Age | Commit message (Collapse) | Author | Files | Lines |
|
Sometimes it's useful to be able to disable the automatic connection
to the native target. E.g., sometimes GDB disconnects from the
extended-remote target I was debugging, without me noticing it, and
then I do "run". That starts the program locally, and only after a
little head scratch session do I figure out the program is running
locally instead of remotely as intended. Same thing with "attach",
"info os", etc.
With the patch, we now can have this instead:
(gdb) set auto-connect-native-target off
(gdb) target extended-remote :9999
...
*gdb disconnects*
(gdb) run
Don't know how to run. Try "help target".
To still be able to connect to the native target with
auto-connect-native-target set to off, I've made "target native" work
instead of erroring out as today.
Before:
(gdb) target native
Use the "run" command to start a native process.
After:
(gdb) target native
Done. Use the "run" command to start a process.
(gdb) maint print target-stack
The current target stack is:
- native (Native process)
- exec (Local exec file)
- None (None)
(gdb) run
Starting program: ./a.out
...
I've also wanted this for the testsuite, when running against the
native-extended-gdbserver.exp board (runs against gdbserver in
extended-remote mode). With a non-native-target board, it's always a
bug to launch a program with the native target. Turns out we still
have one such case this patch catches:
(gdb) break main
Breakpoint 1 at 0x4009e5: file ../../../src/gdb/testsuite/gdb.base/coremaker.c, line 138.
(gdb) run
Don't know how to run. Try "help target".
(gdb) FAIL: gdb.base/corefile.exp: run: with core
On the patch itself, probably the least obvious bit is the need to go
through all targets, and move the unpush_target call to after the
generic_mourn_inferior call instead of before. This is what
inf-ptrace.c does too, ever since multi-process support was added.
The reason inf-ptrace.c does things in that order is that in the
current multi-process/single-target model, we shouldn't unpush the
target if there are still other live inferiors being debugged. The
check for that is "have_inferiors ()" (a misnomer nowadays...), which
does:
have_inferiors (void)
{
for (inf = inferior_list; inf; inf = inf->next)
if (inf->pid != 0)
return 1;
It's generic_mourn_inferior that ends up clearing inf->pid, so we need
to call it before the have_inferiors check. To make all native
targets behave the same WRT to explicit "target native", I've added an
inf_child_maybe_unpush_target function that targets call instead of
calling unpush_target directly, and as that includes the
have_inferiors check, I needed to adjust the targets.
Tested on x86_64 Fedora 20, native, and also with the
extended-gdbserver board.
Confirmed a cross build of djgpp gdb still builds.
Smoke tested a cross build of Windows gdb under Wine.
Untested otherwise.
gdb/
2014-05-21 Pedro Alves <palves@redhat.com>
* inf-child.c (inf_child_ops, inf_child_explicitly_opened): New
globals.
(inf_child_open_target): New function.
(inf_child_open): Use inf_child_open_target to push the target
instead of erroring out.
(inf_child_disconnect, inf_child_close)
(inf_child_maybe_unpush_target): New functions.
(inf_child_target): Install inf_child_disconnect and
inf_child_close. Store a pointer to the returned object.
* inf-child.h (inf_child_open_target, inf_child_maybe_unpush): New
declarations.
* target.c (auto_connect_native_target): New global.
(show_default_run_target): New function.
(find_default_run_target): Return NULL if automatically connecting
to the native target is disabled.
(_initialize_target): Install set/show auto-connect-native-target.
* NEWS: Mention "set auto-connect-native-target", and "target
native".
* linux-nat.c (super_close): New global.
(linux_nat_close): Call super_close.
(linux_nat_add_target): Store a pointer to the base class's
to_close method.
* inf-ptrace.c (inf_ptrace_mourn_inferior, inf_ptrace_detach): Use
inf_child_maybe_unpush.
* inf-ttrace.c (inf_ttrace_him): Don't push the target if it is
already pushed.
(inf_ttrace_mourn_inferior): Only unpush the target after mourning
the inferior. Use inf_child_maybe_unpush_target.
(inf_ttrace_attach): Don't push the target if it is already
pushed.
(inf_ttrace_detach): Use inf_child_maybe_unpush_target.
* darwin-nat.c (darwin_mourn_inferior): Only unpush the target
after mourning the inferior. Use inf_child_maybe_unpush_target.
(darwin_attach_pid): Don't push the target if it is already
pushed.
* gnu-nat.c (gnu_mourn_inferior): Only unpush the target after
mourning the inferior. Use inf_child_maybe_unpush_target.
(gnu_detach): Use inf_child_maybe_unpush_target.
* go32-nat.c (go32_create_inferior): Don't push the target if it
is already pushed.
(go32_mourn_inferior): Use inf_child_maybe_unpush_target.
* nto-procfs.c (procfs_is_nto_target): Adjust comment.
(procfs_open): Rename to ...
(procfs_open_1): ... this. Add target_ops parameter. Adjust
comments. Can target_preopen before changing node. Call
inf_child_open_target to push the target explicitly.
(procfs_attach): Don't push the target if it is already pushed.
(procfs_detach): Use inf_child_maybe_unpush_target.
(procfs_create_inferior): Don't push the target if it is already
pushed.
(nto_native_ops): New global.
(procfs_open): Reimplement.
(procfs_native_open): New function.
(init_procfs_targets): Install procfs_native_open as to_open of
"target native". Store a pointer to the "native" target in
nto_native_ops.
* procfs.c (procfs_attach): Don't push the target if it is already
pushed.
(procfs_detach): Use inf_child_maybe_unpush_target.
(procfs_mourn_inferior): Only unpush the target after mourning the
inferior. Use inf_child_maybe_unpush_target.
(procfs_init_inferior): Don't push the target if it is already
pushed.
* windows-nat.c (do_initial_windows_stuff): Don't push the target
if it is already pushed.
(windows_detach): Use inf_child_maybe_unpush_target.
(windows_mourn_inferior): Only unpush the target after mourning
the inferior. Use inf_child_maybe_unpush_target.
gdb/doc/
2014-05-21 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Starting): Document "set/show
auto-connect-native-target".
(Target Commands): Document "target native".
gdb/testsuite/
2014-05-21 Pedro Alves <palves@redhat.com>
* boards/gdbserver-base.exp (GDBFLAGS): Set to "set
auto-connect-native-target off".
* gdb.base/auto-connect-native-target.c: New file.
* gdb.base/auto-connect-native-target.exp: New file.
|
|
gdb/
2014-05-21 Pedro Alves <palves@redhat.com>
* NEWS: Mention that the "child", "GNU, "djgpp", "darwin-child"
and "procfs" targets are now called "native" instead.
|
|
Although the string says "Done.", nothing is pushing the target as is.
Removing the method override let's us fall through to the the base
to_open implemention in inf-child.c, which will push the target in
reaction to "target native" in a follow up patch.
gdb/
2014-05-21 Pedro Alves <palves@redhat.com>
* go32-nat.c (go32_open): Delete.
