 with dsc->insn_size.
gdb:
2015-04-15 Yao Qi <yao.qi@linaro.org>
* arm-linux-tdep.c (arm_linux_cleanup_svc): Use
dsc->insn_size instead of 4.
|
|
I see many fails in gdb.dwarf2/dynarr-ptr.exp on arm-linux target,
started from this
print foo.three_ptr.all^M
Cannot access memory at address 0x107c8^M
(gdb) FAIL: gdb.dwarf2/dynarr-ptr.exp: print foo.three_ptr.all
print foo.three_ptr.all(1)^M
Cannot access memory at address 0x107c8
It turns out that ":$ptr_size" is used incorrectly.
array_ptr_label: DW_TAG_pointer_type {
{DW_AT_byte_size :$ptr_size }
^^^^^^^^^^
{DW_AT_type :$array_label}
}
Since the FORM isn't given, and it starts with the ":", it is regarded
as a label reference by dwarf assembler. The generated asm file on
x86_64 is
.uleb128 6 /* Abbrev (DW_TAG_pointer_type) */
.4byte 8 - .Lcu1_begin <----- WRONG
.4byte .Llabel2 - .Lcu1_begin
Looks .Lcu1_begin is 0 on x86_64 and that is why this test passes on
x86_64. On arm, .Lcu1_begin is an address somewhere, and the value
of DW_AT_byte_size is a very large number, so memory read request
of such large length failed.
This patch is to remove ":" and set the form explicitly. The generated
asm file on x86_64 becomes
.uleb128 6 /* Abbrev (DW_TAG_pointer_type) */
.byte 8
.4byte .Llabel2 - .Lcu1_begin
gdb/testsuite:
2015-04-15 Yao Qi <yao.qi@linaro.org>
* gdb.dwarf2/dynarr-ptr.exp (assemble): Use $ptr_size instead
of ":$ptr_size" and set its form explicitly.
|
|
I see the following two timeout fails on pandaboard (arm-linux target),
FAIL: gdb.base/watch-bitfields.exp: -location watch against bitfields: continue until exit (timeout)
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: continue until exit (timeout)
In this test, more than one watchpoint is used, so the following
watchpoint requests fall back to software watchpoint, so that GDB
will single step all the way and it is very slow.
This patch is to copy the fix from
[PATCH] GDB/testsuite: Correct gdb.base/watchpoint-solib.exp timeout tweak
https://sourceware.org/ml/gdb-patches/2014-07/msg00716.html
I find the left-over of this patch review is to factor out code into
a procedure, so I do that in this patch.
Re-run tests watch-bitfields.exp, watchpoint-solib.exp, sigall-reverse.exp,
and until-precsave.exp on pandaboard, no regression.
gdb/testsuite:
2015-04-15 Pedro Alves <palves@redhat.com>
Yao Qi <yao.qi@linaro.org>
* gdb.base/watch-bitfields.exp (test_watch_location): Increase
timeout by factor of 4.
(test_regular_watch): Likewise.
* gdb.base/watchpoint-solib.exp: Use with_timeout_factor.
* gdb.reverse/sigall-reverse.exp: Likewise.
* gdb.reverse/until-precsave.exp: Likewise.
* lib/gdb.exp (with_timeout_factor): New proc.
(gdb_expect): Move some code to ...
(get_largest_timeout): ... here. New procedure.
|
|
Reinstate test message and replace hardcoded test command with a variable.
gdb/testsuite/ChangeLog:
2015-04-14 Luis Machado <lgustavo@codesourcery.com>
* gdb.base/bp-permanent.exp (test): Reinstate correct test message.
|
|
GDB has five places where it pretends to stat for bfd_openr_iovec.
Four of these only set the incoming buffer's st_size, leaving the
other fields unchanged, which is to say very likely populated with
random values from the stack. remote_bfd_iovec_stat was fixed in
0a93529c56714b1da3d7106d3e0300764f8bb81c; this commit fixes the
other four.
gdb/ChangeLog:
* jit.c (mem_bfd_iovec_stat): Zero supplied buffer.
* minidebug.c (lzma_stat): Likewise.
* solib-spu.c (spu_bfd_iovec_stat): Likewise.
* spu-linux-nat.c (spu_bfd_iovec_stat): Likewise.
|
|
diff --git a/gdb/MAINTAINERS b/gdb/MAINTAINERS
index a67a1a8..0fdd8e5 100644
--- a/gdb/MAINTAINERS
+++ b/gdb/MAINTAINERS
@@ -156,7 +156,7 @@ Doug Evans dje@google.com
Daniel Jacobowitz drow@false.org
Mark Kettenis kettenis@gnu.org
Yao Qi yao.qi@arm.com
-Stan Shebs stan@codesourcery.com
+Stan Shebs stanshebs@google.com
Ulrich Weigand Ulrich.Weigand@de.ibm.com
Elena Zannoni elena.zannoni@oracle.com
Eli Zaretskii eliz@gnu.org
@@ -631,7 +631,7 @@ Keith Seitz keiths@redhat.com
Carlos Eduardo Seo cseo@linux.vnet.ibm.com
Ozkan Sezer sezeroz@gmail.com
Marcus Shawcroft marcus.shawcroft@arm.com
-Stan Shebs stan@codesourcery.com
+Stan Shebs stanshebs@google.com
Joel Sherrill joel.sherrill@oarcorp.com
Mark Shinwell shinwell@codesourcery.com
Craig Silverstein csilvers@google.com
|
|
Recognize NT_X86_XSTATE notes in FreeBSD process cores. Recent
FreeBSD versions include a note containing the XSAVE state for each
thread in the process when XSAVE is in use. The note stores a copy of
the current XSAVE mask in a reserved section of the machine-defined
XSAVE state at the same offset as Linux's NT_X86_XSTATE note.
For native processes, use the PT_GETXSTATE_INFO ptrace request to
determine if XSAVE is enabled, and if so the active XSAVE state mask
(that is, the value of %xcr0 for the target process) as well as the
size of XSAVE state area. Use the PT_GETXSTATE and PT_SETXSTATE requests
to fetch and store the XSAVE state, respectively, in the BSD x86
native targets.
In addition, the FreeBSD amd64 and i386 native targets now include
"read_description" target methods to determine the correct x86 target
description for the current XSAVE mask. On FreeBSD amd64 this also
properly returns an i386 target description for 32-bit binaries which
allows the 64-bit GDB to run 32-bit binaries.
Note that the ptrace changes are in the BSD native targets, not the
FreeBSD-specific native targets since that is where the other ptrace
register accesses occur. Of the other BSDs, NetBSD and DragonFly use
XSAVE in the kernel but do not currently export the extended state via
ptrace(2). OpenBSD does not currently support XSAVE.
bfd/ChangeLog:
* elf.c (elfcore_grok_note): Recognize NT_X86_XSTATE on
FreeBSD.
(elfcore_write_xstatereg): Use correct note name on FreeBSD.
gdb/ChangeLog:
* amd64-tdep.c (amd64_target_description): New function.
* amd64-tdep.h: Export amd64_target_description and tdesc_amd64.
* amd64bsd-nat.c [PT_GETXSTATE_INFO]: New variable amd64bsd_xsave_len.
(amd64bsd_fetch_inferior_registers) [PT_GETXSTATE_INFO]: Handle
x86 extended save area.
(amd64bsd_store_inferior_registers) [PT_GETXSTATE_INFO]: Likewise.
* amd64bsd-nat.h: Export amd64bsd_xsave_len.
* amd64fbsd-nat.c (amd64fbsd_read_description): New function.
(_initialize_amd64fbsd_nat): Set "to_read_description" to
"amd64fbsd_read_description".
* amd64fbsd-tdep.c (amd64fbsd_core_read_description): New function.
(amd64fbsd_supply_xstateregset): New function.
(amd64fbsd_collect_xstateregset): New function.
Add "amd64fbsd_xstateregset".
(amd64fbsd_iterate_over_regset_sections): New function.
(amd64fbsd_init_abi): Set "xsave_xcr0_offset" to
"I386_FBSD_XSAVE_XCR0_OFFSET".
Add "iterate_over_regset_sections" gdbarch method.
Add "core_read_description" gdbarch method.
* i386-tdep.c (i386_target_description): New function.
* i386-tdep.h: Export i386_target_description and tdesc_i386.
* i386bsd-nat.c [PT_GETXSTATE_INFO]: New variable i386bsd_xsave_len.
(i386bsd_fetch_inferior_registers) [PT_GETXSTATE_INFO]: Handle
x86 extended save area.
(i386bsd_store_inferior_registers) [PT_GETXSTATE_INFO]: Likewise.
* i386bsd-nat.h: Export i386bsd_xsave_len.
* i386fbsd-nat.c (i386fbsd_read_description): New function.
(_initialize_i386fbsd_nat): Set "to_read_description" to
"i386fbsd_read_description".
* i386fbsd-tdep.c (i386fbsd_core_read_xcr0): New function.
(i386fbsd_core_read_description): New function.
(i386fbsd_supply_xstateregset): New function.
(i386fbsd_collect_xstateregset): New function.
Add "i386fbsd_xstateregset".
(i386fbsd_iterate_over_regset_sections): New function.
(i386fbsd4_init_abi): Set "xsave_xcr0_offset" to
"I386_FBSD_XSAVE_XCR0_OFFSET".
Add "iterate_over_regset_sections" gdbarch method.
Add "core_read_description" gdbarch method.
* i386fbsd-tdep.h: New file.
|
|
This testcase does not work as expected in QEMU (aarch64 QEMU in my case). It
fails when trying to manually write the breakpoint instruction to a certain
PC address.
(gdb) p /x addr_bp[0] = buffer[0]^M
Cannot access memory at address 0x400834^M
(gdb) PASS: gdb.base/bp-permanent.exp: always_inserted=off, sw_watchpoint=0: setup: p /x addr_bp[0] = buffer[0]
p /x addr_bp[1] = buffer[1]^M
Cannot access memory at address 0x400835^M
(gdb) PASS: gdb.base/bp-permanent.exp: always_inserted=off, sw_watchpoint=0: setup: p /x addr_bp[1] = buffer[1]
p /x addr_bp[2] = buffer[2]^M
Cannot access memory at address 0x400836^M
(gdb) PASS: gdb.base/bp-permanent.exp: always_inserted=off, sw_watchpoint=0: setup: p /x addr_bp[2] = buffer[2]
p /x addr_bp[3] = buffer[3]^M
Cannot access memory at address 0x400837^M
(gdb) PASS: gdb.base/bp-permanent.exp: always_inserted=off, sw_watchpoint=0: setup: p /x addr_bp[3] = buffer[3]
The following patch prevents a number of failures by detecting this and bailing out in case the target has such a restriction. Writing to .text from within the program isn't any better. It just leads to a SIGSEGV.