(go32_target): Don't override the to_open method.
|
|
This makes QNX/NTO end up with two targets. It preserves "target
procfs <node>", and adds a "native" target to be like other native
ports.
Not tested.
gdb/
2014-05-21 Pedro Alves <palves@redhat.com>
* nto-procfs.c (procfs_can_run): New function.
(nto_procfs_ops): New global.
(init_procfs_targets): New, based on procfs_target. Install
"target native" in addition to "target procfs".
(_initialize_procfs): Call init_procfs_targets instead of adding
the target here.
|
|
To be like other native targets.
Leave to_shortname, to_longname, to_doc as inf-child.c sets them:
t->to_shortname = "native";
t->to_longname = "Native process";
t->to_doc = "Native process (started by the \"run\" command).";
gdb/
2014-05-21 Pedro Alves <palves@redhat.com>
* windows-nat.c (windows_target): Don't override to_shortname,
to_longname or to_doc.
|
|
To be like other native targets.
Leave to_shortname, to_longname, to_doc as inf-child.c sets them:
t->to_shortname = "native";
t->to_longname = "Native process";
t->to_doc = "Native process (started by the \"run\" command).";
gdb/
2014-05-21 Pedro Alves <palves@redhat.com>
* gnu-nat.c (gnu): Don't override to_shortname, to_longname or
to_doc.
|
|
To be like other native targets.
Leave to_shortname, to_longname, to_doc as inf-child.c sets them:
t->to_shortname = "native";
t->to_longname = "Native process";
t->to_doc = "Native process (started by the \"run\" command).";
gdb/
2014-05-21 Pedro Alves <palves@redhat.com>
* darwin-nat.c (_initialize_darwin_inferior): Don't override
to_shortname, to_longname or to_doc.
|
|
To be like other native targets.
Leave to_shortname, to_longname, to_doc as inf-child.c sets them:
t->to_shortname = "native";
t->to_longname = "Native process";
t->to_doc = "Native process (started by the \"run\" command).";
gdb/
2014-05-21 Pedro Alves <palves@redhat.com>
* go32-nat.c (go32_target): Don't override to_shortname,
to_longname or to_doc.
|
|
I had been pondering renaming "target child" to something else.
"child" is a little lie in case of "attach", and not exactly very
clear to users, IMO. By best suggestion is "target native". If I
were to explain what "target child" is, I'd just start out with "it's
the native target" anyway. I was worrying a little that "native"
might be a lie too if some port comes up with a default target that
can run but is not really native, but I think that's a very minor
issue - we can consider that "native" really means the default built
in target that GDB supports, instead of saying that's the target that
debugs host native processes, if it turns out necessary.
This change doesn't affect users much, because "target child" results
in error today:
(gdb) target child
Use the "run" command to start a child process.
Other places "child" is visible:
(gdb) help target
...
List of target subcommands:
target child -- Child process (started by the "run" command)
target core -- Use a core file as a target
target exec -- Use an executable file as a target
...
(gdb) info target
Symbols from "/home/pedro/gdb/mygit/build/gdb/gdb".
Child process:
Using the running image of child Thread 0x7ffff7fc9740 (LWP 4818).
While running this, GDB does not access memory from...
...
These places will say "native" instead. I think that's a good thing.
gdb/
2014-05-21 Pedro Alves <palves@redhat.com>
* inf-child.c (inf_child_open): Remove mention of "child".
(inf_child_target): Rename target to "native" instead of "child".
gdb/testsuite/
2014-05-21 Pedro Alves <palves@redhat.com>
* gdb.base/default.exp: Test "target native" instead of "target
child".
|
|
Now that all invocations of regset_alloc() have been removed, the
function is dropped. Since regset_alloc() was the only function
provided by regset.c, this source file is removed as well.
|
|
|
|
Clear the naming confusion about "regset" versus "sparc*regset". The
latter was used to represent the *map* of a register set, not the
register set itself, and is thus renamed accordingly.
The following identifiers are renamed:
sparc32_bsd_fpregset => sparc32_bsd_fpregmap
sparc32_linux_core_gregset => sparc32_linux_core_gregmap
sparc32_sol2_fpregset => sparc32_sol2_fpregmap
sparc32_sol2_gregset => sparc32_sol2_gregmap
sparc32_sunos4_fpregset => sparc32_sunos4_fpregmap
sparc32_sunos4_gregset => sparc32_sunos4_gregmap
sparc32nbsd_gregset => sparc32nbsd_gregmap
sparc64_bsd_fpregset => sparc64_bsd_fpregmap
sparc64_linux_core_gregset => sparc64_linux_core_gregmap
sparc64_linux_ptrace_gregset => sparc64_linux_ptrace_gregmap
sparc64_sol2_fpregset => sparc64_sol2_fpregmap
sparc64_sol2_gregset => sparc64_sol2_gregmap
sparc64fbsd_gregset => sparc64fbsd_gregmap
sparc64nbsd_gregset => sparc64nbsd_gregmap
sparc64obsd_core_gregset => sparc64obsd_core_gregmap
sparc64obsd_gregset => sparc64obsd_gregmap
sparc_fpregset => sparc_fpregmap
sparc_gregset => sparc_gregmap
sparc_sol2_fpregset => sparc_sol2_fpregmap
sparc_sol2_gregset => sparc_sol2_gregmap
Also, all local variables 'gregset' and 'fpregset' are renamed to
'gregmap' and 'fpregmap', respectively.
|
|
Since this changes makes the only member of the tdep structure
obsolete, the tdep structure is removed.
|
|
On this architecture the change may fix a small memory leak.
|
|
After removal of the regset_alloc invocations, the appropriate tdep
fields become obsolete and are thus removed.
|
|
After removal of the regset_alloc invocations, the appropriate tdep
fields become obsolete and are thus removed.
|
|
After removal of the regset_alloc invocations, the appropriate tdep
fields become obsolete and are thus removed.
|
|
After removal of the regset_alloc invocations, the tdep fields
'gregset' and 'fpregset' become obsolete and are thus removed.
|
|
Removes the 'arch' field from the regset structure, since it
represents the only "dynamic" data in a regset. It was referenced in
some regset supply- and collect routines, to get access to the gdbarch
associated with the regset. Naturally, the affected routines always
have access to the regcache to be supplied to or collected from. Thus
the gdbarch associated with that regcache can be used instead.
|
|
|
|
* gdb.cp/var-tag.exp (do_global_tests): Handle underlying type.
|
|
I have posted:
TLS variables access for -static -lpthread executables
https://sourceware.org/ml/libc-help/2014-03/msg00024.html
and the GDB patch below has been confirmed as OK for current glibcs.
Further work should be done for newer glibcs:
Improve TLS variables glibc compatibility
https://sourceware.org/bugzilla/show_bug.cgi?id=16954
Still the patch below implements the feature in a fully functional way backward
compatible with current glibcs, it depends on the following glibc source line:
csu/libc-tls.c
main_map->l_tls_modid = 1;
gdb/
2014-05-21 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix TLS access for -static -pthread.
* linux-thread-db.c (struct thread_db_info): Add td_thr_tlsbase_p.