Before the patch:
=== gdb Summary ===
After the patch:
=== gdb Summary ===
gdb/testsuite/ChangeLog:
2015-04-13 Luis Machado <lgustavo@codesourcery.com>
* gdb.base/bp-permanent.exp (test): Handle the case of being unable
to write to the .text section.
|
|
This testcase seems to assume the target is running Linux, so bare metal,
simulators and other debugging stubs running different OS' will have a
hard time executing some of the commands the testcase issues.
Even restricting the testcase to Linux systems (which the patch below does),
there are still problems with, say, QEMU not providing PID information when
"info inferior" is issued. As a consequence, the subsequent tests will either
fail or will not make much sense.
The attached patch checks if PID information is available. If not, it just
bails out and avoids running into a number of failures.
gdb/testsuite/ChangeLog:
2015-04-13 Luis Machado <lgustavo@codesourcery.com>
* gdb.base/coredump-filter.exp: Restrict test to Linux systems only.
Handle the case of targets that do not provide PID information.
|
|
I see the error when I run gdb-sigterm.exp with native-gdbserver
on x86_64-linux.
infrun: prepare_to_wait^M
Cannot execute this command while the target is running.^M
Use the "interrupt" command to stop the target^M
and then try again.^M
gdb.base/gdb-sigterm.exp: expect eof #0: got eof
gdb.base/gdb-sigterm.exp: expect eof #0: stepped 12 times
ERROR OCCURED: : spawn id exp8 not open
while executing
"expect {
-i exp8 -timeout 10
-re "$gdb_prompt $" {
exp_continue
}
-i "$server_spawn_id" eof {
wait -i $expect_out(spawn_id)
unse..."
("uplevel" body line 1)
invoked from within
In gdb-sigterm.exp, SIGTERM is sent to GDB and it exits. However,
Dejagnu or tcl doesn't know this.
This patch is to catch the exception, but error messages are still
shown in the console and gdb.log. In order to avoid this, we also
replace gdb_expect with expect.
gdb/testsuite:
2015-04-13 Yao Qi <yao.qi@linaro.org>
* lib/gdbserver-support.exp (gdb_exit): Catch exception
and use expect instead of gdb_expect.
|
|
This commit renames the global array variable "addr" to an unique name
"coredump_var_addr" in the test gdb.base/coredump-filter.exp. This is
needed because global arrays can have name conflicts between tests.
For example, this specific test was conflicting with dmsym.exp,
causing errors like:
ERROR: tcl error sourcing ../../../../../binutils-gdb/gdb/testsuite/gdb.base/dmsym.exp.
ERROR: can't set "addr": variable is array
while executing
"set addr "0x\[0-9a-zA-Z\]+""
(file "../../../../../binutils-gdb/gdb/testsuite/gdb.base/dmsym.exp" line 45)
invoked from within
"source ../../../../../binutils-gdb/gdb/testsuite/gdb.base/dmsym.exp"
("uplevel" body line 1)
invoked from within
"uplevel #0 source ../../../../../binutils-gdb/gdb/testsuite/gdb.base/dmsym.exp"
invoked from within
"catch "uplevel #0 source $test_file_name""
This problem was reported by Yao Qi at:
<https://sourceware.org/ml/gdb-patches/2015-04/msg00373.html>
Message-Id: <1428666671-12926-1-git-send-email-qiyaoltc@gmail.com>
gdb/testsuite/ChangeLog:
2015-04-13 Sergio Durigan Junior <sergiodj@redhat.com>
* gdb.base/coredump-filter.exp: Rename variable "addr" to
"coredump_var_addr" to avoid naming conflict with other testcases.
|
|
Pedro Alves:
The commands that enables aren't even documented in the manual.
Judging from that, I assume that only wdb users would ever really
be using the --xdb switch.
I think it's time to drop "support" for the --xdb switch too. I
looked through the commands that that exposes, the only that looked
potentially interesting was "go", but then it's just an alias
for "tbreak+jump", which can easily be done with "define go...end".
I'd rather free up the "go" name for something potentially
more interesting (either run control, or maybe even unrelated,
e.g., for golang).
gdb/ChangeLog
2015-04-11 Jan Kratochvil <jan.kratochvil@redhat.com>
* NEWS (Changes since GDB 7.9): Add removed -xdb.
* breakpoint.c (command_line_is_silent): Remove xdb_commands
conditional.
(_initialize_breakpoint): Remove xdb_commands for bc, ab, sb, db, ba
and lb.
* cli/cli-cmds.c (_initialize_cli_cmds): Remove xdb_commands for v and
va.
* cli/cli-decode.c (find_command_name_length): Remove xdb_commands
conditional.
* defs.h (xdb_commands): Remove declaration.
* f-valprint.c (_initialize_f_valprint): Remove xdb_commands for lc.
* guile/scm-cmd.c (command_classes): Remove xdb from comment.
* infcmd.c (run_no_args_command, go_command): Remove.
(_initialize_infcmd): Remove xdb_commands for S, go, g, R and lr.
* infrun.c (xdb_handle_command): Remove.
(_initialize_infrun): Remove xdb_commands for lz and z.
* main.c (xdb_commands): Remove variable.
(captured_main): Remove "xdb" from long_options.
(print_gdb_help): Remove --xdb from help.
* python/py-cmd.c (gdbpy_initialize_commands): Remove xdb from comment.
* source.c (_initialize_source): Remove xdb_commands for D, ld, / and ?.
* stack.c (backtrace_full_command, args_plus_locals_info)
(current_frame_command): Remove.
(_initialize_stack): Remove xdb_commands for t, T and l.
* symtab.c (_initialize_symtab): Remove xdb_commands for lf and lg.
* thread.c (_initialize_thread): Remove xdb_commands condition.
* tui/tui-layout.c (tui_toggle_layout_command)
(tui_toggle_split_layout_command, tui_handle_xdb_layout): Remove.
(_initialize_tui_layout): Remove xdb_commands for td and ts.
* tui/tui-regs.c (tui_scroll_regs_forward_command)
(tui_scroll_regs_backward_command): Remove.
(_initialize_tui_regs): Remove xdb_commands for fr, gr, sr, +r and -r.
* tui/tui-win.c (tui_xdb_set_win_height_command): Remove.
(_initialize_tui_win): Remove xdb_commands for U and w.
* utils.c (pagination_on_command, pagination_off_command): Remove.
(initialize_utils): Remove xdb_commands for am and sm.
gdb/doc/ChangeLog
2015-04-11 Jan Kratochvil <jan.kratochvil@redhat.com>
* gdb.texinfo (Mode Options): Remove -xdb.
|
|
gdb/testsuite/ChangeLog:
2015-04-10 Pedro Alves <palves@redhat.com>
* gdb.threads/signal-while-stepping-over-bp-other-thread.exp: Use
gdb_test_sequence and gdb_assert.
|
|
Diffing test results, I noticed:
-PASS: gdb.threads/step-over-trips-on-watchpoint.exp: displaced=on: with thread-specific bp: next: b *0x0000000000400811 thread 1
+PASS: gdb.threads/step-over-trips-on-watchpoint.exp: displaced=on: with thread-specific bp: next: b *0x00000000004007d1 thread 1
gdb/testsuite/ChangeLog:
2015-04-10 Pedro Alves <palves@redhat.com>
* gdb.threads/step-over-trips-on-watchpoint.exp (do_test): Use
test messages that don't include the breakpoint address.
|
|
Hi,
ARM linux kernel has some requirements on the address/length setting
for HW breakpoints/watchpoints, but watchpoint-reuse-slot.exp doesn't
consider them and sets HW points on various addresses. Many fails
are causes as a result:
stepi^M
Warning:^M
Could not insert hardware watchpoint 20.^M
Could not insert hardware breakpoints:^M
You may have requested too many hardware breakpoints/watchpoints.^M
^M
(gdb) FAIL: gdb.base/watchpoint-reuse-slot.exp: always-inserted off: watch x watch: : width 2, iter 2: base + 1: stepi advanced
watch *(buf.byte + 2 + 1)@2^M
Hardware watchpoint 388: *(buf.byte + 2 + 1)@2^M
Warning:^M
Could not insert hardware watchpoint 388.^M
Could not insert hardware breakpoints:^M
You may have requested too many hardware breakpoints/watchpoints.^M
^M
(gdb) FAIL: gdb.base/watchpoint-reuse-slot.exp: always-inserted on: watch x watch: : width 2, iter 2: base + 1: watch *(buf.byte + 2 + 1)@2
This patch is to reflect kernel requirements in watchpoint-reuse-slot.exp
in order to skip some tests.
gdb/testsuite:
2015-04-10 Yao Qi <yao.qi@linaro.org>
* gdb.base/watchpoint-reuse-slot.exp (valid_addr_p): Return
false for some offset and width combinations which aren't
supported by linux kernel.
|
|
PPC64 currently fails this test like:
FAIL: gdb.threads/step-over-trips-on-watchpoint.exp: displaced=on: no thread-specific bp: step: step
FAIL: gdb.threads/step-over-trips-on-watchpoint.exp: displaced=on: no thread-specific bp: next: next
FAIL: gdb.threads/step-over-trips-on-watchpoint.exp: displaced=on: no thread-specific bp: continue: continue (the program exited)
FAIL: gdb.threads/step-over-trips-on-watchpoint.exp: displaced=on: with thread-specific bp: step: step
FAIL: gdb.threads/step-over-trips-on-watchpoint.exp: displaced=on: with thread-specific bp: next: next
FAIL: gdb.threads/step-over-trips-on-watchpoint.exp: displaced=on: with thread-specific bp: continue: continue (the program exited)
The problem is that PPC is a non-continuable watchpoints architecture
and the displaced stepping code isn't coping with that correctly. On
such targets/architectures, a watchpoint traps _before_ the
instruction executes/completes. On a watchpoint trap, the PC points
at the instruction that triggers the watchpoint (side effects haven't
happened yet). In order to move past the watchpoint, GDB needs to
remove the watchpoint, single-step, and reinsert the watchpoint, just
like when stepping past a breakpoint.