(try_thread_db_load_1): Initialize it.
(thread_db_get_thread_local_address): Call it if LM is zero.
* target.c (target_translate_tls_address): Remove LM_ADDR zero check.
* target.h (struct target_ops) (to_get_thread_local_address): Add
load_module_addr comment.
gdb/gdbserver/
2014-05-21 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix TLS access for -static -pthread.
* gdbserver/thread-db.c (struct thread_db): Add td_thr_tlsbase_p.
(thread_db_get_tls_address): Call it if LOAD_MODULE is zero.
(thread_db_load_search, try_thread_db_load_1): Initialize it.
gdb/testsuite/
2014-05-21 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix TLS access for -static -pthread.
* gdb.threads/staticthreads.c <HAVE_TLS> (tlsvar): New.
<HAVE_TLS> (thread_function, main): Initialize it.
* gdb.threads/staticthreads.exp: Try gdb_compile_pthreads for $have_tls.
Add clean_restart.
<$have_tls != "">: Check TLSVAR.
Message-ID: <20140410115204.GB16411@host2.jankratochvil.net>
|
|
The dcache (code/stack cache) is supposed to be transparent, but it's
actually not in one case. dcache tries to read chunks (cache lines)
at a time off of the target. This may end up trying to read
unaccessible or unavailable memory. Currently the caller gets an xfer
error in this case. But if the specific bits of memory the caller
actually wanted are available and accessible, then the caller should
get the memory it wanted, not an error.
gdb/
2014-05-21 Pedro Alves <palves@redhat.com>
* dcache.c (dcache_read_memory_partial): If reading the cache line
fails, fallback to reading just the memory the caller wanted.
gdb/testsuite/
2014-05-21 Pedro Alves <palves@redhat.com>
* gdb.base/dcache-line-read-error.c: New.
* gdb.base/dcache-line-read-error.exp: New.
|
|
UNRESOLVED: gdb.multi/base.exp: remove-inferiors 2-3
UNRESOLVED: gdb.multi/base.exp: check remove-inferiors
gdb is crashing because it's accessing/freeing already freed memory.
==16368== Invalid read of size 4
==16368== at 0x660A9D: find_pc_section (binutils-gdb/gdb/objfiles.c:1349)
==16368== by 0x663ECB: lookup_minimal_symbol_by_pc_section (binutils-gdb/gdb/minsyms.c:734)
==16368== by 0x5D987A: find_pc_sect_symtab (binutils-gdb/gdb/symtab.c:2153)
==16368== by 0x5D4D77: blockvector_for_pc_sect (binutils-gdb/gdb/block.c:168)
==16368== by 0x5D4F59: block_for_pc_sect (binutils-gdb/gdb/block.c:246)
==16368== by 0x5D4F9B: block_for_pc (binutils-gdb/gdb/block.c:258)
==16368== by 0x734C5D: inline_frame_sniffer (binutils-gdb/gdb/inline-frame.c:218)
==16368== by 0x732104: frame_unwind_try_unwinder (binutils-gdb/gdb/frame-unwind.c:108)
==16368== by 0x73223F: frame_unwind_find_by_frame (binutils-gdb/gdb/frame-unwind.c:159)
==16368== by 0x72D5AA: compute_frame_id (binutils-gdb/gdb/frame.c:453)
==16368== by 0x7300EC: get_prev_frame_if_no_cycle (binutils-gdb/gdb/frame.c:1758)
==16368== by 0x73079A: get_prev_frame_always (binutils-gdb/gdb/frame.c:1931)
==16368== Address 0x5b13500 is 16 bytes inside a block of size 24 free'd
==16368== at 0x403072E: free (valgrind/coregrind/m_replacemalloc/vg_replace_malloc.c:445)
==16368== by 0x762134: xfree (binutils-gdb/gdb/common/common-utils.c:108)
==16368== by 0x65DACF: objfiles_pspace_data_cleanup (binutils-gdb/gdb/objfiles.c:91)
==16368== by 0x75E546: program_spaceregistry_callback_adaptor (binutils-gdb/gdb/progspace.c:45)
==16368== by 0x7644F6: registry_clear_data (binutils-gdb/gdb/registry.c:82)
==16368== by 0x7645AB: registry_container_free_data (binutils-gdb/gdb/registry.c:95)
==16368== by 0x75E5B4: program_space_free_data (binutils-gdb/gdb/progspace.c:45)
==16368== by 0x75E9BA: release_program_space (binutils-gdb/gdb/progspace.c:167)
==16368== by 0x75EB9B: prune_program_spaces (binutils-gdb/gdb/progspace.c:269)
==16368== by 0x75303D: remove_inferior_command (binutils-gdb/gdb/inferior.c:792)
==16368== by 0x50B5FD: do_cfunc (binutils-gdb/gdb/cli/cli-decode.c:107)
==16368== by 0x50E6F2: cmd_func (binutils-gdb/gdb/cli/cli-decode.c:1886)
The problem originates from the get_current_arch call in
py-progspace.c:py_free_pspace. The inferior associated with the
pspace is gone, and the current inferior is a different one and is running.
Therefore get_current_arch tries to read the current frame which
causes reads of data in the current program space which we've just deleted.
* python/py-progspace.c (py_free_pspace): Call target_gdbarch
instead of get_current_arch.
|
|
This does two things:
1. Adds a test.
Recently compare-sections got a new "-r" switch, but given no test
existed for compare-sections, the patch was allowed in with no
testsuite addition. This now adds a test for both compare-sections
and compare-sections -r.
2. Makes the compare-sections command work against all targets.
Currently, compare-sections only works with remote targets, and only
those that support the qCRC packet. The patch makes it so that if the
target doesn't support accelerating memory verification, then GDB
falls back to comparing memory itself. This is of course slower, but
it's better than nothing, IMO. While testing against extended-remote
GDBserver I noticed that we send the qCRC request to the target if
we're connected, but not yet running a program. That can't work of
course -- the patch fixes that. This all also goes in the direction
of bridging the local/remote parity gap.
I didn't decouple 1. from 2., because that would mean that the test
would need to handle the case of the target not supporting the
command.
Tested on x86_64 Fedora 17, native, remote GDBserver, and
extended-remote GDBserver. I also hack-disabled qCRC support to make
sure the fallback paths in remote.c work.
gdb/doc/
2014-05-20 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Memory) <compare-sections>: Generalize comments to
not be remote specific. Add cross reference to the qCRC packet.
(Separate Debug Files): Update cross reference to the qCRC packet.
(General Query Packets) <qCRC packet>: Add anchor.
gdb/
2014-05-20 Pedro Alves <palves@redhat.com>
* NEWS: Mention that compare-sections now works with all targets.
* remote.c (PACKET_qCRC): New enum value.
(remote_verify_memory): Don't send qCRC if the target has no
execution. Use packet_support/packet_ok. If the target doesn't
support the qCRC packet, fallback to a deep memory copy.
(compare_sections_command): Say "target image" instead of "remote
executable".