The trouble is that if GDB is stepping over a breakpoint with
displaced stepping, and the instruction under the breakpoint triggers
a watchpoint, we get the watchpoint SIGTRAP, expecting a finished
(hard or software) step trap. Even though the thread's PC hasn't
advanced yet (must remove watchpoint for that), since we get a
SIGTRAP, displaced_step_fixup thinks the single-step finished
successfuly anyway, and calls gdbarch_displaced_step_fixup, which then
adjusts the thread's registers incorrectly.
The fix is to cancel the displaced step if we trip on a watchpoint.
handle_inferior_event then processes the watchpoint event, and starts
a new step-over, here:
...
/* At this point, we are stopped at an instruction which has
attempted to write to a piece of memory under control of
a watchpoint. The instruction hasn't actually executed
yet. If we were to evaluate the watchpoint expression
now, we would get the old value, and therefore no change
would seem to have occurred.
...
ecs->event_thread->stepping_over_watchpoint = 1;
keep_going (ecs);
return;
...
but this time, since we have a watchpoint to step over, watchpoints
are removed from the target, so the step-over succeeds.
The keep_going/resume changes are necessary because if we're stepping
over a watchpoint, we need to remove it from the target - displaced
stepping doesn't help, the copy of the instruction in the scratch pad
reads/writes to the same addresses, thus triggers the watchpoint
too... So without those changes we keep triggering the watchpoint
forever, never making progress. With non-stop that means we'll need
to pause all threads momentarily, which we can't today. We could
avoid that by removing the watchpoint _only_ from the thread that is
moving past the watchpoint, but GDB is not prepared for that today
either. For remote targets, that would need new packets, so good to
be able to step over it in-line as fallback anyway.
gdb/ChangeLog:
2015-04-10 Pedro Alves <palves@redhat.com>
* infrun.c (displaced_step_fixup): Switch to the event ptid
earlier. If the thread stopped for a watchpoint and the
target/arch has non-continuable watchpoints, cancel the displaced
step.
(resume): Don't start a displaced step if in-line step-over info
is valid.
|
|
stepping
These tests exercise the infrun.c:proceed code that needs to know to
start new step overs (along with switch_back_to_stepped_thread, etc.).
That code is tricky to get right in the multitude of possible
combinations (at least):
(native | remote)
X (all-stop | all-stop-but-target-always-in-non-stop)
X (displaced-stepping | in-line step-over).
The first two above are properties of the target, but the different
step-over-breakpoint methods should work with any target that supports
them. This patch makes sure we always test both methods on all
targets.
Tested on x86-64 Fedora 20.
gdb/testsuite/ChangeLog:
2015-04-10 Pedro Alves <palves@redhat.com>
* gdb.threads/step-over-lands-on-breakpoint.exp (do_test): New
procedure, factored out from ...
(top level): ... here. Add "set displaced-stepping" testing axis.
* gdb.threads/step-over-trips-on-watchpoint.exp (do_test): New
parameter "displaced". Use it.
(top level): Use foreach and add "set displaced-stepping" testing
axis.
|
|
This test is currently failing like this on (at least) PPC64 and s390x:
FAIL: gdb.threads/step-over-trips-on-watchpoint.exp: no thread-specific bp: step: step
FAIL: gdb.threads/step-over-trips-on-watchpoint.exp: no thread-specific bp: next: next
FAIL: gdb.threads/step-over-trips-on-watchpoint.exp: with thread-specific bp: step: step
FAIL: gdb.threads/step-over-trips-on-watchpoint.exp: with thread-specific bp: next: next
gdb.log:
(gdb) PASS: gdb.threads/step-over-trips-on-watchpoint.exp: no thread-specific bp: step: set scheduler-locking off
step
wait_threads () at ../../../src/gdb/testsuite/gdb.threads/step-over-trips-on-watchpoint.c:49
49 return 1; /* in wait_threads */
(gdb) FAIL: gdb.threads/step-over-trips-on-watchpoint.exp: no thread-specific bp: step: step
The problem is that the test assumes that both the "watch_me = 1;" and
the "other = 1;" lines compile to a single instruction each, which
happens to be true on x86, but no necessarily true everywhere else.
The result is that the test doesn't really test what it wants to test.
Fix it by looking for the instruction that triggers the watchpoint.
gdb/ChangeLog:
2015-04-10 Pedro Alves <palves@redhat.com>
* gdb.threads/step-over-trips-on-watchpoint.c (child_function):
Remove comment.
* gdb.threads/step-over-trips-on-watchpoint.exp (do_test): Find
both the address of the instruction that triggers the watchpoint
and the address of the instruction immediately after, and use
those addresses for the test. Fix comment.
|
|
TL;DR:
When stepping over a breakpoint with displaced stepping, the core must
be notified of all signals, otherwise the displaced step fixup code
confuses a breakpoint trap in the signal handler for the expected trap
indicating the displaced instruction was single-stepped
normally/successfully.
Detailed version:
Running sigstep.exp with displaced stepping on, against my x86
software single-step branch, I got:
FAIL: gdb.base/sigstep.exp: step on breakpoint, to handler: performing step
FAIL: gdb.base/sigstep.exp: next on breakpoint, to handler: performing next
FAIL: gdb.base/sigstep.exp: continue on breakpoint, to handler: performing continue
Turning on debug logs, we see:
(gdb) step
infrun: clear_proceed_status_thread (process 32147)
infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT)
infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=1, current thread [process 32147] at 0x400842
displaced: stepping process 32147 now
displaced: saved 0x400622: 49 89 d1 5e 48 89 e2 48 83 e4 f0 50 54 49 c7 c0
displaced: %rip-relative addressing used.
displaced: using temp reg 2, old value 0x3615eafd37, new value 0x40084c
displaced: copy 0x400842->0x400622: c7 81 1c 08 20 00 00 00 00 00
displaced: displaced pc to 0x400622
displaced: run 0x400622: c7 81 1c 08
LLR: Preparing to resume process 32147, 0, inferior_ptid process 32147
LLR: PTRACE_CONT process 32147, 0 (resume event thread)
linux_nat_wait: [process -1], [TARGET_WNOHANG]
LLW: enter
LNW: waitpid(-1, ...) returned 32147, No child processes
LLW: waitpid 32147 received Alarm clock (stopped)
LLW: PTRACE_CONT process 32147, Alarm clock (preempt 'handle')
LNW: waitpid(-1, ...) returned 0, No child processes
LLW: exit (ignore)
sigchld
infrun: target_wait (-1.0.0, status) =
infrun: -1.0.0 [process -1],
infrun: status->kind = ignore
infrun: TARGET_WAITKIND_IGNORE
infrun: prepare_to_wait
linux_nat_wait: [process -1], [TARGET_WNOHANG]
LLW: enter
LNW: waitpid(-1, ...) returned 32147, No child processes
LLW: waitpid 32147 received Trace/breakpoint trap (stopped)
CSBB: process 32147 stopped by software breakpoint
LNW: waitpid(-1, ...) returned 0, No child processes
LLW: trap ptid is process 32147.
LLW: exit
infrun: target_wait (-1.0.0, status) =
infrun: 32147.32147.0 [process 32147],
infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: TARGET_WAITKIND_STOPPED
displaced: restored process 32147 0x400622
displaced: fixup (0x400842, 0x400622), insn = 0xc7 0x81 ...
displaced: restoring reg 2 to 0x3615eafd37
displaced: relocated %rip from 0x400717 to 0x400937
infrun: stop_pc = 0x400937
infrun: delayed software breakpoint trap, ignoring
infrun: no line number info
infrun: stop_waiting
0x0000000000400937 in __dso_handle ()
1: x/i $pc
=> 0x400937: and %ah,0xa0d64(%rip) # 0x4a16a1
(gdb) FAIL: gdb.base/sigstep.exp: displaced=on: step on breakpoint, to handler: performing step
What should have happened is that the breakpoint hit in the signal
handler should have been presented to the user. But note that
"preempt 'handle'" -- what happened instead is that
displaced_step_fixup confused the breakpoint in the signal handler for
the expected SIGTRAP indicating the displaced instruction was
single-stepped normally/successfully.
This should be affecting all software single-step targets in the same
way.
The fix is to make sure the core sees all signals when displaced
stepping, just like we already must see all signals when doing an
stepping over a breakpoint in-line. We now get:
infrun: target_wait (-1.0.0, status) =
infrun: 570.570.0 [process 570],
infrun: status->kind = stopped, signal = GDB_SIGNAL_ALRM
infrun: TARGET_WAITKIND_STOPPED
displaced: restored process 570 0x400622
infrun: stop_pc = 0x400842
infrun: random signal (GDB_SIGNAL_ALRM)
infrun: signal arrived while stepping over breakpoint
infrun: inserting step-resume breakpoint at 0x400842
infrun: resume (step=0, signal=GDB_SIGNAL_ALRM), trap_expected=0, current thread [process 570] at 0x400842
LLR: Preparing to resume process 570, Alarm clock, inferior_ptid process 570
LLR: PTRACE_CONT process 570, Alarm clock (resume event thread)
infrun: prepare_to_wait
linux_nat_wait: [process -1], [TARGET_WNOHANG]
LLW: enter
LNW: waitpid(-1, ...) returned 0, No child processes
LLW: exit (ignore)
infrun: target_wait (-1.0.0, status) =
infrun: -1.0.0 [process -1],
infrun: status->kind = ignore
sigchld
infrun: TARGET_WAITKIND_IGNORE
infrun: prepare_to_wait
linux_nat_wait: [process -1], [TARGET_WNOHANG]
LLW: enter
LNW: waitpid(-1, ...) returned 570, No child processes
LLW: waitpid 570 received Trace/breakpoint trap (stopped)
CSBB: process 570 stopped by software breakpoint
LNW: waitpid(-1, ...) returned 0, No child processes
LLW: trap ptid is process 570.