(_initialize_remote): Add PACKET_qCRC to the list of config
packets that have no associated command. Extend comment.
* target.c (simple_verify_memory, default_verify_memory): New
function.
* target.h (struct target_ops) <to_verify_memory>: Default to
default_verify_memory.
(simple_verify_memory): New declaration.
* target-delegates.c: Regenerate.
gdb/testsuite/
2014-05-20 Pedro Alves <palves@redhat.com>
* gdb.base/compare-sections.c: New file.
* gdb.base/compare-sections.exp: New file.
|
|
This patch fixes hardware breakpoint regressions exposed by my fix for
"PR breakpoints/7143 - Watchpoint does not trigger when first set", at
https://sourceware.org/ml/gdb-patches/2014-03/msg00167.html
The testsuite caught them on Linux/x86_64, at least. gdb.sum:
gdb.sum:
FAIL: gdb.base/hbreak2.exp: next over recursive call
FAIL: gdb.base/hbreak2.exp: backtrace from factorial(5.1)
FAIL: gdb.base/hbreak2.exp: continue until exit at recursive next test
gdb.log:
(gdb) next
Program received signal SIGTRAP, Trace/breakpoint trap.
factorial (value=4) at ../../../src/gdb/testsuite/gdb.base/break.c:113
113 if (value > 1) { /* set breakpoint 7 here */
(gdb) FAIL: gdb.base/hbreak2.exp: next over recursive call
Actually, that patch just exposed a latent issue to "breakpoints
always-inserted off" mode, not really caused it. After that patch,
GDB no longer removes breakpoints at each internal event, thus making
some scenarios behave like breakpoint always-inserted on. The bug is
easy to trigger with always-inserted on.
The issue is that since the target-side breakpoint conditions support,
if the stub/server supports evaluating breakpoint conditions on the
target side, then GDB is sending duplicate Zx packets to the target
without removing them before, and GDBserver is not really expecting
that for Z packets other than Z0/z0. E.g., with "set breakpoint
always-inserted on" and "set debug remote 1":
(gdb) b main
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $z0,410943,1#68...Packet received: OK
And for Z1, similarly:
(gdb) hbreak main
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Packet Z1 (hardware-breakpoint) is supported
(gdb) hbreak main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) hbreak main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $z1,410943,1#69...Packet received: OK
^^^^^^^^^^^^
So GDB sent a bunch of Z1 packets, and then when finally removing the
breakpoint, only one z1 packet was sent. On the GDBserver side (with
monitor set debug-hw-points 1), in the Z1 case, we see:
$ ./gdbserver :9999 ./gdbserver
Process ./gdbserver created; pid = 8629
Listening on port 9999
Remote debugging from host 127.0.0.1
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=1 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=2 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=3 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=5 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
remove_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
That's one insert_watchpoint call for each Z1 packet, and then one
remove_watchpoint call for the z1 packet. Notice how ref.count
increased for each insert_watchpoint call, and then in the end, after
GDB told GDBserver to forget about the hardware breakpoint, GDBserver
ends with the the first debug register still with ref.count=4! IOW,
the hardware breakpoint is left armed on the target, while on the GDB
end it's gone. If the program happens to execute 0x410943 afterwards,
then the CPU traps, GDBserver reports the trap to GDB, and GDB not
having a breakpoint set at that address anymore, reports to the user a
spurious SIGTRAP.
This is exactly what is happening in the hbreak2.exp test, though in
that case, it's a shared library event that triggers a
breakpoint_re_set, when breakpoints are still inserted (because
nowadays GDB doesn't remove breakpoints while handling internal
events), and that recreates breakpoint locations, which likewise
forces breakpoint reinsertion and Zx packet resends...
That is a lot of bogus Zx duplication that should possibly be
addressed on the GDB side. GDB resends Zx packets because the way to
change the target-side condition, is to resend the breakpoint to the
server with the new condition. (That's an option in the packet: e.g.,
"Z1,410943,1;X3,220027" for "hbreak main if 0". The packets in the
examples above are shorter because the breakpoints don't have
conditions attached). GDB doesn't remove the breakpoint first before
reinserting it because that'd be bad for non-stop, as it'd open a
window where the inferior could miss the breakpoint. The conditions
actually haven't changed between the resends, but GDB isn't smart
enough to realize that.
(TBC, if the target doesn't support target-side conditions, then GDB
doesn't trigger these resends (init_bp_location calls
mark_breakpoint_location_modified, and that does nothing if condition
evaluation is on the host side. The resends are caused by the
'loc->condition_changed = condition_modified.' line.)
But, even if GDB was made smarter, GDBserver should really still
handle the resends anyway. So target-side conditions also aren't
really to blame. The documentation of the Z/z packets says:
"To avoid potential problems with duplicate packets, the operations
should be implemented in an idempotent way."
As such, we may want to fix GDB, but we should definitely fix
GDBserver. The fix is a prerequisite for target-side conditions on
hardware breakpoints anyway (and while at it, on watchpoints too).
GDBserver indeed already treats duplicate Z0 packets in an idempotent
way. mem-break.c has the concept of high-level and low-level
breakpoints, somewhat similar to GDB's split of breakpoints vs
breakpoint locations, and keeps track of multiple breakpoints
referencing the same address/location, for the case of an internal
GDBserver breakpoint or a tracepoint being set at the same address as
a GDB breakpoint. But, it only allows GDB to ever contribute one
reference to a software breakpoint location. IOW, if gdbserver sees a
Z0 packet for the same address where it already had a GDB breakpoint
set, then GDBserver won't create another high-level GDB breakpoint.
However, mem-break.c only tracks GDB Z0 breakpoints. The same logic
should apply to all kinds of Zx packets. Currently, gdbserver passes
down each duplicate Zx (other than Z0) request directly to the
target->insert_point routine. The x86 watchpoint support itself
refcounts watchpoint / hw breakpoint requests, to handle overlapping
watchpoints, and save debug registers. But that code doesn't (and
really shouldn't) handle the duplicate requests, assuming that for
each insert there will be a corresponding remove.
So the fix is to generalize mem-break.c to track all kinds of Zx
breakpoints, and filter out duplicates. As mentioned, this ends up
adding support for target-side conditions on hardware breakpoints and
watchpoints too (though GDB itself doesn't support the latter yet).
Probably the least obvious change in the patch is that it kind of
turns the breakpoint insert/remove APIs inside out. Before, the
target methods were only called for GDB breakpoints. The internal
breakpoint set/delete methods inserted memory breakpoints directly
bypassing the insert/remove target methods. That's not good when the
target should use a debug API to set software breakpoints, instead of
relying on GDBserver patching memory with breakpoint instructions, as
is the case of NTO.
Now removal/insertion of all kinds of breakpoints/watchpoints, either
internal, or from GDB, always go through the target methods. The
insert_point/remove_point methods no longer get passed a Z packet
type, but an internal/raw breakpoint type. They're also passed a
pointer to the raw breakpoint itself (note that's still opaque outside
mem-break.c), so that insert_memory_breakpoint /
remove_memory_breakpoint have access to the breakpoint's shadow
buffer. I first tried passing down a new structure based on GDB's
"struct bp_target_info" (actually with that name exactly), but then
decided against it as unnecessary complication.