LLW: exit
infrun: target_wait (-1.0.0, status) =
infrun: 570.570.0 [process 570],
infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x400717
infrun: BPSTAT_WHAT_STOP_NOISY
infrun: stop_waiting
Breakpoint 3, handler (sig=14) at /home/pedro/gdb/mygit/src/gdb/testsuite/gdb.base/sigstep.c:35
35 done = 1;
Hardware single-step targets already behave this way, because the
Linux backends (both native and gdbserver) always report signals to
the core if the thread was single-stepping.
As mentioned in the new comment in do_target_resume, we can't fix this
by instead making the displaced_step_fixup phase skip fixing up the PC
if the single step stopped somewhere we didn't expect. Here's what
the backtrace would look like if we did that:
Breakpoint 3, handler (sig=14) at /home/pedro/gdb/mygit/src/gdb/testsuite/gdb.base/sigstep.c:35
35 done = 1;
1: x/i $pc
=> 0x400717 <handler+7>: movl $0x1,0x200943(%rip) # 0x601064 <done>
(gdb) bt
#0 handler (sig=14) at /home/pedro/gdb/mygit/src/gdb/testsuite/gdb.base/sigstep.c:35
#1 <signal handler called>
#2 0x0000000000400622 in _start ()
(gdb) FAIL: gdb.base/sigstep.exp: displaced=on: step on breakpoint, to handler: backtrace
gdb/ChangeLog:
2015-04-10 Pedro Alves <palves@redhat.com>
* infrun.c (displaced_step_in_progress): New function.
(do_target_resume): Advise target to report all signals if
displaced stepping.
gdb/testsuite/ChangeLog:
2015-04-10 Pedro Alves <palves@redhat.com>
* gdb.base/sigstep.exp (breakpoint_to_handler)
(breakpoint_to_handler_entry): New parameter 'displaced'. Use it.
Test "backtrace" in handler.
(breakpoint_over_handler): New parameter 'displaced'. Use it.
(top level): Add new "displaced" test axis to
breakpoint_to_handler, breakpoint_to_handler_entry and
breakpoint_over_handler.
|
|
The problem is that with hardware step targets and displaced stepping,
"signal FOO" when stopped at a breakpoint steps the breakpoint
instruction at the same time it delivers a signal. This results in
tp->stepped_breakpoint set, but no step-resume breakpoint set. When
the next stop event arrives, GDB crashes. Irrespective of whether we
should do something more/different to step past the breakpoint in this
scenario (e.g., PR 18225), it's just wrong to assume there'll be a
step-resume breakpoint set (and was not the original intention).
gdb/ChangeLog:
2015-04-10 Pedro Alves <palves@redhat.com>
PR gdb/18216
* infrun.c (process_event_stop_test): Don't assume a step-resume
is set if tp->stepped_breakpoint is true.
gdb/testsuite/ChangeLog:
2015-04-10 Pedro Alves <palves@redhat.com>
PR gdb/18216
* gdb.threads/multiple-step-overs.exp: Remove expected eof.
|
|
Recent patch series "V2 All-stop on top of non-stop" causes a SIGSEGV
in the test case,
> -PASS: gdb.base/info-shared.exp: continue to breakpoint: library function #4
> +FAIL: gdb.base/info-shared.exp: continue to breakpoint: library function #4
>
> continue^M
> Continuing.^M
> ^M
> Program received signal SIGSEGV, Segmentation fault.^M
> 0x40021564 in ?? () gdb/testsuite/gdb.base/info-shared-solib1.so^M
> (gdb) FAIL: gdb.base/info-shared.exp: continue to breakpoint: library function #4
and an ARM displaced stepping bug is exposed. It can be reproduced by
the modified gdb.arch/arm-disp-step.exp as below,
continue^M
Continuing.^M
^M
Program received signal SIGSEGV, Segmentation fault.^M
0xa713cfcc in ?? ()^M
(gdb) FAIL: gdb.arch/arm-disp-step.exp: continue to breakpoint: continue to test_add_rn_pc_end
This patch is to fix it.
gdb:
2015-04-10 Yao Qi <yao.qi@linaro.org>
* arm-tdep.c (install_alu_reg): Update comment.
(thumb_copy_alu_reg): Remove local variable rn. Update
debugging message. Use r2 instead of r1 in the modified
instruction.
gdb/testsuite:
2015-04-10 Yao Qi <yao.qi@linaro.org>
* gdb.arch/arm-disp-step.S (main): Call test_add_rn_pc.
(test_add_rn_pc): New function.
* gdb.arch/arm-disp-step.exp (test_add_rn_pc): New proc.
(top level): Invoke test_add_rn_pc.
|
|
Running break-interp.exp with the target always in non-stop mode trips
on PR13858, as enabling non-stop also enables displaced stepping.
The problem is that when GDB doesn't know where the entry point is, it
doesn't know where to put the displaced stepping scratch pad. The
test added by this commit exercises this. Without the fix, we get:
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=on: break *$pc
set displaced-stepping on
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=on: set displaced-stepping on
stepi
0x00000000004005be in ?? ()
Entry point address is not known.
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=on: stepi
p /x $pc
$2 = 0x4005be
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=on: get after PC
FAIL: gdb.base/step-over-no-symbols.exp: displaced=on: advanced
The fix switches all GNU/Linux ports to get the entry point from
AT_ENTRY in the target auxiliary vector instead of from symbols. This
is currently only done by PPC when Cell debugging is enabled, but I
think all archs should be able to do the same. Note that
ppc_linux_displaced_step_location cached the result, I'm guessing to
avoid constantly re-fetching the auxv out of remote targets, but
that's no longer necessary nowadays, as the auxv blob is itself cached
in the inferior object. The ppc_linux_entry_point_addr global is
obviously bad for multi-process too nowadays.
Tested on x86-64 (-m64/-m32), PPC64 (-m64/-m32) and S/390 GNU/Linux.
Yao tested the new test on ARM as well.
gdb/ChangeLog:
2015-04-10 Pedro Alves <palves@redhat.com>
PR gdb/13858
* amd64-linux-tdep.c (amd64_linux_init_abi_common): Install
linux_displaced_step_location as gdbarch_displaced_step_location
hook.
* arm-linux-tdep.c (arm_linux_init_abi): Likewise.
* i386-linux-tdep.c (i386_linux_init_abi): Likewise.
* linux-tdep.c (linux_displaced_step_location): New function,
based on ppc_linux_displaced_step_location.
* linux-tdep.h (linux_displaced_step_location): New declaration.
* ppc-linux-tdep.c (ppc_linux_entry_point_addr): Delete.
(ppc_linux_inferior_created, ppc_linux_displaced_step_location):
Delete.
(ppc_linux_init_abi): Install linux_displaced_step_location as
gdbarch_displaced_step_location hook, even without Cell/B.E..
(_initialize_ppc_linux_tdep): Don't install
ppc_linux_inferior_created as inferior_created observer.
* s390-linux-tdep.c (s390_gdbarch_init): Install
linux_displaced_step_location as gdbarch_displaced_step_location
hook.
gdb/testsuite/
2015-04-10 Pedro Alves <palves@redhat.com>
PR gdb/13858
* gdb.base/step-over-no-symbols.exp: New file.
|
|
gdb/doc/ChangeLog
2015-04-10 Jan Kratochvil <jan.kratochvil@redhat.com>
Eli Zaretskii <eliz@gnu.org>
* gdb.texinfo (Compiling and Injecting Code): Describe set debug
compile, show debug compile. New subsection Compilation options for
the compile command. New subsection Compiler search for the compile
command.
|
|
This commit renames common-remote-fileio.[ch] as fileio.[ch]
and renames all functions in these files.
gdb/ChangeLog:
* common/common-remote-fileio.h: Rename to...
* common/fileio.h: ...this. Update all references.
(remote_fileio_to_fio_error): Rename to...
(host_to_fileio_error): ...this.
(remote_fileio_to_be): Rename to...
(host_to_bigendian): ...this. Update all callers.
(remote_fileio_to_fio_uint): Rename to...
(host_to_fileio_uint): ...this. Update all callers.
(remote_fileio_to_fio_time): Rename to...
(host_to_fileio_time): ...this. Update all callers.
(remote_fileio_to_fio_stat): Rename to...
(host_to_fileio_stat): ...this.
Update all references.
* common/common-remote-fileio.c: Rename to...
* common/fileio.c: ...this. Update all references.
(remote_fileio_to_fio_error): Rename to...
(host_to_fileio_error): ...this. Update all callers.
(remote_fileio_mode_to_target): Rename to...
(fileio_mode_pack): ...this. Update all callers.
(remote_fileio_to_fio_mode): Rename to...
(host_to_fileio_mode): ...this. Update all callers.
(remote_fileio_to_fio_ulong): Rename to...
(host_to_fileio_ulong): ...this. Update all callers.
(remote_fileio_to_fio_stat): Rename to...
(host_to_fileio_stat): ...this. Update all callers.
|
|
gdb/ChangeLog:
* guile/scm-frame.c (gdbscm_frame_read_register): New function.
(frame_functions): Bind gdbscm_frame_read_register to
frame-read-register.
* guile/lib/gdb.scm (frame-read-register): Export.
gdb/doc/ChangeLog:
* guile.texi (Frames In Guile): Describe frame-read-register.
gdb/testsuite/ChangeLog:
* gdb.guile/scm-frame.exp: Add frame-read-register tests, modelled
after the Python tests.
|
|
This commit introduces a new shared function to replace three
identical functions in various places in the codebase.
gdb/ChangeLog:
* common/common-remote-fileio.h (remote_fileio_to_fio_error):
New declaration.
* common/common-remote-fileio.c (remote_fileio_to_fio_error):
New function, factored out the named functions below.
* inf-child.c (gdb/fileio.h): Remove include.
(common-remote-fileio.h): New include.
(inf_child_errno_to_fileio_error): Remove function. Update
all callers to use remote_fileio_to_fio_error.
* remote-fileio.c (remote_fileio_errno_to_target): Likewise.
gdb/gdbserver/ChangeLog:
* hostio-errno.c (errno_to_fileio_error): Remove function.
Update caller to use remote_fileio_to_fio_error.
|