As software/memory breakpoints work by poking at memory, when setting
a GDB Z0 breakpoint (but not internal breakpoints, as those can assume
the conditions are already right), we need to tell the target to
prepare to access memory (which on Linux means stop threads). If that
operation fails, we need to return error to GDB. Seeing an error, if
this is the first breakpoint of that type that GDB tries to insert,
GDB would then assume the breakpoint type is supported, but it may
actually not be. So we need to check whether the type is supported at
all before preparing to access memory. And to solve that, the patch
adds a new target->supports_z_point_type method that is called before
actually trying to insert the breakpoint.
Other than that, hopefully the change is more or less obvious.
New test added that exercises the hbreak2.exp regression in a more
direct way, without relying on a breakpoint re-set happening before
main is reached.
Tested by building GDBserver for:
aarch64-linux-gnu
arm-linux-gnueabihf
i686-pc-linux-gnu
i686-w64-mingw32
m68k-linux-gnu
mips-linux-gnu
mips-uclinux
nios2-linux-gnu
powerpc-linux-gnu
sh-linux-gnu
tilegx-unknown-linux-gnu
x86_64-redhat-linux
x86_64-w64-mingw32
And also regression tested on x86_64 Fedora 20.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* linux-aarch64-low.c (aarch64_insert_point)
(aarch64_remove_point): No longer check whether the type is
supported here. Adjust to new interface.
(the_low_target): Install aarch64_supports_z_point_type as
supports_z_point_type method.
* linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type): New function.
(arm_linux_hw_point_initialize): Take an enum raw_bkpt_type
instead of a Z packet char. Adjust.
(arm_supports_z_point_type): New function.
(arm_insert_point, arm_remove_point): Adjust to new interface.
(the_low_target): Install arm_supports_z_point_type.
* linux-crisv32-low.c (cris_supports_z_point_type): New function.
(cris_insert_point, cris_remove_point): Adjust to new interface.
Don't check whether the type is supported here.
(the_low_target): Install cris_supports_z_point_type.
* linux-low.c (linux_supports_z_point_type): New function.
(linux_insert_point, linux_remove_point): Adjust to new interface.
* linux-low.h (struct linux_target_ops) <insert_point,
remove_point>: Take an enum raw_bkpt_type instead of a char. Add
raw_breakpoint pointer parameter.
<supports_z_point_type>: New method.
* linux-mips-low.c (mips_supports_z_point_type): New function.
(mips_insert_point, mips_remove_point): Adjust to new interface.
Use mips_supports_z_point_type.
(the_low_target): Install mips_supports_z_point_type.
* linux-ppc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-s390-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-sparc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-x86-low.c (x86_supports_z_point_type): New function.
(x86_insert_point): Adjust to new insert_point interface. Use
insert_memory_breakpoint. Adjust to new
i386_low_insert_watchpoint interface.
(x86_remove_point): Adjust to remove_point interface. Use
remove_memory_breakpoint. Adjust to new
i386_low_remove_watchpoint interface.
(the_low_target): Install x86_supports_z_point_type.
* lynx-low.c (lynx_target_ops): Install NULL as
supports_z_point_type callback.
* nto-low.c (nto_supports_z_point_type): New.
(nto_insert_point, nto_remove_point): Adjust to new interface.
(nto_target_ops): Install nto_supports_z_point_type.
* mem-break.c: Adjust intro comment.
(struct raw_breakpoint) <raw_type, size>: New fields.
<inserted>: Update comment.
<shlib_disabled>: Delete field.
(enum bkpt_type) <gdb_breakpoint>: Delete value.
<gdb_breakpoint_Z0, gdb_breakpoint_Z1, gdb_breakpoint_Z2,
gdb_breakpoint_Z3, gdb_breakpoint_Z4>: New values.
(raw_bkpt_type_to_target_hw_bp_type): New function.
(find_enabled_raw_code_breakpoint_at): New function.
(find_raw_breakpoint_at): New type and size parameters. Use them.
(insert_memory_breakpoint): New function, based off
set_raw_breakpoint_at.
(remove_memory_breakpoint): New function.
(set_raw_breakpoint_at): Reimplement.
(set_breakpoint): New, based on set_breakpoint_at.
(set_breakpoint_at): Reimplement.
(delete_raw_breakpoint): Go through the_target->remove_point
instead of assuming memory breakpoints.
(find_gdb_breakpoint_at): Delete.
(Z_packet_to_bkpt_type, Z_packet_to_raw_bkpt_type): New functions.
(find_gdb_breakpoint): New function.
(set_gdb_breakpoint_at): Delete.
(z_type_supported): New function.
(set_gdb_breakpoint_1): New function, loosely based off
set_gdb_breakpoint_at.
(check_gdb_bp_preconditions, set_gdb_breakpoint): New functions.
(delete_gdb_breakpoint_at): Delete.
(delete_gdb_breakpoint_1): New function, loosely based off
delete_gdb_breakpoint_at.
(delete_gdb_breakpoint): New function.
(clear_gdb_breakpoint_conditions): Rename to ...
(clear_breakpoint_conditions): ... this. Don't handle a NULL
breakpoint.
(add_condition_to_breakpoint): Make static.
(add_breakpoint_condition): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_condition_true_at_breakpoint): Rename to ...
(gdb_condition_true_at_breakpoint_z_type): ... this, and add
z_type parameter.
(gdb_condition_true_at_breakpoint): Reimplement.
(add_breakpoint_commands): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_no_commands_at_breakpoint): Rename to ...
(gdb_no_commands_at_breakpoint_z_type): ... this. Add z_type
parameter. Return true if no breakpoint was found. Change debug
output.
(gdb_no_commands_at_breakpoint): Reimplement.
(run_breakpoint_commands): Rename to ...
(run_breakpoint_commands_z_type): ... this. Add z_type parameter,
and change return type to boolean.
(run_breakpoint_commands): New function.
(gdb_breakpoint_here): Also check for Z1 breakpoints.
(uninsert_raw_breakpoint): Don't try to reinsert a disabled
breakpoint. Go through the_target->remove_point instead of
assuming memory breakpoint.
(uninsert_breakpoints_at, uninsert_all_breakpoints): Uninsert
software and hardware breakpoints.
(reinsert_raw_breakpoint): Go through the_target->insert_point
instead of assuming memory breakpoint.
(reinsert_breakpoints_at, reinsert_all_breakpoints): Reinsert
software and hardware breakpoints.
(check_breakpoints, breakpoint_here, breakpoint_inserted_here):
Check both software and hardware breakpoints.
(validate_inserted_breakpoint): Assert the breakpoint is a
software breakpoint. Set the inserted flag to -1 instead of
setting shlib_disabled.
(delete_disabled_breakpoints): Adjust.
(validate_breakpoints): Only validate software breakpoints.
Adjust to inserted flag change.
(check_mem_read, check_mem_write): Skip breakpoint types other
than software breakpoints. Adjust to inserted flag change.
* mem-break.h (enum raw_bkpt_type): New enum.
(raw_breakpoint, struct process_info): Forward declare.
(Z_packet_to_target_hw_bp_type): Delete declaration.
(raw_bkpt_type_to_target_hw_bp_type, Z_packet_to_raw_bkpt_type)
(set_gdb_breakpoint, delete_gdb_breakpoint)
(clear_breakpoint_conditions): New declarations.
(set_gdb_breakpoint_at, clear_gdb_breakpoint_conditions): Delete.
(breakpoint_inserted_here): Update comment.
(add_breakpoint_condition, add_breakpoint_commands): Replace
address parameter with a breakpoint pointer parameter.
(gdb_breakpoint_here): Update comment.
(delete_gdb_breakpoint_at): Delete.
(insert_memory_breakpoint, remove_memory_breakpoint): Declare.
* server.c (process_point_options): Take a struct breakpoint
pointer instead of an address. Adjust.
(process_serial_event) <Z/z packets>: Use set_gdb_breakpoint and
delete_gdb_breakpoint.
* spu-low.c (spu_target_ops): Install NULL as
supports_z_point_type method.
* target.h: Include mem-break.h.
(struct target_ops) <prepare_to_access_memory>: Update comment.
<supports_z_point_type>: New field.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
* win32-arm-low.c (the_low_target): Install NULL as
supports_z_point_type.
* win32-i386-low.c (i386_supports_z_point_type): New function.
(i386_insert_point, i386_remove_point): Adjust to new interface.
(the_low_target): Install i386_supports_z_point_type.
* win32-low.c (win32_supports_z_point_type): New function.
(win32_insert_point, win32_remove_point): Adjust to new interface.
(win32_target_ops): Install win32_supports_z_point_type.
* win32-low.h (struct win32_target_ops):
<supports_z_point_type>: New method.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
gdb/testsuite/
2014-05-20 Pedro Alves <palves@redhat.com>
* gdb.base/break-idempotent.c: New file.
* gdb.base/break-idempotent.exp: New file.
|
|
The Aarch64, MIPS and x86 Linux backends all have Z packet number
defines and corresponding protocol number to internal type convertion
routines. Factor them all out to gdbserver's core code, so we only
have one shared copy.
Tested on x86_64 Fedora 20, and also cross built for aarch64-linux-gnu
and mips-linux-gnu.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* mem-break.h: Include break-common.h.
(Z_PACKET_SW_BP, Z_PACKET_HW_BP, Z_PACKET_WRITE_WP)
(Z_PACKET_READ_WP, Z_PACKET_ACCESS_WP): New defines.
(Z_packet_to_target_hw_bp_type): New declaration.
* mem-break.c (Z_packet_to_target_hw_bp_type): New function.
* i386-low.c (Z_PACKET_HW_BP, Z_PACKET_WRITE_WP, Z_PACKET_READ_WP)
(Z_PACKET_ACCESS_WP): Delete macros.
(Z_packet_to_hw_type): Delete function.
* i386-low.h: Don't include break-common.h here.
(Z_packet_to_hw_type): Delete declaration.
* linux-x86-low.c (x86_insert_point, x86_insert_point): Call
Z_packet_to_target_hw_bp_type instead of Z_packet_to_hw_type.
* win32-i386-low.c (i386_insert_point, i386_remove_point): Call
Z_packet_to_target_hw_bp_type instead of Z_packet_to_hw_type.
* linux-aarch64-low.c: Don't include break-common.h here.
(Z_PACKET_SW_BP, Z_PACKET_HW_BP, Z_PACKET_WRITE_WP)
(Z_PACKET_READ_WP, Z_PACKET_ACCESS_WP): Delete macros.
(Z_packet_to_target_hw_bp_type): Delete function.
* linux-mips-low.c (rsp_bp_type_to_target_hw_bp_type): Delete
function.
(mips_insert_point, mips_remove_point): Use
Z_packet_to_target_hw_bp_type.
|
|
This makes linux-aarch64-low.c use target_hw_bp_type, like gdb's
aarch64-linux-nat.c. The original motivation is decoupling
insert_point/remove_point from Z packet numbers, but I think making
the files a little bit more similar is a good thing on its own right.
Ideally we'd merge these files even... The
aarch64_point_encode_ctrl_reg change is taken straight from GDB's
copy.
I confirmed with a cross compiler that this builds, but it's otherwise
untested.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* linux-aarch64-low.c: Include break-common.h.
(enum target_point_type): Delete.
(Z_packet_to_point_type): Rename to ...
(Z_packet_to_target_hw_bp_type): ... this, and return a
target_hw_bp_type instead.
(aarch64_show_debug_reg_state): Take an enum target_hw_bp_type
instead of an enum target_point_type.
(aarch64_point_encode_ctrl_reg): Likewise. Compute type mask from
breakpoint type.
(aarch64_dr_state_insert_one_point)
(aarch64_dr_state_remove_one_point, aarch64_handle_breakpoint)
(aarch64_handle_aligned_watchpoint)
(aarch64_handle_unaligned_watchpoint, aarch64_handle_watchpoint):
Take an enum target_hw_bp_type instead of an enum
target_point_type.
(aarch64_supports_z_point_type): New function.
(aarch64_insert_point, aarch64_remove_point): Use it. Adjust to
use Z_packet_to_target_hw_bp_type.
|
|
On GDB release branches, we change $development in gdb/development.sh
to false, in order to build the GDB release without -Werror by default,
thus avoiding harmless compiler warnings from breaking the build of
someone who's only interested in building GDB rather than working
on it.
This patch implements the same strategy for gdbserver, using the exact
same method.
gdb/gdbserver/ChangeLog:
* configure.ac: Only use -Werror by default when DEVELOPMENT
is true.
* configure: Regenerate.
Tested on x86_64-linux, by rebuilding GDBserver first with development
set to true, and then doing it again with development set to false.
Werror was used in the first case, but not in the second.
|
|
When using a reverse execution command without execution history, GDB
might end up in a state where replaying has been started but remains
at the current instruction. This state is illegal.
Do not step if there is no execution history to avoid this.
2014-05-20 Markus Metzger <markus.t.metzger@intel.com>
* record-btrace.c (record_btrace_step_thread): Check for empty history.
testsuite/
* gdb.btrace/nohist.exp: New.
|
|
Hi,
This patch is to add a new board setting gdb_reverse_timeout, which is
used to set timeout for all gdb.reverse test cases, which are usually
very slow and cause some TIMEOUT failures, for example, on some arm
boards. We have some alternatives to this approach, but I am not
satisfied with them:
- Increase the timeout value. This is the global change, and it may
cause some delay where actual failures happen.
- Set timeout by gdb_reverse_timeout in every gdb.reverse/*.exp.
Then, we have to touch every file under gdb.reverse.
In this patch, we choose a central place to set timeout for all tests
in gdb.reverse, which is convenient.
gdb/testsuite:
2014-05-20 Yao Qi <yao@codesourcery.com>
* lib/gdb.exp (gdb_init): Set timeout if test file is under
gdb.reverse directory and gdb_reverse_timeout exists in board
setting.
* README: Document gdb_reverse_timeout.
|
|
The argument ARGS of gdb_init is passed from dejagnu is a string, the
test file name. In dejagnu/runtest.exp:
proc runtest { test_file_name } {
....
....
if [info exists tool] {
if { [info procs "${tool}_init"] != "" } {
${tool}_init $test_file_name;
}
}
....
}
but inn default_gdb_init (callee of gdb_init), we have
set gdb_test_file_name [file rootname [file tail [lindex $args 0]]]
In tcl, all actual arguments are combined to a list and assigned to
args. This code here isn't wrong, but unnecessary, because its caller
(proc runtest) only passes one string to it, and IMO, we don't need
such tricky tcl "args".
I doubt that "[lindex $args 0]" is to be backward compatible with old
dejagnu, but dejagnu-1.4 release started to pass $test_file_name to
${too}_init, as I showed above. dejagnu-1.4 was released in 2001, and
it should be old enough. I also tried to check whether gdb testusite
works with dejagnu-1.3 or not, but failed to build dejagnu-1.3 on my
machine. Supposing GDB testsuite requires at least dejagnu-1.4, this
change should be safe.
This patch is update default_gdb_init to treat ARGS as a string instead
of a list. Then, 'args' sounds like a list, and this patch also renames
it by 'test_file_name', to align with dejagnu.
gdb/testsuite:
2014-05-20 Yao Qi <yao@codesourcery.com>
* lib/gdb.exp (default_gdb_init): Rename argument 'args' by
'test_file_name'. Treat args as a string instead of a list.
(gdb_init): Rename argument 'args' by 'test_file_name'.
|
|
The root cause of this issue is unwinder of "#3 <signal handler called>"
doesn't supply right values of registers.
When GDB want to get the previous frame of "#3 <signal handler called>",
it will call cache init function of unwinder "aarch64_linux_sigframe_init".
The address or the value of the registers is get from this function.
So the bug is inside thie function.
I check the asm code of "#3 <signal handler called>":
(gdb) frame 3
(gdb) p $pc
$1 = (void (*)()) 0x7f931fa4d0
(gdb) disassemble $pc, +10
Dump of assembler code from 0x7f931fa4d0 to 0x7f931fa4da:
=> 0x0000007f931fa4d0: mov x8, #0x8b // #139
0x0000007f931fa4d4: svc #0x0
0x0000007f931fa4d8: nop
This is the syscall sys_rt_sigreturn, Linux kernel function "restore_sigframe"
will set the frame:
for (i = 0; i < 31; i++)
__get_user_error(regs->regs[i], &sf->uc.uc_mcontext.regs[i],
err);
__get_user_error(regs->sp, &sf->uc.uc_mcontext.sp, err);
__get_user_error(regs->pc, &sf->uc.uc_mcontext.pc, err);
The struct of uc_mcontext is:
struct sigcontext {
__u64 fault_address;
/* AArch64 registers */
__u64 regs[31];
__u64 sp;
__u64 pc;
__u64 pstate;
/* 4K reserved for FP/SIMD state and future expansion */
__u8 __reserved[4096] __attribute__((__aligned__(16)));
};
But in GDB function "aarch64_linux_sigframe_init", the code the get address
of registers is:
for (i = 0; i < 31; i++)
{
trad_frame_set_reg_addr (this_cache,
AARCH64_X0_REGNUM + i,
sigcontext_addr + AARCH64_SIGCONTEXT_XO_OFFSET
+ i * AARCH64_SIGCONTEXT_REG_SIZE);
}
trad_frame_set_reg_addr (this_cache, AARCH64_FP_REGNUM, fp);
trad_frame_set_reg_addr (this_cache, AARCH64_LR_REGNUM, fp + 8);
trad_frame_set_reg_addr (this_cache, AARCH64_PC_REGNUM, fp + 8);
The code that get pc and sp is not right, so I change the code according
to Linux kernel code:
trad_frame_set_reg_addr (this_cache, AARCH64_SP_REGNUM,
sigcontext_addr + AARCH64_SIGCONTEXT_XO_OFFSET
+ 31 * AARCH64_SIGCONTEXT_REG_SIZE);
trad_frame_set_reg_addr (this_cache, AARCH64_PC_REGNUM,
sigcontext_addr + AARCH64_SIGCONTEXT_XO_OFFSET
+ 32 * AARCH64_SIGCONTEXT_REG_SIZE);
The issue was fixed by this change, and I did the regression test. It
also fixed a lot of other XFAIL and FAIL.
2014-05-20 Hui Zhu <hui@codesourcery.com>
Yao Qi <yao@codesourcery.com>
PR backtrace/16558
* aarch64-linux-tdep.c (aarch64_linux_sigframe_init): Update comments
and change address of sp and pc.
|
|
* dwarf2read.c (build_type_psymtabs_1): Renamed from
build_type_unit_groups and moved closer to only caller. Remove
arguments. All references updated. Remove outdated .gdb_index
comment.
(struct tu_abbrev_offset, sort_tu_by_abbrev_offset): Move with
build_type_psymtabs_1.
|
|
I'm checking this in as obvious.
I was looking at instances of "alloc.*sizeof" and noticed a couple
where the types in question are incorrect.
In gdbtypes, the code allocates sizeof(int) to represent a struct rank.
In mi-cmds, the code uses "struct mi_cmd **" -- one "*" too many.
In both cases the problems are latent because in practice the sizes
are the same as the sizes of the correct types. Still, it's better to
be correct.
I think gdb would be improved by a wholesale change from explicit
sizeofs to using the libiberty.h allocation macros. In most cases
they are both shorter and have better type safety. However, the
resulting patch is rather large.
Built and regtested on x86-64 Fedora 20.
2014-05-19 Tom Tromey <tromey@redhat.com>
* gdbtypes.c (rank_function): Use XNEWVEC.
* mi/mi-cmds.c (build_table): Use XCNEWVEC.
|
|
* dwarf2read.c (struct dwarf2_per_objfile): Delete unused members
n_type_unit_groups, all_type_unit_groups. All uses removed.
(get_type_unit_group, build_type_unit_groups): Delete forward decls.
(dw2_get_cutu): Renamed from dw2_get_cu. All callers updated.
(dw2_get_cu): Renamed from dw2_get_primary_cu. All callers updated.
(add_type_unit_group_to_table): Delete.
|
|
gdbserver makes libthread_db to access uninitialized memory. Surprisingly it
does not harm normally, even -fsanitize=address works with current gdbserver.
I have found just valgrind detects it as a very first warning for gdbserver:
Syscall param ptrace(addr) contains uninitialised byte(s)
at 0x3721EECEBE: ptrace (ptrace.c:45)
by 0x436EE5: ps_get_thread_area (linux-x86-low.c:252)
by 0x5559D02: __td_ta_lookup_th_unique (td_ta_map_lwp2thr.c:157)
by 0x5559EC3: td_ta_map_lwp2thr (td_ta_map_lwp2thr.c:207)
by 0x43F87D: find_one_thread (thread-db.c:281)
by 0x440038: thread_db_get_tls_address (thread-db.c:505)
by 0x40F6D0: handle_query (server.c:2004)
by 0x4124CF: process_serial_event (server.c:3445)
by 0x4136B6: handle_serial_event (server.c:3889)
by 0x419571: handle_file_event (event-loop.c:434)
by 0x418D38: process_event (event-loop.c:189)
by 0x419AB7: start_event_loop (event-loop.c:552)
Reproducible with:
cd gdb/testsuite
g++ -o gdb.threads/tls gdb.threads/tls{,2}.c -m32 -pthread
../gdbserver/gdbserver :1234 gdb.threads/tls
../gdb -batch gdb.threads/tls -ex 'target remote :1234' -ex 'b spin' -ex c -ex 'p a_thread_local'
It is more easily reproducible even without valgrind using s/0x00/0xff/ in the
attached patch. It will then turn the output of reproducer above:
$1 = 0
->
Cannot find thread-local storage for Thread 29044, executable file .../gdb/testsuite/gdb.threads/tls:
Remote target failed to process qGetTLSAddr request
gdb/gdbserver/
2014-05-19 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix gdbserver qGetTLSAddr for x86_64 -m32.
* linux-x86-low.c (X86_64_USER_REGS): New.
(x86_fill_gregset): Call memset for BUF first in x86_64 -m32 case.
Message-ID: <20140410114901.GA16411@host2.jankratochvil.net>
|
|
|
|
Power5, Power6 and Power7 disassembly testing.
gdb/testsuite/
2014-05-19 Jan Kratochvil <jan.kratochvil@redhat.com>
* gdb.arch/powerpc-power.exp: New file.
* gdb.arch/powerpc-power.s: New file.
Message-ID: <20140514205425.GA15398@host2.jankratochvil.net>
|
|
* progspace.h (remove_program_space): Ditto.
|
|
(remove_inferior_command): Call prune_program_spaces.
|
|
* python.texi (Basic Python) <gdb.execute>: Add text.
(Basic Python) <gdb.post_event>: Remove "main" from "main GDB thread".
(Values From Inferior) <Python string>: Add text.
(Values From Inferior) <Value.string>: Clarify string length handling.
(Pretty Printing API): Add cindex.
(Types In Python) <TYPE_CODE_*>: Use vtable instead of table.
Remove unnecessary index of gdb.TYPE_CODE_*. Replace @findex with
@vindex.
(Commands In Python) <COMPLETE_*>: Similarly.
(Symbols In Python) <SYMBOL_*>: Similarly.
(Breakpoints In Python) <WP_*>: Similarly.
(Breakpoints In Python) <BP_*>: Similarly.
|
|
gdb/doc/gdb.texinfo (General Query Packets): Add a note about thread IDs
mentioned in the qfThreadInfo reply.
|
|
before doing file completion.
|
|
|
|
* NEWS: Mention it.
* main.c (set_gdb_data_directory): New function.
(captured_main): Recognize -D. Flag error for --data-directory "".
Call set_gdb_data_directory.
(print_gdb_help): Print --data-directory, -D.
* main.h (set_gdb_data_directory): Declare.
* top.c (staged_gdb_datadir): New static global.
(set_gdb_datadir): Call set_gdb_data_directory
(show_gdb_datadir): New function.
(init_main): Update init of data-directory parameter.
testsuite/
* gdb.base/catch-syscall.exp (test_catch_syscall_fail_nodatadir):
Update.
(do_syscall_tests_without_xml): Update.
doc/
* gdb.texinfo (Mode Options): Add -D.
|
|
2014-05-16 Gregory Fong <gregory.0xf0@gmail.com>
Import the "dirfd" gnulib module.
* gnulib/update-gnulib.sh (IMPORTED_GNULIB_MODULES): Add dirfd.
* gnulib/aclocal.m4: Update.
* gnulib/config.in: Update.
* gnulib/configure: Update.
* gnulib/import/Makefile.am: Update.
* gnulib/import/Makefile.in: Update.
* gnulib/import/dirfd.c: New.
* gnulib/import/m4/dirfd.m4: New.
* gnulib/import/m4/gnulib-cache.m4: Update.
* gnulib/import/m4/gnulib-comp.m4: Update.
|
|
gdb/testsuite/
2014-05-16 Pedro Alves <palves@redhat.com>
* lib/mi-support.exp (mi_expect_stop): On timeout, say "timeout"
instead of "unknown output after running".
|
|
Some gdb.dwarf2/*.exp tests copy file1.txt to host via gdb_remote_download
but dw2-filename.exp and dw2-anonymous-func.exp don't do that. Looks like
an oversight in this patch
https://sourceware.org/ml/gdb-patches/2013-08/msg00365.html
There are some fails in remote host testing.
FAIL: gdb.dwarf2/dw2-anonymous-func.exp: list file1.txt
FAIL: gdb.dwarf2/dw2-filename.exp: interpreter-exec mi -file-list-exec-source-files
FAIL: gdb.dwarf2/dw2-filename.exp: info sources
This patch is to invoke gdb_remote_download to copy file1.txt to host
and remote it at the end. This patch fixes these fails above.
gdb/testsuite:
2014-05-16 Yao Qi <yao@codesourcery.com>
* gdb.dwarf2/dw2-filename.exp: Copy file1.txt to host. Remove
file1.txt from host at the end.
* gdb.dwarf2/dw2-anonymous-func.exp: Likewise.
|
|
Pierre proposed this patch
https://sourceware.org/ml/gdb-patches/2013-10/msg00011.html and
Tom gave a suggestion that it's better to do check \t in print_wchar
<https://sourceware.org/ml/gdb-patches/2013-11/msg00148.html>
However, I don't see the follow-up to this discussion.
We encounter two fails in printcmds.exp on mingw host, and Pierre's
patch fixes them. I pick it up, update a little per Tom's
comments, and post it here for review. This patch fixes these fails
below on mingw32 host.
FAIL: gdb.base/charset.exp: print string in ASCII
FAIL: gdb.base/charset.exp: try printing '\t' in ASCII
FAIL: gdb.base/charset.exp: print string in ISO-8859-1
FAIL: gdb.base/charset.exp: try printing '\t' in ISO-8859-1
FAIL: gdb.base/charset.exp: print string in UTF-32
FAIL: gdb.base/charset.exp: try printing '\t' in UTF-32
FAIL: gdb.base/printcmds.exp: p ctable1[9]
FAIL: gdb.base/printcmds.exp: p &ctable1[1*8]
Also regression tested on x86_64-linux. Is it OK?
gdb:
2014-05-16 Pierre Muller <muller@sourceware.org>
Yao Qi <yao@codesourcery.com>
* valprint.c (print_wchar): Move the code on checking whether
W is a printable wide char to the default branch of switch
statement below. Call wchar_printable instead of gdb_iswprint.
|